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Chapter 1
Introduction
1.1 Real-time Edge software
Real-time Edge Software is an evolved version of Open Industrial Linux (OpenIL) for real-time and deterministic systems in
different fields. The key technology components include Real-time Networking, Real-time System, and Protocols.

• The Real-time Networking includes TSN technology, TSN standards, management, configuration, and applications.
Networking and redundancy features are also supported.

• The Real-time System includes PREEMPT_RT Linux, Jailhouse, U-Boot based BareMetal framework, and different
combinations of these systems.

• The 'Protocols' component includes support for industry standard protocols such as EtherCAT, CoE, OPC-UA, and others.

This document describes the features and implementation of Real-time Edge Software on NXP hardware platforms.

1.2 Real-time Edge Software Yocto Project
For using Yocto build environment, refer to the Real-time Edge Yocto Project User Guide. This document describes the steps to
build Real-time Edge images using a Yocto Project build environment for both i.MX and QorIQ boards.

1.3 Supported NXP platforms
The following table lists the NXP hardware SoCs and boards that support the Real-time Edge software.

Table 1. Supported NXP platforms

Platform Architecture Boot

i.MX 6ULL EVK Arm v7 SD

i.MX 8M Mini EVK Arm v8 SD

i.MX 8M Plus EVK Arm v8 SD

LS1028ARDB Arm v8 SD

LS1021AIOT Arm v7 SD

LS1021ATSN Arm v7 SD

LS1021ATWR Arm v7 SD

LS1012ARDB Arm v8 QSPI

LS1043ARDB Arm v8 SD

LS1046ARDB Arm v8 SD

LS1046AFRWY Arm v8 SD

LX2160ARDB Arm v8 SD

LX2160A Rev2 Arm v8 SD

1.4 Related documentation
For using Yocto build environment, refer to the Real-time Edge Yocto Project User Guide on the URL http://nww.preview.nxp.com/
design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE.

Refer to the following guides for detailed instructions on booting up and setting up the relevant boards.
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• i.MX 6ULL EVK Quick Start Guide

• i.MX 8M Mini EVK Quick Start Guide

• i.MX 8M Plus EVK Quick Start Guide

• LS1028ARDB Quick Start Guide

• LS1021AIoT Getting Started Guide

• LS1021ATSN Getting Started Guide

• LS1021ATWR Getting Started Guide

• LS1012ARDB Getting Started Guide

• LS1043ARDB Getting Started Guide

• LS1046ARDB Getting Started Guide

• LS1046AFRWY Getting Started Guide

• LX2160A/LX2160A-Rev2 RDB Quick Start Guide

1.5 Acronyms and abbreviations
The following table lists the acronyms used in this document.

Table 2. Acronyms and abbreviations

Term Description

AVB Audio video bridging

BC Boundary clock

BLE Bluetooth low energy

BMC Best master clock

CA Client application

CAN Controller area network

CBS Credit-based shaper

CMLDS Common Mean Link Delay Service

DEI Drop eligibility indication

DP Display port

EtherCAT Ethernet for control automation technology

ECU Electronic control units

FDB Forwarding database

FQTSS Forwarding and queuing enhancements for time-sensitive streams

FMan Frame manager

GPU General processor unit

ICMP Internet control message protocol

IEEE Institute of electrical and electronics engineers

Table continues on the next page...
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Table 2. Acronyms and abbreviations (continued)

Term Description

IETF Internet engineering task force

IPC Inter-processor communication

KM Key management

LBT Latency and bandwidth tester

MAC Medium access control

NFC Near field communication

NCI NFC controller interface

NMT Network management

OC Ordinary clock

OpenIL Open industry Linux

OPC Open platform communications

OP-TEE Open portable trusted execution environment

OS Operating system

OTA Over-the-air

OTPMK One-time programmable master key

PCP Priority code point

PDO Process data object

PHC PTP hardware clock

PIT Packet inter-arrival times

PLC programmable logic controller

PTP Precision time protocol

QSPI Queued serial peripheral interface

RCW Reset configuration word

REE Rich execution environment

RPC Remote procedure call

RTEdge Real-time Edge

RTC Real-time clock

RTT Round-trip times

SABRE Smart application blueprint for rapid engineering

SDO Service data object

SPI Serial periphery interface

SRP Stream reservation protocol

Table continues on the next page...
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Table 2. Acronyms and abbreviations (continued)

Term Description

SRK Single root key

TA Trusted application

TAS Time-aware scheduler

TC Traffic classification

TCP Transmission control protocol

TEE Trusted execution environment

TFTP Trivial file transfer protocol

TSN Time sensitive networking

TZASC Trust zone address space controller

UDP User datagram protocol

VLAN Virtual local area network
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Chapter 2
Release notes

2.1 What's new
The following sections describe the new features for each release.

2.1.1 What's new in Real-time Edge software v2.1
What’s New:

• Real-time Networking

— TSN

◦ 802.1AS-2020

▪ CMLDS (generic interface to PTP stack)

◦ TSN application

▪ TSN application with AF_XDP data path

◦ TSN configuration

▪ Path selection for Qbv

▪ Schedule mapping for Qbv

• Real-time system

— PREEMPT-RT Linux-5.10.52-rt47

— Jailhouse

◦ GPIO in non-root cell Linux support on LS1028ARDB

◦ ENETC in non-root cell Linux support on LS1028ARDB

• Protocols

— Native EtherCAT-capable network driver module on ENETC (LS1028ARDB)

— Native EtherCAT-capable network driver module on FEC (i.MX 8M Plus EVK)

— EtherCAT: CoE 6-8 axis control

— OPC UA PubSub

— OPC UA PubSub over TSN

• Based on i.MX L5.10.52_2.1.0

— Linux 5.10.52-rt

— U-Boot v2021.04

— Yocto Hardknott 3.3

2.1.2 What's new in Real-time Edge software v2.0
• Based on Yocto project 3.2 (Gatesgarth)

• Real-time System

— PREEMPT-RT Linux
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— Heterogeneous architecture

◦ BareMetal: PREEMPT-RT Linux on A core + BareMetal architecture on A core

▪ i.MX 8M Plus EVK, i.MX 8M Mini EVK, LS1028ARDB, LS1046ARDB, LS1043ARDB, LS1021A-IoT

◦ Jailhouse: PREEMPT-RT Linux on A core + Jailhouse + PREEMPT-RT Linux on A core

▪ i.MX 8M Plus EVK, LS1028ARDB, LS1046ARDB

• Real-time Networking

— TSN

◦ TSN Standards

▪ IEEE 802.1Qav

▪ IEEE 802.1Qbv

▪ IEEE 802.1Qbu

▪ IEEE 802.1Qci

▪ IEEE 802.1CB

▪ IEEE 802.1AS-2020 (gPTP)

▪ IEEE 802.1Qat-2010 (SRP)

◦ TSN Configurations

▪ Linux tc command and tsntool

▪ NETCONF/YANG

▪ Dynamic TSN configuration - web-based TSN configuration, dynamic topology discovery

◦ TSN Applications

▪ Example for real-time traffic processing

— Networking

◦ 802.1 Q-in-Q

◦ VCAP tc flower chain mode

▪ Priority set, VLAN tag push/pop/modify, Policer Burst and Rate Configuration, drop/trap/redirect

• Industrial

— EtherCAT master

◦ IGH EtherCAT master stack

◦ Native EtherCAT-capable network driver module (i.MX 8M Mini EVK)

— FlexCAN

◦ SocketCAN on Linux kernel

— CANOpen

◦ CANOpen master and slave example code

— CoE: CANOpen over EtherCAT

◦ CiA402(DS402) profile framework based on IGH CoE interface

◦ EtherCAT CoE 6-8 axis control (i.MX 8M Mini EVK)

— OPC UA/OPC UA PubSub

◦ open62541
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— Modbus

◦ Modbus master and slave

◦ Modbus-RTU

◦ Modbus-TCP

◦ Modbus-ASCII

• New Added Platform

— i.MX 6ULL EVK

2.1.3 What's new in OpenIL v1.11
What’s New:

• TSN

— 802.1AS-2020

◦ Initial support for multi-domain on i.MX 8M Plus and LS1028A

• Hardware

— i.MX 8M Plus silicon A1

• Linux Kernel

— LTS 5.4.70 for i.MX 8 Series

• U-Boot

— v2020.04 for i.MX 8 Series

• BareMetal

— v2020.04 for Layerscape and i.MX 8 Series

— i.MX 8M Plus EVK

2.1.4 What's new in OpenIL v1.10
What’s New:

• TSN

— VCAP chain mode

— GenAVB/TSN stack

• Real-time

— PREEMPT-RT 5.4 on i.MX 8M Mini

◦ Ethernet

◦ PCIe

◦ GPIO

◦ DSI

• BareMetal

— i.MX 8M Mini EVK (A core to A core)

◦ ICC

◦ Ethernet

◦ GPIO
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• OpenIL framework

— Board

◦ i.MX 8M Mini platform

▪ GPU: OpenGL ES

▪ Display: OpenGL ES, Weston, DSI-MIPI, CSI-MIPI

2.1.5 What's new in OpenIL v1.9
What’s New:

• TSN

— tc flower support for Qbu and Qci

— 802.1 QinQ

— Multi-ports TSN switch solution

— i.MX 8M Plus - TSN

• Real-time

— PREEMPT-RT 5.4 on i.MX 8M Plus

• BareMetal

— LX2160ARDB rev2 support and ICC

• OpenIL framework

— linuxptp uprev to 3.0

— Board

◦ i.MX 8M Plus EVK

▪ TSN: Qbv, Qbu, Qav

▪ GPU: OpenGL ES, OpenCL

▪ Display: OpenGL ES, Weston

◦ LS1028ARDB

▪ Display: OpenGL ES, Weston

▪ GPU: OpenGL ES, OpenCL

◦ LX2160ARDB rev2

2.1.6 What's new in OpenIL v1.8
What’s New:

• TSN

— tc VCAP support for VLAN-retagging

— tc VCAP support for police

— tc support for Qav and Qbv

— SJA1105 DSA Support and clock synchronization

— YANG modules for network config (IP, MAC, and VLAN)

• Real time

— PREEMPT-RT 5.4
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• BareMetal

— LX2160A rev1 ICC

• OpenIL framework

— buildroot uprev to 2020.02

— Kernel/U-Boot

◦ Linux upgraded to LSDK20.04 - Linux-5.4.3

◦ U-Boot upgraded to LSDK20.04 - U-Boot 2019.10

— Board

◦ i.MX 8M Mini

◦ Foxconn LS1028ATSN board with SJA1105

2.1.7 What's new in OpenIL v1.7
What’s New:

• TSN

— BC-based 802.1AS bridge mode

— Netopper2 support based on sysrepo. Support Qbv, Qbu, Qci configuration

— VLAN-based tc flower policer

— Web-based TSN configuration tool - available for Qbv, Qbu, and Qci configuration

• Real time

— Xenomai

◦ Xenomai I-pipe uprev to 4.19

— BareMetal

◦ SAI support on LS1028

◦ i.MX6Q BareMetal ICC

• Industrial protocols

— CANopen over EtherCAT

• OpenIL framework

— Kernel/U-Boot

◦ Linux upgraded to LSDK1909 - 4.19

◦ U-Boot upgraded to U-Boot-2019.04

— Boards

◦ LX2160ARDB SD boot

◦ LX2160ARDB XSPI boot

◦ LS1028ARDB XSPI boot

◦ LS1046ARDB eMMC boot

2.1.8 What's new in OpenIL v1.6
What’s New:

• TSN
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— Web based TSN configuration tool - available for Qbv and Qbu configuration

— TSN driver enhancement

• Real time

— BareMetal

◦ i.MX6Q-sabresd BareMetal support

• NETCONF/YANG

— NETCONF/YANG model for Qbu and Qci protocol

• Industrial protocols

— LS1028A - BEE click board

2.1.9 What's new in OpenIL v1.5
What’s New:

• TSN

— Web based TSN configuration tool - available for Qbv and Qbu configuration

— 802.1AS endpoint mode for LS1028A TSN switch

• Real time

— Xenomai

◦ LS1028 ENETC Xenomai RTNET support

— BareMetal

◦ LS1028 BareMetal ENETC support

• NETCONF/YANG

— NETCONF/YANG model for Qbv protocol

• Industrial protocols

— LS1028A - BLE click board

2.1.10 What's new in OpenIL v1.4
What’s New:

• TSN

— ENETC TSN driver: Qbv, Qbu, Qci, Qav

— ENETC 1588 two steps timestamping support

— SWTICH TSN driver: Qbv, Qci, Qbu, Qav, 802.1CB support

• Real time

— Xenomai

◦ LS1028ARDB

— BareMetal

◦ LS1021AIoT, LS1043ARDB, LS1046ARDB

◦ LS1028 BareMetal basic BareMetal support

• Industrial protocols

• — LS1028A - NFC click board
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— QT5.11

• OpenIL framework

— boards: LS1028ARDB

2.2 Feature Support Matrix
The following tables show the features that are supported in this release.

Table 3. Key features

Feature i.MX
6ULL
14x1
4
EVK

i.MX
8M
Mini
EVK

i.MX
8M
Plus
EVK

LS10
28A
RDB

LS10
21A
TSN

LS10
21A
IOT

LS10
21A
TWR

LS10
12A
RDB

LS10
43A
RDB

LS10
46A
RDB

LS10
46A
FRW
Y

LX21
60A
RDB

Boot
mod
e

SD Y Y Y Y Y Y Y Y Y Y Y

QSPI Y

Real
-
Time
Syst
em

Preempt-RT Linux Y Y Y Y Y Y Y Y Y Y Y Y

Bare
Meta
l

ICC Y Y Y Y Y Y Y

PCIe Y Y Y Y

Ethernet Y Y Y Y Y

GPIO Y Y Y

IPI Y Y Y Y Y Y Y

UART Y Y Y Y Y Y Y

USB Y Y Y

SAI Y

CAN Y

I2C Y Y Y Y

QSPI Y

IFC Y

Linux
(commu
nication
with
BareMet
al)

ICC Y Y Y Y Y Y Y

IPI Y Y Y Y Y Y Y

Jailhouse Y Y Y Y

Real
Time
Netw
orkin
g

TSN
Stan
dard
s

Qbv Y Y

Qbu Y Y

Qci N/A Y

Qav Y Y

Table continues on the next page...
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Table 3. Key features (continued)

Feature i.MX
6ULL
14x1
4
EVK

i.MX
8M
Mini
EVK

i.MX
8M
Plus
EVK

LS10
28A
RDB

LS10
21A
TSN

LS10
21A
IOT

LS10
21A
TWR

LS10
12A
RDB

LS10
43A
RDB

LS10
46A
RDB

LS10
46A
FRW
Y

LX21
60A
RDB

802.1AS Y Y Y Y Y Y Y Y Y Y

802.1CB N/A Y

VCAP chain mode N/A Y

802.1 Q-in-Q Y

TSN
Confi
gurat
ions

Linux tc command Y Y

TSN tool Y Y

NETCO
NF/
YANG

Qbv Y Y

Qbu Y Y

Qci N/A Y

IP Y Y

MAC Y Y

VLAN
config

Y Y

Web
based
configura
tion

Qbv Y Y

Qbu Y Y

Qci N/A Y

Dynamic topology
discovery

Y Y

IEEE 1588/802.1AS Y Y Y Y Y Y Y Y Y Y

Indu
strial
Prot
ocol

Ether
CAT
mast
er

IGH EtherCAT
master stack

Y Y Y Y Y Y Y Y Y Y Y Y

Native EtherCAT-
capable network
driver module

Y Y Y

FlexCAN Y Y

CANopen Y

OPC
UA

open62541 Y Y Y Y Y Y Y Y Y Y Y Y

OPC UA PubSub
over TSN

Y Y

BEE (Mikro click board) Y

BLE (Mikro click board) Y

NFC (Mikro click board) Y

Table continues on the next page...
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Table 3. Key features (continued)

Feature i.MX
6ULL
14x1
4
EVK

i.MX
8M
Mini
EVK

i.MX
8M
Plus
EVK

LS10
28A
RDB

LS10
21A
TSN

LS10
21A
IOT

LS10
21A
TWR

LS10
12A
RDB

LS10
43A
RDB

LS10
46A
RDB

LS10
46A
FRW
Y

LX21
60A
RDB

Mod
bus

Modbus slave
and master

Y Y Y Y Y Y Y Y Y Y Y Y

Modbus-RTU Y Y Y Y Y Y Y Y Y Y Y Y

Modbus-TCP Y Y Y Y Y Y Y Y Y Y Y Y

Modbus-ASCII Y Y Y Y Y Y Y Y Y Y Y Y

2.3 Open, fixed, and closed issues
This section contains three tables: Open, Fixed, and Closed issues.

• Open issues do not currently have a resolution. Workaround suggestions are provided where possible.

• Fixed issues have a software fix that has been integrated into the 'Fixed In' Release.

• Closed issues are issues where the root cause and fix are outside the scope of Real-time Edge Software. Disposition is to
provide the explanation.

Table 4. Open issues in Real-time Edge software v2.1

ID Description Opened In Workarounds

INDLINUX-1980 After setting the swpN link speed to 100M and
sending some pre-emptable frames from DUT1
(which are not received at DUT2 Linux), the swpN
Tx interface of DUT1 is blocked. It does not
even ping. Using the commands "ifconfig swpN
down" or "ifconfigswpN up" does not unblock it.

Real-time Edge
software v2.1

Table 5. Fixed Issues in Real-time Edge Software v2.1

ID Description Opened In Fixed In

INDLINUX-2184 ICC: when icc benchmark is performed,
U-Boot baremetal app can block if too
much memory is used.

Real-time Edge software
v2.0

Real-time Edge software v2.1

INDLINUX-2207 PREEMPT_RT: Futex latency
benchmark is not supported.

Real-time Edge software
v2.0

Real-time Edge software v2.1

INDLINUX-2208 ptp4l: TX timestamp polling times out
after Qbv gate is closed more than ~5s
on LS1028A.

Real-time Edge software
v2.0

Real-time Edge software v2.1

INDLINUX-2179 Qbv stops with large PHC time
adjustment.

Real-time Edge software
v2.0

Real-time Edge software v2.1

INDLINUX-2209 ICC: data transfer performance on i.MX
8M Plus is not optimized.

Real-time Edge software
v2.0

Real-time Edge software v2.1
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Table 6. Closed Issues in Real-time Edge Software v2.1

ID Description Opened In Disposition

None for this release.

NXP Semiconductors
Release notes

Real-time Edge Software User Guide, Rev. 2.1, 15-Dec-2021
User Guide 21 / 269



Chapter 3
Real-time System
Real-time Edge software supports real-time system features: Preempt-RT Linux, BareMetal, and Jailhouse.

3.1 Preempt-RT Linux
The Preempt-RT Linux option turns the kernel into a real-time kernel. It does so by replacing various locking primitives
(for example, spinlocks and rwlocks) with preemptible priority-inheritance aware variants. The Preempt-RT Linux option also
enforces interrupt threading and introduces mechanisms to break up long non-preemptible sections. This makes the kernel fully
preemptible and brings most execution contexts under scheduler control. However, very low level and critical code paths (entry
code, scheduler, low level interrupt handling) remain non-preemptible.

3.1.1 System Real-time Latency tests
The basic measurement tool for Real-time Linux is cyclictest.

3.1.1.1 Running Cyclictest

Cyclictest provides statistics about the latencies of the system. It accurately and repeatedly measures the difference between the
intended wake-up time of a thread and the time at which it actually wakes up. It can measure latencies in real-time systems caused
by the hardware, the firmware, and the operating system.

Thomas Gleixner (tglx) wrote the original test, but several people had later contributed modifications. Cyclictest is part of the test
suite, rt-tests. Clark Williams and John Kacur currently maintain Cyclictest.

cyclictest:

• Use the below command to perform Latency Test:

$ cyclictest -n -p90 –h50 –D30m 

 
For detailed parameters of Cyclictest, refer to Cyclictest Web Page.

  NOTE  

3.1.2 Real-time application development
This section describes the steps for developing the Real-time application.

Real-time Application: API, Basic Structure, Background:

• Basic Linux application rules are the same; Use the POSIX API.

• There is still a division of Kernel Space and User Space.

• Linux applications run in User Space.

• For details, refer to: https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base

Real-time Application: Users can build it using the steps below:

• Using the cross-compiler example:

$ arm-linux-gnueabihf-gcc <filename>.c -o <filename>.out -lrt –Wall

• Using the native compiler on a target example:

$ gcc <filename>.c -o <filename>.out -lrt –Wall

Scheduling policies have two classes:
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1. Completely Fair Scheduling (CFS)

• SCHED_NORMAL (traditionally called SCHED_OTHER): The scheduling policy that is used for regular tasks. Every task gets
a so called 'nice value'. It is a value between -20 for the highest nice value and 19 for the lowest nice value. The average value
of execution time of the task depends on the associated nice value.

• SCHED_BATCH: Does not preempt nearly as often as regular tasks. Hence, it allows tasks to run longer and make better use
of caches, but at the cost of interactivity. This is well suited for batch jobs and optimized for throughput.

• SCHED_IDLE: This policy is even weaker than nice 19. However, it is not a true idle timer scheduler in order to avoid getting
into priority inversion problems, which would deadlock the machine.

2. Real-time policies

• SCHED_FIFO: Tasks have a priority between 1 (low) and 99 (high). A task running under this policy is scheduled until it
finishes or a higher prioritized task preempts it.

• SCHED_RR: This policy is derived from SCHED_FIFO. The difference with respect to SCHED_FIFO policy is that a task runs
during a defined time slice (if it is not preempted by a higher prioritized task). It can be interrupted by a task with the same
priority once the time slice is used up. The time slice definition is exported in procfs (/proc/sys/kernel/sched_rr_timeslice_ms).

• SCHED_DEADLINE: This policy implements the Global Earliest Deadline First (GEDF) algorithm. Tasks scheduled under this
policy can preempt any task scheduled with SCHED_FIFO or SCHED_RR.

3.2 BareMetal

3.2.1 Overview
The following sections provide an overview of the Real-time Edge BareMetal framework including:

• Features supported

• Getting started with BareMetal framework using the supported platforms:

— NXP Layerscape platforms

— i.MX 8M platforms.

It also describes how to run a sample BareMetal framework on the host environment and develop customer-specific applications
based on BareMetal framework.

3.2.1.1 BareMetal framework

The BareMetal framework targets to support the scenarios that need low latency, real-time response, and high-performance.
There is no OS running on the cores and customer-specific application runs on that directly. The figure below depicts the
BareMetal framework architecture.
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Figure 1. BareMetal framework architecture

The main features of the BareMetal framework are as follows:

• Core0 runs as master, which runs the operating system such as Linux, Vxworks.

• Slave cores run the BareMetal application.

• Easy assignment of different IP blocks to different cores.

• Interrupts between different cores and high-performance mechanism for data transfer.

• Different UART for core0 and slave cores for easy debug.

• Communication via shared memory.

The master core0 runs the U-Boot, it then loads the BareMetal application to the slave cores and starts the BareMetal application.
The following figure depicts the boot flow diagram:
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Figure 2. BareMetal framework boot flow diagram

3.2.1.2 Supported platforms

The table below lists the industrial IoT features supported by various NXP processors and boards.

Table 7. Industrial IoT features supported by NXP processors

Processor Board Main features supported

i.MX 8M Mini i.MX 8M Mini EVK UART, IPI, data transfer, Ethernet, GPIO

i.MX 8M Plus i.MX 8M Plus EVK UART, IPI, data transfer, Ethernet, GPIO

LS1028A LS1028ARDB I2C, UART, ENETC, IPI, data transfer, SAI

LS1043A LS1043ARDB IRQ, IPI, data transfer, Ethernet, IFC, I2C, UART, FMan, USB, PCIe

LS1046A LS1046ARDB IRQ, IPI, data transfer, Ethernet, IFC, I2C, UART, FMan, QSPI, USB, PCIe

LS1021A LS1021A-IoT GPIO, IRQ, IPI, data transfer, IFC, I2C, UART, QSPI, USB, PCIe, FlexCAN

LX2160A/Rev2 LX2160ARDB UART, IPI, data transfer

3.2.2 Getting started
This section describes how to set up the environment and run the BareMetal examples on slave cores (assuming that the core0
is the master core and the other cores are the slave cores).

3.2.2.1 Hardware and software requirements

The following are required for running BareMetal framework scenarios:

• Hardware: i.MX 8M Mini EVK, i.MX 8M Plus EVK, LS1028ARDB, LS1043ARDB, LS1046ARDB, LS1021A-IoT,
LX2160ARDB, and serial cables.

• Software: Real-time Edge Software v2.0 release or later.
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3.2.2.2 Hardware setup

This section describes the hardware setup required for the NXP boards for running the BareMetal framework examples.

3.2.2.2.1 i.MX 8M Mini EVK and i.MX 8M Plus EVK board

1. i.MX 8M Plus EVK

There is one USB MicroB Debug port on board. Four UART ports can be found when the MicroB cable connects to PC.

/dev/ttyUSB0
/dev/ttyUSB1
/dev/ttyUSB2
/dev/ttyUSB3

/dev/ttyUSB2 is used for core0 (master core), /dev/ttyUSB3 is used for core1, core2, and core3 (slave cores).

2. i.MX 8M Mini EVK

There is one USB MicroB Debug port on board. Two UART ports can be found when the MicroB cable connects to PC.

/dev/ttyUSB0
/dev/ttyUSB1

/dev/ttyUSB1 is used for core0 (master core), /dev/ttyUSB0 is used for core1, core2, and core3 (slave cores).

3. GPIO setup

For GPIO test on i.MX 8M Plus EVK, pin 7 and pin 8 of J21 should be connected by a jumper.
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For GPIO test on i.MX 8M Mini EVK, pin7 and pin8 of J1003 should be connected by a jumper.
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3.2.2.2.2 LS1028ARDB, LX2160ARDB, LS1043ARDB, or LS1046ARDB

In case, either the LS1028ARDB, LX2160ARDB, LS1043ARDB, or LS1046ARDB hardware boards are used for developing the
Real-time Edge BareMetal framework, two serial cables are needed. One is used for core0, which connects to UART1 port, and
the other one is used for slave cores, which connects to the UART2 port.

To support SAI feature on LS1028ARDB, set switch SW5_8 to "ON".

3.2.2.2.3 LS1021A-IoT board

Two serial cables are needed. One is used for core0, which connects to USB0/K22 port for UART0. The other cable is used for
slave cores to connect J8 and J17 together for UART1. The table below describes the pins for UART1.

Table 8. UART pins

Pin name Function

J8 pin7 Ground

J17 pin1 Uart1_SIN

J17 pin2 Uart1_SOUT
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The figure below depicts the UART1 hardware connections.

Figure 3. UART1 hardware connection

In order to test GPIO, connect the two pins, GPIO24 and GPIO25 together, which are through J502.3 and J502.5.

Figure 4. GPIO24 and GPIO25 connection on LS1021A-IoT

3.2.2.3 Building the BareMetal images from U-Boot source code

There are two methods to build the BareMetal images:

• The first method is to compile the images in a standalone way, and is described in the following section.

• The second method is to build the BareMetal images using Real-time Edge framework. This method is described in the
document, Real-time Edge Yocto Project User Guide in section "Building the image through Yocto".
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3.2.2.3.1 Building BareMetal binary for slave cores

Perform the steps mentioned below:

1. Download the project source from the following path:

https://github.com/real-time-edge-sw/real-time-edge-uboot.git

2. Check it out to the tag:

• Real-Time-Edge-v2.1-baremetal-202112

3. Configure cross-toolchain on your host environment.

4. Then, run the following commands:

/* build BareMetal image for i.MX 8M Mini EVK Rev.C board */
 $ make imx8mm_evk_bm_defconfig
 $ make 
/* build BareMetal image for i.MX 8M Plus EVK board */
 $ make imx8mp_evk_bm_defconfig  
 $ make
/* build BareMetal image for LS1021A-IoT board */ 
 $ make ls1021aiot_bm_defconfig
 $ make
/* build BareMetal image for LS1028ARDB board */  
 $ make ls1028ardb_bm_defconfig
 $ make
/* build BareMetal image with SAI for LS1028ARDB board */
 $ make ls1028ardb_bm_sai_defconfig
 $ make
/* build BareMetal image for LS1043ARDB board */
 $ make ls1043ardb_bm_defconfig
 $ make
/* build BareMetal image for LS1046ARDB board */
 $ make ls1046ardb_bm_defconfig
 $ make
/* build BareMetal image for LX2160ARDB board */
 $ make lx2160ardb_bm_defconfig
 $ make

5. Finally, the file u-boot.bin (or u-boot-dtb.bin, only for lx2160ardb) used for BareMetal is generated.

3.2.2.4 Building the image through Yocto

There are two methods to build the BareMetal images. One method is to compile the images in a standalone way which is
described in Building the BareMetal images from U-Boot source code. The second method is to build the BareMetal images using
Real-time Edge software framework, which is described in this section.

The Real-time Edge software is designed for embedded industrial usage. It is an integrated Linux distribution for industry. With
the current version, the BareMetal can be built and implemented conveniently.

3.2.2.4.1 Getting Real-time Edge software

The latest release is available at the following URL:

https://github.com/real-time-edge-sw/yocto-real-time-edge.git

Follow Yocto documentation "Real-time Edge Yocto Project User Guide" to get the code and build the image.
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3.2.2.4.2 Building the BareMetal images

This section describes the steps for building the BareMetal images for various boards. The steps described are applicable to the
boards such as LS1021A-IoT, LS1043ARDB, LS1046ARDB, LX2160ARDB, i.MX 8M Plus EVK, and i.MX 8M Mini EVK board.

3.2.2.4.2.1 Building the BareMetal images

Run the following commands to build the final BareMetal image for Layerscape and i.IMX platforms.

$ cd yocto-real-time-edge

For LS1021A-IOT BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=ls1021aiot source real-time-edge-setup-env.sh -b build-
ls1021aiot-bm

For LS1028ARDB BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=ls1028ardb source real-time-edge-setup-env.sh -b build-
ls1028ardb-bm

For LS1043ARDB BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=ls1043ardb source real-time-edge-setup-env.sh -b build-
ls1043ardb-bm

For LS1046ARDB BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=ls1046ardb source real-time-edge-setup-env.sh -b build-
ls1046ardb-bm

For LX2160ARDB BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=lx2160ardb source real-time-edge-setup-env.sh -b build-
lx2160ardb-bm

For i.MX 8M Plus EVK BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx8mpevk source real-time-edge-setup-env.sh -b build-
imx8mpevk-bm

For i.MX 8M Mini EVK BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx8mmevk source real-time-edge-setup-env.sh -b build-
ix8mmevk-bm

Then, use:

$ bitbake nxp-image-real-time-edge

3.2.2.4.3 Booting up the Linux with BareMetal

Use the following steps to bootup the Linux + BareMetal system with the images built from Real-time Edge software.

For platforms that can be booted up from the SD card, there are just two steps required to program the image into SD card.

1. Insert an SD card (at least 4 GB size) into any Linux host machine.

2. Find the image file in building directory (for example: ls1028ardb): tmp/deploy/images/ls1028ardb/nxp-image-real-time-
edge-ls1028ardb.wic.bz2
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3. Then, run the following commands:

$ bzip2 -d nxp-image-real-time-edge-ls1028ardb.wic.bz2 
$ sudo dd if=./nxp-image-real-time-edge-ls1028ardb.wic of=/dev/sdx 
# or in some other host machine: 
$ sudo dd if=./nxp-image-real-time-edge-ls1028ardb.wic of=/dev/mmcblkx 
# find the right SD Card device name in your host machine and replace the “sdx” or “mmcblkx”.

4. Then, insert the SD card into the target board (for example ls1028ardb) and power on.

After completion of the above mentioned steps, the Linux system boots up on the master core (core 0), and the BareMetal system
boots up on slave core (core 1) automatically.

3.2.3 Running examples
The following sections describe how to run the BareMetal examples on the host environment for LS1021A-IoT board. Similar steps
can be followed for LS1028ARDB, LS1043ARDB, LS1046ARDB, i.MX 8M Mini EVK, and i.MX 8M Plus EVK board.

3.2.3.1 Preparing the console

Prepare a USB to TTL serial line, connect the pins to LPUART of Arduino pins to use it as UART1, refer to Hardware setup.

In order to change LPUART to UART pins, modify 44th byte of RCW to 0x00.

In current BareMetal framework design, two UART ports are used as console. UART1 is used for master core and UART2 is used
for slave cores.

• For LS1021A, UART2 is pin-muxed with LPUART, so users should change the RCW to enable UART2 on master core. This
modification has been implemented in the code for LS1021A-IoT board, so users need not modify the code for this board.

