

QN902x OTA Programming
Guide

Rev. 1.3 — 04 April 2018 Application note

Document information

Info Content

Keywords OTA Server, OTA Client, API, Android, IOS

Abstract The OTA is used to upgrade the firmware of QN902x over the air.

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev. <1.3>--04 April 201830 March 2015 2 of 28

Contact information

For more information, please visit: http://www.nxp.com

Revision history

Rev Date Description

0.1 20140519 Initial release

0.2 20140704 Add OTA control functions

0.3 20141017
Add CFG_OTAS_APP_CTRL
otas_change_service_uuid()

0.4 20141107 OTA support update data file

1.0 20150330 Updated by merging programming, integration with IOS and Android in one doc and migrate to
NXP template

1.1 20150817 Update the encryption part

1.2 20150024 Reviewed by PSP

1.3 20180404 File location change for Android, some general changes

http://www.nxp.com/

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev. <1.3>--04 April 201830 March 2015 3 of 28

Contact information

For more information, please visit: http://www.nxp.com

Contents

1. Introduction .. 4
2. OTA Server in Qn9020 .. 4
2.1 Project .. 4
2.2 Software Description .. 4
2.2.1 User Configuration ... 4
2.2.2 Initialization .. 5
2.2.3 Optional Initialization ... 5
2.3 API .. 6
2.3.1 otas_init () .. 6
2.3.2 app_otas_create_db() .. 6
2.3.3 app_otas_enable_req() .. 6
2.3.4 otas_control () .. 7
2.3.5 app_ota_ctrl_resp () ... 7
2.3.6 app_otas_change_svc_uuid () 8
2.3.7 app_otas_set_data_addr() ... 8
2.3.8 otas_get_app_info () .. 8
2.4 Msg Interface ... 9
2.4.1 OTAS_TRANSIMIT_STATUS_IND................................. 9
3. OTA Client Overview .. 10
3.1 Features ... 10
3.2 Overview .. 10
4. OTA Integration in Android 11
4.1 Flowchart ... 11
4.2 API and Variables Description 13
4.2.1 Class otaGlobalVariables .. 14
4.2.2 Class BluetoothLeInterface 14
4.2.3 Class otaManager ... 15
4.3 Integration Note ... 17
4.4 Example code ... 19
5. OTA Integration in IOS ... 19
5.1 Flowchart ... 19
5.2 API and Delegate Description 20
5.2.1 didOtaEnableConfirm () ... 20
5.2.2 otaStart() .. 21
5.2.3 didOtaMetaDataResult () ... 21
5.2.4 didOtaAppProgress() .. 22
5.2.5 didOtaAppResult() .. 22
5.3 Integration Note ... 22
5.4 Example code ... 23
6. Download and Upgrade ... 23
6.1 ISP Download ... 23
6.2 Upgrade through OTA .. 24
7. References ... 26
8. Legal information .. 27
8.1 Definitions .. 27
8.2 Disclaimers ... 27
8.3 Trademarks .. 27
9. List of figures ... 28

http://www.nxp.com/

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 4 of 28

1. Introduction

Over-The-Air programming (OTA), is used to upgrade the firmware of QN902x over the
air. This document, described with code examples, on how to implement the OTA
application as an OTA server in BLE peripherals and an OTA application as OTA client in
Android/IOS devices.

As described in the OTA Profile Guide, the profile defines two roles: OTA Server and OTA
Client.

➢ The OTA Server shall be a GATT server.
➢ The OTA Client shall be a GATT client.

The Figure 1 shows the relationships between services and the two profile roles.

Figure 1 Role / Service Relationships

Note: Profile roles are represented by yellow boxes and services are represented by
orange boxes. An OTA Server shall instantiate one and only one OTA Service.

OTA clients for Android and IOS can be downloaded from Collabnet which is an NXP
customer support site.

2. OTA Server in QN9020

 Project
The project can be opened with the following IAR and KEIL workspace files:
C:\QBlue\QN9020\QBlue-X.X.X\Projects\BLE\prj_ota\iar\ota.eww
C:\QBlue\QN9020\QBlue-X.X.X\Projects\BLE\prj_ota\keil\ota.uvproj

 Software Description
The OTA application is implemented in the following files:

 otas_task.h: Application function
 qn_ota.lib: OTA Profile

2.2.1 User Configuration
To support OTA feature, the following macros shall be defined in the ‘usr_config.h’.

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 5 of 28

 #define CFG_PRF_OTAS
 #define CFG_TASK_OTAS TASK_PRF7 (Mandatory)

The following macro shall be defined in the ‘app_config.h’.

