
i.MX Graphics User's Guide

NXP Semiconductors Document identifier: IMXGRAPHICUG
User's Guide Rev. 8, 11 June 2021



Contents
Chapter 1 Introduction........................................................................................... 4

Chapter 2 i.MX G2D API........................................................................................5

Chapter 3 i.MX EGL and OGL Extension Support...............................................21

Chapter 4 i.MX Framebuffer API..........................................................................43

Chapter 5 OpenCL...............................................................................................51

Chapter 6 OpenVX Introduction...........................................................................66

Chapter 7 Vulkan................................................................................................. 75

Chapter 8 Multiple GPUs and Virtualization.........................................................78

Chapter 9 GBM - Generic Buffer Management....................................................80

Chapter 10 Wayland and Weston........................................................................ 81

Chapter 11 X Windowing Acceleration................................................................ 83

Chapter 12 Advanced GPU Configuration........................................................... 84

Chapter 13 Vivante IDE....................................................................................... 85

Chapter 14 GPU Tools.......................................................................................126

Chapter 15 GPU Memory Introduction...............................................................141

Chapter 16 Application Programming Recommendations................................. 144

Chapter 17 Demo Framework............................................................................150

Chapter 18 Environment Variables Summary....................................................181

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 2 / 185



Chapter 19 Revision History.............................................................................. 184

NXP Semiconductors
Contents

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 3 / 185



Chapter 1
Introduction
The purpose of this document is to provide information on graphic APIs and driver support. Each chapter describes a specific set
of APIs or driver integration as well as specific hardware acceleration customization. The target audiences for this document are
developers writing graphics applications or video drivers.

1.1 i.MX full GPU line
The whole family of GPUs are listed in the following table. On i.MX 6 boards, only 6Quad and 6QuadPlus support OpenCL. The
theoretical number of GFLOPS, the key performance indicator of OpenCL, is also shown in the table. Some benchmarks such as
Clpeak, can be used to verify it.

i.MX 8QuadMax supports OpenVX, which will be introduced in next chapter.

Figure 1. GPU Scalability across i.MX processors

 
OpenVG on 3D GPU with software tessellation.

  NOTE  

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 4 / 185



Chapter 2
i.MX G2D API

2.1 Overview
The G2D Application Programming Interface (API) is designed to be easy to understand and to use the 2D Bit blit (BLT) function. It
allows the user to implement the customized applications with simple interfaces. It is hardware and platform independent for i.MX
2D Graphics.

G2D API supports the following features but is not limited to these:

• Simple BLT operation from source to destination

• 16/32bit RGB(alpha) and YUV color format conversions

• Alpha blending for source and destination with Porter-Duff rules

• High-performance memory copy from source to destination

• Up-scaling and down-scaling from source to destination

• 90/180/270 degree rotation from source to destination

• Horizontal and vertical flip from source to destination

• Enhanced visual quality with dither for pixel precision-loss (*)

• High performance memory clear for destination

• Pixel-level cropping for source surface

• Global alpha blending for source only

• Asynchronous mode and sync

• Contiguous memory allocator

• Support cacheable memory (*)

• Support VG engine (*)

• Multi source blit (*)

Note: The features with (*) are available on specific devices. Applications can query G2D for available features.

The G2D API document includes a detailed interface description and sample code for reference.

The API is designed with C-Style coding and can be used in both C and C++ applications.

2.2 Enumerations and structures
This chapter describes all enumerations and structure definitions in G2D.

2.2.1 g2d_format enumeration
This enumeration describes the pixel format for source and destination.

Table 1. g2d_format enumeration

Name Numeric Description

G2D_RGB565 0 RGB565 pixel format

Table continues on the next page...

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 5 / 185



Table 1. g2d_format enumeration (continued)

Name Numeric Description

G2D_RGBA8888 1 32-bit RGBA pixel format

G2D_RGBX8888 2 32-bit RGBX without alpha blending

G2D_BGRA8888 3 32-bit BGRA pixel format

G2D_BGRX8888 4 32-bit BGRX without alpha blending

G2D_BGR565 5 16-bit BGR565 pixel format

G2D_ARGB8888 6 32-bit ARGB pixel format

G2D_ABGR8888 7 32-bit ABGR pixel format

G2D_XRGB8888 8 32-bit XRGB without alpha

G2D_XBGR8888 9 32-bit XBGR without alpha

G2D_RGB888 10 24-bit RGB

G2D_BGR888 11 24-bit BGR

G2D_NV12 20 Y plane followed by interleaved U/V plane

G2D_I420 21 Y, U, V are within separate planes

G2D_YV12 22 Y, V, U are within separate planes

G2D_NV21 23 Y plane followed by interleaved V/U plane

G2D_YUYV 24 Interleaved Y/U/Y/V plane

G2D_YVYU 25 Interleaved Y/V/Y/U plane

G2D_UYVY 26 Interleaved U/Y/V/Y plane

G2D_VYUY 27 Interleaved V/Y/U/Y plane

G2D_NV16 28 Y plane followed by interleaved U/V plane

G2D_NV61 29 Y plane followed by interleaved V/U plane

2.2.2 g2d_blend_func enumeration
This enumeration describes the blend factor for source and destination.

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 6 / 185



Table 2. g2d_blend_func enumeration

Name Numeric Description

G2D_ZERO 0 Blend factor with 0

G2D_ONE 1 Blend factor with 1

G2D_SRC_ALPHA 2 Blend factor with source alpha

G2D_ONE_MINUS_SRC_ALPHA 3 Blend factor with 1 - source alpha

G2D_DST_ALPHA 4 Blend factor with destination alpha

G2D_ONE_MINUS_DST_ALPHA 5 Blend factor with 1 - destination alpha

G2D_PRE_MULTIPLIED_ALPHA 0x10 Extensive blend as pre-multiplied alpha

G2D_DEMULTIPLY_OUT_ALPHA 0x20 Extensive blend as demultiply out alpha

2.2.3 g2d_cap_mode enumeration
This enumeration describes the alternative capability in 2D BLT.

Table 3. g2d_cap_mode enumeration

Name Numeric Description

G2D_BLEND 0 Enable alpha blend in 2D BLT

G2D_DITHER 1 Enable dither in 2D BLT

G2D_GLOBAL_ALPHA 2 Enable global alpha in blend

G2D_BLEND_DIM 3 Enable blend dim effect

G2D_BLUR 4 Enable blur effect

G2D_YUY_BT_601 5 Enable YUV BT.601 mode

G2D_YUY_BT_709 6 Enable YUV BT.709 mode

G2D_YUY_BT_601FR 7 Enable YUV BT.601 full range mode

G2D_YUY_BT_709FR 8 Enable YUV BT.709 full range mode

 
G2D_GLOBAL_ALPHA is only valid when G2D_BLEND is enabled.

  NOTE  

2.2.4 g2d_rotation enumeration
This enumeration describes the rotation mode in 2D BLT.

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 7 / 185



Table 4. g2d_rotation enumeration

Name Numeric Description

G2D_ROTATION_0 0 No rotation

G2D_ROTATION_90 1 Rotation with 90 degree

G2D_ROTATION_180 2 Rotation with 180 degree

G2D_ROTATION_270 3 Rotation with 270 degree

G2D_FLIP_H 4 Horizontal flip

G2D_FLIP_V 5 Vertical flip

2.2.5 g2d_cache_mode enumeration
This enumeration describes the cache operation mode.

Table 5. g2d_cache_mode enumeration

Name Numeric Description

G2D_CACHE_CLEAN 0 Clean the cacheable buffer

G2D_CACHE_FLUSH 1 Clean and invalidate cacheable buffer

G2D_CACHE_INVALIDATE 2 Invalidate the cacheable buffer

2.2.6 g2d_hardware_type enumeration
This enumeration describes the supported hardware type.

Table 6. g2d_hardware_type enumeration

Name Numeric Description

G2D_HARDWARE_2D 0 2D hardware type by default

G2D_HARDWARE_VG 1 VG hardware type

2.2.7 g2d_surface structure
This structure describes the surface with operation attributes.

Table 7. g2d_surface structure

g2d_surface Members Type Description

format g2d_format Pixel format of surface buffer

planes[3] Int Physical addresses of surface buffer

Table continues on the next page...

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 8 / 185



Table 7. g2d_surface structure (continued)

g2d_surface Members Type Description

left Int Left offset in blit rectangle

top Int Top offset in blit rectangle

right Int Right offset in blit rectangle

bottom Int Left offset in blit rectangle

stride Int RGB/Y stride of surface buffer

width Int Surface width in pixel unit

height Int Surface height in pixel unit

blendfunc g2d_blend_func Alpha blend mode

global_alpha Int Global alpha value 0~255

clrcolor Int Clear color is 32bit RGBA

rot g2d_rotation Rotation mode

 
RGB and YUV formats conversion, Y(*) means feature available on i.MX 6Quad Plus, i.MX 7ULP and i.MX 8
family devices.

  NOTE  

• RGB pixel buffer only uses planes [0], buffer address is with 16 bytes alignment on i.MX 6 (except i.MX 6Quad Plus), 1
pixel alignment on i.MX 6Quad Plus, i.MX 7ULP and i.MX 8 family devices.

• NV12: Y in planes [0], UV in planes [1], with 64bytes alignment,

• I420: Y in planes [0], U in planes [1], U in planes [2], with 64 bytes alignment

• The cropped region in source surface is specified with left, top, right and bottom parameters.

• RGB stride alignment is 16 bytes on i.MX 6 (except i.MX 6Quad Plus), 1 pixel alignment on i.MX 6Quad Plus, i.MX 7ULP
and i.MX 8 family devices, both for source and destination surface.

• NV12 stride alignment is 8 bytes for source surface, UV stride = Y stride,

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 9 / 185



• I420 stride alignment is 8 bytes for source surface, U stride=V stride = ½ Y stride.

• G2D_ROTATION_0/G2D_FLIP_H/G2D_FLIP_V shall be set in source surface, and the clockwise rotation degree shall be
set in destination surface.

• Application should calculate the rotated position and set it for destination surface.

• The geometry definition of surface structure is described as follows.

Figure 2. g2d_surface structure

2.2.8 g2d_buf structure
This structure describes the buffer used as G2D interfaces.

Table 8. g2d_buf structure

g2d_buf Members Type Description

buf_handle void * The handle associated with buffer

buf_vaddr void * Virtual address of the buffer

buf_paddr int Physical address of the buffer

buf_size int The actual size of the buffer

2.2.9 g2d_surface_pair structure
This structure binds one source g2d_surface and one destination g2d_surface as a pair. When doing multi-source blit, they are
one-to-one correspondent.

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 10 / 185



Table 9. g2d_surface_pair structure

g2d_surface_pair Members Type Description

s g2d_surface Source g2d_surface

d g2d_surface Destination g2d_surface

2.2.10 g2d_feature enumeration
This enumeration describes the features in G2D BLT.

Table 10. g2d_feature enumeration

Name Numeric Description

G2D_SCALING 0 Scaling

G2D_ROTATION 1 Rotation

G2D_SRC_YUV 2 Source YUV format

G2D_DST_YUV 3 Destination YUV format

G2D_MULTI_SOURCE_BLT 4 Multisource blit

G2D_FAST_CLEAR 5 Support fast clear blit

2.3 G2D function description

2.3.1 g2d_open

Description Open a G2D device and return a handle.

Syntax
int g2d_open (void **handle);

Parameters handle: Pointer to receive G2D device handle

Returns Success with 0, fail with -1

2.3.2 g2d_close

Description Close G2D device with the handle.

Syntax
int g2d_close (void *handle);

Parameters handle: G2D device handle

Returns Success with 0, fail with -1

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 11 / 185



2.3.3 g2d_make_current

Description Set the specific hardware type for current context, and the default is G2D_HARDWARE_2D.

Syntax
int g2d_make_current (void *handle, enum g2d_hardware_type type);

Parameters handle: G2D device handle

Returns Success with 0, fail with -1

2.3.4 g2d_clear

Description Clear a specific area.

Syntax
int g2d_clear (void *handle, struct g2d_surface *area);

Parameters handle: G2D device handle

area: The area to be cleared

Returns Success with 0, fail with -1

2.3.5 g2d_blit

Description G2D blit from source to destination with alternative operation (Blend, Dither, etc.).

Syntax
int g2d_blit (void *handle, struct g2d_surface *src, struct g2d_surface *dst);

Parameters handle: G2D device handle

src: source surface

dst: destination surface

Returns Success with 0, fail with -1

2.3.6 g2d_copy

Description G2D copy with specified size.

Syntax
int g2d_copy (void *handle, struct g2d_buf *d, struct g2d_buf* s, int size);

Parameters handle: G2D device handle

d: destination buffer

s: source buffer

size: copy bytes

Limitations If the destination buffer is cacheable, it must be invalidated before g2d_copy due to the alignment
limitation of G2D driver.

Returns Success with 0, fail with -1

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 12 / 185



2.3.7 g2d_query_cap

Description Query the alternative capability enablement.

Syntax
int g2d_query_cap (void *handle, enum g2d_cap_mode cap, int *enable);

Parameters handle: G2D device handle

cap: G2D capability to query

enable: Pointer to receive G2D capability enablement

Returns Success with 0, fail with -1

2.3.8 g2d_enable

Description Enable G2D capability with the specific mode.

Syntax
int g2d_enable (void *handle, enum g2d_cap_mode cap);

Parameters handle: G2D device handle

cap: G2D capability to enable

Returns Success with 0, fail with -1

2.3.9 g2d_disable

Description Disable G2D capability with the specific mode.

Syntax
int g2d_disable (void *handle, enum g2d_cap_mode cap);

Parameters handle: G2D device handle

cap: G2D capability to disable

Returns Success with 0, fail with -1

2.3.10 g2d_cache_op

Description Perform cache operations for the cacheable buffer allocated through the G2D driver.

Syntax
int g2d_cache_op (struct g2d_buf *buf, enum g2d_cache_mode op);

Parameters buf: the buffer to be handled with cache operations

op: cache operation type

Returns Success with 0, fail with -1

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 13 / 185



2.3.11 g2d_alloc

Description Allocate a buffer through G2D device

Syntax
struct g2d_buf *g2d_alloc (int size, int cacheable);

Parameters size: allocated bytes

cacheable: 0, non-cacheable; 1, cacheable attribute defined by system

Returns Success with valid G2D buffer pointer, fail with 0

2.3.12 g2d_free

Description Free the buffer through G2D device.

Syntax
int g2d_free (struct g2d_buf *buf);

Parameters buf: G2D buffer to free

Returns Success with 0, fail with -1

2.3.13 g2d_flush

Description Flush G2D command and return without completing pipeline.

Syntax
int g2d_flush (void *handle);

Parameters handle: G2D device handle

Returns Success with 0, fail with -1

2.3.14 g2d_finish

Description Flush G2D command and then return when pipeline is finished.

Syntax
int g2d_finish (void *handle);

Parameters handle: G2D device handle

Returns Success with 0, fail with -1

2.3.15 g2d_multi_blit

Description Blit multiple sources to one destination.

Syntax
int g2d_multi_blit (void *handle, struct g2d_surface_pair *sp[], int layers);

Parameters handle: G2D device handle

sp: array in which elements point to g2d_surface_pair

Table continues on the next page...

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 14 / 185



layers: number of the source layers that need to be blited

Returns Success with 0, fail with -1

 
There are some restrictions for this API that we should be aware of.

• This API only works on the i.MX 6DualPlus/QuadPlus platform.

• The maximum number of the source layers that can be blited one time is 8.

• Although g2d_surface_pair binds one source g2d_surface and one destination g2d_surface as a pair, it only
supports one destination surface. The relationship between the source and destination is many to one, but
each source surface can be set separately and differently, and its dimension, stride, rotation, and format can
differ with that of the destination surface.

• The rotation of the destination surface is set to 0 degree by defaut, and cannot be changed.

• The key restriction is that the destination rectangle cannot be set, which means that the destination rectangle
must be the same as the source rectangle. Therefore, if the source rectangle is set to (l, t, r, b), the destination
rectangle should also be set to (l, t, r, b) by hardware. In the chapter on multi source blit (Section 2.5.4),
as it makes no sense to set the destination rectangles, we just set all of them to (0, 0, width, height) for
future extension.

  NOTE  

2.3.16 g2d_query_hardware

Description Query whether 2D and VG hardware are available in the current G2D.

Syntax
int g2d_query_hardware (void *handle, enum g2d_hardware_type type, int 
*available);

Parameters handle: G2D device handle

type: G2D hardware type

available: Pointer to receive G2D hardware type availability

Returns Success with 0, fail with -1

2.3.17 g2d_query_feature

Description Query if the features are available in G2D BLT.

Syntax
int g2d_query_feature (void *handle, enum g2d_feature feature, int 
*available);

Parameters handle: G2D device handle

feature: G2D feature in g2d_blit

available: Pointer to receive G2D feature availability

Returns Success with 0, fail with -1

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 15 / 185



2.4 Support of new operating system in G2D
G2D code is independent on operating system (OS) except of buffer allocation. Allocating the memory for buffer is made by
mechanism that is offered by each OS differently. The code for allocation is located in [G2D repository copy]/source/os/[OS name].
Therefore, supporting new OS includes the following steps:

1. Create a new folder in [G2D repository copy]/source/os/ with the name of the new OS and update implementation in the
included source code according to the new OS allocation mechanism.

2. When creating new makefiles for the OS, include the files from the new folder.

3. The test named overlay_test contains the OS dependent code. For supporting the new OS in this test, create new folder
in [G2D repository copy]/test/overlay_test/os and update the code according to the new OS mechanism for display
initialization. Also update makefiles to include code from the new folder.

2.5 Sample code for G2D API usage
This chapter provides the brief prototype code with G2D API.

2.5.1 Color space conversion from YUV to RGB

        g2d_open(&handle);

        src.planes[0] = buf_y;
        src.planes[1] = buf_u;
        src.planes[2] = buf_v;
        src.left = crop.left;
        src.top = crop.top;
        src.right = crop.right;
        src.bottom = crop.bottom;
        src.stride = y_stride;
            src.width = y_width;
            src.height = y_height;
        src.rot    = G2D_ROTATION_0;
        src.format = G2D_I420;

        dst.planes[0] = buf_rgba;
        dst.left = 0;
        dst.top = 0;
        dst.right = disp_width;
        dst.bottom = disp_height;
        dst.stride = disp_width;
            dst.width = disp_width;
            dst.height = disp_height;
        dst.rot    = G2D_ROTATION_0;
        dst.format = G2D_RGBA8888;

        g2d_blit(handle, &src, &dst);
            g2d_finish(handle);

        g2d_close(handle);

2.5.2 Alpha blend in source over mode
   

g2d_open(&handle);

src.planes[0] = src_buf;
src.left = 0;

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 16 / 185



src.top = 0;
src.right = test_width;
src.bottom = test_height;
src.stride = test_width;
src.width = test_width;
src.height = test_height;
src.rot = G2D_ROTATION_0;
src.format = G2D_RGBA8888;
src.blendfunc = G2D_ONE;

dst.planes[0] = dst_buf;
dst.left = 0;
dst.top = 0;
dst.right = test_width;
dst.bottom = test_height;
dst.stride = test_width;
dst.width = test_width;
dst.height = test_height;
dst.format = G2D_RGBA8888;
dst.rot = G2D_ROTATION_0;
dst.blendfunc = G2D_ONE_MINUS_SRC_ALPHA;

g2d_enable(handle,G2D_BLEND);
g2d_blit(handle, &src, &dst);
g2d_finish(handle);
g2d_disable(handle,G2D_BLEND);

g2d_close(handle);

2.5.3 Source cropping and destination rotation

g2d_open(&handle);

src.planes[0] = src_buf;
src.left = crop.left;
src.top = crop.left;
src.right = crop.right;
src.bottom = crop.bottom;
src.stride = src_stride;
src.width = src_width;
src.height = src_height;
src.format = G2D_RGBA8888;
src.rot    = G2D_ROTATION_0;//G2D_FLIP_H or G2D_FLIP_V

dst.planes[0] = dst_buf;
dst.left = 0;
dst.top = 0;
dst.right = dst_width;
dst.bottom = dst_height;
dst.stride = dst_width;
dst.width = dst_width;
dst.height = dst_height;
dst.format = G2D_RGBA8888;
dst.rot    = G2D_ROTATION_90;

g2d_blit(handle, &src, &dst);
g2d_finish(handle);

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 17 / 185



g2d_close(handle)

2.5.4 Multi source blit

const int layers = 8;
struct g2d_buf *d_buf;
struct g2d_buf *mul_s_buf[layers];
struct g2d_surface_pair *sp[layers];

g2d_open(&handle)

for(n = 0; n < layers; n++) {
sp[n] = (struct g2d_surface_pair *)malloc(sizeof(struct g2d_surface_pair));
}

d_buf = g2d_alloc(test_width * test_height * 4, 0);
for(n = 0; n < layers; n++) {
    mul_s_buf[n] = g2d_alloc(test_width * test_height * 4, 0);
}

for(n = 0; n < layers; n++) {
sp[n]->s.left = img_info_ptr[n]->img_left;
            sp[n]->s.top = img_info_ptr[n]->img_top;
            sp[n]->s.right =  img_info_ptr[n]->img_right;
            sp[n]->s.bottom = img_info_ptr[n]->img_bottom;

            sp[n]->s.stride = img_info_ptr[n]->img_width;
            sp[n]->s.width =  img_info_ptr[n]->img_width;
            sp[n]->s.height = img_info_ptr[n]->img_height;
            sp[n]->s.rot =    img_info_ptr[n]->img_rot;
            sp[n]->s.format = img_info_ptr[n]->img_format;    
    sp[n]->s.planes[0] = mul_s_buf[n]->buf_paddr;
}

sp[0]->d.left = 0;
sp[0]->d.top  = 0;
sp[0]->d.right = test_width;
sp[0]->d.bottom = test_height;

sp[0]->d.stride = test_width;
sp[0]->d.width  = test_width;
sp[0]->d.height = test_height;
sp[0]->d.format = G2D_RGBA8888;
sp[0]->d.rot    = G2D_ROTATION_0;
sp[0]->d.planes[0] = d_buf->buf_paddr;
for(n = 1; n < layers; n++) {
    sp[n]->d = sp[0]->d;
}
  
g2d_multi_blit(handle, sp, layers);
    g2d_finish(handle);
    for(n = 0; n < layers; n++)
        g2d_free(mul_s_buf[n]);
    g2d_free(d_buf);
    g2d_close(handle);

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 18 / 185



2.5.5 Sharing Buffers between APIs using G2D Buffers:
The G2D buffers can be used to avoid memory copies between APIs. Create a buffer using g2d_alloc and then map it as an
OpenGL ES texture or as an OpenVX buffer or an OpenCV Mat:

Allocate your buffer with:

struct g2d_buf * buffer0;
buffer0 = g2d_alloc(WIDTH*HEIGHT*4, 0);

For OpenCV, you map the buffer to the data field of the cv::Mat

cv::Mat buffer0Mat;
buffer0Mat.create (WIDTH, HEIGHT, CV_8UC4);
buffer0Mat.data = (uchar *) ((unsigned long) buffer0->buf_vaddr);

For OpenGL ES, you can make use of the DirectVIV extensions:

glGenTextures(1, &textureHandle[0]);
glBindTexture(GL_TEXTURE_2D, textureHandle[0]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexDirectVIVMap(GL_TEXTURE_2D, WIDTH, HEIGHT,  GL_RGBA, 
                                   &buffer0->buf_vaddr, (uint *)&buffer0->buf_paddr);
glTexDirectInvalidateVIV (GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);

For OpenVX you create vxImages from the buffer ranges:

vx_imagepatch_addressing_t patch0 = { (vx_uint32)WIDTH, (vx_uint32)HEIGHT,
(vx_int32)4, (vx_int32)HEIGHT*4, VX_SCALE_UNITY, VX_SCALE_UNITY, 1, 1 };
    void *ptr0 = buffer0->buf_vaddr;
vxInputImage = vxCreateImageFromHandle(contextVX, 
VX_DF_IMAGE_RGBX, &patch0, (void **)&ptr0, VX_MEMORY_TYPE_HOST);

With this scheme you can create a multi API pipeline, where you can post-process your OpenGL ES render result with CV or VX
without the need of copying data.

2.6 Feature list on multiple platforms
This user guide is for multiple platforms, such as i.MX 6 and i.MX 8, and the hardwares for the G2D implementation are different
on those platforms, so some G2D features are also different.

For example, the G2D_YVYU and G2D_VYUY formats are not supported on the i.MX 8, and the g2d_multi_blit function only works
on the i.MX 6DualPlus/QuadPlus. Therefore, we list those differences in the following feature table.

Table 11. Feature list on multiple platforms

Feature i.MX 6 i.MX 7 i.MX 8

6Solo/6Dual/
6Quad

6DualPlus/

6QuadPlus

7ULP 8M Mini/ 8M
Plus

8QuadMax

G2D_YVYU Yes Yes Yes Yes No

G2D_VYUY Yes Yes Yes Yes No

Table continues on the next page...

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 19 / 185



Table 11. Feature list on multiple platforms (continued)

G2D_HARDWARE_VG Yes Yes No No No

G2D_MULTI_SOURCE_BLT No Yes Yes Yes No

g2d_cache_op Yes Yes Yes Yes No

NXP Semiconductors
i.MX G2D API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 20 / 185



Chapter 3
i.MX EGL and OGL Extension Support

3.1 Introduction
The following tables list the level of support for EGL and OES extensions available with i.MX hardware and software. Support
levels are current as of the date of the document and subject to change.

Two tables are provided. The first table lists the EGL interface extensions. The second table lists extensions for OpenGL ES 1.1,
OpenGL ES 2.0, and OpenGL ES 3.0.

Key:

• Extension Name and Number: Each listed extension is derived from the relevant khronos.org webpage list and includes
the extension number as well as a hyperlink to the khronos description of the extension.

• Yes: Support is currently available.

• No: Support is not available. (Reasons for lack of support may vary: the extension may be proprietary or obsolete, or not
applicable to the specified OES version.)

• N/A: Support is not provided as the extension is not applicable in this and subsequent versions of the specification.

3.2 EGL extension support
The following table includes the list of all current EGL Extensions and indicates their support level.

(list from www.khronos.org/registry/egl/ as of 1/24/2020)

Table 12. EGL extension support

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

1. EGL_KHR_config_attribs    

2. EGL_KHR_lock_surface YES YES YES

3. EGL_KHR_image YES YES YES

4. EGL_KHR_vg_parent_image    

5. EGL_KHR_gl_texture_2D_image YES YES YES

EGL_KHR_gl_texture_cubemap_image YES YES YES

EGL_KHR_gl_texture_3D_image

EGL_KHR_gl_renderbuffer_image YES YES YES

6. EGL_KHR_reusable_sync YES YES YES

7. EGL_KHR_image_base YES YES YES

8. EGL_KHR_image_pixmap YES YES YES

Table continues on the next page...

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 21 / 185

http://www.khronos.org/registry/egl/
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_config_attribs.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_lock_surface.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_vg_parent_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_reusable_sync.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_pixmap.txt


Table 12. EGL extension support (continued)

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

9. EGL_IMG_context_priority YES YES  

10. EGL_NOK_texture_from_pixmap    

11. EGL_KHR_lock_surface2    

12. EGL_NV_coverage_sample    

13. EGL_NV_depth_nonlinear    

14. EGL_NV_sync    

15. EGL_KHR_fence_sync YES YES YES

16. EGL_NOK_swap_region2    

17. EGL_HI_clientpixmap    

18. EGL_HI_colorformats    

19. EGL_MESA_drm_image    

20. EGL_NV_post_sub_buffer    

21. EGL_ANGLE_query_surface_pointer    

22. EGL_ANGLE_surface_d3d_texture_2d_share_handle    

23. EGL_NV_coverage_sample_resolve    

24. EGL_NV_system_time    

25. EGL_KHR_stream    

EGL_KHR_stream_attrib    

26. EGL_KHR_stream_consumer_gltexture    

27. EGL_KHR_stream_producer_eglsurface    

28. EGL_KHR_stream_producer_aldatalocator    

29. EGL_KHR_stream_fifo    

30. EGL_EXT_create_context_robustness    

31. EGL_ANGLE_d3d_share_handle_client_buffer    

32. EGL_KHR_create_context YES YES YES

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 22 / 185

https://www.khronos.org/registry/EGL/extensions/IMG/EGL_IMG_context_priority.txt
https://www.khronos.org/registry/EGL/extensions/NOK/EGL_NOK_texture_from_pixmap.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_lock_surface2.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_coverage_sample.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_depth_nonlinear.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_sync.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt
https://www.khronos.org/registry/EGL/extensions/NOK/EGL_NOK_swap_region2.txt
https://www.khronos.org/registry/EGL/extensions/HI/EGL_HI_clientpixmap.txt
https://www.khronos.org/registry/EGL/extensions/HI/EGL_HI_colorformats.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_drm_image.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_post_sub_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_query_surface_pointer.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_surface_d3d_texture_2d_share_handle.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_coverage_sample_resolve.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_system_time.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_consumer_gltexture.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_producer_eglsurface.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_producer_aldatalocator.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_fifo.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_create_context_robustness.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_d3d_share_handle_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_create_context.txt


Table 12. EGL extension support (continued)

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

33. EGL_KHR_surfaceless_context YES YES YES

34. EGL_KHR_stream_cross_process_fd    

35. EGL_EXT_multiview_window    

36. EGL_KHR_wait_sync YES YES YES

37. EGL_NV_post_convert_rounding    

38. EGL_NV_native_query    

39. EGL_NV_3dvision_surface    

40. EGL_ANDROID_framebuffer_target  YES  

41. EGL_ANDROID_blob_cache  YES  

42. EGL_ANDROID_image_native_buffer  YES  

43. EGL_ANDROID_native_fence_sync  YES  

44. EGL_ANDROID_recordable  YES  

45. EGL_EXT_buffer_age YES YES YES

46. EGL_EXT_image_dma_buf_import YES YES

47. EGL_ARM_pixmap_multisample_discard    

48. EGL_EXT_swap_buffers_with_damage YES YES YES

49. EGL_NV_stream_sync    

50. EGL_EXT_platform_base YES YES YES

51. EGL_EXT_client_extensions YES YES YES

52. EGL_EXT_platform_x11 YES YES YES

53. EGL_KHR_cl_event    

54. EGL_KHR_get_all_proc_addresses YES YES YES

EGL_KHR_client_get_all_proc_addresses YES YES YES

55. EGL_MESA_platform_gbm    

56. EGL_EXT_platform_wayland YES   

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 23 / 185

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_surfaceless_context.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_cross_process_fd.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_multiview_window.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_wait_sync.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_post_convert_rounding.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_native_query.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_3dvision_surface.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_framebuffer_target.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_blob_cache.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_image_native_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_native_fence_sync.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_recordable.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_buffer_age.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://www.khronos.org/registry/EGL/extensions/ARM/EGL_ARM_pixmap_multisample_discard.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_swap_buffers_with_damage.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_sync.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_base.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_client_extensions.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_x11.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_cl_event.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_get_all_proc_addresses.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_get_all_proc_addresses.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_platform_gbm.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_wayland.txt


Table 12. EGL extension support (continued)

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

57. EGL_KHR_lock_surface3    

58. EGL_KHR_cl_event2    

59. EGL_KHR_gl_colorspace    

60. EGL_EXT_protected_surface YES YES YES

61. EGL_KHR_platform_android YES  

62. EGL_KHR_platform_gbm YES YES YES

63. EGL_KHR_platform_wayland YES   

64. EGL_KHR_platform_x11 YES   

65. EGL_EXT_device_base    

66. EGL_EXT_platform_device    

67. EGL_NV_device_cuda    

68. EGL_NV_cuda_event    

69. EGL_TIZEN_image_native_buffer    

70. EGL_TIZEN_image_native_surface    

71. EGL_EXT_output_base    

72. EGL_EXT_device_drm    

EGL_EXT_output_drm    

73. EGL_EXT_device_openwf    

EGL_EXT_output_openwf    

74. EGL_EXT_stream_consumer_egloutput    

75. EGL_KHR_partial_update YES YES YES

76. EGL_KHR_swap_buffers_with_damage YES YES YES

77. EGL_ANGLE_window_fixed_size    

78. EGL_EXT_yuv_surface    

79. EGL_MESA_image_dma_buf_export    

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 24 / 185

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_lock_surface3.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_cl_event2.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_colorspace.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_surface.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_android.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_gbm.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_wayland.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_x11.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_base.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_device.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_device_cuda.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_cuda_event.txt
https://www.khronos.org/registry/EGL/extensions/TIZEN/EGL_TIZEN_image_native_buffer.txt
https://www.khronos.org/registry/EGL/extensions/TIZEN/EGL_TIZEN_image_native_surface.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_output_base.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_openwf.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_openwf.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_stream_consumer_egloutput.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_partial_update.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_swap_buffers_with_damage.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_window_fixed_size.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_yuv_surface.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_image_dma_buf_export.txt


Table 12. EGL extension support (continued)

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

80. EGL_EXT_device_enumeration    

81. EGL_EXT_device_query    

82. EGL_ANGLE_device_d3d    

83. EGL_KHR_create_context_no_error    

84. EGL_KHR_debug    

85. EGL_NV_stream_metadata    

86. EGL_NV_stream_consumer_gltexture_yuv    

87. EGL_IMG_image_plane_attribs    

88. EGL_KHR_mutable_render_buffer    

89. EGL_EXT_protected_content    

90. EGL_ANDROID_presentation_time    

91. EGL_ANDROID_create_native_client_buffer    

92. EGL_ANDROID_front_buffer_auto_refresh    

93. EGL_KHR_no_config_context YES YES YES

94. EGL_KHR_context_flush_control    

95. EGL_ARM_implicit_external_sync    

96. EGL_MESA_platform_surfaceless    

97. EGL_EXT_image_dma_buf_import_modifiers YES YES  

98. EGL_EXT_pixel_format_float    

99. EGL_EXT_gl_colorspace_bt2020_linear    

EGL_EXT_gl_colorspace_bt2020_pq    

100. EGL_EXT_gl_colorspace_scrgb_linear    

101. EGL_EXT_surface_SMPTE2086_metadata    

102. EGL_NV_stream_fifo_next    

103. EGL_NV_stream_fifo_synchronous    

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 25 / 185

https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_enumeration.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_query.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_device_d3d.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_create_context_no_error.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_debug.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_metadata.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_consumer_gltexture_yuv.txt
https://www.khronos.org/registry/EGL/extensions/IMG/EGL_IMG_image_plane_attribs.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_mutable_render_buffer.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_content.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_presentation_time.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_create_native_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_front_buffer_auto_refresh.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_no_config_context.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/EGL/extensions/ARM/EGL_ARM_implicit_external_sync.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_platform_surfaceless.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import_modifiers.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_pixel_format_float.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_bt2020_linear.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_bt2020_linear.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_scrgb_linear.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_surface_SMPTE2086_metadata.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_fifo_next.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_fifo_synchronous.txt


Table 12. EGL extension support (continued)

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

104. EGL_NV_stream_reset    

105. EGL_NV_stream_frame_limits    

106. EGL_NV_stream_remote    

EGL_NV_stream_cross_object    

EGL_NV_stream_cross_display    

EGL_NV_stream_cross_process    

EGL_NV_stream_cross_partition    

EGL_NV_stream_cross_system    

107. EGL_NV_stream_socket    

EGL_NV_stream_socket_unix    

EGL_NV_stream_socket_inet    

108. EGL_EXT_compositor    

109. EGL_EXT_surface_CTA861_3_metadata    

110. EGL_EXT_gl_colorspace_display_p3    

111. EGL_EXT_gl_colorspace_display_p3_linear    

112. EGL_EXT_gl_colorspace_scrgb (non-linear)    

113. EGL_EXT_image_implicit_sync_control    

114. EGL_EXT_bind_to_front    

115. EGL_ANDROID_get_frame_timestamps    

116. EGL_ANDROID_get_native_client_buffer    

117. EGL_NV_context_priority_realtime    

118. EGL_EXT_image_gl_colorspace    

119. EGL_KHR_display_reference    

120. EGL_NV_stream_flush    

121. EGL_EXT_sync_reuse    

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 26 / 185

https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_reset.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_frame_limits.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_compositor.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_surface_CTA861_3_metadata.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_display_p3.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_display_p3.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_scrgb.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_implicit_sync_control.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_bind_to_front.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_get_frame_timestamps.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_get_native_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_context_priority_realtime.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_gl_colorspace.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_display_reference.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_flush.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_sync_reuse.txt


Table 12. EGL extension support (continued)

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

122. EGL_EXT_client_sync    

123. EGL_EXT_gl_colorspace_display_p3_passthrough    

124. EGL_MESA_query_driver    

125. EGL_ANDROID_GLES_layers    

126. EGL_NV_n_buffer    

127. EGL_NV_stream_origin    

128. EGL_NV_stream_dma    

129. EGL_WL_bind_wayland_display YES   

130. EGL_WL_create_wayland_buffer_from_image YES   

3.3 OpenGL ES extension support
The following table includes the list of all current OpenGL ES Extensions and indicates their support level.