• For customer-specific boards, apply the change to the RCW file:

bit[354~356] = 000
bit[366~368] = 111 

3.2.3.2 Running the BareMetal binary

As described earlier, there are two methods to compile the BareMetal framework. One is a standalone method and the other
method uses the Real-time Edge software. These methods are described in Building the BareMetal images from U-Boot source
code and Building the image through Yocto respectively.

• If the Real-time Edge software is used to compile the BareMetal image, the BareMetal image is included in the nxp-image-
real-time-edge-xxxx.wic.bz2. In this case, the master core starts the BareMetal image on slave cores automatically.

• If standalone compilation method is used, perform the steps below to run the BareMetal binary from U-Boot prompt of master
core. See the below example run on Layerscape platform:

1. After starting U-Boot on the master, download the bare metal image: u-boot.bin on 0x84000000 using the
command below:

=> tftp 0x84000000 xxxx/u-boot.bin

Where

— xxxx is your tftp server directory.

— 0x84000000 is the address of CONFIG_SYS_TEXT_BASE on bare metal for Layerscape platforms.

 
The address is 0x50200000 for i.MX 8M Plus EVK and i.MX 8M Mini EVK. boards.

  NOTE  
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2. Then, start the BareMetal cores using the command below:

=> cpu start 0x84000000

For i.MX 8M Plus EVK and i.MX 8M Mini EVK boards, below command will be used:

=> dcache flush;cpu 1 release 50200000;sleep 6;cpu 2 release 50200000;sleep 2;cpu 3 
release 50200000;

3. Last, the UART1 port displays the logs, and the bare metal application runs on slave cores successfully.

The figure below displays a sample output log.

Figure 5. BareMetal output logs

3.2.4 Development based on BareMetal framework
This chapter describes how to develop customer-specific application based on BareMetal framework.

3.2.4.1 Developing the BareMetal application

The directory “app” in the U-boot repository includes the test cases for testing the I2C, GPIO and IRQ init features. You can write
actual applications and store them in this directory.

3.2.4.2 Example software

This section describes how to analyze a GPIO sample code and use it to write the actual application.

3.2.4.2.1 Main file app.c

The file <industry-Uboot path>/app/app.c, is the main entrance for all applications. Users can modify the app.c file to add
their applications.

• If using standalone method to build the BareMetal image as described in Building the BareMetal images from U-Boot source
code, just change the directory to industry-Uboot path to check the app.c file.
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• If using Real-time Edge software to compile the BareMetal binary, you should change to the building directory to check the
app.c file.

The following is a sample code of the file app.c that shows how to add the example test cases of I2C, IRQ, and GPIO.

void core1_main(void)
{
    test_i2c();
    test_irq_init();
    test_gpio();
    return;
}

3.2.4.2.2 Common header files

There are some common APIs provided by BareMetal. The table below describes the header files that include the APIs.

Table 9. Common header file description

Header file Description

asm/io.h Read/Write IO APIs.

For example, __raw_readb, __raw_writeb, out_be32, and in_be32.

linux/string.h APIs for manipulating strings.

For example, strlen, strcpy, and strcmp.

linux/delay.h APIs used for small pauses.

For example, udelay and mdelay.

linux/types.h APIs specifying common types.

For example, __u32 and __u64.

common.h Common APIs.

For example, printf and puts.

3.2.4.2.3 GPIO file

The file uboot/app/test_gpio.c is one example to test the GPIO feature, and shows how to write a GPIO application.

Here is an example for the ls1021aiot board:

On ls1021aiot board, first you need the GPIO header file, asm-generic/gpio.h, which includes all interfaces for the GPIO.
Then, configure GPIO25 to OUT direction, and configure GPIO24 to IN direction. Last, by writing the value 1 or 0 to GPIO25, you
can receive the same value from GPIO24.

The table below shows the APIs used in the file test_gpio.c example.

Table 10. GPIO APIs and their description

Function declaration Description

gpio_request (ngpio, label) Requests GPIO.

Table continues on the next page...
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Table 10. GPIO APIs and their description (continued)

Function declaration Description

• ngpio - The GPIO number, such as 25, that is for GPIO25.

• label – the name of GPIOI request.

Returns 0 if OK, -1 on Error.

gpio_direction_output
(ngpio, value)

Configures the direction of GPIO to OUT and writes the value to it.

• ngpio - The GPIO number, such as 25,that is, for GPIO25.

• value – the value written to this GPIO.

Returns 0 if Low, 1 if High, -1 on Error.

gpio_direction_input
(ngpio);

Configures the direction of GPIO to IN.

ngpio - The GPIO number, such as 24, that is for GPIO24;

Returns 0 if OK, -1 on Error.

gpio_get_value (ngpio) Reads the value.

• ngpio - The GPIO number, such as 24, that is for GPIO24;

Returns 0 if Low, 1 if High, -1 on Error.

gpio_free (ngpio) Frees the GPIO just requested.

• ngpio - The GPIO number, such as 24, that is for GPIO24;

Returns 0 if OK, -1 on error.

3.2.4.2.4 I2C file

The file uboot/app/test_i2c.c can be used as an example to test the I2C feature and shows how to write an I2C application.

On ls1021aiot board, include the I2C header file, i2c.h, which contains all interfaces for I2C. Then, read a fixed data from offset
0 of Audio codec device (0x2A). If the data is 0xa0, the message, [ok]I2C test ok, is displayed on the console.

On ls1043ardb board, read a fixed data from offset 0 of INA220 device(0x40). If the data is 0x39, a message, [ok]I2C test ok
is displayed on the console.

The table below shows the APIs used in the sample file, test_i2c.c.

Table 11. I2C APIs and their description

Function declaration Description

int i2c_set_bus_num (unsigned
int bus)

Sets the I2C bus.

bus- bus index, zero based

Returns 0 if OK, -1 on error.

int i2c_read (uint8_t chip, unsigned
int addr, int alen, uint8_t *buffer,
int len)

Read data from I2C device chip.

• chip - I2C chip address, range 0..127

• addr - Memory (register) address within the chip

Table continues on the next page...
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Table 11. I2C APIs and their description (continued)

Function declaration Description

• alen - Number of bytes to use for address (typically 1, 2 for larger memories,
0 for register type devices with only one register)

• buffer - Where to read/write the data

• len - How many bytes to read/write

Returns 0 if OK, not 0 on error.

int i2c_write (uint8_t chip,
unsigned int addr, int alen, uint8_t
*buffer, int len)

Writes data to I2C device chip.

• chip - I2C chip address, range 0..127

• addr - Memory (register) address within the chip

• alen - Number of bytes to use for address (typically 1, 2 for larger memories,
0 for register type devices with only one register)

• buffer - Where to read/write the data

• len - How many bytes to read/write

Returns 0 if OK, not 0 on error.

3.2.4.2.5 IRQ file

The file, uboot/app/test_irq_init.c is an example to test the IRQ and IPI (Inter-Processor Interrupts) feature, and shows how to write
an IRQ application. The process is described in brief below.

The file asm/interrupt-gic.h, is the header file of IRQ, and includes all its interfaces. Then, register an IRQ function for SGI 0.
After setting an SGI signal, the CPU gets this IRQ and runs the IRQ function. Then, register a hardware interrupt function to show
how to use the external hardware interrupt.

SGI IRQ is used for inter-processor interrupts, and it can only be used between bare metal cores. In case you want to communicate
between BareMetal core and Linux core, refer to ICC module . SGI IRQ id is 0-15. The SGI IRQ id '8' is reserved for ICC.

 
For i.MX 8M Mini EVK and i.MX 8M Plus EVK board, SGI IRQ id is 9.

  NOTE  

The table below shows the APIs used in the sample file, test_irq_init.c.

Table 12. IRQ APIs and their description

Return type API name (parameter
list)

Description

void gic_irq_register
(int irq_num, void
(*irq_handle)(int))

Registers an IRQ function.

• irq_num- IRQ id, 0-15 for SGI, 16-31 for PPI, 32-1019 for SPI

• irq_handle – IRQ function

void gic_set_sgi (int
core_mask, u32 hw_irq)

Sets a SGI IRQ signal.

• core_mask – target core mask

• hw_irq – IRQ id

Table continues on the next page...
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Table 12. IRQ APIs and their description (continued)

Return type API name (parameter
list)

Description

void gic_set_target
(u32 core_mask, unsigned
long hw_irq)

Sets the target core for hw IRQ.

• core_mask – target core mask

• hw_irq – IRQ id

void gic_set_type (unsigned
long hw_irq)

Sets the type for hardware IRQ to identify whether the corresponding interrupt is edge-
triggered or level-sensitive.

• hw_irq – IRQ id

3.2.4.2.6 QSPI file

The file uboot/app/test_qspi.c provides an example that can be used to test the QSPI feature. The below steps show how
to write a QSPI application:

1. First, locate the QSPI header files spi_flash.h and spi.h, which include all interfaces for QSPI.

2. Then, initialize the QSPI flash. Subsequently, erase the corresponding flash area and confirm that the erase operation
is successful.

3. Now, read or write to the flash with an offset of 0x3f00000 and size of 0x40000.

The table below shows the APIs used in the file test_qsip.c example.

Table 13. QSPI APIs

API name (type) Description

spi_find_bus_and_cs(bus,cs,
&bus_dev, &new)

The API finds if a SPI device already exists.

• “bus” - bus index, zero based.

• “cs” – the value to chip select mode.

• “bus_dev” - If the bus is found.

• “new” – If the device is found.

Returns 0 if OK, -ENODEV on error.

spi_flash_probe_bus_cs(bus, cs,
speed, mode, &new)

Initializes the SPI flash device.

• “bus” - bus index, zero based.

• “cs” – the value to Chip Select mode.

• “speed” – SPI flash speed, can use 0 or CONFIG_SF_DEFAULT_SPEED.

• “mode” –SPI flash mode, can use 0 or CONFIG_SF_DEFAULT_MODE.

• “new” – If the device is initialized.

Returns 0 if OK, -ENODEV on error.

dev_get_uclass_priv(new) Gets the SPI flash.

• “new” - The device being initialized.

Returns flash if OK , NULL on error.

Table continues on the next page...
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Table 13. QSPI APIs (continued)

API name (type) Description

spi_flash_erase(flash, offset, size) Erases the specified location and length of the flash content, erases the content
of all.

• “flash” - Flash is being initialized.

• “offset” – Flash offset address.

• “size” - Erase the length of the data.

Returns 0 if OK, !0 on error.

spi_flash_read(flash, offset,
len, vbuf)

Reads flash data to memory.

• “flash” - The flash being initialized.

• “offset” – Flash offset address.

• “len” - Read the length of the data.

• "vbug" - the buffer to store the data read

Returns 0 if OK, !0 on error.

spi_flash_write(flash, offset,
len, buf)

Writes memory data to flash.

• “flash” - The flash being initialized.

• “offset” – Flash offset address.

• “len” - Write the length of the data.

• "buf" - the buffer to store the data write

Returns 0 if OK, !0 on error.

3.2.4.2.7 IFC

Both LS1043ARDB and LS1046ARDB have IFC controller. However, LS1043ARDB supports both NOR flash and NAND flash,
whereas LS1046ARDB supports only NAND flash.

NOR and NAND flash messages are displayed while booting BareMetal cores, as shown below:

1:NAND:  512 MiB
1:Flash: 128 MiB

or （LS1046ARDB）

1:NAND:  512 MiB

There is no example code to test it, but we can use a few commands to verify these features.

For LS1043ARDB NOR Flash (the map memory address is 0x60000000), below command can be used to verify it:

=> md 0x60000000
1:60000000: 55aa55aa 0001ee01 10001008 0000000a    .U.U............
1:60000010: 00000000 00000000 02005514 12400080    .........U....@.
1:60000020: 005002e0 002000c1 00000000 00000000    ..P... .........
1:60000030: 00000000 00880300 00000000 01110000    ................
1:60000040: 96000000 01000000 78015709 10e00000    .........W.x....
1:60000050: 00001809 08000000 18045709 9e000000    .........W......
1:60000060: 1c045709 9e000000 20045709 9e000000    .W.......W. ....
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1:60000070: 00065709 00000000 04065709 00001060    .W.......W..`...
1:60000080: c000ee09 00440000 58015709 00220000    ......D..W.X..".
1:60000090: 40800089 01000000 40006108 f56b710a    ...@.....a.@.qk.
1:600000a0: ffffffff ffffffff ffffffff ffffffff    ................

For NAND flash on LS1043ARDB and LS1046ARDB, "nand" command can be used to verify it (nand erase, nand read, nand write,
and so on.):

=> nand info

1:Device 0: nand0, sector size 128 KiB
1:  Page size       2048 b
1:  OOB size          64 b
1:  Erase size    131072 b
1:  subpagesize     2048 b
1:  options     0x00004200
1:  bbt options 0x00028000

=> nand
1:nand - NAND sub-system

1:Usage:
nand info - show available NAND devices
nand device [dev] - show or set current device
nand read - addr off|partition size
nand write - addr off|partition size
    read/write 'size' bytes starting at offset 'off'
    to/from memory address 'addr', skipping bad blocks.
nand read.raw - addr off|partition [count]
nand write.raw[.noverify] - addr off|partition [count]
    Use read.raw/write.raw to avoid ECC and access the flash as-is.
nand erase[.spread] [clean] off size - erase 'size' bytes from offset 'off'
    With '.spread', erase enough for given file size, otherwise,
    'size' includes skipped bad blocks.
nand erase.part [clean] partition - erase entire mtd partition'
nand erase.chip [clean] - erase entire chip'
nand bad - show bad blocks
nand dump[.oob] off - dump page
nand scrub [-y] off size | scrub.part partition | scrub.chip
    really clean NAND erasing bad blocks (UNSAFE)
nand markbad off [...] - mark bad block(s) at offset (UNSAFE)
nand biterr off - make a bit error at offset

3.2.4.2.8 Ethernet

The file uboot/app/test_net.c provides an example to test the Ethernet feature and shows how to write a net application for
using this feature.

Here is an example for the LS1043ARDB (or LS1046ARDB) board.

1. Connect one Ethernet port of LS1043ARDB board to one host machine using Ethernet cable.

• (For LS1046ARDB, the default ethact is FM1@DTSEC5. Network cable should be connected to SGMII1 port.

• For LS1043ARDB, the default ethact is FM1@DTSEC3. Network cable should be connected to RGMII1 port.

2. Configure the IP address of the host machine as 192.168.1.2.

3. Power up the LS1043ARDB board. If the network is connected, the message host 192.168.1.2 is alive is displayed
on the console.
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4. The IP addresses of the board and host machine are defined in the file test_net.c. In this file, modify the IP address of
LS1043ARDB board using variable ipaddr and change the IP address of host machine using variable ping_ip.

The table below lists the Net APIs and their description.

Table 14. Net APIs and their description

API name (type) Description

void net_init (void) Initializes the network

int net_loop (enum proto_t protocol) Main network processing loop.

• enum proto_t protocol - protocol type

int eth_receive (void *packet,
int length)

Reads data from NIC device chip.

• void *packet

• length - Network packet length

Returns length

int eth_send (void *packet,
int length)

Writes data to NIC device chip.

• packet - pointer to the packet is sent

• length - Network packet length

Returns length.

3.2.4.2.9 USB file

The file uboot/app/test_usb.c provides an example that can be used to test the USB features. The steps below show how to
write a USB application:

1. Connect a USB disk to the USB port.

2. Include the header file, usb.h, which includes all APIs for USB.

3. Initialize the USB device using the usb_init API.

4. Scan the USB storage device on the USB bus using the usb_stor_scanAPI.

5. Get the device number using the blk_get_devnum_by_type API.

6. Read data from the USB disk using the blk_dread API.

7. Write data to the USB disk using the blk_dwrite API.

The table below shows the APIs used in the file test_usb.c example:

Table 15. USB APIs and their description

API name (type) Description

int usb_init(void) Initializes the USB controller.

int usb_stop(void) Stops the USB controller.

int usb_stor_scan(int mode) Scans the USB and reports device information to the user if
mode = 1

• Mode – if mode = 1, the information is returned to user.

Returns

Table continues on the next page...
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Table 15. USB APIs and their description (continued)

• the current device, or

• -1 (if device not found).

struct blk_desc *blk_get_devnum_by_type(enum
if_type if_type, int devnum)

Get a block device by type and number.

• If_type – Block device type

• devnum - device number

Returns

• Points to block device descriptor, or

• NULL (if not found).

unsigned long blk_dread(struct blk_desc
*block_dev, lbaint_t start, lbaint_t blkcnt, void
*buffer);

Reads data from USB device.

• block_dev – block device descripter

• start – start block

• blkcnt – block number

• buffer – buffer to store the data

Returns the block number from which, data is read.

unsigned long blk_dwrite(struct blk_desc
*block_dev, lbaint_t start, lbaint_t blkcnt, const
void *buffer);

Writes data to USB device.

• block_dev – block device descripter

• start – start block

• blkcnt – block number

• buffer – buffer to store the data

Returns the block number to which data is written.

3.2.4.2.10 PCIe file

The file app/test_pcie.c provides a sample code to test PCIe and network card (such as e1000) features. The steps below show
how to write a PCIe and net application:

1. Insert a PCIe network card (such as e1000) into PCIe2, or PCIe3 slot (if it exists).

2. Configure the IP address of the host machine to 192.168.1.2.

3. Include the files include/pci.h and include/ netdev.h.

4. Initialize the PCIe controller using the pci_init API.

5. Get uclass device by its name using the uclass_get_device_by_seq API.

6. Initialize the PCIe network device using the pci_eth_init API.

7. Begin pinging the host machine using the net_loop API.

The table below shows the APIs used in the file test_pcie.c example.

Table 16. PCIe APIs and their description

API name (type) Description

void pci_init(void) Initializes the PCIe controller. Does not return a value.

Table continues on the next page...

NXP Semiconductors
Real-time System

Real-time Edge Software User Guide, Rev. 2.1, 15-Dec-2021
User Guide 41 / 269



Table 16. PCIe APIs and their description (continued)

int uclass_get_device_by_seq(enum
uclass_id id, int seq, struct
udevice **devp)

Gets the uclass device based on an ID and sequence:

• id – uclass ID

• seq – sequence

• devp – Pointer to device

Returns:

• 0 if Ok.

• Negative value on error.

static inline int pci_eth_init(bd_t
*bis)

Initializes network card on the PCIe bus.

• Bis – struct containing variables accessed by shared code

Returns the number of network cards.

int net_loop (enum proto_t protocol) Main network processing loop.

• enum proto_t protocol - protocol type

Returns:

• 0 if Ok.

• Negative value on error.

3.2.4.2.11 CAN file

The file app/test_flexcan.c provides a sample test case to test flexCAN and CANopen features. The following steps show the
design process:

1. Register the receive interruption function for flexCAN.

2. Register an overflow interruption function for flextimer.

3. Initialize a list of callback functions.

4. Set the node ID of this node.

The table below shows the APIs used in the file test_flexcan.c example.

Table 17. CAN APIs and their description

API name (type) Description

void test_flexcan(void) It is the test code entry for flexCAN.

void flexcan_rx_irq(struct
can_module *canx)

FlexCAN receive interruption function.

• canx – flexCAN interface.

void flexcan_receive(struct
can_module *canx, struct
can_frame *cf)

FlexCAN receives CAN data frame.

• canx – FlexCAN interface.

• cf – CAN message.

UNS8 setState(CO_Data* d,
e_nodeState newState)

Sets node state

• d – object dictionary

Table continues on the next page...
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Table 17. CAN APIs and their description (continued)

• newState – The state that requires to be set.

Returns:

• 0 if Ok,

• > 0 on error.

void canDispatch(CO_Data* d,
Message *m)

CANopen handles data frames that CAN receives:

• d – object dictionary.

• m – Received CAN message.

int flexcan_send(struct
can_module *canx, struct
can_frame *cf)

FlexCAN interface sends CAN message:

• canx – FlexCAN interface.

• cf – CAN message.

void flextimer_overflow_irq(void) Flextimer overflow interruption handler function.

void timerForCan(void) CANopen virtual clock. Call this function per 100 μs.

• The following log shows the CANopen slave node state:

=> flexcan error: 0x42242! 
Note: slave node entry into the stop mode!
Note: slave node initialization is complete!
Note: slave node entry into the preOperation mode!
Note: slave node entry into the operation mode!
Note: slave node initialization is complete! 
Note: slave node entry into the preOperation mode!
Note: slave node entry into the operation mode! 

3.2.4.2.12 ENETC file

The file app/test_net.c provides an example to test ENETC Ethernet feature and shows how to write a net application for using
this feature. This example is a special case of using Net APIs.

The file test_net for ENETC is only an example for the LS1028ARDB board with (CONFIG_ENETC_COREID_SET enabled).

1. Connect ENETC port of LS1028ARDB board to one host machine using Ethernet cable.

2. Configure the IP address of the host machine as 192.168.1.2.

3. Power up the LS1028ARDB board. If the network is connected, the message host 192.168.1.2 is alive is displayed
on the console.

4. The IP addresses of the board and host machines are defined in the file test_net.c. In this file, modify the IP address
of LS1028ARDB board using variable ipaddr and change the IP address of host machine using variable ping_ip.

The table below lists the Net APIs for ENETC and their description, refer to section 4.2.7 for other Net APIs.

Table 18. ENETC APIs and their description

API name (type) Description

void pci_init(void) Initializes the PCIe controller. Does not return a value.

void eth_initialize(void) Initializes the Ethernet.
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3.2.4.2.13 SAI file

The audio feature needs SAI module and codec drivers. The following sections provide an introduction to SAI module and the
audio codec (SGTL5000). These sections also describe the steps for integrating audio with BareMetal and running an audio
application on BareMetal.

3.2.4.2.13.1 Synchronous Audio Interface (SAI)

The LS1028A integrates six SAI modules, but only SAI4 is used by LS1028ARDB board. The synchronous audio interface
(SAI) supports full duplex serial interfaces with frame synchronization. The bit clock and frame sync of SAI are both generated
externally (SGTL5000).

• Transmitter with independent bit clock and frame sync supporting 1 data line

• Receiver with independent bit clock and frame sync supporting 1 data line

• Maximum Frame Size of 32 words

• Word size of between 8-bits and 32-bits

• Word size configured separately for first word and remaining words in frame

• Asynchronous 32 × 32-bit FIFO for each transmit and receive channel

• Supports graceful restart after FIFO error

Figure SAI block diagram

3.2.4.2.13.2 Audio codec (SGTL5000)

The SGTL5000 is a low-power stereo codec with headphone amplifier from NXP. It is designed to provide a complete audio
solution for products requiring LINEIN, MIC_IN, LINEOUT, headphone-out, and digital I/Os. It allows an 8.0 MHz to 27 MHz system
clock as input. The codec supports 8.0 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz, and 96
kHz sampling frequencies. The LS1028ARDB board provides a 25 MHz crystal oscillator to the SGTL5000.

The SGTL5000 provides two interfaces (I2C and SPI) to setup registers. The LS1028ARDB board uses I2C interface.
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Figure 6. System block diagram, signal flow, and gain

3.2.4.2.13.3 Digital interface formats

The SGTL5000 provides five common digital interface formats. The SAI and SGTL5000 digital interface formats must be
the same.

• I2S Format (n = bit length)

• Left Justified Format (n = bit length)
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• Right Justified Format (n = bit length)

• PCM Format A

• PCM Format B

3.2.4.2.13.4 Running the SAI application

In order to run SAI application, BareMetal images should be rebuilt with SAI support.

1. Enable SAI support in Real-time Edge software

$ cd yocto-real-time-edge/sources/meta-real-time-edge 
# Open file "conf/distro/include/real-time-edge-base.inc", add "sai" to 
"DISTRO_FEATURES_append_ls1028ardb" like this: 
DISTRO_FEATURES_append_ls1028ardb = " jailhouse real-time-edge-libbee real-time-edge-libblep libnfc-
nci \ 
    wayland-protocols weston imx-gpu-viv libdrm kmscube \ 
    real-time-edge-sysrepo tsn-scripts wayland sai"
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2. Build the image

$ cd yocto-real-time-edge $ DISTRO=nxp-real-time-edge-baremetal MACHINE=ls1028ardb source real-time-
edge-setup-env.sh -b build-ls1028ardb-bm $ bitbake nxp-image-real-time-edge

3. Play a demo audio file in slave core after booting the board:

=> wavplayer *********************************************************** audioformat: PCM 
nchannels: 1 samplerate: 16000 bitrate: 256000 blockalign: 2 bps: 16 datasize: 67968 
datastart: 44 *********************************************************** sgtl5000 revision 
0x11 fsl_sai_ofdata_to_platdata Probed sound 'sound' with codec 'codec@a' and i2s 
'sai@f130000' i2s_transfer_tx_data The music waits for the end! The music is 
finished! ***********************************************************

3.2.4.3 ICC module

Inter-core communication (ICC) module works on Linux core (master) and BareMetal core (slave). It provides the data transfer
between cores via SGI inter-core interrupt and shared memory blocks. It can support multicore silicon platform and transfer the
data concurrently and efficiently.

ICC module structure is based on two basics:

• SGI: Software-generated Interrupts in Arm GIC, used to generate inter-core interrupts. The ICC module uses the number 8
SGI interrupt for all Linux and BareMetal cores.

• Shared memory: A memory space shared by all platform cores. The base address and size of the share memory should be
defined in header files before compilation.

ICC modules can work concurrently, lock-free among multicore platform, and support broadcast case with Buffer Descriptor
Ring mechanism.

The figure below shows the basic operating principle for data transfer from Core 0 to Core 1. After the data writing and head point
moving to next, Core 0 triggers a SGI (8) to Core 1. After this step, the Core 1 gets the BD ring updated status and reads the new
data, then moves the tail point to next.

Figure 7. BD rings for inter-core communication

For a multicore platform (that is, four cores), the total BD rings are arranged as shown in the following figure. (See the BD rings
on Core 0 and Core 1.)
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Figure 8. BD rings for multicore platform

All the ICC ring structures, BD structures, and blocks for data are in the shared memory. A four-core platform ICC module would
map the shared memory as shown in the figure below.

Figure 9. ICC shared memory map for the four-core platform

Generally, Core 0 runs Linux as master core while other cores run BareMetal as slaves. They obtain the same size of share
memory to structure the rings and BDs, and split the blocks space with 4k unit for each block. The reserved space at the top of
the share memory is out of the ICC module and for the custom usage.

For LS1021A platform with two cores, the shared memory map is defined as:

• The total shared memory size is 256 MB.

• The reserved space for custom usage is 16 MB at the top of the share memory space.

• Core 0 runs Linux as master core, the share memory size for ICC is 120 MB, in which the ring and BD structure space is 2
M, and the block space for data is 118 MB with 4K for each block.

• Core 1 runs BareMetal as slave core, the share memory size for ICC is 120 MB, in which the ring and BD structure space is
2M, and the block space for data is 118 MB with 4K for each block.
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The ICC module includes two parts of the code:

• ICC code for Linux user space, works for data transfer between master core and slave cores. The code is integrated
into the Real-time Edge software and named real-time-edge-icc. After the compilation, the icc binary is put into the
Linux filesystem.

• ICC code for BareMetal, runs on every slave core, works for data transfer between BareMetal cores and master core.

The ICC code for Linux user space in repos: https://github.com/real-time-edge-sw/real-time-edge-icc.git

├── icc-main.c --- the example case commands

├── inter-core-comm.c

├── inter-core-comm.h --- include the header file to use ICC module

└── Makefile

The ICC code for BareMetal in BareMetal directory:

baremetal/

├── arch/arm/lib/inter-core-comm.c

├── arch/arm/include/asm/inter-core-comm.h --- includes the header file to use ICC module

└── cmd/icc.c --- the example case commands

The ICC modules of the APIs are exported out for usage in both Linux user space and BareMetal code.

Table 19. ICC APIs

APIs Description

unsigned long
icc_ring_state(int coreid)

Checks the ring and block state.

Returns:

• 0 - if empty.

• !0 - the working block address currently.

Unsigned
long icc_block_request(void)

Requests a block, which is ICC_BLOCK_UNIT_SIZE size.

Returns:

• 0 - failed.

• !0 - block address can be used.

void icc_block_free(unsigned
long block)

Frees a block requested.

Be careful if the destination cores are working on this block.

int icc_irq_register(int src_coreid,
void (*irq_handle)(int, unsigned
long, unsigned int))

Registers ICC callback handler for received data.

Returns:

• 0 - on success

• -1 - if failed.

int icc_set_block(int core_mask,
unsigned int byte_count, unsigned
long block)

Sends the data in the block to a core or multicore.

This triggers the SGI interrupt.

Returns:

Table continues on the next page...
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Table 19. ICC APIs (continued)

APIs Description

• 0 - on success

• -1 - if failed.

void icc_show(void) Shows the ICC basic information.

int icc_init(void) Initializes the ICC module.

3.2.4.3.1 ICC examples

This section provides example commands for use cases in both Linux user space and BareMetal code. They can be used to check
and verify the ICC module conveniently.

1. In Linux user space, use the command icc to display the supported cases.

[root@LS1046ARDB ~] # icc
icc show - Shows all icc rings status at this core
icc perf <core_mask> <counts> - ICC performance to cores <core_mask> with <counts> bytes
icc send <core_mask> <data> <counts> - Sends <counts> <data> to cores <core_mask>
icc irq <core_mask> <irq> - Sends SGI <irq> ID[0 - 15] to <core_mask>
icc read <addr> <counts> - Reads <counts> 32bit register from <addr>
icc write <addr> <data> - Writes <data> to a register <addr>

Likewise, in BareMetal system, use the command icc to view the supported cases.

=> icc
1:icc - Inter-core communication via SGI interrupt

1:Usage:
icc show                                - Show all icc rings status at this core
icc perf <core_mask> <counts>           - ICC performance to cores <core_mask> with 
<counts> bytes
icc send <core_mask> <data> <counts>    - Send <counts> <data> to cores <core_mask>
icc irq <core_mask> <irq>               - Send SGI <irq> ID[0 - 15] to <core_mask>

2. The ICC module command examples on LS1046ARDB with Linux (Core 0) + BareMetal (Core 1, 2, 3) system:

Run icc send 0x2 0x55 128 to send 128 bytes data 0x55 to core 1.

[root@LS1046ARDB ~] # icc send 0x2 0x55 128
gic_base: 0xffffa033f000, share_base: 0xffff9133f000, share_phy: 0xd0000000, 
block_phy: 0xd0200000

ICC send testing ...
Target cores: 0x2, bytes: 128
ICC send: 128 bytes to 0x2 cores success

all cores: reserved_share_memory_base: 0xdf000000; size: 16777216

mycoreid: 0; ICC_SGI: 8; share_memory_size: 62914560
block_unit_size: 4096; block number: 14848; block_idx: 0

#ring 0 base: 0xffff9133f000; dest_core: 0; SGI: 8
desc_num: 128; desc_base: 0xd00000c0; head: 0; tail: 0
busy_counts: 0; interrupt_counts: 0
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#ring 1 base: 0xffff9133f030; dest_core: 1; SGI: 8
desc_num: 128; desc_base: 0xd00008c0; head: 1; tail: 1
busy_counts: 0; interrupt_counts: 1

#ring 2 base: 0xffff9133f060; dest_core: 2; SGI: 8
desc_num: 128; desc_base: 0xd00010c0; head: 0; tail: 0
busy_counts: 0; interrupt_counts: 0

#ring 3 base: 0xffff9133f090; dest_core: 3; SGI: 8
desc_num: 128; desc_base: 0xd00018c0; head: 0; tail: 0
busy_counts: 0; interrupt_counts: 0

At the same time, Core 1 displays the received information.

=> 1:Get the ICC from core 0; block: 0xd0200000, bytes: 128, value: 0x55

3. ICC command run on BareMetal side

=> icc send 0x1 0xaa 128
1:ICC send testing ...
1:Target cores: 0x1, bytes: 128
1:ICC send: 128 bytes to 0x1 cores success

1:all cores: reserved_share_memory_base: 0xdf000000; size: 16777216

1:mycoreid: 1; ICC_SGI: 8; share_memory_size: 62914560
1:block_unit_size: 4096; block number: 14848; block_idx: 0

1:#ring 0 base: 00000000d3c00000; dest_core: 0; SGI: 8
1:desc_num: 128; desc_base: 00000000d3c000c0; head: 1; tail: 1
1:busy_counts: 0; interrupt_counts: 1

1:#ring 1 base: 00000000d3c00030; dest_core: 1; SGI: 8
1:desc_num: 128; desc_base: 00000000d3c008c0; head: 0; tail: 0
1:busy_counts: 0; interrupt_counts: 0

1:#ring 2 base: 00000000d3c00060; dest_core: 2; SGI: 8
1:desc_num: 128; desc_base: 00000000d3c010c0; head: 0; tail: 0
1:busy_counts: 0; interrupt_counts: 0

1:#ring 3 base: 00000000d3c00090; dest_core: 3; SGI: 8
1:desc_num: 128; desc_base: 00000000d3c018c0; head: 0; tail: 0
1:busy_counts: 0; interrupt_counts: 0

Then, Core 0 side (Linux) receives this data:

[root@LS1046ARDB ~] # [ 4247.733753] 000: Get the ICC from core 1; block: 0xd3e00000, bytes: 
128, value: 0xaa

3.2.4.4 Hardware resource allocation

This section describes how to modify the hardware resource allocation depending on the application and used reference
design board.

