

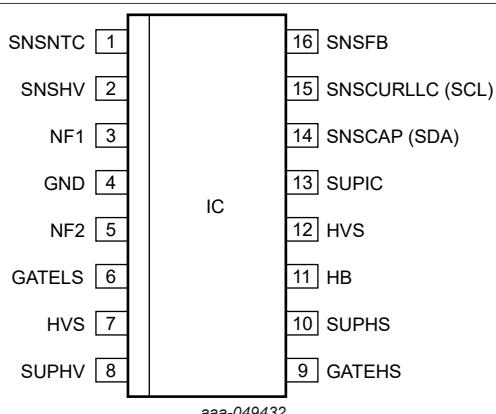
UM12393

TAA6065AT 100 W HVLV DC-DC design example

Rev. 1.0 — 15 January 2026

User manual

Document information


Information	Content
Keywords	LLC converter, high efficiency, power supply, TAA6065AT, TAA6065ATDB1659, 100 W, HVLV DC-DC, LLC, controller, converter, programmable settings, I2C
Abstract	The TAA6065AT is an AEC-Q100 automotive-qualified, digitally configurable controller for high-efficiency resonant micro-DC-DC converters and local BMS HV supplies.

1 Introduction

The TAA6065AT is an AEC-Q100 automotive-qualified, digitally configurable controller for resonant micro-DC-DC converters and local battery management system (BMS) high-voltage (HV) supplies. It meets the efficiency regulations of Energy Star, the Department of Energy (DoE), the Ecodesign Directive of the European Union, the European Code of Conduct, and other guidelines. To increase the efficiency of a low-voltage supply output, the TEA2095T dual SR controller can be added on the secondary side.

Operation modes and protections can be defined by a number of parameter settings for operation, and protections can be stored/programmed in an internal memory. This feature optimizes controller properties to application-specific requirements or optimizes/corrects performance during power supply production. At start, the IC loads the parameter values for operation. The TAA6065AT version is available to make setting changes on the fly.

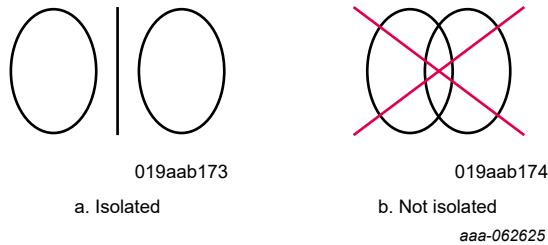
Figure 1. TAA6065AT pinning for the SO16 version

IMPORTANT NOTICE

For engineering development or evaluation purposes only

NXP provides this evaluation product under the following conditions:

Evaluation kits or reference designs are intended solely for technically qualified professionals, specifically for use in research and development environments to facilitate evaluation purposes.


This evaluation kit or reference design is not a finished product, nor is it intended to be a part of a finished product. Any software or software tools provided with an evaluation product are subject to the applicable terms that accompany such software or software tool.

The evaluation kit or reference design is provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals. This evaluation kit or reference design may be used with any development system or other source of I/O signals by connecting it to the host MCU or computer board via off-the-shelf cables. Final device in an application will be heavily dependent on proper printed circuit board layout and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality. This evaluation kit or reference design provided may not be complete in terms of required design, marketing, and or manufacturing related protective considerations, including product safety measures typically found in the end device incorporating the evaluation product. Due to the open construction of the evaluation product, it is the responsibility of the user to take all appropriate precautions for electric discharge. To minimize risks associated with the customers' applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact NXP sales and technical support services.

The application board is DC-mains high voltage powered. Avoid touching the board while it is connected to the mains voltage and when it is in operation. An isolated housing is obligatory when used in uncontrolled, non-laboratory environments. Galvanic isolation from the mains phase using a fixed or variable transformer is always recommended.

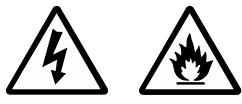

[Figure 2](#) shows the symbols on how to recognize these devices.

Figure 2. Isolation symbols

WARNING

Lethal voltage and fire ignition hazard

The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire. This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits. This product shall never be operated unattended.

2 Finding kit resources and information on the NXP web site

NXP Semiconductors provides online resources for this user manual and its supported devices at <https://www.nxp.com>.

2.1 Collaborate in the NXP community

In the NXP community, share ideas and tips, ask and answer technical questions, and receive input on just about any embedded design topic.

The NXP community can be found at <https://community.nxp.com>.

3 Getting ready

3.1 Kit contents

The box contains the TAA6065ATDB1659 design example, which incorporates the TAA6065AT in an SO16 package. [Figure 3](#) and [Figure 4](#) show the top side and bottom side of the design example.

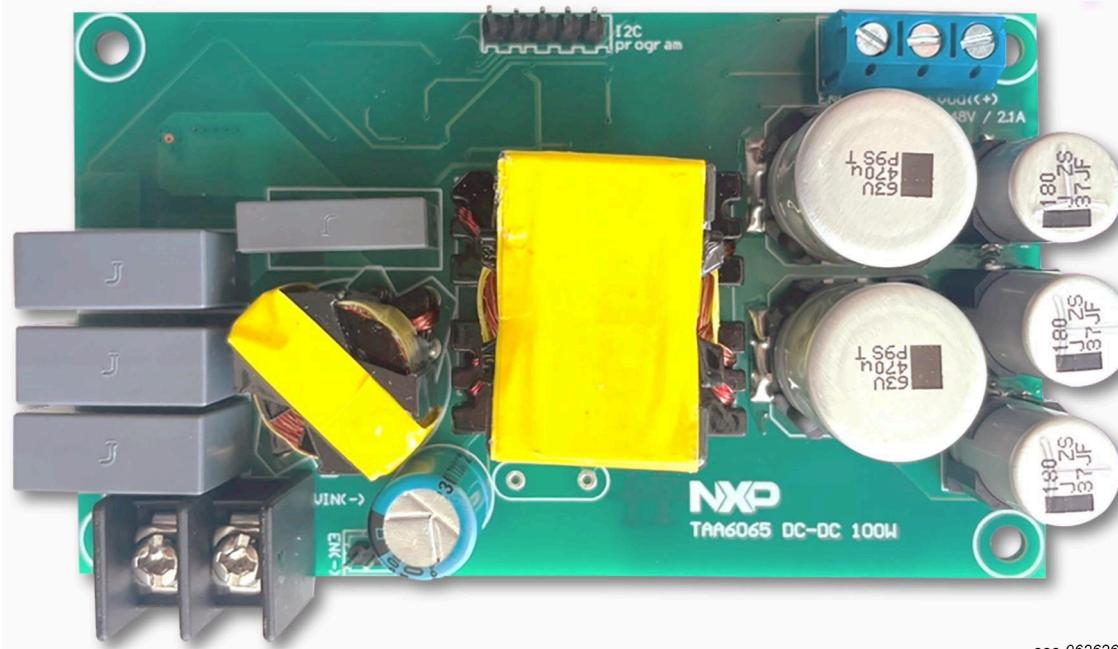


Figure 3. TAA6065AT 100W HVLV DC-DC design example (A)