(list from www.khronos.org/registry/gles/ as of 6/14/2020)

Table 13. OpenGL ES extension support

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

1. GL_OES_blend_equation_separate YES  

2. GL_OES_blend_func_separate YES  

3. GL_OES_blend_subtract YES  

4. GL_OES_byte_coordinates YES  

5. GL_OES_compressed_ETC1_RGB8_texture YES YES

6. GL_OES_compressed_paletted_texture YES YES

7. GL_OES_draw_texture YES  

8. GL_OES_extended_matrix_palette YES  

9. GL_OES_fixed_point YES  

10. GL_OES_framebuffer_object YES  

11. GL_OES_matrix_get YES  

12. GL_OES_matrix_palette YES  

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 27 / 185

https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_client_sync.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_display_p3_passthrough.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_query_driver.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_GLES_layers.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_n_buffer.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_origin.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_dma.txt
https://www.khronos.org/registry/EGL/extensions/WL/EGL_WL_bind_wayland_display.txt
https://www.khronos.org/registry/EGL/extensions/WL/EGL_WL_create_wayland_buffer_from_image.txt
http://www.khronos.org/registry/gles/
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_blend_equation_separate.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_blend_func_separate.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_blend_subtract.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_byte_coordinates.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_compressed_paletted_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_draw_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_extended_matrix_palette.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_fixed_point.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_framebuffer_object.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_matrix_get.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_matrix_palette.txt


Table 13. OpenGL ES extension support (continued)

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

13. GL_OES_point_size_array YES  

14. GL_OES_point_sprite YES  

15. GL_OES_query_matrix YES  

16. GL_OES_read_format YES  

17. GL_OES_single_precision YES  

18. GL_OES_stencil_wrap YES  

19. GL_OES_texture_cube_map YES  

20. GL_OES_texture_env_crossbar   

21. GL_OES_texture_mirrored_repeat YES  

22. GL_OES_EGL_image YES YES

23. GL_OES_depth24 YES YES

24. GL_OES_depth32  YES

25. GL_OES_element_index_uint YES YES

26. GL_OES_fbo_render_mipmap YES YES

27. GL_OES_fragment_precision_high  YES

28. GL_OES_mapbuffer YES YES

29. GL_OES_rgb8_rgba8 YES YES

30. GL_OES_stencil1   

31. GL_OES_stencil4   

32. GL_OES_stencil8 YES  

33. GL_OES_texture_3D   

34. GL_OES_texture_float_linear   

GL_OES_texture_half_float_linear  CORE

35. GL_OES_texture_float  CORE

GL_OES_texture_half_float  CORE

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 28 / 185

https://www.khronos.org/registry/OpenGL/extensions/OES/OES_point_size_array.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_point_sprite.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_query_matrix.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_read_format.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_single_precision.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil_wrap.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_cube_map.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_env_crossbar.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_mirrored_repeat.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth24.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth32.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_element_index_uint.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_fbo_render_mipmap.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_fragment_precision_high.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_mapbuffer.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_rgb8_rgba8.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil1.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil4.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil8.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_3D.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float_linear.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float_linear.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float.txt


Table 13. OpenGL ES extension support (continued)

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

36. GL_OES_texture_npot YES YES

37. GL_OES_vertex_half_float YES YES

38. GL_AMD_compressed_3DC_texture   

39. GL_AMD_compressed_ATC_texture   

40. GL_EXT_texture_filter_anisotropic CORE CORE

41. GL_EXT_texture_type_2_10_10_10_REV  CORE

42. GL_OES_depth_texture  YES

43. GL_OES_packed_depth_stencil YES YES

44. GL_OES_standard_derivatives  YES

45. GL_OES_vertex_type_10_10_10_2  CORE

46. GL_OES_get_program_binary  YES

47. GL_AMD_program_binary_Z400   

48. GL_EXT_texture_compression_dxt1  YES

49. GL_AMD_performance_monitor   

50. GL_EXT_texture_format_BGRA8888 YES YES

51. GL_NV_fence   

52. GL_IMG_read_format   

53. GL_IMG_texture_compression_pvrtc   

54. GL_QCOM_driver_control   

55. GL_QCOM_performance_monitor_global_mode   

56. GL_IMG_user_clip_plane   

57. GL_IMG_texture_env_enhanced_fixed_function   

58. GL_APPLE_texture_2D_limited_npot   

59. GL_EXT_texture_lod_bias YES  

60. GL_QCOM_writeonly_rendering   

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 29 / 185

https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_npot.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_vertex_half_float.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_compressed_3DC_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_compressed_ATC_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_filter_anisotropic.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_type_2_10_10_10_REV.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_packed_depth_stencil.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_standard_derivatives.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_vertex_type_10_10_10_2.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_get_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_program_binary_Z400.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_dxt1.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_performance_monitor.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_format_BGRA8888.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fence.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_read_format.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_compression_pvrtc.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_driver_control.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_performance_monitor_global_mode.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_user_clip_plane.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_env_enhanced_fixed_function.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_2D_limited_npot.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_lod_bias.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_writeonly_rendering.txt


Table 13. OpenGL ES extension support (continued)

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

61. GL_QCOM_extended_get   

62. GL_QCOM_extended_get2   

63. GL_EXT_discard_framebuffer  YES

64. GL_EXT_blend_minmax YES YES

65. GL_EXT_read_format_bgra YES YES

66. GL_IMG_program_binary   

67. GL_IMG_shader_binary   

68. GL_EXT_multi_draw_arrays YES YES

GL_SUN_multi_draw_arrays NO

69. GL_QCOM_tiled_rendering   

70. GL_OES_vertex_array_object  YES

71. GL_NV_coverage_sample   

72. GL_NV_depth_nonlinear   

73. GL_IMG_multisampled_render_to_texture   

74. GL_OES_EGL_sync YES YES

75. GL_APPLE_rgb_422   

76. GL_EXT_shader_texture_lod   

77. GL_APPLE_framebuffer_multisample   

78. GL_APPLE_texture_format_BGRA8888   

79. GL_APPLE_texture_max_level   

80. GL_ARM_mali_shader_binary   

81. GL_ARM_rgba8   

82. GL_ANGLE_framebuffer_blit   

83. GL_ANGLE_framebuffer_multisample   

84. GL_VIV_shader_binary   

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 30 / 185

https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_extended_get.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_extended_get2.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_discard_framebuffer.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_blend_minmax.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_read_format_bgra.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multi_draw_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multi_draw_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_tiled_rendering.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_vertex_array_object.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_coverage_sample.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_depth_nonlinear.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_multisampled_render_to_texture.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_rgb_422.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_texture_lod.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_framebuffer_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_format_BGRA8888.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_max_level.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_mali_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_rgba8.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_framebuffer_blit.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_framebuffer_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/VIV/VIV_shader_binary.txt


Table 13. OpenGL ES extension support (continued)

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

85. GL_EXT_frag_depth  YES

86. GL_OES_EGL_image_external YES YES

87. GL_DMP_shader_binary   

88. GL_QCOM_alpha_test   

89. GL_EXT_unpack_subimage   

90. GL_NV_draw_buffers   

91. GL_NV_fbo_color_attachments   

92. GL_NV_read_buffer   

93. GL_NV_read_depth_stencil   

94. GL_NV_texture_compression_s3tc_update   

95. GL_NV_texture_npot_2D_mipmap   

96. GL_EXT_color_buffer_half_float  CORE

97. GL_EXT_debug_label   

98. GL_EXT_debug_marker   

99. GL_EXT_occlusion_query_boolean   

100. GL_EXT_separate_shader_objects   

101. GL_EXT_shadow_samplers   

102. GL_EXT_texture_rg  YES

103. GL_NV_EGL_stream_consumer_external   

104. GL_EXT_sRGB  YES

105. GL_EXT_multisampled_render_to_texture  YES

106. GL_EXT_robustness  YES

107. GL_EXT_texture_storage   

108. GL_ANGLE_instanced_arrays   

109. GL_ANGLE_pack_reverse_row_order   

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 31 / 185

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_frag_depth.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image_external.txt
https://www.khronos.org/registry/OpenGL/extensions/DMP/DMP_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_alpha_test.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_unpack_subimage.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fbo_color_attachments.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_read_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_read_depth_stencil.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_compression_s3tc_update.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_npot_2D_mipmap.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_color_buffer_half_float.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_debug_label.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_debug_marker.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_occlusion_query_boolean.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_separate_shader_objects.gles.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shadow_samplers.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_rg.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_EGL_stream_consumer_external.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sRGB.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multisampled_render_to_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_robustness.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_storage.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_instanced_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_pack_reverse_row_order.txt


Table 13. OpenGL ES extension support (continued)

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

110. GL_ANGLE_texture_compression_dxt3   

GL_ANGLE_texture_compression_dxt1   

GL_ANGLE_texture_compression_dxt5   

111. GL_ANGLE_texture_usage   

112. GL_ANGLE_translated_shader_source   

113. GL_FJ_shader_binary_GCCSO   

114. GL_OES_required_internalformat  YES

115. GL_OES_surfaceless_context  YES

116. GL_KHR_texture_compression_astc_hdr   

GL_KHR_texture_compression_astc_ldr  YES

117. GL_KHR_debug  YES

118. GL_QCOM_binning_control   

119. GL_ARM_mali_program_binary   

120. GL_EXT_map_buffer_range   

121. GL_EXT_shader_framebuffer_fetch  CORE

GL_EXT_shader_framebuffer_fetch_non_coherent   

122. GL_APPLE_copy_texture_levels   

123. GL_APPLE_sync   

124. GL_EXT_multiview_draw_buffers   

125. GL_NV_draw_texture   

126. GL_NV_packed_float   

127. GL_NV_texture_compression_s3tc   

128. GL_NV_3dvision_settings   

129. GL_NV_texture_compression_latc   

130. GL_NV_platform_binary   

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 32 / 185

https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_usage.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_translated_shader_source.txt
https://www.khronos.org/registry/OpenGL/extensions/FJ/FJ_shader_binary_GCCSO.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_required_internalformat.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_surfaceless_context.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_hdr.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_hdr.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_debug.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_binning_control.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_mali_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_map_buffer_range.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_copy_texture_levels.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_sync.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multiview_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_draw_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_packed_float.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_compression_s3tc.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_3dvision_settings.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_compression_latc.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_platform_binary.txt


Table 13. OpenGL ES extension support (continued)

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

131. GL_NV_pack_subimage   

132. GL_NV_texture_array   

133. GL_NV_pixel_buffer_object   

134. GL_NV_bgr   

135. GL_OES_depth_texture_cube_map  YES

136. GL_EXT_color_buffer_float  CORE

137. GL_ANGLE_depth_texture   

138. GL_ANGLE_program_binary   

139. GL_IMG_texture_compression_pvrtc2   

140. GL_NV_draw_instanced   

141. GL_NV_framebuffer_blit   

142. GL_NV_framebuffer_multisample   

143. GL_NV_generate_mipmap_sRGB   

144. GL_NV_instanced_arrays   

145. GL_NV_shadow_samplers_array   

146. GL_NV_shadow_samplers_cube   

147. GL_NV_sRGB_formats   

148. GL_NV_texture_border_clamp   

149. GL_EXT_disjoint_timer_query   

150. GL_EXT_draw_buffers   

151. GL_EXT_texture_sRGB_decode  YES

152. GL_EXT_sRGB_write_control   

153. GL_EXT_texture_compression_s3tc  YES

154. GL_EXT_pvrtc_sRGB   

155. GL_EXT_instanced_arrays   

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 33 / 185

https://www.khronos.org/registry/OpenGL/extensions/NV/NV_pack_subimage.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_array.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_pixel_buffer_object.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_bgr.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth_texture_cube_map.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_color_buffer_float.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_depth_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_compression_pvrtc2.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_draw_instanced.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_framebuffer_blit.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_framebuffer_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_generate_mipmap_sRGB.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_instanced_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shadow_samplers_array.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shadow_samplers_cube.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_sRGB_formats.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_border_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_disjoint_timer_query.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_sRGB_decode.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sRGB_write_control.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_s3tc.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_pvrtc_sRGB.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_instanced_arrays.txt


Table 13. OpenGL ES extension support (continued)

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

156. GL_EXT_draw_instanced   

157. GL_NV_copy_buffer   

158. GL_NV_explicit_attrib_location   

159. GL_NV_non_square_matrices   

160. GL_EXT_shader_integer_mix   

161. GL_OES_texture_compression_astc   

162. GL_NV_blend_equation_advanced   

GL_NV_blend_equation_advanced_coherent   

163. GL_INTEL_performance_query   

164. GL_ARM_shader_framebuffer_fetch   

165. GL_ARM_shader_framebuffer_fetch_depth_stencil   

166. GL_EXT_shader_pixel_local_storage   

167. GL_KHR_blend_equation_advanced  CORE

GL_KHR_blend_equation_advanced_coherent   

168. GL_OES_sample_shading  CORE

169. GL_OES_sample_variables  CORE

170. GL_OES_shader_image_atomic  CORE

171. GL_OES_shader_multisample_interpolation  CORE

172. GL_OES_texture_stencil8  CORE

173. GL_OES_texture_storage_multisample_2d_array  CORE

174. GL_EXT_copy_image  CORE

175. GL_EXT_draw_buffers_indexed  CORE

176. GL_EXT_geometry_shader  CORE

GL_EXT_geometry_point_size  CORE

177. GL_EXT_gpu_shader5  CORE

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 34 / 185

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_instanced.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_copy_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_explicit_attrib_location.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_non_square_matrices.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_integer_mix.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_compression_astc.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_performance_query.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_shader_framebuffer_fetch_depth_stencil.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_pixel_local_storage.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_sample_shading.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_sample_variables.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_shader_image_atomic.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_shader_multisample_interpolation.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_stencil8.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_storage_multisample_2d_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_copy_image.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_buffers_indexed.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_geometry_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_geometry_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_gpu_shader5.txt


Table 13. OpenGL ES extension support (continued)

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

178. GL_EXT_shader_implicit_conversions  CORE

179. GL_EXT_shader_io_blocks  CORE

180. GL_EXT_tessellation_shader  CORE

GL_EXT_tessellation_point_size  CORE

181. GL_EXT_texture_border_clamp  CORE

182. GL_EXT_texture_buffer  CORE

183. GL_EXT_texture_cube_map_array  CORE

184. GL_EXT_texture_view   

185. GL_EXT_primitive_bounding_box  CORE

186. GL_ANDROID_extension_pack_es31a  CORE

187. GL_EXT_compressed_ETC1_RGB8_sub_texture   

188. GL_KHR_robust_buffer_access_behavior  YES

189. GL_KHR_robustness  YES

190. GL_KHR_context_flush_control   

GLX_ARB_context_flush_control   

WGL_ARB_context_flush_control   

191. GL_DMP_program_binary   

192. GL_APPLE_clip_distance   

193. GL_APPLE_color_buffer_packed_float   

194. GL_APPLE_texture_packed_float   

195. GL_NV_internalformat_sample_query   

196. GL_NV_bindless_texture   

197. GL_NV_conditional_render   

198. GL_NV_path_rendering   

199. GL_NV_image_formats   

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 35 / 185

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_implicit_conversions.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_io_blocks.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_border_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_cube_map_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_view.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_primitive_bounding_box.txt
https://www.khronos.org/registry/OpenGL/extensions/ANDROID/ANDROID_extension_pack_es31a.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_compressed_ETC1_RGB8_sub_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_robust_buffer_access_behavior.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_robustness.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/OpenGL/extensions/DMP/DMP_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_clip_distance.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_color_buffer_packed_float.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_packed_float.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_internalformat_sample_query.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_bindless_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_conditional_render.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_path_rendering.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_image_formats.txt


Table 13. OpenGL ES extension support (continued)

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

200. GL_NV_shader_noperspective_interpolation   

201. GL_NV_viewport_array   

202. GL_EXT_base_instance   

203. GL_EXT_draw_elements_base_vertex  CORE

204. GL_EXT_multi_draw_indirect  CORE

205. GL_EXT_render_snorm   

206. GL_EXT_texture_norm16   

207. GL_OES_copy_image  CORE

208. GL_OES_draw_buffers_indexed  CORE

209. GL_OES_geometry_shader  CORE

210. GL_OES_gpu_shader5  CORE

211. GL_OES_primitive_bounding_box  CORE

212. GL_OES_shader_io_blocks  CORE

213. GL_OES_tessellation_shader  CORE

GL_OES_tessellation_point_size  CORE

214. GL_OES_texture_border_clamp  CORE

215. GL_OES_texture_buffer  CORE

216. GL_OES_texture_cube_map_array  CORE

217. GL_OES_texture_view  CORE

218. GL_OES_draw_elements_base_vertex  CORE

219. GL_OES_EGL_image_external_essl3  CORE

220. GL_EXT_texture_sRGB_R8   

221. GL_EXT_YUV_target   

222. GL_EXT_texture_sRGB_RG8   

223. GL_EXT_float_blend   

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 36 / 185

https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_noperspective_interpolation.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_viewport_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_base_instance.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_elements_base_vertex.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multi_draw_indirect.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_render_snorm.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_norm16.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_copy_image.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_draw_buffers_indexed.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_geometry_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_gpu_shader5.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_primitive_bounding_box.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_shader_io_blocks.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_border_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_cube_map_array.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_view.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_draw_elements_base_vertex.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image_external_essl3.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_sRGB_R8.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_YUV_target.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_sRGB_RG8.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_float_blend.txt


Table 13. OpenGL ES extension support (continued)

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

224. GL_EXT_post_depth_coverage   

225. GL_EXT_raster_multisample   

226. GL_EXT_texture_filter_minmax   

227. GL_NV_conservative_raster   

228. GL_NV_fragment_coverage_to_color   

229. GL_NV_fragment_shader_interlock   

230. GL_NV_framebuffer_mixed_samples   

231. GL_NV_fill_rectangle   

232. GL_NV_geometry_shader_passthrough   

233. GL_NV_path_rendering_shared_edge   

234. GL_NV_sample_locations   

235. GL_NV_sample_mask_override_coverage   

236. GL_NV_viewport_array2   

237. GL_NV_polygon_mode   

238. GL_EXT_buffer_storage   

239. GL_EXT_sparse_texture   

240. GL_OVR_multiview   

241. GL_OVR_multiview2   

242. GL_KHR_no_error   

243. GL_INTEL_framebuffer_CMAA   

244. GL_EXT_blend_func_extended   

245. GL_EXT_multisample_compatibility   

246. GL_KHR_texture_compression_astc_sliced_3d   

247. GL_OVR_multiview_multisampled_render_to_texture   

248. GL_IMG_texture_filter_cubic   

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 37 / 185

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_post_depth_coverage.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_raster_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_filter_minmax.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_conservative_raster.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fragment_coverage_to_color.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fragment_shader_interlock.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_framebuffer_mixed_samples.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fill_rectangle.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_geometry_shader_passthrough.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_path_rendering_shared_edge.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_sample_locations.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_sample_mask_override_coverage.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_viewport_array2.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_polygon_mode.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_buffer_storage.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sparse_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview2.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_no_error.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_framebuffer_CMAA.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_blend_func_extended.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multisample_compatibility.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_sliced_3d.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview_multisampled_render_to_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_filter_cubic.txt


Table 13. OpenGL ES extension support (continued)

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

249. GL_EXT_polygon_offset_clamp   

250. GL_EXT_shader_pixel_local_storage2   

251. GL_EXT_shader_group_vote   

252. GL_IMG_framebuffer_downsample   

253. GL_EXT_protected_textures   

254. GL_EXT_clip_cull_distance   

255. GL_NV_viewport_swizzle   

256. GL_EXT_sparse_texture2   

257. GL_NV_gpu_shader5   

258. GL_NV_shader_atomic_fp16_vector   

259. GL_NV_conservative_raster_pre_snap_triangles   

260. GL_EXT_window_rectangles   

261. GL_EXT_shader_non_constant_global_initializers   

262. GL_INTEL_conservative_rasterization   

263. GL_NVX_blend_equation_advanced_multi_draw_buffers   

264. GL_OES_viewport_array   

265. GL_EXT_conservative_depth   

3.4 Extension GL_VIV_direct_texture

Name VIV_direct_texture

Name strings GL_VIV_direct_texture

IPStatus Contact NXP Semiconductor regarding any intellectual property questions associated with this
extension.

Status Implemented: July, 2011

Version Last modified: 29 July, 2011

Revision: 2

Number Unassigned

Dependencies OpenGL ES 1.1 is required. OpenGL ES 2.0/3.x support is available.

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 38 / 185

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_polygon_offset_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_pixel_local_storage2.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_group_vote.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_framebuffer_downsample.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_protected_textures.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_clip_cull_distance.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_viewport_swizzle.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sparse_texture2.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_gpu_shader5.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_atomic_fp16_vector.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_conservative_raster_pre_snap_triangles.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_window_rectangles.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_non_constant_global_initializers.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_conservative_rasterization.txt
https://www.khronos.org/registry/OpenGL/extensions/NVX/NVX_blend_equation_advanced_multi_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_viewport_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_conservative_depth.txt


Overview Create a texture with direct access support. This is useful when an application desires to use
the same texture over and over while frequently updating its content. It could also be used for
mapping live video to a texture. A video decoder could write its result directly to the texture
and then the texture could be directly rendered onto a 3D shape. glTexDirectVIVMap is similar
to glTexDirectVIV. The only difference is that it has two inputs, “Logical” and “Physical,” which
support mapping a user space memory or a physical address into the texture surface.

New Procedures and Functions

glTexDirectVIV

Syntax:

GL_API void GL_APIENTRY
glTexDirectVIV (
GLenum Target,
GLsizei Width,
GLsizei Height,
GLenum Format,
GLvoid ** Pixels
);

Parameters

Target Target texture. Must be GL_TEXTURE_2D.

Width

Height

Size of LOD 0. Width must be 16 pixel aligned. The width and height of LOD 0 of the texture is specified
by the Width and Height parameters. The driver may auto-generate the rest of LODs if the hardware
supports high quality scaling (for non-power of 2 textures) and LOD generation. If the hardware does not
support high quality scaling and LOD generation, the texture remains a single-LOD texture.

Format Choose the format of the pixel data from the following formats: GL_VIV_YV12, GL_VIV_NV12,
GL_VIV_NV21, GL_VIV_YUY2, GL_VIV_UYVY, GL_RGBA, and GL_BGRA_EXT.

• If the format is GL_VIV_YV12, glTexDirectVIV creates a planar YV12 4:2:0 texture and the format
of the Pixels array is as follows: Yplane, Vplane, Uplane.

• If the format is GL_VIV_NV12, glTexDirectVIV creates a planar NV12 4:2:0 texture and the format
of the Pixels array is as follows: Yplane, UVplane.

• If the format is GL_VIV_NV21, glTexDirectVIV creates a planar NV21 4:2:0 texture and the format
of the Pixels array is as follows: Yplane, VUplane.

• If the format is GL_VIV_YUY2 or GL_VIV_UYVY, glTexDirectVIV creates a packed 4:2:2 texture
and the Pixels array contains only one pointer to the packed YUV texture.

• If Format is GL_RGBA, glTexDirectVIV creates a pixel array with four GL_UNSIGNED_BYTE
components: the first byte for red pixels, the second byte for green pixels, the third byte for blue,
and the fourth byte for alpha.

• If Format is GL_BGRA_EXT, glTexDirectVIV creates a pixel array with four
GL_UNSIGNED_BYTE components: the first byte for blue pixels, the second byte for green
pixels, the third byte for red, and the fourth byte for alpha.

Pixels Stores the memory pointer created by the driver.

Output

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 39 / 185



If the function succeeds, it returns a pointer, or, for some YUV formats, it returns a set of pointers that directly point to the texture.
The pointer(s) are returned in the user-allocated array pointed to by the Pixels parameter.

GlTexDirectVIVMap

Syntax:

GL_API void GL_APIENTRY
glTexDirectVIVMap (
GLenum Target,
GLsizei Width,
GLsizei Height,
GLenum Format,
GLvoid ** Logical,
const GLuint * Physical
);

Parameters

Target Target texture. Must be GL_TEXTURE_2D.

Width

Height

Size of LOD 0. Width must be 16 pixel aligned. See glTexDirectVIV.

Format Same as glTexDirectVIV Format.

Logical Pointer to the logical address of the application-defined texture buffer. Logical address must be 64 bit (8
byte) aligned.

Physical Pointer to the physical address of the application-defined buffer to the texture, or ~0 if no physical address
has been provided.

GlTexDirectInvalidateVIV

Syntax:

GL_API void GL_APIENTRY
glTexDirectInvalidateVIV (
GLenum Target
);

Parameters

Target Target texture. Must be GL_TEXTURE_2D.

New Tokens

GL_VIV_YV12 0x8FC0

GL_VIV_NV12 0x8FC1

GL_VIV_YUY2 0x8FC2

Table continues on the next page...

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 40 / 185



Table continued from the previous page...

GL_VIV_UYVY 0x8FC3

GL_VIV_NV21 0x8FC4

Error codes

GL_INVALID_ENUM Target is not GL_TEXTURE_2D, or format is not a valid format.

GL_INVALID_VALUE Width or Height parameter is less than 1.

GL_OUT_OF_MEMORY A memory allocation error occurred.

GL_INVALID_OPERATION Specified format is not supported by the hardware, or

no texture is bound to the active texture unit, or

some other error occurs during the call.

Example 1.

First, call glTexDirectVIV to get a pointer.

Second, copy the texture data to this memory address.

Then, call glTexDirectInvalidateVIV to apply the texture before drawing something with that texture.

… …
glTexDirectVIV(GL_TEXUTURE_2D, 512, 512, GL_VIV_YV12, &texels);
… …
GLTexDirectInvalidateVIV(GL_TEXTURE_2D);
…
glDrawArrays(…);
…

Example 2.

First, call glTexDirectVIVMap to map Logical and Physical address to the texture.

Second, modify Logical and Physical data.

Then, call glTexDirectInvalidateVIV to apply the texture before drawing something with that texture.

… …
char *Logical = (char*) malloc (sizeof(char)*size);
GLuint physical = ~0U;
glTexDirectVIVMap(GL_TEXUTURE_2D, 512, 512, GL_VIV_YV12, (void**)&Logical, &physical);
… …
GLTexDirectInvalidateVIV(GL_TEXTURE_2D);
…
glDrawArrays(…);

Issues

None

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 41 / 185



3.5 Extension GL_VIV_texture_border_clamp
Name

VIV_texture_border_clamp

Name Strings

GL_VIV_texture_border_clamp

Status

Implemented September 2012.

Version

Last modified: 27 September 2012

Vivante revision: 1

Number

Unassigned

Dependencies

This extension is implemented for use with OpenGL ES 1.1 and OpenGL ES 2.0.

This extension is based on OpenGL ARB Extension #13: GL_ARB_texture_border_clamp: www.opengl.org/registry/
specs/ARB/texture_border_clamp.txt. See also vendor extension GL_SGIS_texture_border_clamp: www.opengl.org/registry/
specs/SGIS/texture_border_clamp.txt.

Overview

This extension was adapted from the OpenGL extension for use with OpenGL ES implementations. The OpenGL ARB Extension
13 description applies here as well:

“The base OpenGL provides clamping such that the texture coordinates are limited to exactly the range [0,1]. When a texture
coordinate is clamped using this algorithm, the texture sampling filter straddles the edge of the texture image, taking 1/2 its sample
values from within the texture image, and the other 1/2 from the texture border. It is sometimes desirable for a texture to be
clamped to the border color, rather than to an average of the border and edge colors.

This extension defines an additional texture clamping algorithm. CLAMP_TO_BORDER_[VIV] clamps texture coordinates at all
mipmap levels such that NEAREST and LINEAR filters return only the color of the border texels.”

The color returned is derived only from border texels and cannot be configured.

Issues

None

New Tokens

Accepted by the <param> parameter of TexParameteri and TexParameterf, and by the <params> parameter of TexParameteriv
and TexParameterfv, when their <pname> parameter is TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRAP_R:

CLAMP_TO_BORDER_VIV 0x812D

Errors

None.

New State

Only the type information changes for these parameters.

See OES 2.0 Specification Section 3.7.4, page 75-76, Table 3.10, “Texture parameters and their values.”

NXP Semiconductors
i.MX EGL and OGL Extension Support

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 42 / 185

http://www.opengl.org/registry/specs/ARB/texture_border_clamp.txt
http://www.opengl.org/registry/specs/ARB/texture_border_clamp.txt
https://www.opengl.org/registry/specs/SGIS/texture_border_clamp.txt
https://www.opengl.org/registry/specs/SGIS/texture_border_clamp.txt


Chapter 4
i.MX Framebuffer API

4.1 Overview
The graphics software includes i.MX Framebuffer (FB) API which enables users to easily create and port their graphics
applications by using a framebuffer device without the need to expend additional effort handling platform-related tasks. i.MX
Framebuffer API focuses on providing mechanisms for controlling display, window, and pixmap render surfaces.

The EGL Native Platform Graphics Interface provides mechanisms for creating rendering surfaces onto which client APIs can
draw, creating graphics contexts for client APIs, and synchronizing drawing by client APIs as well as native platform rendering
APIs. This enables seamless rendering using Khronos APIs such as OpenGL ES and OpenVG for high-performance, accelerated,
mixed-mode 2D, and 3D rendering. For further information on EGL, see www.khronos.org/registry/egl. The API described in this
document is compatible with EGL version 1.4 of the specification.

The following platforms are supported:

• Linux® OS/X11

• Android™ platform

• Windows® Embedded Compact OS

• QNX®

 
i.MX 8 on Linux OS supports Direct Rendering Manager (DRM) where the Linux framebuffer support is limited,
recommended to Graphics Buffer Manager (GBM).

  NOTE  

4.2 API data types and environment variables

4.2.1 Data types
The GPU software provides platform independent member definitions for the following EGL types:

typedef struct _FBDisplay   *  EGLNativeDisplayType;
typedef struct _FBWindow *  EGLNativeWindowType;
typedef struct _FBPixmap   *  EGLNativePixmapType;

Figure 3. Types as listed on EGL 1.4 API Quick Reference Card

(from www.khronos.org/files/egl-1-4-quick-reference-card.pdf)

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 43 / 185

http://www.khronos.org/registry/egl
http://www.khronos.org/files/egl-1-4-quick-reference-card.pdf


4.2.2 Environment variables

Table 14. i.MX FB API environment variables

Environment Variables Description

FB_MULTI_BUFFER To use multiple-buffer rendering, set the environment variable FB_MULTI_BUFFER to an
unsigned integer value, which indicates the number of buffers required. The maximum
is 8.

Recommended values: 4.

The FB_MULTI_BUFFER variable can be set to any positive integer value.

• If set to 1, the multiple-buffer function is not enabled, and the VSYNC is also
disabled, so there may be tearing on screen, but it is good for benchmark test.

• If set to 2 or 3, VSYNC is enabled and there are double or trible frame buffer.
Because of the hardware limitation of current IPU, there may be tearing on screen.

• If set to 4 or more, VSYNC is enabled and no screen tearing appears.

• If set to a value more than 8, the driver uses 8 as the buffer count.

FB_FRAMEBUFFER_0,

FB_FRAMEBUFFER_1,

FB_FRAMEBUFFER_2,

FB_FRAMEBUFFER_n

To open a specified framebuffer device, set the environment variable
FB_FRAMEBUFFER_n to a proper value (for example, FB_FRAMEBUFFER_0
= /dev/fb0).

Allowed values for n: any positive integer.

Note: If there are no environment variables set, the driver tries to use the default
framebuffer devices (fb0 for index 0, fb1 for index 1, fb2 for index 2, fb3 for index 3, and
so on).

FB_IGNORE_DISPLAY_SIZE When set to a positive integer and a window’s initial size request is greater than the
display size, the window size is not reduced to fit within the display. Global.

Allowed values: any positive integer.

Note: The drivers read the value from this environment variable as a Boolean to check if
the user wants to ignore the display size when creating a window.

• If the variable is set to value, 0, or this environment variable is not set, when
creating window, the driver uses display size to cut down the size of the window to
ensure that the entire window area is inside the display screen.

• If the user sets this variable to 1, or any positive integer value, then the window
area can be partly or entirely outside of the display screen area (see the image
below in which the ignore display size is equal to 1).

GPU_VIV_DISABLE_CLEAR_FB It turns off zero fill memory, so the content of FBDEV buffer is not cleared.

FB_LEGACY If the board support drm-fb, the gpu will render though drm by default. If the user wants to
render to framebuffer directly instead of through drm, sets this variable to 1.

Below are some usage syntax examples for environment variables:

To create a window with its size different from the display size, use the environment variable FB_IGNORE_DISPLAY_SIZE.
Example usage syntax:

export FB_IGNORE_DISPLAY_SIZE=1

To let the driver use multiple buffers to do swap work, use the environment variable FB_MULTI_BUFFER. Example usage syntax:

NXP Semiconductors
i.MX Framebuffer API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 44 / 185



export FB_MULTI_BUFFER=2

To specify the display device, use the environment variable FB_FRAMEBUFFER_n, where n = any positive integer. Example
usage syntax:

export FB_FRAMEBUFFER_0=/dev/fb0

export FB_FRAMEBUFFER_1=/dev/fb1

export FB_FRAMEBUFFER_2=/dev/fb2

export FB_FRAMEBUFFER_3=/dev/fb3

4.3 API description and syntax
fbGetDisplay:

Description This function is used to get the default display of the framebuffer device.

To open the framebuffer device, set an environment variable FB_FRAMEBUFFER_n to the
framebuffer location.

Syntax
EGLNativeDisplayType
fbGetDisplay (
void *        context
);

Parameters context: Pointer to the native display instance.

Return Values The function returns a pointer to the EGL native display instance if successful; otherwise, it returns a
NULL pointer.

fbGetDisplayByIndex:

Description This function is used to get a specified display within a multiple framebuffer environment by providing an
index number.

To use multiple buffers when rendering, set the environment variable FB_MULTI_BUFFER to an unsigned
integer value, which indicates the number of buffers. Maximum is 3.

To open a specific Framebuffer device, set environment variables to their proper values (e.g., set
FB_FRAMEBUFFER_0 = /dev/fb0). If there are no environment variables set, the driver tries to use the
default fb devices (fb0 for index 0, fb1 for index 1, fb2 for index 2, fb3 for index 3, and so on).

Syntax EGLNativeDisplayType
fbGetDisplayByIndex (
int           DisplayIndex
);

Parameters DisplayIndex:

An integer value where the integer is associated with one of the following environment variables for
framebuffer devices:

FB_FRAMEBUFFER_0
FB_FRAMEBUFFER_1 

Table continues on the next page...

NXP Semiconductors
i.MX Framebuffer API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 45 / 185



FB_FRAMEBUFFER_2
FB_FRAMEBUFFER_n 

Return Value The function returns a pointer to the EGL native display instance if successful; otherwise, it returns a
NULL pointer.

fbGetDisplayGeometry:

Description This function is used to get display width and height information.

Syntax void 
fbGetDisplayGeometry ( 
EGLNativeDisplayType   Display, 
int *                  Width,
int *                  Height
);

Parameters Display: [in] Pointer to EGL native display instance created by fbGetDisplay.

Width: [out] Pointer that receives the width of the display.

Height: [out] Pointer that receives the height of the display.

fbGetDisplayInfo:

Description This function is used to get display information.

Syntax
void 
fbGetDisplayInfo ( 
EGLNativeDisplayType   Display, 
int *                  Width, 
int *                  Height, 
unsigned long *        Physical, 
int *                  Stride, 
int *                  BitsPerPixel 
); 

Parameters Display: [in] A pointer to the EGL native display instance created by fbGetDisplay.

Width: [out] A pointer to the location that contains the width of the display.

Height: [out] A pointer to the location that contains the height of the display.

Physical: [out] A pointer to the location that contains the physical start address of the display.

Stride: [out] A pointer to the location that contains the stride of the display.

BitsPerPixel: [out] A pointer to the location that contains the pixel depth of the display.

fbDestroyDisplay：

Description This function is used to destroy a display.

Table continues on the next page...

NXP Semiconductors
i.MX Framebuffer API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 46 / 185



Syntax
void 
fbDestroyDisplay ( 
EGLNativeDisplayType      Display
);

Parameters Display: [in] Pointer to EGL native display instance created by fbGetDisplay.

fbCreateWindow：

Description This function is used to create a window for the framebuffer platform with the specified position and size.
If width/height is 0, it uses the display width/height as its value.

Note: When either window X + width or the Y + height is larger than the display’s width or height
respectively, the API reduces the window size to force the whole window inside the display screen limits.
To avoid reducing the window size in this scenario, users can set a value of “1” to the environment
variable FB_IGNORE_DISPLAY_SIZE.

Syntax
EGLNativeWindowType 
fbCreateWindow (
EGLNativeDisplayType   Display,
int                    X,
int                    Y,
int                    Width,
int                    Height
);

Parameters Display: [in] Pointer to EGL native display instance created by fbGetDisplay.

X: [in] Specifies the initial horizontal position of the window.

Y: [in] Specifies the initial vertical position of the window.

Width: [in] Specifies the width of the window.

Height: [in] Specifies the height of the window in device units.

Return Value The function returns a pointer to the EGL native window instance if successful; otherwise, it returns a
NULL pointer.

fbGetWindowGeometry:

Description This function is used to get window position and size information.

Syntax
void 
fbGetWindowGeometry (
EGLNativeWindowType    Window,
int *                  X,
int *                  Y,
int *                  Width,
int *                  Height
);

Table continues on the next page...

NXP Semiconductors
i.MX Framebuffer API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 47 / 185



Parameters Window: [in] Pointer to EGL native window instance created by fbCreateWindow.

X: [out] Pointer that receives the horizontal position value of the window.

Y: [out] Pointer that receives the vertical position value of the window.

Width: [out] Pointer that receives the width value of the window.

Height: [out] Pointer that receives the height value of the window.

fbGetWindowInfo:

Description This function is used to get window position and size and address information.

Syntax
void 
fbGetWindowInfo ( 
EGLNativeWindowType   Window, 
int *                 X, 
int *                 Y, 
int *                 Width, 
int *                 Height 
int *                 BitsPerPixel, 
unsigned int *        Offset 
);

Parameters Window: [in] A pointer to the EGL native window instance created by fbCreateWindow.

X: [out] A pointer to the location that contains the horizontal position value of the window.

Y: [out] A pointer to the location that contains the vertical position value of the window.

Width: [out] A pointer to the location that contains the width of the window.

Height: [out] A pointer to the location that contains the height of the window.

BitsPerPixel: [out] A pointer to the location that contains the pixel depth of the window.