3.2.4.4.1 LS1021A-IoT board

3.2.4.4.1.1 Linux DTS

Remove cpu1 node on DTS, and remove all the devices that bare metal has used.
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3.2.4.4.1.2 Memory configuration

LS1021A-IoT board has a 1 GB size DDR. The DDR memory can be configured into three partitions: 512M for core0 (Linux), 256M
for core1 (bare metal), and 256M for shared memory.

The configuration is in the path: include/configs/ls1021aiot_config.h.

#define CONFIG_SYS_DDR_SDRAM_SLAVE_SIZE (256 * 1024 * 1024)
#define CONFIG_SYS_DDR_SDRAM_MASTER_SIZE (512 * 1024 * 1024)

 
Memory configuration must be consistent with the U-Boot configuration of core0.

  NOTE  

Modify “CONFIG_SYS_MALLOC_LEN” in the include/configs/ls1021aiot_config.h file to change the maximum size of malloc.

You can use functions included in malloc.h to allocate or free memory in your program. These functions are listed in the
table below.

Table 20. Description of memory APIs

API name (type) Description

void_t* malloc (size_t n) Allocates memory

• n – length of allocated chunk

• Returns a pointer to the newly allocated chunk

void free (void *ptr) Releases the chunk of memory pointed to by ptr (where ptr is a pointer to the chunk of
memory)

The memory configuration for bare metal is shown in the figure below.

Figure 10. Memory configuration
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3.2.4.4.1.3 GPIO

LS1021A has four GPIO controllers. The configuration is defined in the file:arch/arm/dts/ls1021a-iot.dtsi. You can add a GPIO
node in the file ls1021a-iot.dtsi to assign a GPIO resource to different cores. Following is a sample code for adding a GPIO node.

&gpio2 
{
 status = "okay";
};

3.2.4.4.1.4 I2C

LS1021A has three I2C controllers. Configure the I2C bus on ls1021aiot_config.h using the commands below:

// include/configs/ls1021aiot_config.h:
#define CONFIG_SYS_I2C_MXC_I2C1 /* enable I2C bus 1 */
#define CONFIG_SYS_I2C_MXC_I2C2 /* enable I2C bus 2 */
#define CONFIG_SYS_I2C_MXC_I2C3 /* enable I2C bus 3 */

3.2.4.4.1.5 Hardware interrupts

LS1021A has six IRQs as external IO signals connected to interrupt the controller. We can use these six IRQs on bare metal cores.
The ids for these signals, IRQ0-IRQ5 are: 195, 196, 197, 199, 200, and 201.

GIC interrupt APIs are defined in the file, asm/interrupt-gic.h. The following example shows how to register a
hardware interrupt:

//register HW interrupt
void gic_irq_register(int irq_num, void (*irq_handle)(int));
void gic_set_target(u32 core_mask, unsigned long hw_irq);
void gic_set_type(unsigned long hw_irq);

3.2.4.4.1.6 IFC

LS1021A-IoT board has no IFC device, but the LS1021A SoC has an IFC interface. Since IFC is multiplexed with QSPI, you should
modify the RCW to use the IFC interface, and add a configuration such as shown in the sample code provided below. Users can
modify the code to support IFC as per the actual scenario.

#define CONFIG_FSL_IFC
#define CONFIG_SYS_CPLD_BASE 0x7fb00000
#define CPLD_BASE_PHYS CONFIG_SYS_CPLD_BASE
#define CONFIG_SYS_FPGA_CSPR_EXT (0x0)

#define CONFIG_SYS_FPGA_CSPR (CSPR_PHYS_ADDR(CPLD_BASE_PHYS) | \
CSPR_PORT_SIZE_8 | \
CSPR_MSEL_GPCM | \
CSPR_V)

#define CONFIG_SYS_FPGA_AMASK IFC_AMASK(64 * 1024)
#define CONFIG_SYS_FPGA_CSOR (CSOR_NOR_ADM_SHIFT(4) | \
CSOR_NOR_NOR_MODE_AVD_NOR | \
CSOR_NOR_TRHZ_80)

/* CPLD Timing parameters for IFC GPCM */
#define CONFIG_SYS_FPGA_FTIM0 (FTIM0_GPCM_TACSE(0xf) | \
FTIM0_GPCM_TEADC(0xf) | \
FTIM0_GPCM_TEAHC(0xf))
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#define CONFIG_SYS_FPGA_FTIM1 (FTIM1_GPCM_TACO(0xff) | \
FTIM1_GPCM_TRAD(0x3f))

#define CONFIG_SYS_FPGA_FTIM2 (FTIM2_GPCM_TCS(0xf) | \
FTIM2_GPCM_TCH(0xf) | \
FTIM2_GPCM_TWP(0xff))

#define CONFIG_SYS_FPGA_FTIM3 0x0
#define CONFIG_SYS_CSPR1_EXT CONFIG_SYS_FPGA_CSPR_EXT
#define CONFIG_SYS_CSPR1 CONFIG_SYS_FPGA_CSPR
#define CONFIG_SYS_AMASK1 CONFIG_SYS_FPGA_AMASK
#define CONFIG_SYS_CSOR1 CONFIG_SYS_FPGA_CSOR
#define CONFIG_SYS_CS1_FTIM0 CONFIG_SYS_FPGA_FTIM0
#define CONFIG_SYS_CS1_FTIM1 CONFIG_SYS_FPGA_FTIM1
#define CONFIG_SYS_CS1_FTIM2 CONFIG_SYS_FPGA_FTIM2
#define CONFIG_SYS_CS1_FTIM3 CONFIG_SYS_FPGA_FTIM3        
        
    

3.2.4.4.1.7 USB

LS1021AIOT has a single DW3 USB controller, which is assigned to the second core, by default. Use the command make
menuconfig to reconfigure the U-Boot to assign it to other cores.

ARM architecture  --->
[*] Enable baremetal
[*] Enable USB for baremetal
(1) USB0 is assigned to core1
(1) USB Controller numbers

3.2.4.4.1.8 PCIe

LS1021AIOT has two PCIe controllers. By default, one is assigned to core0 and the other is assigned to core1. Use the make
menuconfig command to reconfigure the U-Boot, in order to re-assign the cores.

ARM architecture  --->
[*] Enable baremetal
[*] Enable PCIE for baremetal
(0)   PCIe1 is assigned to core0
(1)   PCIe2 is assigned to core1
(2)   PCIe Controller numbers

3.2.4.4.1.9 FlexCAN

Assigning CAN3 to BareMetal

In BareMetal, the port is allocated through the flexcan.c file. The flexcan.c path is industry-uboot/drivers/flexcan/
flexcan.c. In this file, you should define the following variables:

struct can_bittiming_t flexcan3_bittiming = CAN_BITTIM_INIT(CAN_500K);

Note: You also should set the bit timing and baud rate (500K) of the CAN port.

struct can_ctrlmode_t flexcan3_ctrlmode = {
.loopmode = 0, /* Indicates whether the loop mode is enabled */
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.listenonly = 0, /* Indicates whether the only-listen mode is enabled */

.samples = 0,

.err_report = 1,
};
struct can_init_t flexcan3 = {
.canx = CAN3,   /* Specify CAN port  */
.bt = &flexcan3_bittiming,
.ctrlmode = &flexcan3_ctrlmode,
.reg_ctrl_default = 0,
.reg_esr = 0
};

Optional Parameters

• CAN port

#define CAN3      (struct can_module *)CAN3_BASE)
#define CAN4      (struct can_module *)CAN4_BASE)

• Baud rate

#define CAN_1000K 10
#define CAN_500K 20
#define CAN_250K 40
#define CAN_200K 50
#define CAN_125K 80
#define CAN_100K 100
#define CAN_50K 200
#define CAN_20K 500
#define CAN_10K 1000
#define CAN_5K 2000

Use the command make menuconfig for configuring the FlexCAN setting for LS1021A reference design boards, as shown below: .

Device Drivers   --->
CAN support   --->
[*] Support for Freescale FLEXCAN based chips
[*]   Support for canfestival

3.2.4.4.2 LS1028ARDB board

This section describes the ENETC configuration setting for LS1028A reference design boards.

3.2.4.4.2.1 ENETC

LS1028ARDB has only one ENETC controller in use, which is assigned to core1 as the default setting. The controller can be
reconfigured by using the command, make menuconfig.

See the following:

ARM architecture --->
[*] Enable baremetal
[*] Enable ENETC for baremetal
   (1)  Enetc1 is assigned to core1
   (1)  ENETC Controller numbers
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3.2.4.4.2.2 I2C
This section describes how to configure the I2C bus on LS1028A reference design boards.

LS1028ARDB has eight I2C controllers, but only controller 0 is used for I2C devices. For example, RTC, Thermal Monitor, and
Linux (core 0) use this controller for some features (for example, RTC). Therefore, the code below just shows how to enable I2C
on BareMetal side.

 
Operate the I2C devices in BareMetal side CAREFULLY.

  NOTE  

#define CONFIG_SYS_I2C_MXC_I2C1 /* enable I2C bus 0 */
#define CONFIG_SYS_I2C_MXC_I2C2 /* enable I2C bus 1 */
#define CONFIG_SYS_I2C_MXC_I2C3 /* enable I2C bus 2 */
#define CONFIG_SYS_I2C_MXC_I2C4 /* enable I2C bus 3 */

#define CONFIG_I2C_BUS_CORE_ID_SET
#define CONFIG_SYS_I2C_MXC_I2C0_COREID  1

The CONFIG_SYS_I2C_MXC_I2C0_COREID defines the slave core that runs the I2C bus.

Since I2C is enabled in DM mode on BareMetal side, there is no automatic code to test it. Follow the below steps to read RTC
(0x51 address, is on bus 2) on BareMetal side:

=> i2c bus
Bus 0:  i2c@2000000  (active 0)
   77: i2c-mux@77, offset len 1, flags 0
   57: generic_57, offset len 1, flags 0
Bus 1:  i2c@2000000->i2c-mux@77->i2c@1
Bus 2:  i2c@2000000->i2c-mux@77->i2c@3
   51: rtc@51, offset len 1, flags 0
Bus 3:  i2c@2010000
Bus 4:  i2c@2020000
Bus 5:  i2c@2030000
Bus 6:  i2c@2040000
Bus 7:  i2c@2050000
Bus 8:  i2c@2060000
Bus 9:  i2c@2070000
=> i2c md 0x51 0
Error reading the chip: -121
=> i2c dev 2
Setting bus to 2
=> i2c md 0x51 0
0000: 04 00 36 03 12 15 02 12 20 80 80 80 80 80 00 c2    ..6..... .......

3.2.4.4.2.3 SAI

LS1028ARDB has only one SAI module in use, which is assigned to core1 in the default setting. The SAI module can be
reconfigured by using the command, make menuconfig.

See the following:

Command line interface --->
   Misc commands --->
      [*] wavplayer

Device Drivers --->
   Sound support --->
      [*] Enable sound support
      [*]   Enable I2S support
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      [*] Freescale sound
      [*] Freescale sgtl5000 audio codec
      [*] Freescale SAI module 

3.2.4.4.2.3.1 Audio integration in BareMetal
For audio feature, we should add SAI and SGTL5000 drivers to BareMetal.

• Add SAI driver source code to the drivers/sound directory

• Add SGTL5000 driver source code to the drivers/sound directory

• Add sound device source code to the drivers/sound directory

• Add a command that can play wav files to the cmd directory

• Add support for SAI and sgtl5000 in LS1028ARDB dts file

In fsl-ls1028a.dtsi file:
sai4: sai@f130000 {
    #sound-dai-cells = <0>;
    compatible = "fsl,ls1028a-sai";
    reg = <0x0 0xf130000 0x0 0x10000>;
    status = "disabled";
};
In fsl-ls1028a-rdb.dts file:

sound {
    compatible = "fsl,audio-sgtl5000";
    model = "ls1028a-sgtl5000";
    audio-cpu = <&sai4>;
    audio-codec = <&sgtl5000>;
    audio-routing =
      "LINE_IN", "Line In Jack",
      "MIC_IN", "Mic Jack",
      "Mic Jack", "Mic Bias",
      "Headphone Jack", "HP_OUT";
};

i2c@1 {
    #address-cells = <1>;
    #size-cells = <0>;
    reg = <0x1>;
    sgtl5000: codec@a {
        #sound-dai-cells = <0>;
        compatible = "fsl,sgtl5000";
        reg = <0xa>;
        VDDA-supply = <1800>;
        VDDIO-supply = <1800>;
        sys_mclk = <25000000>;
        sclk-strength = <3>;
    };
};
&sai4 {
    status = "okay";
};

• Add all source code to the corresponding makefile file.

• Add new default configurations to ls1028ardb_sdcard_baremetal_defconfig file
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3.2.4.4.3 LS1043ARDB or LS1046ARDB board

The following sections describe the hardware resource allocation for the LS1043ARDB or LS1046ARDB boards for implementing
the supported features.

3.2.4.4.3.1 Linux DTS

Remove cpu1, cpu2, cpu3 nodes on DTS, and remove all the devices that bare metal has used.

3.2.4.4.3.2 Memory configuration
This section describes the memory configuration for LS1043ARDB or LS1046ARDB boards.

The LS1043ARDB or LS1046ARDB boards have a 2GB size DDR. To use the bare metal framework, configure DDR into
three partitions:

• 512M for core0 (Linux)

• 256M for core1 (bare metal)

• 256M for core2 (bare metal)

• 256M for core3 (bare metal), and 256M for shared memory.

The configuration can be defined in the file include/configs/ls1043ardb.h.

 #define CONFIG_SYS_DDR_SDRAM_SLAVE_SIZE (256 * 1024 * 1024)
 #define CONFIG_SYS_DDR_SDRAM_MASTER_SIZE (512 * 1024 * 1024)
 #define CONFIG_SYS_DDR_SDRAM_SHARE_RESERVE_SIZE (16 * 1024 * 1024)
 #define CONFIG_SYS_DDR_SDRAM_SHARE_SIZE \ ((256 * 1024 * 1024) 
- CONFIG_SYS_DDR_SDRAM_SHARE_RESERVE_SIZE) 

 
The memory configuration must be consistent with the U-Boot configuration of core0.

  NOTE  

The memory configuration for bare metal is shown in the figure below.

Figure 11. Memory configuration for LS1043ARDB or LS1046ARDB

The functions included in malloc.h in the table below can be used to allocate or free memory in program. Modify
CONFIG_SYS_MALLOC_LEN in include/configs/ls1043a_common.h to change the maximum size of malloc.
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Table 21. Memory APIs description

API name (type) Description

void_t* malloc (size_t n) Allocates memory

• “n” – length of allocated chunk

• Returns a pointer to the newly allocated chunk

void free (void *ptr) Releases the chunk of memory pointed to by ptr (where “ptr” is
a pointer to the chunk of memory)

The GPIO for LS1043ARDB (or LS1046ARDB) has four GPIO controllers. You need to add a GPIO node in the file ls1043/6a-
rdb.dts to assign a GPIO resource to different cores. The configuration can be done in the file arch/arm/dts/fsl-
ls1043/6a-rdb.dts.

3.2.4.4.3.3 GPIO

LS1043/6A has four GPIO controllers. You can add a GPIO node in the file ls1043/6a-rdb.dts to assign a GPIO resource
to different cores. The configuration is in arch/arm/dts/fsl-ls1043/6a-rdb.dts. Use the command below to add a
GPIO node:

&gpio2 {
     status = "okay";
 };  

3.2.4.4.3.4 I2C
This section describes how to configure the I2C bus on LS1028A, LS1043A, or LS1046A reference design boards.

The LS1043ARDB (or LS1028ARDB / LS1046ARDB) has four I2C controllers. You can configure the I2C bus using the
ls1043ardb_config.h (or ls1043ardb_config.h) file using the commands below:

// include/configs/ls1043ardb_config.h:
#define CONFIG_SYS_I2C_MXC_I2C1     /* enable I2C bus 0 */
#define CONFIG_SYS_I2C_MXC_I2C2     /* enable I2C bus 1 */
#define CONFIG_SYS_I2C_MXC_I2C3     /* enable I2C bus 2 */
#define CONFIG_SYS_I2C_MXC_I2C4     /* enable I2C bus 3 */
#define CONFIG_SYS_I2C_MXC_I2C0_COREID  1
#define CONFIG_SYS_I2C_MXC_I2C1_COREID  2
#define CONFIG_SYS_I2C_MXC_I2C2_COREID  3
#define CONFIG_SYS_I2C_MXC_I2C3_COREID  1

The CONFIG_SYS_I2C_MXC_I2C0_COREID defines the slave core that runs the I2C bus.

3.2.4.4.3.5 Hardware interrupts

LS1043A has twelve IRQs as external IO signals connected to interrupt the controller. These twelve IRQs can be used on bare
metal cores. The ids for these signals, IRQ0-IRQ11 are: 163, 164, 165, 167, 168, 169, 177, 178, 179, 181, 182, and 183. GIC
interrupt APIs are defined in asm/interrupt-gic.h. The following example shows how to register a hardware interrupt:

//register HW interrupt
void gic_irq_register(int irq_num, void (*irq_handle)(int));
void gic_set_target(u32 core_mask, unsigned long hw_irq);
void gic_set_type(unsigned long hw_irq);  
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3.2.4.4.3.6 QSPI

LS1046ARDB has a QSPI flash device. To configure the QSPI on ls1046ardb_config.h, use the command below:

#define CONFIG_FSL_QSPI_COREID 1 

Here, the CONFIG_FSL_QSPI_COREID defines the slave core that runs this QSPI.

3.2.4.4.3.7 IFC

LS1043A and LS1046A has IFC controller. Both Nor flash and NAND flash are supported in ls1043ardb, only NAND flash is
supported in ls1046ardb.

1. IFC is disabled in Linux kernel via disabling "ifc" node:

&ifc {
       status = "disabled";
};

2. Enter the BareMetal-Framework directory path and then execute the commands below: (IFC is enabled by default)

 make menuconfig ARM architecture ---> [*] Enable baremetal [*] Enable IFC for baremetal (1) IFC 
is assigned to that core 

3.2.4.4.3.8 Ethernet
This section describes the Ethernet configuration settings for LS1043A or LS1046A reference design boards.

LS1043A or LS1046A has only one FMan, so you should remove the DPAA driver in Linux.

1. Disable the DPAA driver in Linux kernel:

  Device Drivers --->
       Staging drivers--->
          < > Freescale Datapath Queue and Buffer management

2. Enter the BareMetal-Framework directory and then execute the commands below:

 make menuconfig ARM architecture ---> [*] Enable baremetal [*] Enable fman for baremetal (1) 
FMAN1 is assigned to that core 

Configure FMan to the specified core by modifying the FMan1 is assigned to that core value, which is the default
configuration, to core1.

3.2.4.4.3.9 USB

This section describes the USB configuration setting for LS1043A and LS1046A reference design boards.

Both LS1043A and LS1046A have three DW3 USB controllers. By default, these are assigned as core1, core2, and core3. Users
can reconfigure the controllers by using the ‘make menuconfig’ command as shown below.

ARM architecture  --->
[*] Enable baremetal
[*]   Enable USB for baremetal
(1)     USB0 is assigned to core1
(2)     USB1 is assigned to core2
(3)     USB2 is assigned to core3
(3)     USB Controller numbers
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3.2.4.4.3.10 PCI Express (PCIe)

This section describes the PCIe configuration setting for LS1043A and LS1046A reference design boards.

Both LS1043A and LS1046A have three PCIe controllers. By default, these are assigned as core0, core1, and core2. To
reconfigure them, use the command ‘make menuconfig’, as shown below:

ARM architecture  --->
[*] Enable baremetal
(0)     PCIe1 is assigned to core0
(1)     PCIe2 is assigned to core1
(2)     PCIe3 is assigned to core2
(3)     PCIe Controller numbers

3.2.4.4.4 LX2160ARDB board

The following sections describe the hardware resource allocation for the LX2160ARDB boards for implementing the
supported features.

3.2.4.4.4.1 Memory configuration
This section describes the memory configuration for LX2160ARDB boards.

The LX2160ARDB boards have a 16GB size DDR. To use the BareMetal framework, configure DDR into three partitions:

• 15G for core0 (Linux)

• 64M per core from core1 to core15 (bare metal), and 64M for shared memory.

The configuration can be defined in the file include/configs/lx2160ardb_config.h.

 #define CONFIG_SYS_DDR_SDRAM_SLAVE_SIZE (64 * 1024 * 1024)
 #define CONFIG_SYS_DDR_SDRAM_MASTER_SIZE (512 * 1024 * 1024)
 #define CONFIG_SYS_DDR_SDRAM_SHARE_RESERVE_SIZE (16 * 1024 * 1024)
 #define CONFIG_SYS_DDR_SDRAM_SHARE_SIZE \ ((64 * 1024 * 1024) 
- CONFIG_SYS_DDR_SDRAM_SHARE_RESERVE_SIZE) 

Figure 12. Memory configuration for LX2160ARDB

The functions included in malloc.h in the table below can be used to allocate or free memory in program. Modify
CONFIG_SYS_MALLOC_LEN in include/configs/lx2160ardb_config.h to change the maximum size of malloc.

Table 22. Memory APIs description

API name (type) Description

void_t* malloc (size_t n) Allocates memory

• “n” – length of allocated chunk

• Returns a pointer to the newly allocated chunk

void free (void *ptr) Releases the chunk of memory pointed to by ptr (where “ptr” is
a pointer to the chunk of memory)

3.2.4.4.5 i.MX 8M Mini EVK and i.MX 8M Plus EVK board

NXP Semiconductors
Real-time System

Real-time Edge Software User Guide, Rev. 2.1, 15-Dec-2021
User Guide 61 / 269



3.2.4.4.5.1 Linux DTS

When using BareMetal, users should remove all the devices from kernel that BareMetal has used, for example:

&fec1 {
status = "disabled";
      };
&gpio5
        {
status = "disabled";
        };
&uart3  {
status = "disabled";
        };

3.2.4.4.5.2 Memory configuration

This section describes the memory configuration for i.MX 8M Mini EVK or i.MX 8M Plus EVK boards.

1. The boards have a 6 GB DDR memory. To use the BareMetal framework, configure DDR into five partitions:

• 6016M for core0 (Linux)

• 32M for core1 (bare metal)

• 32M for core2 (bare metal)

• 32M for core3 (bare metal)

• 32M for shared memory.

The configuration can be defined in the file include/configs/imx8mm_evk.h. or include/configs/imx8mp_evk.h.

#define CONFIG_SYS_DDR_SDRAM_SLAVE_RESERVE_SIZE (SZ_32M)
#define CONFIG_SYS_DDR_SDRAM_SHARE_RESERVE_SIZE (SZ_4M)
#define CONFIG_SYS_DDR_SDRAM_SLAVE_SIZE (SZ_32M)

2. Memory Reserve

For IPI data transfer, BareMetal needs to share memory between master core and slave core. Hence, users should reserve some
memory from linux kernel, as shown in the following dts file:

 reserved-memory { #address-cells = <2>; #size-cells = <2>; ranges; bm_reserved: baremetal@0x60000000 
{ no-map; reg = <0 0x60000000 0 0x10000000>; }; };

3.2.4.4.5.3 GPIO

1. Connect pin7 and pin8 of J1003. The test_gpio case in BareMetal uses pin7 and pin8 of J1003, so connect these two pins.

2. Boot the BareMetal on slave core. If the GPIO is working fine, the message below is displayed:

 [ok]GPIO test ok

3. Disable the devices from kernel.

For the test_gpio case, use GPIO5_7 (pin8 of J1003) and GPIO5_8 (pin7 of J1003). These two pins are muxed as UART3_TXD
and UART3_CTS, so should disable GPIO5 and UART3 from kernel.

&gpio5 { status = "disabled"; }; &uart3 { status = "disabled"; };
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3.2.4.4.5.4 Ethernet

This section describes the Ethernet configuration settings for i.MX 8M Mini EVK or i.MX 8M Plus EVK boards.

1. Disable the Ethernet card from dts files:

&fec1 {
status = "disabled";
};

 
1. i.MX 8M Mini EVK has only one NIC, default status of eth0(fec1) is disabled. if user does not use eth0 in

BareMetal, can enable fec1 in kernel dts file.

2. i.MX 8M Plus EVK has two NICs, default setting is eth0 for BareMetal, eth1 for Linux.

  NOTE  

2. Confirm BareMetal configuration using the command below:

make menuconfig ARM architecture ---> [*] Enable baremetal [*] Enable NIC for baremetal (1) which 
core that NIC is assigned to

Configure NIC to the specified core by modifying the NIC to assign that core value, which is the default configuration, to core1.

3.3 Jailhouse

3.3.1 Overview
Jailhouse is a partitioning Hypervisor based on Linux. It is able to run bare-metal applications or (adapted) operating systems
besides Linux. For this purpose, it configures CPU and device virtualization features of the hardware platform in a way that none
of these domains, called "cells" here, can interfere with each other in an unacceptable way.

Jailhouse is optimized for simplicity rather than feature richness. Jailhouse does not support overcommitment of resources such
as CPUs, RAM, or devices. This feature makes it different from full-featured Linux-based hypervisors such as KVM or Xen.
It performs no scheduling and only virtualizes those resources in software, which are essential for a platform and cannot be
partitioned in hardware.

Once Jailhouse is activated, it runs BareMetal. This implies that it takes full control over the hardware and needs no external
support. However, in contrast to other bare-metal hypervisors, it requires a normal Linux system to be loaded and configured. Its
management interface is based on Linux infrastructure. So, you boot Linux first, then, enable Jailhouse and finally split off parts
of the system's resources and assign them to additional cells.

3.3.2 Running PREEMPT_RT Linux in Inmate

3.3.2.1 i.MX 8M Plus EVK

Perform the following steps;

1. Execute run jh_mmcboot in U-Boot stage.

2. Wait for Linux OS to boot up and login in.

3. Execute non-root Linux demo:

# cd /usr/share/jailhouse/scripts
# ./linux-demo-imx8mp.sh

4. Check the result on serial port:
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Note: if the case fails because of rootfs error, we can update rootfs using the following command:

# rm -fr /run/media/mmcblk2p2/*
# cp -frd /usr /bin /etc /home /fat /lib /linuxrc /lost+found/ /media/ /mnt /opt /root /
sbin /run/media/mmcblk2p2/

5. Exit Jailhouse.

3.3.2.2 LS1028ARDB

3.3.2.2.1 Linux in none-root cell

Perform the following steps to run PREEMPT_RT Linux in Inmate on LS1028ARDB:

1. Execute run jh_mmcboot from U-Boot prompt.

2. Wait for Linux OS to boot up and login in it.

3. Execute non-root Linux demo:

# cd /usr/share/jailhouse/scripts
# ./linux-demo-ls1028ardb.sh

4. Exit Jailhouse.

# ../tools/jailhouse disable

3.3.2.2.2 ENETC in none-root cell

Follow the below steps for ENETC that is assigned to non-root cell:

1. Under U-Boot prompt, run the below commands to set the device tree blob, which has ENETC nodes removed and then
boot up Linux:

=> setenv jh_mmcboot ‘setenv dtb fsl-ls1028a-rdb-jailhouse-without-enetc.dtb;run bootcmd’
=> run jh_mmcboot

2. Wait for Linux OS to boot up and then log in.
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3. Execute non-root Linux demo:

# cd /usr/share/jailhouse/scripts
# ./linux-demo-ls1028ardb-enetc.sh

Then, network can be available in none-root cell Linux.

4. Exit Jailhouse.

# ../tools/jailhouse disable

 
In this case, the GICv3 ITS node is also removed from the root cell Linux device tree. The node is assigned
to non-root cell to service ENETC MSI-X interrupts, so the root cell Linux does not support the MSI/MSI-X
service anymore.

  NOTE  

3.3.2.2.3 GPIO in none-root cell

GPIO3 controller is assigned to none-root cell, below steps is for GPIO that is assigned to non-root cell:

1. Hardware setup

Connect J11 Pin5 (1588_ALARM_OUT1/GPIO3_DAT11) to Pin 8 (1588_CLK_OUT/GPIO3_DAT10)

2. RCW setting

In dash-rcw/ls1028ardb/R_SQPP_0x85bb/rcw_1500_sdboot.rcw, change as below:

EC1_SAI4_5_PMUX=1

EC1_SAI3_6_PMUX=1

EC1_SAI4_5_PMUX is set to 0b001, EC1_SAI3_6_PMUX is set to 0b001 to select GPIO.

3. Software configure

a. Configure CPLD register BRDCFG3 (offset 053h) bit 2 to 0 (IEEE signals connect to the IEEE header) in
U-Boot prompt:

=> i2c mw 66 53 00

b. Boot up Linux using Jailhouse DTB and bring up non-root Linux:

=> run jh_mmcboot

c. Wait for Linux OS to boot up and login in.

d. Execute non-root Linux demo

# cd /usr/share/jailhouse/scripts
# ./linux-demo-ls1028ardb.sh

4. Test GPIO function in non-root Linux

a. Export GPIO pin

# ls /sys/class/gpio
# echo 490 > /sys/class/gpio/export
# echo 491 > /sys/class/gpio/export
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b. Configure GPIO output and input

# echo out > /sys/class/gpio/gpio490/direction
# cat /sys/class/gpio/gpio490/direction
# cat /sys/class/gpio/gpio491/direction

c. Verify write 1 to GPIO ouput

# echo 1 > /sys/class/gpio/gpio490/value
# cat /sys/class/gpio/gpio490/value
# cat /sys/class/gpio/gpio491/value

d. Verify write 0 to GPIO ouput

# echo 0 > /sys/class/gpio/gpio490/value
# cat /sys/class/gpio/gpio490/value
# cat /sys/class/gpio/gpio491/value

5. Exit Jailhouse

# ../tools/jailhouse disable

3.3.2.3 LS1046ARDB

Perform the following steps:

1. Execute run jh_mmcboot in U-Boot stage.

2. Wait for Linux OS to boot up and login in it.

3. Execute non-root Linux demo:

# cd /usr/share/jailhouse/scripts
# ./linux-demo-ls1046ardb.sh

4. Exit Jailhouse:

# ../tools/jailhouse disable

3.3.3 Running Jailhouse Examples In Inmate

3.3.3.1 i.MX 8M Plus EVK

1. Execute run jh_mmcboot in U-Boot stage

2. Wait for Linux OS to boot up and login in it.

3. Execute GIC demo.

# cd /usr/share/jailhouse/scripts
# ./gic-demo-imx8mp.sh

4. Check the result on serial port:
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5. Execute UART demo:

# ./uart-demo-imx8mp.sh

6. Check the result on serial port:

7. Exit Jailhouse.

# ../tools/jailhouse disable

3.3.3.2 LS1028ARDB Jailhouse example in Inmate

Perform the following steps for running LS1028ARDB Jailhouse example In Inmate:

1. Execute run jh_mmcboot in U-Boot stage.

2. Wait for Linux OS to boot up and login in it.

3. Execute GIC demo.

# cd /usr/share/jailhouse/scripts
# ./gic-demo-ls1028ardb.sh

4. Execute UART demo.

# ./uart-demo-ls1028ardb.sh
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5. Execute ivshmem demo.

# ./ivshmem-demo-ls1028ardb.sh

 
If ivshmem case fails, then, reboot the board and test the case again.

  NOTE  

Check the result on the second serial port:

6. Exit Jailhouse.

3.3.3.3 LS1046ARDB Jailhouse example

Perform the below steps for running Jailhouse examples in Inmate on LS1046ARDB:

1. Execute run jh_mmcboot in U-Boot stage.

2. Wait for Linux OS to boot up and login it.

3. Execute GIC demo:

# cd /usr/share/jailhouse/scripts
# ./gic-demo-ls1046ardb.sh

4. Execute UART demo:

# ./uart-demo-ls1046ardb.sh
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5. Execute ivshmem demo:

# ./ivshmem-demo-ls1046ardb.sh

6. Exit Jailhouse.

# ../tools/jailhouse disable

NXP Semiconductors
Real-time System

Real-time Edge Software User Guide, Rev. 2.1, 15-Dec-2021
User Guide 69 / 269



Chapter 4
Real-time Networking
4.1 Time Sensitive Networking (TSN) on NXP platforms
Time Sensitive Networking (TSN) is an extension to traditional Ethernet networks, providing a set of standards compatible with
IEEE 802.1 and 802.3. These extensions intend to address the limitations of standard Ethernet in sectors ranging from industrial
and automotive applications to live audio and video systems. Applications running over traditional Ethernet must be designed to
be very robust in order to withstand corner cases such as packet loss, delay, or even reordering. TSN aims to provide guarantees
for deterministic latency and packet loss under congestion. Therefore, it allows critical and non-critical traffic to be converged in
the same network.