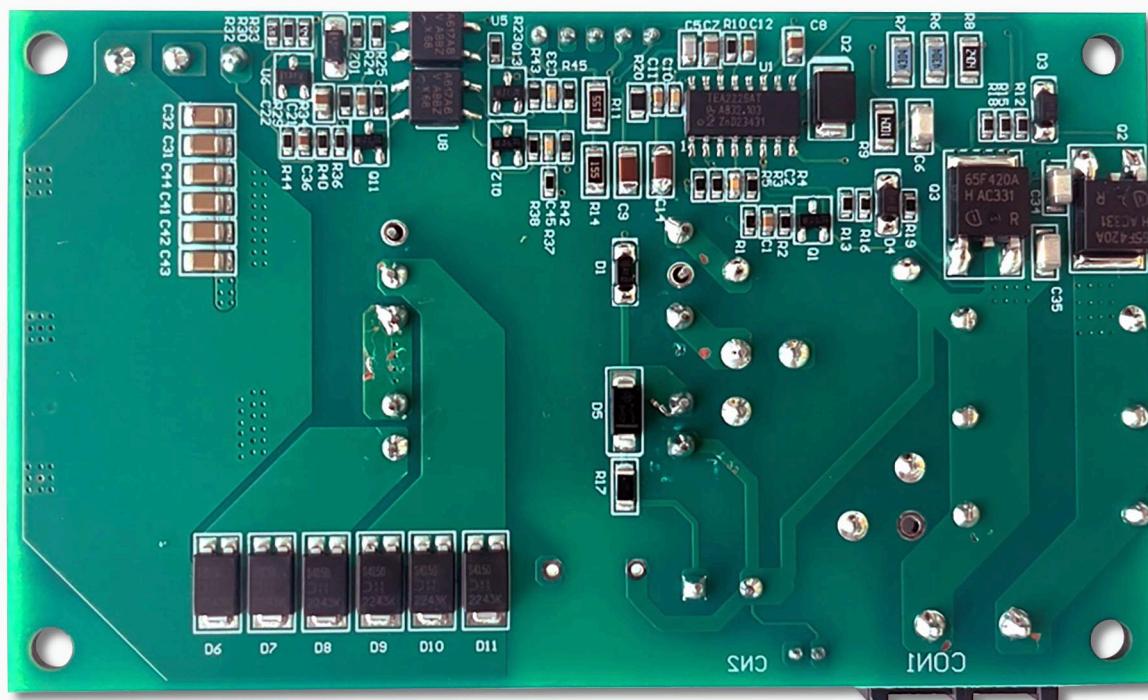


Figure 4. TAA6065AT 100W HVLV DC-DC design example (B)

4 Getting to know the hardware

4.1 Specifications

Table 1. Specification

Symbol	Parameter	Value	Condition
Input			
V_{mains}	DC mains voltage	220 V to 450 V	DC
Output			
V_{out}	Output voltage	48 V	
$I_{\text{out_max}}$	Maximum output current	2.1 A	
$\eta_{100\%}$	Max load efficiency	> 96.0 %	at 220 VDC – 450 VDC, 100 W P_{out}
$\eta_{5\%}$	Light load efficiency	> 86.0 %	at 220 VDC – 450 VDC, 5 W P_{out}
Temperature			
T_{comp}	Components temperature	Refer temp section	-40 °C ~ 85 °C

4.2 Features

- AEC-Q100 grade 1 qualified: -40 °C to +125 °C ambient temperature range
- LLC controller in a single small-size SO16 package
- Integrated high-voltage startup
- Integrated drivers and high-voltage level shifter (LS)
- High-side driver directly supplied from the low-side driver output
- Integrated X-capacitor discharge without additional external components
- Power good function
- Several parameters can easily be configured during evaluation with use of the graphical user interface (GUI), such as:
 - Operating frequencies to be outside the audible area at all operating modes
 - Soft start and soft stop in burst mode, reducing the audible noise
 - Accurate transition levels between operation modes (High-Power mode/Low-Power mode/Burst mode)
 - Enabling/disabling the Lower-Power mode

4.3 Green features

- Zero voltage switching for minimum switching losses
- High efficiency from low load to high load
- Compliant with latest energy-saving standards and directives (Energy Star, EuP)
- No-load input power < 75 mW for TAA6065AT/TEA2095T combination

4.4 Protection features

- Independently configurable levels and timers
- Many protections can independently be set to latched, safe restart, or latched after several attempts to restart
- Supply undervoltage protection (UVP)
- Overpower protection (OPP)
- Internal and external overtemperature protection (OTP)
- Capacitive mode regulation (CMR)
- Overvoltage protection (OVP)
- Overcurrent protection (OCP)
- Brownin/brownout protection
- Disable input
- Input to reset all protections

5 Performance measurement

5.1 Test facilities

- Oscilloscope: Agilent Technologies DSO9064A
- DC power source: Chroma 61502, DC mode
- Electronic load: Chroma 63030-80-60
- Digital power meter: WT210, Line filter, DC mode
- For high/low ambient temp test, SP1500VDC1800W (DC source), EL1200VDC6600W (E-load) and TEMI880 (Chamber) are used.