Offset: [out] A pointer to the location that contains the offset of the window.

fbDestroyWindow:

Description This function is used to destroy a window.

Syntax
void 
fbDestroyWindow ( 
EGLNativeWindowType    Window
);

Parameters Window: [in] Pointer to EGL native window instance created by fbCreateWindow.

fbCreatePixmap：

Description This function is used to create a pixmap of a specific size on the specified framebuffer device. If either
the width or height is 0, the function fails to create a pixmap and return NULL.

Table continues on the next page...

NXP Semiconductors
i.MX Framebuffer API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 48 / 185



Syntax
EGLNativePixmapType
fbCreatePixmap (
EGLNativeDisplayType    Display,
int                     Width,
int                     Height
);

Parameters Display: [in] Pointer to the EGL native display instance created by fbGetDisplay.

Width: [in] Specifies the width of the pixmap.

Height: [in] Specifies the height of the pixmap.

Return Value The function returns a pointer to the EGL native pixmap instance if successful; otherwise, it returns a
NULL pointer.

fbCreatePixmapWithBpp:

Description This function is used to create a pixmap of a specific size and bit depth on the specified framebuffer
device. If either the width or height is 0, the function fails to create a pixmap and return NULL.

Syntax
EGLNativePixmapType
fbCreatePixmapWithBpp (
EGLNativeDisplayType    Display,
int                     Width,
int                     Height
int                     BitsPerPixel
);

Parameters Display: [in]A pointer to the EGL native display instance created by fbGetDisplay.

Width: [in] Specifies the width of the pixmap.

Height: [in] Specifies the height of the pixmap.

BitsPerPixel: [in] Specifies the bit depth of the pixmap.

Return Value The function returns a pointer to the EGL native pixmap instance if successful; otherwise, it returns a
NULL pointer.

fbGetPixmapGeometry:

Description This function is used to get pixmap size information.

Syntax
void 
fbGetPixmapGeometry (
EGLNativePixmapType    Pixmap,
int *                  Width,
int *                  Height
);

Parameters Pixmap: [in] Pointer to the EGL native pixmap instance created by fbCreatePixmap.

NXP Semiconductors
i.MX Framebuffer API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 49 / 185



Width: [out] Pointer that receives a width value for pixmap.

Height: [out] Pointer that receives a height value for pixmap.

fbGetPixmapInfo:

Description This function is used to get pixmap size and depth information.

Syntax
void 
fbGetPixmapInfo ( 
EGLNativePixmapType    Pixmap, 
int *                  Width, 
int *                  Height 
int *                  BitsPerPixel 
int *                  Stride, 
void **                Bits 
);

Parameters Pixmap: [in] A pointer to the EGL native pixmap instance created by fbCreatePixmap.

Width: [out] A pointer to the location that contains a width value for pixmap.

Height: [out] A pointer to the location that contains a height value for pixmap.

BitsPerPixel: [out] A pointer to the location that contains the pixel depth of the pixmap.

Stride: [out] A pointer to the location that contains the stride of the pixmap.

Bits: [out] A pointer to the location that contains the bit address of the pixmap.

fbDestroyPixmap:

Description This function is used to destroy a pixmap.

Syntax
void 
fbDestroyPixmap (
EGLNativePixmapType    Pixmap
);

Parameters Pixmap: [in] Pointer to the EGL native pixmap instance created by fbCreatePixmap.

NXP Semiconductors
i.MX Framebuffer API

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 50 / 185



Chapter 5
OpenCL

5.1 Overview

5.1.1 General description
Open Computing Language (OpenCL) is an open industry standard application programming interface (API) used to program
multiple devices including GPUs, CPUs, as well as other devices organized as part of a single computational platform. The
OpenCL standard targets a wide range of devices from mobile phones, tablets, PCs, and consumer electronic (CE) devices, all
the way to embedded applications such as automotive and image processing functions. The API takes advantage of all resources
in a platform to fully utilize all compute capability and to efficiently process the growing complexity of incoming data streams from
multiple I/O (input/output) sources. I/O streams can be camera inputs, images, scientific or mathematical data, and any other form
of complex data that can make use of data or task parallelism.

OpenCL uses parallel execution SIMD (single instruction, multiple data) engines found in GPUs to enhance data computational
density by performing massively parallel data processing on multiple data items, across multiple compute engines. Each compute
unit has its own arithmetic logic units (ALUs), including pipelined floating point (FP), integer (INT) units and a special function unit
(SFU) that can perform computations as well as transcendental operations. The parallel computations and associated series of
operations are called a kernel, and the GPU cores can execute a kernel on thousands of work-items in parallel at any given time.

At a high level, OpenCL provides both a programming language and a framework to enable parallel programming. OpenCL
includes APIs, libraries and a runtime system to assist and support software development. With OpenCL, it is possible to write
general purpose programs that can execute directly on GPUs, without needing to know graphics architecture details or using
3D graphics APIs like OpenGL or DirectX. OpenCL also provides a low-level Hardware Abstraction Layer (HAL) as well as a
framework that exposes many details of the underlying hardware layer and thus allows the programmer to take full advantage of
the hardware.

For more details on all the capabilities of OpenCL, see the following specifications from the Khronos Group:

• OpenCL 1.2 Specification

www.khronos.org/registry/cl/specs/opencl-1.2.pdf

• OpenCL 1.2 C++ Bindings Specification

www.khronos.org/registry/cl/specs/opencl-cplusplus-1.2.pdf

5.1.2 OpenCL framework
The OpenCL framework has two principal parts, similar to OpenGL, the host C API and the device C-based language runtime.
The host in OpenCL terminology corresponds to the client in OpenGL and the device corresponds to the server. Device programs
are called kernels. Execution of an OpenCL program is preceded by a series of API calls that configure the system and GPGPU
for execution.

OpenCL abstracts today's heterogeneous architectures using a hierarchical platform model. A host coordinates the execution and
data transfers on, to and from one or several compute devices. Compute devices are comprised of compute units and each such
unit contains an array of processing elements.

5.1.2.1 OpenCL execution model: kernels and work elements

The OpenCL execution model is defined by how the kernels are executed. When a kernel is submitted for execution by the host,
an index space is defined. An instance of the kernel executes for each point in this index space. This kernel instance is called
a work-item. Work-items are identified by their position in the index space that provides the global ID for the work-item. Each
work-item executes the same code but the specific pathway through the code and the data operated upon varies by work-item.

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 51 / 185

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-cplusplus-1.2.pdf


Work-items are organized into work-groups. Work-groups provide a broader decomposition of the index space. Work-groups are
each assigned a unique work-group ID with the same dimensionality as the index space used for the work-items. Work-items
are assigned a unique local ID within a work-group so that a single work-item can be uniquely identified by its global ID or
by a combination of its local ID and work-group ID. The work-items in a given work-group execute concurrently on the same
compute device.

The index space supported in OpenCL is called an NDRange. An NDRange is an N-dimensional index space, where N is one
(1), two (2) or three (3). An NDRange is defined by an integer array of length N specifying the extent of the index space in each
dimension starting at an offset index F (zero by default). Each work-item’s global ID and local ID are N-dimensional tuples. The
global ID components are values in the range from F, to F plus the number of elements in that dimension minus one.

Work-groups are assigned IDs using a similar approach to that used for work-item global IDs. An array of length N defines the
number of work-groups in each dimension. Work-items are assigned to a work-group and given a local ID with components in the
range from zero to the size of the work-group in that dimension minus one. Hence, the combination of a work-group ID and the
local-ID within a work-group uniquely defines a work-item. Each work-item is identifiable in two ways; in terms of a global index,
unique through the whole kernel index space, and in terms of a local index, unique within a work group.

5.1.2.2 OpenCL command queues

OpenCL provides both task and data parallelism. Data movements are coordinated via command queues, which provide a general
means of specifying inter-task relationships and task execution orders that obey the dependencies in the computation. OpenCL
may execute several tasks in parallel, if they are not order dependent. Tasks are composed of data-parallel kernels which, similarly
to shaders, apply a single function to a range of elements in parallel. Only restricted synchronization and communication is allowed
during kernel execution.

OpenCL kernels execute over a 1, 2 or 3 dimensional index space. All work-items execute the same program (kernel) but their
execution may diverge, with branching dependent on the data or their index. For details regarding how many work groups are
allowed within an index space see “Using clEnqueueNDRangeKernel”.

A kernel or a memory operation is first enqueued onto a command queue. Kernels are executed asynchronously and the host
application execution may proceed right after the enqueue operation. The application may opt to wait for an operation to complete
and an operation (kernel or memory) may be marked with a list of events that must occur before it executes.

Events are kernel completion and memory operations. OpenCL traverses the dependence graph between the kernels and
memory transfers in a queue and ensures the correct execution order. Multiple command queues may be constructed, further
enhancing parallelism control across platforms and multiple compute devices.

• Command-queue barriers are used to control the commands within the command queue. The command-queue barrier
indicates which commands must be finished before proceeding. This allows for out-of-order command processing. The
command queue barrier ensures that all previously enqueued commands finish execution before any following commands
begin execution.

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 52 / 185



Figure 4. Command queue barrier

The work-group barrier built-in function provides control of the work-item flow within work-groups. All work-items must execute the
barrier construct before any can continue execution beyond the barrier.

5.1.2.3 OpenCL memory model

The OpenCL memory model is divided into four different types of memory domains. These are:

• Global Memory: Each compute device has global memory space which can reside off-chip in system memory (DRAM) or inside
the chip at the L1 or temporary register level. Global memory is accessible to all work-items executing in a context, as well as to
the host (read, write, and map commands).

• Constant Memory: is also global memory, but it is read-only. Constant memory can be placed in any level of memory that
the application programmer decides, making it an implementation dependent decision. This is the region for host-allocated and
host-initialized objects that are not changed during kernel execution.

• Local Memory: Each compute unit has local memory which resides very near the processing elements. Access to local memory is
very fast and the size of local memory is much smaller than global memory, making it a scarce resource that needs to be controlled
for optimal communication of work-items inside a work-group. Local memory is specific to a work-group, and is accessible only
by work-items belonging to that work group.

• Private Memory: Each processing element has another level of memory called private memory, which is only accessible to a
single work-item. Private memory is specific to a work-item and is not visible to other work-items.

During run-time, each processing element is assigned a set of on-chip registers that are used for data storage of intermediate
data. Data that cannot be stored in registers spills over to global memory which can be very costly in terms of performance and
constant data movement to/from temporary registers. Software may emulate local and private memory using global memory.
System Memory is often loaded to L1 cache, Temporary or Local Storage Registers and the GPGPU reads from those locations.
At every level of the application program, the programmer must be aware of the size and hierarchy of storage elements.

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 53 / 185



Table 15. Vivante memory structures mapped to Khronos OpenCL memory types

Khronos OpenCL Memory
Model Name

Vivante GPGPU OpenCL Memory
Structures Utilized

Definition

Private Memory Registers, System Memory Accessible only to an individual work-item; not visible
to any other work-items

Local Memory Local Storage Registers,
System Memory

Accessible to all work-items within a specific work-
group; accessible only by work-items belonging to
that work-group

Global Memory System Memory Accessible to all-work-items executing in a context, as
well as to the host (read, write, and map commands).

Constant Memory Constant Registers,
System Memory

Read only global memory region for host-allocated
and initialized objects that are not changed during
kernel execution

Host (CPU) Memory Host Memory Region for a kernel application’s program data
and structures

The OpenCL concurrent-read /concurrent-write (CRCW) memory model has so-called relaxed consistency which means that
different work-items may see a different view of global memory as the computation proceeds. Within individual work-items reads
and writes to all memory spaces are ordered. Synchronization between work-items in a work-group is necessary to ensure
consistency. No mechanism for synchronization between work-groups is provided. Such a model assures parallel scalability by
requiring explicit synchronization and communication.

For the highest throughput and computational speed, kernels should use high-speed on-chip memories and registers as much
as possible. Instruction control flow and memory operations, including data gathering / scattering and direct memory access
(DMA) should be automatically reorganized / re-ordered depending on data dependencies detected by the optimized compiler.
The Vivante OpenCL compiler automatically maps dependencies and re-orders instructions for the best performance.

5.1.2.4 Host to GPGPU compute device data transfers

The application running on the host uses the OpenCL API to create memory objects in global memory, and to enqueue memory
commands that operate on these memory objects. The host and OpenCL device memory models are, for the most part,
independent of each other. This is by necessity as the host is defined outside of OpenCL. They do, however, at times need to
interact. This interaction occurs in one of two ways: by explicitly copying data from the host to the GPU compute device memory,
or implicitly, by mapping and unmapping regions of a memory object.

• Explicit using clEnqueueReadBuffer and clEnqueueWriteBuffer (clEnqueueReadImage, clEnqueueWriteImage.)

To copy data explicitly, the host enqueues commands to transfer data between the memory object and host memory. These
memory transfer commands may be blocking or non-blocking. The OpenCL function call for a blocking memory transfer returns
once the associated memory resources on the host can be safely reused. For a non-blocking memory transfer, the OpenCL
function call returns as soon as the command is enqueued regardless of whether host memory is safe to use.

• Implicit using clEnqueueMapBuffer and clEnqueueUnMapMemObject.

The mapping/unmapping method of interaction between the host and OpenCL memory objects allows the host to map a region
from the memory object into its address space. The memory map command may be blocking or non-blocking. Once a region from
the memory object has been mapped, the host can read or write to this region. The host unmaps the region when accesses (reads
and/or writes) to this mapped region by the host are complete.

The OpenCL specification does not explicitly state where each memory space will be mapped to on individual implementations.
This provides great freedom for vendors on the one hand and some uncertainty for programmers on the other. Fortunately, kernels
may be compiled just-in-time and possible differences may be tackled during run-time.

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 54 / 185



When using these interfaces, it is important to consider the amount of copying involved to/from system memory and the various
levels within the compute device(s). There is a two-copy process: between host and AXI (or SoC internal bus), and between AXI
(or SoC internal bus) and the Vivante GPGPU compute device. Double copying lowers overall system memory bandwidth and
lowers performance. Because of variations in system architecture (both internal and external/memory), there is sometimes a large
performance delta between the system or calculated GFLOPS and the kernel or GPGPU GFLOPS. GPGPU GFLOPS are based
on the theoretical computational capability of the ALUs within the GPGPU, assuming the system architecture can deliver full data
to the GPGPU. OpenCL APIs for buffers and images aid in avoiding double copy by allowing the mapping of host memory to device
memory. With proper memory transfer management and the use of host/CPU memory remapped to the GPGPU memory space,
copying between host memory and GPGPU memory can be skipped so data transfer becomes a one-copy process. The trade-off
is that the programmer needs to be mindful of page boundaries and memory alignment issues.

5.1.3 OpenCL profiles
In addition to Full Profile, the OpenCL specification also includes an Embedded Profile, which relaxes the OpenCL compliance
requirements for mobile and embedded devices. The main commons and differences between OpenCL 1.1/1.2 EP (Embedded
Profile) and FP (Full Profile) come down to:

Commons:

• Both EP and FP significantly offload the CPU of parallel, multi-threaded tasks.

• For both EP and FP double precision and half-precision floating point are optional.

Difference:

• Full Profile is for highly complex, accurate, and real time computations, while Embedded Profile is a small subset targeting
smaller devices (handheld, mobile, embedded) that perform GPGPU/OpenCL processing with relaxed data type and
precision requirements (image processing, augmented reality, gesture recognition, and more).

• 64-bit integers are required for FP and optional for EP.

• EP requires either RTZ or RTE. FP requires both.

• Computational precision (units in the last place; i.e., ULP) requirements in EP are relaxed.

• Atomic instruction support is not required in EP.

• 3D Image support is not required in EP.

• Minimum requirements for constant buffer size, object allocation size, constant argument counts and local memory sizes
are scaled down in EP.

• And more (in general EP is a scaled down version of FP).

• Die size and power increase with FP because of the higher requirements, features and memory sizes.

5.1.4 Vivante OpenCL embedded compatible IP
As of the date of this document, select Vivante GPGPU cores are compatible with OpenCL Embedded Profile version 1.1. The
folllowing table lists the hardware capability deltas.

Table 16. Vivante OpenCL embedded profile hardware

Hardware and revision GC2000

Feature 5.1.0.rc8a

Compute Devices (GPGPU cores) 1

Compute Units per device (Shader cores) 4

Table continues on the next page...

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 55 / 185



Table 16. Vivante OpenCL embedded profile hardware (continued)

Hardware and revision GC2000

Processing Elements per compute unit 4

Profile Embedded

Preferred work-group/thread group size 16

Max count global work-items each dim 64K

Max count of work-items each dim per work-group 1K

Local Storage Registers On-chip 64

Instruction Memory 512

Texture Samplers 8 PS + 4 VS

Texture Samplers available to OCL (HW, unlimited via SW) 4

L1 Cache Size 4 KB

L1 Cache Banks 1

L1 Cache Sets/Bank 4

L1 Cache Ways/Set 16

L1 Cache Line Size 64B

L1 Cache MC ports 1

5.1.5 Vivante OpenCL full profile hardware model
As of the date of this document, select Vivante GPGPU cores are compatible with OpenCL Full Profile version 1.2. Hardware
capability deltas are subject to change and includes:

Table 17. Vivante OpenCL full profile hardware

Hardware and revision GC2000+ GC7000XSVX GC7000L GC7000UL

i.MX SoC i.MX 6QuadPlus,
i.MX 6DualPlus i.MX 8 QuadMax

i.MX 8M Quad,

i.MX 8QuadXPlus

i.MX 8M Nano i.MX
8M Plus

Compute Devices (GPGPU cores) 1 1 1 1

Compute Units per device (for sub-
device ) 1 1 1 1

Processing Elements per device 16 32 16 8

Profile Full-Lite* Full Full Full

Table continues on the next page...

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 56 / 185



Table 17. Vivante OpenCL full profile hardware (continued)

Preferred work-group/ thread
group size 16 32 16 8

Max count global work-items
each dim

(if 3D only 1 dim can be up to 4G, the
others 64K)

4 G/64 K 4 G/64 K 4G

4G

Max count of work-items each dim
per work-group 1 K 1 K 1K 1K

Local Storage Registers On-chip 0 2048 (32 K) 16 (KB)

Instruction Memory I$:512/1 M 8K 8K 8K

Texture Samplers 32 undefined 32 undefined 32 32

Texture Samplers available to OCL 32 32 32 32

L1 Cache Size 4 KB 64 KB 16KB 8 KB

L1 Cache Banks 2 4 2 1

L1 Cache Sets/Bank 2 8 N/A 8

L1 Cache Ways/Set 16 8 8 8

L1 Cache Line Size 64 B 64 B 64 B 64 B

L1 Cache MC ports per GPGPU core 2 2 2 1

5.2 Vivante OpenCL implementation

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 57 / 185



5.2.1 OpenCL pipeline

Figure 5. Vivante OpenCL data pipeline for an OpenCL compute device

Figure 6. Vivante OpenCL compute device showing memory scheme

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 58 / 185



5.2.2 Front end
The front end passes the instructions and constant data as State Loads to the OpenCL Compute Unit (Shader) block. State Loads
program instructions and constant data and work groups initiate execution on the instructions and the constants loaded.

5.2.3 OpenCL compute unit
All OpenCL executions occur in this block and all work-groups in a compute unit should belong to the same kernel. Threads from
a work-group are grouped into internal “Thread-groups”. All the threads in a thread-group execute in parallel. Barrier instruction
is supported to enforce synchronization within a work-group.

The compute unit contains Local Memory and the L1 Cache and is where the Load/Store instruction to access global memory
originates. The compute unit can accommodate multiple work-groups (based on the temporary register and local memory
usage) simultaneously.

5.2.4 Memory hierarchy

Figure 7. OpenCL memory hierarchy

5.2.5 CL Extension support

5.2.5.1 CL_DEVICE_EXTENSION support

The following table provides a list of CL_DEVICE_EXTENSIONs referenced in the OpenCL 1.2 specification (pp. 46-47). The
support level for these device specific extensions is also indicated.

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 59 / 185



List from OpenCL 1.2 Specification https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf (version 1.2, document
revision 19, revision date 11/14/12)

Table 18. Support level for these device specific extensions (1)

CL_DEVICE_EXTENSIONS

OpenCL C 1.2 Extensions which must be returned (p. 47)
SW 6.2.x/6.4.x

cl_khr_byte_addressable_store YES

cl_khr_global_int32_base_atomics CORE

cl_khr_global_int32_extended_atomics CORE

cl_khr_local_int32_base_atomics CORE

cl_khr_local_int32_extended_atomics CORE

Table 19. Support level for these device specific extensions (2)

CL_DEVICE_EXTENSIONS

Device specific support for Khronos approved extension names (p.46)

A number after the extension name indicates the extension is also listed in the numbered
extensions on the Khronos website.

SW 6.2.x/6.4.x

cl_khr_3d_image_writes

cl_khr_context_abort

cl_khr_d3d10_sharing (#6)

cl_khr_d3d11_sharing

cl_khr_depth_images

cl_khr_dx9_media_sharing

cl_khr_fp16

cl_khr_gl_depth_images

cl_khr_gl_event

cl_khr_gl_msaa_sharing

cl_khr_gl_sharing (#1) YES

cl_khr_image2d_from_buffer

cl_khr_initialize_memory

cl_khr_int64_base_atomics

Table continues on the next page...

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 60 / 185

https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf


Table 19. Support level for these device specific extensions (2) (continued)

CL_DEVICE_EXTENSIONS

Device specific support for Khronos approved extension names (p.46)

A number after the extension name indicates the extension is also listed in the numbered
extensions on the Khronos website.

SW 6.2.x/6.4.x

cl_khr_int64_extended_atomics

cl_khr_spir

5.2.5.2 Vivante OpenCL extension support

The following table provides a list of all current OpenCL Extensions and indicates their support level in Vivante software.

Table 20. CL extensions supported by Vivante with 6.2.x SW

OpenCL Extension Number, Name and hyperlink SW 6.2.x

cl_khr_gl_sharing YES

cl_khr_icd YES

VIV_bitfield_extension YES (from 6.2.2, revised
in 6.2.3)

VIV_cmplx_extension YES (from 6.2.3)

VIV_uncached_host_mem YES (from 6.2.2)

VIV_vx_extension YES, for VX/VIP hw
(from 6.2.2)

5.3 Optimization for OpenCL embedded profile
OpenCL EP (Embedded Profile) is basically a scaled down version of OpenCL FP(Full Profile) and thus may require extra
optimization. The guidelines below help with the optimization of Vivante OpenCL Embedded Profile GPGPU cores.

When optimizing code on Vivante hardware, it is important to remember a few key points to get the best performance from
the hardware:

• Take advantage of algorithm and data parallelism

• Choose the correct execution configuration (more details below)

• Overlap memory transfer from different levels of the OpenCL memory hierarchy with simultaneous thread execution

• Maximize memory bandwidth and minimize data transfers (large transfers are more beneficial than many smaller transfers
because of the impact of latency)

• Maximize instruction throughput and minimize instruction count

5.3.1 Using preferred multiple of work-group size
The work-group size should be a multiple of the thread group size. Otherwise, some threads remain idle and the application does
not fully utilize all the compute resources. For example, if the work-group size is 8 and the Vivante core supports 16, only half
the compute resources are used. For example, in some early Vivante GPGPU revisions, the work-group size limit is 192 and the
thread group size is 16. See the Overview section on OpenCL Compatible IP for IP-specific capabilities.

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 61 / 185

https://www.khronos.org/registry/OpenCL/extensions/khr/cl_khr_gl_sharing.txt
https://www.khronos.org/registry/OpenCL/extensions/khr/cl_khr_icd.txt


5.3.2 Using multiple work-groups of reduced size
Multiple work groups need to be set to reduce synchronization penalties. To prevent stalls at barriers, it is recommended to have
at least four (4) work-groups to keep the cores busy or as long as the number of work-groups is greater than or equal to two (2).
One work-group is very inefficient; four or more is preferred and helps avoid latency.

5.3.3 Packing work-item data
It is important to pack data to extract the optimal performance from the SIMD ALU hardware and align the data into a format
supported by the hardware. Efficient use of the Vivante GPGPU core requires that the kernel contains enough parallelism to fill
all four vector units. Work-items in the same thread group have the same program counter and execute the same instruction for
each cycle. Whenever possible, pack together work-items that follow the same direction (e.g., on branches) since the granularity
is very close and there may be less divergence and higher performance. If each work-item handles less than or equal to 8 bytes,
it is better to combine two or more work-items into one to improve utilization of the SIMD ALU.

5.3.4 Improving locality
If the input data is an array-of-structs, and each work-item needs to access only a small part of the struct across many array
elements at different stages, it may be better to convert and use a struct-of-arrays or several different arrays as input to improve
data locality and avoid cache thrashing.

If each work-item needs to process a row of data without sharing any data with other work-items, it is better to check if the algorithm
can be converted to make each work-item process a column of data so that data accessed by adjacent work-items can share the
same cache lines.

5.3.5 Minimizing use of 1 KB local memory
The OpenCL Embedded Profile specification defines the minimum requirement for local memory to be 1KB to pass conformance
testing. Based on algorithm analysis and profiling different image and computer vision algorithms, we found that a 1KB local
memory size was too small to benefit those algorithms. In most instances, those algorithms actually slowed down when using 1KB
local memory. To increase performance, we recommend not using local memory since it is more efficient to transfer larger chunks
of data from system memory to keep the OpenCL pipeline full.

Note: If local memory type is CL_GLOBAL, the local memory is emulated using global memory, and the performance is the same
as global memory. There is extra overhead on data copy from global to local, which slows down the performance.

5.3.6 Using 16 byte memory Read/Write size
When accessing memory, it is important to minimize the read/write count and to ensure L1 cache utilization is high to reduce
outstanding read/write requests. Since the internal GPGPU read-write-request queue has a limit, if the queue and L1 cache are
filled, then the GPGPU remains idle.

5.3.7 Using _RTZ rounding mode
Wherever possible, use _RTZ (round to zero) since it is natively supported in hardware with one instruction. Support for _RTE
(round to nearest even) is optional in OpenCL EP and is only supported in Vivante GPGPU EP hardware from 2013. This function
is handled in software for EP cores if necessary.

5.3.8 Using float4 for better performance on i.MX 8M Quad and i.MX 8QuadXPlus
Since both the i.MX 8M Quad and i.MX 8QuadXPlus boards have new RTL 6214, the CL kernel compiler generates GPU
instructions using more registers on RTL6214. Float4 is recommended for real applications for better performance.

5.3.9 Using native functions

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 62 / 185



5.3.9.1 Using native_function() for increased performance

There are two types of runtime math libraries available to developers. Native_function() and regular function().

• Function(): slower, computationally expensive, higher instruction count, and greater accuracy

• Native_function(): faster, computationally inexpensive, lower instruction count (sometimes reduced to one instruction), and
lower accuracy.

• If accuracy is not important but speed/performance is, use native math functions that map directly to the Vivante
GPGPU hardware.

For image processing computations that do not require high accuracy, use native instructions to significantly lower the instruction
count and speed up performance. Based on actual analysis and performance profiling with the Vivante GPGPU, we found that
using native_function() instructions such as sin, cos, etc., reduces the instruction count from many instructions to one or two
instructions. Use of native functions also sped performance by 3x-10x.

5.3.9.2 Using native_divide and native_reciprocal for faster floating point calculations

There are two use cases for floating point division which a user can select:

• Normal use of the division operator ( / ) in OpenCL has high precision and covers all corner use cases. This operator generates
more instructions and runs slower.

• Native Divide: this use case uses the built-in function native_divide or native_reciprocal, which uses what the hardware supports.
The Vivante OpenCL compiler generates one or two instructions for each native_divide or native_reciprocal instruction. If there
are no corner use cases in applications, such as NaN, INF, or (2^127) / (2^127), it is better to use native_divide since it is faster.

5.3.9.3 Using compile option for native functions

Both the function() and native_function() methods are supported in the Vivante GPGPUs, so it is up to the developer to use
whichever method makes sense for their application. If the OpenCL program uses the standard division operator and a developer
wants to use native_divide or native_reciprocal without modifying their program, the Vivante OpenCL compiler has a simple option
“-cl-fast-relaxed-math” that uses native built-in functions during compilation.

5.3.10 Using buffers instead of images
For the following image functions, it is better to use buffers instead of images.

• read_image{f/i/ui/h}

• write_image{f/i/ui/h}

Write_image* functions are implemented by software; it is better to use buffers to reduce the additional overhead involved in
checking for size, format, etc. Since a few formats are not supported by Vivante GPGPU hardware, some built-in read_image()
functions are implemented in software. The software implementation uses more instructions with many steps of “condition”
checking. To improve performance, we recommend using buffers since it reduces instruction count.

5.4 OpenCL Debug messages
When writing OpenCL applications, it is important to check the code returned by the API. Since the return codes specified in the
OpenCL specification may not be descriptive enough to isolate where the problem is located, the Vivante OpenCL driver provides
an environment variable, VIV_DEBUG, to help debug problems. When VIV_DEBUG is set to -MSG_LEVEL:ERROR, the Vivante
OpenCL driver prints onscreen error messages and returns the error code to the caller.

The following error code descriptions and suggested workarounds are provided.

5.4.1 OCL-007005: (clCreateKernel) cannot link kernel
One of the following “Not Enough” messages usually precedes this message. Issuer indicates the real reason for the problem
which may be:

• Not Enough Register Memory (constant or temp)

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 63 / 185



• Not Enough Instruction Memory

5.4.2 Not enough register memory
Local variables, including arrays, are implemented using temp registers. If an array is larger than the number of available temp
registers, a link-time failure occurs.

Workarounds:

1. If the array size is more than 64, use an array address to force the compiler to use private memory instead of temp registers.

2. If there are many variables, use variable addresses to force the compiler to use private memory to reduce register usage.

Note that there is performance degradation when using private memory instead of registers. It is better to change the algorithm
to use a smaller array or less variables.

5.4.3 Not enough instruction memory
Workarounds:

1. Replace sin/cos/tan/divide/powr/exp/exp2/exp10/log/log2/log10/sqrt/rsqrt/recip with native_sin/
native_divide, etc.

2. Convert unrolled-loops back to loops.

3. Use buffer instead of image for write, and for reads which are not linear-filtered.

4. If the program is too long, it should be split into two or more programs with intermediate data saved from one program to next.

5.4.4 GlobalWorkSize over hardware limit
WORKAROUND:

1. Split one clEnqueueNDRangeKernel into several instances. Change the kernel source to compute real global/local/group ID
using offset as a parameter.

2. Convert one dimension to two dimensions, or two dimensions to three. For example, one dimension of 1M work-items can be
converted to a GlobalWorkSize of 64K x16 work-items. The kernel function needs modification to reflect the change of dimension.

5.5 Zero copy
A buffer object can be created with clCreateBuffer(cl_context context, cl_mem_flags flags, size_t size, void* host_ptr, cl_int*
error_code_ret). If memory flags contain CL_MEM_USE_HOST_PTR, GPU will map the memory pointed by host ptr for GPU to
use to avoid copying data between CPU and GPU.

To make sure the results are correct, the size of buffer, the third parameter of clCreateBuffer(), needs to be aligned with 64-byte
since Arm data cache operations are performed line by line, the unaligned bits will be cleared with cache line mask. A53, A57, A72
and A73 all have 64-byte cachaline size. If the size of the buffer doesn’t meet this, GPU will use copy method instead.

Besides, the host_ptr should be aligned with 64-bit to meet the ARM cacheline mechanism.

At last, need to call clEnqueueReadBuffer() to make sure the data has been read back to CPU.

5.6 Instruction cache availability for i.MX graphics
This section describes the instruction cache (iCache) available in the Vivante graphics IP included in the selected i.MX products.

There is hardware support for iCache available for i.MX 6QuadPlus and all later IP including that used in i.MX 8 products. There
is no SH (Shader) instruction limit for these newer chips beyond the ISA limitation of 2*20.

Only the older chips have a SH instruction limit.

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 64 / 185



Table 21. i.MX products with graphics IP with iCache

i.MX Product GPU IP & rev Instruction Limit Description

i.MX 8 Series and later
various

(from rev 5450)
none HW supports iCache

i.MX 6QuadPlus
GC2000 Plus

rev FFFF5450
none HW supports iCache

S32V234
GC3000

rev 5451
none HW supports iCache

The SH limitation for i.MX products is listed in the following table.

Table 22. i.MX products with instruction limited graphics IP

i.MX Product GPU IP & rev Instruction Limit Description

i.MX 6SoloX GC400

rev 4645

256 for VS,

256 for PS

Separate Instruction buffers for Vertex Shader and
for Pixel Shader

i.MX 7ULP GCNanoUltra

rev 4653a

256 for VS,

256 for PS

Separate Instruction buffers for Vertex Shader and
for Pixel Shader

i.MX 6DualLite GC880

rev 5106

512 Instruction buffer shared by Vertex and
Pixel Shaders

i.MX 6Quad GC2000

rev 5108

512 Instruction buffer shared by Vertex and
Pixel Shaders

NXP Semiconductors
OpenCL

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 65 / 185



Chapter 6
OpenVX Introduction

6.1 Overview
OpenVX is a low-level programming framework domain to enable software developers to efficiently access computer vision
hardware acceleration with both functional and performance portability. OpenVX has been designed to support modern hardware
architectures, such as mobile and embedded SoCs as well as desktop systems. Many of these systems are parallel and
heterogeneous: containing multiple processor types including multi-core CPUs, DSP subsystems, GPUs, dedicated vision
computing fabrics as well as hardwired functionality. Additionally, vision system memory hierarchies can often be complex,
distributed, and not fully coherent. OpenVX is designed to maximize functional and performance portability across these diverse
hardware platforms, providing a computer vision framework that efficiently addresses current and future hardware architectures
with minimal impact on applications.

OpenVX defines a C Application Programming Interface (API) for building, verifying, and coordinating graph execution, as well as
for accessing memory objects. The graph abstraction enables OpenVX implementers to optimize the execution of the graph for
the underlying acceleration architecture.

OpenVX also defines the vxu utility library, which exposes each OpenVX predefined function as a directly callable C function,
without the need for first creating a graph. Applications built using the vxu library do not benefit from the optimizations enabled
by graphs; however, the vxu library can be useful as the simplest way to use OpenVX and as first step in porting existing
vision applications.

For more details of programming with OpenVX, see the following specification from Khronos Group,

OpenVX 1.0.1 specification (https://www.khronos.org/registry/vx ).

6.2 Designing framework of OpenVX

6.2.1 Software landscape
OpenVX (OVX) is intended to be used either directly by applications or as the acceleration layer for higher-level vision frameworks,
engines or platform APIs. Vivante software includes VX (Vision Imaging Accelleration) control mechanisms for hardware
accelerated vision imaging, therefy allowing the user to implement customized applications and drivers using the Vivante–specific
Vivante VX API (Application Programming Interface). This API provides programmable user kernel extensions for OpenCL 1.2
and provides additional Vision functionality to supplement those currently available with OpenVX 1.0.1 open standard from the
Khronos group.

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 66 / 185

https://www.khronos.org/registry/vx


Figure 8. OVX usage overview

6.2.2 Object-oriented behaviors
OpenVX objects are both strongly typed at compile-time for safety critical applications and are strongly typed at

run-time for dynamic applications.

The objects of OVX framework are:

• Context, The OpenVX context is the object domain for all OpenVX objects.

• Kernel, A Kernel in OpenVX is the abstract representation of a computer vision function, such as a “Sobel Gradient” or
“Lucas Kanade Feature Tracking”.

• Parameter, an abstract input, output, or bidirectional data object passed to a computer vision function.

• Node, A node is an instance of a kernel that will be paired with a specific set of references (the parameters).

• Graph, A set of nodes connected in a directed (only goes one-way) acyclic (does not loop back) fashion.

OpenVX Data Objects:

• Array, An opaque array object that could be an array of primitive data types or an array of structures.

• Convolution, An opaque object that contains MxN matrix of vx_int16 values. Also contains a scaling factor for
normalization.

• Delay, An opaque object that contains a manually controlled, temporally-delayed list of objects.

• Distribution, An opaque object that contains a frequency distribution (e.g., a histogram).

• Image, An opaque image object that may be some format in vx_df_image_e.

• LUT, An opaque lookup table object used with vxTableLookupNode and vxuTableLookup

• Matrix, An opaque object that contains MxN matrix of some scalar values.

• Pyramid, An opaque object that contains multiple levels of scaled vx_image objects.

• Remap, An opaque object that contains the map of source points to destination points used to transform images.

• Scalar, An opaque object that contains a single primitive data type.

• Threshold, An opaque object that contains the thresholding configuration.

Error objects of OVX:

Error objects are specialized objects that may be returned from other object creator functions when serious platform issue occur
(i.e., out of memory or out of handles). These can be checked at the time of creation of these objects, but checking also may be

NXP Semiconductors
OpenVX Introduction

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 67 / 185



put-off until usage in other APIs or verification time, in which case, the implementation must return appropriate errors to indicate
that an invalid object type was used.

6.2.3 Graphs concepts
The graph is the central computation concept of OpenVX. The purpose of using graphs to express the Computer

Vision problem is to allow for the possibility of any implementation to maximize its optimization potential because all the operations
of the graph and its dependencies are known ahead of time, before the graph is processed.

Graphs are composed of one or more nodes that are added to the graph through node creation functions. Graphs in OpenVX
must be created ahead of processing time and verified by the implementation, after which they can be processed as many times
as needed.

There are several nodes in a graph, which are responsible for independent computation. One node can be linked to another by
data dependencies.

6.2.4 User kernels
OpenVX allows users to define new functions that can be executed as Nodes from inside Graph or are Graph internal. Users will
benefit from this mode,

• Exploiting

• Allow componentized functions to be reused elsewhere in OpenVX

• Formalize strict verification requirements (i.e., Contract Programming).