This chapter describes the process and use cases for implementing TSN features on the i.MX 8M Plus, LS1028ARDB, and
LS1021A-TSN boards.

4.1.1 TSN hardware capability

Table 23. TSN hardware capability on different platforms

Platform 802.1Qbv
(Enhancements
for Scheduled
Traffic)

802.1Qbu and
802.3br
(Frame
Preemption)

802.1Qav
(Credit Based
Shaper)

802.1AS
(Precision Time
Protocol)

802.1CB
(Frame
Replication and
Elimination for
Reliability)

802.1Qci (Per
Stream Filtering
and Policing)

ENETC (LS1028a) Y Y Y Y N Y

Felix switch
(LS1028a)

Y Y Y Y Y Y

SJA1105
(LS1021a-TSN)

Y N Y Y N Pre-standard

Stmac (i.MX 8M
Plus)

Y Y Y Y N N

4.1.2 TSN configuration
The table below describes the TSN configuration tools support on different platforms

Table 24. TSN configuration tools support on different platforms

Platform 802.1Qbv
(Enhancements
for Scheduled
Traffic)

802.1Qbu and
802.3br
(Frame
Preemption)

802.1Qav
(Credit Based
Shaper)

802.1AS
(Precision
Time Protocol)

802.1CB
(Frame
Replication and
Elimination for
Reliability)

802.1Qci (Per
Stream Filtering and
Policing)

ENETC
(LS1028A)

tc-taprio

tsntool

ethtool

tsntool

tc-cbs

tsntool

ptp4l N/A tc-flower

tsntool

Felix switch
(LS1028A)

tc-taprio

tsntool

ethtool

tsntool

tc-cbs

tsntool

ptp4l,
GenAVB/TSN
stack

tsntool tc-flower

tsntool

Table continues on the next page...
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Table 24. TSN configuration tools support on different platforms (continued)

Platform 802.1Qbv
(Enhancements
for Scheduled
Traffic)

802.1Qbu and
802.3br
(Frame
Preemption)

802.1Qav
(Credit Based
Shaper)

802.1AS
(Precision
Time Protocol)

802.1CB
(Frame
Replication and
Elimination for
Reliability)

802.1Qci (Per
Stream Filtering and
Policing)

SJA1105
(LS1021A-
TSN)

tc-taprio N/A tc-cbs ptp4l N/A tc-flower

Stmac (i.MX
8M Plus)

tc-taprio ethtool tc-cbs ptp4l,
GenAVB/TSN
stack

N/A N/A

4.1.2.1 Using Linux traffic control (tc)

Enable the following configurations in kernel when using Linux traffic control (tc):

Symbol: NET_SCH_MQPRIO [=y] && NET_SCH_CBS [=y] && NET_SCH_TAPRIO [=y]
  [*] Networking support --->
    Networking options --->
      [*] QoS and/or fair queueing --->
        <*>   Credit Based Shaper (CBS)
        <*>   Time Aware Priority (taprio) Scheduler
        <*>   Multi-queue priority scheduler (MQPRIO)
      [*]   Actions --->
        <*>   Traffic Policing
        <*>   Generic actions
        <*>   Redirecting and Mirroring
        <*>   SKB Editing
        <*>   Vlan manipulation
        <*>   Frame gate entry list control tc action

On lS1028A platform, ENETC QoS driver needs to be set to support tc configuration.

Symbol: FSL_ENETC_QOS [=y]
  Device Drivers--->
    [*]   Network device support --->
      [*]   Ethernet driver support --->
        [*]   Freescale devices
        [*]     ENETC hardware Time-sensitive Network support

1. The below link provides details for using tc-taprio to set Qbv:

https://man7.org/linux/man-pages/man8/tc-taprio.8.html

2. The below link provides details for using tc-cbs to set Qav:

https://man7.org/linux/man-pages/man8/tc-cbs.8.html

3. The below link provides details for using tc-flower to set Qci and ACL:

https://man7.org/linux/man-pages/man8/tc-flower.8.html
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4.1.2.2 Tsntool

Tsntool is a tool to set the TSN capability of the Ethernet ports of TSN Endpoint and TSN switch. It's used on LS1028a platform,
so enable TSN, ENETC_TSN, and MSCC_FELIX_SWITCH_TSN to support tsntool configuration on LS1028a.

Symbol: TSN [=y]
   [*] Networking support --->
     Networking options --->
      [*] 802.1 Time-Sensitive Networking support

Symbol: ENETC_TSN [=y] && FSL_ENETC_PTP_CLOCK [=y] && FSL_ENETC_HW_TIMESTAMPING [=y]
  Device Drivers --->
    [*] Network device support --->
      [*] Ethernet driver support --->
        [*] Freescale devices
        <*>     ENETC PF driver
        <*>     ENETC VF driver
        -*-     ENETC MDIO driver
        <*>     ENETC PTP clock driver
        [*]     ENETC hardware timestamping support
        [*]     TSN Support for NXP ENETC driver

Symbol: MSCC_FELIX_SWITCH_TSN [=y]
  Device Drivers --->
    [*] Network device support --->
      Distributed Switch Architecture drivers --->
        <*> Ocelot / Felix Ethernet switch support --->
        <*>   TSN on FELIX switch driver
        

Enable PKTGEN in Kernel to use pktgen for testing,

Symbol: NET_PKTGEN [=y] 
  [*] Networking support --->
    Networking options --->
      Network testing --->
        <*> Packet Generator (USE WITH CAUTION) 

See "Tsntool User Manual" for the details.

4.1.2.2.1 Tsntool User Manual

Tsntool is a tool to set the TSN capability of the Ethernet ports of TSN Endpoint and TSN switch. This document describes how
to use tsntool for NXP's LS1028ARDB hardware platform.

 
Tsntool supports only the LS1028ARDB platform.

  NOTE  

4.1.2.2.1.1 Getting the source code

Github of the tsntool code is mentioned below.

https://source.codeaurora.org/external/qoriq/qoriq-components/tsntool/

4.1.2.2.1.2 Tsn tool commands

The following table lists the TSN tool commands and their description.
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Table 25. TSN tool commands and their description

Command Description

help Lists commands support

version Shows software version

verbose Debugs on/off for tsntool

quit Quits prompt mode

qbvset Sets time gate scheduling config for <ifname>

qbvget Gets time scheduling entries for <ifname>

cbstreamidset Sets stream identification table

cbstreamidget Gets stream identfication table and counters

qcisfiset Sets stream filter instance

qcisfiget Gets stream filter instance

qcisgiset Sets stream gate instance

qcisgiget Gets stream gate instance

qcisficounterget Gets stream filter counters

qcifmiset Sets flow metering instance

qcifmiget Gets flow metering instance

cbsset Sets TCs credit-based shaper configure

cbsget Gets TCs credit-based shaper status

qbuset Sets one 8-bits vector showing the preemptable traffic class

qbugetstatus Not supported

tsdset Not supported

tsdget Not supported

ctset Sets cut through queue status (specific for ls1028 switch)

cbgen Sets sequence generate configure (specific for ls1028 switch)

cbrec Sets sequence recover configure (specific for ls1028 switch)

dscpset Sets queues map to DSCP of Qos tag (specific for ls1028 switch)

sendpkt Not supported

Table continues on the next page...
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Table 25. TSN tool commands and their description (continued)

Command Description

regtool Registers read/write of bar0 of PFs (specific for ls1028 enetc)

ptptool ptptool get/set ptp timestamp. Useful commands:

#get ptp0 clock time
ptptool -g 

#get ptp1 clock time 
ptptool -g -d /dev/ptp1

dscpset Set queues map to DSCP of QoS tag (specific for ls1028 switch)

qcicapget Gets max capability of the qci instance

tsncapget Gets tsn capability of the device

4.1.2.2.1.3 Tsntool commands and parameters

This section lists the tsntool commands along with the parameters and arguments, with which they can be used.

Table 26. qbvset

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0.

--entryfile <filename> A file script to input gatelist format. It has the following arguments:

#'NUMBER' 'GATE_VALUE' 'TIME_LONG'

• NUMBER: # 't' or 'T' head. Plus entry number. Duplicate entry number will result in an error.

• GATE_VALUE: # format: xxxxxxxxb . # The MSB corresponds to traffic class 7. The LSB
corresponds to traffic class 0. # A bit value of 0 indicates closed, whereas, a bit value of 1
indicates open.

• TIME_LONG: # nanoseconds. Do not input 0 time long.

t0 11101111b 10000 t1 11011111b 10000 

 
Entryfile parameter must be set. If not set, there will be a vi text editor
prompt, "require to input the gate list".

  NOTE  

--basetime <value> AdminBaseTime

A 64-bit hex value means nano second until now.

OR a value input format as: Seconds.decimalSecond

Example: 115.000125means 115 seconds and 125 μs.

--cycletime <value> AdminCycleTime

Table continues on the next page...
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Table 26. qbvset (continued)

Parameter <argument> Description

--cycleextend <value> AdminCycleTimeExtension

--enable | --disable • enable: enables the qbv for this port.

• disable: disables the qbv for this port.

By default, the value is set to enable, if user does not provide any input.

--maxsdu <value> queueMaxSDU

--initgate <value> AdminGateStates

--configchange ConfigChange. Default set to 1.

--
configchangetime <value>

ConfigChangeTime

Table 27. qbvget

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

Table 28. cbstreamidset

Parameter <argument> Description

--enable | --disable • enable: Enables the entry for this index.

• disable: Disables the entry for this index.

By default, this field is set to enable if there is no enable or disable input.

--index <value> Index entry number in this controller. Mandatory parameter.

This value corresponds to tsnStreamIdHandle on switch configuration.

--device <string> An interface such as eno0/swp0

--streamhandle <value> tsnStreamIdHandle

--infacoutport <value> tsnStreamIdInFacOutputPortList

--outfacoutport <value> tsnStreamIdOutFacOutputPortList

--infacinport <value> tsnStreamIdInFacInputPortList

--outfacinport <value> tsnStreamIdOutFacInputPortList

--nullstreamid | --
sourcemacvid | --
destmacvid | --ipstreamid

tsnStreamIdIdentificationType:

Table continues on the next page...
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Table 28. cbstreamidset (continued)

Parameter <argument> Description

• -nullstreamid:Null Stream identification

• -sourcemacvid: Source MAC and VLAN Stream identification

• -destmacvid: not supported

• -ipstreamid: not supported

--nulldmac <value> tsnCpeNullDownDestMac

--nulltagged <value> tsnCpeNullDownTagged

--nullvid <value> tsnCpeNullDownVlan

--sourcemac <value> tsnCpeSmacVlanDownSrcMac

--sourcetagged <value> tsnCpeSmacVlanDownTagged

--sourcevid <value> tsnCpeSmacVlanDownVlan

Table 29. cbstreamidget

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 30. qcisfiset

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--enable | --disable • enable: enable the entry for this index

• disable: disable the entry for this index

By default, this field is set to enable if there is no enable or disable input.

--maxsdu <value> Maximum SDU size.

--flowmeterid <value> Flow meter instance identifier index number.

--index <value> StreamFilterInstance. index entry number in this controler.

This value corresponds to tsnStreamIdHandle of cbstreamidset command on
switch configuration.

--streamhandle <value> StreamHandleSpec

This value corresponds to tsnStreamIdHandle of cbstreamidset command.

Table continues on the next page...
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Table 30. qcisfiset (continued)

Parameter <argument> Description

--priority <value> PrioritySpec

--gateid <value> StreamGateInstanceID

--oversizeenable StreamBlockedDueToOversizeFrameEnable

--oversize StreamBlockedDueToOversizeFrame

Table 31. qcisfiget

parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 32. qcisgiset

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

--enable | --disable • enable: enable the entry for this index. PSFPGateEnabled

• disable: disable the entry for this index.

By default, this field is set to enable if there is no enable or disable input.

--configchange configchange

--enblkinvrx PSFPGateClosedDueToInvalidRxEnable

--blkinvrx PSFPGateClosedDueToInvalidRx

--initgate PSFPAdminGateStates

--initipv AdminIPV

--cycletime Default not set. Get by gatelistfile.

--cycletimeext PSFPAdminCycleTimeExtension

--basetime PSFPAdminBaseTime

A 64-bit hex value means nano second until now.

OR a value input format as: Seconds.decimalSecond

Example: 115.000125means 115 seconds and 125 μs.

Table continues on the next page...
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Table 32. qcisgiset (continued)

Parameter <argument> Description

--gatelistfile PSFPAdminControlList. A file input the gate list: 'NUMBER' 'GATE_VALUE' 'IPV'
'TIME_LONG' 'OCTET_MAX'

• NUMBER: # 't' or 'T' head. Plus entry number. Duplicate entry number will result in an error.

• GATE_VALUE: format: xb: The MSB corresponds to traffic class 7. The LSB corresponds to
traffic class 0. A bit value of 0 indicates closed, A bit value of 1 indicates open.

• IPV: # 0~7

• TIME_LONG: in nanoseconds. Do not input time long as 0.

• OCTET_MAX: The maximum number of octets that are permitted to pass the gate. If zero,
there is no maximum.

Example:

 t0 1b -1 50000 10

Table 33. qcisgiget

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 34. qcifmiset

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

--disable If not set disable, then to be set enable.

--cir <value> cir. kbit/s.

--cbs <value> cbs. octets.

--eir <value> eir.kbit/s.

--ebs <value> ebs.octets.

--cf cf. couple flag.

--cm cm. color mode.

--dropyellow drop yellow.

--markred_enable mark red enable.

Table continues on the next page...
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Table 34. qcifmiset (continued)

Parameter <argument> Description

--markred mark red.

Table 35. qcifmiget parameter

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 36. qbuset parameter

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--preemptable <value> 8-bit hex value. Example: 0xfe The MS bit corresponds to traffic class 7.

The LS bit to traffic class 0. A bit value of 0 indicates express. A bit value of 1
indicates preemptable.

Table 37. cbsset command

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--tc <value> Traffic class number.

--percentage <value> Set percentage of tc limitation.

--all <tc-percent:tc-
percent...>

Not supported.

Table 38. cbsget

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--tc <value> Traffic class number.
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Table 39. regtool

Parameter <argument> Description

Usage: regtool { pf number }
{ offset } [ data ]

pf number: pf number for the pci resource to act on

offset: offset into pci memory region to act upon

data: data to be written

Table 40. ctset

Parameter <argument> Description

--device <ifname> An interface such as swp0

--queue_stat <value> Specifies which priority queues have to be processed in cut-through mode of operation. Bit 0
corresponds to priority 0, Bit 1 corresponds to priority 1 so-on.

Table 41. cbgen

Parameter <argument> Description

--device <ifname> An interface such as swp0

--index <value> Index entry number in this controller. Mandatory to have.

This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--iport_mask <value> INPUT_PORT_MASK: If the packet is from input port belonging to this port mask, then it's a
known stream and Sequence generation parameters can be applied

--split_mask <value> SPLIT_MASK: Port mask used to add redundant paths (or ports). If split is enabled
(STREAM_SPLIT) for a stream. This is OR'ed with the final port mask determined by the
forwarding engine.

--seq_len <value> SEQ_SPACE_LOG2: Minimum value is 1 and maximum value is 28.

tsnSeqGenSpace = 2**SEQ_SPACE_LOG2

For example, if this value is 12, then valid sequence numbers are from 0x0 to 0xFFF.

--seq_num <value> GEN_REC_SEQ_NUM: The sequence number to be used for outgoing packet passed to
SEQ_GEN function.

Note: Only lower 16-bits are sent in RED_TAG.

Table 42. cbrec

Parameter <argument> Description

--device <ifname> An interface such as swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table continues on the next page...
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Table 42. cbrec (continued)

Parameter <argument> Description

This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--seq_len <value> SEQ_SPACE_LOG2:Min value is 1 and maximum value is 28.

tsnSeqRecSeqSpace = 2**SEQ_REC_SPACE_LOG2

For example, if this value is 12, then valid sequence numbers are from 0x0 to 0xFFF.

--his_len <value> SEQ_HISTORY_LEN: Refer to SEQ_HISTORY, Min 1 and Max 32.

--rtag_pop_en REDTAG_POP: If True, then the redundancy tag is popped by rewriter.

Table 43. dscpset

Parameter <argument> Description

--device <ifname> An interface such as swp0

--disable Disables DSCP to traffic class for frames.

--index DSCP value

--cos Priority number of queue which is mapped to

--dpl Drop level which is mapped to

Table 44. qcicapget

Parameter <argument> Description

--device <ifname> An interface such as swp0

Table 45. tsncapget

Parameter <argument> Description

--device <ifname> An interface such as swp0

4.1.2.2.1.4 Input tips

While providing the command input, user can use the following shortcut keys to make the input faster:

• When user inputs a command, use the TAB key to help list the related commands.

For example:

tsntool> qbv 

Then press TAB key, to get all related qbv* start commands.

If there is only one choice, it is filled as the whole command automatically.

• When user input parameters, if user does nott remember the parameter name. User can just input “--” then press TAB
key. It displays all the parameters.
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If user inputs half the parameter’s name, pressing the TAB key lists all the related names.

• History: press the up arrow “↑” . User gets the command history and can re-use the command.

4.1.2.2.1.5 Non-interactive mode

Tsntool also supports non-interactive mode.

For example:

In the interactive mode:

tsntool> qbuset --device eno0 --preemptable 0xfe

In non-interactive mode:

tsntool qbuset --device eno0 --preemptable 0xfe

4.1.2.3 Remote configuration using NETCONF/YANG

1. Overview

The NETCONF protocol defines a mechanism for device management and configuration retrieval and modification. It enables a
client to adjust to the specific features of any network equipment by using a remote procedure call (RPC) paradigm and a system
to expose device (server) capabilities.

YANG is a standards-based, extensible, hierarchical data modeling language. YANG is used to model the configuration and state
data used by NETCONF operations, RPCs, and server event notifications.

2. Support for different platforms in Real-time Edge

TSN offload Real-time Edge

LS1028 SJA1105 i.MX 8M Plus

libtsn tc tc tc

802.1Qbv

(Time Aware Shaper)

Y Y Y Y

802.1Qbu/802.3br

(Frame Preemption)

Y Y N/A Y

802.1Qav

(Credit Based Shaper)

- - - -

802.1CB (Frame Replication and Elimination
for Reliability)

- - N/A N/A

802.1Qci

(Per-Stream Filtering and Policing)

Y Y Y N/A

IP config Y Y Y Y

MAC config Y Y Y Y

VLAN config Y Y Y Y

3. Installation and configuration
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Netopeer is a set of NETCONF tools built on the libnetconf library. The sysrepo-tsn (https://github.com/real-time-edge-sw/
real-time-edge-sysrepo.git) helps to configure TSN features, including Qbv, Qbu, Qci, and stream identification via network,
without logging in to device. For details of configuring TSN features via Netopeer, refer to NETCONF/YANG). Some application
scenarios for tsn refer to Application scenarios.

4.1.2.4 Web-based configuration

4.1.2.4.1 Setting up web server

The Web UI allows the remote control of the YANG model and also get devices information by websockets. This demo is already
added to tsntool in the folder tsntool/demos/cnc/.

There are two ways to start the web server on PC side: docker or install step by step.

The easy way to start the web server on PC side, just run command at Ubuntu PC(install docker support):

docker run --net=host -t -i liupoer/cncdemo:v2.1 /bin/bash /etc/rc.d/rc.local  

Then just step over to the step 8 start the agent on boards directly.

In case user want to setup the web server step by step, just follow below steps one by one:

1. Install related libraries: Suppose user is installing the demo on a Centos PC or Ubuntu PC as the WebServer. CNC demo
requires python3 and related libraries: pyang, libnetconf, and libssh.

For Ubuntu:

$ sudo apt install -y libtool python-argparse libtool-bin python-sphinx libffi-dev
$ sudo apt install -y libxslt1-dev libcurl4-openssl-dev xsltproc python-setuptools
$ sudo apt install -y zlib1g-dev libssl-dev python-libxml2 libaugeas-dev
$ sudo apt install -y libreadline-dev python-dev pkg-config libxml2-dev
$ sudo apt install -y cmake openssh-server
$ sudo apt install -y python3-sphinx python3-setuptools python3-libxml2
$ sudo apt install -y python3-pip python3-dev python3-flask python3-pexpect
$ sudo apt install -y libnss-mdns avahi-utils
$ pip3 install flask-restful
$ pip3 install websockets

For Centos 7.2:

$ sudo yum install libxml2-devel libxslt-devel openssl-devel libgcrypt dbus-devel
$ sudo yum install doxygen libevent readline.x86_64 ncurses-libs.x86_64
$ sudo yum install ncurses-devel.x86_64 libssh.x86_64 libssh2-devel.x86_64
$ sudo yum install libssh2.x86_64 libssh2-devel.x86_64
$ sudo yum install nss-mdns avahi avahi-tools

2. Install pyang

$ git clone https://github.com/mbj4668/pyang.git
$ cd pyang
$ git checkout b92b17718de53758c4c8a05b6818ea66fc0cd4d8 -b fornetconf1
$ sudo python setup.py install

3. . Install libssh:

$ git clone https://git.libssh.org/projects/libssh.git
$ cd libssh
$ git checkout fe18ef279881b65434e3e44fc4743e4b1c7cb891 -b fornetconf1
$ mkdir build; cd build/
$ cmake ..
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$ make
$ sudo make install

 
There is a version issue for libssh installation on Ubuntu below version 16.04. Apt-get install libssh may get version
0.6.4. But libnetconf needs a version of 0.7.3 or later. Remove the default one and reinstall by downloading the
source code and installing it manually.

  NOTE  

4. Install libnetconf:

$ git clone https://github.com/CESNET/libnetconf.git
$ cd libnetconf
$ git checkout 8e934324e4b1e0ba6077b537e55636e1d7c85aed -b fornetconf1
$ autoreconf --force --install
$ ./configure
$ make
$ sudo make install

5. Get tsntool source code on the web server PC:

git clone https://source.codeaurora.org/external/qoriq/qoriq-components/tsntool  
cd tsntool/demos/cnc/

6. Install python library:

In the below command segments,

• PATH-to-libnetconf is the path to the libnetconf source code.

• PATH-to-tsntool is the path to the tsntool source code.

$ cd PATH-to-libnetconf/

The libnetconf needs to add two patches based on the below commit point to fix the demo python support.

Ensure that the commit id is 313fdadd15427f7287801b92fe81ff84c08dd970.

$ git checkout 313fdadd15427f7287801b92fe81ff84c08dd970 -b cnc-server
$ cp PATH-to-tsntool/demos/cnc/*patch .
$ git am 0001-lnctool-to-make-install-transapi-yang-model-proper.patch
$ git am 0002-automatic-python3-authorizing-with-root-password-non.patch
$ cd PATH-to-libnetconf/python
$ python3 setup.py build; sudo python3 setup.py install

 
If rebuilding python lib, user need to remove the build folder by command rm build -rf before rebuilding. On the
boards Real-time Edge supports, avahi-daemon and netopeer server are required. Remember to also add the
netopeer2-server run at boards.

  NOTE  

7. To start the web server on webserver PC, input the command below at shell into the folder: PATH-to-tsntool/demos/cnc/:

sudo python3 cnc.py

8. Start topoagent server on the boards supported

- Make sure the netopeer2-server run at boards(Not necessary for topology discovery).

- Make sure the lldpd daemon is running at boards.

- Make sure the avahi-daemon is running at boards.
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Start the topology server on boards:

#Stop lldpd service.
pkill lldpd
#Start lldpd and limit interfaces to use. Use all ports except the control port.
lldpd -I swp0,swp1,swp2,swp3
#If the hostname is not real-time-edge, change to real-time-edge 
avahi-set-host-name real-time-edge 
cd /home/root/samples/cncdemo/ 
python3 topoagent.py

9. Use the web browser to track the topology and configuration of the devices. Input the IP of web server with the port 8180
at browser. For example:

http://10.193.20.147:8180

 
TSN configuration debug:

• It is recommended to track the boards using tsntool to check the real tsn configuration for comparison.

• For tsn configuration, it is also recommended to track if the netopeer2-server is running at board or not.

Limitations of Web UI are:

• The server setup on a Centos PC or Ubuntu PC could be more compatible.

• Supports Qbv, Qbu, and Qci in current version.

• For Qci setting, Stream-gate entry should be set ahead of setting the Stream-filter as sysrepo required. Or
else, user will get failure for setting Stream-filter without a stream gate id link to.

• The boards and the web server PC are required to be in the same IP domain since the bridge may block the
probe frames.

  NOTE  

4.1.2.4.2 Remote configuration

1. Overview
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The Web UI allows the remote control of the YANG model. The user can connect http server, and input TSN parameter on web
UI, and click "Yes, confirm" button to send them to the board.

2. User Interface

Click the device displayed on the homepage, and an interface description table will appear. Click the interface to jump to the
configuration page.

2.1 Qbv Configuration

2.2 Qbu Configuration

2.3 Qci Configuration
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In this interface, user can choose configuration for "stream identify", "stream filter", "stream gate" and "flow metering".

4.1.2.4.3 Dynamic remote configuration

1. Overview

The dynamic TSN configuration is used for the TSN configuration dynamically. Users do not need to log into each TSN node to
specify the TSN parameters for TSN configuration. They only need to select the path, the base time, and then specify the cycle
time. Then, the schedule mapping component calculates the TSN configuration parameters according to the user input and the
path selected. The configuration parameters are delivered to each node by YANG models.

2. Working Flow

Here is an example of the TSN configuration working flow:

After topology discovery and device registration, the network topology could be displayed over web-browser. The user just needs
to select the nodes, specify the stream, and input the timing requirement through the stream reservation component and schedule
configuration component. The results will be passed down to the schedule mapping component to calculate the mapping from
customer input to the TSN configuration. The configuration will be instantiated using the YANG model and be delivered to different
nodes for actual configuration.

The major components include:

• TSN network topology discovery

• Schedule mapping

• NETCONF/YANG configuration

• TSN Protocol Driver and TSN configuration

• Dashboard for stream management and customer input parse

Here is the architecture diagram.
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There are three layers for the architecture. The first layer is the TSN network layer, the second layer is the service layer running
on the on-field controller/server, and the third layer is the service running in the cloud or on-field server which is an optional layer.

The first layer is the TSN network layer. It includes TSN switches, like LS1028 TSN switch and TSN endpoints, like LS1028
ENETC TSN, i.MX 8M Plus TSN endpoint, to be the TSN network. The different components are running on each of nodes, like the
topology discovery component, to collect the network topology, YANG model for the TSN register configuration, and NETCONF
server to parse the YANG model for TSN configuration.

The second layer is the on-field controller layer. It is the server running on-field to host the services of the industrial board, topology
discovery and schedule mapping.

The third layer runs on the cloud, which could host the services running on the on-field controller. This layer is an optional layer.

3. Topology Discovery

The topology discovery component is used to discover network connections by running LLDP on each TSN network node. The
connection information will be delivered to topology discovery service running on the on-filed server.

4. Path Selection

Path selection implemented a algorithm to select the path between the selected talker and listener. If there are multiple paths, the
dashboard will display all paths and the user can select one of the paths for the stream. Set a different VLAN ID for the selected
path, and the stream with this VID can flow in the path.

5. Schedule Mapping

The schedule mapping component is a critical component to convert the customer requirement to TSN register configuration. This
component will:

• Get the user input and converting the input into TSN parameters

• Get the path and path delay from the link object of the NetworkGraph file

• Get the old TSN configuration for each node and calculate a new configuration to meet the user's requirements

6. Path Delay
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One prerequisite for schedule mapping is clock synchronization and path delay calculation. Clock synchronization is using gPTP
to synchronize the clock of the system. We are using linuxptp PMC tool to get the path delay.

Here is an example to show the PMC running environment on LS1028ARDB boards.

7. Dashboard Configuration Demo

7.1 Stream Register

Click “Check Path” button, input the start device in “first device” input box, and end device in “Second device” input box. then click
the “submit” button, path will be descript in topo graph.
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Click “Register Stream” button, then select the path in path select. Fill VLAN ID, Stream ID and priority, click “add” button. There
will be output a stream table.

7.2 Configure Qbv On Stream

Click one stream ID in stream table, jump to stream configuration page. Select Qbv, and fill information in input boxes.
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4.1.3 TSN on i.MX 8M Plus

4.1.3.1 Test environment

On i.MX 8M Pluse platform, there is only eth1 has TSN features, connect eth1 to Test center to test TSN features.

Use the following command to check the TSN ethernet device name:

#ls /sys/devices/platform/soc@0/30800000.bus/30bf0000.ethernet/net/
eth1

Figure 13. TSN test environment setup
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Note: Test Center is a device to capture streams from eth1 of i.mx8mp board. We use Spirent which can capture preemptable
frames in Qbu test case.

4.1.3.2 Clock synchronization

To test 1588 synchronization on dwcmac interfaces, use the following procedure:

1. Connect eth1 interfaces on two boards in a back-to-back manner.

The linux booting log is as follows:

…
pps pps0: new PPS source ptp0
…

2. Configure the IP address using the command below:

ifconfig eth1 192.168.3.1

3. Check PTP clock and timestamping capability:

 # ethtool -T eth1
Time stamping parameters for eth1:
Capabilities:
        hardware-transmit     (SOF_TIMESTAMPING_TX_HARDWARE)
        software-transmit     (SOF_TIMESTAMPING_TX_SOFTWARE)
        hardware-receive      (SOF_TIMESTAMPING_RX_HARDWARE)
        software-receive      (SOF_TIMESTAMPING_RX_SOFTWARE)
        software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
        hardware-raw-clock    (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:
        off                   (HWTSTAMP_TX_OFF)
        on                    (HWTSTAMP_TX_ON)
Hardware Receive Filter Modes:
        none                  (HWTSTAMP_FILTER_NONE)
        all                   (HWTSTAMP_FILTER_ALL)
        ptpv1-l4-event        (HWTSTAMP_FILTER_PTP_V1_L4_EVENT)
        ptpv1-l4-sync         (HWTSTAMP_FILTER_PTP_V1_L4_SYNC)
        ptpv1-l4-delay-req    (HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ)
        ptpv2-l4-event        (HWTSTAMP_FILTER_PTP_V2_L4_EVENT)
        ptpv2-l4-sync         (HWTSTAMP_FILTER_PTP_V2_L4_SYNC)
        ptpv2-l4-delay-req    (HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ)
        ptpv2-event           (HWTSTAMP_FILTER_PTP_V2_EVENT)
        ptpv2-sync            (HWTSTAMP_FILTER_PTP_V2_SYNC)
        ptpv2-delay-req       (HWTSTAMP_FILTER_PTP_V2_DELAY_REQ)

4. Run ptp4l on two boards:

ptp4l -i eth1 -p /dev/ptp1 -m -2

5. After running, one board would be automatically selected as the master, and the slave board would print
synchronization messages.

6. For 802.1AS testing, just use the configuration file gPTP.cfg in linuxptp source. Run the below command on the boards, instead:

ptp4l -i eth1 -p /dev/ptp1 -f /etc/ptp4l_cfg/gPTP.cfg -m

Or use GenAVB/TSN Stack with the following command: 'avb.sh start'. Note that the configuration file /etc/genavb/
fgptp.cfg is automatically used.
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i.MX 8M Plus current dwmac driver (eth1) initializes few hardware functions while opening net device, including
PTP initialization. Before that, the operations such as ethtool queries, and PTP operations might not work. So, the
workaround is to do operations on the eth1 and PTP of dwmac only after "ifconfig eth1 up".