5.2 Test equipment setup

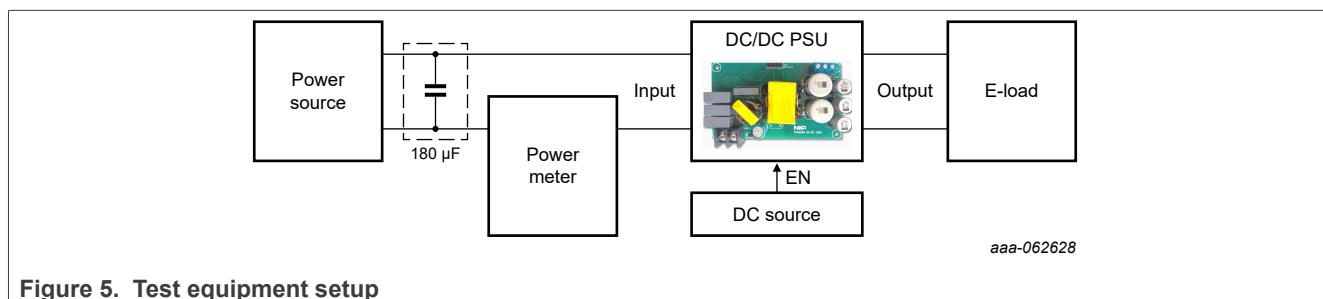
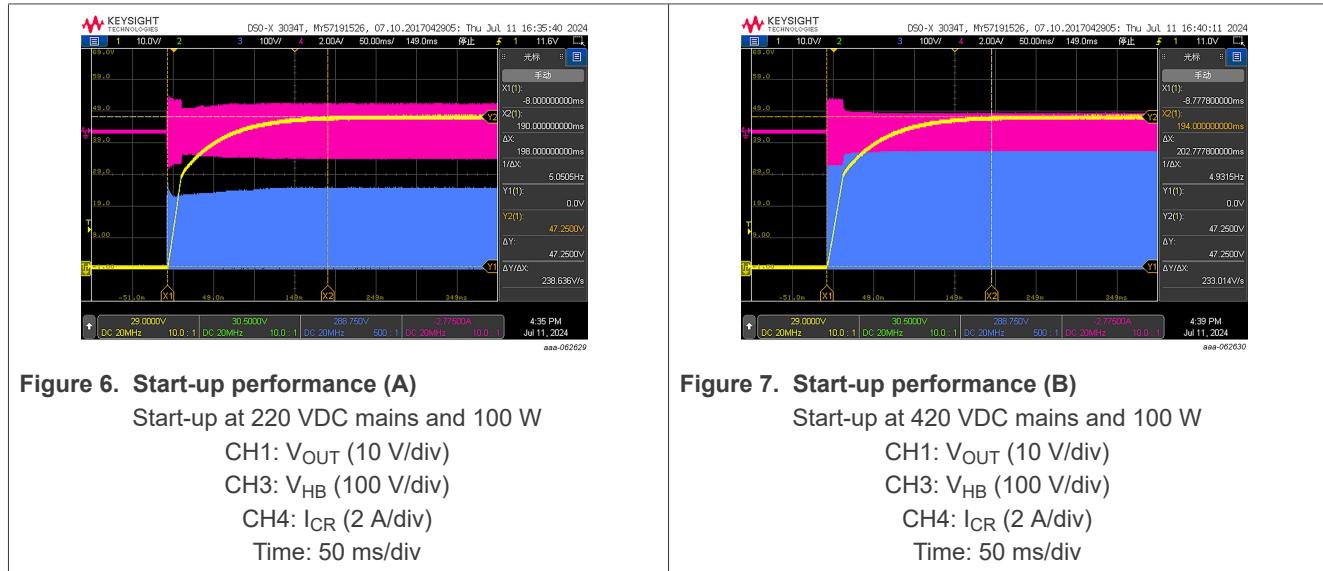
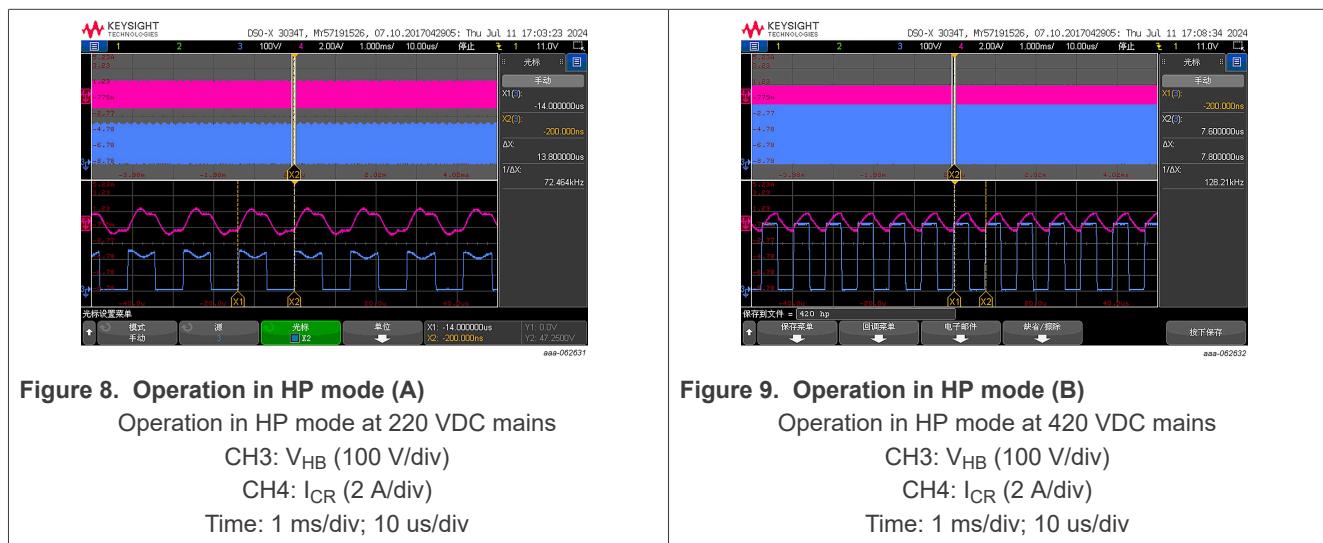
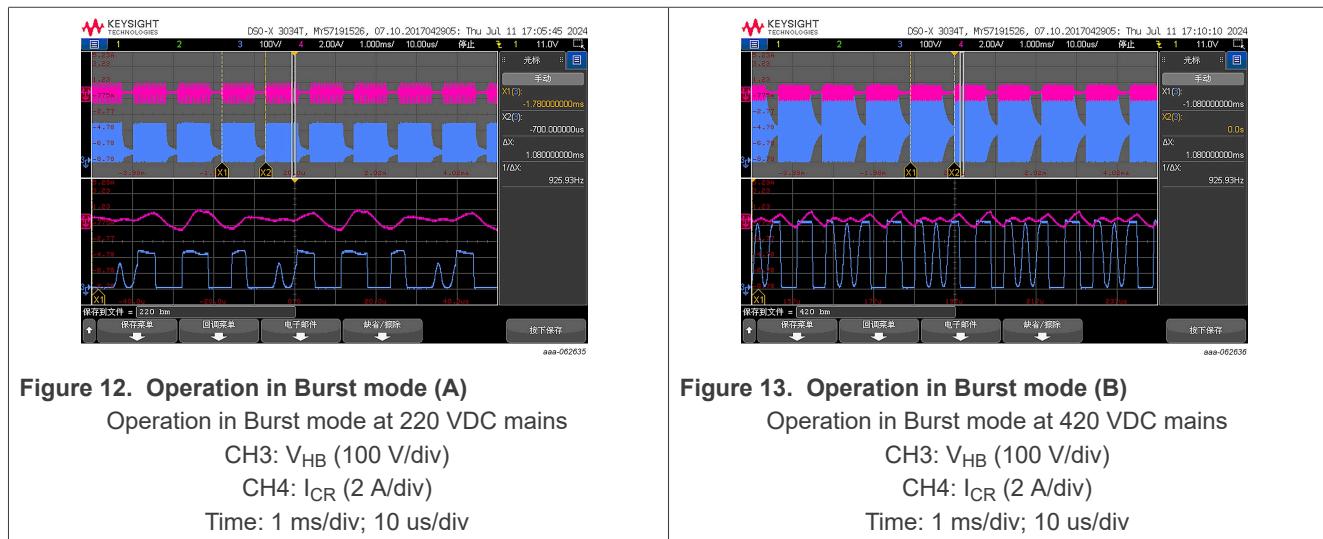
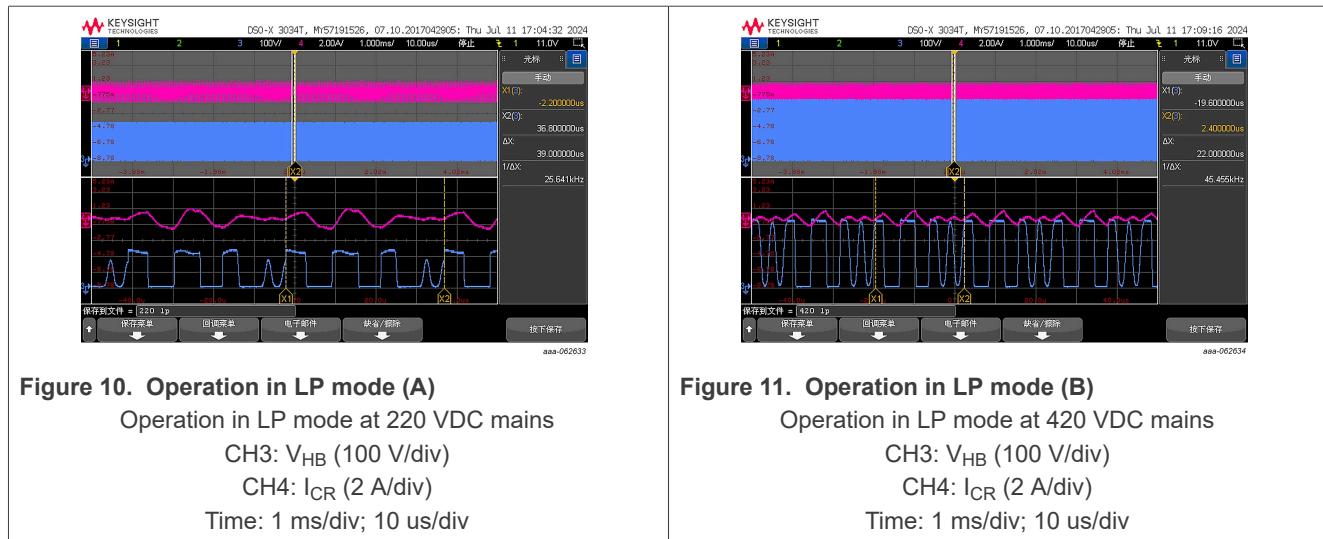