Figure 9. Graph and user kernel usage

6.3 OpenVX extension implementation
VeriSilicon’s VX Extensions for Vision Imaging provide additional functionality for Vision Image processing beyond the functions
provided through the Khronos Group OpenVX API version 1.0.1. These enhancements take advantage of the enhanced
Vision capabilities available in VeriSilicon’s Vision-capable hardware. VeriSilicon software provides a set of extensions which
interface with OpenCL 1.2 and support higher level C language programming of VeriSilicon’s custom EVIS (Enhanced Vision
Instruction Set).

The VeriSilicon VX extension and enhancements includes three major components:

• An API level interface to the EVIS (Enhanced Vision Instruction Set)

• Extended C language features for Vision Processing

• Supported for a subset of Vision-compatible OpenCL built-in functions

6.3.1 Hardware requirements
Vision Imaging hardware capabilities are required to support full OpenVX. The following configurations are supported:

• GC7000XSVX (i.MX 8QuadMax)

NXP Semiconductors
OpenVX Introduction

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 68 / 185



• VIP8000NanoSI (i.MX 8M Plus)

6.3.2 EVIS instruction interface
Vivante’s Vision Imaging capable IP have an Enhanced Vision Instruction Set (EVIS), which enhances the ability of the GPU or
VIP (Vision Image Processor) to process complex vision operations. A single EVIS instruction can do a task which may require
tens or even hundreds of normal ISA instructions to finish.

The following table shows the instructions supported as Intrinsic calls.

6.3.3 Extended language features
Vivante’s OpenVX C programming Language corresponds closely to the OpenCL C programming language.

• Vivante’s C language extensions for OpenVX C share many language facilities with OpenCL C 1.2. However, it can be
considered a subset of OpenCL C 1.2, as it does not include OCL features which are useless for OpenVX and other
Vision Imaging applications.

• Vivante’s OpenVX C includes specific language facilities like Vision built-ins and data types specific for OpenVX.

Table 23. OPCODE EVIS instructions supported as intrinsic calls

EVIS OP_CODE Description Supported by Vivante VX

ABS_DIFF Absolute difference between two values Y

IADD Adds two or three integer values Y

IACC_SQ Squares a value and adds it to an accumulator Y

LERP Linear interpolation between two values Y

FILTER Performs a filter on a 3x3 block Y

MAG_PHASE Computes magnitude and phase of 2 packed data values Y

MUL_SHIFT Multiples two 8-or 16-bit integers and shifts Y

DP16X1 1 Dot Product from 2 16 component values Y

DP8X2 2 Dot Products from 2 8 component values Y

DP4X4 4 Dot Products from 2 4 component values Y

DP2X8 8 Dot Products from 2 2 component values Y

CLAMP Clamps up to 16 values to a max or min value Y

BI_LINEAR Computes a bi0linear interpolation of 4 pixel values Y

SELECT_ADD Adds a pixel value or increments a counter inside bins Y

ATOMIC_ADD Adds a valid atomically to an address Y

BIT_EXTRACT Extracts up to 8 bitfields from a packed stream Y

Table continues on the next page...

NXP Semiconductors
OpenVX Introduction

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 69 / 185



Table 23. OPCODE EVIS instructions supported as intrinsic calls (continued)

EVIS OP_CODE Description Supported by Vivante VX

BIT_REPLACE Replaces up to 8 bitfields from a packed stream Y

DP32X1 1 Dot Product from 2 32 component values Y

DP16X2 2 Dot Products from 2 16 component values Y

DP8X4 4 Dot Products from 2 8 component values Y

DP4X8 8 Dot Products from 2 4 component values Y

DP2X16 16 Dot Products from 2 2 component values Y

6.3.4 Packed types
Vivante’s OpenCL compiler implements OpenCL C signed and unsigned char and short types in an unpacked format, such that a
normal char4 occupies 128 bits (4 32-bit registers). This is undesirable for Vision applications, where packed data is the “natural”
layout for almost all operations. To fully utilize the computing power of EVIS instructions, Vivante VX includes additional packed
types, which can be identified by their vxc_ prefix.

/* packed char2/4/8/16 */ 
typedef _viv_char2_packed vxc_char2; 
typedef _viv_char4_packed vxc_char4; 
typedef _viv_char8_packed vxc_char8; 
typedef _viv_char16_packed vxc_char16; 
/* packed uchar2/4/8/16 */ 
typedef _viv_uchar2_packed vxc_uchar2; 
typedef _viv_uchar4_packed vxc_uchar4; 
typedef _viv_uchar8_packed vxc_uchar8; 
typedef _viv_uchar16_packed vxc_uchar16; 
/* packed short2/4/8 */ 
typedef _viv_short2_packed vxc_short2; 
typedef _viv_short4_packed vxc_short4; 
typedef _viv_short8_packed vxc_short8; 
/* packed ushort2/4/8 */ 
typedef _viv_ushort2_packed vxc_ushort2; 
typedef _viv_ushort4_packed vxc_ushort4; 
typedef _viv_ushort8_packed vxc_ushort8;

6.3.5 Initializing constants on load
Constant data in OpenCL requires compile-time initialization. There is also a need to initialize the data when the kernel is
loaded/run, so that the application can control the behavior of a program by changing its constants at load-time. The VeriSilicon
VX extended keyword _viv_uniform can be used to define load-time initialization constant data,

_viv_uniform vxc_512bits u512;

An application using VeriSilicon VX needs to set the proper values for _viv_uniform before the kernel program is run.

6.3.6 Inline assembly
A packed type cannot be used as an unpacked type in expressions or built-in functions. The programmer needs to convert packed
type data to unpacked type data in order to perform these operations. The conversion negatively impacts performance in terms

NXP Semiconductors
OpenVX Introduction

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 70 / 185



of both instruction count and register usage, so it is desirable to perform operations directly on packed data whenever possible.
The Vivante Vision compiler accepts inline assembly for a wide range of operations to speed up packed data calculations.

For example, to add two packed char16 data, the programmer can use following inline assembly:

vxc_uchar16 a, b, c;
vxc_short8 b;
_viv_uniform vxc_512bits u512;
...
_viv_asm(ADD, c, a, b); /* c = a + b; */
where the syntax of inline assembly is:
_viv_asm(
OP_CODE,
dest,
source0,
source1
);

The following table lists the standard shader instructions that operate on packed data and are supported through inline assembly,
keyword _viv_asm.

Table 24. OPCODES IR instructions supported by inline assembly

IR OP_CODE Instruction Description Supported by Vivante VX

ABS Absolute value Y

ADD Add Y

ADD_SAT Integer add with saturation Y

AND_BITWISE Bitwise AND Y

BIT_REVERSAL Integer bit-wise reversal ES31

BITEXTRACT Extract Bits from src to dest ES31

BITINSERT Bit replacement ES31

BITSEL Bitwise Select Y

BYTE_REVERSAL Integer byte-wise reversal ES31

CLAMP0MAX clamp0max dest, value, max Y

CMP Compare each component Y

CONV Convert Y

DIV Divide Y

FINDLSB Find least significant bit ES31

FINDMSB Find most significant bit ES31

LEADZERO Detect Leading Zero Y

Table continues on the next page...

NXP Semiconductors
OpenVX Introduction

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 71 / 185



Table 24. OPCODES IR instructions supported by inline assembly (continued)

IR OP_CODE Instruction Description Supported by Vivante VX

LSHIFT Left Shifter Y

MADSAT Integer multiple and add with saturation Y

MOD Modulus Y

MOV Move Y

MUL Multiply Y

MULHI Integer only Y

MULSAT Integer multiply with saturation Y

NEG neg(a) is similar to (0 - (a)) Y

NOT_BITWISE Bitwise NOT Y

OR_BITWISE Bitwise OR Y

POPCOUNT Population Count ES31/OCL1.2

ROTATE Rotate Y

RSHIFT Right Shifter Y

SUB Substract Y

SUBSAT Integer subtraction with saturation Y

XOR_BITWISE Bitwise XOR Y

 
*ES31 = Supported by VivanteVX, but may not be needed for Vision processing

  NOTE  

6.4 OpenCL functions compatible with Vivante vision
Vivante’s VX extensions for Vision Image processing support most of the OpenCL 1.2 built-in functions for normal OCL data types.
Packed types are not supported in these built-in functions.

For image read/write functions, only sample-less 1D/1D array/2D image read/write functions are supported.

6.4.1 Read_Imagef,i,ui

/* OCL image builtins can be used in VX kernel */
float4 read_imagef (image2d_t image, int2 coord);
int4 read_imagei (image2d_t image, int2 coord);
uint4 read_imageui (image2d_t image, int2 coord);
float4 read_imagef (image1d_t image, int coord);
int4 read_imagei (image1d_t image, int coord);
uint4 read_imageui (image1d_t image, int coord);
float4 read_imagef (image1d_array_t image, int2 coord);

NXP Semiconductors
OpenVX Introduction

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 72 / 185



int4 read_imagei (image1d_array_t image, int2 coord);
uint4 read_imageui (image1d_array_t image, int2 coord);

6.4.2 Write_Imagef,i,ui

void write_imagef (image2d_t image, int2 coord, float4 color);
void write_imagei (image2d_t image, int2 coord, int4 color);
void write_imageui (image2d_t image, int2 coord, uint4 color);
void write_imagef (image1d_t image, int coord, float4 color);
void write_imagei (image1d_t image, int coord, int4 color);
void write_imageui (image1d_t image, int coord, uint4 color);
void write_imagef (image1d_array_t image, int2 coord, float4 color);
void write_imagei (image1d_array_t image, int2 coord, int4 color);
void write_imageui (image1d_array_t image, int2 coord, uint4 color)

6.4.3 Query Image Dimensions

int2 get_image_dim (image2d_t image);
size_t get_image_array_size(image1d_array_t image);
/* Built-in Image Query Functions */
int get_image_width (image1d_t image);
int get_image_width (image2d_t image);
int get_image_width (image1d_array_t image);
int get_image_height (image2d_t image);

6.4.4 Channel Data Types Supported

/* Return the channel data type. Valid values are: 
* CLK_SNORM_INT8 
* CLK_SNORM_INT16 
* CLK_UNORM_INT8 
* CLK_UNORM_INT16 
* CLK_UNORM_SHORT_565 
* CLK_UNORM_SHORT_555 
* CLK_UNORM_SHORT_101010 
* CLK_SIGNED_INT8 
* CLK_SIGNED_INT16 
* CLK_SIGNED_INT32 
* CLK_UNSIGNED_INT8 
* CLK_UNSIGNED_INT16 
* CLK_UNSIGNED_INT32 
* CLK_HALF_FLOAT 
* CLK_FLOAT 
*/ 
int get_image_channel_data_type (image1d_t image); 
int get_image_channel_data_type (image2d_t image); 
int get_image_channel_data_type (image1d_array_t image);

6.4.5 Image Channel Orders Supported

/* Return the image channel order. Valid values are: 
* CLK_A 
* CLK_R 
* CLK_Rx 
* CLK_RG 

NXP Semiconductors
OpenVX Introduction

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 73 / 185



* CLK_RGx 
* CLK_RA 
* CLK_RGB 
* CLK_RGBx 
* CLK_RGBA 
* CLK_ARGB 
* CLK_BGRA 
* CLK_INTENSITY 
* CLK_LUMINANCE 
*/ 
int get_image_channel_order (image1d_t image); 
int get_image_channel_order (image2d_t image); 
int get_image_channel_order (image1d_array_t image);

NXP Semiconductors
OpenVX Introduction

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 74 / 185



Chapter 7
Vulkan

7.1 Overview
Vulkan is a new generation graphics and compute API that provides high-efficiency, cross-platform access to modern GPUs used
in a wide variety of devices from PCs and consoles to mobile phones and embedded platforms.

Vulkan defines as an API (Application Programming Interface) for graphics and compute hardware. The API consists of many
commands that allow a programmer to specify shader programs, compute kernels, objects, and operations involved in producing
high-quality graphical images, specifically color images of three-dimensional objects.

To the programmer, Vulkan is a set of commands that allow the specification of shader programs or shaders, kernels, data used by
kernels or shaders, and state controlling aspects of Vulkan outside the scope of shaders. Typically, the data represents geometry
in two or three dimensions and texture images, while the shaders and kernels control the processing of the data, rasterization of
the geometry, and the lighting and shading of fragments generated by rasterization, resulting in the rendering of geometry into
the framebuffer.

A typical Vulkan program begins with platform-specific calls to open a window or otherwise prepare a display device onto which the
program will draw. Then, calls are made to open queues to which command buffers are submitted. The command buffers contain
lists of commands which will be executed by the underlying hardware. The application can also allocate device memory, associate
resources with memory and refer to these resources from within command buffers. Drawing commands cause application-defined
shader programs to be invoked, which can then consume the data in the resources and use them to produce graphical images.
To display the resulting images, further platform-specific commands are made to transfer the resulting image to a display device
or window.

For more details of programming with Vulkan, refer to the following specification from Khronos Group.

https://www.khronos.org/registry/vulkan/

7.2 Vivante Extension Support for Vulkan
The following table includes a list of all current Vulkan extensions and indicates their support level in Vivante software.

(list from https://www.khronos.org/registry/vulkan/ as of 6/1/2020)

 
This list does not include unsupported vendor specific extensions.

  NOTE  

Table 25. Vulkan extension

Supported Vulkan 1.1 Extension Names SW 6.4.x for Vulkan 1.1

VK_KHR_16bit_storage YES

VK_KHR_bind_memory2 YES

VK_KHR_descriptor_update_template YES

VK_KHR_device_group YES

VK_KHR_external_memory YES

VK_KHR_get_memory_requirements2 YES

Table continues on the next page...

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 75 / 185

https://www.khronos.org/registry/vulkan/


Table 25. Vulkan extension (continued)

Supported Vulkan 1.1 Extension Names SW 6.4.x for Vulkan 1.1

VK_KHR_maintenance1 YES

VK_KHR_maintenance2 YES

VK_KHR_maintenance3 YES

VK_KHR_variable_pointers YES

VK_KHR_dedicated_allocation YES

VK_EXT_queue_family_foreign YES

VK_KHR_external_semaphore_fd YES

VK_KHR_external_fence_fd YES

VK_KHR_external_semaphore_win32 YES

VK_KHR_external_fence_win32 YES

VK_ANDROID_native_buffer YES

VK_ANDROID_external_memory_android_hardware_buffer YES

VK_KHR_swapchain YES

VK_EXT_debug_report YES

VK_KHR_device_group_creation YES

VK_KHR_external_memory_capabilities YES

VK_KHR_external_semaphore_capabilities YES

VK_KHR_external_fence_capabilities YES

VK_KHR_get_physical_device_properties2 YES

VK_KHR_win32_surface YES

VK_KHR_android_surface YES

VK_KHR_wayland_surface YES

VK_KHR_surface YES

VK_KHR_display YES

7.3 Vulkan Validation Layers
Vulkan is an explicit API, enabling direct control over how GPUs actually work. By design, minimal error checking is done inside
a Vulkan driver. Applications have full control and responsibility for correct operation. Any errors in how Vulkan is used can result

NXP Semiconductors
Vulkan

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 76 / 185



in a crash. Vulkan validation layers that can be enabled to assist development by enabling developers to verify their applications
correct use of the Vulkan API.

7.4 Window System Integration
Vulkan relies on a new mechanism to interact with the native Windowing System and present the rendered results to the user.
This mechanism is called the Window System Integration and is provided via extensions outside of the core API.

In the i.MX BSPs where Vulkan is enabled, the default window manager is Weston, a Wayland compositor
reference implementation.

When compiling a Vulkan application for Wayland make sure to define the VK_USE_PLATFORM_WAYLAND_KHR symbol, so
all the proper includes and code paths are enabled.

GLFW and SDL can manage the surface creation and proper extension initializations, but when an application is newly developed
without using any frameworks, require to enable the following instance extensions:

VK_KHR_SURFACE_EXTENSION_NAME

VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME

Once there is a display connection to the Wayland server and a surface created, then start to use the wl_display and wl_surface
pointers to populate the info structure required by vkCreateWaylandSurfaceKHR.

A word of advice, when querying the Physical Device Surface capabilities with vkGetPhysicalDeviceSurfaceCapabilitiesKHR
before having created the Swapchain, the current extent width and height will return a value of 0xFFFFFFFF, make sure to add
checks for this in the code, when this happens, set the swapchain extent to the actual size of the surface want to render to, or a
fallback extent size.

NXP Semiconductors
Vulkan

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 77 / 185



Chapter 8
Multiple GPUs and Virtualization

8.1 Overview
Vivante multi-GPU implementations provide a variety of capabilities which can be managed through hardware and software
controls. This chapter intends to summarize the software controls used for Vivante multi-GPU IP implementations.

Multi-GPU feature can be enabled with dual GC7000XSVX on i.MX 8QuadMax and the derived devices.

8.2 Multi-GPU configurations
Vivante Multi-GPU IP may be configured into one of the following behavior model through software:

• Combined Mode where two (or more) GPU cores in the multi-GPU design behave in concert. Driver presents multi-GPU to
SW application as a single logical GPU. The multiple GPUs work in the same virtual address space and share the same
MMU page table. The multiple GPUs fetch and execute a shared Command Buffer.

• Independent Mode where each GPU in the multi-GPU design performs independently. The multiple GPUs work in different
virtual address spaces but share the same MMU page table. Each GPU core fetches and executes its own Command
Buffer. This enables different SW applications to run simultaneously on different GPU cores.

• OpenCL API allows application to handle the multi-GPU Independent Mode directly, as each GPU core in a multi-GPU
design represents an independent OpenCL Compute Device.

8.3 GPU affinity configuration
In the multi-GPU Independent Mode, application can specify to run on a specific GPU among the multiple GPUs through an
environment variable VIV_MGPU_AFFINITY. Once an application’s GPU affinity is specified, the application will only run on the
specified GPU and will not migrate to other GPUs even if those GPUs are idle.

VIV_MGPU_AFFINITY is the environment variable to control the application GPU affinity on multi-GPU platform. The client drivers
will assume they are using a standalone GPU through a gcoHARDWARE object no matter how this variable is set. The possible
values for the environment variable VIV_MGPU_AFFINITY include:

• Not defined or

• Defined as "0" gcoHARDWARE objects work in gcvMULTI_GPU_COMBINED mode (default)

— "1:0" gcoHARDWARE objects work in gcvMULTI_GPU_INDEPENDENT mode and GPU0 is used

— "1:1" gcoHARDWARE objects work in gcvMULTI_GPU_INDEPENDENT mode and GPU1 is used

On a single GPU device, setting VIV_MGPU_AFFINITY to 0 or 1 does not make any difference as all application processes/
threads are bound to GPU0. But the application will fail the GPU context initialization if VIV_MGPU_AFFINITY is set to "1:1" (driver
reports error).

8.4 OpenCL on multi-GPU device
OpenCL driver works in bridged mode as single logical compute device. In this configuration, multiple GPUs in the device operate
as individual OpenCL Compute Devices. The OpenCL application is responsible to assign and dispatch the compute tasks to each
GPU (Compute Device).

The following OpenCL APIs return the list of compute devices available on a platform, and the device information.

cl_int clGetDeviceIDs (cl_platform_id platform, cl_device_type device_type, cl_uint num_entries, 
cl_device_id *devices, cl_uint *num_devices) 

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 78 / 185



cl_int clGetDeviceInfo (cl_device_id device, cl_device_info param_name, size_t param_value_size, 
void *param_value, size_t *param_value_size_ret)

8.5 GPU virtualization configuration
Multi-GPU also can be used on different OS systems as independent mode separately, this can be configured by overriding the
irq availability n DTS entry for different OS implementation, in arch/arm64/boot/dts/freescale/fsl-imx8qmxxx.dts.

Guest OS 1 (GPU0 only)

&gpu_3d1 {
         status = "disable";
};

Guest OS 2 (GPU1 only)

&gpu_3d0 {
         status = "disable";
};

NXP Semiconductors
Multiple GPUs and Virtualization

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 79 / 185



Chapter 9
GBM - Generic Buffer Management
The GBM (Graphic Buffer Management) API is a thin layer over DRM KMS (Linux Direct Rendering Manager - Kernel ModeSetting
API) that provides a mechanism for allocating buffers for graphics rendering. GBM is intended to be used as a native platform for
EGL on DRM. The handle it creates can be used to initialize EGL and to create render target buffers. This can be resumed as a
modern OpenGL ES FBDEV, because it permits full usage of the DRM KMS API with OpenGL ES acceleration.

Starting from i.MX 8, the DRM is supported and recommended to use GBM. GBM provides options of allocating modifier-abiding
surfaces too, for Wayland compositors and the X11 server to render to.

9.1 Introduction to DRM Format Modifiers
A DRM format modifier is a 64-bit, vendor-prefixed, semi-opaque unsigned integer. Most modifiers represent a concrete,
vendor-specific tiling format for images. Some exceptions are DRM_FORMAT_MOD_LINEAR (which is not vendor-
specific); DRM_FORMAT_MOD_NONE (which is an alias of DRM_FORMAT_MOD_LINEAR due to historical accident); and
DRM_FORMAT_MOD_INVALID (which does not represent a tiling format). The modifier’s vendor prefix consists of the 8 most
significant bits. The canonical list of modifiers and vendor prefixes is found in drm_fourcc.h in the Linux kernel source.

One goal of modifiers in the Linux ecosystem is to enumerate for each vendor a reasonably sized set of tiling formats that are
appropriate for images shared across processes, APIs, and/or devices, where each participating component may possibly be from
different vendors. A non-goal is to enumerate all tiling formats supported by all vendors. Some tiling formats used internally by
vendors are inappropriate for sharing; no modifiers should be assigned to such tiling formats.

Modifier values typically do not describe memory layouts. More precisely, a modifier's lower 56 bits usually have no structure.
Instead, modifiers name memory layouts; they name a small set of vendor-preferred layouts for image sharing. As a consequence,
in each vendor namespace the modifier values are often sequentially allocated starting at 1.

Each modifier is usually supported by a single vendor and its name matches the pattern
{VENDOR}_FORMAT_MOD_* or DRM_FORMAT_MOD_{VENDOR}_*. Examples are DRM_FORMAT_MOD_VIVANTE_TILED
and DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED. An exception is DRM_FORMAT_MOD_LINEAR, which is supported by
most vendors.

Many APIs in Linux use modifiers to negotiate and specify the memory layout of shared images. For example, a Wayland
compositor and Wayland client may, by relaying modifiers over the Wayland protocol zwp_linux_dmabuf_v1, negotiate
a vendor-specific tiling format for a shared wl_buffer. The client may allocate the underlying memory for the wl_buffer
with GBM, providing the chosen modifier to gbm_bo_create_with_modifiers. The client may then import the wl_buffer into
Vulkan for producing image content, providing the resource’s dma_buf to VkImportMemoryFdInfoKHR and its modifier to
VkImageDrmFormatModifierExplicitCreateInfoEXT. The compositor may then import the wl_buffer into OpenGL for sampling,
providing the resource’s dma_buf and modifier to eglCreateImage. The compositor may also bypass OpenGL and submit the
wl_buffer directly to the kernel’s display API, providing the dma_buf and modifier through drm_mode_fb_cmd2.

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 80 / 185



Chapter 10
Wayland and Weston

10.1 Overview
Wayland is a protocol for a compositor to talk to its clients as well as a C library implementation of that protocol. Wayland is
intended as a simpler replacement for X, easier to develop and maintain. The compositor can be a standalone display server
running on Linux kernel modesetting and evdev input devices, an X application, or a Wayland client itself. The clients can be
traditional applications, X servers (rootless or full screen) or other display servers.

10.2 Wayland EGL
Wayland-EGL is the client side implementation of the Wayland that binds the EGL stack and buffer sharing mechanism to
the generic Wayland API. Frontend of the wayland-egl is now part of the wayland and i.MX graphics driver supports the
implementation of buffer sharing mechanism.

10.3 Weston Compositor
Weston is reference implementation of a Wayland compositor. The Weston compositor is minimal and lightweight and is
suitable for many embedded and mobile use cases. Weston support multiple renderers and backends which need to be chosen
appropriately based on the processor configurations. This is usually preset in the i.MX image.

10.3.1 Weston Backends
Weston have implementation to support different display APIs, which is called backend. i.MX 8 support KMS/DRM hence
uses DRM backend while the i.MX 6/7 uses FBDEV backend. i.MX graphics continues to support graphics acceleration with
FBDEV backends.

10.3.2 Weston Renderer

10.3.2.1 GL Renderer

GL (GLES) renderer implementation is the default with Weston implementation. GL renderer takes the buffer passed from clone
and maps as a texture. After the initial setup, the client only needs to tell the compositor which buffer to use and when and where
it has rendered new content into it.

10.3.2.2 G2D Renderer

G2D is the 2D API refer to Chapter 2 for full details of G2D APIs. G2D renderer provides mechanism to accelerate Weston with
2D GPU. The 2D Graphics Engine reduces the burden on 3D GPU and saves power as well as integrates nicely with the video
capabilities of the SoC. G2D compositor can increase system bandwidth utilization, so the performance will be better than GL
compositor in the complex usecase environment.

To enable the G2D compositor, open the file: /etc/xdg/weston/weston.ini in the Linux image.

use-g2d=1 

10.3.3 Weston Shells
Weston supports multiple shells, each of these shells have its own public protocol interface for clients. This means that a client
must be specifically written for a shell protocol. Otherwise, it will not work. Below are the currently supported shell.

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 81 / 185



10.3.3.1 Desktop shell

Desktop shell is like a typical X desktop environment, concentrating on traditional keyboard and mouse user interfaces and
the familiar desktop-like window management. Desktop shell consists of the shell plugin desktop-shell.so and the special client
weston-desktop-shell which provides the wallpaper, panel, and screen locking dialog.

10.3.3.2 Fullscreen shell

Fullscreen shell is intended for a client that needs to take over whole outputs, often all outputs. This is primarily intended for
running another compositor on Weston. The other compositor does not need to handle any platform-specifics like DRM/KMS or
evdev/libinput. The shell consists only of the shell plugin fullscreen-shell.so.

10.3.3.3 IVI-shell

In-vehicle infotainment shell is a special purpose shell that exposes a GENIVI Layer Manager compatible API to controller
modules, and a very simple shell protocol towards clients. IVI-shell starts with loading ivi-shell.so, and then a controller module
which may launch helper clients. This shell provides option of setting windowing position, which need to be programmed from the
client application.

NXP Semiconductors
Wayland and Weston

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 82 / 185



Chapter 11
X Windowing Acceleration
X11 is accelerated on i.MX 8 through Xwayland. Support on i.MX 6 deprecated.

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 83 / 185



Chapter 12
Advanced GPU Configuration

12.1 GPU Scaling Governor
i.MX 8QuadMax GPU design supports different running modes: overdrive, nominal, and underdrive. Nominal is the default, the
overdrive is supposed to be performance/benchmark mode, and underdrive mode is expected as energy saving mode.

Switch among the 3 modes using command line without needing to recompile the GPU driver.

$ echo "overdrive"   >  /sys/bus/platform/drivers/galcore/gpu_govern 
$ echo "nominal"     >  /sys/bus/platform/drivers/galcore/gpu_govern 
$ echo "underdrive"  >  /sys/bus/platform/drivers/galcore/gpu_govern

Try to check the mode is running currently, use the command line as follows:

$ cat /sys/bus/platform/drivers/galcore/gpu_govern

12.2 GPU Device Cooling
i.MX device support the thermal driver, which could signal the overheat event to GPU driver, once GPU driver receive the event,
it can enable GPU DFS feature to reduce GPU frequency as N/64 of the original designated clock.

The default N factor is 1 in the original BSP release, the end-user can reconfigure it through the following command:

echo N >/sys/bus/platform/drivers/galcore/gpu3DMinClock

The user also can check the existing configuration as follows:

cat /sys/bus/platform/drivers/galcore/gpu3DMinClock

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 84 / 185



Chapter 13
Vivante IDE

13.1 VivanteIDE overview
The VivanteIDE provides a single interface to a set of applications designed to be used by graphics, compute, vision and neural
network application developers to rapidly develop and port applications either stand alone or as part of an IDE. Vivante IDE is built
on the top of Eclipse, CDT

VivanteIDE capabilities include the following key features.

• Project Management

The Project Manager supports individual compile options for each file. In addition, workspace options define project
dependencies, removing the need for manual management of file builds.

• Source code smart editing and analysis

The VivanteIDE Editor provides timesaving editing features such as type ahead for structures, word completion and automatic
code indentation for a readable, formatted code view.

• Automatic code generation

Kernel development wizard can automatically generate the kernel code basing on simple inputs.

• Performance and bandwidth profiling

The Profile tabbed window provides profiler information. Every time the profiler is suspected accumulated statistical
information is updated. For OGL applications the VPD Analyzer is provided.

• Post-mortem performance analysis

VPD Analyzer visualized the hardware data recorded at GPU application runtime.

• Texture browse and conversion

Texture browser and converter support texture file preview and format conversion.

• Command line tools for OGL, OCL and OVX compile.

• Command line tools for Vulkan application development.

• Command line tools for Texture compression/decompression and tile/de-tiling.

13.1.1 VivanteIDE component overview
VivanteIDE provides both command line tools and GUI “Perspective” views for performing different activities. Some functionality is
available through both GUI and command line, while tools such as vCompiler and vcCompiler are available only using command
line syntax.

Table 26. VivanteIDE tool overview

Perspective/Tool Key Functionality GUI Command Line

Debug Debug projects Yes

Profile Configure projects Yes

vCompiler Offline OGL compiler No Yes, vCompiler

Table continues on the next page...

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 85 / 185



Table 26. VivanteIDE tool overview (continued)

Perspective/Tool Key Functionality GUI Command Line

vcCompiler Offline OCL compiler No Yes, vcCompiler

VPD Analyzer Performance analysis Yes No

vTexture,

vTextureTools

Texture manipulations and viewing;

Compress, Decompress, Tile, De-Tile

Yes

Texture Viewer

Texture Browser

Yes

vTextureTools

SPIR-V Disassembly Debug Vulkan apps Yes No

Shader Assistant Shader programming Yes No

13.2 VivanteIDE Requirements

13.2.1 Operating system compatibility
VivanteIDE is available for both Linux and Windows environments. VivanteIDE has been verified to work in Windows 7,
Windows 10, Ubuntu 18.04, and Ubuntu 16.04. It might work in other Windows or Linux systems but has not been verified for
alternate environments.

Table 27. Operating System Tool Compatibility Summary

Components Linux Windows

VivanteIDE GUI and command GUI and command

Tools

vCompiler, vcCompiler command command

vProfiler Built part of i.MX unified
driver (target)

Built part of i.MX unified in driver(target)

VPD Analyzer GUI GUI

Shader Assistant GUI GUI

Texture Viewer GUI GUI

Texture Browser GUI GUI

vTextureTools GUI and command GUI and command

13.2.2 Hardware requirements
VivanteIDE can be used in either a simulation environment or on i.MX processors supporting OpenGL ES, OpenCL, OpenVX,
and Neural Networks capabilities in the tools assume compatible hardware capability in the running environment, which must be
correctly profiled in the tool for accurate results.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 86 / 185



13.2.3 VivanteIDE license
i.MX supported VivanteIDE release package contains with preloaded license and restricted only to use with NXP processors. For
more information, read NXP EULA.

13.3 VivanteIDE installation

13.3.1 VivanteIDE package
Each release of VivanteIDE will be compatible with its companion driver version. Forward and backward compatibility is not tested
and use of VivanteIDE with any different driver version other than its companion version is NOT RECOMMENDED.

The package is delivered as a compressed file from nxp.com as Verisilicon_Tool_Acuity_IDE_<version>.tgz

Table 28. VivanteIDE package contents

Top level Directory and exe file Description

VivanteIDE-<version>-Linux-x86_64-**-
Install

Installation wizard for Linux 64-bit.

VivanteIDE-<version>-Windows-**-
Setup.exe

Installation wizard for Windows 64-bit/32-bit

README README with basic installation notes

After installation the following directories will be created in the installation directory

Table 29. VivanteIDE tools directory

Files and Directories Description

ide/ Directory containing IDE executables and plugins

examples/ Directory containing examples (just for Windows)

cmdtools/ Directory containing Vivante command line tools: vCompiler,
vcCompiler, vTextureTools

doc/ Directory containing documents

license/ Directory containing license tools and license files

jre/ Directory containing JRE binaries

mingw32/ Directory containing MinGW (just for Windows)

uninstall.exe Uninstaller of VivanteIDE

13.3.2 Installation
Install the package to run both the GUI and command line tools. You must install the package even if you are only going to use
the command line tools.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 87 / 185



13.3.2.1 Linux GUI

Run Vivante-<version>-Linux-x86_64-**-Install to launch the installation wizard. Follow the installation steps guided by the
installation wizard to finish the installation.

13.3.2.2 Windows GUI

Run Vivante-<version>-Windows-**-Setup.exe to launch the installation wizard. Follow the installation steps guided by the
installation wizard to finish the installation.

13.3.2.3 Installation from command line

The VivanteIDE installer can also be launched from the command line. Options can be specified as follows:

installer [option1] [option2] [option3] 

Example Usage for Windows:

installer /mode silent /prefix destination_location /license license_file_path

Example Usage for Linux:

installer --mode silent --prefix destination_location --license license_file_path

Table 30. Command line installer options

Option for Windows Option for Linux Description

/mode silent --mode silent Silent mode (without GUI, without prompting)

/license license_file_path --license license_file_path Specify a license file to be installed

/prefix destination_location --prefix destination_location Specify the folder where VivanteIDE will be installed

13.3.3 VivanteIDE launch

13.3.3.1 Linux launch of GUI tool

To launch the GUI tool,

• Double-click the desktop shortcut VivanteIDE<version>.

• Run installation_dir/ide/vivanteide<version> in a BASH.

13.3.3.2 Windows launch of GUI tool

To launch the GUI tool:

• Click Start Menu->VeriSilicon->VivanteIDE <version>->VivanteIDE <version>.

• Double-click the desktop shortcut VivanteIDE <version>.

• Run installation_dir/ide/vivanteide<version>.bat.

13.3.3.3 Command line tool launch

To launch the command line tools, use the following paths. For Linux OS, launch in a BASH.

Run installation_dir/cmdtools/vCompiler, vcCompiler, vTextureTools.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 88 / 185



13.3.3.4 Basic launch path summary

Table 31. Basic launch instruction summary

Tool Linux Basic Launch Instuction Windows Basic Launch Instuction

VivanteIDE GUI Run
installation_dir/ide/vivanteide<version>

in a BASH.

Run
installation_dir/ide/vivanteide<version>.bat

vcCompiler Run installation_dir/cmdtools/bin/
vcCompiler in a BASH.

Run installation_dir/
cmdtools/bin/vcCompiler.exe

vCompiler Run installation_dir/cmdtools/bin/
vcompiler in a BASH.

Run installation_dir/
cmdtools/bin/vCompiler.exe

vTextureTools Run installation_dir/cmdtools/bin/
vtexturetools in a BASH.

Run installation_dir/
cmdtools/bin/vTextureTools.exe

13.4 VivanteIDE GUI
The desktop development environment for VivanteIDE is referred to as the Workbench. The Workbench contains panes that may
change depending on the current activity. Some key panes are indicated in the figure below.

Figure 10. VivanteIDE Workbench Key Panes

The following examples provide users with basic simple steps to get started using VivanteIDE. The GUI is similar but not identical
for each tool GUI: VPD Analyzer, Shader Assistant, Texture Browser, Texture Viewer.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 89 / 185



13.4.1 Selecting a workspace
When VivanteIDE is opened, the Workspace Launcher - Select a workspace dialog box pops up by default.

Click the OK button.

If the workspace is a new empty workspace, the Welcome dialog box is displayed.

If the workspace is not a new empty workspace, the workbench is displayed.

Figure 11. Figure 21. Workspace Launcher

13.4.2 Switching perspective
Click the pull-down menu items or click directly on the visible perspective name to switch perspective views.

Switch to the C/C++ perspective to manage projects and write source code. VivanteIDE will switch to the Debug perspective by
default after a program is launched successfully in Debug mode.

Figure 12. Switching perspective

13.4.3 Creating a new project
This section describes how to create an OpenVX project as an example.

New project creation is available from the main menu. Choose File-->New-->Project...

In the New Project - Select a wizard dialog box, open the C/C++ folder in the Wizards list box and select OpenVX C Project.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 90 / 185



Figure 13. Creating a new project

13.4.4 Creating an OpenVX kernel wizard
1. To create an OpenVX C(C++) project, in the OpenVX C(C++) Project dialog box, enter the Project name, select

OpenVX Kernel Project(1.1) under Static Library or Shared Library.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 91 / 185



Figure 14. Creating a new project (1)

2. Press Next to input Author and Copyright notice, Kernel ENUM offset and Kernel Name prefix information in the
following dialogs, and then add arguments for the kernel.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 92 / 185



Figure 15. Creating a new project (2)

3. Click the Finish button, and the new kernel project will be created.

Refer to the VivanteIDE User Guide for detailed information.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 93 / 185



Figure 16. Creating a new project (3)

13.4.5 Source code smart editing for OpenVX and OpenCL
When a user edits a source file in VivanteIDE, the OpenVX/OpenCL keywords and predefined structure will be automatically
highlighted. The Editor also supports keyword completion using keyboard combination "alt"+"/".

In addition, the Outline view tab will provide structured information and quick navigation for the source file currently being edited.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 94 / 185



Figure 17. Source code smart editing for OpenVX and OpenCL (1)

Figure 18. Source code smart editing for OpenVX and OpenCL (2)

13.4.6 Creating a Neural Network Inference Project from a model file
New project creation is available from the main menu.