 #define ENAB_OTAS_APP_CTRL (Optional : enable App control OTA feature
relevant code)

 #define ENAB_OTAS_SET_UUID (Optional : enable App change OTA service
UUID feature relevant code)

 #define ENAB_OTAS_SEND_DATA (Optional : enable OTA service set data addr
and send data)

2.2.2 Initialization

The initialization of the application occurs in following phases:

Step1: The otas_init(uint32_t fw2_start_addr, enum ota_crypt_t crypt, const uint8_t
key[16]) function is called by the profiles register function(prf_init_reg(prf_init)). This
function registers OTA task into kernel.

 fw2_start_addr: firmware 2 start address – Default: 0x12000
 crypt: Enable or disable encryption - Default: OTA_ENABLE_ENCRYPT
 key[16]: AES 128 key (16bytes) - Default:

0x11223344556677889900AABBCCDDEEFF

Firmware 1
0x4000

112KBfw2_start_addr

Data
NVDS backup

Firmware 2
data_addr

0x1F000

Figure 2 Flash Layout

Step2: Following function is called by the app_create_server_service_DB() function.
 app_otas_create_db(): This function is used to create server service database.

2.2.3 Optional Initialization
Following initialization for customer to control OTA profile. These are not essential.

App control OTA start (optional)

Step1: Function otas_control(struct otas_ctrl_info *pctrl_info) must be called after
otas_init(…).

Step2: App received msg OTAS_TRANSIMIT_STATUS_IND. Check the msg parameter - the

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 6 of 28

OTA status whether it is OTA_STATUS_START_REQ. If so, Function
app_ota_ctrl_resp(enum otas_ctrl_resp) is called to start OTA.

App change OTA service UUID (optional)

Step 1: Function app_otas_change_svc_uuid(uint8_t *p_uuid) must be called before
app_otas_create_db().

 p_uuid: pointer to a 128bit new UUID.

App set data start address (optional)

Step 1: Function app_otas_set_data_addr(uint32_t data_addr) must be called before
app_otas_create_db().

 data_addr: start address in flash to put data.
If user doesn’t call this function, the default data_addr is 0x1F000, and therefore the OTA
will not support data upgrade

 API

2.3.1 otas_init ()
Prototype:
Enum ota_status_t otas_init (uint32_t fw2_start_addr, enum ota_crypt_t crypt, const
uint8_t key[16])
Description:
This function performs all the initializations of the OTA module.
Parameters:

Parameters Desciption

fw2_start_addr Set second zone start address.

crypt OTA_ENABLE_ENCRYPT: Enable encryption
OTA_DISABLE_ENCRYPT: Disable encryption.

key[16] AES 128 key (16bytes).

Returns:
OTA_STATUS_OK: The OTAS initialized successfully.
OTA_STATUS_FW2_ADDR_INVALID: The OTAS initialization failed; firmware

address is invalid.
OTA_STATUS_DEVICE_NOT_SUPPORT_OTA: The OTAS initialization failed; the
device does not support OTA.

2.3.2 app_otas_create_db()
Prototype:

void app_otas_create_db(void)
Description:

This function is used to create OTA server service database.

2.3.3 app_otas_enable_req()
Prototype:

void app_otas_enable_req (uint16_t conhdl, uint8_t sec_lvl)

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 7 of 28

Description:
This function is used for enabling the Reporter role of the OTA profile. After calling this
function, the services are unhidden from the peer device discovery.
Parameters:

Parameters Description

conhdl Connection handle for which the OTA Server role is enabled

sec_lvl Security level required for protection of attributes. Service Hide and
Disable are not permitted. Possible values are:
PERM_RIGHT_ENABLE : Enable access
PERM_RIGHT_UNAUTH : Access Requires Unauthenticated link
PERM_RIGHT_AUTH : Access Requires Authenticated link

Returns:
None

2.3.4 otas_control ()
Prototype:
void otas_ control(struct otas_ ctrl_info *pctrl_info)
Parameters:

Parameters Description

pctrl_info Struct otas_ ctrl_info
data field:

uint8
_t

ctrl_fla
g

0: ota start, control by
profile
1: ota start ,control by
app

uint8
_t

reserve
d

reserved for future ,
must be set to 0x00

Returns:

None.

2.3.5 app_ota_ctrl_resp ()

Description:

Response the OTA data transfer to start or reject.

This will transfer Msg OTAS_CONTRL_APP_RESP to OTA server to start or stop data transfer.

This function only works when the OTA status is OTA_STATUS_START_REQ. Before calling this

function to start OTA, other peripherals impacting flash write should be stopped, such as

ADC...etc.

Prototype:
void app_ota_ ctrl_resp(enum otas_ctrl_resp)

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 8 of 28

Parameters:

Parameters Description

ctrl_resp enum otas_ctrl_resp
data field:

START_OTA old way, control by
profile

REJECT_OTA new way, control by
app

Response:
None

2.3.6 app_otas_change_svc_uuid ()

Description:

Function to change OTA service UUID to user defined. This function must be called before OTA

creates a database.