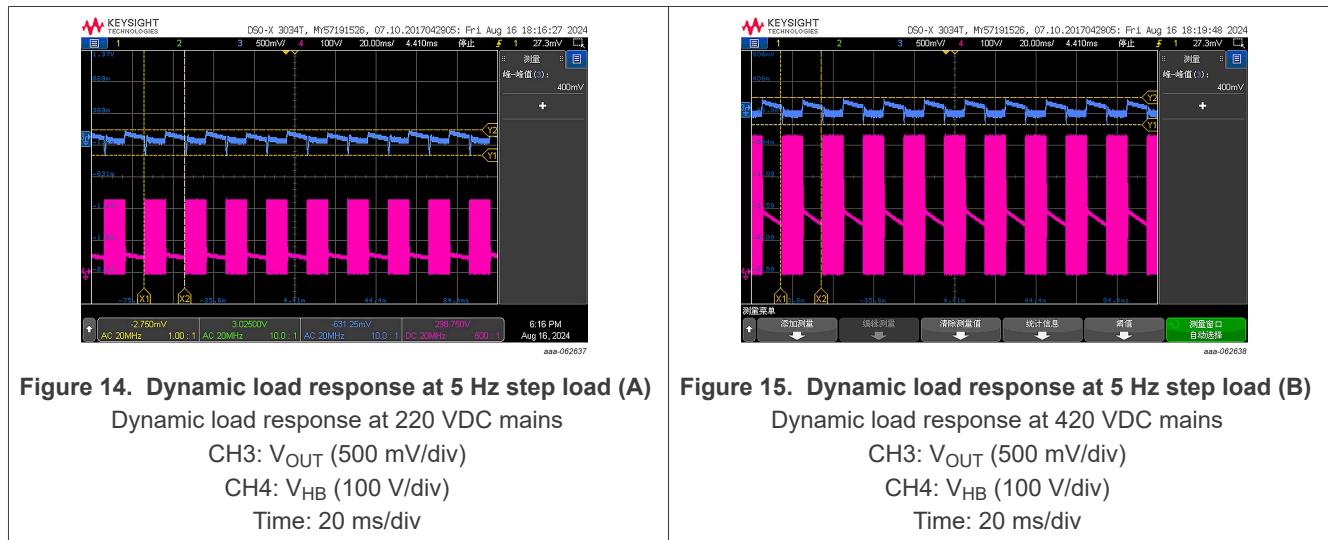
Figure 5. Test equipment setup


5.3 Startup behavior



When the SNSHV voltage exceeds LLC brownin level, the LLC gate starts switching. TAA6065AT implements soft start. During soft start, the peak SNSCAP voltage is gradually increased. The output voltage is increased to 48 V within 200 ms.

5.4 Normal operation

To achieve the best possible efficiency performance, the TAA6065AT incorporates three different operation modes (High-Power mode, Low-Power mode, and Burst mode). [Figure 8](#), [Figure 9](#), [Figure 10](#), [Figure 11](#), [Figure 12](#), and [Figure 13](#) show the waveforms of different operation modes when input 220 VDC and 420 VDC.



5.5 Dynamic load response

The TAA6065AT SNSCAP voltage control (cycle-by-cycle) achieves an output voltage regulation of $\pm 5\%$ during significant load change statuses. The peak-to-peak value during dynamic load condition is measured at the PCB end. For dynamic load, the output load is changed between maximum nominal load and no load. The slew rate is set as $2.5\text{ A}/\mu\text{s}$. The load step frequency is 5 Hz.

Table 2. Output voltage peak to peak at load steps

Specification peak to peak value	Output condition	220 VDC	420 VDC
4800 mV	0 A to 2.1 A at 5 Hz	400 mV	400 mV

5.6 Protections

5.6.1 Overpower protection

The TAA6065AT incorporates OPP protection via the SNSCAP pin. Overpower protection is tested with an increasing output current. To trigger the overpower protection, a 50 ms delay time is required, and TAA6065AT enters the Safe-Restart mode. The Safe-Restart mode secures the fixed restart time at 1 s.

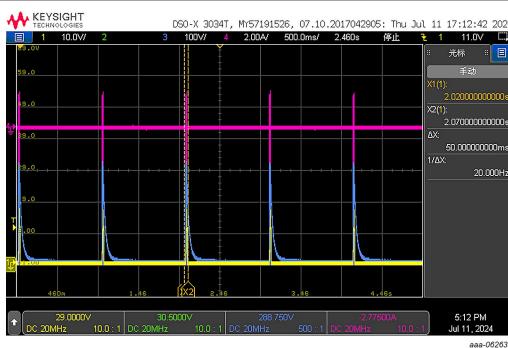


Figure 16. Overpower protection

CH1: V_{OUT} (10 V/div)

CH3: V_{HB} (100 V/div)

CH4: I_{CR} (2 A/div)

Time: 500 ms/div

5.6.2 Output short protection

The TAA6065AT incorporates OCP protection via the SNSCURLLC pin. This OCP protects the system from output short conditions that occur within a short time. When the SNSCURLLC voltage exceeds 4 V or drops to below 1 V, GATEHS or GATELS is immediately disabled to limit maximum resonant current. After several cycles, which is set by MTP consecutive current limit, the OCP is triggered.

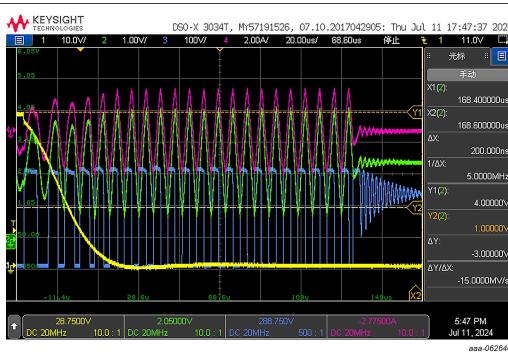


Figure 17. Output short protection

CH1: V_{OUT} (10 V/div)

CH2: $V_{SNSCURLLC}$ (1 V/div)

CH3: V_{HB} (100 V/div)

CH4: I_{CR} (2 A/div)

Time: 20 us/div

5.7 Efficiency test result

Efficiency is measured at max power rating, and efficiency is over than 96.0 % at whole range DC mains.

Table 3. Efficiency test result

Mains condition	Output condition	Specification	Test result
220VDC	100 W, 48 V, 2.1 A	> 96.0 %	95.9 %
300VDC	100 W, 48 V, 2.1 A	> 96.0 %	96.4 %
350VDC	100 W, 48 V, 2.1 A	> 96.0 %	96.6 %
400VDC	100 W, 48 V, 2.1 A	> 96.0 %	96.7 %

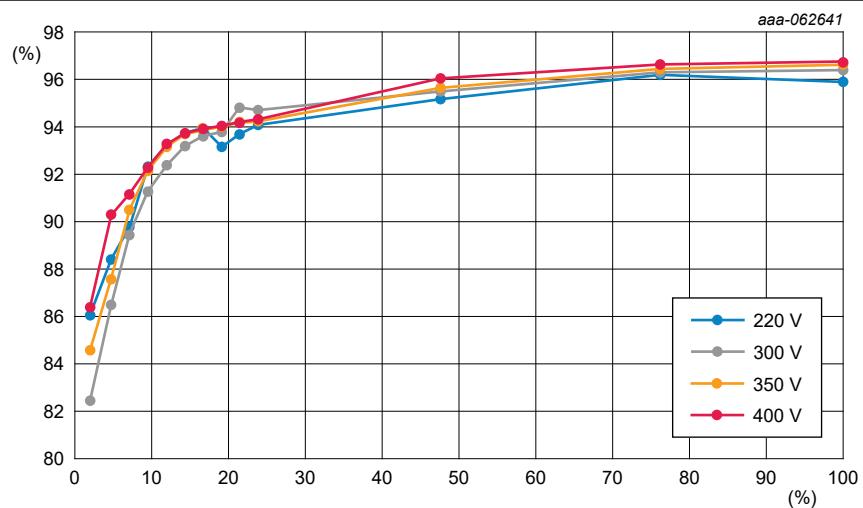


Figure 18. Efficiency

5.8 Output ripple

The output voltage ripple is measured at the PCB end. To reduce spurious noise signal, the end capacitor and the ground lead of the voltage probe are removed. The 0.1 μ F/50 V ceramic capacitor and the 10 μ F/50 V electrolytic capacitor are placed on the voltage probe. The maximum output voltage ripple is 211 mV.