1. Choose File-->New-->Project...

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 95 / 185



Figure 19. Creating a Neural Network Inference Project from a model file (1)

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 96 / 185



Figure 20. Creating a Neural Network Inference Project from a model file (2)

2. In the New Project - Select a wizard dialog box, open the C/C++ folder in the Wizards list box and select OpenVX C
Project.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 97 / 185



Figure 21. Creating a Neural Network Inference Project from a model file (3)

3. Click Next to continue.

4. In the OpenVX C Project dialog box, enter the Project name. Check the Use default location checkbox. This will cause
our new directory to be created in our workspace. The directory path is displayed.

5. Select the Project type: Executable -> OVX NN Inference C Project.

6. Once the project name is entered, click Next to continue. The OpenVX C Project - Basic Settings dialog box is
displayed.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 98 / 185



Figure 22. Figure 31. Creating a Neural Network Inference Project from a model file (4)

7. Browse or input the information to select a Model file and a Data file.

8. Click Next to continue. The OpenVX C Project - Conversion Settings dialog box is displayed. Make sure the Add
reference main.c checkbox is checked.

 
If Add reference main.c is checked, a main.c would be created by this wizard. If it is unchecked, main.c would not
be created.

Function main() locates in main.c, which is just an application for testing the model.

Usually the NN model is a part of an OpenVX application, so writing function main to use the NN model is still
neccessary to execute the project if Add reference main.c is not checked.

  NOTE  

9. Click Next to continue. The OpenVX C Project - Select Configurations dialog box is now displayed.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 99 / 185



Figure 23. Creating a Neural Network Inference Project from a model file (5)

10. Click the Finish button. The new project is now created. The new Project is viewable in the Project Explorer pane.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 100 / 185



Figure 24. Creating a Neural Network Inference Project from a model file (6)

13.4.7 Building a sample project
1. On the Project tab, select Properties to open the Properties Setting dialog to modify the build settings.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 101 / 185



Figure 25. Building a sample project (1)

2. There are build tools available that can be set for C or C++ projects.

Figure 26. Building a sample project (2)

3. The sample project 'vx_tutorial3' is ready to build after the build settings are saved.

You can build the 'vx_tutorial3' project by using one of following two methods, with the target project selected in the left pane:

• Choose from the main menu Project->Build Project.

• Right-click the target project and select Build Project.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 102 / 185



Figure 27. Building a sample project (3)

4. The build results are displayed on the Console and Problems tabs of the lower right pane of the application.

Figure 28. Building a sample project (4)

5. If No error occurs. build was successful, the executable file is displayed in the Project Explorer pane.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 103 / 185



Figure 29. Building a sample project (5)

6. Use the Build Steps tab on the Properties > C/C++ Build > Settings dialog to customize the selected build configuration
allowing for the specification of user defined build command steps, as well to enable displaying of descriptive messages
in the build output, immediately before and after, normal build processing.

13.4.8 Debugging and profiling a project
1. To open the Debug Configurations dialog box, select Run->Debug Configurations... from the main menu.

2. Set the dialog options, and then click Debug to debug your project.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 104 / 185



Figure 30. Debugging and profiling a project

13.5 VivanteIDE – Debug and Profiling

13.5.1 Fundamentals of performance optimization
Whenever an application runs on a computer, it makes use of one or more of the available resources. These

compute resources include the CPU, the graphics processor, caches and memory, hard disks, and possibly even the

network. Viewed simplistically, it is always true that one of these resources is the limiting factor in how quickly the

application can finish its tasks. This limiting resource is the performance bottleneck. Remove this bottleneck, and

application performance should be improved. Note, however, that removing one limiting factor always promotes

something else to become the new performance bottleneck.

The goal of optimizing, or tuning, application performance is to balance the use of resources so that none of them

holds back the application more than any of the others. In practice there is no single, simple way to tune an

application. The whole system needs to be considered, including the size and speed of individual components as

well as interactions and dependencies among components.

vProfiler collects information on GPU usage and on calls to Vivante functions within the graphics pipeline. As such

it provides an excellent view into what is happening on the GCCORE graphics processor at any point in time, down

to the individual frame. When the application performance is GPU-bound, vProfiler and VPD Analyser are the right

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 105 / 185



tools to help determine why.

Note that the initial determination regarding which component of the computer system is the performance

bottleneck—CPU, GPU, memory, etc.—is the domain of system performance analyzers and is outside the scope of

the GPU tools. A list of such performance analysis tools can be found at Wikipedia:

en.wikipedia.org/wiki/List_of_performance_analysis_tools

13.5.2 VPD Analyzer for Analyzing Performance Data
vProfiler is a run-time environment for collecting performance statistics of an application and the graphics pipeline. The VPD
Analyzer perspective view is provided to facilitate graphically displaying the data gathered by vProfiler and aiding in visual analysis
of graphics performance. Used together, these tools assist software developers in optimizing application performance on Vivante
enabled platforms.

13.5.3 vProfiler
When building Vivante Graphics Drivers, the driver is built with vProfiler capability. vProfiler gathers data from these counters
during runtime and can track data for a range of frames or a single frame from any graphics, compute application. vProfiler outputs
performance data to binary files with a .vpd extension. These files can be using the VivanteIDE VPD Analyzer both in text lists
and as line graphs. VPD Analyzer gives the user several ways to inspect any frame in a captured animation sequence.

13.5.4 Enabling vProfiler on Linux OS
When building Vivante Graphics Drivers in a Linux OS environment, the driver is built with vProfiler capability.

• vProfiler functionality can be enabled by export VIV_PROFILE=1.

• To enable OpenVX profile,  use export VIV_VX_PROFILE=1.

• To enable OpenCL profile,  use export VIV_CL_PROFILE=1.

Kernel module driver arguments are no longer needed.

13.5.4.1 Setting vProfiler property options for OpenGL ES

vProfiler property options are set using environment variables on Linux. The following table summarizes the environment variables
that vProfiler supports.

Table 32. vProfiler property options

Environment Variable Description

  VIV_PROFILE [0] Disable vProfiler (default), [1] Enable vProfiler, [2] Control via application call, [3]
Allows control over which frames to profile with vProfiler

  VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)

  VP_FRAME_NUM When VIV_PROFILE=1, specify the number of frames dumped by vProfiler.

  VP_FRAME_START When VIV_PROFILE=3, specify the frame to start profiling with vProfiler.

  VP_FRAME_END When VIV_PROFILE=3, specify the frame to end profiling with vProfiler.

  VP_USE_GLFINISH
Enable [1] or disable [0] the use of glFinish()/glFlush() APIs as the frame delimiter in
addition to eglSwapBuffers() (default 0). This variable enables application thread which
does not use eglSwapBuffers() to generate useful GPU profiling data for analysis.

Table continues on the next page...

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 106 / 185



Table 32. vProfiler property options (continued)

Environment Variable Description

  VP_PERDRAW_MODE Enable [1] or disable [0] (default). When enabled, vProfiler will collect a counter for each
draw call.

  VP_DISABLE_PROBE Disables PROBE mode and makes vProfiler to use AHB counters for profiling.

  VP_ENABLE_PRINT Enable vProfiler to print out the counter information to the console.

13.5.5 Setting vProfiler property options for Vision, OpenVX Profiling
vProfiler for OpenVX Profiling (for use with Vision/VIP/VX IP) is similar to vProfiler for OpenGL, except that fewer environment
variables and fewer supported values for those variables are available.

Table 33. vProfiler property options

Environment Variable Description

VIV_VX_PROFILE [0] Disable vProfiler for OpenVX(default), [1] Enable vProfiler for OpenVX

VIV_CL_PROFILE [0] Disable vProfiler for OpenCL(default), [1] Enable vProfiler for OpenCL

  VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)

13.5.6 Enabling vProfiler Option for Android OS
i.MX Android release GPU drivers are built with vProfiler capability. To enable the vProfiler feature, boot the Android image, and
then stop U-Boot by pressing a key on the serial terminal.

Perform the following steps to capture the VPD file using vProfiler on Android OS.

1. Set application name to be profiled, for example, nenamark2 application.

setprop VP_PROCESS_NAME se.nena.nenamark2

2. Set the profile output file path, for example, nenamark2 application.

setprop VP_OUTPUT /data/data/se.nena.nenamark2/

3. Start profiling.

setprop VIV_PROFILE 1

4. Run application and check if the *.vpd file is generated in the path indicated by VP_OUTPUT, for example, nenamark2
application.

ls -l /data/data/se.nena.nenamark2/*.vpd  

5. Stop profiling.

setprop VIV_PROFILE 0

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 107 / 185



13.5.7 Setting vProfiler property options for OpenGL ES Profiling with Android
The following table summarizes the property options that vProfiler supports through running the command adb shell setprop
[OPTIONS]. These options are similar to the environment variables available for Linux.

Table 34. vProfiler property options

adb shell setprop OPTIONS Description

 setprop VIV_PROFILE 0 Run this command in adb shell to disable vProfiler in the drivers

 setprop VIV_PROFILE 1 Run this command in adb shell to enable vProfiler in the drivers

 setprop VIV_PROFILE 2
Run this command in adb shell to have vProfiler enable/disable
controlled in the application by glEnable(GL_PROFILE_VIV) and
glDisable(GL_PROFILE_VIV) calls.

 setprop VIV_PROFILE
3  setprop VIV_FRAME_START  
setprop VIV_FRAME_START

Run these commands in adb shell to have vProfiler start-stop at frames specified
in VP_FRAME_START and VP_FRAME_END.

 setprop VP_PROCESS_NAME appname

Run this command in adb shell to specify the application you need to profile.
Change the app name as needed to profile another application. NOTES: There
may be different sub-case names used by an app. Be sure to accurately specify
a case name to match the name that you saw on the command line when using
ps command. This option is only available for Android, not available for Linux.

 setprop VP_OUTPUT newpath

Run this command in adb shell to specify a new location for vProfiler output. By
default, the vpd file will created under /sdcard/. If an application has no access to
the SD card, you can specify another path where the application does have write
permission. NOTE: For applications which initialize during Android system boot
startup, such as launcher, you need to kill the process after you change to a new
path. When the application automatically restarts, then your vpd will be accessible
where you want it.

 setprop VP_FRAME_NUM xxx

Run this command in adb shell to limit the number of frames to analyze. For
example, to make vProfiler dump performance data for the first 100 frames:
setprop VP_FRAME_NUM 100. NOTES: Only use when VIV_PROFILER is set
to 1. When this option is not used, the profile file generated when running an
application for a long time can be very large. This takes up a large amount of disk
space and also makes it hard to view the data in vAnalyzer.

 setprop VP_USE_GLFINISH 0  setprop
VP_USE_GLFINISH 1

Run this command in adb shell to enable or disable use of glFinish()/glFlush()
as the frame delimiter in addition to eglSwapBuffers() (default 0). By default
eglSwapBuffers() is used as the frame delimiter. This command will make
application thread which does not use eglSwapBuffers() to generate useful GPU
profiling data for analysis.

 setprop VP_PERDRAW_MODE 0  setprop
VP_PERDRAW_MODE 1

Run this command in adb shell to enable or disable per draw mode. When
enabled, vProfiler will collect a counter for each draw call.

 setprop VP_DISABLE_PROBE Run this command in adb shell to disable PROBE mode and make vProfiler use
AHB counters for profiling.

 setprop VP_ENABLE_PRINT Run this command in adb shell to enable vProfiler to print out the counter
information to the console.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 108 / 185



13.5.8 vProfiler Set Property Options for Vision/OVX Profiling with Android
vProfiler for Vision Profiling (for use with Vision/VIP/VX IP) is similar to vProfiler for OpenGL, except that fewer property options
and fewer supported values are available.

Table 35. vProfiler Set Property Options

adb shell setprop OPTIONS for
VIP/VX/OVX Description

 setprop VIV_VX_PROFILE 0 Run this command in adb shell to disable vProfiler in the drivers

 setprop VIV_VX_PROFILE 1 Run this command in adb shell to enable vProfiler in the drivers

 setprop VP_PROCESS_NAME appname

Run this command in adb shell to specify the application you need to profile.
Change the app name as needed to profile another application. NOTES: There
may be different sub-case names used by an app. Be sure to accurately specify a
case name to match the name that you saw on the command line when using ps
command. This option is only available for Android, not available for Linux.

 setprop VP_OUTPUT newpath

Run this command in adb shell to specify a new location for vProfiler output. By
default, the vpd file will be created under /sdcard/. If an application has no access
to the SD card, you can specify another path where the application does have
write permission. NOTE: For applications that initialize during Android system boot
startup, such as launcher, you need to kill the process after you change to a new
path. When the application automatically restarts, then your vpd will be accessible
where you want it.

13.5.9 Enabling vProfiler Option for QNX
When building the Vivante Graphics Drivers for QNX environment, build the driver with the vProfiler capability.

The graphics.conf file contains the configuration information for Screen and is found under the following directory:

SCREEN-DIR/usr/lib/graphics/TARGET-SPECIFIC

To activate the vProfiler functionality, add the gpu-gpuProfiler=1 option into the khronos section of the

corresponding graphics.conf file:

begin khronos
...
begin wfd device 1
...
gpu-gpuProfiler=1
...
end wfd device
...
end khronos

13.5.9.1 Setting vProfiler Environment Variables for OGL/OES Profiling

The following table summarizes the environment variables that vProfiler supports.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 109 / 185



Table 36. vProfiler Environment Variables

Environment Variable Description

  VIV_PROFILE [0] Disable vProfiler (default), [1] Enable vProfiler, [2] Control via application call, [3]
Allows control over which frames to profile with vProfiler

  VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)

  VP_FRAME_NUM When VIV_PROFILE=1, specify the number of frames dumped by vProfiler.

  VP_FRAME_START When VIV_PROFILE=3, specify the frame to start profiling with vProfiler.

  VP_FRAME_END When VIV_PROFILE=3, specify the frame to end profiling with vProfiler.

  VP_USE_GLFINISH
Enable [1] or disable [0] the use of glFinish()/glFlush() APIs as the frame delimiter in
addition to eglSwapBuffers() (default 0). This variable enables application thread which
does not use eglSwapBuffers() to generate useful GPU profiling data for analysis.

  VP_PERDRAW_MODE Enable [1] or disable [0] (default). When enabled, vProfiler will collect a counter for each
draw call.

  VP_DISABLE_PROBE Disables PROBE mode and makes vProfiler to use AHB counters for profiling.

  VP_ENABLE_PRINT Enable vProfiler to print out the counter information to the console.

13.5.9.2 Setting vProfiler Environment Variables for Vision, OpenVX Profiling

vProfiler for OpenVX Profiling (for use with Vision/VIP/VX IP) is similar to vProfiler for OpenGL, except that fewer environment
variables and fewer supported values for those variables are available.

Table 37. vProfiler Environment Variables

Environment Variable Description

VIV_VX_PROFILE [0] Disable vProfiler for OpenVX(default), [1] Enable vProfiler for OpenVX

VIV_CL_PROFILE [0] Disable vProfiler for OpenCL(default), [1] Enable vProfiler for OpenCL

  VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)

13.5.10 Environment Variable Details

13.5.10.1 VIV_PROFILE

The environment variable VIV_PROFILE can be used to control enable/disable and set profiling modes for vProfiler.

• VIV_PROFILE=0

By default, vProfiler is disabled in the driver. If vProfiler has been enabled and you wish to disable it, set VIV_PROFILE to 0:

export VIV_PROFILE=0

• VIV_PROFILE=1

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 110 / 185



To enable vProfiler, set VIV_PROFILE to 1:

export VIV_PROFILE=1

To limit the number of frames to analyze, use the environment variable VP_FRAME_NUM. (This option is available only when
VIV_PROFILE=1.) For example, this setting will make vProfiler dump performance data for the first 100 frames.

export VP_FRAME_NUM=100

• VIV_PROFILE=2

Mode VIV_PROFILE=2 provides support for glEnable(GL_PROFILE_VIV) and glDisable(GL_PROFILE_VIV), which are used
to choose which frames are to be profiled. In this mode, vProfiler is disabled by default. It begins to do profiling only after a
glEnable(GL_PROFILE_VIV) call from the application. And it will stop profiling when glDisable (GL_PROFILE_VIV) is called.
Note that the flag is only checked at every frame end, i.e., in eglSwapBuffers(). To use this mode, set VIV_PROFILE to 2:

export VIV_PROFILE=2 

• VIV_PROFILE=3

Setting VIV_PROFILE to 3 provides support for two environment variables VP_FRAME_START and VP_FRAME_END, which
are used to choose which frames are to be profiled. In this mode, vProfiler is disabled by default. It begins to do profiling
starting at the frame number specified by VP_FRAME_START, and it ends the profiling after the frame number specified by
VP_FRAME_END. For example to use this mode, set VIV_PROFILE to 3:

export VIV_PROFILE=3 export VP_FRAME_START=10 export VP_FRAME_END=90

 
To get precise profiling data, the IP's Power Management (PM) functions need to be disabled. When kernel module
galcore is inserted with gpuProfiler=1, the PM functions in the driver are not disabled. The PM functions are
disabled when VIV_PROFILE is set to 1, 2, or 3, and the application starts. The PM functions are enabled when
VIV_PROFILE is set to 0, and the application starts again.

  NOTE  

13.5.10.2 VP_OUTPUT

The output file of vProfiler is vprofiler.vpd by default. To specify an alternate filename use the environment variable VP_OUTPUT.
For example,

export VP_OUTPUT=sample.vpd

13.5.10.3 VP_USE_GLFINISH

glFinish()/glFlush() will be treated as the frame delimiter in addition to eglSwapBuffers(). By default, vProfiler only uses
eglSwapBuffers() as the delimiter to check hardware counters. The command below will enable vProfiler to use glFinish()/glFlush()
as additional delimiters so an application thread which does not use eglSwapBuffers() can generate useful profiling data
for analysis.

export VP_USE_GLFINISH=1

13.5.10.4 VP_DISABLE_PROBE

This variable only applies to IP with the PROBE feature support. It disables PROBE mode and makes vProfiler use AHB counters
for profiling. This variable has no affect on hardware that only supports the AHB counter. The default value is off.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 111 / 185



13.5.10.5 VP_ENABLE_PRINT

This variable provides a convenient way to check some critical profiling information without using the off-line vAnalyzer to open
a VPD file. Once it is enabled, vProfiler prints out the counter information to the console. For the OpenVX and OpenCL drivers,
the default value is on; for GLES and GL drivers, the default value is off.

13.6 VPD Analyzer
VPD Analyzer provides graphic displays of the data gathered by vProfiler and aids in the visual analysis of graphics, compute and
vision performance. vProfiler outputs performance data to binary files with a .vpd extension. These files can be opened using the
VivanteIDE VPD Analyzer both in text lists and as line graphs. VPD Analyzer gives the user several ways to inspect any frame in
a captured animation sequence.

13.6.1 Loading a VPD File
To open the VPD Analyzer perspective based on a VPD file, click the icon

from the toolbar or select Tools->VPD Analyzer->Load VPD File ...

The Load a VPD file dialog box appears. Select a VPD (.vpd) file, and click Open.

Or, in the Project Explorer view, right-click on a VPD file and select Load VPD.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 112 / 185



13.6.2 VPD Analyzer Perspective
Once the VPD file is loaded, the VivanteIDE workbench switches to the VPD Analyzer perspective view, and analyze data from
the selected VPD file will be displayed on a series of tabs in chart or text format.

Available tabs (left to right) are:

Table 38. Available tabs

VPD Analyzer Tab Description

System Info Shows hardware and software version information and Average Frame Rate

Project Explorer Shows project files

Chart Shows customizable graph views of various counters

Function Call Three panes shows a table of functions called, a graph of Top 5 calls and properties of the
selected call.

Analysis Summary Shows data for the current frame

Analysis Detail Shows analysis detail for the current frame

Program Shows program counters and their value

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 113 / 185



13.6.3 System Info View
The left most System Info tab shows the system information related to the VPD data under analysis, such as hardware, driver and
vProfiler versions. The Average Frame Rate is also reported on this tab.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 114 / 185



13.6.4 Program Counters View
The rightmost tab in the rightmost pane is the Program tab which shows program counter information, such as Instruction counts
and attribute counts.

13.6.5 Closing the VPD File
Click the icon

from the toolbar or select Tools->VPD Analyzer->Close VPD File to close the current VPD file. The analysis data associated with
the closed file will be cleared from all views.

13.7 SPIR-V Disassembler
A SPIR-V Disassembler tool is provided as an aid in debugging Vulkan applications. If a SPIR_V file is already located in a project,
simply double click on it to disassemble. Otherwise use the main menu File -> Open File… to locate the SPIR-V. Options can be
set via the Window->Preferences dialog box.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 115 / 185



Figure 31. SPIR-V Disassembler

13.7.1 Shader Assistant
Shader Assistant perspective is provided for Shader program development for OpenGL, OpenCL and Vulkan projects. Shader
Assistant provides an environment for editing, previewing, analyzing, and optimizing shader programs. Shader Assistant includes
samples of shader programs, a number of standard meshes (sphere, cube, tea pot, pyramid, etc.) and a text editor. These extra
features will help programmers get a quick start on creating their shader programs.

There are two ways to switch to the Shader Assistant perspective view. From the main menu, choose Window -> Open Perspective
-> Shader Assistant, or in the C/C++ Project Explorer pane, right click and select Develop Shader. Using the table in the left pane
Preview Settings tab, select items in the Setting column and configure project as well as header, shaders, attributes, etc.

Figure 32. Shader Assistant

13.7.2 vTexture
Texture manipulation and viewing is available in four different areas of VivanteIDE:

• Texture Editor dialog boxes accessible from the Shader Assistant Preview Settings tab provides for texture customization,
q.v. preceding Section 13.7.1 for launching Shader Assistant.

• vTexture Browser and Viewer panes are available from the main menu Window -> Open Perspective -> VTexture. It
provides thumbnail and detail view of textures as well as the basic properties of the textures, such as image size and color
depth.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 116 / 185



Figure 33. vTexture (1)

• Convert Texture provides a GUI for texture compression/decompression and tiling/de-tiling. It is accessible by clicking on
the main menu Tools->Convert Texture. Note that vTextureTools is the command line tool version of this tool. Refer to
Section 13.8.4 for details.

Figure 34. vTexture (2)

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 117 / 185



Figure 35. vTexture (3)

13.8 VivanteIDE command line tools
For easy reference, the syntax for the VivanteIDE command line tools are provided on the following pages. You can also refer to
the VivanteIDE User Guide or inline -h (help) for syntax for these command line tools.

13.8.1 Preparing the environment
Before running command line tools, prepare the environment as in the examples below.

For Linux OS

• Launch a BASH

• $ source installation_dir/ide/setenv-vivanteide<version> # initialize the environment

For Windows OS

• Launch a Command Shell

• > installation_dir/ide/setenv-vivanteide<version>.bat # initialize the environment

13.8.2 vCompiler Command Line Syntax for OGL and OGLES
Open a Command prompt. Navigate to the folder, which contains the vTextureTools files (for example, installation_dir/
cmdtools/vCompiler, and launch the vCompiler application executable using the command line syntax described below.

Make sure the configuration file is customized for your target environment.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 118 / 185



13.8.2.1 Syntax

Windows and Linux command line syntax is the same.

Optional inputs are indicated by brackets. A fixed order for options in the command is not required.

vCompiler [-f <gpuConfigurationFile>] <shaderInputFileName> [shaderInputFileName_2] 
[ -c ] [-h] [ -l ] [-o <outputFileName> ] [-On ] [ -v ] [-x <shaderType> ]

13.8.2.2 Input parameters (required)

shaderInoutFileName shader input file name, which must contain one of the following file extensions:

• vert: vertex shader source file

• frag: fragment shader source file

• vgcSL: previously compiled vertex shader input/output file

• pgcSL: previously compiled pixel shader input/output file

13.8.2.3 Input parameters (optional)

shaderInputFileName_2 Up to two shader files can be specified. The second shader file is optional but must have one
of the file extensions described above for shader InputFileName. If the first shader is a vertex
shader, this second shader should be a fragment shader; conversely if the first shader is a
fragment shader, the second should be a vertex shader.

 
Pre-compiled and compiled shaders may be mixed, as long as one is a vertex
shader and the other a fragment shader.

  NOTE  

-c Compile each vertex .vert file into a vgcSL file and/or fragment shader .frag file into a pgcSL
only, with no merged result file of type .gcPGM.

If the –c option is not specified:

• When only one shader is specified, that shader will be compiled into a .[v/p]gcSL file.

• When two shaders are specified, one is assumed to be a vertex shader and the other
a fragment shader. Each shader can be either a previously compiled .vgcSL or .pgcSL.
file or a .vert or .frag still to be compiled. The two will be merged into a .gcPGM file after
successful compilation.

-f <gpuConfigurationFile> Specifies a configuration file (from VTK 1.6.2). If –f is not specified, the file viv_gpu.config in the
vCompiler working directory will be used as the default configuration file. Example syntax:

vCompiler –f viv_gpu_880.config foo.vert bar.frag

 
vCompiler will not work correctly if the GPU configuration file cannot be found
or contains incorrect content.

  NOTE  

-h Shows a help message on all the command options.

Table continues on the next page...

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 119 / 185



-l Create a log file. The log file name is created by taking the first input file name, then replacing
its file extension with “.log”. If the input file name does not have a file extension, .log is
appended, e.g.,

myvert.vert          => myvert.log
inputfrag        => inputfrag.log

-o <outputFileName> Specify the output file name. If the path is other than the current directory, it must also be
specified. Any extension can be specified. If the extension is not specified, the outputFileName
supported default types are as follows:

• vgcSL: compiled vertex shader output file, usually compiled from a .vert input source file
(default result for single file compile)

• pgcSL: compiled pixel shader output file, usually compiled from a .frag source input file.

• gcPGM: compiled file merging vertex shader and fragment/pixel shader into a single
output file

-O<n> Optimization level. Default is –O2:

• -O0: Disable optimizations

• -O1: Some optimizations are enabled.

• -O2 All optimization levels are on (default).

-v Verbose; prints compiler version and diagnostic messages to STDOUT.

-x<shaderType> Explicitly specifies the type of shader instead of relying on the file extension. This option applies
to all following input files until the next -x option.

ShaderType: supported values for Shader type include:

• vert: vertex shader source file

• frag: fragment shader source file

• vgcSL: compiled vertex shader input/output file

• pgcSL: compiled pixel shader input/output file

-x none Revert back to recognizing shader type according to the file name extension.

13.8.2.4 vCompilerOutput

Output files are placed in the current directory, unless another directory is specified with the -o option. The files can be of the three
types described above under outputFileName value of the -o option.

13.8.2.5 vCompiler Syntax examples

vCompiler foo.vert produces foo. vgcSL.

vCompiler bar.frag produces bar.pgcSL.

vCompiler foo.vert bar.frag produces foo.gcPGM.

vCompiler –v –l –O1 foo.ver tbar.frag produces foo.gcPGM and foo.log.

vCompiler –v –l –O1 –o foo_bar foo.vert bar.frag produces foo_bar.gcPGM and foo_bar.log.

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 120 / 185



13.8.3 vcCompiler Command Line Syntax for OCL
Open a Command prompt. Navigate to the folder which contains the vTextureTools files (for example, installation_dir/
cmdtools/vCompiler, and launch the vCompiler application executable using the command line syntax described below.

Make sure the configuration file is customized for your target environment.

13.8.3.1 Syntax

Windows and Linux command line syntax is the same.

Optional inputs are indicated by brackets. A fixed order for options in the command is not required.

vcCompiler [-f <gpuConfigurationFile>] [-v] [-l] [-O0] [-D <MacroDefinition>] [-I <IncludeDirectory>] 
[-K <KernelName>] [-M] [-B] <OpenCLOrOpenVXFileName> <OpenCLOrOpenVXFileName_2> . . . [-allkernel]

13.8.3.2 Input parameters (required)

OpenCLOrOpenVXFileName Input file name, which must contain one of the following file extensions:

• cl: OpenCL source file

• vx: OpenVX Vision source file

If an input file extension is not specified, vcCompiler will report a “wrong file
extension” error.

13.8.3.3 Input parameters (optional)

OpenCLOrOpenVXFileName_2, _n Multiple input files can be specified. The second and additional files are optional but
must have the appropriate file extension as described above. All files must be of the
same type (.cl or .vx).

-allkernel Allows VX applications to create all kernels in one program and save them into
one package.

-B Support source level intrinsic built-in functions.

-D <MacroDefinition> Predefined inline macro, as referenced in the input file.

-f <gpuConfigurationFile> Specifies a configuration file. If –f is not specified, the file viv_gpu.config in
the vcCompiler working directory will be used as the default configuration file.
Syntax example:

vcCompiler –f viv_gpu_gc7000.config foo.cl

 
vcCompiler will not work correctly if the GPU configuration file
cannot be found or contains incorrect content.

  NOTE  

-h Shows a help message on all the command options.

-I <IncludeDirectory> Specify the directory path for include files.

-K <KernelName> Link with kernel name. Default is main.

Table continues on the next page...

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 121 / 185



-l Create a log file. The log file name is created by taking the input file name, then
replacing its file extension with “.log”. If there are multiple input files, the filename of
the first input file will be used,

inputcl.cl            => inputcl.log
myvx1.vx myvx2.vx        => myvx1.log

-M Merge all compiled output from each file into one file. The combined output will have
the name of the last input file combined with the output extension .gcPGM.

-O<n> Optimization level. Default is –O2:

• -O0: Disable optimizations

• -O1: Some optimizations are enabled.

• -O2 All optimization levels are on (default).

-v Verbose; prints compiler version and diagnostic messages to STDOUT

13.8.3.4 vcCompiler Output

Output files are placed in the current directory. When compiled successfully, the supported output file extensions for
vcCompiler are:

• .clgcSL: compiled CL output file, compiled from a .cl input source file.

• .vxgcSL: compiled VX output file, compiled from a .vx input source file.

13.8.3.5 vcCompiler Syntax Examples

vcCompiler [-f <gpuConfigurationFile>] [-v] [-l] [-O0] [-D <MacroDefinition>] [-I <IncludeDirectory>] 
[-K <KernelName>] [-M] [-B] <OpenCLOrOpenVXFileName> <OpenCLOrOpenVXFileName_2> [-allkernel] . . .

vcCompiler -v -O1 foo.cl: produces foo.clgcSL.

vcCompiler -v -l foo.vx: produces foo.vxgcSL and foo.log.

13.8.4 vTextureTools command line tool
Open a Command prompt. Navigate to the folder which contains the vTextureTools files, for example, installation_dir/
cmdtools/vTextureTools, and launch the vTextureTools application executable using the command line syntax
described below.

13.8.4.1 Syntax

The usage of the command line tool is as follows for compression/decompression:

vTextureTools -c TYPE [-s SPEED] –src FILE [–dest FILE]

or

vTextureTools -d TYPE –src FILE [–dest FILE]

The usage of the command line tool is as follows for tiling/de-tiling:

vTextureTools -t|-st [-2] [–r|--raw=FORMAT] [–m LAYOUT] –src FILE [–dest FILE]

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 122 / 185



or

vTextureTools -dt -t|-st [-2] [–r|--raw=FORMAT] [–m LAYOUT] –src FILE [–dest FILE]

13.8.4.2 General parameters

General parameters:

• -h show help

• -src [FILE] source file - input image path and filename. vTexture will use the file extension type as image type.

— For option –c compress, the application expects an input filename with a .TGA extension.

— For –d decompression, the application expects .DDS, .KTX or .PKM.

— For –t tile, the application expects .BMP or .TGA.

— For –dt detile, the application expects .BMP or .TGA.

• -dest [FILE] destination file - image path and filename.

— The application expects a filename with a .TGA, .DDS, .KTX or .PKM extension for compress/uncompress or .BMP
or .RAW for tile/detile.

— If the -dest parameter is not set, vTexture will auto generate a name for the newly generated file, using the source
file name as the prefix appending critical parameters and file type information.

13.8.4.3 Compression/Decompression parameters

These parameters are used for compression and decompression:

• -c compress a source image of format uncompressed TGA

• [TYPE] specify the target output compression format:

• -DXT1 compress image to DXT1 format (default format).

• -DXT3 compress image to DXT3 format.

• -DXT5 compress image to DXT5 format.

• -ETC1 compress image to ETC1 format

• -ETC2 compress image to ETC2 format

• -d decompress a source image of format specified by the value [TYPE].

The resulting file type will be uncompressed TGA.

This option decompresses DXT1, DXT3, DXT5, ECT1 or ETC2 format image to TGA format.

• -s compression [SPEED] mode for ETCn images:

— slow

— medium

— fast (default)

13.8.4.4 Tile/De-Tile parameters

The parameters listed in the following table are used for tiling and de-tiling between linear and tiled formats.

Table 39. Tile/De-Tile parameters

-t Convert linear data to tiled texture output.

Table continues on the next page...

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 123 / 185



Table 39. Tile/De-Tile parameters (continued)

-st Enable supertile format. This option is an alternate to -t. If -st and -t are used together, -st will be set.

-dt De-tile: Convert tiled texture to linear texture output.

-2 Tile/de-tile in multi-format. Tile format is multi-tiled (when used with -t) or multi-supertiled (with -st).

-m [LAYOUT]: layout mode for supertiled or multi-supertiled textures:

• 0: Legacy supertile mode (default).

• 1: Supertile mode when hardware has HZ.

• 2: Supertile mode when hardware has NEW_HZ or FAST_MSAA.

-r Specify output data as raw pixel output instead of BMP. Use --raw=rgb565 to specify raw pixel [FORMAT].
Supported raw formats (8) are:

rgba8888, bgra8888, rgb888, bgr888, rgb565, bgr565, argb1555, yuy2

13.8.4.5 vTexture Syntax Examples

COMPRESS:

vTextureTools -c dxt1 -src d:\myfile.png -dest c:\compress.dds
vTextureTools -c dxt1 -src d:\myfile.tga -dest c:\compress.dds
vTextureTools -c etc1 -s slow -src d:\myfile.png -dest c:\compress.pkm
vTextureTools -c etc1 -s slow -src d:\myfile.tga -dest c:\compress.pkm
vTextureTools -c etc2 -s slow -src d:\myfile.bmp -dest c:\compress.ktx
vTextureTools -c etc2 -s slow -src d:\myfile.tga -dest c:\compress.ktx
vTextureTools -c etc2 -src d:\myfile.bmp -dest c:\compress.ktx
vTextureTools -c etc2 -src d:\myfile.tga -dest c:\compress.ktx
vTextureTools -c etc2 -src d:\myfile.tga -dest c:\compress.pkm

DECOMPRESS:

vTextureTools -d etc1 –src c:/vtexin/myfile2.pkm –dest c:/vtextout/myfile2.tga
vTextureTools -d –src c:/vtexin/myfile3.dds –dest c:/vtextout/myfile3.tga (assumes DXT1)
vTextureTools -d tga -src d:\myfile.dds -dest c:\decompress.tga
vTextureTools –d tga -src d:\myfile.ktx -dest c:\decompress.tga

TILE: LINEAR TO TILE CONVERSION:

• Tile linear texture to standard tile texturev

TextureTools.exe -t -src 123.bmp

• Tile linear texture to multi-tiled texture

vTextureTools.exe -t -2 -src 123.bmp

• Tile linear texture to supertiled texture

vTextureTools.exe -st -src 123.bmp

• Tile linear texture to multi-supertiled texture

vTextureTools.exe -2 –st -src 123.bmp

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 124 / 185



• Tile linear texture to multi-supertiled texture and output rgb565

vTextureTools.exe -2 --raw=rgb565 -src 123.bmp

• Tile linear texture to multi-supertiled texture with layout mode 2

vTextureTools.exe -st -2 -m 2 -src 123.bmp

DE-TILE: TILED TO LINEAR CONVERSION:

• De-tile tiled texture to linear texture

vTextureTools.exe –dt -t -src 123-tiled.bmp

• De-tile supertiled texture to linear texture

vTextureTools.exe -dt -st -src 123-supertiled.bmp

• De-tile multi-supertiled texture to linear texture

vTextureTools.exe –dt -t -2 -src 123-tiled-multi-tiled.bmp

• De-tile multi-Super-tiled texture with layout mode 2 to linear texture

vTextureTools.exe -dt -st -2 -m 2 -src 123-multi-supertiled-2.bmp

NXP Semiconductors
Vivante IDE

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 125 / 185



Chapter 14
GPU Tools

14.1 gpuinfo tool

14.1.1 Introduction
gpuinfo is a script to gather GPU runtime status through debugfs interface. It exports the following information:

• GPU hardware information.

• GPU total memory usage.

• GPU memory usage of certain process or all processes (user space only).

• GPU idle percentage.

14.1.2 Usage
The script is located at Yocto rootfs /unit_tests/. There are three ways to run it.

• Normal run to get all GPU-related processes information:

>/unit_tests/GPU/gpuinfo.sh 

• Get GPU information for certain process by clarifying the process id.

The process id (pid) can be got by command ps or top. Take the process 1035 as example.

>/unit_tests/GPU/gpuinfo.sh 1035

• Get the GPU information for certain process by clarifying part of process name.

Take the process sample_test_fbo as an example.

>/unit_tests/GPU/gpuinfo.sh sample_test_fbo

or

>/unit_tests/GPU/gpuinfo.sh sample

or

>/unit_tests/GPU/gpuinfo.sh test

14.1.3 Sample log information

14.1.3.1 GPU hardware information

This section shows all GPU cores model name and revision information with index in the SoC.

The sample information:

GPU Info
gpu      : 0
model    : 2000
revision : 5108

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 126 / 185



gpu      : 1
model    :  320
revision : 5007

gpu      : 2
model    :  355

14.1.3.2 Total memory information

This part shows total GPU memory information.

Table 40. Total memory information

gcvPOOL_SYSTEM: GPU reserved system memory.

gcvPOOL_CONTIGUOUS: contiguous memory allocated from CMA pool, low memory zone and high
memory zone.

gcvPOOL_VIRTUAL: non-contigous memory allocated from low memory zone and high
memory zone.