Prototype:
uint8_t app_otas_change_svc_uuid (uint8_t *p_uuid);

Parameters:

uint8_t * p_uuid Pointer to a 128bit OTA service UUID

Response:

true : change to new UUID.
false : p_uuid pointer is NULL.

2.3.7 app_otas_set_data_addr()

Description:

Function to change OTA data address in flash. This function must be called before OTA creates a

database

Prototype:
uint8_t app_otas_set_data_addr(uint32_t data_addr);

Parameters:

uint8_t * data_addr Pointer to a 128bit OTA service UUID

Response:
true : Success to set data addr
false : Fail to set data address because one of following reasons :
 1. data_addr > 0x1F000(Flash limited)
 2. data_addr < firmware 2 start address
 3. data_addr is not an integer of 4k.

2.3.8 otas_get_app_info ()
Description:
Get available flash block information, which will be used for placing a new version of the
application.
Prototype:

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 9 of 28

uint8_t otas_get_app_info(struct otas_app_information_t *ota_app_information);

Parameters:

struct otas_app_information_t * data_add
r

Pointer to get the app
information.

Response:
true : - Success to get the information
false : - program do not support OTA

 - program is in the status of OTA communication,

 Msg Interface

2.4.1 OTAS_TRANSIMIT_STATUS_IND
Parameters:

struct otas_transimi
t_status_ind

Data field :

uint8_t status Status
OTA_STATUS_START_REC,
OTA_STATUS_ONGOING,
OTA_STATUS_FINISH_OK,
OTA_STATUS_FINISH_FAIL,

uint16_t status_de
s

status detail description
information :
- Total size
- Received bytes
- Error type
- NULL

Description:
Status of OTA transmission indication to app.
In the OTA_STATUS_START_REQ status, app can send msg to control OTA.
The relationship of status and status description:

Status status detail description information

OTA_STATUS_START_REQ Total size

OTA_STATUS_ONGOING Received bytes

OTA_STATUS_FINISH_OK NULL

OTA_STATUS_FINISH_FAIL Error type

Error type:
 Include following 5 types errors.

Status status detail description information

0x01 Current packet checksum error

0x02 current packet length overflow or equal to 0

0x03 Device doesn’t support OTA

0x04 OTA firmware size overflow or equal to 0

0x05 OTA firmware verify error

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 10 of 28

3. OTA Client Overview

The libqblueOta library acts as OTA client role, which is used by application to upgrade
the firmware of the OTA server.

 Features
 Prevent injection and impersonation attack.
 Protect data security over air.
 Firmware recoverable if upgrade failed.
 Support resume after disconnection. This means that once the connection is

broken during an upgrade process, it will just re-connect and continue
downloading firmware without needing to start over from the beginning.

Note: In order to guarantee the upgrade success, please make sure the firmware run-
time size (including Code, RO-data, ZI-data, RW-data) is less than 50K bytes.

 Overview
The OTA Client Diagram consists of three parts:

App layer:
 Send requests to CoreBluetooth layer and use OTA API method.
 Update OTA application UI.
 Response exceptions from CoreBluetooth layer.

API Layer:
 Receive and process App commands from App layer.
 Send requests to CoreBluetooth layer.
 Update OTA status to App layer.

CoreBluetooth Layer:
 Receive and response requests from App layer and API layer.
 Process connections’ delegate of app layer.
 Update value and state for API layer.
The OTA Diagram of Android app shown in Figure 3:

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 11 of 28

APP

BluetoothGATT

libQBlueOTA

Return result

Send data

Check received
data

Receive data

Figure 3 OTA Diagram of Android platform

The OTA Diagram IOS app is shown in Figure 4:

App

CoreBluetooth

OTA Profile

Firmware
Download
Status

Firmware

Firmware
Package

Update
Value

Connection
Delegate

Connection
Request

Figure 4 OTA Diagram of IOS Platform

4. OTA Integration in Android

 Flowchart
The OTA general flowchart is the following:
 Scan BLE peripherals nearby.
 Establish a connection.
 Discover OTA services and characteristics.
 Load a firmware file, here you’d use the method: otaStart, which starts OTA.
 OTA state machine: start to transmit data to Qn902x side, after sending each

package, you can get a result, which includes whether it is sent successful or not.
Then you can refresh UI according to these results (In the function otaGetProcess).

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 12 of 28

 The function otaGetProcess, will return the process information and the final result
of whether the OTA process was success or failure.

 After verify confirmation, send a reset command to reset the BLE peripheral.

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 13 of 28

OTA flowchart is shown in Figure 5:

Figure 5 OTA flowchart

 API and Variables Description
There are three public classes in the libqblueota library. Global variables are defined in

class classotaGlobalVariables.
Class BluetoothLeInterface is a wrapper of Android GATT APIs.
Class otaManager is key class to OTA transmission .