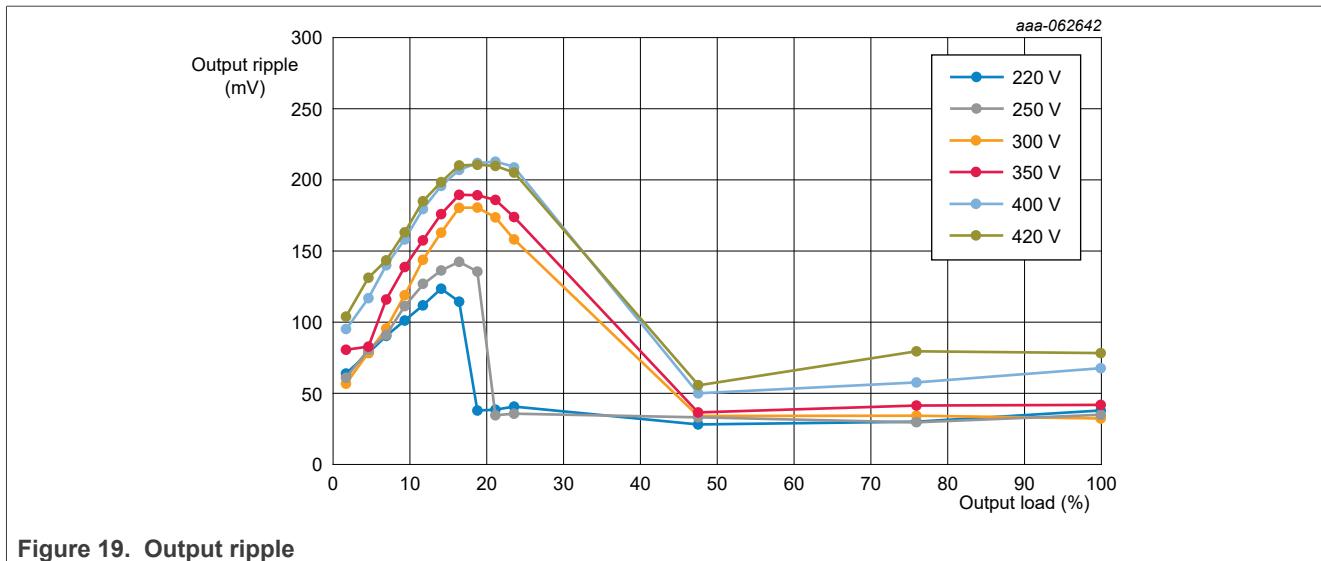


Figure 19. Output ripple

5.9 Audible noise

The audible noise specification and its result are shown in [Table 4](#). [Figure 20](#) shows the audible noise test result at each mains condition and different load conditions.

Table 4. Total harmonic distortion

Mains condition	Output condition	Specification	Test result (max value)
220 VDC	48 V and 0.20 A load	< 25 dB	20.6 dB
350 VDC	48 V and 2.1 A load	< 25 dB	17.6 dB
420 VDC	48 V and 0.7 A load	< 25 dB	14.7 dB

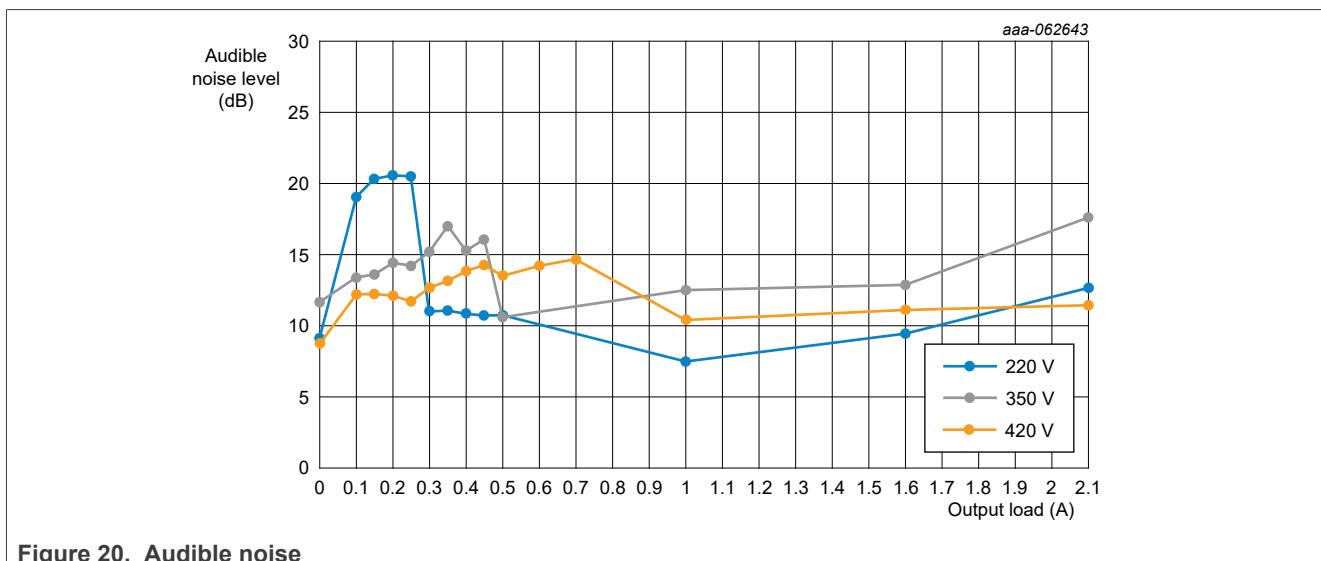


Figure 20. Audible noise

5.10 Components temperature performance

Temperature is measured at -40 °C and +85 °C condition.