NON PAGED MEMORY: Allocated from CMA pool(mainly for command buffer)

The sample information:

VIDEO MEMORY:
    gcvPOOL_SYSTEM:
        Free  :  124170474 B
        Used  :   10047254 B
        Total :  134217728 B
    gcvPOOL_CONTIGUOUS:
        Used  :          0 B
    gcvPOOL_VIRTUAL:
        Used  :          0 B
    
NON PAGED MEMORY:
    Used  :          0 B
Paged memory Info
low:  892928 bytes
high: 0 bytes
CMA memory info
cma:  0 bytes

14.1.3.3 Process user space GPU memory usage information

This part shows detail user space GPU memory usage per process.

Table 41. User space GPU memory usage

Index memory for index buffer.

Vertex memory for vertex data buffer.

Texture memory for texture buffer.

Table continues on the next page...

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 127 / 185



Table 41. User space GPU memory usage (continued)

RT memory for render target buffer.

Depth memory for depth buffer.

Bitmap memory for bitmap buffer.

TS memory for tile status buffer.

Image memory for vg image buffer.

Mask memory for vg mask buffer.

Scissor memory for vg scissor buffer.

HZDepth memory for hierarchical Z depth buffer.

The sample information:

VidMem Usage (Process 1106):
Counter: vidMem (for each surface type)
All     Index    Vertex   Texture      RT     Depth    Bitmap     TS   Image   Mask  Scissor  HZDepth
Current  10047254  489362  1213248   435200   3866624   3727360    0   36352    0      0    0   245760
Maximum  10047254  489362  1213248   435200   3866624   3727360    0   36352    0      0    0   245760
Total    10047254  489362  1213248   435200   3866624   3727360    0   36352    0      0    0   245760
Counter: vidMem (for each pool) All   1      2     3      4      5      6      7        8         9
Current  10047254         0         0        0         0         0  10047254   0        0         0
Maximum  10047254         0         0        0         0         0  10047254   0        0         0
Total    10047254         0         0        0         0         0  10047254   0        0         0
Counter: nonPaged
                All
Current           0
Maximum           0
Total             0
Counter: contiguous
                All
Current           0
Maximum           0
Total             0
Counter: mapUserMemory
                All
Current           0
Maximum           0
Total             0
Counter: mapMemory
                All
Current   134217728
Maximum   134217728
Total     134217728

14.1.3.4 GPU idle percentage

This part shows GPU idle percentage in past 1s.

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 128 / 185



The sample information:

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Idle percentage:0.00%
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

14.2 gputop tool
gputop -- Monitor GPU clients memory, hardware counters, occupancy state load on DMA engines, video memory and and DDR
memory bandwidth (only under Linux).

• The gputop tool is developed to trace the overall memory utilization in classification of memory pools.

• The available memory size is reported for the reserved pool.

• GPU idle time is reported from the last capture.

14.2.1 Synopsis
gputop [options]

gputop -m [mode] -- Where mode can be: mem, counter_1, counter_2, occupancy, dma, vidmem and ddr (under Linux/Android).
Use this option to start gputop directly in a mode that you're interested on. For counter_1 and counter_2 a context will be needed.
See NOTES section why this is necessary.

gputop -c ctx_no -- specify a context to attach when display context-aware hardware counters.

gputop -b -- display in batch mode. For other modes than memory, this will only take an instantaneous sample. See -f

gputop -f -- Use this when using gputop from a script.

gputop -x -- useful to display contexts when used with ``-b''

gputop -i -- ignore warnings about kernel mismatch

gputop -h -- display usage and help

14.2.2 Interactive mode
Normally, when starting up, gputop, starts in interactive mode. The following are a list of useful commands:

• 'h' -- display help page

• '0-6'/Left-Right arrows -- switch between viewing pages

• 'x' -- display application contexts

• 'SPACE' -- select a context that you want to track. Useful for reading counter_1 and counter_2 values.

• 'r' -- useful for hardware-counter pages to display different viewing modes (switches between different modes of
aggregation: MIN/MAX/AVERAGE/TIME)

• 'q'/ESC -- exits gputop.

• 'p' -- stops reading counter values and displays only current values. Useful to get a instantaneous values of the counters.

14.2.3 Description
gputop can be used to determine the memory usage your application is using, or to read the hardware counters exposed by the
GPU in real-time. Additionally, DMA engines and Occupancy states are displayed. gputop has multiple viewing pages: a memory
usage page, two hardware counter pages, a DMA engine page and an Occupancy page. When normally started, gputop will be
in interactive mode. Type 'h' to get a list of the current keybindings.

14.2.4 Requirements

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 129 / 185



14.2.4.1 Linux OS

gputop requires access to debugfs sub-system on Linux to display memory usage, used by clients submitting commands to the
GPU. gputop will try to mount the debugfs pseudo-filesystem if it is not already mounted. In order to read hardware counters the
profiler must be activated in the driver. Usually this can be set by setting the environment variable export VIV_PROFILE=1.

14.2.4.2 QNX

Just like in Linux OS, to read the hardware counter values, gpu-gpuProfiler has to be set to 1 in graphics.conf file under
$GRAPHICS_ROOT directory. Other views like occupancy and DMA will require gpu-powerManagement to be set to 0 (disabled).

14.2.5 Notes

14.2.5.1 Sampling hardware-counters

gputop samples the driver for hardware counter values. Internally the driver will update the values of the counters whenever the
application submits a special type of command to the GPU. Depending on how fast that happens gputop can't foresee/adjust the
values of the counters. So tweaking the amount of sample taken or the delay time doesn't really help. For dealing with situations
where the application will submit either to fast or to low commands to the GPU, several modes of viewing counters has been added.
Cycle between them to understand or get a bird-eye view of the counter values. Empirically MAX/AVERAGE displays the closes
values to the truth.

14.2.5.2 Context-aware counters

counter_1 and counter_2 are context-aware counters (i.e.: tied to an application).

Internally the driver assigns various context IDs to the application submitting commands to the GPU. These contexts IDs are
currently required to read those hardware counter values. Either use -x on the command line (together with -b option and choosing
-m mem viewing mode), or for interactive mode use 'x' and then 'SPACE' to show and select a context ID.

In case you are getting zero'ed out values for counter_1 and/or counter_2 values, cycle through the available counter IDs.

Due to the way the driver is built, single-GPU core applications will have two context-ids. Empirically the largest integer values
holds the real context-id.

14.2.5.3 Unsupported GPUs

For GCV600 (i.MX 7ULP and i.MX 8M Mini), the IDLE/LOAD register is not available, so gputop will display incorrect
(inversed) values.

14.2.6 Pages

14.2.6.1 Client attached page

When viewing client attached page, the following head columns are displayed:

PID RES (KB) CONT (KB) VIRT (KB) Non-PGD (KB) Total (KB) CMD

• PID -- process ID

• RES -- reserved memory

• CONT -- contiguous memory

• VIRT -- virtual memory

• Non-PGD -- Non-paged memory

• Total -- the sum of all above

• CMD -- the name of the application (trimmed)

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 130 / 185



These memory items correspond to memory pools in the driver.

14.2.6.2 Vidmem page

When viewing vidmem page, the following head columns are displayed for each process.

PID IN VE TE RT DE BM TS IM MA SC HZ IC TD FE TFB

• IN -- index

• VE -- vertex

• TE -- texture

• RT -- render target

• DE -- depth

• BM -- bitmap

• TS -- tile status

• IM -- image

• MA -- mask

• SC -- scissor

• HZ -- hz

• IC -- i_cache

• TD -- tx_desc

• FE -- fence

• TFB -- tfb header

14.2.7 Examples
When using -b option, gputop will start in interactive mode and execute just once its main loop. This is useful for various reason,
either to get an instantaneous view of a different viewing page, or scripting.

• Get a list of processes attached to the GPU.

$ gputop -m mem -b

• Get a list of processes attached to the GPU, but also display the contexts IDs.

$ gputop -m mem -bx

• Display counters (counter_1) using context_id.

$ gputop -m counter_1 -b -c <context_id>

• Display counters (counter_2) using context_id.

$ gputop -m counter_2 -b -c <context_id>

• Get IDLE/USAGE

$ gputop -m occupancy -b | grep IDLE

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 131 / 185



14.2.8 See Also
• Under QNX, see graphics.conf for disabling powerManagement and enabling gpuProfiler.

• Under Linux, see /sys/modules/galcore/paramenters/gpuProfiler and /sys/modules/galcore/parameters/
PowerManagement.

14.3 GPU clock information and debugging
GPU driver supports dynamic frequency scaling. Users can perform the following steps to query and update the GPU clock
information, which is useful for GPU debugging.

1. Get the GPU clock. This is affected by the system RTC timer. Sometimes it varies between different boards.

root@imx8mpevk:/# mount -t debugfs none /sys/kernel/debug (optional, exec it only if there is no 
gc dir)
root@imx8mpevk:/# cat /sys/kernel/debug/gc/clk
gpu0 mc clock: 1000018036 HZ.
gpu0 sh clock: 1000021374 HZ.
gpu1 mc clock: 1000002214 HZ.
gpu1 sh clock: 999986723 HZ.
gpu8 mc clock: 499991523 HZ.

2. Change the GPU clock.

Read the gpu3DClockScale as the denominator using the following command:

root@imx8mpevk:/# cat /sys/bus/platform/drivers/galcore/gpu3DClockScale64

The GPU frequency can be changed to numerator/gpu3DClockScale * clock for different GPU instances. For example,
the gpu0's mc and sh clock can be change to 1/2 and 1/4 of the original frequency.

root@imx8mpevk:/# echo 0 32 16 > /sys/kernel/debug/gc/clk
[ 2625.977856] Change core:0 MC scale:32 SH scale:16
[ 2625.982610] Warning: Power management status will be changed forever!
root@imx8mpevk:/# cat /sys/kernel/debug/gc/clk
gpu0 mc clock: 499997481 HZ.
gpu0 sh clock: 249997541 HZ.
gpu1 mc clock: 999995540 HZ.
gpu1 sh clock: 999992141 HZ.
gpu8 mc clock: 499998453 HZ.

14.4 Apitrace user guide

14.4.1 Introduction
Apitrace is a set of tools enhanced from open source project apitrace, supported by i.MX 6, i.MX 7, and i.MX 8 with Vivante GPU
IP. This tool can dump OpenGL/GLES1.1/GLES2.0/GLES3.0 API calls and replay on a wide range of other devices.

For more information, see apitrace.github.io/.

14.4.2 Install

14.4.2.1 Yocto

Apitrace source code release is part of the i.MX Yocto Project Linux BSP release. The source code have more patches
added on top of official Apitrace release. The Yocto Project recipes pull the Apitrace source package and install as needed for
supported backend.

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 132 / 185

https://apitrace.github.io/


14.4.2.2 PC

Apitrace have set of PC tools. Prebuilt binary packages can be directly downloaded from the Apitrace website.

Currently supports Ubuntu 14.04 LTS, 64-bit.

sudo apt-get install libgles1-mesa libgles2-mesa libqt4-dev

14.4.3 Usage

14.4.3.1 Trace OpenGL ES1.1/2.0/3.0 application

apitrace trace --api=egl <app name and arguments>

e.g., apitrace trace --api=egl es2gears_x11

It generates trace file (.trace) under the current directory. To specify a new path, use --output=<path_name>.

14.4.3.2 Trace OpenGL ES 1.1/2.0/3.0 Java application on the Android platform

On the Android platform, a GLES application can be native (e.g., frameworks/native/opengl/angeles). This type of application can
be traced as normal Linux application. Some other applications involving the Java virtual machine cannot run in this way. A script
apitrace_dalvik.sh is provided to run this type of application. This is an example to trace com.android.settings:

sh /data/apitrace/bin/apitrace_dalvik.sh com.android.settings start

To stop tracing, run:

sh /data/apitrace/bin/apitrace_dalvik.sh com.android.settings stop

Because there is no “current” directory for a Java application, the trace file is stored under /sdcard/.

If Apitrace is installed in a different directory, update apitrace_dalvik.sh manually.

14.4.3.3 Trace OpenGL application

apitrace trace --api=glx <app name and arguments>

Only the X11 backend supports this feature.

14.4.3.4 Replay

This utility is also called retrace. It reads in the trace file and executes OpenGL (ES) APIs one by one. Each OpenGL (ES) API
call is processed by a callback function. In that callback function, a hook can be inserted for debug or analysis purposes.

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 133 / 185



Figure 36. Replay

OpenGL ES 1.1/2.0/3.0 applications can be replayed with eglretrace; OpenGL applications can be replayed with glretrace:

eglretrace <trace file>
glretrace <trace file>

14.4.3.4.1 Analysis

qapitrace provides a detailed look at the trace file. It can only run on a PC. It was verified on Ubuntu 14.04 LTS 64-bit. The
command is:

qapitrace <trace file name>

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 134 / 185



Figure 37. Checking state of every API call

Figure 38. Checking Framebuffer

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 135 / 185



Figure 39. Checking Texture

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 136 / 185



Figure 40. Checking performance

14.4.4 Reference
1. Apitrace introduction: apitrace.github.io/

2. More uses: github.com/apitrace/apitrace/blob/master/README.markdown

14.5 Renderdoc
RenderdocTM is a frame-capture based graphics debugger, generally support for Vulkan, D3D11, D3D12, OpenGL, and OpenGL
ES development. On i.MX, support available only for Vulkan. RenderDoc provides tools for deep analysis and graphics inspection,
as well as detailed examination of API usage - allowing developers to locate bugs and problems in their programs.

14.5.1 Renderdoc components
Renderdoc source code release is part of the i.MX Yocto Project Linux BSP release. The source code has more patches added
on top of the official Renderdoc release. The Yocto Project recipes pull the renderdoccmd tool source package and install it as
needed for the supported backend. The version of renderdoccmd currently available for the user is 1.7.

Renderdoc has a set of PC tools. Prebuilt binary packages can be directly downloaded from Renderdoc website.

The renderdoccmd tool will be available on the i.MX board for capturing frames and replaying locally, as for debugging purposes
qrenderdoc needs to be used remotely on a host machine.

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 137 / 185

http://apitrace.github.io/
https://github.com/apitrace/apitrace/blob/master/README.markdown


14.5.2 Running renderdoccmd on i.MX

renderdoccmd capture <options> <app_name> <arguments>

Renderdoccmd usage example:

• For capturing a frame from a graphics application available in the SDK, run

renderdoccmd capture /opt/imx-gpu-sdk/Vulkan/Some_example/Some_example_Wayland

• Press F12 to capture frames:

Frames will be written in /tmp/Renderdoc/ (run renderdoccmd capture to see all the options)

• For replaying a capture run

renderdoccmd replay /path/to/capture/file 

(Run renderdoccmd replay for more options).

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 138 / 185



• press F for full screen. Press F again to come back to the default window dimensions. Press ESC to quit replaying.

14.5.3 Capturing and replaying remotely
Usage:

1. Download a Renderdoc build from the website on your Windows/Linux host machine.

2. Set up a connection between the host and the board.

3. On the i.MX board, run renderdoccmd remoteserver.

4. On your machine, run qrenderdoc. Go to File -> Attach to running instance.

5. In the Remote Host Manager Window, add the target's IP address. Then qrenderdoc on your local machine should
establish a connection with the renderdoccmd server instance.

6. In the left down corner of the screen, select Replay Context and change it from Local to the target’s IP address.

7. Select File -> Launch Application. On Executable Path, insert the path of your Vulkan example from the target: /opt/
imx-gpu-sdk/Vulkan/Some_example/Some_example_Wayland.

8. Press Launch and then capture. A new capture preview should appear.

9. You can save it by right clicking Save on the preview.

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 139 / 185



10. If you close the Vulkan application from the board, qrenderdoc will open the capture file.

11. To debug the capture, check the documentation available on the Renderdoc site.

12. To replay remotely, just use renderdoccmd on your local machine. Run renderdoccmd replay --remote-host
<target ip> <capture_file_on_you_local_machine> and you should see exactly the same thing as when running
on the target locally.

Notes for Android:

• Before starting the remote server and Vukan application, Android HWUI renderer must be set to Vulkan renderer. In
Android console: setprop debug.hwui.renderer skiavk.

• Remote server on the Android platform is started from qrenderdoc application. Connect the board to PC through the
USB-C port. In qrenderdoc, go to Tools -> Manages Remote Servers, and select the connected board. For example, “nxp
MEK-MX8Q”, and press the Run Server button.

• On the Android platform, add permission "Allow access to manage all files" to RenderDocCmd when it is launched for the
first time.

• Launch an application from qrenderdoc. Be sure the correct Replay Context is selected in the left bottom corner. Select a
Vulkan application in the Executable path field from the Launch Application tab. Click the Launch button.

• Capture frame from qrenderdoc.

• Capture is replayed automatically on the Android platform when the Vulkan application is closed.

14.5.4 Reference
https://renderdoc.org/

https://github.com/baldurk/renderdoc/blob/v1.x/README.md

NXP Semiconductors
GPU Tools

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 140 / 185

https://github.com/baldurk/renderdoc/blob/v1.x/README.md


Chapter 15
GPU Memory Introduction

15.1 GPU memory overview
• OpenGL-ES

— Texture buffer

— Vertex buffer

— Index buffer

— PBuffer surface

— Color buffer

— Z/Stencil buffer

— HZ depth buffer

— Tiled status buffer

— 3D Command buffer

— 3D Context buffer

• OpenVG

— Image buffer

— Tessellation buffer

— VG command buffer

— VG context buffer

• 2D buffers

— 2D command buffer

— 2D temporary buffer

15.2 GPU memory pools
• Reserved memory

In the Linux 3.10.y kernel, the memory is reserved from CMA implemented in the GPU kernel driver, the size can be changed
through U-Boot args with “galcore.contiguoussize =xxx”

The memory allocation and lock very fast, but cannot support cacheable attribute.

• Contiguous memory

The contiguous memory is from CMA or Normal or Highmem with alloc_pages_exact.

The GPU driver tries the CMA allocator for non-cacheable request first. If CMA memory is used up, it goes to system allocator.

The CMA allocator does not support the cacheable attribute, the system allocator supports cacheable attribute, but the
memory performance is slow with the additional cache flush operations.

• Virtual memory pool

The virtual memory is from Normal or Highmem with multiple page_alloc.

The memory support cacheable attribute, but slow with GPU MMU and cache flush.

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 141 / 185



The GPU virtual command buffer is allocated from virtual memory pool directly.

• Nonpaged memory pool

In the 5.x GPU driver, this pool is not used any more.

15.3 GPU memory allocators
Two kinds of allocators are implemented in i.MX GPU kernel driver, see drivers/mxc/gpu-viv/.

• The video memory allocator implementation is very complicated. The memory is from the reserved pool, system
contiguous pool (supports CMA), or system virtual pool (enables GPU MMU).

• The CMA allocator supports non-cacheable contiguous memory. It is implemented as a part of contiguous pool. When
the system requests contiguous memory, the allocator tries CMA first. If CMA is used up, it goes to allocate the system
contiguous pages.

• GPU memory-killer is implemented for special requirement of force contiguous GPU memory.

Figure 41. GPU memory allocators

15.4 GPU reserved memory
• The reserved memory is managed by two dual linked lists, one is free list, and another is node list.

• When allocate the reserved memory, the free list is scanned from head to tail until a available node is selected, it is very
fast but makes more memory fragments, under test, 10~20M of 128M is not available to use after a lot of allocate/free
operations.

• When the available node is selected, it is removed from the free list, but it always keeps the dual linked nodes to merge
the conjoint available memory when freed.

• The reserved memory is mapped once when application process is attached, during 3D application running, the memory
map/un-map operations are very fast, the virtual address is just calculated with logical base and offset.

15.5 GPU memory base address
• GPU support contiguous physical memory within (0-2G) address directly:

— GPU address = CPU Physical address – GPU BaseAddress

• GPU MMU is enabled for two kinds of memory type as below:

— Separated page memory from Virtual memory pool

NXP Semiconductors
GPU Memory Introduction

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 142 / 185



— Contiguous page memory with address out of (0-2G)

• BaseAddress should be set to RAM start address to achieve the better performance by reducing GPU MMU mapping.

Figure 42. GPU memory base address

NXP Semiconductors
GPU Memory Introduction

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 143 / 185



Chapter 16
Application Programming Recommendations
The recommendations listed below take a holistic approach centered on overall system level optimizations that balance graphics
and system resources.

16.1 Understanding the system configuration and target application
Knowing details about the application and use case allows developers to correctly utilize the hardware resources in an ideal
access pattern. For example, an implementation for a 2D or 3D GUI could be rendered in a single pass instead of multiple passes
if the draw call sequence is correctly ordered. In addition, knowing the most common graphics function calls allow developers to
parallelize rendering to maximize performance.

Using Vivante and vendor-specific SoC profiling tools, you can determine bottlenecks in the GPU and CPU and make changes as
needed. For example, in a 3D game, most CPU cycles may be spent on audio processing, AI, and physics and less on rendering or
scene setup for the GPU. In this instance, the application is CPU-bound and configurations dealing with non-graphics tasks need
to be reviewed and modified. If the system is GPU-bound, the profiler can point out where the GPU programming code bottlenecks
are located and which sections to optimize to remove restrictions.

16.2 Optimizing off-chip data transfer such as accessing off-chip DDR memory/mobile DDR
memory

Any data transfer off-chip takes bandwidth and resources from other functional blocks in the SoC, increases power, and causes
additional cycles of latency and delay as the GPU pipeline needs to wait for data to return from memory. Using on-chip cache and
writing the application to better take advantage of cache locality and coherency increase performance. In addition, accessing the
GPU frame buffer from the CPU (not recommended) cause the driver to flush all queued render commands in the command buffer,
slowing down performance as the GPU has to wait since the command queue is partially empty (inefficient use of resources) and
CPU-GPU synchronization is not parallelized.

16.3 Avoiding W-clipping issue in the application program
The w-clipping overflow issue typically occurs with these three factors:

• Objects with very large primitives.

In a 3D scene, this is usually the sky, the outer world or a long road that expands far behind the camera and far in front of the
camera. At the same time, the object may also expand far in either the x or y direction.

• Near-plane with a very small value

Usually this value is very close to zero. An example would be 10-4.

• Large screen resolution

These three factors can cause the final window coordinate to overflow the 24-bit mantissa precision in IEEE single precision
floating point format.

The following are suggested ways to modify an application to avoid overflow:

1. For draw calls with very large primitives such as sky or world, set the near-plane to 0.99 as an initial value.

2. If this removes the rendering error and the entire scene is rendered correctly, the issue can be considered resolved.

3. If the rendering error is still there and no desired objects are being culled (or there are no missing objects), increase the
near-plane value until the rendering error disappears.

4. If the near-plane value is large (>10.0) already, the issue persists and some desired objects are being culled, reduce the
near-plane value until the desired objects appear again then go to the next step.

5. Tessellate the large objects into smaller primitives until the rendering error disappears.

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 144 / 185



Please note that the suggested near plane adjustment can be done on a per draw call basis, and only needs to be modified for
objects with very large primitives. Some applications scale the object by reduce the w value in vertex shader, as change w value
will finally affect the near plane, this is not recommended, a better way to scale the object is scale the x, y, z coordinate, not w.

16.4 Avoiding GPU hanging and data corruption when using occlusion query
Description:

On i.MX 6Dual/Quad GPU IP, both Hierarchical Depth (Hz) write and Occlusion Query (OQ) write share the same port. If HZ Fast
Clear (FC) is enabled, and OQ uses the HZ port to perform a write, the HZ FC data may become corrupted, even lead to GPU
hang unexpectedly.

Software Workaround:

A software workaround is recommended for this issue and is available from L4.9 bsp release. Because the issue occurs very
infrequently, a per-application work around is most efficient. Software will disable HZ with a per-app detection and also provide
a new environment variable control (VIV_DISABLE_HZ).

16.5 Avoiding random cache or memory access
Cache thrashing, misses, and the need to access data in external memory causes performance hits. An example would be random
texture cache access since it is expensive when performing per-pixel texture reads if the texture units need to access the cache
randomly and go off-chip if there is a cache miss.

16.6 Optimizing your use of system memory
Memory is a valuable resource that needs to be shared between the GPU (frame buffer), CPU, system, and other applications. If
you allocate too much memory for your OpenGL ES application, less memory is available for the rest of the system, which may
impact system performance. Claim enough memory as needed for your application then deallocate it as soon as your application
no longer needs it. For example, you can allocate a depth buffer only when needed or if your application only needs partial
resources, load the necessary items initially and load the rest later.

16.7 Targeting a fixed frame rate that is visibly smooth
Smooth frame rate is achieved from a combination of a constant FPS and the lowest FPS (frames per second) that is visually
acceptable. There is a trade-off between power and frame rates since the graphics engine loading increases with higher FPS. If the
application is smooth at 30 FPS and no visual differences for the application are perceived at 50 FPS, then the developer should
cap the FPS at 30 since the extra 20 FPS do not make a visual difference. The FPS limit also guarantees an achievable frame
rate at all times. The savings in FPS help lower GPU and system power consumption.

16.8 Minimizing GL state changes
Setting up state values between draw calls adds significant overhead to application performance so they must be minimized. Most
of these call setups are redundant since you are saving / restoring states prior to drawing. Try to avoid setting up multiple state
calls between draw calls or setting the same values for multiple calls. Sometimes when a specific texture is used, it is better to
sort draw calls around that texture to avoid texture thrashing which inhibits performance. Application developers should also try
to group state changes.

16.9 Batch primitives to minimize the number of draw calls
When your application submits primitives to be processed by OpenGL ES, the CPU spends time preparing commands for the GPU
hardware to execute. If you batch your draw calls into fewer calls, you reduce the CPU overhead and increase draw call efficiency.
Batch processing allows a group of draw calls to be quickly executed without any intervention from the CPU (driver or application)
in a fire-and-forget method.

Some examples of batching primitives are:

• Branching in shaders may allow better batching since each branch can be grouped together for execution.

NXP Semiconductors
Application Programming Recommendations

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 145 / 185



• For primitives like triangle strips, the developer can combine multiple strips that share the same state to save successive
draw calls (and state changes) into a single batch call that uses the same state (single setup) for many triangles.

• Developers can also consolidate primitives that are drawn in close proximity to take advantage of spatial relationships. If
the batched primitives are too far apart, it is more difficult for the application to effectively cull if they are not visible in the
frame.

16.10 Performing calculations per vertex instead of per fragment/pixel
Since the number of vertices is usually much less than the number of fragments/pixels, it is cheaper to do per vertex calculations
to save processing power.

16.11 Enabling early-Z, hierarchical-Z, and back face culling
Hardware support of depth testing to determine if objects are in the user’s field of view are used to save workload and processing
on vertex and pixel processing. If the object is in view, then the vertices are sent down the pipeline for processing. If the object
is hidden or not viewable, the triangles are culled and not sent to the pipeline. This improves graphics performance since
computations are only spent on visible objects. If the application already knows details about the contents and relative position of
objects in the scene or screen, the developer can use that information to automatically bound areas that never need to be touched
(for example an automotive application that has multiple layers of dials where parts of the underlying dials are occluded can have
the application avoid occluded areas from the beginning). Another optimization is to perform basic culling on the CPU since the
CPU has first-hand information about the scene details and object positions so it knows what scene data to send to the GPU.

16.12 Using branching carefully
Static branches perform well since states are known but they tend to use many general purpose registers. An example is a long
shader that combines multiple shaders into a single, large shader that reduces state changes and batch draw calls. Dynamic
branching has non-constant overhead since it processes multiple pixels as one and everything executes whether a branch is
taken or not. In other words, dynamic branching goes through different permutations/branches in parallel to reach the correct
results. If all pixels take the same path, then performance is good. The more pixels processed translates to higher overhead and
lower performance. For dynamic branching, smaller pixel sizes/groups are optimal for throughput. Developers need to be aware of
branching in their code to make sure excessive calculations and branches are efficient. Profiling tools can help determine if certain
parts of code are optimized or not.

16.13 Using VBOs instead of static or stack data as vertex data
A vertex buffer object (VBO) is a buffer object that provides the benefits of vertex array and display list and allows a substantial
performance gain for uploading data (vertex position, color, normals, and texture coordinates) to the GPU. VBOs create buffer
objects in memory and allow the GPU to directly access memory without CPU intervention (DMA). The memory manager can
optimize buffer placement using feedback from the application. VBOs can also handle static and dynamic data sets and are
managed by the Vivante driver. The benefits of each are:

• A vertex array reduces the number of function calls and allows redundant data to be shared between related vertices,
instead of re-sending all the data each time. Access to data can be referenced by the array index.

• The display list allows commands to be stored for later execution and can be used repeatedly over multiple frames without
re-transmitting data, thus minimizing CPU cycles to transfer data. The display list can also be shared by multiple OpenGL /
OpenGL ES clients so they can access the same buffer with the corresponding identifier. If you put computationally
expensive operations (ex. lighting or material calculations) inside display lists, then these computations are processed
once when the list is created and the final result can be re-used multiple times without needing to re-calculate again.

If you combine the benefits of both by using VBO, the performance is enhanced over static or stack data sets.

16.14 Using dynamic VBO when the data is changing frame by frame
Locking a static vertex buffer while the GPU is using it can create a performance penalty since the GPU needs to finish reading the
vertex data from the buffer before it can return to the calling application. Locking and rendering from a static buffer many times per

NXP Semiconductors
Application Programming Recommendations

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 146 / 185



frame also prevents the GPU buffering render commands since it mush finish commands before returning the lock pointer. Without
buffered commands the GPU remains idle until the application finishes filling the vertex buffer and issues the draw commands.

If the scene data never changes from frame to frame then a static buffer may be sufficient. With newer applications (ex. games,
maps) that have dynamic viewports where vertex data changes multiple times per frame or frame-to-frame, then a dynamic VBO
is required to ensure performance is still met. If the current buffer is being used by the GPU when a lock is called, a pointer to a
new buffer location is returned to the application to ensure updated data is written to the new buffer. The GPU can still access the
old data (current buffer) while the application puts updated data into the new buffer. The Vivante memory management unit and
driver automatically take care of allocating, re-allocating, or destroying buffers.

You can implement dynamic VBO depending on your preference, but one recommendation is to allocate a 1 MB dynamic VBO
block and upload data to using different offsets for each dynamic buffer. If the buffer overflows you can loop back and use location
offset 0 again.

16.15 Tessellating your data to make Hierarchical Z (HZ) work
We can break this into how OpenGL and OpenGL ES handle this use case.

OpenGL only renders simple convex polygons (edges only intersect at vertices with no duplicate vertices and only two edges
meet at any vertex), in addition to points, lines, and triangles. If the application requires concave polygons (polygons with holes or
intersecting edges), those polygons need to be subdivided into simple convex polygons, which is called tessellation (subdividing
a polygon mesh into a bunch of smaller meshes). Once you have all the meshes in place our HZ hardware can automatically
cull hidden polygons to efficiently process the frame, effectively breaking the frame into smaller chunks that can be processed
very fast.

OpenGL ES only renders triangles, lines, and points. The same concepts apply as in OpenGL, which is to avoid very large
polygons by breaking them down into smaller polygons where our internal GPU scheduler can distribute them into multiple threads
to fully parallelize the process and remove hidden polygons.

16.16 Using dynamic textures as a texture cache (texture atlas)
The main reason for using dynamic textures as a cache is the application developer can create one larger texture that is subdivided
into different regions (texture atlas). The application can upload data into each region and use an application side texture atlas
to access the data. Each dynamic texture and sub-region can be locked, written to, and unlocked each frame, as needed. This
method of allocating once is more efficient than using multiple smaller textures that need to be allocated, generated, and then
destroyed each time.

16.17 Stiching small triangle strips together
It is better to combine several small, spatially related triangle strips together into a larger triangle stip to minimize overhead and
increase performance. For each triangle strip, there are overhead and start up costs that are required by the CPU and GPU,
including state loads. If there are too many small triangle strips that need to be loaded, this impacts performance. An application
developer can combine multiple triangle strips by adding a degenerate triangle to join the strips together. The overhead to restart
multiple new strips is much higher than adding the degenerate triangle.

16.18 Specifying EGL configuration attributes precisely
To obtain a 16 bit/pixel window buffer for rendering, the EGL config attributes need to be specified precisely according to the
EGL spec. Specifying inaccurate EGL attributes may result in getting a 32-bit bit/pixel window buffer which doubles the bandwidth
requirement for rendering which in turn leads to lower performance.

16.19 Using aligned texture/render buffers
The GPUs work on buffers with hardware-specific width/height alignment for better efficiency. Use the available API to query the
GPU buffer alignment and allocate the texture / render buffers to satisfy these requirements, to avoid the cost of copies to aligned
shadow memory.

NXP Semiconductors
Application Programming Recommendations

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 147 / 185



16.20 Disabling MSAA rendering unless high quality is needed
Although MSAA rendering can achieve higher image quality with smoother lines and triangle edges, it requires much higher (4x,
8x) bandwidth because it has to rendering a single pixel 4x/8x times. So, if high rendering quality is not required, MSAA should
be disabled.

16.21 Avoiding partial clears
Most GPUs have special hardware logic to do a fast clear of an entire buffer. So it is better to utilize the fast clear function to
clear the entire buffer then render graphics again, instead of doing a partial clear to preserve a graphics region. If a partial clear
is required by the application, make sure the clear area is aligned according to the GPU-specific requirements. Unaligned partial
clears are expensive and should be avoided.

16.22 Avoiding mask operations
Do not use mask unless the mask is 0 (other than when you need a specific render quality). Clearing a surface with mask
(color/depth stencil mask) could have a performance penalty.Pixel mask operations are normally pretty expensive on some GPUs
as the mask operation has to be done on every single pixel.

16.23 Using MIPMAP textures
MIPMAP textures enable the application to sample a lower resolution texture image (1/2, 1/4, 1/8, 1/16, ... size of the original
texture image) when the triangle is rendering further away from the view point. Thus, the bandwidth required to read the texture
image is reduced which leads to better performance.

16.24 Using compressed textures if constricted by RAM/ROM budget
Compressed textures are normally only a fraction (up to 1/8) of the original texture size. Using compressed textures reduces
the storage requirements in memory and can also reduce the required texture upload bandwidth, when using a format that is
supported natively by the hardware.

Compressed textures should not be chosen, if only for the purposes of reducing the memory bandwidth required for sampling of
the texture during rendering. This is because due to a fixed read request size from the GPU, the memory controller load is the
same as for an uncompressed texture.

16.25 Drawing objects from near to far if possible
Drawing objects from near to far normally has better performance because the objects in the near foreground can block entire or
partial objects in the background. Most GPUs have early Z rejection logic to reject the pixels that fail a Z compare. The GPU can
skip fragment shader computations on these rejected pixels.

16.26 Avoiding indexed triangle strips
Index triangle strips can usually maximize the vertex cache utilization as each set of vertex data can be used in two triangles. There
is however an errata in the GC2000 and GC880 GPUs which requires a SW conversion of indexed triangle strips to triangle lists in
the driver. For small strips the conversion overhead is negligible, but for large geometries a different primitive type should be used.

16.27 Limiting vertex attribute stride within 256 bytes
Most Vivante GPUs provide native support for a 256 byte vertex attribute stride. If the vertex attribute stride is larger than 256 bytes,
then the driver has to copy the vertex data around. Hardware versions v55 and higher (such as the GC7000L v55) support a 2048
byte vertex attribute stride as required in the OES3.1 spec.

NXP Semiconductors
Application Programming Recommendations

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 148 / 185



16.28 Avoiding binding buffers to mixed index/vertex array
Most of Vivante GPUs do not natively support mixed index/vertex arrays. So the Vivante driver must copy the index and vertex
data around to form separate vertex data streams for the GPU. Avoid mixing index and vertex data so the driver does not have
to incur a performance hit while performing this task.

16.29 Avoiding using CPU to update texture/buffer contexts during render
Do not use the CPU to update texture/buffer contexts in the middle of rendering. Using the CPU to update texture/buffer causes
the rendering pipeline to flush and stall, so that CPU can safely update the buffer contents. The pipeline flush/stall/resume causes
significant performance impact.

16.30 Avoiding frequent context switching
Context switch is an inherently expensive operation as many GPU states need to be reset to start a new rendering context. Thus,
frequent context switching has a negative impact on application performance.

16.31 Optimizing resources within a shader
Most GPUs have optimal support for a limited amount of resources (uniforms, varying, etc.). Using resources beyond the optimal
working set causes the GPU to fetch/store resources from a lower performance memory pool and shader performance is
negatively impacted.

16.32 Avoiding using glScissor Clear for small regions
glScissor Clear for small regions (less than 16x8 aligned window) fall back to CPU so the performance is not optimal.

16.33 Using PRE to accelerate data transfer
PRE is an optimized hardware that can transform tiled format image to linear framebuffer. With PRE, GPU can onlyoutput tiled
render target and has no need to resolve it. To enable the PRE feature, set the environment GPU_VIV_EXT_RESOLVE variable
to 1; otherwise set it to 0. Its default value on the FB backend is 1, which means PRE is enabled by default on FB.

 
VG use cases can only output the linear format image. It is impossible to render linear and tiled format target to the
same framebuffer at the same time. Therefor, when running 3D use cases with PRE and VG use cases together,
there is garbage on the display. Besides, when running 3D use cases with PRE, the framebuffer format is changed
from linear to tiled. It is the user’s responsibility to convert the format back after the use cases end, or the display
is abnormal when showing the FB console.

  WARNING  

16.34 i.MX 8QuadMax dual-GPU performance
For some legacy applications with small texture/rendering size and less shader complex, dual-GPU performance may become
worse than single GPU mode, because the driver needs to take more CPU effort for dual-GPU programming, and the driver
overhead is more significant than GPU load in the hardware pipeline.

For such a kind of legacy case, the users can single-GPU to achieve better performance on the i.MX 8QuadMax.