Their relationship is shown in Figure 6.

Figure 6 libQblueOTA Library Structure Diagram

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 14 of 28

4.2.1 Class otaGlobalVariables
The variables defined in class otaGlobalVariables are public. It includes UUID definition
and Return value definiton. The specification can be found in source code of OTA demo.

4.2.2 Class BluetoothLeInterface

General description

Class BluetoothLeInterface defines a group of necessary APIs which are used in
LibQblueOta library.
It’s a public abstract class, so need to be extended by a child class and created an
instance in application.

The class is defined as below:

The sample code is as below:

API Description

1. public boolean bleInterfaceInit(BluetoothGatt bluetoothGatt)

Description:
Initial OTA service, get OTA service and characteristics.
Parameters:

In bluetoothGatt Android BluetoothGatt client handler

Returns:
 True ble interface initial is successful.
 False ble interface initial is failed.

public abstract class BluetoothLeInterface{

public boolean bleInterfaceInit(BluetoothGatt bluetoothGatt);

public boolean writeCharacteristic(byte[] data);

public boolean setCharacteristicNotification(boolean enabled);

};

public class OtaActivity{

 BluetoothGatt mBluetoothGatt;

 ……

private class updateInstance extends

BluetoothLeInterface{

 public boolean bleInterfaceInit(BluetoothGatt

bluetoothGatt){

 super.bleInterfaceInit(bluetoothGatt);

}

}

updateInstance ins=new updateInstance();

ins.bleInterfaceInit(mBluetoothGatt); //Ensure

mBluetoothGatt is available before you call this function

}

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 15 of 28

Note:
 BluetoothGatt should have been initialized before calling this function.
2. public boolean writeCharacteristic(byte[] data)

Description:
Write characteristic, the default characteristic UUID is in otaGlobalVariables.
UUID_OTA_WRITE_CHARACTERISTIC.
Parameters:

In data The data to be written

Returns:
 True write data is successful.
 False write data is failed.
Note:
In Android, this function is asynchronous. User needs check the result in BluetoothGATT
callback function
3. public boolean setCharacteristicNotification(boolean enabled)

Description:
Set characteristic notification. The default Characteristic UUID is in otaGlobalVariables:
UUID_OTA_NOTIFY_CHARACTERISTIC.
Parameters:

In enabled true : enabled
false: disabled

Returns:
 True successful.
 False failed.

4.2.3 Class otaManager

General description

otaManager defines some functions to implement OTA upgrade.

API description

public otaResult otaStart(String file, BluetoothLeInterface intf)

Description:
Start OTA upgrade.
Parameters:

In file Firmware file path, the path should be absolute.

public class otaManager{
 public otaResult otaStart(String

file,BluetoothLeInterface intf);

public void otaStop();

 public otaResult otaGetProcess(int[] extra);

 public void otaGetResult(byte notify_data[]);

 public void notifyWriteDataCompleted();

};

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 16 of 28

In intf BluetoothLeInterface object

Returns:
 OTA_RESULT_INVALID_ARGUMENT parameters are invalid.
 OTA_RESULT_SUCCESS start successful.
Note:
 None.
See also:
 public void otaStop();

public void otaStop()

Description:
This function is used to stop OTA upgrade.
Parameters:
 None.
Returns:
 None.
See also:
public otaResult otaStart(String file,BluetoothLeInterface intf);

public otaResult otaGetProcess(int[] extra)

Description:
This function is used to get OTA information during upgrade.
Parameters:

Out extra[] Integer array to transfer progress information. The size
should be >=8.
Three elements are used, the remaining is reserved.

extra[0] is OTA upgrade percentage;
extra[1] is OTA upgrade Byte Rate;
extra[2] is OTA upgrade elapsed time;

Returns:
 OTA_RESULT_SUCCESS No error is occurred during upgrade
 Error Code Error is occurred
Note:
 Customer could create a thread to call this function continuously.

public void otaGetResult(byte notify_data[])

Description:
This function is used to get the notify data. The notify data is used to control the OTA
upgrade transmission process.

In notify_data[] Received data from GATT server.

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 17 of 28

Parameters:
Returns:
 None.

public void notifyWriteDataCompleted()

Description:
This function is used to notify the otaQblueLibrary that write Characteristic successfully.
Parameters:
 None.
Returns:
 None.
Note:
In the Android system ‘Write Characteristic’ action is asynchronous. There is a callback
named BluetoothGattCallback .onCharacteristicWrite() to notify user the result of
writeCharacteristic(). So this function should be invoked in onCharacteristicWrite().

 Integration Note
The detail steps to create the OTA client application:
a) Create class otaUpdateManager object.
b) Create class updateInstance which extends class BluetoothLeInterface.
c) Invoke updateManager.startUpdate(fwFile,ins) to start upgrade.
d) Create thread to get process information continuously
e) Invoke updateManager.otaGetResult(notifyData) when notify data have been

received.
f) Invoke updateManager.notifyWriteDataCompleted() when send data is successful.