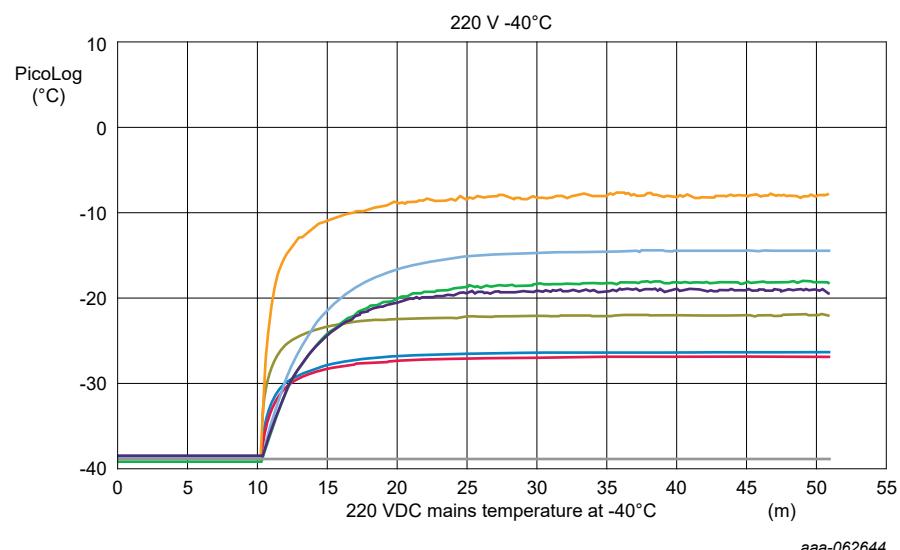


Figure 21. 220 VDC mains temperature at -40 °C

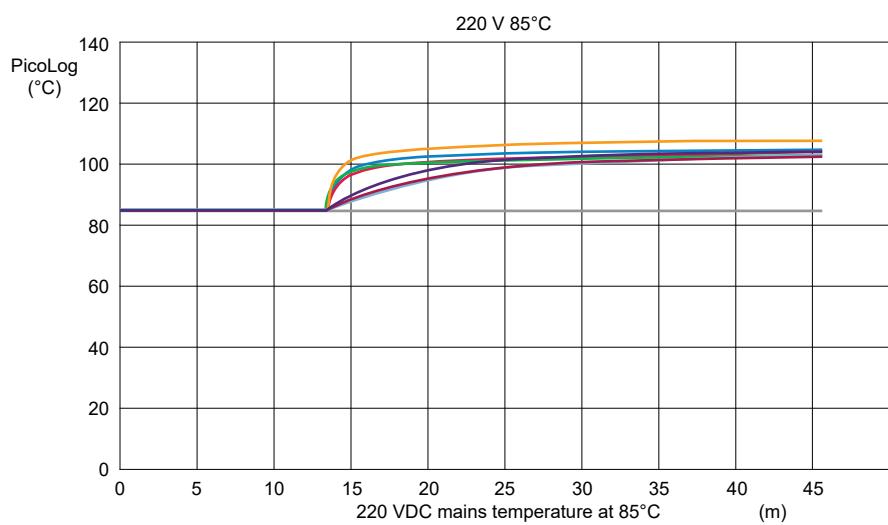
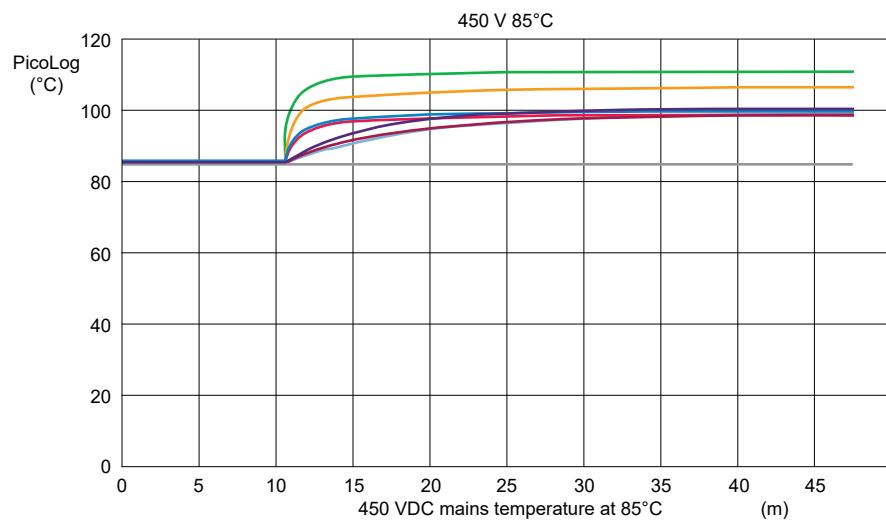


Figure 22. 220 VDC mains temperature at +85 °C



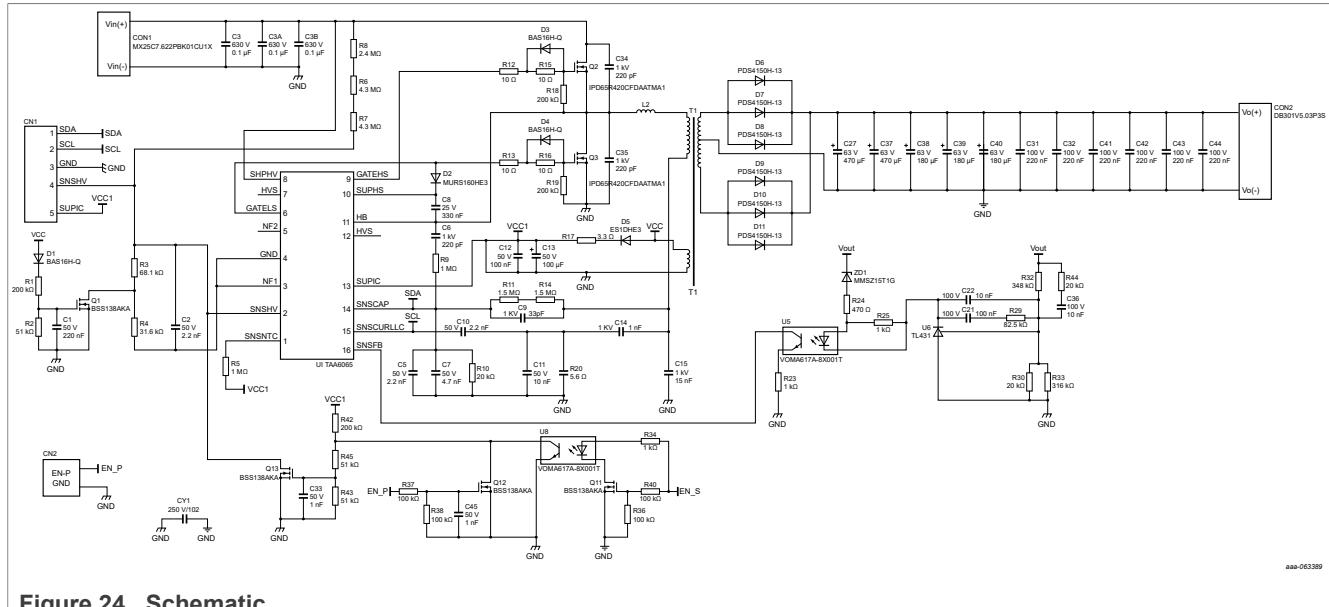

Figure 23. 450 VDC mains temperature at +85 °C

Table 5. Temperature test result at 100 W load and -40 °C and +85 °C condition

Components	Specification	Test result		
		220 VDC at -40 °C ambient	220 VDC at +85 °C ambient	450 VDC at -40 °C ambient
Ambient		-38.9 °C	84.8 °C	84.8 °C
LLC controller	< 120 °C	-22.2 °C	102.1 °C	110.9 °C
LLC MOSFET	< 150 °C	-27.0 °C	104.5 °C	99.6 °C
Output rectifier diodes	< 150 °C	-8.1 °C	107.7 °C	106.3 °C
Transformer core	< 150 °C	-14.6 °C	102.9 °C	98.7 °C
Transformer wire	< 150 °C	-18.3 °C	102.4 °C	98.6 °C
Resonant inductor core	< 150 °C	-19.5 °C	103.9 °C	100.3 °C

6 Schematic and bill of materials

6.1 Schematic

aaa-063389

Figure 24. Schematic

6.2 Bill of materials

Table 6. TAA6065ATDB1659 bill of materials (BOM)