NXP Semiconductors
Application Programming Recommendations

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 149 / 185



Chapter 17
Demo Framework

17.1 Overview
This document describes the NXP Demo Framework, targeted at platform agnostic development of graphical demos. It covers the
goals, architecture and instructions of how to use it across platforms, examples and best practices.

17.1.1 Executive summary
• Write a demo application once.

• Run it on Android, Yocto Linux, Ubuntu and MS Windows.

• Easily portable to additional platforms.

• Supports: OpenGL ES2, OpenGL ES3, OpenVG and experimental G2D support.

17.1.2 Technical overview
• Written in a limited subset of C++11 and uses RAII to manage resources.

• Uses a limited subset of STL to make it easier to port.

• No copyleft restrictions from GPL / L-GPL licenses[1]

• Allows for direct access to the expected API’s (EGL,ES2, ES3, VG)

• Provides optional helper classes for commonly used tasks

— Matrix, Vector3, GLShader, GLTexture, etc

• Services

— Keyboard & mouse

— Persistent data manager

— Assets management (models, textures)

• Defines a standard way for handling

— Init, shutdown, and window resize.

— Program input arguments.

— Input events like keyboard, mouse and touch.

— Fixed time-step and variable time-step demo implementations.

— Logging functionality.

17.2 Introduction
The Demo Framework is a multi-platform framework that enables demos to run on various platforms without any changes. The
framework abstracts away all the boilerplate & OS specific code of allocating surfaces, creating the context, model loading, texture
loading, shader compilation, render loop, animation ticks, benchmarking graph overlays etc. This allows the demo/benchmark
developer to focus on writing rendering code. It also enables them to develop demos on PC or Android where the tool chain and
debug facilities allows for faster turnaround time and then take the working code and deploy without code changes to the supported
platforms. The platforms we currently support are Windows (for development via emulated backends), Android NDK and Linux

[1] We don’t use GPL or LGPL.

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 150 / 185

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization


with various windowing systems. The framework allows us to provide ‘real’ comparative benchmarks between the different OS
and windowing systems we support, since we can run the exact same demo/benchmark code on them all.

The long term plans for the framework include extending it with support for other relevant API’s.

17.3 Design overview
The framework is written in C++ and uses RAII[2] to manage resources. The resource management code focuses on ‘ease of use’
over raw performance, since it’s mainly run on construction and destruction of the demo.

To allow the demo framework to be easily portable to new platforms, its functionality is split into two parts: ‘core’ and ‘services’.
The core framework depends on a limited subset of STL to make it easier to port. Framework services come with their own set
of library requirements. The model importer Assimp[3] requires boost to be available on the platform.

Besides the demo framework core and demo framework services, there is a set of helper classes for commonly used functionality,
which makes it easier to write demo’s for the API’s we support. The helper classes do not depend on the demo framework and
can be used in any program for the given API. For example, for OpenGL ES, there is a GLShader and GLProgram class that hides
away the complexities of compiling the shader object and linking the program object and since they are RAII objects, they also
clean up after themselves once you are done with them.

Since our primarily supported BSPs are based on Linux OS, we decided to use an input argument framework that is compatible
with the standard Unix parameter format, like the one exposed by getopt[4].

Figure 43. Demo framework

17.4 High level overview
The framework consists of three high level domains.

[2] http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
[3] http://www.assimp.org/
[4] We do however not utilize getopt to remain GPL free across platforms.

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 151 / 185

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://assimp.sourceforge.net/
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization


17.4.1 DemoMain
All the code that binds everything together and it is platform independent.

• It gets the current demo setup:

— Which demo host to utilize for the demo.

— Which demo application that needs to be run.

• It parses the input arguments.

• It launches the demo host.

• It logs any errors that might occur.

Figure 44. DemoMain

17.4.2 DemoHost
The demo-host is responsible for init & shutdown of the host environment and running the main loop.

The main loop utilizes the DemoAppManager to control the life of the DemoApp.

In other words, the DemoHost is the graphics API specific code needed to initialize and shutdown a given API and some code to
run a render loop. All the API and platform independent code of the render loop resides inside the DemoAppManager class.

The exact capabilities of a DemoHost are also platform dependent. For example, some EGL implementations support running
OpenVG and OpenGL ES, allowing a demo app to utilize both API’s at once. This is not something that is supported by most
windows emulation layers.

17.4.3 DemoApp
A demo application written for one or more specific APIs, which are supported by a specific DemoHost. The demo is usually
platform independent. The exception to the rule is if it depends on specific features that only exist on certain platforms.

17.5 Demo application details
The following description of the demo application details uses a GLES2 demo named ‘S01_SimpleTriangle’ as example. It lists
the default methods that a demo should implement, the way it can provide customized parameters to the windowing system and
how asset management is made platform agnostic.

17.5.1 Demo method overview
This is a list of the methods that every Demo App is most likely to override[5].

// Init
S01_SimpleTriangle(const DemoAppConfig& config)
// Shutdown
~S01_SimpleTriangle()
// OPTIONAL: Custom resize logic (if the app requested it). The default logic is to
// restart the app.
void Resized(const Point2& size)
// OPTIONAL: Fixed time step update method that will be called the set number of times 
// per second. The fixed time step update is often used for physics.
void FixedUpdate(const DemoTime& demoTime)
// OPTIONAL: Variable time step update method.

[5] See DemoFramework\FslDemoApp\include\FslDemoApp\ADemoApp.hpp for a complete list.

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 152 / 185



void Update(const DemoTime& demoTime)
// Put the rendering calls here
void Draw(const DemoTime& demoTime)

When the constructor is invoked, the Demo Host API will already be setup and ready for use, the demo framework will use EGL
to configure things as requested by your EGL config and API version.

It is recommended that you do all your setup in the constructor.

This also means that you should never try to shutdown EGL in the destructor since the framework will do it at the appropriate time.
The destructor should only worry about resources that your demo app actually allocated by itself.

17.5.1.1 Resized

The resized method will be called if the screen resolution changes (if your app never changes resolution this will never be called)[6].

17.5.1.2 FixedUpdate

Is a fixed time-step update method that will be called the set number of times per second. The fixed time step update is often used
for physics[7].

17.5.1.3 Update

Will be called once before every draw call and you will normally update your animation using delta time.

For example, if you need to move your object 10 units horizontally per second, you would do as follows:

m_positionX += 10 * demoTime.DeltaTime;

17.5.1.4 Draw

Should be used to render graphics.

17.5.2 Fixed or variable timestep update
Depending on what your demo is doing, you might use one or the other - or both. It’s actually a very complex topic once you start
to dig into it, but in general anything that need precision and predictable/repeatable calculations, like for example physics, often
benefits from using fixed time steps. It really depends on your algorithm and it’s recommended to do a couple of google searches
on fixed vs variable, since there are lots of arguments for both. It’s also worth noting that game engines like Unity3D[8] support
both methods.

17.5.3 Execution order of methods during a frame
The methods will be called in this order

• Events (if any occurred)[9]

• Resized[10]

• FixedUpdate (0-N calls. The first frame will always have a FixedUpdate call)

• Update

• Draw

After the draw call, a swap will occur.

[6] This version of the framework always restart the app, so this will never be called.
[7] This version uses a fixed update frequency of 60 ticks per second. This will be configurable in the future.
[8] http://unity3d.com/
[9] For an example of event handling see the “DemoApps\GLES2\InputEvents” sample.

[10] In this version of the framework this is never called as the app will be recreated on screen size changes (future versions will
allow demo apps to handle resize events if they so desire)

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 153 / 185

http://unity3d.com/


17.5.4 Exit
The demo application can request an exit to occur, or it can be terminated through an external request.

In both cases, one of the following things occurs.

• If the application has been constructed and has received a FixedUpdate, it will finish its FixedUpdate, Update, Draw, swap
sequence before its shutdown.

• If the application requests a shutdown during construction, the application will be destroyed before calling any other
method on the object (and no swap will occur).

The application can request an exit to occur by calling:

GetDemoAppControl()->RequestExit(1);

17.5.5 Dealing with screen resolution changes
By default, the application is destroyed and recreated when a resolution change occurs. Future versions will allow demo apps to
handle resize events if they so desire.

It is left up to the DemoApp to save and restore demo specific state.

17.5.6 Content loading
The framework supports loading files from the Content folder on all platforms.

Given a content folder like this:

Content/Texture1.bmp

Content/Stuff/Readme.txt

You can load the files via the IContentManager service that can be accessed by calling

std::shared_ptr<IContentManager> contentManager = GetContentManager();

You can then load files like this:

Binary file:

std::vector<uint8_t> content;

contentManager->ReadAllBytes(content, "MyData.bin");

Text file:

const std::string content = contentManager->ReadAllText("Stuff/Readme.txt");

Bitmap file[11]:

Bitmap bitmap;

contentManager->Read(bitmap, "Texture1.bmp", PixelFormat::R8G8B8_UINT);

If you prefer to control the loading yourself, you can retrieve the path to the files like this:

IO::Path contentPath = contentManager->GetContentPath();

IO::Path myData = IO::Path::Combine(contentPath, "MyData.bin");

IO::Path readmePath = IO::Path::Combine(contentPath, "Stuff/Readme.txt");

IO::Path texture1Path = IO::Path::Combine(contentPath, "Texture1.bmp");

You can then open the files with any method you prefer.

Both methods work for all supported platforms.

[11] The current framework only png, bmp and jpeg images on all platforms but a few platforms has access to all formats
supported by the DevIL library.

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 154 / 185



For detailed information about how the content is handled on each platform, see the build guide appendixes.

17.5.7 Demo registration
This is done in the S01_SimpleTriangle_Register.cpp file.

namespace Fsl
{
  namespace
  {
     // Custom EGL config (these will per default overwrite the custom settings. 
     // However, an exact EGL config can be used)
     static const EGLint g_eglConfigAttribs[] =
     {
        EGL_SAMPLES, 0,
        EGL_RED_SIZE, 8,
        EGL_GREEN_SIZE, 8,
        EGL_BLUE_SIZE, 8,
        EGL_ALPHA_SIZE, 0, // buffers with the smallest alpha component size are preferred
        EGL_DEPTH_SIZE, 24,
        EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
        EGL_NONE,
     };
  }

  // Configure the demo environment to run this demo app in a OpenGLES2 host environment
  void ConfigureDemoAppEnvironment(HostDemoAppSetup& rSetup)
  {
    DemoAppHostConfigEGL config(g_eglConfigAttribs);

    DemoAppRegister::GLES2::Register<S01_SimpleTriangle>(rSetup, "GLES2.S01_SimpleTriangle", config);
  }
}

Since the demo framework is controlling the main method, you need to register your application with the Demo Host specific
registration call (in this case the OpenGL ES2 host), for the framework to register your demo class.

17.5.7.1 OpenGLES 3.X registration

To register a demo for OpenGLES 3.X you would use the GLES3 register method:

DemoAppRegister::GLES3::Register<S01_SimpleTriangle>(rSetup, "GLES3.S01_SimpleTriangle", config);

17.6 Demo playback

17.6.1 Command line arguments
All demos support various command line arguments.

Table 42. Command line arguments

Key Function

-h Show the command line argument help.

--Stats Show a performance graph.

Table continues on the next page...

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 155 / 185



Table 42. Command line arguments (continued)

--LogStats Log various stats to the console.

--ScreenshotFrequency Create a screenshot at the given frame frequency.

--ExitAfterFrame Exit after the given number of frames has been rendered

--ContentMonitor Monitor the Content directory for changes and restart the app on changes. WARNING:
Might not work on all platforms and it might impact app performance (experimental).

Use –h on a demo for a complete list.

17.6.2 Demo single stepping/pause
In Windows OS, all samples support time stepping, which can be useful for debugging. It might also be available on under
platforms that support the given keys.

Table 43. Demo single stepping/pause

Key Function

Pause Pause the sample.

PageDown Move forward one timestep.

Delete Toggle between normal and Slow 2x playback

End Toggle between normal and Slow 4x playback

Insert Toggle between normal and fast 2x playback.

Home Toggle between normal and fast 4x playback.

17.7 Helper class overview

17.7.1 FslBase
Provides basic functionality missing from C++ standard libraries.

17.7.1.1 Bits

BitsUtil Utility methods for working with bits.

ByteArrayUtil Utility methods for reading and writing values from byte arrays in a specific endian format. This
functionality is useful when working on platform independent load and save methods.

17.7.1.2 IO

Platform independent IO.

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 156 / 185



Table 44. IO

Directory Helper methods for working on directories.

• GetCurrentWorkingDirectory.

File Helper methods for working with files

• Checking if file exists.

• File length.

• Read all content from a file.

Path A UTF8 path class and helper methods for working on it.

• Combing paths.

• Extracting directory or filename.

• Getting the full path from a relative path.

17.7.1.3 Log

Platform independent logging.

Instead of using printf or std::cout to log information it’s better to utilize the provided logging macro’s since work across all
supported platforms.

Table 45. Log

Log Various logging macros

• FSLLOG

• FSLLOG_IF

• FSLLOG_WARNING

• FSLLOG_WARNING_IF

• FSLLOG_ERROR

• FSLLOG_ERROR_IF

17.7.1.4 Math

Mainly focused on math functionality useful for working with graphics. It focuses on ease of use instead of raw performance.

Table 46. Math

MathHelper Various commonly used helper methods and constants like

• PI

• Clamping

• Lerp

• Conversions between radians and angles

• PowerOfTwo

Matrix Matrix helper methods like

Table continues on the next page...

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 157 / 185



Table 46. Math (continued)

• Perspective

• Rotate

• Translate

• Scale

• Multiply

Point2 A 2D integer point.

Rectangle A integer based rectangle with helper methods like

• Union

• Intersection

Vector2 A 2d float point with helper methods like

• Dot

• Length

• Lerp

• Min, max

• Normalize

• Reflect

Vector3 A 3d float point with helper methods like

• Cross

• Dot

• Length

• Lerp

• Min, max

• Normalize

• Reflect

• Transform by matrix

Vector4 A 4d float point with helper methods like

• Dot

• Length

• Lerp

• Min, max

• Normalize

• Reflect

• Transform by matrix

Table continues on the next page...

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 158 / 185



Table 46. Math (continued)

Quaternion Basic Quaternion operations.

17.7.1.5 String

Table 47. Various string functionality

StringParseUtil Various utility method for converting a string to a number.

UTF8String A UTF8 string representation.

17.7.1.6 System

Table 48. System

HighResolutionTimer A platform independent high resolution timer.

17.7.2 FslGraphics

Table 49. FslGraphics

Bitmap A RAII class to manage bitmap data.

BitmapUtil Contains various helper methods that works on the bitmap class.

• Horizontal flip

• Pixel format conversion

Color RGBA color utility class.

PixelFormat Various standardized pixel formats supported by the bitmap classes.

RawBitmap Read only bitmap information.

RawBitmapEx Writeable access to bitmap information

RawBitmapUtil Low level helper methods that work on RawBitmap’s

• Horizontal flip

• Padding clear

• Swizzle

17.7.2.1 Font

Table 50. Font

BasicFontKerning Contains basic kerning information for a font.

BinaryFontBasicKerningLoader Load basic kerning information from “fbk” files.

FontDesc A very basic font description.

Table continues on the next page...

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 159 / 185



Table 50. Font (continued)

FontGlyphBasicKerning Basic kerning for one glyph.

FontGlyphPosition Position information for one glyph

FontGlyphRange Font glyph range information.

IFontBasicKerning Interface for extracting basic font kerning information.

TextureAtlasBitmapFont Describes a bitmap font stored in a texture atlas.

TextureAtlasGlyphInfo Texture atlas glyph information.

17.7.2.2 IO

Table 51. IO

BMPUtil A simple helper class for loading and saving BMP images.

It’s not recommended to utilize it directly. Instead utilize the framework for
loading images1.

1. A future version will also add saving to the ContentManager.

17.7.2.3 Render

Table 52. Render

AtlasFont An atlas based bitmap font using an API independent texture.

AtlasTexture2D An atlas based API independent texture.

BlendState API independent blend states.

GenericBatch2D An API independent 2D quad batcher.

Texture2D An API independent texture representation.

17.7.2.4 TextureAtlas

Table 53. TextureAtlas

AtlasTextureInfo Represents information about one texture that is stored in a texture atlas.

BasicTextureAtlas A simple manager for looking up AtlasTextureInfo.

BinaryTextureAtlasLoader A “BTA” basic texture atlas loader.

ITextureAtlas Simple interface for accessing texture information.

NamedAtlasTexture A named atlas texture.

TextureAtlasHelper A simple way to extract AtlasTextureInfo from a texture atlas.

Table continues on the next page...

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 160 / 185



Table 53. TextureAtlas (continued)

TextureAtlasMap A more performance efficient way to extract AtlasTextureInfo from a texture atlas.

17.7.2.5 Vertices

API independent vertex helper classes.

Table 54. Vertices

IndexConverter Simple utility class to convert between index formats. It might not be efficient but it
gets the job done.

VertexConverter Simple utility class to convert between vertex formats. It might not be efficient but
it gets the job done.

VertexDeclaration Defines how a vertex is constructed in an API independent way.

VertexElementEx Defines a vertex element

VertexPositionColor A vertex comprised of

• position

• color.

VertexPositionColorNormalTexture A vertex comprised of

• position

• color

• normal

• texture coordinates

VertexPositionColorTexture A vertex comprised of

• position

• color

• texture coordinates

VertexPositionNormalTexture A vertex comprised of

• position

• normal

• texture coordinates

VertexPositionTexture A vertex comprised of

• position

• texture coordinates

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 161 / 185



17.7.2.6 Window

Table 55. Window

INativeWindow An abstract from native windows.

17.7.3 FslUtil.OpenGLES2
RAII based helper classes for common GLES2 operations.

Table 56. FslUtil.OpenGLES2

GLBatch2D A specialization of GenericBatch2D GLES2.

GLBatch2DQuadRenderer The GenericBatch2D backend for rendering quads.

GLCheck Various helper macro’s for checking and transforming OpenGL ES errors
to exception.

GLFrameBuffer A RAII based frame buffer encapsulation.

GLIndexBuffer A RAII based index buffer.

• uint8_t & uint16_t based index buffers.

• Easy creation and update.

GlIndexBufferArray A RAII based index buffer array.

• Improved efficiency when allocating many index buffers of the same format.

GLProgram A RAII based GL program encapsulation.

• Vertex and fragment shader combination.

GLRenderBuffer A RAII based GL render buffer encapsulation.

GLShader A RAII based GL shader encapsulation.

• Compilation and logging.

GLTexture A RAII based GL texture encapsulation.

• Can be created from either FslGraphics RawBitmap’s or Bitmaps.

• Easy content update.

• Supports both normal and cubemap textures.

GLUtil Contains various utility methods for OpenGL ES2

• Capture screenshots

GLVertexBuffer A RAII based vertex buffer.

• Easy creation and updating from Custom or FslGraphics.Vertices.

• Helper methods for quickly enabling/disabling Attribs

GLVertexBufferArray A RAII based vertex buffer array.

Table continues on the next page...

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 162 / 185



Table 56. FslUtil.OpenGLES2 (continued)

• Improved efficiency when allocating many vertex buffers of the same vertex
format.

NativeBatch2D Extends GenericBatch2D with direct support for GLES2 native textures.

NativeTexture2D Implements the INativeTexture2D for GLES2. This is used by the Batch2D system.

17.7.4 FslUtil.OpenGLES3
RAII based helper classes for common GLES3 operations.

GLES3 has the exact same helper classes as GLES2 and the following additions:

Table 57. FslUtil.OpenGLES3

GLVertexArray A RAII based vertex array.

• Easy creation

17.7.5 FslUtil.OpenGLES3v1
RAII based helper classes for common GLES3.1 operation’s.

Table 58. FslUtil.OpenGLES3v1

GLProgramPipeline A RAII based program pipeline encapsulation.

GLShaderProgram A RAII based shader program encapsulation.

17.7.6 FslUtil.OpenVG
RAII based helper classes for common OpenVG operations.

Table 59. FslUtil.OpenVG

VGPathBuffer A RAII based path buffer

• Easy creation

VGUtil Contains various utility methods for OpenVG

• Capture screenshots

VGCheck Various helper macro’s for checking and transforming OpenVG errors to exception.

17.7.7 FslGraphics3D
API independent descriptions of common 3D classes. This library is in development.

See the ModelLoaderBasics and ModelViewer samples for examples of how to use it.

Table 60. FslGraphics3D

Mesh A basic mesh

Table continues on the next page...

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 163 / 185



Table 60. FslGraphics3D (continued)

Scene A basic scene

SceneNode A basic node in the scene

17.7.8 FslAssimp
The demo framework’s Assimp integration provides various helper classes that make it easier to work with assimp in
the framework.

Table 61. FslAssimp

MeshHelper Helps to extract information from some assimp structures.

MeshImporter Helps convert Assimp mesh structures to the FslGraphics3D ones.

SceneHelper Extract basic information from a assimp scene.

SceneImporter Helps convert Assimp scene structures to the FslGraphics3D ones.

17.7.9 FslGraphics3D.SceneFormat
Code to load and save a very basic portable scene format.

Table 62. FslGraphics3D.SceneFormat

BasicSceneFormat Load/save scene functionality.

17.7.10 FslSimpleUI
A new experimental UI framework that makes it easy to get a basic UI up and running. The main code is API independent. It is not
a show case of how to render a UI fast but only intended to allow you to quickly get a UI ready that is good enough for a demo.

You can look at:

• DFSimpleUI100

• DFSimpleUI101

• TessellationSample

To see how it’s used.

The next release of the framework should make it even easier to work with.

When working with the UI system its recommended to store all or at least the most used bitmaps in the same texture atlas. One
commercially available texture packer is Texture Packer which can output a json file that we can convert to a binary format that
can be loaded by the demo framework.

If you look at the DFSimpleUI100 sample, there is “OriginalContent/TextureAtlas” directory which contain a “MainAtlas.tps” file that
can be loaded into texture packer. Pressing publish in texture packer produces a “MainAtlas.png” and “MainAtlas.json” file based
on the files under “Main”. The “MainAtlas.png” can be copied directly to the samples “Content” directory but the json file needs to
be converted to a binary file. For this we included the TPConvert python script that can be run like this:

TPConvert MainAtlas.json -f bta1

This will then produce a “MainAtlas.bta” file that can be copied to the “Content“ directory which contains all the needed atlas
meta data.

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 164 / 185

https://www.codeandweb.com/texturepacker


Please beware that the default atlas is required to contain the default font as well. The documentation for creating the
“MainAtlas.fbk” file has not been completed yet. The fbk file contains some basic font kerning information.

17.8 FslBuild scripts
To read a text version of this document, look in the demo framework “Doc/FslBuild_toolchain_readme.md”, which contains more
detailed information.

17.8.1 FslBuildGen.py
Is a cross-platform build-file generator. Its main purpose is to keep all build files consistent, in synchronized and up to date. See
FslBuildGen.docx for details.

17.8.2 FslBuild.py
Extends the technology behind FslBuildGen with additional knowledge about how to execute the build system for a given platform.

So basically, FslBuild works like this

1. Invoke the build-file generator that updates all build files if necessary.

2. Filter the builds request based on the provided feature list.

3. Build all necessary build files in the correct order.

17.8.2.1 Useful arguments

FslBuild comes with a few useful arguments

Table 63. Useful arguments

--ListFeatures List all features required by the build

--UseFeatures Allows you to limit what’s build based on a provided feature list. For example [EGL,OpenGLES2]. This
parameter defaults to all features.

-t 'sdk' Build all demo framework projects

-v Set verbosity level

-- All arguments written after this is send directly to the native build system.

17.8.2.2 Important notes

• Do not modify the auto-generated files.

The FslBuild scripts are responsible for creating all the build files for a platform and verifying dependencies. Since all build
files are auto generated you can never modify them directly as the next build will overwrite your changes.

Instead add your changes to the Fsl.gen files as they control the build file generation!

• The Fsl.gen file is the real build file.

• All include and source files in the respective folders are automatically added to the build files.

17.8.3 Build system per platform

Android gradle

Table continues on the next page...

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 165 / 185



Table continued from the previous page...

Qnx Make

Ubuntu Make

Windows Visual studio (IDE or nmake)

Yocto make

17.9 Android SDK+NDK on Windows build guide
For an easy-to-read text version of this document, see the demo framework “Doc/Setup_guide_android.md”, which contains more
detailed information.

17.9.1 Prerequisites
• Read FslBuild scripts to know about the custom build system.

• IMPORTANT: The way Gradle currently handles CMake builds on windows place some serious limits on the path length,
so its recommended to either place the DemoFramework folder close to the root of the drive or to set the environment
variable FSL_GRAPHICS_SDK_ANDROID_PROJECT_DIR to a directory close to the root of the drive.

• JDK (64 bit)

IMPORTANT: Make sure to configure JAVA_HOME to point to the JDK directory.

• Android SDK

Once it is installed, run SDK Manager.exe and make sure everything is up to date.

IMPORTANT: Android studio must be at least 3.1.

IMPORTANT: Get the Android studio full package and enable the default packages.

Configure the SDK manager

— "SDK Platforms" added if necessary

◦ Android 7.0 (Nougat)

— "SDK Tools" added if necessary

◦ CMake, LLDB, NDK, Android Support Repository

IMPORTANT: Make sure to configure ANDROID_HOME to point to the android sdk directory

IMPORTANT: Make sure to configure ANDROID_NDK to point to the android ndk directory

IMPORTANT: Make sure you have at least android-ndk-r16b

• Python 3.4.x or better. We highly recommend at least 3.5+

— For 64-bit Windows

17.9.2 Environment setup
Android projects are generated to the path specified in the environment variable FSL_GRAPHICS_SDK_ANDROID_PROJECT_DIR. If it
is not defined the 'prepare' script, sets it to a default location.

1. Start a Windows console (cmd.exe) in the DemoFramework folder.

2. Run the prepare.bat file located in the root of the framework folder to configure the necessary environment variables
and paths. Please beware that the prepare.bat file requires the current working directory to be the root of your
demoframework folder to function (which is also the folder it resides in).

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 166 / 185

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://developer.android.com/studio/index.html


17.9.3 To Compile and run an existing sample application
In this example we will utilize the GLES2 S06_Texturing app.

1. Make sure that you performed the environment setup.

2. Change directory to the sample directory:

cd DemoApps\GLES2\S06_Texturing

3. Build a app for Android using gradle + cmake

FslBuild.py -p android

If you just want to regenerate the cmake build files then you can just run

FslBuildGen.py -p android

If you want to save a bit of compilation time you can build for the ANDROID ABI you need by adding

FslBuildGen.py --Variants [ANDROID_ABI=armeabi-v7a]

or

FslBuild.py --Variants [ANDROID_ABI=armeabi-v7a]

17.9.4 To create a new GLES2 demo project named 'CoolNewDemo'
1. Make sure that you performed the environment setup.

2. Change directory to the GLES2 sample directory:

cd DemoApps/GLES2

3. Create the project template using the FslBuildNew.py script

FslBuildNew.py GLES2 CoolNewDemo

4. Change directory to the newly created project folder 'CoolNewDemo'

cd CoolNewDemo

5. Build a app for Android using gradle + cmake

FslBuild.py -p android

If you just want to regenerate the cmake build files then you can just run

FslBuildGen.py -p android

If you want to save a bit of compilation time you can build for the ANDROID ABI you need by adding

FslBuildGen.py --Variants [ANDROID_ABI=armeabi-v7a]

or

FslBuild.py --Variants [ANDROID_ABI=armeabi-v7a]

17.9.5 Using Android studio
1. Follow the instructions for "creating a new project" or "building an existing project".

2. As projects are generated to the path specified by the FSL_GRAPHICS_SDK_ANDROID_PROJECT_DIR environment
variable you can locate the project there and open it with android studio. Be sure to open Android studio in a correctly
configured environment. Here it could be a good idea to create a script for launching android studio with the right
environment.

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 167 / 185



17.9.6 Linux notes
• Install for private user and unzip android studio like this:

sudo unzip android-studio-ide_FILENAME.zip -d ~/sdk
cd ~/sdk/android-studio/bin
./studio.sh 

• In the ui make sure to install the sdk in a directory you have access to for example :

~/sdk/android-sdk-linux

17.9.7 Notes

17.9.7.1 Command line app building via Ant

http://developer.android.com/tools/building/building-cmdline.html

17.10 Ubuntu build guide
To read the text version of this document, look in the demo framework Doc/Setup_guide_ubuntu16.04.md, which contains more
detailed information.

17.10.1 Prerequisites
• Read FslBuild scripts to know about the custom build system.

• Ubuntu 16.04 64 bit

• Build tools and xrand

sudo apt-get install build-essential libxrandr-dev

• Python 3.4+

It should be part of the default Ubuntu16.04 install.

• An OpenGL ES 2+ emulator

— Mesa OpenGL ES 2

sudo apt-get install libgles2-mesa-dev

— Arm Mali OpenGL ES 3.0 Emulator V3.0.2 (64 bit)

wget https://armkeil.blob.core.windows.net/developer/Files/downloads/open-gl-es-emulator/
3.0.2/Mali_OpenGL_ES_Emulator-v3.0.2.g694a9-Linux-64bit.deb

sudo dpkg -i Mali_OpenGL_ES_Emulator-v3.0.2.g694a9-Linux-64bit.deb

• DevIL

— Developer's Image Library (DevIL)

sudo apt-get install libdevil-dev

• Assimp

Is now downloaded and build from source when needed. So its no longer necessary to run sudo apt-get
install libassimp-dev.

17.10.2 Environment setup
1. Start a terminal (ctrl+alt t) in the DemoFramework folder

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 168 / 185

http://developer.android.com/tools/building/building-cmdline.html
https://developer.arm.com/products/software-development-tools/graphics-development-tools/opengl-es-emulator/downloads


2. Run the prepare.sh file located in the root of the framework folder to configure the necessary environment variables
and paths. Please beware that the prepare.sh file requires the current working directory to be the root of your
demoframework folder to function (which is also the folder it resides in).

source prepare.sh

17.10.3 Compiling all samples
1. Make sure that you have performed the environment setup

2. Compile FslBuild.py -t sdk --BuildThreads 2.

17.10.4 Compiling and running an existing sample application
In this example, we use the GLES2 S06_Texturing application.

1. Make sure that you have performed the environment setup.

2. Change directory to the sample directory: cd DemoApps/GLES2/S06_Texturing.

3. Compile the project (a good rule of thumb for '--BuildThreads N' is number of cpu cores * 2).

If you run FslBuild without the --BuildThreads argument, it will be set to 'auto', which uses your CPU core count.

FslBuild.py --BuildThreads 2

17.10.5 Creating a new GLES2 demo project named 'CoolNewDemo'
1. Make sure that you performed the environment setup.

2. Change the directory to the GLES2 sample directory: cd DemoApps/GLES2.

3. Create the project template using the FslBuildNew.py.py script: FslBuildNew.py GLES2 CoolNewDemo.

4. Change the directory to the newly created project folder 'CoolNewDemo': cd CoolNewDemo.

5. Compile the project: FslBuild.py .

 
Once a build has been done, you can just invoke the make file directly. However, this requires that you didn't change
any dependencies or add files.

To do this, run make -j 2.

If you add source files to a project or change the Fsl.gen file, run the FslBuildGen.py script in the project
root folder to regenerate the various build files or just make sure you always use the FslBuild.py script as it
automatically adds files and regenerate build files as needed.

  NOTE  

17.10.6 Notes

17.10.6.1 Manual environment setup

1. Configure your FSL_GRAPHICS_SDK to point to the downloaded SDK without the ending backslash:

export FSL_GRAPHICS_SDK=~/fsl/YourDemoFrameworkFolder 

2. For easy access to the python scripts (not required for building):

PATH=$PATH:$FSL_GRAPHICS_SDK/.Config 

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 169 / 185



17.10.6.2 Override platform auto-detection

To override the platform auto detection code set the following variable:

export FSL_PLATFORM_NAME=Ubuntu

17.10.6.3 Executable location

The final executable will be placed in the root of the demo application folder. If it is moved the content folder (if it exist) needs to
be copied to the same location.

17.11 Windows build guide
To read text version of this document, see the demo framework Doc\Setup_guide_windows.md for more detailed information.

17.11.1 Prerequisites
• Read FslBuild scripts to know about the custom build system.

• Visual Studio 2017 (community edition or better)

• Python 3.5.x or newer

— For 64-bit Windows OS

• An OpenGL ES 2+ emulator

— Arm Mali OpenGL ES Emulator 3.0.2.g694a9 (64 bit)

◦ Use the exact version (64 bit) and use the installer to install it to the default location!

— Vivante OpenGL ES Emulator

To get started its recommended to utilize the Arm Mali OpenGL ES 3.0.2 emulator (64 bit) which this guide will assume you
are using.

17.11.2 Environment setup
1. Start a Windows console (cmd.exe) in the DemoFramework folder.

2. Run the visual studio ```vcvarsall.bat x64``` to prepare your command line compiler environment for x64 compilation.

For VS2017, it is often located here:

"C:\Program Files (x86)\Microsoft Visual 
Studio\2017\Community\VC\Auxiliary\Build\vcvarsall.bat" x64

3. Run the prepare.bat file located in the root of the framework folder to configure the necessary environment variables
and paths. Please beware that the prepare.bat file requires the current working directory to be the root of your
demoframework folder to function (which is also the folder it resides in).

17.11.3 Compiling and running an existing sample application
In this example, we use the GLES2 S06_Texturing application.

1. Make sure that you have performed the environment setup.

2. Change directory to the sample directory: cd DemoApps\GLES2\S06_Texturing

3. Generate the build files: FslBuildGen.py.

4. Launch visual studio using the Arm Mali Emulator: .StartProject.bat arm.

5. Compile and run the project (The default is to press F5).

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 170 / 185

https://developer.arm.com/products/software-development-tools/graphics-development-tools/opengl-es-emulator/downloads


To use a different emulator, the .StartProject.bat file can be launched with the following arguments

arm Arm mali emulator

powervr Powervr emulator

qualcomm Qualcomm andreno adreno emulator (expects its installed in "c:\AdrenoSDK”)

vivante Vivante emulator

If it is launched without an argument, it defaults to the Arm emulator.

17.11.4 Creating a new GLES2 demo project named 'CoolNewDemo'
1. Make sure that you have performed the environment setup.

2. Change directory to the GLES2 sample directory: cd DemoApps/GLES2.

3. Create the project template using the FslBuildNew.py script: FslBuildNew.py GLES2 CoolNewDemo.

4. Change directory to the newly created project folder 'CoolNewDemo': cd CoolNewDemo.

5. Generate build files for Android, Ubuntu, and Yocto (this step will be simplified soon): FslBuildGen.py.

6. Launch visual studio using the Arm Mali Emulator: .StartProject.bat arm.

7. Compile and run the project (the default is to press F5) or start creating your new demo.

If you add source files to a project or change the Fsl.gen file, run the FslBuildGen.py script in the project root folder to regenerate
the various build files.

17.11.5 Notes

17.11.5.1 Switching between emulators

The visual studio projects have been configured so that emulator builds can co-exist without interfering with each other.
Furthermore, the only the emulator dependent parts will be rebuild when changing emulator.

Therefore, it is very fast to switch between emulators.

17.11.5.2 Executable location

The executable location is based on the build type release/debug and which emulator you are using. Therefore, the executable
for a demo called S06_Texturing build as debug and using the Arm emulator will be located under

bin\S06_Texturing\Debug_ARM\

The content folder is located at:

Content

To move them, make sure that both the S06_Texturing.exe and Content folder is moved to the same location like this:

S06_Texturing.exe
Content

17.12 Yocto build guide
First you need to decide how you are going to be building for Yocto.

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 171 / 185



• Building using a prebuild Yocto SDK

• Building using a full Yocto build

To read text version of this document, see the demo framework Doc/Setup_guide_yocto.md for more detailed information.

17.12.1 Building using a prebuild Yocto SDK
Building using a prebuild Yocto SDK and a prebuild SD card image.

This is the fastest way to get started.

17.12.1.1 Prerequisites

• Read Appendix 2 to know about the custom build system.

• Ubuntu 16.04

• Python 3.5 (this is standard in Ubuntu 16.04)

• A prebuild SDK for your board typically called something like toolchain.sh.

• A prebuild sd-card image for your board typically called BoardName.rootfs.sdcard.bz2.

• Git: sudo apt-get install git

For this guide we will assume you are using a FB image.

• Download the DemoFramework source using git.

Read the introduction to the FslBuild toolchain in Doc/FslBuild_toolchain_readme.md.

17.12.1.2 Preparing a Yocto SDK build

1. Start a terminal (Ctrl+Alt t).

2. Install the SDK:

./fsl-imx-internal-xwayland-glibc-x86_64-fsl-image-gui-aarch64-toolchain-4.9.51-mx8-beta.sh

Chose where to install it, you can use the default location or a location of your choice.

For this example, we use ~/sdk/4.9.51-mx8-beta.

When the setup is complete it will list the configuration script you need to run to configure the sdk environment.

Something like this

$ . ~/sdk/4.9.51-mx8-beta/environment-setup-aarch64-poky-linux

Each time you wish to use the SDK in a new shell session, you need to source the environment setup script.

3. Your SDK is now installed.

17.12.1.3 Yocto SDK environment setup

1. Start a terminal (Ctrl+Alt t).

2. Prepare the yocto build environment by running the configuration command you got during the SDK installation.

. ~/sdk/4.9.51-mx8-beta/environment-setup-aarch64-poky-linux

3. You should now be ready to build using the demo framework. However, if you experience issues with the prepare.sh script
you can help it out by defining the platform name and the location of the root fs

export FSL_PLATFORM_NAME=Yocto

sexport ROOTFS=~/sdk/4.9.51-mx8-beta/sysroots/aarch64-poky-linux

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 172 / 185



Another possible error you can encounter is that the FslBuild.py scripts fail to include the 'typing' library.