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 18 of 28

public class OtaActivity{

 BluetoothGatt mBluetoothGatt；
 private shouldStop=false;

private otaManager updateManager=new otaManager();

updateInstance ins=new updateInstance();

//Ensure mBluetoothGatt is available

ins.bleInterfaceInit(mBluetoothGatt);

String fwFile=getFirmwareFile();

updateManager.startUpdate(fwFile,ins);

updateThread.start();

 private final BluetoothGattCallback mGattCallback = new

BluetoothGattCallback() {

 public void onConnectionStateChange(BluetoothGatt

gatt,

int status, int newState){

 if(newState == BluetoothProfile.STATE_DISCONNECTED)

 shouldStop=true;

}

 public void onCharacteristicWrite(BluetoothGatt gatt,

 BluetoothGattCharacteristic

characteristic,int status){

 if(status==BluetoothGatt.GATT_SUCCESS)

 updateManager.notifyWriteDataCompleted();

 else

 mStopUpdate=true;

 }

 public void onCharacteristicChanged(BluetoothGatt

gatt,

 BluetoothGattCharacteristic

characteristic){

 byte[] notifyData=characteristic.getValue();

 updateManager.otaGetResult(notifyData);

}

}

Thread updateThread=new Runnable(){

 While(!shouldStop){

 Thread.sleep(100);

 if(updateManager. otaGetProcess()){

 shouldStop=true;

 updateManager.stopUpdate();

}else{

 updateProcessDialog();

}

}

};

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 19 of 28

 Example code
There is an example Android project in Collabnet named ‘OTA_Android_xxx.zip’. The
example shows how to use the libqblueota library to implement OTA client application.

5. OTA Integration in IOS

The libQBlueOta library (xx\Ota\LibOta) acts as OTA client role, which is used by application to
upgrade the firmware of the OTA server.

 Flowchart
The OTA general flowchart is the following:
 Scan nearby BLE peripherals.
 Establish a connection.
 Discover OTA services and characteristics.
 Load a firmware file, here you’d use the method: otaStart, which starts OTA.
 Ota state machine: start to transmit data to Qn902x side, after implement each

package, you can get a result, which includes whether it is sent successful and how
many packages have been sent. Then you can refresh UI according to these results
(In the delegate didOtaAppProgress).

 In the delegate didOtaAppResult, it will update the final result to whether the OTA
is success or failure.

 After confirm verify, send reset command to reset the BLE peripheral.

OTA flowchart is shown in Figure 7:

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 20 of 28

App OTA Profile CoreBluetooth

otaStart

Send Firmware Infomation

Confirm Firmware Information

Send Firmware Data

Confirm Firmware Data

Confirm Firmware valid

Send the Final Package

Confirm Firmware Data

Send Verify Command

Confirm Verify Command

didOtaAppProgress(n)

didOtaAppProgress(1)

Send Reset Command
didOtaAppResult

didOtaAppProgress(0)

didOtaEnableConfirm

Figure 7 OTA flowchart in IOS

 API and Delegate Description
These functions consist of one API function and four delegate functions. API functions
are implemented to register user’s UUID and start the OTA process. The delegate
functions are implemented to update the status of the current transmitting package and
the final OTA update result.

5.2.1 didOtaEnableConfirm ()

Prototype:
(void)didOtaEnableConfirm : (CBPeripheral *)aPeripheral

 withStatus : (enum otaEnableResult) otaEnableResult；

Description: Before user sends or receives data, must first check the results.

Parameters:
out aPeripheral The target peripheral with OTA profile

out otaEnableResult Indicate the device service, character status and
configuration of the device.
- OTA_CONFIRM_OK: All of following three conditions
are satisfied,
OTA service is discovered,
OtaCharWr is discovered,
OTACharNTF is discovered,

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 21 of 28

- OTA_CONFIRM_FAILED: service creation is not success

Returns:
None.

5.2.2 otaStart()

Prototype:
-(enum otaApiLoadFileResult)otaStart : (CBPeripheral *)aPeripheral
 withDataByte : (const uint8_t *)firmwareAddr
 withLength : (uint32_t)firmwareLength

withFlag : (BOOL)fResume;

Description: The function is used by the application to upgrade a firmware file through
the OTA client role. After a peripheral has connected
and the OTA service/characteristics are discovered,
then the API function is called. The OTA state machine
will run till completion or if the connection is broken. If
the connection is broken the user may resume the
connection by calling API fResume with parameter set
to TRUE. The upgrade process will resume from where
the connection was broken initially.