Part reference	Description	Manufacturer	Part reference
C1	Capacitor, 50 V, 1 nF, 10 %, X7R, 0603	Yageo	AC0603KRX7R9BB102
C3, C3A, C3B	Capacitor, Film cap, 630 V, 0.1uF, 5%	Kemet	R75PI310050H3J
C5	Capacitor, 50 V, 2.2 nF, 1 %, C0G, 0805	muRata	GCM2165C1H222FA16D
C6	Capacitor, 1 KV, 220 pF, 1 %, C0G, 1206	PSA	FV31N221J102EEG
C7	Capacitor, 50 V, 4.7 nF, 1 %, C0G, 0805	Kemet	C0805C472F5GECAUTO
C8	Capacitor, 25 V, 330 nF, 10 %, X7R, 0805	TAIYO YUDEN	TMK212B7334KGHT
C9	Capacitor, 1 KV, 33 pF, 1 %, C0G, 1206	muRata	GCM31A5C3A330FX01D
C2, C10	Capacitor, 50 V, 2.2 nF, 10 %, X7R, 0603	Yageo	AC0603KRX7R9BB222
C11	Capacitor, 50 V, 10 nF, 10 %, X7R, 0603	muRata	GCM188R71H103KA37D
C12	Capacitor, 50 V, 100 nF, 10 %, X7R, 0603	muRata	GCJ188R71H104KA12D
C13	E-capacitor, 50 V, 100 uF	Rubycon	50RX30100M10X12.5
C14	Capacitor, 1 KV, 1 nF, 1 %, C0G, 1206	muRata	GCM31C5C3A102FX03L
C15	Capacitor, Film cap, 1 KV, 15 nF,	Kemet	R75QI215050H0J
C21	Capacitor, 100 V, 100 nF, 10 %, X7R, 0603	Yageo	AC0603KRX7R0BB104
C22	Capacitor, 100 V, 10 nF, 10 %, X7R, 0805	TAIYO YUDEN	HMK212B7103KGHT
C27, C37	E-capacitor, 63 V, 470 uF	Vishay	MAL224699811E3
C31, C32, C41, C42, C43, C44	Capacitor, 100 V, 220 nF, 10 %, X7R, 1206	muRata	GCM31MR72A224KA37L
C33, C45	Capacitor, 50 V, 1 nF, 10 %, X7R, 0603	Yageo	AC0603KRX7R9BB102
C34, C35	Capacitor, 1 KV, 220 pF, 1 %, C0G, 1206	PSA	FV31N221J102EEG
C36	Capacitor, 100 V, 10 nF, 10 %, X7R, 0603	TAIYO YUDEN	HJM107BB7103KAHT
C38, C39, C40	E-capacitor, 63 V, 180 uF	Panasonic	EEH-ZS1J181UP
CON1	Input connector, two pins	Guanghong	MX25C7.622PBK01CU1X
CON2	Output connector, three pins	Guanghong	DB301V5.03P3S
CN1	I2C programing connector, five pins		

Table 6. TAA6065ATDB1659 bill of materials (BOM)...continued

Part reference	Description	Manufacturer	Part reference
CN2	Primary EN/DIS signal connector, two pins		
CY1	N.M.		
D1, D3, D4	High-speed switching diode, 100 V, 0.215 A	Nexperia	BAS16H-Q
D2	Ultrafast diode, 600 V, 1 A	Vishay	MURS160HE3
D5	Ultrafast diode, 200 V, 1 A	Vishay	ES1HDE3_A/H
D6, D7, D8, D9, D10, D11	Schottky, 150 V/4 A	Diodes	PDS4150H-13
L2	$150 \pm 5 \mu\text{H}$ @ 100 KHz	TDG	RM7
Q1, Q11, Q12, Q13	BSS138AKA	Nexperia	BSS138AKA
Q2, Q3	N-channel MOS, 650 V, 420 mΩ	Infineon	IPD65R420CFDAATMA1
R1, R42	Resistor, 200 K, 5%, 0603	Vishay	CRCW0603200KJNEA
R2, R43, R45	Resistor, 51 K, 1%, 0603	Vishay	CRCW060351K0FKEA
R3	Resistor, 68.1 K, 1%, 0603	Vishay	CRCW060368K1FKEA
R4	Resistor, 31.6 K, 1%, 0603	Vishay	CRCW060331K6FKEA
R5	Resistor, 1 M, 1%, 0603	Vishay	CRCW06031M00FKEA
R6, R7	Resistor, 4.3 M, 1%, 1206	KOA	RK73H2BTTD4304F
R8	Resistor, 2.4 M, 1%, 1206	Yageo	AC1206FR-072M4L
R9	Resistor, 1 M, 1%, 1206	Yageo	AC1206FR-071ML
R10, R30, R44	Resistor, 20 K, 1%, 0603	Vishay	CRCW060320K0FKEA
R11, R14	Resistor, 1.5 M, 5%, 1206	ROHM	KTR18EZPJ155
R12, R13, R15, R16	Resistor, 10 R, 1%, 0603	Vishay	CRCW060310R0FKEA
R17	Resistor, 3.3 R, 1%, 1206	Vishay	CRCW12063R30FKEA
R18, R19	Resistor, 200 K, 1%, 0603	Vishay	CRCW0603200KJNEA
R20	Resistor, 5.6 R, 1%, 0805	Vishay	CRCW08055R60FKEA
R23, R25, R34	Resistor, 1 K, 5%, 0603	Vishay	CRCW06031K00JNEA
R24	Resistor, 470 R, 1%, 0603	Vishay	CRCW0603470RFKEA
R29	Resistor, 82.5 K, 1%, 0603	Vishay	CRCW060382K5FKEA
R32	Resistor, 348 K, 1%, 0603	Yageo	AC0603FR-07348KL
R33	Resistor, 316 K, 1%, 0603	Vishay	CRCW0603 e3
R36, R37, R38, R40	Resistor, 100 K, 1%, 0603	Vishay	CRCW0603100KFKEA
T1	$400 \pm 5 \mu\text{H}$ @ 100 KHz	TDG	PQ2620A
U1	Half-bridge digital LLC controller	NXP	TAA6065AT
U5, U8	Optocoupler, low profile	Vishay	VOMA617A-8X001T
U6	Shunt regulator, $V_{ref} = 2.495 \text{ V}$	TI	TL431BQDBZRQ1
ZD1	Zener diode, 15 V, 1 %	On-semi	MMSZ15T1G