This can happen because the SDK comes with a too old Python3 version or a incomplete Python3.5 version.

As a workaround for that you could delete the Python3 binaries from the SDK which will cause it to use the system Python3
version instead.

17.12.1.4 Ready to build

You are now ready to start building Yocto applications using the demo framework.

Continue the guide at “Using the demo framework”.

17.12.2 Building using a full Yocto build
Building using a full manually Yocto build.

This process provides the most flexible solution, but it also takes significantly longer to build the initial Yocto SD card and toolchain.

17.12.2.1 Prerequisites

• Read FslBuild scripts to know about the custom build system.

• The Ubuntu version required by the BSP release.

• Python 3.4 or newer

It should be part of the default Ubuntu install.

If you use 3.4 you need to install the 'typing' library manually so we highly recommended using 3.5 or newer.

To install the typing library in Python **3.4** run:

sudo apt-get install python3-pip

sudo pip3 install typing

• A working yocto build

For example, follow one of these:

— http://git.freescale.com/git/cgit.cgi/imx/fsl-arm-yocto-bsp.git/

— https://community.nxp.com/docs/DOC-94866

For this guide we will assume you are using a FB image.

• Download the DemoFramework source using git.

• Read the introduction to the FslBuild toolchain at Doc/FslBuild_toolchain_readme.md.

17.12.2.2 Preparing a Yocto build

Before you build one of these yocto images you need to do the following:

1. Run the yocto build setup (X11 example).

MACHINE=imx6qpsabresd source fsl-setup-release.sh -b build-x11 -e x11

3. Bake

bitbake fsl-image-gui
bitbake meta-toolchain
bitbake meta-ide-support

You can now build one of the images below (or a custom one).

• x11 yocto image

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 173 / 185

http://git.freescale.com/git/cgit.cgi/imx/fsl-arm-yocto-bsp.git/


Example:

MACHINE=imx6qpsabresd source fsl-setup-release.sh -b build-x11 -e x11
bitbake fsl-image-gui
bitbake meta-toolchain
bbitbake meta-ide-support

Extracted rootfs

We assume your yocto build dir is located at ~/fsl-release-bsp/build-x11 and that the rootfs will be unpacked to
~/unpacked-rootfs/build-x11 and the image is called fsl-image-gui-imx6qpsabresd.rootfs.tar.bz2 (you will need
to locate your image name).

runqemu-extract-sdk 
~/fsl-release-bsp/build-x11/tmp/deploy/images/imx6qpsabresd/fsl-image-gui-
imx6qpsabresd.rootfs.tar.bz2  
~/unpacked-rootfs/build-x11

• FB yocto image

Example:

MACHINE=imx6qpsabresd source fsl-setup-release.sh -b build-fb -e fb
bitbake fsl-image-gui
bitbake meta-toolchain
bitbake meta-ide-support

Extracted rootfs

We assume your yocto build dir is located at ~/fsl-release-bsp/build-fb and that the rootfs will be unpacked to
~/unpacked-rootfs/build-fb and the image is called fsl-image-gui-imx6qpsabresd.rootfs.tar.bz2 (you will need to
locate your image name).

runqemu-extract-sdk 
~/fsl-release-bsp/build-fb/tmp/deploy/images/imx6qpsabresd/fsl-image-gui-
imx6qpsabresd.rootfs.tar.bz2  
~/unpacked-rootfs/build-fb

• Wayland yocto image

Example:

MACHINE=imx6qpsabresd source fsl-setup-release.sh -b build-wayland -e wayland
bitbake fsl-image-gui
bitbake meta-toolchain
bitbake meta-ide-support

Extracted rootfs

We assume your yocto build dir is located at ~/fsl-release-bsp/build-wayland and that the rootfs will be unpacked to
~/unpacked-rootfs/build-wayland and the image is called fsl-image-gui-imx6qpsabresd.rootfs.tar.bz2 (you will
need to locate your image name).

runqemu-extract-sdk 
~/fsl-release-bsp/build-wayland/tmp/deploy/images/imx6qpsabresd/fsl-image-gui-
imx6qpsabresd.rootfs.tar.bz2  
~/unpacked-rootfs/build-wayland

For this guide we will assume you are using an FB image.

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 174 / 185



17.12.2.3 Yocto environment setup

Prepare the yocto build environment:

pushd ~/fsl-release-bsp/build-fb/tmp

source environment-setup-cortexa9hf-neon-poky-linux-gnueabi

export ROOTFS=~/unpacked-rootfs/build-fb

export FSL_PLATFORM_NAME=Yocto

popd

17.12.2.4 Ready to build

You are now ready to start building Yocto applications using the demo framework.

Continue the guide at “Using the demo framework”.

17.12.3 Using the demo framework
1. Make sure that you performed the Yocto environment setup for your chosen Yocto environment.

• SDK build [Yocto SDK environment setup]

• Custom build [Yocto environment setup].cd to the demoframework folder

2. cd to the demoframework folder.

3. Run the prepare.sh file located in the root of the framework folder to configure the necessary environment variables
and paths. Please beware that the prepare.sh file requires the current working directory to be the root of your
demoframework folder to function (which is also the folder it resides in).

source prepare.sh

also verify that the script detect that you are doing a Yocto build by outputting

PlatformName: Yocto

If it doesn't you can override the platform auto detection by setting the environment variable

export FSL_PLATFORM_NAME=Yocto

Before running the prepare.sh script.

17.12.4 Compiling all samples
1. Make sure that you have performed the demo framework environment setup.

2. Compile everything FslBuild.py --Variants [WindowSystem=FB] -t sdk.

WindowSystem can be set to either: FB, Wayland, or X11

17.12.5 Compiling and running an existing sample application
In this example, we use the GLES2 S06_Texturing application.

1. Make sure that you have performed the demo framework environment setup.

2. Change directory to the sample directory: cd DemoApps/GLES2/S06_Texturing

3. Compile the project: FslBuild.py --Variants [WindowSystem=FB].

WindowSystem can be set to either: FB, Wayland, or X11.

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 175 / 185



17.12.6 Creating a new GLES2 demo project named 'CoolNewDemo'
1. Make sure that you have performed the demo framework environment setup.

2. Change directory to the GLES2 sample directory: cd DemoApps/GLES2.

3. Create the project template using the FslBuildNew.py script: FslBuildNew.py GLES2 CoolNewDemo.

4. Change the directory to the newly created project folder 'CoolNewDemo': cd CoolNewDemo.

5. Compile the project: FslBuild.py --Variants [WindowSystem=FB].

WindowSystem can be set to either: FB, Wayland, or X11.

 
Once a build has been done, you can just invoke the make file directly. However, this requires that you didn't change
any dependencies or add files. To do this, run make -f GNUmakefile_Yocto -j 2 WindowSystem=FB.

If you add source files to a project or change the Fsl.gen file, run the FslBuildGen.py script in the project
root folder to regenerate the various build files or just make sure you always use the FslBuild.py script as it
automatically adds files and regenerate build files as needed.

  NOTE  

17.12.7 Notes

17.12.7.1 Manual environment setup

1. Configure your FSL_GRAPHICS_SDK to point to the downloaded SDK without the ending backslash:

export FSL_GRAPHICS_SDK=~/fsl/YourDemoFrameworkFolder

2. For easy access to the python scripts:

PATH=$PATH:$FSL_GRAPHICS_SDK/.Config

17.12.7.2 Override platform auto-detection

To override the platform auto detection code set the following variable:

export FSL_PLATFORM_NAME=Yocto

17.12.7.3 Building for multiple backends

The makefiles have been configured so that the builds for all backends can co-exist without interfering with each other. In
additoin, the only backend dependent parts will be rebuild when changing backend. Therefore, it should be very fast to switch
between backends.

The demo application executables will be post fixed with the backend it builds for to ensure no conflict occurs.

17.12.7.4 Executable location

The final executable will be placed in the root of the demo application folder. If it is moved the content folder (if it exist) needs to
be copied to the same location.

The executables follows this naming scheme:

<DemoAppName>_<BackendName>[<TargetPostFix>]

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 176 / 185



So a debug build of S06_Texturing for the FB backend will be called

S06_Texturing_FB_d

A release build of S06_Texturing for the X11 backend will be called

S06_Texturing_X11

17.13 FslContentSync.py notes
• Does not copy files that start with a '.' in its file or directory name.

• Does not allow files to contain ".." in its name.

• Do not utilize file names that only differ by casing like this:

— Shader.txt

— shader.txt

• Due to the android asset packer it’s not recommended to use Unicode file names as they are unsupported by the android
tool at the moment.

17.14 Known limitations

17.14.1 General
• Android, Ubuntu, and Windows OpenVG support is considered experimental for this release.

• G2D support is experimental and it’s not recommended to use it yet.

17.14.2 Android OS
Android OS does not handle Unicode file names inside the 'content' folder. So do not utilize Unicode for filenames stored in
Content. The culprit is the android assets folder which we utilize for content files.

17.14.3 Ubuntu
• OpenGLES3 is currently unsupported on Ubuntu, as we rely on the Mesa 3D graphics library for OpenGLES emulation.

• OpenVG is emulated via the Mesa 3D graphics library and it might contain unsupported features.

17.14.4 Windows
• OpenVG is emulated via the Mesa 3D graphics library and it might contain unsupported features.

17.15 Upgrading samples from earlier SDKs
To convert a sample to the latest SDK, start at the SDK version you are using and upgrade the application one step at a time. So
a 2.0 application needs to be updated to 2.1 before it can be updated to 2.2.

17.15.1 From 2.0 to 2.1
Since version 2.1 contains minor incompatibilities with 2.0, any existing application will have to be upgraded. The easiest way to
upgrade a sample is to rename the old directory, then run

• FslNewDemoProject.py all -t <type> <name>

• cd <name>

• FslBuildGen.py

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 177 / 185



Then do a two way merge of the old source directory and the new one. If any dependencies were manually added to Fsl.gen in
the sample, they will have to be re-added to the new one.

Then run

• FslBuildGen.py

The project should now be converted.

17.15.2 From 2.1 to 2.2
V2.1 can easily be upgraded to 2.2. Just run FslBuildGen.py to update it.

17.15.3 From 2.2 to 2.3
V2.2 can easily be upgraded to 2.3. Just run FslBuildGen.py to update it.

17.16 What’s new
Version 5.1

• All ThirdParty code is now downloaded as needed instead of being included in the repo.

• Windows builds now default to Visual Studio 2017 instead of 2015.

• Basic support for changing the color-space via EGL.

• Examples of how to setup SRGB and HDR framebuffers.

• HDR to LDR display rendering examples with various basic tone-mapping algorithms.

• Vulkan enabled for the Yocto Wayland backend.

• Assimp upgraded to 4.1 on most platforms.

• GLES3.ColorspaceInfo

• GLES3.EquirectangularToCubemap

• GLES3.GammaCorrection demo.

• GLES3.HDR01_BasicToneMapping

• GLES3.HDR02_FBBasicToneMapping

• GLES3.HDR03_SkyboxTonemapping

• GLES3.HDR04_HDRFramebuffer

• GLES3.MultipleViewportsFractalShader demo.

• GLES3.Scissor101

• GLES3.Skybox

• GLES3.SRGBFramebuffer

• GLES3.TextureCompression demo.

• Vulkan.VulkanInfo demo.

• Android build now requires Android Studio 3.1 and the Android NDK16b or newer.

Version 5.0.1

• OpenVX.SoftISP demo.

• OpenCL.SoftISP demo.

Version 5.0

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 178 / 185



• Tools now require Python 3.4+ instead of python 2.7

• FslBuildNew script that can help you create a new project fast.

• Vulkan support is much closer to its final state.

• The application registration method has been changed so it’s more future proof and allow for greater customization.

• Prebuild binaries have been removed.

— FslImageConvert.exe was removed as we now support saving screenshots directly in jpg.

— Prebuild windows libraries removed as we now download and build them on demand instead.

• The directory structure was updated to make it simpler.

• Some tags in Fsl.gen xml files were deprecated.

• Gamepad support.

• New libraries

— Stb, xinput, perfcounters.

Version 4.0

• First public release on github.

• Early access support for Vulkan, OpenCL, OpenCV and OpenVX.

— Vulkan samples.

— OpenVX samples.

— OpenCL samples.

— OpenCV samples.

• New libraries

— GLI 0.8.10, GLM 0.9.7.6

• PixelFormats are now compatible with the vulkan pixel formats.

• FslBuild.py script introduced as a simple unified way to build on all platforms if so desired. It’s still possible to build using
the native platform method.

• FslBuild scripts now support limited feature based filtering.

• Introduced a content pipeline to help build vulkan shaders.

• Windows builds

— Visual Studio 2015 is now the default environment instead of 2013

— We now use the OpenVG reference implementation to emulate OpenVG.

Version 2.3

• OpenGLES 3.1 support.

• A new ContentMonitor can reload your sample when it detects changes to the content folder (this does not work on
Android). This allows for rapid prototyping on most platforms.

• New samples:

— DFSimpleUI101, ModelLoaderBasics, ModelLoaderViewer, Tessellation101, TessellationSample.

• New libraries:

— FslAssimp, FslGraphics3D, FslSceneFormat, FslSimpleUI, FslGraphicsGLES3v1

• New experimental UI framework intended to quickly create a UI for your sample app.

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 179 / 185



• Assimp support on most platforms. It is not supported on Android here we recommend using the FslSceneFormat instead.
In general, it will be much more efficient to preprocess your model on a fast platform like a PC and save it in the
FslSceneFormat instead of doing it on relatively slow target platform.

• Experimental support for generating Visual Studio 2015 projects (see the FslBuildgen documentation for details).

• Content loader for Binary texture and basic font kerning information.

• Windows PowerVR OpenGLES emulation support.

Version 2.2

• Demo content can now be stored in bmp, png and jpeg format on all platforms.

— Some platforms support extra formats via the DevIL image library.

• Onscreen performance graph support that can be augmented with custom data.

• Pause and single stepping during demo playback.

• Added infrastructure that allows samples to share a library. See DemoApps/Shared for example libraries.

• Lots of new samples.

— The Blur, FractalShader, FurShellRendering and DirectMultiSamplingVideoYUV are functional but experimental.

• Experimental G2D support.

• Experimental NativeBatch2D support under 3D api’s. See the DFNativeBatch2D samples for an example of how it works.

• Experimental –mmdc parameter for Yocto builds. If it shows the incorrect information then run mmdc2 before running the
sample as it will reset things correctly.

Version 2.1

• OpenVG support.

• OpenVG examples.

• Examples: T3DstressTest for GLES2 + GLES3.

• Most samples were upgraded to use the Content system to load their shaders and graphics.

• All samples now support the following arguments:

— –LogStats = Log basic rendering stats

— –ScreenshotFrequency <frequency> = Create a screenshot at the given frame frequency (Not supported for
OpenVG).

NXP Semiconductors
Demo Framework

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 180 / 185



Chapter 18
Environment Variables Summary
The table below lists the environment variables (ENV) available in the GPU drivers.

The use of most environment variables remains static from driver version to driver version, but sometimes these variables need
refinements to meet new, advanced conditions not present with the ENV initially introduced.

18.1 Environment variable for drivers and HAL
Table 64. Environment variables for drivers and HAL

ENV name Backends supported Note

FB_IGNORE_DISPLAY_SIZE FB/WLD 0: Clip window to device display size. 1: Do not clip window to
the device limits for width and height.

FB_MULTI_BUFFER FB/WLD Number of backend buffers of the framebuffer device. For
WLD, define the multibuffer number of Weston.

FB_FRAMEBUFFER_N FB/WLD Define the Nth framebuffer device.

FB_LEGACY FB If board doesn’t support drm-fb, ignore this variable.

0: GPU render through drm

1: GPU directly render to framebuffer.

VG_APITIME FB/WLD/X11 Enable VG API function execution time print.

VIV_MGPU_AFFINITY FB/WLD/X11 Control the multiple GPUs affinity configuration.

Possible value:

• Not defined or defined as "0" GPUs work in
GPU_COMBINED mode.

• 1:0 GPUs work in GPU_INDEPEDNENT mode, GPU0 is
used.

• 1:1 GPUs work in GPU_INDEPEDNENT mode, GPU1 is
used.

VIV_DEBUG FB/WLD/X11 Define the user debug message level

(-MSG_LEVEL: ERROR/WARNING).

VIV_FBO_PREFER_MEM FB/WLD/X11 Renderbuffer is not freed after colorbuffer detaches from FBO
(GL ES 2.0)

VIV_DISABLE_HZ FB/WLD/X11 This variable can be specifically enabled for i.mx6d/q to avoid
gpu hang with occlusion query in ES30, because of gpu
hardware problem HBN1246

GPU_VIV_EXT_RESOLVE FB/WLD/X11 Enable the external resolve mode (1 by default for FB).

Table continues on the next page...

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 181 / 185



Table 64. Environment variables for drivers and HAL (continued)

ENV name Backends supported Note

GPU_VIV_DISABLE_SUPER
TILED_TEXTURE

FB/WLD/X11 Disable supertiled texture (64x64 tiled texture is not used).

GPU_VIV_DISABLE_CLEAR
_FB

FB/WLD/X11 Enable clear buffer when a new Window surface is created.

GPU_VIV_WL_MULTI_BUFF
ER

WLD Define the client multibuffer number.

WL_EGL_SYNC_SWAP WLD 0: Use asynchronous swap for better performance by default.

1: Enable synchronous swap with some performance impact.

DRI_IGNORE_DISPLAY_SIZ
E/

X_IGNORE_DISPLAY_SIZE

X11 0: Clip window to device display size. 1: Do not clip window to
the device limits for width and height.

__GL_DEV_FB X11 Set the path for framebuffer device like /dev/fb0.

LIBGL_ALWAYS_INDIRECT X11 Make OGL go into indirect mode. All rendering is done
by XserverSet.

LIBGL_DEBUG X11 Print error messages to stderr if LIBGL_DEBUG env var is set.
Print information messages to stderr if LIBGL_DEBUG env var
is set to “verbose”.

VIV_PROFILE vProfiler Enable profiler. Different level results generate
different results.

VP_COUNTER_FILTER vProfiler Used to control profile different system resource like
memory/CPU time usage.

VP_FRAME_END vProfiler When VIV_PROFILE=3, specify the frame to end profiling
with vProfiler.

VP_FRAME_NUM vProfiler When VIV_PROFILE=1, used to specify the number of frames
dumped by vProfiler.

VP_FRAME_START vProfiler When VIV_PROFILE=3, specify the frame to start profiling
with vProfiler.

VP_OUTPUT vProfiler Specify the output file name of vProfiler (default
is vprofiler.vpd).

VP_PROCESS_NAME vProfiler Choose profiler enable process (This option is only available for
Android platform, not available for Linux OS).

VP_SYNC_MODE vProfiler Enable [1] or disable [0] the synchronous mode of vProfiler
(default is synchronous enabled).

Table continues on the next page...

NXP Semiconductors
Environment Variables Summary

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 182 / 185



Table 64. Environment variables for drivers and HAL (continued)

ENV name Backends supported Note

VP_USE_GLFINISH vProfiler Use glFinish as the frameEnd.

VIV_TRACE vTracer Enable tracer. Different levels could generate different logs.

18.2 Environment variable for compiler
Table 65. Environment variables for compiler

ENV NAME Compiler Note

VC_DUMP_SHADER_SOURCE GLSLC/VS
C

Enable dumping the shader source code.

NXP Semiconductors
Environment Variables Summary

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 183 / 185



Chapter 19
Revision History
Table 66. Revision history

Revision number Date Substantive changes

1 11/2018 Updated Chapter "OpenCL" with more precise information and also
covered latest i.MX products.

2 06/2019 Made some grammatical updates.

3 08/2019 Added the i.MX 8M Nano information.

4 11/2019 Updated the Vivante IDE information.

5 04/2020 Updated for the Linux L5.4.3_2.0.0 and android-10.0.0_2.1.0 releases.

6 06/2020 Updated for the Linux L5.4.24-2.1.0 and later release.

7 12/2020 Updated for the Linux L5.4.70_2.3.0, android-11.0.0_1.0.0, and
later release.

7.1 03/2021 Updated Section 13.5.4 “Enabling vProfiler on Linux” as vProfiler no
longer requires kernel module parameter, and made abundant changes to
context description.

8 06/2021 Updated for the Linux LF5.10.35_2.0.0 and android-11.0.0_1.2.1
releases.

NXP Semiconductors

i.MX Graphics User's Guide, Rev. 8, 11 June 2021
User's Guide 184 / 185



How To Reach
Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under its
patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the
following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer
is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that
best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless
of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners.  AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2018-2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11 June 2021
Document identifier: IMXGRAPHICUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 i.MX full GPU line

	2 i.MX G2D API
	2.1 Overview
	2.2 Enumerations and structures
	2.2.1 g2d_format enumeration
	2.2.2 g2d_blend_func enumeration
	2.2.3 g2d_cap_mode enumeration
	2.2.4 g2d_rotation enumeration
	2.2.5 g2d_cache_mode enumeration
	2.2.6 g2d_hardware_type enumeration
	2.2.7 g2d_surface structure
	2.2.8 g2d_buf structure
	2.2.9 g2d_surface_pair structure
	2.2.10 g2d_feature enumeration

	2.3 G2D function description
	2.3.1 g2d_open
	2.3.2 g2d_close
	2.3.3 g2d_make_current
	2.3.4 g2d_clear
	2.3.5 g2d_blit
	2.3.6 g2d_copy
	2.3.7 g2d_query_cap
	2.3.8 g2d_enable
	2.3.9 g2d_disable
	2.3.10 g2d_cache_op
	2.3.11 g2d_alloc
	2.3.12 g2d_free
	2.3.13 g2d_flush
	2.3.14 g2d_finish
	2.3.15 g2d_multi_blit
	2.3.16 g2d_query_hardware
	2.3.17 g2d_query_feature

	2.4 Support of new operating system in G2D
	2.5 Sample code for G2D API usage
	2.5.1 Color space conversion from YUV to RGB
	2.5.2 Alpha blend in source over mode
	2.5.3 Source cropping and destination rotation
	2.5.4 Multi source blit
	2.5.5 Sharing Buffers between APIs using G2D Buffers:

	2.6 Feature list on multiple platforms

	3 i.MX EGL and OGL Extension Support
	3.1 Introduction
	3.2 EGL extension support
	3.3 OpenGL ES extension support
	3.4 Extension GL_VIV_direct_texture
	3.5 Extension GL_VIV_texture_border_clamp

	4 i.MX Framebuffer API
	4.1 Overview
	4.2 API data types and environment variables
	4.2.1 Data types
	4.2.2 Environment variables

	4.3 API description and syntax

	5 OpenCL
	5.1 Overview
	5.1.1 General description
	5.1.2 OpenCL framework
	5.1.2.1 OpenCL execution model: kernels and work elements
	5.1.2.2 OpenCL command queues
	5.1.2.3 OpenCL memory model
	5.1.2.4 Host to GPGPU compute device data transfers

	5.1.3 OpenCL profiles
	5.1.4 Vivante OpenCL embedded compatible IP
	5.1.5 Vivante OpenCL full profile hardware model

	5.2 Vivante OpenCL implementation
	5.2.1 OpenCL pipeline
	5.2.2 Front end
	5.2.3 OpenCL compute unit
	5.2.4 Memory hierarchy
	5.2.5 CL Extension support
	5.2.5.1 CL_DEVICE_EXTENSION support
	5.2.5.2 Vivante OpenCL extension support


	5.3 Optimization for OpenCL embedded profile
	5.3.1 Using preferred multiple of work-group size
	5.3.2 Using multiple work-groups of reduced size
	5.3.3 Packing work-item data
	5.3.4 Improving locality
	5.3.5 Minimizing use of 1 KB local memory
	5.3.6 Using 16 byte memory Read/Write size
	5.3.7 Using _RTZ rounding mode
	5.3.8 Using float4 for better performance on i.MX 8M Quad and i.MX 8QuadXPlus
	5.3.9 Using native functions
	5.3.9.1 Using native_function() for increased performance
	5.3.9.2 Using native_divide and native_reciprocal for faster floating point calculations
	5.3.9.3 Using compile option for native functions

	5.3.10 Using buffers instead of images

	5.4 OpenCL Debug messages
	5.4.1 OCL-007005: (clCreateKernel) cannot link kernel
	5.4.2 Not enough register memory
	5.4.3 Not enough instruction memory
	5.4.4 GlobalWorkSize over hardware limit

	5.5 Zero copy
	5.6 Instruction cache availability for i.MX graphics

	6 OpenVX Introduction
	6.1 Overview
	6.2 Designing framework of OpenVX
	6.2.1 Software landscape
	6.2.2 Object-oriented behaviors
	6.2.3 Graphs concepts
	6.2.4 User kernels

	6.3 OpenVX extension implementation
	6.3.1 Hardware requirements
	6.3.2 EVIS instruction interface
	6.3.3 Extended language features
	6.3.4 Packed types
	6.3.5 Initializing constants on load
	6.3.6 Inline assembly

	6.4 OpenCL functions compatible with Vivante vision
	6.4.1 Read_Imagef,i,ui
	6.4.2 Write_Imagef,i,ui
	6.4.3 Query Image Dimensions
	6.4.4 Channel Data Types Supported
	6.4.5 Image Channel Orders Supported


	7 Vulkan
	7.1 Overview
	7.2 Vivante Extension Support for Vulkan
	7.3 Vulkan Validation Layers
	7.4 Window System Integration

	8 Multiple GPUs and Virtualization
	8.1 Overview
	8.2 Multi-GPU configurations
	8.3 GPU affinity configuration
	8.4 OpenCL on multi-GPU device
	8.5 GPU virtualization configuration

	9 GBM - Generic Buffer Management
	9.1 Introduction to DRM Format Modifiers

	10 Wayland and Weston
	10.1 Overview
	10.2 Wayland EGL
	10.3 Weston Compositor
	10.3.1 Weston Backends
	10.3.2 Weston Renderer
	10.3.2.1 GL Renderer
	10.3.2.2 G2D Renderer

	10.3.3 Weston Shells
	10.3.3.1 Desktop shell
	10.3.3.2 Fullscreen shell
	10.3.3.3 IVI-shell



	11 X Windowing Acceleration
	12 Advanced GPU Configuration
	12.1 GPU Scaling Governor
	12.2 GPU Device Cooling

	13 Vivante IDE
	13.1 VivanteIDE overview
	13.1.1 VivanteIDE component overview

	13.2 VivanteIDE Requirements
	13.2.1 Operating system compatibility
	13.2.2 Hardware requirements
	13.2.3 VivanteIDE license

	13.3 VivanteIDE installation
	13.3.1 VivanteIDE package
	13.3.2 Installation
	13.3.2.1 Linux GUI
	13.3.2.2 Windows GUI
	13.3.2.3 Installation from command line

	13.3.3 VivanteIDE launch
	13.3.3.1 Linux launch of GUI tool
	13.3.3.2 Windows launch of GUI tool
	13.3.3.3 Command line tool launch
	13.3.3.4 Basic launch path summary


	13.4 VivanteIDE GUI
	13.4.1 Selecting a workspace
	13.4.2 Switching perspective
	13.4.3 Creating a new project
	13.4.4 Creating an OpenVX kernel wizard
	13.4.5 Source code smart editing for OpenVX and OpenCL
	13.4.6 Creating a Neural Network Inference Project from a model file
	13.4.7 Building a sample project
	13.4.8 Debugging and profiling a project

	13.5 VivanteIDE – Debug and Profiling
	13.5.1 Fundamentals of performance optimization
	13.5.2 VPD Analyzer for Analyzing Performance Data
	13.5.3 vProfiler
	13.5.4 Enabling vProfiler on Linux OS
	13.5.4.1 Setting vProfiler property options for OpenGL ES

	13.5.5 Setting vProfiler property options for Vision, OpenVX Profiling
	13.5.6 Enabling vProfiler Option for Android OS
	13.5.7 Setting vProfiler property options for OpenGL ES Profiling with Android
	13.5.8 vProfiler Set Property Options for Vision/OVX Profiling with Android
	13.5.9 Enabling vProfiler Option for QNX
	13.5.9.1 Setting vProfiler Environment Variables for OGL/OES Profiling
	13.5.9.2 Setting vProfiler Environment Variables for Vision, OpenVX Profiling

	13.5.10 Environment Variable Details
	13.5.10.1 VIV_PROFILE
	13.5.10.2 VP_OUTPUT
	13.5.10.3 VP_USE_GLFINISH
	13.5.10.4 VP_DISABLE_PROBE
	13.5.10.5 VP_ENABLE_PRINT


	13.6 VPD Analyzer
	13.6.1 Loading a VPD File
	13.6.2 VPD Analyzer Perspective
	13.6.3 System Info View
	13.6.4 Program Counters View
	13.6.5 Closing the VPD File

	13.7 SPIR-V Disassembler
	13.7.1 Shader Assistant
	13.7.2 vTexture

	13.8 VivanteIDE command line tools
	13.8.1 Preparing the environment
	13.8.2 vCompiler Command Line Syntax for OGL and OGLES
	13.8.2.1 Syntax
	13.8.2.2 Input parameters (required)
	13.8.2.3 Input parameters (optional)
	13.8.2.4 vCompilerOutput
	13.8.2.5 vCompiler Syntax examples

	13.8.3 vcCompiler Command Line Syntax for OCL
	13.8.3.1 Syntax
	13.8.3.2 Input parameters (required)
	13.8.3.3 Input parameters (optional)
	13.8.3.4 vcCompiler Output
	13.8.3.5 vcCompiler Syntax Examples

	13.8.4 vTextureTools command line tool
	13.8.4.1 Syntax
	13.8.4.2 General parameters
	13.8.4.3 Compression/Decompression parameters
	13.8.4.4 Tile/De-Tile parameters
	13.8.4.5 vTexture Syntax Examples



	14 GPU Tools
	14.1 gpuinfo tool
	14.1.1 Introduction
	14.1.2 Usage
	14.1.3 Sample log information
	14.1.3.1 GPU hardware information
	14.1.3.2 Total memory information
	14.1.3.3 Process user space GPU memory usage information
	14.1.3.4 GPU idle percentage


	14.2 gputop tool
	14.2.1 Synopsis
	14.2.2 Interactive mode
	14.2.3 Description
	14.2.4 Requirements
	14.2.4.1 Linux OS
	14.2.4.2 QNX

	14.2.5 Notes
	14.2.5.1 Sampling hardware-counters
	14.2.5.2 Context-aware counters
	14.2.5.3 Unsupported GPUs

	14.2.6 Pages
	14.2.6.1 Client attached page
	14.2.6.2 Vidmem page

	14.2.7 Examples
	14.2.8 See Also

	14.3 GPU clock information and debugging
	14.4 Apitrace user guide
	14.4.1 Introduction
	14.4.2 Install
	14.4.2.1 Yocto
	14.4.2.2 PC

	14.4.3 Usage
	14.4.3.1 Trace OpenGL ES1.1/2.0/3.0 application
	14.4.3.2 Trace OpenGL ES 1.1/2.0/3.0 Java application on the Android platform
	14.4.3.3 Trace OpenGL application
	14.4.3.4 Replay
	14.4.3.4.1 Analysis


	14.4.4 Reference

	14.5 Renderdoc
	14.5.1 Renderdoc components
	14.5.2 Running renderdoccmd on i.MX
	14.5.3 Capturing and replaying remotely
	14.5.4 Reference


	15 GPU Memory Introduction
	15.1 GPU memory overview
	15.2 GPU memory pools
	15.3 GPU memory allocators
	15.4 GPU reserved memory
	15.5 GPU memory base address

	16 Application Programming Recommendations
	16.1 Understanding the system configuration and target application
	16.2 Optimizing off-chip data transfer such as accessing off-chip DDR memory/mobile DDR memory
	16.3 Avoiding W-clipping issue in the application program
	16.4 Avoiding GPU hanging and data corruption when using occlusion query
	16.5 Avoiding random cache or memory access
	16.6 Optimizing your use of system memory
	16.7 Targeting a fixed frame rate that is visibly smooth
	16.8 Minimizing GL state changes
	16.9 Batch primitives to minimize the number of draw calls
	16.10 Performing calculations per vertex instead of per fragment/pixel
	16.11 Enabling early-Z, hierarchical-Z, and back face culling
	16.12 Using branching carefully
	16.13 Using VBOs instead of static or stack data as vertex data
	16.14 Using dynamic VBO when the data is changing frame by frame
	16.15 Tessellating your data to make Hierarchical Z (HZ) work
	16.16 Using dynamic textures as a texture cache (texture atlas)
	16.17 Stiching small triangle strips together
	16.18 Specifying EGL configuration attributes precisely
	16.19 Using aligned texture/render buffers
	16.20 Disabling MSAA rendering unless high quality is needed
	16.21 Avoiding partial clears
	16.22 Avoiding mask operations
	16.23 Using MIPMAP textures
	16.24 Using compressed textures if constricted by RAM/ROM budget
	16.25 Drawing objects from near to far if possible
	16.26 Avoiding indexed triangle strips
	16.27 Limiting vertex attribute stride within 256 bytes
	16.28 Avoiding binding buffers to mixed index/vertex array
	16.29 Avoiding using CPU to update texture/buffer contexts during render
	16.30 Avoiding frequent context switching
	16.31 Optimizing resources within a shader
	16.32 Avoiding using glScissor Clear for small regions
	16.33 Using PRE to accelerate data transfer
	16.34 i.MX 8QuadMax dual-GPU performance

	17 Demo Framework
	17.1 Overview
	17.1.1 Executive summary
	17.1.2 Technical overview

	17.2 Introduction
	17.3 Design overview
	17.4 High level overview
	17.4.1 DemoMain
	17.4.2 DemoHost
	17.4.3 DemoApp

	17.5 Demo application details
	17.5.1 Demo method overview
	17.5.1.1 Resized
	17.5.1.2 FixedUpdate
	17.5.1.3 Update
	17.5.1.4 Draw

	17.5.2 Fixed or variable timestep update
	17.5.3 Execution order of methods during a frame
	17.5.4 Exit
	17.5.5 Dealing with screen resolution changes
	17.5.6 Content loading
	17.5.7 Demo registration
	17.5.7.1 OpenGLES 3.X registration


	17.6 Demo playback
	17.6.1 Command line arguments
	17.6.2 Demo single stepping/pause

	17.7 Helper class overview
	17.7.1 FslBase
	17.7.1.1 Bits
	17.7.1.2 IO
	17.7.1.3 Log
	17.7.1.4 Math
	17.7.1.5 String
	17.7.1.6 System

	17.7.2 FslGraphics
	17.7.2.1 Font
	17.7.2.2 IO
	17.7.2.3 Render
	17.7.2.4 TextureAtlas
	17.7.2.5 Vertices
	17.7.2.6 Window

	17.7.3 FslUtil.OpenGLES2
	17.7.4 FslUtil.OpenGLES3
	17.7.5 FslUtil.OpenGLES3v1
	17.7.6 FslUtil.OpenVG
	17.7.7 FslGraphics3D
	17.7.8 FslAssimp
	17.7.9 FslGraphics3D.SceneFormat
	17.7.10 FslSimpleUI

	17.8 FslBuild scripts
	17.8.1 FslBuildGen.py
	17.8.2 FslBuild.py
	17.8.2.1 Useful arguments
	17.8.2.2 Important notes

	17.8.3 Build system per platform

	17.9 Android SDK+NDK on Windows build guide
	17.9.1 Prerequisites
	17.9.2 Environment setup
	17.9.3 To Compile and run an existing sample application
	17.9.4 To create a new GLES2 demo project named 'CoolNewDemo'
	17.9.5 Using Android studio
	17.9.6 Linux notes
	17.9.7 Notes
	17.9.7.1 Command line app building via Ant


	17.10 Ubuntu build guide
	17.10.1 Prerequisites
	17.10.2 Environment setup
	17.10.3 Compiling all samples
	17.10.4 Compiling and running an existing sample application
	17.10.5 Creating a new GLES2 demo project named 'CoolNewDemo'
	17.10.6 Notes
	17.10.6.1 Manual environment setup
	17.10.6.2 Override platform auto-detection
	17.10.6.3 Executable location


	17.11 Windows build guide
	17.11.1 Prerequisites
	17.11.2 Environment setup
	17.11.3 Compiling and running an existing sample application
	17.11.4 Creating a new GLES2 demo project named 'CoolNewDemo'
	17.11.5 Notes
	17.11.5.1 Switching between emulators
	17.11.5.2 Executable location


	17.12 Yocto build guide
	17.12.1 Building using a prebuild Yocto SDK
	17.12.1.1 Prerequisites
	17.12.1.2 Preparing a Yocto SDK build
	17.12.1.3 Yocto SDK environment setup
	17.12.1.4 Ready to build

	17.12.2 Building using a full Yocto build
	17.12.2.1 Prerequisites
	17.12.2.2 Preparing a Yocto build
	17.12.2.3 Yocto environment setup
	17.12.2.4 Ready to build

	17.12.3 Using the demo framework
	17.12.4 Compiling all samples
	17.12.5 Compiling and running an existing sample application
	17.12.6 Creating a new GLES2 demo project named 'CoolNewDemo'
	17.12.7 Notes
	17.12.7.1 Manual environment setup
	17.12.7.2 Override platform auto-detection
	17.12.7.3 Building for multiple backends
	17.12.7.4 Executable location


	17.13 FslContentSync.py notes
	17.14 Known limitations
	17.14.1 General
	17.14.2 Android OS
	17.14.3 Ubuntu
	17.14.4 Windows

	17.15 Upgrading samples from earlier SDKs
	17.15.1 From 2.0 to 2.1
	17.15.2 From 2.1 to 2.2
	17.15.3 From 2.2 to 2.3

	17.16 What’s new

	18 Environment Variables Summary
	18.1 Environment variable for drivers and HAL
	18.2 Environment variable for compiler

	19 Revision History