  NOTE  

4.1.3.3 Qbv

1. Enable the ptp device, and get the current ptp time.

ptp4l -i eth1 -p /dev/ptp1 -m

#Get current time(seconds)
devmem2 0x30bf0b08
0x5E01F9B2

2. Get the basetime to be 2 minutes later.

#Basetime = (currentime + 120) * 1000000000 = 1577187882000000000

3. Set time schedule, open queue 1 in 100 µs and open queue 2 in 100 µs.

tc qdisc replace dev eth1 parent root handle 100 taprio \
    num_tc 5 map 0 1 2 3 4 queues 1@0 1@1 1@2 1@3 1@4  base-time 1577187882000000000 \
        sched-entry S  1 100000 \
        sched-entry S  2 100000 \
        sched-entry S  4 100000 flags 2

4. Send two streams into queue 1 and queue 2.

/home/root/samples/pktgen/pktgen_twoqueue.sh -i eth1 -q 1 -s 1000 -n 0 -m 90:e2:ba:ff:ff:ff

5. Capture the streams on TestCenter, 100 µs queue 1 frames (length=1004) and 100 µs queue 2 frames (length=1504) will be got.
Or if the Ethernet port is connected to another board, the frames can be captured on that board by using Linux tcpdump command
as shown below:

tcpdump -i eth0 -e -n -t -xx -c 10000 -w tsn.pcap

Then Wireshark can be used to analyze the pcap file on host PC.

 
• More than one entry needs to be set on each tc taprio command.

• Use “devmem2 0x30bf0c58” to get Qbv status and check if qbv status is active. refer to
MTL_EST_Status register.

  NOTE  

4.1.3.4 Qbu

1. Using ethtool to enable Qbu on eth1, set queue 2 to be preemptable.

ethtool --set-frame-preemption eth1 preemptible-queues-mask 0x04 min-frag-size 60

 
Once Qbu enabled, queue 0 is always preemptable queue.

  NOTE  
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2. Send two streams into queue 1 and queue 2.

/home/root/samples/pktgen/pktgen_twoqueue.sh -i eth1 -q 1 -s 150 -n 0 -m 90:e2:ba:ff:ff:ff

3. Capture the mPacket on Spirent TestCenter. Users can observe that Q2 frames are preempted into fragments.

 
Spirent TestCenter can capture the preamble of mPacket. Refer to Section 99.3, "MAC Merge Packet (mPacket)"
of IEEE standard for Ethernet 802.3-2018 for the mPacket format.

  NOTE  

• Below is an example mPacket that contains an express packet, which has SMD value of 0xD5.

• Below is an example mPacket containing an initial fragment of a preemptable packet, which has SMD-S1 value of 0x4C.
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• Below is an example mPacket containing a continuation fragment of a preemptable packet, which has SMD-C1 value of 0x52,
as well as frag_count value of 0xE6.
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4. User can also check the below counter for the number of fragments transmitted.

ethtool -S eth1 | grep "mmc_tx_fpe_fragment_cntr"

5. Qbu combined with Qbv test

Once a queue is set to preemptable queue and the gate open/close is invalid in Qbv gate control list, the queue is considered
as always "Open". Use Hold/Release to control all preemptable queues. When the GCL entry is set from Hold to Release,
preemptable queues begin transmitting. When GCL entry is set from Release to Hold, preemptable queues are held.

tc qdisc replace dev eth1 parent root handle 100 taprio \
    num_tc 5 map 0 1 2 3 4 queues 1@0 1@1 1@2 1@3 1@4  base-time 1577187882000000000 \
        sched-entry H  2 100000 \
        sched-entry R  4 100000 flags 2

4.1.3.5 Qav

1. Set a queue map handle.

tc qdisc add dev eth1 root handle 1: mqprio num_tc 5 map 0 1 2 3 4

2. Set bandwidth of queue 3 to be 20 Mbps.

tc qdisc replace dev eth1 parent 1:4 cbs locredit -1470 hicredit 30 sendslope -980000 idleslope 20000 
offload 1

3. Send a stream into queue 3:

/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eth1 -q 3 -s 500 -n 3000

4. Get the result, bandwidth is 19 Mbps.

WARN : Missing destination MAC address
WARN : Missing destination IP address
Running... ctrl^C to stop
Done
Result device: eth1
Params: count 3000  min_pkt_size: 500  max_pkt_size: 500
     frags: 0  delay: 0  clone_skb: 0  ifname: eth1
     flows: 0 flowlen: 0
     queue_map_min: 3  queue_map_max: 3
     dst_min: 198.18.0.42  dst_max:
     src_min:   src_max:
     src_mac: a6:85:82:fc:89:bf dst_mac: 02:5d:ae:ba:e0:00
     udp_src_min: 9  udp_src_max: 109  udp_dst_min: 9  udp_dst_max: 9
     src_mac_count: 0  dst_mac_count: 0
     Flags: UDPSRC_RND  NO_TIMESTAMP  QUEUE_MAP_RND
Current:
     pkts-sofar: 3000  errors: 0
     started: 5631940023us  stopped: 5632560030us idle: 79984us
     seq_num: 3001  cur_dst_mac_offset: 0  cur_src_mac_offset: 0
     cur_saddr: 0.0.0.0  cur_daddr: 198.18.0.42
     cur_udp_dst: 9  cur_udp_src: 41
     cur_queue_map: 3
     flows: 0
Result: OK: 620007(c540023+d79984) usec, 3000 (500byte,0frags)
  4838pps 19Mb/sec (19352000bps) errors: 0
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5. Set bandwidth of queue 4 to be 40 Mbps.

tc qdisc replace dev eth1 parent 1:5 cbs locredit -1440 hicredit 60 sendslope -960000 idleslope 40000 
offload 1

6. Send a stream into queue 4 and get the result.

/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eth1 -q 4 -s 500 -n 3000 
WARN : Missing destination MAC address 
WARN : Missing destination IP address 
Running... ctrl^C to stop 
Done 
Result device: eth1 
Params: count 3000 min_pkt_size: 500 max_pkt_size: 500 
  frags: 0 delay: 0 clone_skb: 0 ifname: eth1 
  flows: 0 flowlen: 0 
  queue_map_min: 4 queue_map_max: 4 
  dst_min: 198.18.0.42 dst_max: 
  src_min: src_max: 
  src_mac: a6:85:82:fc:89:bf dst_mac: 02:5d:ae:ba:e0:00 
  udp_src_min: 9 udp_src_max: 109 udp_dst_min: 9 udp_dst_max: 9 
  src_mac_count: 0 dst_mac_count: 0 
  Flags: UDPSRC_RND NO_TIMESTAMP QUEUE_MAP_RND 
Current: 
  pkts-sofar: 3000 errors: 0 
  started: 6113136017us stopped: 6113443758us idle: 38457us 
  seq_num: 3001 cur_dst_mac_offset: 0 cur_src_mac_offset: 0 
  cur_saddr: 0.0.0.0 cur_daddr: 198.18.0.42 
  cur_udp_dst: 9 cur_udp_src: 17 
  cur_queue_map: 4 
  flows: 0 
Result: OK: 307741(c269283+d38457) usec, 3000 (500byte,0frags) 
  9748pps 38Mb/sec (38992000bps) errors: 0

7. Send two streams into queue 3 and queue 4 using the command below:

/home/root/samples/pktgen/pktgen_twoqueue.sh -i eth1 -q 3 -s 1500 -n 0

8. Capture the streams on test center, the frames sort by one Q3 frame and two Q4 frames.

4.1.4 TSN on LS1028A
The tsntool is an application configuration tool to configure the TSN capability on LS1028ARDB. The files /usr/bin/tsntool
and /usr/lib/libtsn.so are located in the rootfs. Run tsntool to start the setting shell.

4.1.4.1 TSN configuration on ENETC

The tsntool is an application configuration tool to configure the TSN capability. Users can find the files /usr/bin/tsntool
and /usr/lib/libtsn.so in the rootfs. Run tsntool to start the setting shell. The following sections describe the TSN
configuration examples on the ENETC Ethernet driver interfaces.

Before testing the ENETC TSN test cases, you must enable mqprio by using the command below:

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1

4.1.4.1.1 Clock synchronization

To test 1588 synchronization on ENETC interfaces, use the following procedure:

1. Connect ENETC interfaces on two boards in a back-to-back manner. (For example, eno0 to eno0.)
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The linux booting log is as follows:

…
pps pps0: new PPS source ptp0
…

2. Check PTP clock and timestamping capability:

# ethtool -T eno0
Time stamping parameters for eno0:
Capabilities:       
    hardware-transmit          (SOF_TIMESTAMPING_TX_HARDWARE)       
    hardware-receive           (SOF_TIMESTAMPING_RX_HARDWARE)       
    hardware-raw-clock         (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:       
     off         (HWTSTAMP_TX_OFF)       
     on          (HWTSTAMP_TX_ON)Hardware Receive Filter Modes:       
     none        (HWTSTAMP_FILTER_NONE)       
     all         (HWTSTAMP_FILTER_ALL)

3. Configure the IP address and run ptp4l on two boards:

# ifconfig eno0 <ip_addr>
# ptp4l -i eno0 -p /dev/ptp0 -m 

4. After running, one board would be automatically selected as the master, and the slave board would print
synchronization messages.

5. For 802.1AS testing, just use the configuration file gPTP.cfg in linuxptp source. Run the below command on the
boards, instead:

# ptp4l -i eno0 -p /dev/ptp0 -f /etc/ptp4l_cfg/gPTP.cfg -m

4.1.4.1.2 Qbv

This test includes the Basic Gates Closing test, Basetime test, and the Qbv performance test. These are described in the
following sections.

4.1.4.1.2.1 Basic gates closing

The commands below describe the steps for closing the basic gates:

cat > qbv0.txt << EOF
t0      00000000b               20000
EOF

#Explanation: 
# 'NUMBER'        :     t0
# 'GATE_VALUE'    :     00000000b
# 'TIME_LONG'     :     20000 ns

tsntool
tsntool> verbose
tsntool> qbvset --device eno0 --entryfile ./qbv0.txt
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ethtool -S eno0
ping 192.168.0.2 -c 1   #Should not pass any frame since gates are all off.

4.1.4.1.2.2 Basetime test

Base on case 1 qbv1.txt gate list.

#create 1s gate
cat > qbv1.txt << EOF
t0  11111111b      10000
t1  00000000b      99990000
EOF

#ENETC Qbv basetime can be set any past time or future time.
#For the past time, hardware calculate by:
#    effective-base-time = base-time + N x cycle-time
#where N is the smallest integer number of cycles such that effective-base-time >= now.
#If you want a future time, you can get current time by:

tsntool> ptptool -g

#Below example shows basetime start at 260.666 s (start of 1 January 1970): 

tsntool> qbvset --device eno0 --entryfile qbv1.txt --basetime 260.666
tsntool> qbvget --device eno0 #User can check configchange time
tsntool> regtool 0 0x11a10 #Check pending status, 0x1 means time gate is working

#Waiting to change state, ping remote computer
ping 192.168.0.2 -A -s 1000

#The reply time will be about 100 ms 

Since 10000 ns is the maximum limit for package size 1250 B.

ping 192.168.0.2 -c 1 -s 1300 #frame should not pass

4.1.4.1.2.3 Qbv performance test

Use the setup described in the figure below for testing ENETC port0 (MAC0).
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Figure 14. Setup for testing ENETC port0

 
Test Center is a device to capture streams from enetc0 of LS1028ARDB board. Users can use another board to
capture streams by using tcpdump command and then use Wireshark to analyze it.

  NOTE  

cat > qbv5.txt << EOF 
t0 11111111b 1000000 t1 00000000b 1000000 
EOF 
qbvset --device eno0 --entryfile qbv5.txt  
/home/root/samples/pktgen/pktgen_twoqueue.sh -i eno0 -q 3 -n 0
#The stream would get about half line rate

4.1.4.1.2.4 Using taprio Qdisc Setup Qbv

LS1028ardb support the taprio qdisc to setup Qbv either. Below is an example Setup.

#Qbv test do not require the mqprio setting.
# If mqprio is enabled, try to disable it by below command:
tc qdisc del dev eno0 root handle 1: mqprio

# Enable the Qbv for ENETC eno0 port
# Below command set eno0 with gate 0x01, means queue 0 open, the other queues gate close.
tc qdisc replace dev eno0 parent root handle 100 taprio num_tc 8 map 0 1 2 3 4 5 6 7 queues 1@0 1@1 
1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 01 300000 flags 0x2
# Ping through eno0 port should be ok

# Then close the gate queue 0. Open gate queue 1. The other queues gate close.
tc qdisc replace dev eno0 parent root handle 100 taprio num_tc 8 map 0 1 2 3 4 5 6 7 queues 1@0 1@1 
1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 02 300000 flags 0x2
# Ping through eno0 port should be dropped
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#Disable the Qbv for ENETC eno0 port as below
tc qdisc del dev eno0 parent root handle 100 taprio

4.1.4.1.3 Qbu

• If user has two LS1028ARDB boards, then link the two eno0 ports back to back. In this case, the test does not need the switch
to be set up. Users can omit the steps 2, 3, and 4 and just perform steps 1, 5, and 6.

• If user has only one board, user can set the frame path from eno0 to switch by linking enetc ports MAC0 - SWP0. The setup
enables the switch SWP0 port-merging capability. Then enetc eno0 can show the preemption capability. Use the setup as
shown in the following figure for the Qbu test.

Figure 15. Qbu test

Before linking the cable between ENETC port0 to SWP0, set up the switch up (refer the Switch configuration) and set IP for ENETC
port0. To make sure the ENETC port0 is linked to SWP0, use the steps below:

1. Do not forget to enable the priority for each traffic class:

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1

2. Make sure link speed is 1 Gbps by using the command:

ethtool eno0 

3. If it is not 1 Gbps, set it to 1 Gbps by using the command:

ethtool -s swp0 speed 1000 duplex full autoneg on

4. Set the switch to enable merge (or user can link to another merge capability port in another board):

devmem2 0x1fc100048 w 0x111 #DEV_GMII:MM_CONFIG:ENABLE_CONFIG
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5. ENETC port setting set and frame preemption test:

ip link set eno0 address 90:e2:ba:ff:ff:ff 
tsntool qbuset --device eno0 --preemptable 0xfe 
/home/root/samples/pktgen/pktgen_twoqueue.sh -i eno0 -q 0 -s 100 -n 20000 -m 90:e2:ba:ff:ff:ff

pktgen would flood frames on TC0 and TC1.

6. Check the TX merge counter, if it has a non-zero value, it indicates that the Qbu is working.

tsntool regtool 0 0x11f18 

 
0x11f18 counting the merge frame count:

0x11f18 Port MAC Merge Fragment Count TX Register (MAC_MERGE_MMFCTXR)

  NOTE  

LS1028ARDB also supports ethtool setup for preemption as in the example below:

ethtool --set-frame-preemption eno0 preemptible-queues-mask 0xfe

This implies that we can get same result by using TC0 to pass express MAC and TC1~TC7 to pass preemptable MAC.

4.1.4.1.4 Qci

Use the following as the background setting:

• Set eno0 MAC address

ip link set eno0 address 10:00:80:00:00:00

Opposite port MAC address 99:aa:bb:cc:dd:ee as frame provider as example.

• Use the figure below as the hardware setup.
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Figure 16. Qci test case setup

Note: Test Center is a device to send streams to enetc0 of LS1028ardb board. User also can use another board to send
streams.

4.1.4.1.4.1 Test SFI No Streamhandle

Qci PSFP can work for the streams without stream identify module, which are the streams without MAC address and vid filter.
Such kind of filter setting always sets a larger index number stream for filter entry. The frames that are not filtered then flow into
this stream filter entry.

The below example tests no streamhandle in a stream filter, set on stream filter entry index 2 with a gate stream entry id 2. Then
none stream identifies frames would flow into the stream filter entry index 2 then pass the gate entry index 2, as shown in the
following example:

tsntool> qcisfiset --device eno0 --index 2 --gateid 2

• Streams no streamhandle should pass this filter.

tsntool> qcisfiget --device eno0 --index 2

• Send a frame from the opposite device port (ping for example).

tsntool> qcisfiget --device eno0 --index 2

• Set Stream Gate entry 2

tsntool> qcisgiset --device eno0 --index 2 --initgate 1

• Send a frame from the opposite device port.

tsntool> qcisfiget --device eno0 --index 2
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• Set Stream Gate entry 2, gate closes permanently.

tsntool> qcisgiset --device eno0 --index 2 --initgate 0

• Send a frame from the opposite device port.

tsntool> qcisfiget --device eno0 --index 2

#The result should look like below:
 match  pass  gate_drop  sdu_pass  sdu_drop red
   1   0   1     1    0    0

4.1.4.1.4.2 Testing null stream identify entry

Null stream identify in stream identify module means trying to filter using destination MAC address and vlan id.

Following steps showthe stream identify entry index 1 set with filtering destination mac address as 10:00:80:00:00:00 and vlan id
ignored (with or without vland id). Then stream filter is set on the entry index 1 with stream gate index entry id 1.

1. Set main stream by closing gate.

2. Set Stream identify Null stream identify entry 1.

tsntool> cbstreamidset --device eno0 --index 1 --nullstreamid --nulldmac 
0x000000800010 --nulltagged 3 --nullvid 10 --streamhandle 100

3. Get stream identify entry index 1.

tsntool> cbstreamidget --device eno0 --index 1

4. Set Stream filer entry 1 with stream gate entry id 1.

tsntool> qcisfiset --device eno0 --streamhandle 100 --index 1 --gateid 1

5. Set Stream Gate entry 1, keep gate state close (all frames dropped. return directly if ask user for editing gate list).

tsntool> qcisgiset --device eno0 --index 1 --initgate 0

6. Send one frame from the opposite device port should pass to the close gate entry id 1.

tsntool> qcisfiget --device eno0 --index 1

7. The result should look like the output below:

match pass gate_drop sdu_pass sdu_drop red
1 0 1 1 0 0

4.1.4.1.4.3 Testing source stream identify entry

Source stream identify means stream identify the frames by the source mac address and vlan id.

Use the following steps for this test:

1. Keep Stream Filter entry 1 and Stream gate entry 1.

2. Add stream2 in opposite device port: SMAC is 66:55:44:33:22:11 DMAC:20:00:80:00:00:00 (Not with destination mac
address 10:00:80:00:00:00 which stream identify entry index 1 is filtering that dmac address)
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3. Set Stream identify Source stream identify entry 3

tsntool> cbstreamidset --device eno0 --index 3 --sourcemacvid --sourcemac 0x112233445566 --
sourcetagged 3 --sourcevid 20 --streamhandle 100

4. Send frame from opposite device port. The frame passes to stream filter index 1.

tsntool> qcisfiget --device eno0 --index 1

4.1.4.1.4.4 SGI stream gate list

Use the command below for this test:

cat > sgi1.txt << EOF
t0 0b -1 100000000 0
t1 1b -1 100000000 0
EOF
tsntool> qcisfiset --device eno0 --index 2 --gateid 2
tsntool> qcisgiset --device eno0 --index 2 --initgate 1 --gatelistfile sgi1.txt

#flooding frame size 64bytes from opposite device port.(iperf or netperf as example)
tsntool> qcisfiget --device eno0 --index 2

Check the frames dropped and passed, they should be the same since stream gate list is setting 100ms open and 100ms
close periodically.

4.1.4.1.4.5 FMI test

Only send green color frames (normally it is the TCI bit value in 802.1Q tag). Flooding the stream against the eno0 port speed to
10000 kbsp/s:

tsntool> qcisfiset --device eno0 --index 2 --gateid 2 --flowmeterid 2
tsntool> qcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs 1500 --eir 5000

The 'cm' parameter set color mode enable means frames to separate green frames and yellow frames judged by the TCI bit in
frame. Or else, any frames are green frames.

The 'cf' parameter sets the coupling flag enable. When CF is set to 0, the frames that are declared yellow are bound by EIR. When
CF is set to 1, the frames that are declared Yellow are bound by CIR + EIR, depending on volume of the offered frames that are
declared Green.

After the above commands are setup, since green frames are not larger than EIR + CIR 10 Mbit/s. So the green frame would not
be dropped.

The below setting shows the dropped frames:

tsntool> qcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs 1500 --eir 2000

This case makes the grean frames pass 5 Mbit/s in CIR, then it pass to the EIR space. However, EIR is 2 Mbit/s, so total EIR +
CIR 7 Mbit/s still do not qualify the total 10 Mbit/s bandwidth. So green frame would be dropped part.

To get information of color frame counters showing at application layer, use the code as in the below example:

tsntool> qcifmiget --device eno0 --index 2
=======================================================================
bytecount drop dr0_green dr1_green dr2_yellow remark_yellow dr3_red remark_red
1c89 0 4c 0 0 0 0 0
=======================================================================
index = 2
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cir = c34c
cbs = 5dc
eir = 4c4b3c
ebs = 5dc
couple flag
color mode

4.1.4.1.5 Qav

4.1.4.1.5.1 Using tsntool

The following figure illustrates the hardware setup diagram for the Qav test.

Figure 17. Qav test setup

Note: Test Center is a device to capture streams from enetc0 of LS1028ardb board. User also can use another board to capture
streams by using "tcpdump", and using Wireshark to analyze it.

0. Don't forget to enabling the priority for each traffic class:

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1

1. Run the following commands:

tsntool cbsset --device eno0 --tc 7 --percentage 60
tsntool cbsset --device eno0 --tc 6 --percentage 20 

2. Check each queue bandwidth (pktgen require enabling NET_PKTGEN in kernel)

/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eno0 -q 7 -s 500 -n 30000
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wait seconds later to check result. It should get about 60% percentage line rate.

/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eno0 -q 6 -s 500 -n 30000

Wait seconds later to check result. It should get about 20% percentage line rate.

4.1.4.1.5.2 Using CBS Qdisc to setup Qav

LS1028a supports the CBS qdisc to setup Credit-based Shaper. Below commands set CBS with 100 Mbit/s for queue 7 and 300
Mbit/s for queue 6.

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1
tc qdisc replace dev eno0 parent 1:8 cbs locredit -1350 hicredit 150 sendslope -900000 idleslope 
100000 offload 1
tc qdisc replace dev eno0 parent 1:7 cbs locredit -1050 hicredit 950 sendslope -700000 idleslope 
300000 offload 1

# Try to flood stream here (require kernel enable NET_PKTGEN)
/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eno0 -q 7 -s 500 -n 20000
/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eno0 -q 6 -s 500 -n 20000
tc qdisc del dev eno0 parent 1:7 cbs
tc qdisc del dev eno0 parent 1:8 cbs

4.1.4.2 TSN configuration on Felix switch

The following sections describe examples for the basic configuration of TSN switch.

4.1.4.2.1 Switch configuration

Figure 18. TSN switch configuration
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Use the following commands for configuring the switch on LS1028ARDB:

ls /sys/bus/pci/devices/0000:00:00.5/net/

Get switch device interfaces for swp0, swp1, swp2, swp3, swp4, and swp5 as shown below:

ip link add name switch type bridge
ip link set switch up
ip link set swp0 master switch && ip link set swp0 up
ip link set swp1 master switch && ip link set swp1 up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
ip link set swp4 master switch && ip link set swp4 up
ip link set swp5 master switch && ip link set swp5 up

4.1.4.2.2 Linuxptp test

To test 1588 synchronization on felix-switch interfaces, connect two boards back-to-back using switch interfaces. For example,
connect swp0 to swp0. The Linux booting log is displayed below:

…
pps pps0: new PPS source ptp1
…                            

Check PTP clock and timestamping capability using the commands below:

# ethtool -T swp0
Time stamping parameters for swp0:
Capabilities:       
 hardware-transmit  (SOF_TIMESTAMPING_TX_HARDWARE)       
 hardware-receive   (SOF_TIMESTAMPING_RX_HARDWARE)       
 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:       
  off   (HWTSTAMP_TX_OFF)       
  on    (HWTSTAMP_TX_ON)
 Hardware Receive Filter Modes:       
  none  (HWTSTAMP_FILTER_NONE)             
  all   (HWTSTAMP_FILTER_ALL)             
   

For 802.1AS testing, use the configuration file gPTP.cfg in linuxptp source. Run the below commands on the two boards instead.

# ptp4l -i swp0 -p /dev/ptp1 -f gPTP.cfg -m

4.1.4.2.3 Qbv test setup for LS1028ARDB

The following figure describes the setup for Qbv test on LS1028ARDB.
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Figure 19. Qbv test

4.1.4.2.3.1 Tsntool usage

4.1.4.2.3.1.1 Closing basic gates
Use the set of commands below for basic gate closing.

echo “t0 00000000b 20000” > qbv0.txt
#Explaination:
# 'NUMBER'      :  t0
# 'GATE_VALUE'  :  00000000b
# 'TIME_LONG'   :  20000 ns

./tsntool
tsntool> verbose
tsntool> qbvset --device swp1 --entryfile ./qbv0.txt

#Send one broadcast frame to swp0 from TestCenter.
ethtool -S swp1
#Should not get any frame from swp1 on TestCenter.

echo “t0 11111111b 20000” > qbv0.txt
tsntool> qbvset --device swp1 --entryfile ./qbv0.txt

#Send one broadcast frame to swp0 on TestCenter.
ethtool -S swp1
#Should get one frame from swp1 on TestCenter.
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4.1.4.2.3.1.2 Basetime test
For the basetime test, first get the current time in seconds:

#Get current time: 
tsntool> ptptool -g -d /dev/ptp1 

#add some seconds, for example user gets 200.666 time clock, then set 260.666 as result
tsntool> qbvset --device swp1 --entryfile ./qbv0.txt --basetime 260.666

#Send one broadcast frame to swp0 on the Test Center.
#Frame could not pass swp1 until time offset.

4.1.4.2.3.1.3 Qbv performance test
Use the following commands for the QBv performance test:

cat > qbv5.txt << EOF
t0 11111111b 1000000
t1 00000000b 1000000
EOF
qbvset --device swp1 --entryfile qbv5.txt

#Send 1G rate stream to swp0 on TestCenter.

#The stream would get about half line rate from swp1.

4.1.4.2.3.2 Tc-taprio usage

LS1028ARDB supports the tarprio qdisc to setup Qbv either. Below is an example setup.

1. Enable the Qbv for swp1 port, set queue 1 gate open, set circle time to be 300 µs.

tc qdisc replace dev swp1 parent root handle 100 taprio num_tc 8 map 0 1 2 3 4 5 6 7 \
        queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 02 300000 flags 0x2

 
Since the hardware can only use PCP, DSCP or other methods to classify QoS, it cannot map QoS to different
hardware queues. mqprio is not implemented in the felix driver, so "map 0 1 2 3 4 5 6 7" in the tc-taprio command
is invalid.

  NOTE  

2. Send one frame with PCP=1 in vlan tag to swp0 from TestCenter, so as to capture the frame from swp1.

3. Send one frame with PCP=2 in vlan tag to swp0 from TestCenter, gate is closed and the frame from swp1 cannot be captured.

4. Disable the Qbv for swp1 port as below:

tc qdisc del dev swp1 parent root handle 100 taprio

4.1.4.2.4 Qbu

The figure below illustrates the setup for performing the Qbu test using the TSN switch.
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Figure 20. Qbu test on switch

4.1.4.2.4.1 Tsntool usage

1. Set queue 1 to be preemptable. There are two ways to set preemptable queues, users can choose tsntool or ethtool to
set it.

#tsntool command to set preemptable queues:
tsntool> qbuset --device swp3 --preemptable 0x02

2. Send two streams from TestCenter, set packet size to be 1500 Byte and bandwidth to be 1G. Now, check the number of
additional mPackets transmitted by PMAC using the command below:

ethtool -S swp3 | grep tx_merge_fragments

3. Follow the steps below to perform Qbu combined with Qbv test.

Set queue 0 gate open 20 µs, queue 1 gate open 20 µs.

cat > qbv0.txt << EOF
t0 00000001b 200000
t1 00000010b 200000
EOF
qbvset --device swp3 --entryfile qbv0.txt

Send two streams from TestCenter. Observe that packets in queue 1 are preempted when gate 1 closed.
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4.1.4.2.4.2 Ethtool usage

1. Set queue 1 to be preemptable. There are two ways to set preemptable queues, users can choose tsntool or ethtool to
set it.

#ethtool command to set preemptable queues:
ethtool --set-frame-preemption swp3 preemptible-queues-mask 0x02 min-frag-size 124

Explanation:

• preemptible-queues-mask: An 8-bit vector that specifies preemptable queues within the 8 priorities (with bit-0 for
priority-0 and bit-7 for priority-7).

• min-frag-size: specifies the least frame bytes that have been transmitted in the fragment. The minimum non-final
fragment size is 64, 128, 192, or 256 octets (include 4 Bytes fragment header).

2. Send two streams from TestCenter. Set packet size to be 1500 Bytes and bandwidth to be 1 G. Now, check the number
of additional mPackets transmitted by PMAC:

ethtool -S swp3 | grep tx_merge_fragments

3. Qbu combined with Qbv test.

Set queue 0 gate open 20 µs, queue 1 gate open 20 µs.

tc qdisc replace dev swp3 parent root handle 100 taprio num_tc 8 map 0 1 2 3 4 5 6 7 \
    queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \
        sched-entry S 01 200000 \
        sched-entry S 02 200000 flags 0x2

Send two streams from TestCenter. Note that packets in queue 1 are preempted when gate 1 closed.

4.1.4.2.5 Qci

The figure below illustrates the Qci test case setup.
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Figure 21. Qci test case

4.1.4.2.5.1 Tsntool usage

4.1.4.2.5.1.1 Stream identification
Use the following commands for stream identification:

1. Set a stream to swp0 on TestCenter. Edit the stream, set the destination MAC as: 00:01:83:fe:12:01, Vlan ID : 1

2. Add the MAC to MAC table on LS1028a. (This step is not needed if the mac is already learned on port)

bridge fdb add 00:01:83:fe:12:01 dev swp1 vlan 1

3. Use the destination MAC as: 00:01:83:fe:12:01, Vlan ID : 1 to set the stream identification on LS1028a.

tsntool> cbstreamidset --device swp1 --nullstreamid --index 1 --nulldmac  0x000183fe1201 --
nullvid 1 --streamhandle 1

Explanation:

• device: set the device port which is the stream forwarded to. If the {destmac, VID} is already learned by switch, switch
will not care device port.

• nulltagged: switch only support nulltagged=1 mode, so there is no need to set it.
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• nullvid: Use "bridge vlan show" to see the ingress VID of switch port.

tsntool> qcisfiset --device swp0 --index 1 --streamhandle 1 --gateid 1 --priority 0 --
flowmeterid 68 

Explanation:

• device: can be any one of switch ports.

• index: value is the same as streamhandle of cbstreamidset.

• streamhandle: value is the same as streamhandle of cbstreamidset.

• flowmeterid: PSFP Policer id, ranges from 63 to 383.

4. Send one frame, then check the frames.

ethtool -S swp1 
ethtool -S swp2 

Only swp1 can get the frame.

5. Use the following command to check and debug the stream identification status.

 qcisfiget --device swp0 --index 1

 
The parameter streamhandle is the same as index in stream filter set, we use streamhandle as SFID to
identify the stream, and use index to set stream filter table entry.

  NOTE  

4.1.4.2.5.1.2 Stream gate control
1. Use the following commands for stream gate control:

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0 --gatelistfile 
sgi.txt --basetime 0x0

Explanation:

• 'device': can be any one of switch ports.

• 'index': gateid

• 'basetime': It is the same as Qbv set.

2. Send one frame on TestCenter.

ethtool -S swp1

Note that the frame could pass, and green_prio_3 has increased.

3. Now run the following commands:

echo "t0 0b 3 50000 200" > sgi.txtx
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0 --gatelistfile 
sgi.txt --basetime 0x0

4. Next, send one frame on TestCenter.

ethtool -S swp1
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Note that the frame could not pass.

4.1.4.2.5.1.3 SFI maxSDU test
Use the following command to run this test:

tsntool> qcisfiset --device swp0 --index 1 --gateid 1 --priority 0 --flowmeterid 68 --maxsdu 200

Now, send one frame (frame size > 200) on TestCenter.

ethtool -S swp1

Users can observe that the frame could not pass.

4.1.4.2.5.1.4 FMI test
Use the following set of commands for the FMI test.

1. Run the command:

tsntool> qcifmiset --device swp0 --index 68 --cir 100000 --cbs 4000 --ebs 4000 --eir 100000 

 
• The 'device' in above command can be any one of the switch ports.

• The index of qcifmiset must be the same as flowmeterid of qcisfiset.

  NOTE  

2. Now, send one stream (rate = 100M) on TestCenter.

ethtool -S swp0 

Note that all frames pass and get all green frames.

3. Now, send one stream (rate = 200M) on TestCenter.

ethtool -S swp0

Observe that all frames pass and get green and yellow frames.

4. Send one stream (rate = 300M) on TestCenter.

ethtool -S swp0 

Note that not all frames could pass and get green, yellow, and red frames.

5. Send one yellow stream (rate = 100M) on TestCenter.

ethtool -S swp0

All frames pass and get all yellow frames.

6. Send one yellow stream (rate = 200M) on TestCenter.

ethtool -S swp0 

Note that not all frames could pass and get yellow and red frames.