6.3 LLC transformer and resonant inductor specification

6.3.1 LLC transformer specification

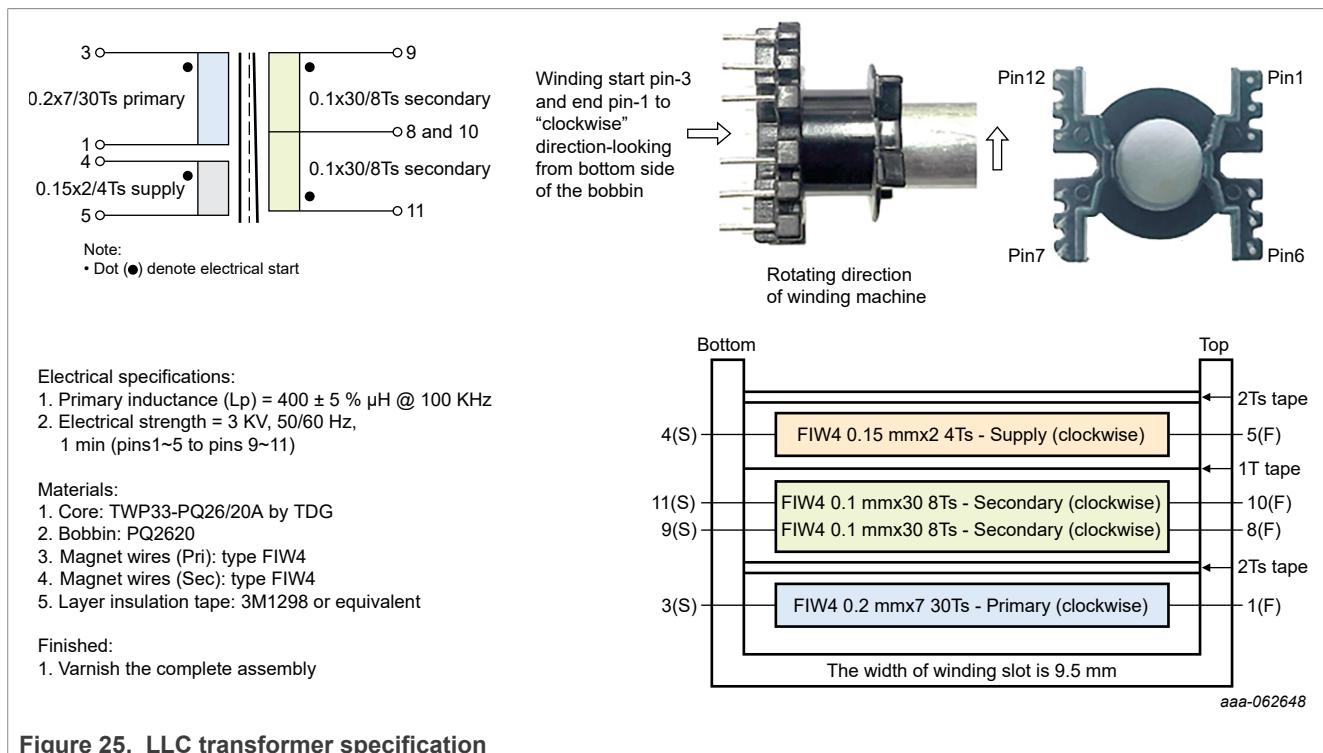


Figure 25. LLC transformer specification

6.3.2 LLC resonant inductor specification

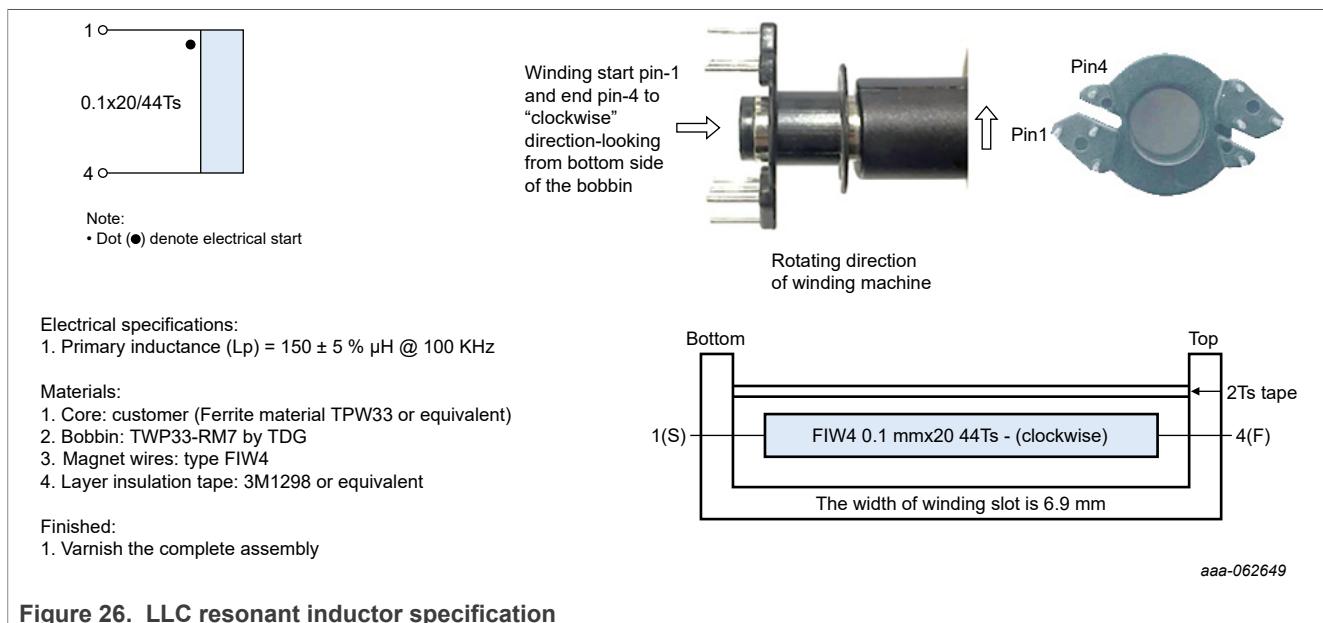


Figure 26. LLC resonant inductor specification

7 Abbreviations

Table 7. Abbreviations

Acronym	Description
LLC	Low loss converter
MOSFET	Metal-oxide semiconductor field-effect transistor
PCB	Printed-circuit board

8 References

1. TAA6065AT data sheet

9 Revision history

Table 8. Revision history

Document ID	Release date	Description
UM12393 v.1.0	15 January 2026	Initial version

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <https://www.nxp.com/profile/terms>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

GreenChip — is a trademark of NXP B.V.

Tables

Tab. 1.	Specification	5	Tab. 5.	Temperature test result at 100 W load and -40 °C and +85 °C condition	14
Tab. 2.	Output voltage peak to peak at load steps	9	Tab. 6.	TAA6065ATDB1659 bill of materials (BOM)	15
Tab. 3.	Table 3. Efficiency test result	11	Tab. 7.	Abbreviations	18
Tab. 4.	Total harmonic distortion	12	Tab. 8.	Revision history	19

Figures

Fig. 1.	TAA6065AT pinning for the SO16 version	2	Fig. 14.	Dynamic load response at 5 Hz step load (A)	9
Fig. 2.	Isolation symbols	3	Fig. 15.	Dynamic load response at 5 Hz step load (B)	9
Fig. 3.	TAA6065AT 100W HVLV DC-DC design example (A)	4	Fig. 16.	Overpower protection	10
Fig. 4.	TAA6065AT 100W HVLV DC-DC design example (B)	4	Fig. 17.	Output short protection	10
Fig. 5.	Test equipment setup	6	Fig. 18.	Efficiency	11
Fig. 6.	Start-up performance (A)	7	Fig. 19.	Output ripple	12
Fig. 7.	Start-up performance (B)	7	Fig. 20.	Audible noise	12
Fig. 8.	Operation in HP mode (A)	7	Fig. 21.	220 VDC mains temperature at -40 °C	13
Fig. 9.	Operation in HP mode (B)	7	Fig. 22.	220 VDC mains temperature at +85 °C	13
Fig. 10.	Operation in LP mode (A)	8	Fig. 23.	450 VDC mains temperature at +85 °C	14
Fig. 11.	Operation in LP mode (B)	8	Fig. 24.	Schematic	15
Fig. 12.	Operation in Burst mode (A)	8	Fig. 25.	LLC transformer specification	17
Fig. 13.	Operation in Burst mode (B)	8	Fig. 26.	LLC resonant inductor specification	17

Contents

1	Introduction	2
2	Finding kit resources and information	
	on the NXP web site	3
2.1	Collaborate in the NXP community	3
3	Getting ready	3
3.1	Kit contents	3
4	Getting to know the hardware	5
4.1	Specifications	5
4.2	Features	5
4.3	Green features	5
4.4	Protection features	6
5	Performance measurement	6
5.1	Test facilities	6
5.2	Test equipment setup	6
5.3	Startup behavior	7
5.4	Normal operation	7
5.5	Dynamic load response	9
5.6	Protections	10
5.6.1	Overpower protection	10
5.6.2	Output short protection	10
5.7	Efficiency test result	11
5.8	Output ripple	11
5.9	Audible noise	12
5.10	Components temperature performance	12
6	Schematic and bill of materials	15
6.1	Schematic	15
6.2	Bill of materials	15
6.3	LLC transformer and resonant inductor specification	17
6.3.1	LLC transformer specification	17
6.3.2	LLC resonant inductor specification	17
7	Abbreviations	18
8	References	18
9	Revision history	19
	Legal information	20

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.