Parameters:
In aPeripheral The target peripheral with OTA profile

In firmwareAddr Firmware 2 pointer, points to the firmware file’s
head

In firmwareLengt
h

firmware length

In fResume whether the connection is resumed or not

Returns:
The return value OTA_API_FILE_NO_ERROR means that the firmware file is
loaded without error.
The return value OTA_API_FILE_ERROR means that the firmware file is loaded
with error and OTA do nothing.

5.2.3 didOtaMetaDataResult ()

Prototype: (void)didOtaMetaDataResult : (enum otaResult)otaMetaDataSentStatus;

Description: This function can be used by the OTA application to refresh UI. After OTA
transfers the meta-data, the method updates the status up to the app layer. The
parameter otaMetaDataSentStatus means the status after the meta-data has been sent
out. After 10 seconds timeout, it will output the result
OTA_RESULT_DEVICE_NOT_SUPPORT_OTA.

Parameters:
Out otaMetaDataSentSt

atus

The status of transmission meta data:
OTA_RESULT_SUCCESS ,
OTA_RESULT_DEVICE_NOT_SUPPORT_OTA

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 22 of 28

Returns: None

5.2.4 didOtaAppProgress()

Prototype:
(void) didOtaAppProgress : (enum otaApiResult)otaPackageSentStatus

withSentBytes : (uint16_t)otaDataSent;

Description: The function can be used by OTA application to refresh UI. After OTA
transfers each package of data, the method updates the status to the app layer. The
parameter otaDataSent means how many bytes have been sent out, it can be used to
calculate data rate or progress status.

Parameters:
out otaPackageSentSta

tus

The status of transmission current package:
OTA_RESULT_SUCCESS ,
OTA_RESULT_PKT_CHECKSUM_ERROR,
OTA_RESULT_PKT_LEN_ERROR,
OTA_RESULT_DEVICE_NOT_SUPPORT_OTA,
OTA_RESULT_FW_SIZE_ERROR,
OTA_RESULT_FW_VERIFY_ERROR,

out otaDataSent data sent in bytes

Returns:
None

5.2.5 didOtaAppResult()

Prototype:

(void) didOtaAppResult : (enum otaResult) otaResult;

Description: This function can be used by the OTA application to refresh UI when the
OTA finishes. For example, if the OTA fails, then the user can reload the firmware and
start the OTA process again. Or check the hardware, re-connect and re-start.

Parameters:
out otaResult The OTA final result

OTA_RESULT_SUCCESS ,
OTA_RESULT_PKT_CHECKSUM_ERROR,
OTA_RESULT_PKT_LEN_ERROR,
OTA_RESULT_FW_VERIFY_ERROR,

Returns:
None.

 Integration Note
a) Please insert the “bleDidUpdateCharForOtaService”delegate method in the

didDiscoverCharacteristicsForService delegate. The delegate is to update write
characteristic and notify characteristic for OTA service.

- (void) peripheral : (CBPeripheral *)aPeripheral
 didDiscoverCharacteristicsForService : (CBService *)service error : (NSError *)error
{
 /// for profile delegate
 [bleUpdateForOtaDelegate bleDidUpdateCharForOtaService : aPeripheral

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 23 of 28

 withService : service
 error : error];

 /// user code
 ……

}

b) Please insert the “bleDidUpdateValueForOtaChar” delegate method in the

“didUpdateValueForCharacteristic” delegate. The delegate is to update value for
notification characteristic.

- (void) peripheral:(CBPeripheral *)aPeripheral
didUpdateValueForCharacteristic:(CBCharacteristic *)characteristic error:(NSError
*)error
{
 for (CBService *aService in aPeripheral.services)
 {
 [bleUpdateForOtaDelegate bleDidUpdateValueForOtaChar : aService
 withChar : characteristic
 error : error];
 /// user code
 ……
 }
}

 Example code
There is an example iOS project named ‘OTA_IOS_xxx.zip’ in Collabnet and it can be found
in “xx\Ota\”. It shows how to use the libQBlueOta library to implement firmware upgrade.

6. Download and Upgrade

If you want to use OTA to upgrade an application, first download the bin file using the
ISP tool with OTA option checked in the ISP tool. Then install the application developed
as an OTA client in Android or IOS platform of choice.

 ISP Download

Use ISP tool to download OTA bin file with OTA option checked.

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 24 of 28

Figure 8 ISP Download bin file

 Upgrade through OTA

1. If you need to encrypt the firmware, you must first run the qotapack.exe located
in QBlue-x.x.x\Tools\qotapack.
 Usage: qotapack [OPTION]…

Options:

-v, --version: Mandatory; Firmware version (Hex Format, 2bytes).

-e, --encrypt: Optional; Enable to encrypt the original firmware.

-tp, --type: Optional.

0: Original file is firmware.

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 25 of 28

1: Original file is data.

2 : Two original files are code and data

-k, --key: If encryption is enabled, it is mandatory, otherwise it is ignored.