7. Test cf mode.

tsntool> qcifmiset --device swp0 --index 68 --cir 100000 --cbs 4000 --ebs 4000 --eir 100000 --cf 
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8. Send one yellow stream (rate = 200M) on TestCenter.

ethtool -S swp0

All frames pass and get all yellow frames (use CIR as well as EIR).

9. Send one yellow stream (rate = 300M) on TestCenter.

ethtool -S swp0 

Note that not all frames could pass and get yellow and red frames.

4.1.4.2.5.1.5 Port-based SFI set
LS1028A switch can work on port-based PSFP set. This implies that when a null-identified stream is received on an ingress port,
switch will use the port, default SFI.

Below example tests no streamhandle in qcisfiset to set a port, default SFI.

1. Use SFID 2 to set swp0 port as default SFI.

tsntool> qcisfiset --device swp0 --index 2 --gateid 1 --flowmeterid 68 

After the port default SFI set, any stream sent from swp0 port will do the gate 1 and flowmeter 68 policy.

2. Set stream gate control.

echo "t0 1b 4 50000 200" > sgi.txt
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0 --gatelistfile sgi.txt 

3. Send any stream to swp0.

ethtool -S swp1

Note that the frame could pass, and green_prio_4 has increased.

4.1.4.2.5.2 Tc-flower usage

The figure below illustrates the tc-flower based Qci test case setup.
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Figure 22. TC-flower based Qci test case

1. Get destination MAC on LS1028ARDB board, then use "dst_mac CA:9C:00:BC:6D:68" as shown in the following commands.

ifconfig eno0
Link encap:Ethernet  HWaddr CA:9C:00:BC:6D:68
          inet addr:169.254.88.50  Bcast:169.254.255.255  Mask:255.255.0.0
          inet6 addr: fe80::ed36:c4ce:bb04:863d/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:2 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1529 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:152 (152.0 B)  TX bytes:118456 (115.6 KiB)

2. Set Qci on ingress port swp0.

a) Use the following commands to set Qci gate.

tc qdisc add dev swp0 ingress
tc filter add dev swp0 chain 30000 protocol 802.1Q parent ffff: flower skip_sw dst_mac 
CA:9C:00:BC:6D:68 vlan_id 1 action gate index 1 base-time 0 sched-entry CLOSE 6000 -1 -1
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b). Use the following commands to set Qci flow meter.

tc qdisc add dev swp0 ingress
tc filter add dev swp0 chain 30000 protocol 802.1Q parent ffff: flower skip_sw dst_mac 
CA:9C:00:BC:6D:68 vlan_id 1 action police index 1 rate 10Mbit burst 10000

c). Use the following commands to set Qci SFI priority.

tc qdisc add dev swp0 ingress
tc filter add dev swp0 chain 30000 protocol 802.1Q parent ffff: flower skip_sw dst_mac  
CA:9C:00:BC:6D:68 vlan_id 1 vlan_prio 1 action gate index 1 base-time 0 sched-entry CLOSE 6000 -1 
-1

d). Use the following commands to set both gate and flow meter.

tc qdisc add dev swp0 ingress
tc filter add dev swp0 chain 30000 protocol 802.1Q parent ffff: flower skip_sw dst_mac  
CA:9C:00:BC:6D:68 vlan_id 1 action gate index 1 base-time 0 sched-entry OPEN 6000 2 -1 action police 
index 1 rate 10Mbit burst 10000

3. Send a stream from testcenter, set the stream destination mac as CA:9C:00:BC:6D:68, set vid=1 and vlan_prio=1 in the
vlan tag.

4. Using "tcpdump -i eno0 -w eno0.pcap" to receive the stream on eno0, check if packets are received.

5. Use the following commands to delete a stream rule.

tc -s filter show dev swp0 ingress chain 30000
tc filter del dev swp0 ingress  chain 30000 pref 49152

 
• Each stream can only be added only once. If a user wants to update it, delete the rule and add a new one.

• MAC and VID of stream must have been learned in switch MAC table if the stream is required to be added.

• Qci gate cycle time is expected to be more than 5 μs.

• Qci flow meter can only set cir and cbs now, and the policers are shared with ACL VCAPs.

  NOTE  

4.1.4.2.6 Qav

The below figure illustrates the Qav test case setup.
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Figure 23. Qav test case

4.1.4.2.6.1 Tsntool usage

1. Set the percentage of two traffic classes:

tsntool> cbsset --device swp2 --tc 1 --percentage 20
tsntool> cbsset --device swp2 --tc 2 --percentage 40

2. Send two streams from Test center, then check the frames count.

ethtool -S swp2

Note that the frame count of queue1 is half of queue2.

 
Stream rate must lager than bandwidth limited of queue.

  NOTE  

3. Capture frames on swp2 on TestCenter.

# The Get Frame sequence is: (PCP=1), (PCP=2), (PCP=2), (PCP=1), (PCP=2), (PCP=2),…

4.1.4.2.6.2 Tc-cbs usage

LS1028A supports the CBS qdisc to setup Credit-based Shaper. The below commands set CBS with 20 Mbit/s for queue 1 and
40 Mbit/s for queue 2.
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1. Set the cbs of two traffic classes:

tc qdisc add dev swp2 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 \
    queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0
tc qdisc replace dev swp2 parent 1:2 cbs locredit -1470 hicredit 30 \
    sendslope -980000 idleslope 20000 offload 1
tc qdisc replace dev swp2 parent 1:3 cbs locredit -1440 hicredit 60 \
    sendslope -960000 idleslope 40000 offload 1

2. Send one stream with PCP=1 from TestCenter, we can get the stream bandwith is 20 Mbit/s from swp2.

3. Send two streams from Test center, then check the frames count.

ethtool -S swp2

 
The frame count of queue1 is half of queue2.

  NOTE  

4. Delete the cbs rules.

tc qdisc del dev swp2 parent 1:2 cbs
tc qdisc del dev swp2 parent 1:3 cbs

4.1.4.2.7 802.1CB

The following figure describes the test setup for the seamless redundancy test case.

Figure 24. Seamless redundancy test

4.1.4.2.7.1 Sequence Generator test

Use the following set of commands for the 'Sequence Generator' test.

1. Configure switch ports to be forward mode.

On board A:

ifconfig eno2 up
ip link add name switch type bridge vlan_filtering 1
ip link set switch up
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ip link set swp0 master switch && ip link set swp0 up
ip link set swp1 up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
bridge vlan add dev swp0 vid 1 pvid
bridge vlan add dev swp2 vid 1 pvid
bridge vlan add dev swp3 vid 1 pvid

On board B

ifconfig eno2 up
ip link add name switch type bridge vlan_filtering 1
ip link set switch up
ip link set swp0 master switch && ip link set swp0 up
ip link set swp1 master switch && ip link set swp1 up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
bridge vlan add dev swp0 vid 1 pvid
bridge vlan add dev swp1 vid 1 pvid
bridge vlan add dev swp2 vid 1 pvid
bridge vlan add dev swp3 vid 1 pvid

2. On board A, run the commands:

bridge fdb add 7E:A8:8C:9B:41:DD dev swp0 vlan 1
tsntool> cbstreamidset --device swp0 --index 1 --nullstreamid --nulldmac 0x7EA88C9B41DD --
nullvid 1 --streamhandle 1
tsntool> cbgen --device swp3 --index 1 --iport_mask 0x08 --split_mask 0x07 --seq_len 16 --
seq_num 2048

In the command above,

• device: can be any one of switch ports.

• index: value is the same as streamhandle of cbstreamidset.

3. Send a stream from TestCenter to swp3 of board A, set destination mac as 7E:A8:8C:9B:41:DD.

4. Capture frames on swp2 on TestCenter.

We can get frames from swp2 on TestCenter, each frame adds the sequence number: 23450801, 23450802, 23450803…

5. Capture frames from swp2 of board B on TestCenter, we can get the same frames.

4.1.4.2.7.2 Sequence Recover test

Use the following steps for the Sequence Recover test:

1. On board B, run the following commands:

bridge fdb add 7E:A8:8C:9B:41:DD dev swp2 vlan 1
tsntool> cbstreamidset --device swp2 --index 1  --nullstreamid --nulldmac 0x7EA88C9B41DD --
nullvid 1  --streamhandle 1
tsntool> cbrec --device swp0 --index 1 --seq_len 16 --his_len 31 --rtag_pop_en

In the cbrec command mentioned above:

• device: can be any one of switch ports.

• index: value is the same as streamhandle of cbstreamidset.

2. Send a frame from TestCenter to swp3 of board A, set dest mac to be 7E:A8:8C:9B:41:DD.

3. Capture frames from swp2 of board B on TestCenter, we can get only one frame without sequence tag.
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4.1.4.2.8 TSN stream identification

TSN module uses QoS class to identify and control streams. There are three ways to identify the stream to different QoS class.
These are explained in the following sections.

4.1.4.2.8.1 Stream identification based on PCP value of Vlan tag

The default QoS class is based on PCP of Vlan tag for a frame. If there is no Vlan tag for a frame, the default QoS class is 0.

Set the PCP value on TestCenter.

Figure 25. Using PCP value of Vlan tag

4.1.4.2.8.2 Based on DSCP of ToS tag

Use the below steps to identify stream based on DSCP value of ToS tag.

1. Map the DSCP value to a specific QoS class using the command below:

tsntool> dscpset --device swp0 --index 1 --cos 1 --dpl 0
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Explanation:

• index: DSCP value of stream, 0-63.

• cos: QoS class which is mapped to.

• dpl: Drop level which is mapped to.

2. Set the DSCP value on TestCenter. DSCP value is the upper six bits of ToS in IP header, set the DSCP value on TestCenter
as shown in the following figure.

Figure 26. Setting DSCP value on TestCenter

4.1.4.2.8.3 Based on qci stream identification

The following steps describe how to use qci to identify the stream and set it to a QoS class.
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1. Identify a stream.

tsntool> cbstreamidset --device swp1 --nullstreamid --nulldmac 0x000183fe1201 --nullvid 1 --
streamhandle 1
tsntool> qcisfiset --device swp0 --index 1 --gateid 1 --flowmeterid 68

2. Set to Qos class 3 by using stream gate control.

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0 --
gatelistfile sgi.txt

 
The Qci-based identity stream can only be used on both the ingress and egress are bridge ports. The flow injected
or extracted through the CPU port cannot be configured for Qci.

  NOTE  

4.1.5 TSN on LS1021A-TSN
On the LS1021A-TSN platform, TSN features are provided by the SJA1105TEL Automotive Ethernet switch. These hardware
features comply to pre-standard (draft) versions of the following IEEE specifications:

• 802.1Qbv - Time Aware Shaping

• 802.1Qci - Per-Stream Filtering and Policing

• 1588v2 - Precision Time Protocol

The following demonstration illustrates the SJA1105 hardware features listed below:

• Ingress rate limiting via the L2 (best-effort) policers

• Time-aware shaping

• 802.1AS gPTP synchronization

4.1.5.1 Topology

For demonstrating the SJA1105 TSN features, the following topology is required:

• 1 LS1021A-TSN board, acting as a TSN switch

• 1 generic host (can be a PC or another board) capable of PTP hardware timestamping, acting as a sender of latency-
sensitive traffic

• 1 generic host (can be a PC or another board), acting as a sender of high-bandwidth traffic

• 1 generic host (can be a PC or another board) capable of PTP hardware timestamping, acting as receiver for the
latency-sensitive and for the high-bandwidth traffic

The required software packages for the generic hosts are:

• ptp4l, phc2sys and phc_ctl from the linuxptp package: https://sourceforge.net/projects/linuxptp/files/v3.1/linuxptp-3.1.tgz

• iperf3

• isochron from the tsn-scripts package: https://github.com/vladimiroltean/tsn-scripts/tree/isochron

The generic hosts are assumed to be connected to the LS1021A-TSN board through an interface called eth0.

This topology is depicted in the following figure.
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Figure 27. Topology of the demo network

4.1.5.2 SJA1105 Linux support

The SJA1105 switch is supported in the Real-time Edge Linux kernel using the Distributed Switch Architecture (DSA) framework
(an overview of which can be found at https://netdevconf.info/2.1/papers/distributed-switch-architecture.pdf).

The following kernel configuration options are available for controlling its features:

• CONFIG_NET_DSA_SJA1105: enables base support for probing the SJA1105 ports as 4 standalone net devices capable of
sending and receiving traffic

• CONFIG_NET_DSA_SJA1105_PTP: enables additional support for the PTP Hardware Clock (PHC), visible in /dev/ptp1 on
the LS1021A-TSN board, and for PTP timestamping on the SJA1105 ports

• CONFIG_NET_DSA_SJA1105_TAS: enables additional support for the Time-Aware Scheduler (TAS), which is configured via
the tc-taprio qdisc offload

The documentation for this kernel driver is available at https://www.kernel.org/doc/html/latest/networking/dsa/sja1105.html.
Below is a listing of several driver features.
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The LS1021A-TSN device tree (arch/arm/boot/dts/ls1021a-tsn.dts) defines the sja1105 port names as swp2, swp3, swp4 and
swp5. The numbers have a direct correspondence with the chassis labels ETH2, ETH3, ETH4 and ETH5. The ETH2 chassis label
(represented in Linux by the swp2 net device) should not be confused with the eth2 net device, which represents the LS1021A
host port for this switch (called DSA master).

On the LS1021A-TSN board, network management is done by the systemd-networkd daemon, whose configuration files are
located in /etc/systemd/network/. On this board, the following configuration files for systemd-networkd are present by default:

• br0.netdev: Creates a bridge net device with VLAN filtering disabled, STP disabled and MVRP disabled

• br0.network: Configures the net devices enslaved to br0 to request an IPv4 address via DHCP

• eth0.network, eth1.network, swp.network: Configures all 6 ports of the LS1021A-TSN board to be part of the same br0 bridge
(4 ports are bridged in hardware, 2 ports are bridged in software)

• eth2.network: Configures the DSA master port to come up automatically, and assigns it a dummy link-local IP address. Having
the DSA master interface up is a requirement for using the switch net devices.

Although all ports are configured for L2 forwarding by default (and therefore the only IP address for this board should be assigned
to br0), this can be changed by removing the "Bridge=br0" line from the files in /etc/systemd/network/ and then running "systemctl
restart systemd-networkd".

In standalone mode, each SJA1105 port is able of acquiring an IP address and transferring general purpose packets to/from the
kernel. This is internally supported by the kernel driver by repurposing the VLAN tagging functionality for switch port separation
and identification. Therefore the ability to support general purpose traffic I/O only works as long as the user does not request
VLAN tagging, via the bridge vlan_filtering option. When this happens, the switch driver goes to a reduced functionality mode,
where the swpN net devices are no longer capable of sending and receiving general packets to/from the kernel. This is a hardware
limitation which can be somewhat mitigated by enabling the best_effort_vlan_filtering devlink parameter (by following the steps in
the kernel documentation).

Actually there is a second mechanism of frame tagging, which works for STP and PTP traffic and does not rely on VLAN tagging.
Therefore, the STP and PTP protocols remain operational on the sja1105 driver even when the ports are enslaved to a bridge
with vlan_filtering=1.

When VLAN awareness is disabled, the sja1105 ports perform no checks on VLAN port membership or PCP, and performs no
alteration to the VLAN tags. For these operations, the following command is necessary:

ip link set dev br0 type bridge vlan_filtering 1

Once VLAN filtering is enabled, the VLAN table of each switch port can be inspected and modified using the "bridge vlan"
commands from the iproute2 package.

The STP state machine can be started on the bridge using the following command:

ip link set dev br0 type bridge stp_state 1
ip link set dev br0 down
ip link set dev br0 up

The switch L2 address forwarding database (FDB) can be inspected and modified using the "bridge fdb" set of commands.

Port statistics counters can be inspected using the ethtool -S swpN command.

The sja1105 port MTU can be configured up to a maximum of 2021 using the following command:

ip link set dev swp2 mtu 2000 

Port mirroring on a sja1105 port (mirroring of ingress and/or egress packets) can be configured via the following set of commands:

tc qdisc add dev swp2 clsact
tc filter add dev swp2 ingress matchall skip_sw \
    action mirred egress mirror dev swp3
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tc filter show dev swp2 ingress
tc filter del dev swp2 ingress pref 49152

There are 3 types of policers currently supported by the sja1105 driver:

• Port policers: These affect all traffic that is incoming on a port, except traffic that hits a more specific rule (see below). These
are configured as follows:

tc qdisc add dev swp2 clsact
tc filter add dev swp2 ingress matchall skip_sw \
    action police rate 10mbit burst 64k

• Traffic class policers: These affect only traffic having a specific VLAN PCP. To limit traffic with VLAN PCP 0 (also includes
untagged traffic) to 100 Mbit/s on port swp2 only:

tc qdisc add dev swp2 clsact
tc filter add dev swp2 ingress protocol 802.1Q flower skip_sw \
    vlan_prio 0 action police rate 100mbit burst 64k

• Broadcast policers: These affect only broadcast traffic (destination MAC ff:ff:ff:ff:ff:ff) received on an ingress port.

tc qdisc add dev swp2 clsact
tc filter add dev swp2 ingress flower skip_sw dst_mac ff:ff:ff:ff:ff:ff \
    action police rate 10mbit burst 64k

In absence of a specific policer allocated to a traffic class or to broadcast traffic, these packets will consume from the bandwidth
budget of the port policer.

It is also possible to combine the bandwidth allocation of a traffic class, or of broadcast traffic on multiple ports, and assign them
to a single policer. This functionality is called "shared filter blocks" and can be configured as follows (the example below limits
broadcast traffic coming from all switch ports to a total of 10 Mbit/s):

tc qdisc add dev swp2 ingress_block 1 clsact
tc qdisc add dev swp3 ingress_block 1 clsact
tc qdisc add dev swp4 ingress_block 1 clsact
tc qdisc add dev swp5 ingress_block 1 clsact
tc filter add block 1 flower skip_sw dst_mac ff:ff:ff:ff:ff:ff \
    action police rate 10mbit burst 64k

For PTP, the sja1105 driver implements the kernel primitives required for interoperating with the linuxptp and other open source
application stacks. Real-time Edge on the LS1021A-TSN is configured to start linuxptp by default in 802.1AS bridge mode on ports
swp2, swp3, swp4 and swp5. The following system components are involved:

• ptp4l: Daemon that implements the IEEE 1588/802.1AS state machines. Configured via the /etc/linuxptp.cfg file and
controlled via the linuxptp.service systemctl service.

• phc2sys: Daemon that synchronizes the system time (CLOCK_REALTIME) to the active PHC (/dev/ptp1) or viceversa,
depending on the board role in the network (PTP master or slave). Configured via the /etc/linuxptp-system-clock.cfg file and
controlled via the phc2sys.service systemctl service.

To inspect the PTP synchronization status of the board, the following commands can be used:

systemctl start --now ptp4l
systemctl start --now phc2sys
journalctl -b -u ptp4l -f
journalctl -b -u phc2sys -f

Under steady state, the switch ports are expected to maintain a synchronization offset of +/- 100 ns offset to the PTP master.
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During normal operation, the static configuration of the sja1105 needs to be changed by the driver. In turn, this requires a switch
reset, which temporarily disrupts Ethernet traffic and PTP synchronization. After a switch reset, the PTP synchronization offset
may jump to a higher momentary range of +/- 2 500 000 ns. The list of reset reasons in the sja1105 kernel driver is:

• Enabling or disabling VLAN filtering, via the "ip link" command.

• Enabling or disabling PTP timestamping.

• Configuring the ageing time (which is done automatically by the kernel STP state machine when STP is active).

• Configuring the Time-Aware Scheduler via the tc-taprio command.

• Configuring the L2 policers (for MTU or for policing).

4.1.5.3 Synchronized 802.1Qbv demo

The objectives of this demonstration are the following:

• Synchronize the SJA1105 PTP clock using IEEE 802.1AS.

• Run the SJA1105 Time-Aware Scheduler (802.1Qbv engine) based on the PTP clock.

• Create a small switched TSN network with a flow requiring deterministic latency. Prove the latency is not affected by
interfering traffic.

In the topology described earlier in this chapter, the boards which require to be synchronized by PTP are hosts 1, 2 and the
LS1021A-TSN board. Host 3 only generates iperf traffic, which is not time-sensitive.

The following commands are required to start PTP synchronization using the 802.1AS profile on host 1 and 2:

ptp4l -i eth0 -f /etc/linuxptp/gPTP.cfg -m
phc2sys -a -rr --transportSpecific 0x1 --step_threshold 0.0002 --first_step_threshold 0.0002

Different output is expected on the two hosts. One will become PTP grandmaster and show the following logs:

• ptp4l:

ptp4l[13.067]: port 1: link up
ptp4l[13.104]: port 1: FAULTY to LISTENING on INIT_COMPLETE
ptp4l[16.113]: port 1: LISTENING to MASTER on ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES
ptp4l[16.113]: selected local clock 00049f.fffe.05de06 as best master
ptp4l[16.113]: port 1: assuming the grand master role
ptp4l[16.692]: port 1: new foreign master 001f7b.fffe.630248-1
ptp4l[16.692]: selected best master clock 00049f.fffe.05f627
ptp4l[16.692]: port 1: assuming the grand master role

• phc2sys:

phc2sys[73.382]: eno0 sys offset        12 s2 freq   +2009 delay   1560
phc2sys[74.382]: eno0 sys offset         2 s2 freq   +2003 delay   1560
phc2sys[75.382]: eno0 sys offset       -18 s2 freq   +1983 delay   1600
phc2sys[76.383]: eno0 sys offset        27 s2 freq   +2023 delay   1600
phc2sys[77.383]: eno0 sys offset         7 s2 freq   +2011 delay   1600
phc2sys[78.383]: eno0 sys offset       -18 s2 freq   +1988 delay   1560
phc2sys[79.383]: eno0 sys offset        -8 s2 freq   +1993 delay   1560

While the other board will become a PTP slave, as seen by the following logs:

• ptp4l:

ptp4l[68484.668]: rms   17 max   36 freq  +1613 +/-  15 delay   737 +/-   
0                                                                                                   
ptp4l[68485.668]: rms    8 max   15 freq  +1622 +/-  11 delay   737 +/-   
0                                                                                                   
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ptp4l[68486.669]: rms   14 max   28 freq  +1643 +/-  13 delay   737 +/-   
0                                                                                                   
ptp4l[68487.670]: rms   11 max   17 freq  +1650 +/-  10 delay   738 +/-   
0                                                                                                   
ptp4l[68488.671]: rms   11 max   20 freq  +1633 +/-  15 delay   738 +/-   
0                                                                                                   
ptp4l[68489.672]: rms    8 max   16 freq  +1640 +/-  11 delay   737 +/-   
0                                                                                                   
ptp4l[68490.673]: rms   16 max   32 freq  +1640 +/-  23 delay   737 +/-   
0                                                                                                   
ptp4l[68491.674]: rms   12 max   21 freq  +1622 +/-  13 delay   737 +/-   
0                                                                                                   
ptp4l[68492.675]: rms   13 max   19 freq  +1648 +/-  13 delay   738 +/-   0
ptp4l[68493.676]: rms   18 max   34 freq  +1668 +/-  15 delay   737 +/-   0

• phc2sys:

phc2sys[68508.790]: CLOCK_REALTIME phc offset        10 s2 freq    -342 delay   1600
phc2sys[68509.791]: CLOCK_REALTIME phc offset         2 s2 freq    -347 delay   1560
phc2sys[68510.791]: CLOCK_REALTIME phc offset         9 s2 freq    -339 delay   1600
phc2sys[68511.791]: CLOCK_REALTIME phc offset       -22 s2 freq    -368 delay   1560
phc2sys[68512.791]: CLOCK_REALTIME phc offset       -19 s2 freq    -371 delay   1560
phc2sys[68513.791]: CLOCK_REALTIME phc offset       -13 s2 freq    -371 delay   1560
phc2sys[68514.791]: CLOCK_REALTIME phc offset        48 s2 freq    -314 delay   1560
phc2sys[68515.792]: CLOCK_REALTIME phc offset        22 s2 freq    -325 delay   1560
phc2sys[68516.792]: CLOCK_REALTIME phc offset        17 s2 freq    -324 delay   1560
phc2sys[68517.792]: CLOCK_REALTIME phc offset       -29 s2 freq    -365 delay   1560

The role of the LS1021A-TSN board is to relay the PTP time from the 802.1AS grandmaster to the slave. It acts as a slave on the
port connected to the GM and as a master on the port connected to the other host.

[root] # journalctl -b -u ptp4l -f
-- Logs begin at Tue 2020-04-07 14:02:11 UTC. --
ptp4l[86640.528]: rms   10 max   23 freq -19731 +/-  11 delay   737 +/-   0
ptp4l[86641.528]: rms    9 max   15 freq -19740 +/-  13 delay   736 +/-   0
ptp4l[86642.529]: rms   12 max   19 freq -19757 +/-  10 delay   737 +/-   0
ptp4l[86643.530]: rms    9 max   14 freq -19747 +/-  13 delay   737 +/-   0
ptp4l[86644.530]: rms   13 max   22 freq -19733 +/-  15 delay   736 +/-   0
ptp4l[86645.531]: rms    7 max   14 freq -19735 +/-   9 delay   737 +/-   0
ptp4l[86646.532]: rms    7 max   13 freq -19735 +/-   9 delay   737 +/-   0
ptp4l[86647.532]: rms   11 max   19 freq -19750 +/-  12 delay   737 +/-   0
ptp4l[86648.533]: rms    6 max   14 freq -19745 +/-   8 delay   737 +/-   0
ptp4l[86649.534]: rms    9 max   15 freq -19750 +/-  12 delay   736 +/-   0

The above information can be interpreted as follows (only the last line is interpreted here):

• Because the default (implicit) summary_interval in /etc/linuxptp.cfg is 0 (print stats once per second) and the logSyncInterval
required by 802.1AS is -3 (the sync messages are sent at an interval of 1/8 seconds - 125 ms), this means that synchronization
stats cannot be printed in full (for each packet) and are printed in an abbreviated form (there is no "offset" in the logs).

• The offset to the master has a root mean square value of 9 ms, with a maximum of 15 ns in the past 1 second.

• The frequency correction required to synchronize to the GM was on average -19750 parts per billion (ppb). If the frequency
adjustment exceeds a certain sanity threshold (depending on kernel driver), ptp4l may print "clockcheck" warnings and
stop synchronization. This can be sometimes remedied manually by running the following command to reset the PTP clock
frequency adjustment to zero:

phc_ctl /dev/ptp0 freq 0
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• The measured path delay (MAC to MAC propagation delay for ~70 bytes frames at 1Gbps) between its device and its link
partner is exactly 736 ns.

The clock distribution tree in this network is as follows: the system clock of the PTP GM (e.g. Host 1) disciplines its PTP hardware
clock (/dev/ptp0), using phc2sys. Over Ethernet, the PTP GM disciplines the SJA1105 PHC, which disciplines the PTP slave (e.g.
Host 2). On the slave host, the phc2sys process runs in the reverse direction, disciplining the system clock (CLOCK_REALTIME)
to the PTP hardware clock (/dev/ptp0).

A note on using the LS1021A-TSN board as a gPTP GM for this scenario (in place of Host 1). On this board there is no
battery-backed RTC, so there is no persistent source of time onboard. One has to rely on the NTP service (ntpd.service) to provide
time, otherwise a time in 1970 will be relayed into the PTP network.

A note on using phc2sys on the slave host. Since phc2sys attempts to discipline CLOCK_REALTIME, one must manually ensure
that other daemons in the system do not attempt to do the same thing, such as ntpd. Otherwise there will be access conflicts
between phc2sys and the other daemon, and phc2sys will keep printing clockcheck warning messages.

Install the following schedule into the sja1105 port egressing towards Host 2:

tc qdisc add dev swp2 parent root taprio \
      num_tc 8 \
      map 0 1 2 3 4 5 6 7 \
      queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
      base-time 0 \
      sched-entry S 80  50000 \
      sched-entry S 40  50000 \
      sched-entry S 3f 300000 \
      flags 2

The base-time of 0 indicates the phase offset of the network schedule. This time corresponds to Jan 1st 1970, but it is automatically
advanced into an equivalent time into the immediate PTP future (it is advanced by an integer number of cycle-time nanoseconds).

The cycle-time in this example is not provided explicitly, but it is calculated as the sum of the durations of all gate events: 400
microseconds (us).

The schedule at the egress of swp2 is divided as follows:

• 50 us for PTP traffic (S 80). The traffic class assignment of 7 for link-local management traffic (STP, PTP, etc) is fixed to 7 at
driver level and is not user configurable at this time.

• 50 us for traffic class 6 (S 40). The latency-sensitive traffic generator will be injecting into this window.

• 300 us for all other traffic classes 0-5 (S 3f).

Enabling QoS classification on the sja1105 switch based on VLAN PCP is done by running:

ip link set dev br0 type bridge vlan_filtering 1

First the receiver for latency-sensitive traffic needs to be started on Host 2. This process waits for connections from the sender
and then transmits its statistics to it.

ip addr add 192.168.1.2/24 dev eth0
isochron rcv --interface eth0 --quiet

The sender is started on Host 1 as follows:

ip addr add 192.168.1.1/24 dev eth0
isochron send --interface eth0 --dmac 00:04:9f:05:de:06 --priority 6 --vid 0 \
        --base-time 0 --cycle-time 400000 --shift-time 50000 --advance-time 90000 \
        --num-frames 10000 --frame-size 64 --client 192.168.1.2 --quiet
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The log should look as follows:

Base time 0.000040000 is in the past, winding it into the future
       Now: 1586282691.751150218
 Base time: 1586282691.751160000
Cycle time: 0.000400000
Collecting receiver stats
Summary:
Path delay: min 4329 max 4444 mean 4387.987 stddev 24.508
HW TX deadline delta: min -65238 max -18938 mean -59707.395 stddev 1371.995
SW TX deadline delta: min -33528 max 25058 mean -28221.001 stddev 1844.235
HW RX deadline delta: min -60874 max -14529 mean -55319.408 stddev 1372.222
SW RX deadline delta: min -43398 max 130659 mean -38212.966 stddev 2514.592
HW TX deadline misses: 0 (0.000%)
SW TX deadline misses: 1 (0.010%)

The following clarifications are necessary:

• The destination MAC is that of Host 2's interface eth0

• The sent packets have a VLAN tag with VID 0 and PCP 6. Because they are priority-tagged (802.1p) the sja1105 switch ports
will accept these packets without any "bridge vlan add vid 0 dev swp3" command.

• The isochron program sends a number of 10000 frames, at an interval of 400 us. The base-time is the same as on the
sja1105 egress port swp2, but it is shifted with 50 us to the right, in order to align with the beginning of traffic class 6's window
(which is the second timeslot in the schedule). The packet transmission deadlines are therefore at (base-time + shift-time +
N * cycle-time).

• Packets must in fact be transmitted earlier than the TX deadline, in order to compensate for scheduling latencies in the
Linux kernel and the actual propagation delay of the packet. So the isochron program sleeps until 90 us in advance of the
next deadline.

• By "winding the base time into the future", one understands the process by which the original base time (0) is incremented
by the smallest number N of cycles such that it becomes greater than the current PTP time (1586282691.751150218). In this
case, the new base-time is 1586282691.751160000.

• For each packet, the sender collects 2 TX timestamps: one hardware and one software. The receiver also collects two
timestamps. These timestamps are not printed to the console because the --quiet option was specified.

• Correlation between timestamps at the sender and at the receiver is done through a secondary socket. The receiver waits for
connections on TCP port 5000, and transmits its log to the sender, which correlates with its own log by using a key formed out
of {sequence number, scheduled TX time (deadline)}. Both these values are embedded into the packet payload. If the --client
option is omitted, the statistics correlation is not performed. This TCP socket is the only reason for which IP communication
is necessary in this network.

• The path delay is calculated as the delta between the RX hardware timestamp at the receiver and the TX hardware timestamp
at the sender.

• Each "deadline delta" is calculated as the difference between the timestamp and the scheduled TX time of this packet. The
HW TX deadline delta should always be negative, as that indicates the packets were sent before the scheduled TX time has
expired. The SW TX timestamps are taken after the HW TX timestamps in this case, so their meaning is less relevant for this
driver. The RX deadline deltas will become relevant once the 802.1Qbv schedule is installed on the sja1105 switch port.

The above log was taken with no 802.1Qbv schedule active on the sja1105 port and no background traffic. After starting
background traffic:

# Host 2
iperf3 -s > /dev/null &
sysctl -w kernel.sched_rt_runtime_us=-1
chrt --fifo 90 isochron rcv -i eth0 --quiet
# Host 3
ip addr add 192.168.1.3/24 dev eth0
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iperf3 -c 192.168.1.2 -t 48600
Connecting to host 10.0.0.112, port 5201
[  5] local 10.0.0.113 port 60360 connected to 10.0.0.112 port 5201
[ ID] Interval           Transfer     Bitrate         Retr  Cwnd
[  5]   0.00-1.00   sec   105 MBytes   878 Mbits/sec    0    489 KBytes
[  5]   1.00-2.00   sec   102 MBytes   859 Mbits/sec    0    513 KBytes
[  5]   2.00-3.00   sec   102 MBytes   858 Mbits/sec    0    513 KBytes
[  5]   3.00-4.00   sec   101 MBytes   851 Mbits/sec    0    513 KBytes
[  5]   4.00-5.00   sec   102 MBytes   860 Mbits/sec    0    539 KBytes

a re-run of the isochron traffic generated by Host 1 looks as follows:

chrt --fifo 90 isochron send -i eno0 -d 00:04:9f:05:de:06 -p 6 -v 0 -b 0 -S 50000 -c 400000 -a 90000 
-n 10000 -s 64 -C 10.0.0.112 -q                                                      
Base time 0.000040000 is in the past, winding it into the future
       Now: 1586286409.635121693
 Base time: 1586286409.635160000
Cycle time: 0.000400000
Collecting receiver stats
Summary:
Path delay: min 4314 max 16774 mean 9725.688 stddev 3919.150
HW TX deadline delta: min -64273 max -8538 mean -59894.931 stddev 1467.284
SW TX deadline delta: min -33286 max 37575 mean -28498.114 stddev 2006.546
HW RX deadline delta: min -58924 max -904 mean -50169.243 stddev 4183.042
SW RX deadline delta: min -52757 max 1109472 mean -29436.032 stddev 23537.847
HW TX deadline misses: 0 (0.000%)
SW TX deadline misses: 4 (0.040%)

It can be seen that the path delay variance has increased due to the prolonged wait of packets until MTU-sized packets generated
by iperf3 have finished transmission.

Finally, installing the 802.1Qbv schedule on the switch has effects upon all statistics calculated by isochron:

chrt --fifo 90 isochron send -i eno0 -d 00:04:9f:05:de:06 -p 6 -v 0 -b 0 -S 50000 -c 400000 -a 90000 
-n 10000 -s 64 -C 10.0.0.112 -q                                                      
Base time 0.000040000 is in the past, winding it into the future
       Now: 1586286689.223100936
 Base time: 1586286689.223160000
Cycle time: 0.000400000
Collecting receiver stats
Summary:
Path delay: min 14199 max 65684 mean 61357.368 stddev 1494.831
HW TX deadline delta: min -64128 max -12643 mean -59822.445 stddev 1494.557
SW TX deadline delta: min -33616 max 25621 mean -28448.709 stddev 1974.185
HW RX deadline delta: min 1476 max 2041 mean 1534.924 stddev 24.822
SW RX deadline delta: min 5243 max 1122800 mean 21040.814 stddev 16752.155
HW TX deadline misses: 0 (0.000%)
SW TX deadline misses: 5 (0.050%)

The path delay has increased, but that is because now it contains the time spent by the packets blocked on the switch waiting for
gate 6 to open.

The HW RX deadline delta now has a new meaning, since in the last example (with 802.1Qbv enabled on the switch), the gate
acts as a barrier and eliminates the jitter in HW TX timestamps, which is induced by scheduling latencies in the sender's operating
system. Generally speaking, the jitter of the sender is eliminated by the first switch upon packet admission into the TSN network.
The effect is that the receiver sees a packet stream with low jitter.

The path delay can be reduced by decreasing the advance time. It is configured in such a way that the packets arrive on the
switch prior to the gate opening, which depends on the jitter of the sender. Minimizing the TX jitter is outside the scope of
this demonstration.
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4.2 GenAVB/TSN stack

4.2.1 Introduction
The GenAVB/TSN Stack provides advanced implementation for Audio Video Bridging (AVB) and Time-Sensitive Networking
(TSN) functionalities on NXP SoCs and hardware platforms. These functions require TSN hardware support, available in the
LS1028A and i.MX 8M Plus SoC.

This section provides information on how to set up and evaluate the GenAVB/TSN Stack. In that context, it provides information
on supported SoCs and boards, compile time software package configuration, and runtime configuration settings.

4.2.1.1 gPTP stack

The gPTP stack implements IEEE 802.1AS-2020 standard, and supports both time-aware Endpoint and Bridge systems. The
stack runs fully in userspace, using Linux socket API’s for packet transmit, receive and timestamping. Linux clock API’s are used
for clock adjustment. Configuration files are used to configure the stack at initialization time and extensive logging is available
at runtime.

4.2.1.2 SRP stack

The SRP stack implements MRP, MVRP and MSRP defined in IEEE 802.1Q-2018, sections 10, 11 and 35. The stack runs fully
in userspace, using Linux socket API’s for packet transmit and receive. Linux tc and bridge netlink API's are used to update
Multicast FDB entries and FQTSS Credit Based Shaper (CBS) configuration. Configuration files are used to configure the stack
at initialization time and extensive logging is available at runtime.

4.2.1.3 TSN Endpoint example application

The TSN example application provides example code and re-usable middleware exercising the GenAVB/TSN API. It is used to
exercise and verify the real time behavior of the local system as well as TSN properties of the network between endpoints.

Figure 28. TSN application cycle

The TSN example application implements a control loop similar to industrial use cases requiring cyclic isochronous exchanges
over the network.
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The TSN endpoints run their application synchronized to a common time grid in the same gPTP domain so that they can send and
receive network traffic in a cyclic isochronous pattern (the application cycle time is equal and synchronous to the network cycle
time as shown in above figure). Currently the cycle is configured with a period of 2ms. When the application is scheduled, frames
from other endpoints are ready to be read and at the end of the application time frames are sent to other endpoints.

Figure 29. TSN application scheduling

As shown in the figure above, the controller and the IO devices are scheduled with a half cycle offset in order to reduce the
processing latency.

The time sensitive traffic is layer 2 multicast with VLAN header and proprietary EtherType. Its priority is defined using the PCP
field of the VLAN header.

In addition, the TSN application provides detailed logs and time sensitive traffic timing statistics (based on hardware timestamping
of packets) which allow characterization of an entire real time distributed system.

Finally, a OPCUA server is implemented and offer the possibility to browse and retrieve the TSN application statistics exposed
as OPCUA objects. The OPCUA server runs over TCP and allows access to any OPCUA client.

4.2.1.4 Supported configurations

GenAVB/TSN Stack currently supports the following boards and the associated roles:

• LS1028ARDB: gPTP Time-aware Bridge and SRP Bridge

• i.MX 8M Plus EVK: gPTP Time-aware Endpoint station and TSN Endpoint example application

The stack supports and is enabled in the following Yocto Real-time Edge machines:

• imx8mpevk

• ls1028ardb

4.2.2 Building the image through Yocto
GenAVB/TSN package genavb-tsn, is included by default in the Yocto Real-time Edge image nxp-real-time-edge when
building for the following machines:

• imx8mpevk

• ls1028ardb

Follow Real-time Edge Software Yocto Project to get the code and setup the build environment.
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Run the following commands to build the images for these machines:

$ cd yocto-real-time-edge

For LS1028ARDB image:

$ DISTRO=nxp-real-time-edge MACHINE=ls1028ardb source real-time-edge-setup-env.sh -b build-ls1028ardb

For i.MX 8M Plus EVK image:

$ DISTRO=nxp-real-time-edge MACHINE=imx8mpevk source real-time-edge-setup-env.sh -b build-imx8mpevk

Then, use:

$ bitbake nxp-image-real-time-edge

4.2.3 GenAVB/TSN stack start/stop
GenAVB/TSN stack can be manually started/stopped at runtime by using the following commands:

# avb.sh <start|stop>

This will start all stack components and example application. The stack can be automatically started during system startup, by
setting the variable CFG_AUTO_START to 1 in the file /etc/genavb/config.

To just start/stop the gPTP stack use:

# fgptp.sh <start|stop>

4.2.4 Use cases description

4.2.4.1 gPTP Bridge

LS1028ARDB can be used as a generic time-aware bridge, connected to other time-aware end stations or bridges.

By default, LS1028ARDB does not forward packets if no bridge interface is configured under Linux. Enabling bridge interface
is dependent on the board used. For example, how to configure bridge interface on LS1028ARDB is described in section
Switch configuration.

Once gPTP stack is started, logs can be displayed with the following command:

# tail –f /var/log/fgptp-br

In this log file, one can observe which ports are connected, which ports are currently communicating a synchronized time and what
is the role of the port in the time-aware system.

If a port of the bridge is connected to another port capable of communicating a synchronized time, the following log should appear
for each enabled gPTP domain:

gptp_stats_dump : Port(1) domain(0,0): Role: Master Link: Up asCapable: Yes neighborGptpCapable: Yes 
DelayMechanism: P2P
...
gptp_stats_dump : Port(1) domain(1,20): Role: Master Link: Up asCapable: Yes neighborGptpCapable: Yes 
DelayMechanism: COMMON_P2P

Role status can also take the value Slave depending on parameters described in section Grandmaster parameters.

If a port is not connected, Link status takes the value Down.
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If a port is not capable of communicating a synchronized time, AS_Capable status takes the value No.

If a port is using the Common Mean Link Delay Service (CMLDS) the DelayMechanism takes the value COMMON_P2P, else the
value P2P.

For further details about gPTP logs, refer to section gPTP Bridge.

4.2.4.2 gPTP Endpoint

Once gPTP stack is started, logs can be displayed with the following command:

# tail –f /var/log/fgptp

In this log file, one can observe the role of the port in the time-aware system.

If the port of the endpoint is connected to another port capable of communicating a synchronized time, the following log should
appear for each gPTP domain:

gptp_stats_dump : Port(0) domain(0,0): Role: Slave Link: Up AS_Capable: Yes neighborGptpCapable: Yes 
DelayMechanism: P2P
...
gptp_stats_dump : Port(0) domain(1,20): Role: Slave Link: Up AS_Capable: Yes neighborGptpCapable: Yes 
DelayMechanism: COMMON_P2P

Role status can also take the value Master depending on Grandmaster Parameters described in section Grandmaster parameters.

If a port is not connected, Link status takes the value Down.

If a port is not capable of communicating a synchronized time, AS_Capable status takes the value No.

If a port is using the Common Mean Link Delay Service (CMLDS) the DelayMechanism takes the value COMMON_P2P, else the
value P2P.

For further details about gPTP logs, refer to section gPTP Endpoint.

4.2.4.3 gPTP multiple domains

This use case illustrates two gPTP domains co-existing independently on a TSN network, over different 802.1AS-2020
Time-aware systems.

The first domain uses the PTP timescale whereas the second domain uses the ARB (arbitrary) timescale.

4.2.4.3.1 Requirements

The reference setup for gPTP multiple domains is made of:

• Two gPTP endpoints (i.MX 8M Plus EVK): EP1-DUT and EP2-DUT

• One gPTP bridge (LS1028ARDB): BR-DUT
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Figure 30. gPTP multiple domains setup

4.2.4.3.2 gPTP Stack Configuration

The gPTP stack can enable or disable each domain independently through a configuration file.

The default configuration file (e.g.: /etc/genavb/fgptp.cfg) is for general gPTP parameters as well as domain 0 parameters.
To enable other domains, new files must be created with ‘-N’ appended to the filename(e.g.: /etc/genavb/fgptp.cfg-1 for
domain 1).

For gPTP multiple domains, all devices configuration should be changed to support two domains. The first domain (domain 0) must
be assigned domain number 0. The second domain (domain 1) is assigned domain number 20.

BR-DUT is defined as the GrandMaster for the first domain (domain 0). EP1-DUT is defined as the GrandMaster for the second
domain (domain 1).

On EP1-DUT, edit the file /etc/genavb/fgptp.cfg-1 and change domain_number and priority1 parameters as follows:

domain_number = 20
priority1 = 245

On EP2-DUT, edit the file /etc/genavb/fgptp.cfg-1 and change domain_number parameter as follows:

domain_number = 20

On BR-DUT, edit the file /etc/genavb/fgptp-br.cfg-1 and change domain_number parameter as follows:

domain_number = 20
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On Domain 0 BR-DUT is the GrandMaster with the highest priority (lowest value) among all devices in the domain
(BR-DUT priority1=246, EP1-DUT and EP2-DUT priority1=248)

On Domain 1 EP1-DUT is the GrandMaster with the highest priority (lowest value) among all devices in the domain
(BR-DUT priority1=246, EP1-DUT priority1=245 and EP2-DUT priority1=248)

By Default all ports on Domain 0 are configured to use the per instance peer delay
mechanism (DelayMechanism=P2P) and all ports on Domain 1 are configured to use the
CMLDS (DelayMechanism=COMMON_P2P)

  ATTENTION  

4.2.4.3.3 Evaluation instructions

Test Procedure

1. Start gPTP stack manually on all DUT's by issuing the command

# fgptp.sh start

2. Wait for 30s.

3. Check gPTP stack logs on BR-DUT (/var/log/fgptp-br), EP1-DUT and EP2-DUT (/var/log/fgptp)

Verification:

Check the following:

• After Step 3, the log on EP1-DUT reports Port 0 as synchronized on domain 0 only:

Port(0) domain(0, 0) SYNCHRONIZED – synchronization time (ms): 250

• After Step 3, the log on EP2-DUT reports Port 0 as synchronized on all domains :

Port(0) domain(0, 0) SYNCHRONIZED – synchronization time (ms): 250
Port(0) domain(1, 20) SYNCHRONIZED – synchronization time (ms): 250

• After Step 3, the log on BR-DUT reports Port 0 as synchronized on domain 1 only:

Port(0) domain(1, 20) SYNCHRONIZED – synchronization time (ms): 250

• The “Initial adjustment" message should be reported only once per synchronized domains (domain 0 for EP1-DUT and
EP2-DUT, domain 1 for EP2-DUT and BR-DUT):

domain(0,0) Initial Adjustment, offset: 125486471315484 ns, freq_adj: 32764

domain(1,20) Initial Adjustment, offset: 125455671332661 ns, freq_adj: 16384

Once synchronization is achieved, all the reported clock offset average values should be stable within -50 to +50 ns range
( domain 0 for EP1-DUT and EP2-DUT, domain 1 for EP2-DUT and BR-DUT):

domain(0,0) Offset between GM and local clock (ns): min -45 avg 0 max 35

domain(1,20) Offset between GM and local clock (ns): min -66 avg 0 max 15

4.2.4.4 AVB Bridge

This use case illustrates an AVB Bridge (mixing gPTP and SRP stack) with other AVB Endpoints
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4.2.4.4.1 Requirements

• Two AVB endpoints (not part of the release)

• One AVB bridge (LS1028ARDB)

Figure 31. AVB Bridge setup

4.2.4.4.2 AVB network configuration

This topic describes AVB configuration.

4.2.4.4.2.1 Priority to traffic class mapping

The priority to traffic class mapping used for the bridge comes directly from the recommended mapping for two SR classes in IEEE
Std 802.1Q-2018 Table 34-1:

Table 47. Priority to traffic class mapping

Priority 0 1 2 3 4 5 6 7

Traffic Class 1 0 6 7 2 3 4 5

The Bridge should be configured to forward VLAN tagged packets based on their PCP values according to this mapping, and
should configure credit-based shapers on the two highest traffic classes (traffic class 6 and traffic class 7) for SR class A (priority
3) and SR class B (priority 2) traffic.

Refer to Setup preparation for the bridge PCP mapping configuration.

4.2.4.4.2.2 FQTSS Credit Based Shapers configuration

The SRP bridge stack relies on preconfigured qdiscs with specific handles to configure the hardware's credit-based shapers, on
the two hardware queues with the two highest traffic classes, for every port. Thus, an mqprio qdisc with 8 traffic classes should

NXP Semiconductors
Real-time Networking

Real-time Edge Software User Guide, Rev. 2.1, 15-Dec-2021
User Guide 139 / 269



be configured with the above priority to traffic class mapping and credit-based shapers qdiscs with the following handles: 0x9006
for CBS on traffic class 6 and 0x9007 for CBS on traffic class 7.

Refer to Setup preparation for the bridge qdisc configuration.

4.2.4.4.2.3 Linux Best Effort Traffic classification

Linux classifies egress packets, for assignment to traffic classes, based on skb priorities. To avoid assigning egress best effort
traffic to traffic classes with configured credit-based shapers, the skb priorities should be rewritten so no packets with skb priorities
2 and 3 are present on egress. Furthermore, the bridge code is using the skb priority as the traffic class for packets injected from
the CPU port, making packets with skb priorities 6 and 7 end up in the hardware's traffic classes 6 and 7 on the external ports which
in turn harms traffic shaping. Again, forcing a remapping of these skb priorities avoids this scenario.

Refer to Setup preparation for the skb priorities remapping configuration.

4.2.4.4.2.4 Bridge VLAN awareness

A proper AVB bridge functioning requires that the switch forward AVB streams (with multicast destination MAC addresses and
specific VLAN ID) only to ports configured in the Forwarding DataBase (FDB). For that, we should enable VLAN filtering on bridge
level, add the desired VLAN ID to all ports and disable the default multicast flooding configuration (at least for the two highest
priority queues) on all the external ports.

Refer to Setup preparation for the bridge vlan configuration.

4.2.4.4.3 Setup preparation

To be done at each boot:

• Setup bridge forwarding:

# ip link set dev eno2 up
# ip link add name br0 type bridge
# ip link set br0 up
# ip link set master br0 swp0 up
# ip link set master br0 swp1 up
# ip link set master br0 swp2 up
# ip link set master br0 swp3 up

• Establish the PCP to QoS mapping for every port on the bridge:

# pcp_to_qos_map=([0]="1" [1]="0" [2]="6" [3]="7" [4]="2" [5]="3" [6]="4" [7]="5"); \
avb_ports="swp0 swp1 swp2 swp3"; \
for port in $avb_ports; do \
    for (( pcp=0; pcp < 8; ++pcp )); do \
    tsntool pcpmap -d $port -p $pcp -e 0 -c ${pcp_to_qos_map[$pcp]} -l 0; \
    tsntool pcpmap -d $port -p $pcp -e 1 -c ${pcp_to_qos_map[$pcp]} -l 1; \
    done ;\
done

• Configure the qdiscs and shapers, with the correct handles, for every external port:

# pcp_to_qos_map=([0]="1" [1]="0" [2]="6" [3]="7" [4]="2" [5]="3" [6]="4" [7]="5"); \
avb_ports="swp0 swp1 swp2 swp3"; \
for port in $avb_ports; do \
    tc qdisc add dev $port root handle 100: mqprio num_tc 8 map ${pcp_to_qos_map[@]} queues 1@0 
1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0 ; \
    tc qdisc replace dev $port handle 0x9007 parent 100:8 \
                           cbs locredit -2147483646 hicredit 2147483647 sendslope -1000000 
idleslope 0 offload 0 ; \
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    tc qdisc replace dev $port handle 0x9006 parent 100:7 \
                           cbs locredit -2147483646 hicredit 2147483647 sendslope -1000000 
idleslope 0 offload 0 ; \
done

 
The most important CBS parameters for every port device are:

— the parent, which should match the traffic class 6 and 7,

— and handle, which should be 0x9006 and 0x9007.

The other parameters are just initialization values and are overridden by the stack at runtime stream configuration:

— offload is set to 1 to offload the operation to hardware,

— idleslope and sendslope are set depending on stream,

— port bit rates and the credit values are kept at their min and max values as they do not directly affect the
hardware shaping operation.

  ATTENTION  

• Setup skb priorities remapping for every external ports:

# avb_ports="swp0 swp1 swp2 swp3"; \
for port in $avb_ports; do \
    tc qdisc add dev $port clsact; \
    tc filter add dev $port egress basic match 'meta(priority eq 2)' or 'meta(priority eq 3)' 
action skbedit priority 0; \
done

• Enable Vlan filtering, set the correct Vlan IDs and disable multicast flooding, for every external port:

# ip link set br0 type bridge vlan_filtering 1; \
avb_ports="swp0 swp1 swp2 swp3"; \
for port in $avb_ports; do \
    bridge vlan add dev $port vid 2 master; \
    bridge link set dev $port mcast_flood off; \
done

• Start the AVB and gPTP stacks:

# avb.sh start

4.2.4.4.4 Evaluation instructions

1. Reset all endpoints and the bridge.

2. Using the procedures described above, configure the bridge and start the stack on all connected devices (bridge
and endpoints)

3. After a few seconds, AVB endpoints should be synchronized through gPTP

4. Connect an SR class A (or SR class B) stream from EP-DUT2 as talker to EP-DUT1 as listener: the stream should be
forwarded correctly to the listener endpoint

4.2.4.4.4.1 gPTP Operation

If the gPTP protocol is running correctly on all devices, the following line should appear in the bridge gptp log file for every port
connected to a gPTP capable device:

gptp_stats_dump: Port(0) domain(0, 0): Role: Master   Link: Up   asCapable: Yes neighborGptpCapable: 
Yes DelayMechanism: P2P
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...
gptp_stats_dump: Port(1) domain(0, 0): Role: Master   Link: Up   asCapable: Yes neighborGptpCapable: 
Yes DelayMechanism: COMMON_P2P

Refer to , for more details on gPTP Bridge operation.

 
AVB endpoints can be configured to run at a fixed link speed of 100 Mbits/s and cause to have a pDelay > 800
ns making the port not asCapable. In that case, forcing the link speed at 1Gbits/s will make the pDelay under the
threshold and have a proper gPTP operation

  ATTENTION  

4.2.4.4.4.2 SRP Operation

A detailed view on the SRP protocol communications (Domain declaration, SRP port boundary, Talker/Listener declarations and
registration ...) can be followed by printing the SRP specific logs from the AVB bridge stack logfile /var/log/avb-br :

# tail -f /var/log/avb-br | grep srp

On stream connection, the FQTSS and FDB operation should be printed in the AVB bridge stack logfile:

• Stack log shows the FQTSS configuration for the port facing the AVB listener:

fqtss_set_oper_idle_slope : logical_port(2) port (swp0, ifindex 5) tc(7) 
cbs_qdisc_handle(9007:0): set idle_slope 7872000

• Stack log shows the FDB configuration for the port facing the AVB listener:

bridge_rtnetlink : add MDB: bridge (br0, ifindex 9) logical_port(2) port (swp0, ifindex 5) 
mac_addr(91:e0:f0:00:fe:11) vlan_id(2)

Also, the same configuration can be checked using the Linux standard tools (tc and bridge)

• TC tool shows the FQTSS configuration for the port facing the AVB listener:

# tc qdisc show dev swp0
qdisc mqprio 100: root  tc 8 map 1 0 6 7 2 3 4 5 0 0 0 0 0 0 0 0
             queues:(0:0) (1:1) (2:2) (3:3) (4:4) (5:5) (6:6) (7:7)
qdisc pfifo 0: parent 9006: limit 1000p
qdisc pfifo 0: parent 9007: limit 1000p
qdisc pfifo_fast 0: parent 100:6 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
qdisc pfifo_fast 0: parent 100:5 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
qdisc pfifo_fast 0: parent 100:4 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
qdisc pfifo_fast 0: parent 100:3 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
qdisc pfifo_fast 0: parent 100:2 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
qdisc pfifo_fast 0: parent 100:1 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
qdisc cbs 9006: parent 100:7 hicredit 2147483647 locredit -2147483646 sendslope -1000000 
idleslope 0 offload 0
qdisc cbs 9007: parent 100:8 hicredit 2147483647 locredit -2147483648 sendslope -992128 idleslope 
7872 offload 1

• Bridge tool shows the FDB configuration for the port facing the AVB listener:

# bridge mdb show
dev br0 port swp0 grp 91e0:f000:fe11:: permanent offload vid 2
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4.2.4.5 TSN endpoint sample application

4.2.4.5.1 Requirements

• Two TSN endpoints (i.MX 8M Plus EVK)

• One TSN bridge (LS1028ARDB)

 
The second IO Device is optional.

  NOTE  

Figure 32. TSN endpoint sample application setup

4.2.4.5.2 Configuring GenAVB/TSN stack and example applications

The change from one configuration to another is made by modifying the /etc/genavb/config file. This file specifies a pair of
configuration files:

1. APPS_CFG_FILE (apps-*.cfg) points to a file containing a demo configuration (application to use, options...). It is parsed
by the startup script avb.sh

2. GENAVB_CFG_FILE (genavb-*.cfg) points to a file containing the configuration of the GenAVB/TSN stack and is parsed
by the stack.

A configuration profile is made of a pair of cfg files. The file /etc/genavb/config already groups the cfg files by pairs. Set the
PROFILE variable to choose the desired configuration profile.

4.2.4.5.3 TSN network configuration

This topic describes TSN configuration.
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4.2.4.5.3.1 Streams

The stream details can be used for analysis and also for computing scheduled traffic timings.

Table 48. TSN streams definition

Stream No Source Destination Unicast/
Multicast

Destination
MAC Address Vlan ID Vlan PCP

Frame
Length1

(bytes)

Stream1 Controller IO device(s) Multicast 91:e0:f0:00:fe
:70 2 5 84

Stream2 IO device 1 Controller Multicast 91:e0:f0:00:fe
:71 2 5 84

Stream3 IO device 2 Controller Multicast 91:e0:f0:00:fe
:80 2 5 84

1. The frame length includes inter frame gap, preamble, start of frame and CRC (can be used as is for timing calculations)

4.2.4.5.3.2 Scheduled traffic

For deterministic packet transmission the use of scheduled traffic is required both on endpoints and bridges.

The default scheduling configuration for the TSN endpoint example application, as shown in Figure 29, leads to the following
traffic schedules.

4.2.4.5.3.2.1 Endpoints
Endpoints are running a schedule with a 2000us period. The base offset of the schedule is aligned to gPTP time modulo 1 second.

Controller transmit gate (for Stream1) opens at 500us offset (relative to the period start).

IO device transmit gate (for Stream2/3) opens at 1000us + 500us offset (relative to the period start).

The gate open interval is around 4us (enough to accommodate the stream frame length plus some margin).

The 500us offset is related to the worst case application latency to send its frame to its peer(s). This value provides a good margin
for a Linux PREEMPT-RT system but can be lowered on a well-tuned system.

4.2.4.5.3.2.2 Bridges
The schedule for all Bridges and all Bridge ports that transmit one of the streams above, must have a 2000 μs period and a base
offset aligned to gPTP time modulo 1 second.

One possible schedule is to open transmit gate (for the ports and queues transmitting Stream 1) at offset 500 μs and use a gate
open interval that accommodates the worst propagation delay.

It is also possible to use a fixed gate open interval but increase the transmit time offset at each hop along the stream path.

For ports and queues transmitting Stream 2 and 3, open the transmit gate at offset 1000 + 500 μs.

4.2.4.5.4 Setup preparation

One of the TSN endpoint needs to be configured as “controller” and the other one as “IO device”. Both endpoints are connected
to the TSN bridge.

4.2.4.5.4.1 Preparing the controller

To be done once:
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1. Edit the GenAVB configuration file using the following command at the Linux prompt:

# vi /etc/genavb/config

2. Set the configuration profile to PROFILE 1:

PROFILE=1

3. Exit and save.

To be done at each boot:

1. Disable Pause frames:

# ethtool -A eth1 autoneg off rx off tx off

2. Enable reception of packets on VLAN 2 (VLAN hardware filtering is enabled by default on recent kernels):

# ip link add link eth1 type vlan id 2

3. Enable threaded NAPI and fine-tune the CPU core affinities of the NAPI kthreads:

# echo 1 > /sys/class/net/eth1/threaded
# taskset -p 2 `pgrep irq/61-eth1`
# chrt -pf 66 `pgrep irq/61-eth1`

# taskset -p 4 `pgrep napi/eth1-rx-1`
# chrt -pf 61 `pgrep napi/eth1-rx-1`
# taskset -p 4 `pgrep napi/eth1-tx-1`
# chrt -pf 61 `pgrep napi/eth1-tx-1`
# taskset -p 4 `pgrep napi/eth1-zc-1`
# chrt -pf 60 `pgrep napi/eth1-zc-1`

# taskset -p 2 `pgrep napi/eth1-rx-0`
# chrt -pf 1 `pgrep napi/eth1-rx-0`
# taskset -p 2 `pgrep napi/eth1-tx-2`
# chrt -pf 1 `pgrep napi/eth1-tx-2`

# taskset -p 8 `pgrep napi/eth1-tx-0`
# taskset -p 8 `pgrep napi/eth1-rx-2`
# taskset -p 8 `pgrep napi/eth1-rx-3`
# taskset -p 8 `pgrep napi/eth1-rx-4`
# taskset -p 8 `pgrep napi/eth1-zc-0`
# taskset -p 8 `pgrep napi/eth1-zc-2`
# taskset -p 8 `pgrep napi/eth1-zc-3`
# taskset -p 8 `pgrep napi/eth1-zc-4`

4. Start the tsn-app application:

# avb.sh start

5. Disable interrupt coalescing (this steps and the following ones may be done before or after starting tsn-app):

# ethtool -C eth1 rx-usecs 16 tx-usecs 0 tx-frames 1

6. Setup scheduled traffic using tc:

# tc qdisc add dev eth1 parent root handle 100 taprio \
num_tc 3 \
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map 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 \
queues 1@0 1@1 1@2 \
base-time 000500000 \
sched-entry S 0x2 4000 \
sched-entry S 0x5 1996000 \
flags 0x2

7. Setup Rx hardware classification to place tsn-app traffic in queue 1:

# modprobe cls_flower
# tc qdisc add dev eth1 ingress
# tc filter add dev eth1 parent ffff: protocol 802.1Q flower \
vlan_prio 5 \
hw_tc 1

4.2.4.5.4.2 Preparing IO device(s)

To be done once:

1. Edit the GenAVB configuration file using the following command at the Linux prompt:

# vi /etc/genavb/config

2. Set the configuration profile to PROFILE 2:

PROFILE=2

3. Exit and save.

To be done at each boot:

1. Disable Pause frames:

# ethtool -A eth1 autoneg off rx off tx off

2. Enable reception of packets on VLAN 2 (VLAN hardware filtering is enabled by default on recent kernels):

# ip link add link eth1 type vlan id 2

3. Enable threaded NAPI and fine-tune the CPU core affinities of the NAPI kthreads:

# echo 1 > /sys/class/net/eth1/threaded
# taskset -p 2 `pgrep irq/61-eth1`
# chrt -pf 66 `pgrep irq/61-eth1`

# taskset -p 4 `pgrep napi/eth1-rx-1`
# chrt -pf 61 `pgrep napi/eth1-rx-1`
# taskset -p 4 `pgrep napi/eth1-tx-1`
# chrt -pf 61 `pgrep napi/eth1-tx-1`
# taskset -p 4 `pgrep napi/eth1-zc-1`
# chrt -pf 60 `pgrep napi/eth1-zc-1`

# taskset -p 2 `pgrep napi/eth1-rx-0`
# chrt -pf 1 `pgrep napi/eth1-rx-0`
# taskset -p 2 `pgrep napi/eth1-tx-2`
# chrt -pf 1 `pgrep napi/eth1-tx-2`

# taskset -p 8 `pgrep napi/eth1-tx-0`
# taskset -p 8 `pgrep napi/eth1-rx-2`
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# taskset -p 8 `pgrep napi/eth1-rx-3`
# taskset -p 8 `pgrep napi/eth1-rx-4`
# taskset -p 8 `pgrep napi/eth1-zc-0`
# taskset -p 8 `pgrep napi/eth1-zc-2`
# taskset -p 8 `pgrep napi/eth1-zc-3`
# taskset -p 8 `pgrep napi/eth1-zc-4`

4. Start the tsn-app application:

# avb.sh start

5. Disable interrupt coalescing (this steps and the following ones may be done before or after starting tsn-app):

# ethtool -C eth1 rx-usecs 16 tx-usecs 0 tx-frames 1

6. Setup scheduled traffic using tc:

# tc qdisc add dev eth1 parent root handle 100 taprio \
num_tc 3 \
map 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 \
queues 1@0 1@1 1@2 \
base-time 001500000 \
sched-entry S 0x2 4000 \
sched-entry S 0x5 1996000 \
flags 0x2

7. Setup Rx hardware classification to place tsn-app traffic in queue 1:

# modprobe cls_flower
# tc qdisc add dev eth1 ingress
# tc filter add dev eth1 parent ffff: protocol 802.1Q flower \
vlan_prio 5 \
hw_tc 1

4.2.4.5.4.3 Preparing the Bridge

Refer to section TSN configuration and Tc-taprio usage to configure scheduled traffic on the LS1028ARDB board.

The schedule described in section Bridges should be followed.