AES 128 key (Hex Format, 16bytes).

-f, --from: Mandatory; Original firmware file. I

-f2, --from2: Optional; Original data file.

-t, --to: Mandatory; Encrypted firmware file.

-h, --help

 Examples:

Examples 1: Firmware only encryption:
‘ qotapack --version=1234 --encrypt --key=11223344556677889900AABBCCDDEEFF
--from=origianl.bin --to=encrypted.bin’

Example 2. Data only encryption:
‘ qotapack --version=0x2001 --encrypt --type=1 --
key=11223344556677889900AABBCCDDEEFF --from=data.bin --to=encrypted.bin’

Example 3. Firmware and data encryption:

‘ qotapack --version=0x2001 --encrypt --type=2 --
key=11223344556677889900AABBCCDDEEFF --from=firmware.bin -
f2=data.bin --to=encrypted.bin’

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

Application note Rev<1.3> — 04 April 2018 26 of 28

iOS
(New Firmware)

QN902x
(Old Firmware)

Reset, Run New Firmware

OTA

Run Old Firmware

FailSuccess

Qotacrypt.exe
(Encrypt)

Project Firmware

InPut

OutPut

Figure 9 iOS Download and Encrypt firmware file

2. Install the client app in an Android or IOS device.
3. Place the firmware 2 in right location in Android/IOS devices

There is a demo bin file (firmware 2) named as ‘ota_pack.bin’ in the path
‘\QBlue\QN9020\QBlue-X.X.X\BinFiles’. For Android, the file should be put into the
folder ‘sd card/NXP_BLE’ on the target phone.
For IOS, the file should be put into the folder “Documents” which is located in the
example iOS application by some tools, such as iTools.
4. Start the app in Android/IOS and initiate the upgrade procedure.

Then the new firmware (firmware 2) in Android/IOS phone will be downloaded and
upgraded to BLE device.
Note:
If your new version of the app (Firmware 2) doesn’t have OTA function, you can only
upgrade once.

7. References

Included with QBlue-X.X.X Release. The QBlue-X.X.X software has been installed to the
default path ‘C:\ QBlue\QN9020\QBlue-X.X.X’:
[1] C:\QBlue\QN9020\QBlue-X.X.X\ Documents\QBlue ISP Studio Manual v1.0.pdf
[2] C:\QBlue\QN9020\QBlue-X.X.X\ Documents\QN9020 API Programming Guide
v1.0.pdf
[3] OTA Profile Guide

E
rro

r!

U
n
k
n

o
w

n

d
o

c
u

m
e

n
t

p
ro

p
e

rty

n
a

m
e

.

E
rro

r! U
n
k
n
o

w
n
 d

o
c
u
m

e
n
t p

ro
p
e
rty

 n
a
m

e
.

E
rro

r! U
n

k
n

o
w

n
 d

o
c
u

m
e

n
t p

ro
p

e
rty

n
a

m
e

.

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018 .All rights reserved.

Application note Rev <1.3> — 04 April 2018 27 of 28

8. Legal information

 Definitions
Draft — The document is a draft version only. The content is still under internal

review and subject to formal approval, which may result in modifications or

additions. NXP Semiconductors does not give any representations or warranties as

to the accuracy or completeness of information included herein and shall have no

liability for the consequences of use of such information.

 Disclaimers
Limited warranty and liability — Information in this document is believed to be

accurate and reliable. However, NXP Semiconductors does not give any

representations or warranties, expressed or implied, as to the accuracy or

completeness of such information and shall have no liability for the consequences

of use of such information. NXP Semiconductors takes no responsibility for the

content in this document if provided by an information source outside of NXP

Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive,

special or consequential damages (including - without limitation - lost profits, lost

savings, business interruption, costs related to the removal or replacement of any

products or rework charges) whether or not such damages are based on tort

(including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever,

NXP Semiconductors’ aggregate and cumulative liability towards customer for the

products described herein shall be limited in accordance with the Terms and

conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes

to information published in this document, including without limitation

specifications and product descriptions, at any time and without notice. This

document supersedes and replaces all information supplied prior to the publication

hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or

warranted to be suitable for use in life support, life-critical or safety-critical systems

or equipment, nor in applications where failure or malfunction of an NXP

Semiconductors product can reasonably be expected to result in personal injury,

death or severe property or environmental damage. NXP Semiconductors and its

suppliers accept no liability for inclusion and/or use of NXP Semiconductors

products in such equipment or applications and therefore such inclusion and/or use

is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are

for illustrative purposes only. NXP Semiconductors makes no representation or

warranty that such applications will be suitable for the specified use without

further testing or modification.

Customers are responsible for the design and operation of their applications and

products using NXP Semiconductors products, and NXP Semiconductors accepts no

liability for any assistance with applications or customer product design. It is

customer’s sole responsibility to determine whether the NXP Semiconductors

product is suitable and fit for the customer’s applications and products planned, as

well as for the planned application and use of customer’s third party customer(s).

Customers should provide appropriate design and operating safeguards to

minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage,

costs or problem which is based on any weakness or default in the customer’s

applications or products, or the application or use by customer’s third party

customer(s). Customer is responsible for doing all necessary testing for the

customer’s applications and products using NXP Semiconductors products in order

to avoid a default of the applications and the products or of the application or use

by customer’s third party customer(s). NXP does not accept any liability in this

respect.

Export control — This document as well as the item(s) described herein may be

subject to export control regulations. Export might require a prior authorization

from competent authorities.

Translations — A non-English (translated) version of a document is for reference

only. The English version shall prevail in case of any discrepancy between the

translated and English versions.

Evaluation products — This product is provided on an “as is” and “with all faults”

basis for evaluation purposes only. NXP Semiconductors, its affiliates and their

suppliers expressly disclaim all warranties, whether express, implied or statutory,

including but not limited to the implied warranties of non-infringement,

merchantability and fitness for a particular purpose. The entire risk as to the

quality, or arising out of the use or performance, of this product remains with

customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to

customer for any special, indirect, consequential, punitive or incidental damages

(including without limitation damages for loss of business, business interruption,

loss of use, loss of data or information, and the like) arising out the use of or

inability to use the product, whether or not based on tort (including negligence),

strict liability, breach of contract, breach of warranty or any other theory, even if

advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason

whatsoever (including without limitation, all damages referenced above and all

direct or general damages), the entire liability of NXP Semiconductors, its affiliates

and their suppliers and customer’s exclusive remedy for all of the foregoing shall be

limited to actual damages incurred by customer based on reasonable reliance up to

the greater of the amount actually paid by customer for the product or five dollars

(US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the

maximum extent permitted by applicable law, even if any remedy fails of its

essential purpose.

 Trademarks
Notice: All referenced brands, product names, service names and trademarks are

property of their respective owners.

NXP Semiconductors QN902x OTA Programming Guide

UM10994 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 20148,.All rights reserved.

Application note Rev <1.3> — 04 April 2018 28 of 28

9. List of figures

Figure 1 Role / Service Relationships .. 4
Figure 2 Flash Layout ... 5
Figure 3 OTA Diagram of Android platform 11
Figure 4 OTA Diagram of IOS Platform 11
Figure 5 OTA flowchart .. 13
Figure 6 libQblueOTA Library Structure Diagram 13
Figure 7 OTA flowchart in IOS ... 20
Figure 8 ISP Download bin file ... 24
Figure 9 iOS Download and Encrypt firmware file 26

	QN902x OTA ProgrammingGuide
	1. Introduction
	2. OTA Server in QN9020
	2.1 Project
	2.2 Software Description
	2.2.1 User Configuration
	2.2.2 Initialization
	2.2.3 Optional Initialization
	App control OTA start (optional)
	App change OTA service UUID (optional)
	App set data start address (optional)

	2.3 API
	2.3.1 otas_init ()
	2.3.2 app_otas_create_db()
	2.3.3 app_otas_enable_req()
	2.3.4 otas_control ()
	2.3.5 app_ota_ctrl_resp ()
	2.3.6 app_otas_change_svc_uuid ()
	2.3.7 app_otas_set_data_addr()
	2.3.8 otas_get_app_info ()

	2.4 Msg Interface
	2.4.1 OTAS_TRANSIMIT_STATUS_IND

	3. OTA Client Overview
	3.1 Features
	1.
	2.
	3.
	3.2 Overview

	4. OTA Integration in Android
	4.1 Flowchart
	4.2 API and Variables Description
	4.2.1 Class otaGlobalVariables
	4.2.2 Class BluetoothLeInterface
	General description
	API Description

	4.2.3 Class otaManager
	General description
	API description
	public otaResult otaStart(String file, BluetoothLeInterface intf)
	public void otaStop()
	public otaResult otaGetProcess(int[] extra)
	public void otaGetResult(byte notify_data[])
	public void notifyWriteDataCompleted()

	4.3 Integration Note
	4.4 Example code

	5. OTA Integration in IOS
	5.1 Flowchart
	5.2 API and Delegate Description
	5.2.1 didOtaEnableConfirm ()
	5.2.2 otaStart()
	5.2.3 didOtaMetaDataResult ()
	5.2.4 didOtaAppProgress()
	5.2.5 didOtaAppResult()

	5.3 Integration Note
	5.4 Example code

	6. Download and Upgrade
	6.1 ISP Download
	6.2 Upgrade through OTA

	7. References
	8. Legal information
	8.1 Definitions
	8.2 Disclaimers
	8.3 Trademarks

	9. List of figures