The below steps should be done at each boot:

1. Setup bridge forwarding:

# ip link set dev eno2 up
# ip link add name br0 type bridge
# ip link set br0 up
# ip link set master br0 swp0 up
# ip link set master br0 swp1 up
# ip link set master br0 swp2 up
# ip link set master br0 swp3 up

2. Disable Pause frames:

# ethtool -A swp0 autoneg off rx off tx off
# ethtool -A swp1 autoneg off rx off tx off
# ethtool -A swp2 autoneg off rx off tx off
# ethtool -A swp3 autoneg off rx off tx off
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3. Start the gPTP stack:

# fgptp.sh start

4. Setup scheduled traffic (see above)

# tc qdisc del dev swp0 root
# tc qdisc del dev swp1 root
# tc qdisc del dev swp2 root

# tc qdisc replace dev swp0 root taprio \
        num_tc 8 \
        map 0 1 2 3 4 5 6 7 \
        queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
        base-time 1500000 \
        sched-entry S 0x20 20000 \
        sched-entry S 0xdf 1980000 \
        flags 0x2

# tc qdisc replace dev swp1 root taprio \
        num_tc 8 \
        map 0 1 2 3 4 5 6 7 \
        queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
        base-time 500000 \
        sched-entry S 0x20 20000 \
        sched-entry S 0xdf 1980000 \
        flags 0x2

# tc qdisc replace dev swp2 root taprio \
        num_tc 8 \
        map 0 1 2 3 4 5 6 7 \
        queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
        base-time 500000 \
        sched-entry S 0x20 20000 \
        sched-entry S 0xdf 1980000 \
        flags 0x2

4.2.4.5.4.4 Preparing the OPC UA client

In order to visualize the data exposed by the TSN endpoint application OPC UA server it is required to use an OPC UA client on
a PC connected to the bridge.

1. Install an OPC UA client on a PC:

a. FreeOpcUa: client with a Qt GUI interface.

Can be found here: http://freeopcua.github.io/

b. opcua-commander: CLI alternative based nodejs node-opcua stack. Can be found here:

https://github.com/node-opcua/opcua-commander

2. Connect the PC to the bridge. If not already done, setup IP addresses on the endpoint running the TSN example
application and also on the PC. Then, make sure you can successfully ping the endpoint using the PC.

4.2.4.5.5 Evaluation instructions

1. Reset all endpoints.

2. Using the procedures described above, start the gPTP stack on the bridge, and the tsn-app application on the
endpoints.
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3. Enable scheduled traffic on the endpoints (and the bridge) with the configuration(s) described above.

4. After a few seconds, TSN endpoints should be synchronized through gPTP and exchanging packets at the rate of 500
packets per second (pps). In order to observe this behavior, logs should be checked.

4.2.4.5.5.1 gPTP operation

If the gPTP protocol is running correctly on an endpoint or on the bridge, the following line should appear in the gptp log file (refer
to gPTP Endpoint for more details):

gptp_stats_dump: Port(0) domain(0,0) : Role: Slave Link : Up AS_Capable: Yes DelayMechanism: P2P

If the device is grand master, the role field should be “Master” otherwise it should be “Slave”. The line appears periodically, but
the role should not change over time, except for significant events (such as a cable disconnection).

4.2.4.5.5.2 Baseline tsn-app operation

If the TSN endpoint sample application is running correctly and receiving valid packets, the following points may be verified in the
tsn_app log file (refer to TSN Endpoint example application for more details).

The following line should appear at regular intervals:

socket_stats_print : link up

The "valid frames" counter should increment by 2500 (500 pps for 5 seconds) between two appearances of the following log:

socket_stats_print : valid frames : XXXXX

The various error counters should not increment (it is normal to have non-zero values, because of the startup period when gPTP
and/or the remote tsn-app endpoint may not be running and stable):

• "sched early", "sched late", "sched missed", "sched timeout", "sched discont", "clock err"

• "err id", "err ts", "err underflow"

• "frames err" (for both RX and TX directions)

 
The checks above apply to all tsn-app endpoints, whether they be the controller or one of the IO devices.

  [other]  

4.2.4.5.5.3 Scheduled traffic evaluation with no concurrent traffic

The observations below assume an otherwise idle system receiving and sending traffic only through the tsn-app application, with
a 802.1Qbv schedule in place on all devices (tsn-app endpoints, bridge).

Scheduling error statistics ("sched err") should respect the following:

• min around 8µs

• avg around 11µs

• max around 25µs

stats(0xaaab06ed74b0) sched err min 8817 mean 11120 max 22077 rms^2 125202075 stddev^2 1544829 absmin 
7417 absmax 1882057

Processing time statistics ("processing time") should respect the following:

• min around 23µs

• avg around 29µs
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• max around 70µs

stats(0xaaab06ed7910) processing time min 23400 mean 29185 max 59100 rms^2 857707540 stddev^2 5943315 
absmin 19560 absmax 4143240

Traffic latency statistics should respect the following:

• min around 503µs

• avg around 503µs

• max around 503µs

• stddev^2 less than 3000

stats(0x419a28) traffic latency min 503417 mean 503503 max 503637 rms^2 253515981945 stddev^2 2004 
absmin 503397 absmax 504337

4.2.4.5.5.4 Scheduled traffic evaluation with TX best-effort traffic

1. Connect a PC to the 4th port of the LS1028ARDB switch (swp3).

2. Run iperf3 in server mode on the PC (replace ethX by the PC interface connected to the LS1028):

# ifconfig ethX 192.168.1.10 up 
# iperf3 -s &
# iperf3 -s -p 5202 &
# iperf3 -s -p 5203 &
# iperf3 -s -p 5204 &

3. Run iperf3 in client mode on the controller:

# ifconfig eth1 192.168.1.80
# taskset 1 iperf3 -c 192.168.1.10 -u -b 900m -i 2 -t 100 &
# taskset 2 iperf3 -p 5202 -c 192.168.1.10 -u -b 0 -i 2 -t 100 &
# taskset 4 iperf3 -p 5203 -c 192.168.1.10 -u -b 0 -i 2 -t 100 &
# taskset 8 iperf3 -p 5204 -c 192.168.1.10 -u -b 0 -i 2 -t 100 &

4. Observe stats in the tsn-app log files (a 2nd terminal may have to be opened through SSH). The values should match the
table below (in µs):

min mean max stddev^2

Sched err (controller) 21 29 41

Processing
time (controller)

47 80 260

Traffic latency
(controller and
IO device)

503 503 503 <3000
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4.2.4.5.5.5 Scheduled traffic evaluation with RX best-effort traffic

 
By default, the tsn-app traffic is processed in the same queue as best-effort untagged traffic. To more easily validate
tsn-app with best-effort traffic, we should add a VLAN tag with PCP=0 to best-effort packets so they are dispatched
into a different queue on receive.

  [other]  

1. Connect a PC to the 4th port of the LS1028ARDB switch (swp3).

2. Run iperf3 in server mode on the controller:

# ip link add link eth1 name eth1.5 type vlan id 5
# ifconfig eth1.5 192.168.5.80 up
# iperf3 -s

3. Run iperf3 in client mode on the PC (replace ethX by the PC interface connected to the LS1028):

# ip link add link ethX name ethX.5 type vlan id 5
# ifconfig ethX.5 192.168.5.10 up
# iperf3 -c 192.168.5.80 -u -b 0 -l 64 -i2 -t 100 

4. Observe stats in the tsn-app log file (a 2nd terminal may have to be opened through SSH). The values should match the
table below (in µs):

min mean max stddev^2

Sched err (controller) 9 13 26

Processing
time (controller)

25 33 70

Traffic latency
(controller and
IO device)

503 503 503 <130000

4.2.4.5.5.6 Experimental: enable AF_XDP sockets in TSN sample application

A new experimental feature makes it possible to use AF_XDP sockets with the Linux tsn-app application, to take advantage of
the lower latency offered by the AF_XDP path. The steps below describe how to reconfigure an i.MX8MPlus EVK board to use
AF_XDP sockets.

1. Stop the application if it was already running:

# avb.sh stop

2. Edit the application configuration file:

# vi /etc/genavb/apps-tsn-network-controller.cfg

3. To enable AF_XDP mode, replace the line:

CFG_EXTERNAL_MEDIA_APP_OPT="-m network_only -r controller"
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With:

CFG_EXTERNAL_MEDIA_APP_OPT="-m network_only -r controller -x"

4. Attach the XDP program to the eth1 interface (this step can be done at any time, even if the TSN sample application is still
running with its default configuration, as long as it is done before restarting it in AF_XDP mode):

# ip l set dev eth1 xdp obj /lib/firmware/genavb/genavb-xdp.bin

5. Restart the tsn-app application in AF_XDP mode:

# avb.sh start

After that, the evaluation can follow the various use cases described previously with the default configuration: baseline operation,
scheduled traffic evaluation with or without best-effort traffic... Statistics should be similar to or better than the default configuration,
except for traffic latencies: because AF_XDP currently cannot provide packet timestamps, traffic latencies will display bogus
values that should be ignored. The tables below summarize typical values (in µs).

Table 49. Timing statistics without any concurrent traffic

min mean max

Sched err (controller) 9 12 24

Processing time (controller) 11 15 28

Total time (controller) 20 27 44

Table 50. Timing statistics with Tx best-effort traffic

min mean max

Sched err (controller) 18 25 51

Processing time (controller) 21 26 52

Total time (controller) 42 51 108

Table 51. Timing statistics with Rx best-effort traffic

min mean max

Sched err (controller) 7 9 34

Processing time (controller) 8 11 25

Total time (controller) 15 21 55

4.2.4.5.5.7 Experimental: modify the scheduling period of the TSN sample application

The default tsn-app period of 2 ms can be changed through a command-line option. The change has to be made on all endpoints
(controller and devices). The 802.1 Qbv schedule should also be updated to reflect the new period. The example below shows
how to modify the period from the default 2 ms down to 500 µs.

On the controller:
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1. Stop the application if it was already running:

# avb.sh stop

2. Edit the application configuration file:

# vi /etc/genavb/apps-tsn-network-controller.cfg

or for an IO device:

# vi /etc/genavb/apps-tsn-network-iodevice.cfg

3. Use the "-p" option to change the period. The below example sets the period to 500 µs (500000 ns):

CFG_EXTERNAL_MEDIA_APP_OPT="-m network_only -r controller -p 500000"

4. Update the traffic schedule using 'tc' command:

# tc qdisc del dev eth1 root
# tc qdisc replace dev eth1 root taprio \
num_tc 3 \
map 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 \
queues 1@0 1@1 1@2 \
base-time 125000 \
sched-entry S 0x2 4000 \ 
sched-entry S 0x5 496000 \
flags 0x2

5. Restart the tsn-app application:

# avb.sh start

On the IO device(s):

1. Stop the application if it was already running:

# avb.sh stop

2. Edit the application configuration file:

# vi /etc/genavb/apps-tsn-network-iodevice.cfg

3. Use the "-p" option to change the period. The below example sets the period to 500 µs (500000 ns):

CFG_EXTERNAL_MEDIA_APP_OPT="-m network_only -r iodevice_N -p 500000"

4. Update the traffic schedule using tc:

# tc qdisc del dev eth1 root
# tc qdisc replace dev eth1 root taprio \
num_tc 3 \
map 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 \
queues 1@0 1@1 1@2 \
base-time 375000 \
sched-entry S 0x2 4000 \ 
sched-entry S 0x5 496000 \
flags 0x2
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5. Restart the tsn-app application:

# avb.sh start

On the bridge, update the Qbv schedule on all ports:

# tc qdisc del dev swp0 root
# tc qdisc del dev swp1 root
# tc qdisc del dev swp2 root

# tc qdisc replace dev swp0 root taprio \
        num_tc 8 \
        map 0 1 2 3 4 5 6 7 \
        queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
        base-time 375000 \
        sched-entry S 0x20 20000 \
        sched-entry S 0xdf 480000 \
        flags 0x2

# tc qdisc replace dev swp1 root taprio \
        num_tc 8 \
        map 0 1 2 3 4 5 6 7 \
        queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
        base-time 125000 \
        sched-entry S 0x20 20000 \
        sched-entry S 0xdf 480000 \
        flags 0x2

# tc qdisc replace dev swp2 root taprio \
        num_tc 8 \
        map 0 1 2 3 4 5 6 7 \
        queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
        base-time 125000 \
        sched-entry S 0x20 20000 \
        sched-entry S 0xdf 480000 \
        flags 0x2

After that, the evaluation can follow the various use cases described previously with the default configuration: baseline operation,
scheduled traffic evaluation with or without best-effort traffic.

 
An arbitrary low period might run into the scheduling limits of the systems, and result in errors in the tsn-app logs,
as the systems may no longer be able to keep up with the requested pace.

  NOTE  

4.2.4.5.5.8 OPC UA server evaluation

The OPC UA server address is in this format : opc.tcp://<endpoint IP address>:4840/

Once connected, the server objects can be browsed and accessed. The same statistics described in the TSN example application
logs are available as OPC UA objects. The OPC UA server traffic is classified as best effort and doesn't affect the time
sensitive traffic.

See below screenshot using FreeOPCUA GUI client:
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Figure 33. FreeOPCUA GUI client

4.2.5 Configuration files

4.2.5.1 System

The system configuration file, located in /etc/genavb/system.cfg, lists system network interface names and PTP hardware
clock device names. The default values are used if the configuration file or the option key are missing. The values in the installed
file may also required to be updated to match the system configuration.

This section lists network interface names.

Currently endpoint package supports a single endpoint and bridge package a single bridge (with up to 5 ports).

Table 52. Logical ports

Name Key Default value Description

Endpoint interface endpoint eth0

Endpoint network interface
name. Only valid for endpoint
package, otherwise should be
set to “off”

Bridge 0 interfaces bridge_0

SJA1105P_p0,
SJA1105P_p1,
SJA1105P_p2,
SJA1105P_p3,
SJA1105P_p4*

Bridge 0 network interface
names (comma separated).
Only valid for bridge package,
otherwise should be set to “off”

This section lists clock device names.
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Clocks names are either a PHC device name or a generic software clock (sw_clock). Local clock points to a PHC device, target
clocks point to either:

• The same PHC device as local clock (gPTP time is reflected in the local clock)

• A generic software clock (in which case gPTP time is not reflected in the local clock).

Table 53. Clock

Name Key Default value Description

Endpoint gPTP domain 0
target clock endpoint_gptp_0 /dev/ptp0

Endpoint clock for gPTP
domain 0 target clock. Only
valid for endpoint package.

Endpoint gPTP domain 1
target clock endpoint_gptp_1 sw_clock

Endpoint clock for gPTP
domain 1 target clock. Only
valid for endpoint package.

Endpoint local clock endpoint_local /dev/ptp0
Endpoint clock for the
local clock. Only valid for
endpoint package.

Bridge gPTP domain 0
target clock bridge_gptp_0 sw_clock

Bridge clock for gPTP domain
0 target clock. Only valid for
bridge package.

Bridge gPTP domain 1
target clock bridge_gptp_1 sw_clock

Bridge clock for gPTP domain
1 target clock. Only valid for
bridge package.

Bridge local clock bridge_local /dev/ptp1 Bridge clock for the local clock.
Only valid for bridge package.

4.2.5.2 gPTP

The gPTP general parameters as well as default domain (domain 0) parameters are defined in the following configuration files
depending on the package used:

• Endpoint package: /etc/genavb/fgptp.cfg

• Bridge package: /etc/genavb/fgptp-br.cfg

To enable other domains, new configuration files must be created with the associated domain instance appended to the
configuration file name e.g.:

• Endpoint package, domain 1: /etc/genavb/fgptp.cfg-1

• Bridge package, domain 1: /etc/genavb/fgptp-br.cfg-1

 
By default the GenAVB/TSN gPTP stack is packaged with the general parameters configuration file (fgptp.cfg
or fgptp-br.cfg) and a reference configuration for domain 1 (fgptp.cfg-1 or fgptp-br.cfg-1)

  ATTENTION  

4.2.5.2.1 General

Profile

The gPTP stack can operate in two different modes known as 'standard' or 'automotive' profiles.
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When the 'standard' profile is selected, the gPTP stack operates following the specifications described in IEEE 802.1AS.
When the 'automotive' profile is selected, the gPTP stack operates following the specifications described in the AVnu
AutoCDSFunctionalSpec_1.4 which is a subset of the IEEE 802.1AS standard optimized for automotive applications. IEEE
802.1AS-2020 features are not available in 'automotive' profile (e.g. Multiple domains).

The automotive environment is unique in that it is a closed system. Every network device is known prior to startup and devices do
not enter or leave the network, except in the case of failures. Because of the closed nature of the automotive network, it is possible
to simplify and improve gPTP startup performance. Specifically, functions like election of a grand master and calculations of wire
delays are tasks that can be optimized for a closed system.

Reverse sync feature control

The Reverse Sync feature (Avnu specification) should be used for test/evaluation purpose only. Usually, to measure the accuracy
of the clock synchronization, the traditional approach is to use a 1 Pulse Per Second (1PPS) physical output. While this is a
good approach, there may be cases where using a 1PPS output is not feasible. More flexible and fully relying on software
implementation the Reverse Sync feature serves the same objective using the standard gPTP Sync/Follow-Up messages to relay
the timing information, from the Slave back to the GM.

Neighbor propagation delay threshold

The parameter neighborPropDelayThresh defines the propagation time threshold, above which a port is not considered
capable of participating in the IEEE 802.1AS protocol (see IEEE 802.1AS-2020 - 11.2.2 Determination of asCapable and
asCapableAcrossDomains). If a computed neighborPropDelay exceeds neighborPropDelayThresh, then asCapable is set to
FALSE for the port. This setting does not apply to Automotive profile where a link is always considered to be capable or running
IEEE 802.1AS.

IEEE 802.1AS-2011 Compatibility

The parameter force_2011 defines if the gPTP Stack operates following the IEEE 802.1AS-2011 standard, i.e. disabling the
IEEE 802.1AS-2020 specifics features such as Multiple Domain support. The use of this option may, in some cases, improve
compatibility with gPTP equipment not supporting IEEE 802.1AS-2020 standard.

General configuration parameters1

Table 54. General parameters

Name Key Default value Range Description

Profile profile “standard” "standard" or
"automotive"

Set fgptp main profile.
"standard" - IEEE 802.1AS
specs, "automotive" - AVnu
automotive profile

Grandmaster ID gm_id "0x0001f2fffe0025fe" 64bits EUI
format

Set static grandmaster ID in
host order (used by automotive
profile, ignored in case of
standard profile)

Domains domain_number
0: for default domain

-1: for domains different
from 0

-1 to 127
Disable (-1) or assign a
gPTP domain number to a
domain instance.

802.1AS-2011 mode force_2011 no "no" or "yes"

Set to "yes" to force
802.1AS-2011 standard. "no"
to enable 802.1AS-2020
full support.

Table continues on the next page...
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Table 54. General parameters (continued)

Name Key Default value Range Description

Log output level log_level info crit, err, init,
info, or dbg

Set this configuration to dbg to
enable debug mode

Reverse sync
feature control reverse_sync 0 0 or 1 Set to 1 to enable reverse sync

transmit on slave side

Reverse sync
feature interval reverse_sync_interval 112 32 to 10000 Reverse sync transmit interval

in ms units

Neighbor
propagation

delay threshold
neighborPropDelayThresh 800 32 to

10000000
Neighbor propagation delay
threshold expressed in ns

Statistics
output interval statsInterval 10 0 to 255

Statistics output interval
expressed in seconds. Use 0 to
disable statistics

1. For domain instances other than 0, only domain_number is configurable in this section.

4.2.5.2.2 Grandmaster parameters

This section defines the native Grand Master capabilities of a time-aware system (see IEEE 802.1AS-2020 - 8.6.2 PTP Instance
attributes). Grand Master capabilities parameters are defined in the main configuration file for gPTP domain 0 (e.g. fgptp.cfg) and
in the additional per domain configuration files for other domains (e.g. fgptp.cfg-1).

gmCapable defines if the time-aware system is capable of being a grandmaster. By default gmCapable is set to 1 as in standard
profile operation the Grand Master is elected dynamically by the BMCA. In case of automotive profile gmCapable must be set on
each AED node to match the required network topology (i.e. within a given gPTP domain only one node must have its gmCapable
property set to 1).

priority1, priority2, clockClass, clockAccuracy and offsetScaledLogVariance are parameters used by the Best Master Clock
algorithm to determine which of the Grand Master capable node within the gPTP domain has the highest priority/quality. Note that
the lowest value for these parameters matches the highest priority/quality.

Grandmaster capabilities parameters1

Table 55. Grandmaster parameters

Name Key Default value Range Description

Grandmaster
capable setting gmCapable 1 0 or 1

Set to 1 if the device
has grandmaster capability.
Ignored in automotive profile
if the port is SLAVE.

Grandmaster
priority1 value priority1 248 for AED-E and

246 for AED-B 0 to 255 Set the priority1 value of
this clock

Grandmaster
priority2 value priority2 248 0 to 255 Set the priority2 value of

this clock

Table continues on the next page...
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Table 55. Grandmaster parameters (continued)

Name Key Default value Range Description

Grandmaster clock
class value clockClass 248 0 to 255 Set the class value of

this clock

Grandmaster clock
accuracy value clockAccuracy 0xfe 0x0 to 0xff Set the accuracy value of

this clock

Grandmaster
variance value offsetScaledLogVariance 17258 0x0 to 0xffff Set the offset scaled log

variance value of this clock

1. The parameters in this section are configurable for all supported domains.

4.2.5.2.3 Automotive parameters

The static pdelay feature is used only if the gPTP stack operates in automotive profile configuration.

At init time the gPTP stack's configuration file is parsed and based on neighborPropDelay_mode the specified
initial_neighborPropDelay is applied to all ports and used for synchronization until a pdelay response from the peer is received.
This is done only if no previously stored pdelay is available from the nvram database specified by nvram_file. As soon as a pdelay
response from the peer is received the 'real' pdelay value is computed, and used for current synchronization. An indication may
then be sent via callback up to the OS-dependent layer. Upon new indication the Host may update its nvram database and the
stored value will be used at next restart for the corresponding port instead of the initial_neighborPropDelay. The granularity at
which pdelay change indications are sent to the Host is defined by the neighborPropDelay_sensitivity parameter.

In the gPTP configuration file the neighborPropDelay_mode parameter is set to 'static' by default, meaning that a predefined
propagation delay is used as described above while pdelay requests are still sent to the network.

The 'silent' mode behaves the same way as the 'static' mode except that pdelay requests are never sent at all to the network.

Optionally the neighborPropDelay_mode parameter can be set to standard forcing the stack to operate propagation delay
measurements as specified in the 802.1AS specifications even if the automotive profile is selected.

(see AutoCDSFunctionalSpec-1_4 - 6.2.2 Persistent gPTP Values)

Table 56. Automotive parameters

Name Key Default value Value & Range Description

Pdelay mode neighborPropDelay_mode static 'static', 'silent'
or 'standard'

Defines pdelay
mechanism used

Static pdelay
value initial_neighborPropDelay 250 0 to 10000 Predefined pdelay value applied

to all ports. Expressed in ns.

Static pdelay
sensitivity neighborPropDelay_sensitivity 10 0 to 1000

Amount of ns between two
pdelay measurements required
to trigger a change indication.
Expressed in ns.

Nvram file
name nvram_file /etc/genavb/

fgptp.nvram Path and nvram file name.
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4.2.5.2.4 Timing

Pdelay requests and Sync messages sending intervals have a direct impact on the system synchronization performance. To
reduce synchronization time while optimizing overall system load, two levels of intervals are defined. The first level called 'Initial',
defines the messages intervals used until pdelay values have stabilized and synchronization is achieved. The second level called
'Operational', defines the messages intervals used once the system is synchronized.

initialLogPdelayReqInterval and operLogPdelayReqInterval define the intervals between the sending of successive Pdelay_Req
messages. initialLogSyncInterval and operLogSyncInterval define the intervals between the sending of successive Sync
messages. initialLogAnnounceInterval defines the interval between the sending of successive Announce messages

(see AutoCDSFunctionalSpec-1_4 - 6.2.1 Static gPTP Values, IEC-60802 section 5, 802.1AS-2020 sections 10.7 and 11.5)

Table 57. Timing parameters

Name Key Default value Value and
Range Description

Initial pdelay request
interval value initialLogPdelayReqInterval 0 0 to 3

Set pdelay request initial
interval between the sending
of successive Pdelay_Req
messages. Expressed in log2
unit (default 0 -> 1s).

Initial sync
interval value initialLogSyncInterval -3 -5 to 0

Set sync transmit initial interval
between the sending of
successive Sync messages.
Expressed in log2 unit (default
-3-> 125ms).

Initial announce
interval value initialLogAnnounceInterval 0 0 to 3

Set initial announce transmit
interval between the sending
of successive Announce
messages. Expressed in log2
unit (default 0 -> 1s).

Operational pdelay
request interval value operLogPdelayReqInterval 0 0 to 3

Set pdelay request transmit
interval used during normal
operation state. Expressed in
log2 unit (default 0 -> 1s).

Operational sync
interval value operLogSyncInterval -3 -5 to 0

Set sync transmit interval used
during normal operation state.
Expressed in log2 unit (default
-3 -> 125ms).

4.2.5.2.5 PORTn

This section describes the settings per port where n represents the port index starting at n=1
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Table 58. Port related parameters

Name Key Default value Value & Range Description

Port role portRole disabled 'slave', 'master', 'disabled'
Static port role (ref. 802.1AS-2011,
section 14.6.3, Table 10-1), applies to
"automotive" profile only.

Ptp port
enabled ptpPortEnabled 1 0 or 1

Set to 1 if both time-synchronization
and best master selection functions
of the port should be used
(ref. 802.1AS-2011, sections 14.6.4
and 10.2.4.12).

Rx timestamp
compensation rxDelayCompensation 0

min=-100000

max=100000

(in ns units)

Compensation delay substracted from
receive timestamps.

Tx timestamp
compensation txDelayCompensation 0

min=-100000

max=100000

(in ns units)

Compensation delay added to
transmit timestamps.

Delay
Mechanism delayMechanism P2P 'P2P' or 'COMMON_P2P'

Must be set to COMMON_P2P for all
domains others than Domain 0. For
Domain 0 the value can be either P2P
or COMMON_P2P.

4.2.5.3 SRP

The SRP parameters are defined in the following configuration files, depending on the package used:

• Endpoint: /etc/genavb/srp.cfg

• Bridge: /etc/genavb/srp-br.cfg

The default values are used if the configuration file or the option key are missing. The values in the installed file may also required
an update to match the system configuration.

This section lists general SRP stack component parameters.

Table 59. SRP General

Name Key Default value Range Description

Log output level log_level info crit, err, init, info, or dbg Log level for the SRP
stack component.

This section lists MSRP parameters.

Table 60. MSRP

Name Key Default value Range Description

Enabled enabled 1 0-disabled, 1-enabled Enable/disable MSRP
at runtime.
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4.2.6 Log files
Several log files are available at runtime to monitor the different stack components.

4.2.6.1 gPTP Endpoint

Logs are stored in /var/log/fgptp.

• Linux command:

# tail –f /var/log/fgptp

• If the stack is configured in automotive mode, then the log contains:

Running fgptp in automotive profile on interface eth0

• Port Role, Port AS-capability and link Status are reported each time there is a change in the link state (link is 802.1AS
capable or not) or upon Grand Master (GM) change. This information is also displayed regularly along with current
synchronization and pdelay statistics for each of the enabled gPTP domain:

Port(0) domain(0,0): role changed from DISABLED to SLAVE
…
Port(0) domain(0,0): Slave – Link: Up – AS_Capable: Yes

• Selected Grand Master (GM) capabilities are reported upon new GM selection. Root Identity represents the clock ID of the
currently selected GM. Priority1, Priority2, Class and Accuracy describe the clock quality of the selected GM. Finally, the
Source Port Identity of the peer master port (e.g. the bridge port the local slave port is connected to). This information is
displayed for each of the enabled gPTP domain:

domain(0,0) Grand master: root identity 00049ffffe039e35
domain(0,0) Grand master: priority1 245 priority2
domain(0,0) Grand master: class 248 accuracy 248
domain(0,0) Grand master: variance 17258
domain(0,0) Grand master: source port identity 0001f2fffe0025fe, port number 2 

• Synchronization State is reported upon GM selection (SYNCHRONIZED) or when no GM is detected (NOT
SYNCHRONIZED). Synchronization Time expressed in ms represents the time it took for the local clock to reach
synchronization threshold starting from the first SYNC message received. This information is displayed for each of the
enabled domain.

Port(0) domain(0) SYNCHRONIZED – synchronization time (ms): 250

• Pdelay (propagation delay) and local clock adjustments are printed out every 5 seconds. PDelay is expressed in ns units
and represents the one-way delay from the endpoint and its peer master. Correction is expressed in parts per billion
and represents the frequency adjustment performed to the local clock. Offset is expressed in ns represents the resulting
difference between the locally adjusted clock and the reference gPTP GrandMaster’s clock. (Min/Max/Avg and Variance
are computed for both Correction and Offset statistics). PDelay is displayed only for Domain 0. Correction and Offset are
displayed for each of the enabled domain.

Port 0 domain(0,0): Propagation delay (ns): 37.60  min 34 avg 36 max 45 variance 17
Port 0 domain(0,0): Correction applied to local clock (ppb): min -5603 avg 5572 max 5538 variance 
148 
Port 0 domain(0,0): Offset between GM and local clock (ns) min -12 avg 4 max 22 variance 111
...
Port 0 domain(1,20): Correction applied to local clock (ppb): min 32074 avg 32314 max 32574 
variance 17695 
Port 0 domain(1,20): Offset between GM and local clock (ns) min -61 avg 3 max 70 variance 1149
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• The following per port per domain statistics (32 bits counters) are printed out every 15 seconds on slave and master
entities:

Table 61. Port statistics displayed on slave and master entities

Receive counters

PortStatRxPkts Number of gPTP packets received (ether type 0x88F7)

PortStatRxSyncCount Number of SYNC packets received

PortStatRxSyncReceiptTimeouts Number of SYNC packets receive timeout

PortStatRxFollowUpCount Number of FOLLOW-UP packets received

PortStatRxAnnounce Number of ANNOUNCE packets received

PortStatAnnounceReceiptTimeouts Number of ANNOUNCE packets timeout

PortStatAnnounceReceiptDropped Number of ANNOUNCE packets dropped by the entity

PortStatRxSignaling Number of SIGNALING packets received

PortStatRxPdelayRequest Number of PDELAY REQUEST packets received

PortStatRxPdelayResponse Number of PDELAY RESPONSE packets received

PortStatPdelayAllowedLostResponsesExceeded Number of excess of allowed lost responses to
PDELAY requests

PortStatRxPdelayResponseFollowUp Number of PDELAY FOLLOW-UP packets received

PortStatRxErrEtype Number of ether type errors (not 0x88F7)

PortStatRxErrPortId Number or port ID errors

Transmit counters

PortStatTxPkts Number of gPTP packets transmitted

PortStatTxSyncCount Number of SYNC packets transmitted

PortStatTxFollowUpCount Number of FOLLOW-UP packets transmitted

PortStatTxAnnounce Number of ANNOUNCE packets transmitted

PortStatTxSignaling Number of SIGNALING packets transmitted

PortStatTxPdelayReques Number of PDELAY REQUEST packets transmitted

PortStatTxPdelayResponse Number of PDELAY RESPONSE packets transmitted

PortStatTxPdelayResponseFollowUp Number of PDELAY FOLLOW-UP packets transmitted

PortStatTxErr Number of transmit errors

Table continues on the next page...
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Table 61. Port statistics displayed on slave and master entities (continued)

PortStatTxErrAlloc Number of transmit packets allocation errors

Miscellaneous counters

PortStatAdjustOnSync Number of adjustments performed upon SYNC received

PortStatMdPdelayReqSmReset Number of reset of the PDELAY REQUEST state machine

PortStatMdSyncRcvSmReset Number of reset of the SYNC RECEIVE state machine

PortStatHwTsRequest Number of egress timestamp requests

PortStatHwTsHandler Number of egress timestamp notification

PortStatNumSynchronizationLoss Number or synchronization loss on the slave endpoint (e.g.
GM change, GM reference clock discontinuity...)

PortStatNumNotAsCapable Number of transitions from AS_Capable=TRUE
to AS_Capable=FALSE

4.2.6.2 gPTP Bridge

Logs are stored in /var/log/fgptp-br.

• Linux command:

# tail –f /var/log/fgptp-br

• The bridge stack statistics are similar to the endpoint stack ones except that they are reported for each of the external
ports of the switch (Port 0 to 3) and also for the internal port connected to the endpoint stack (Port 4) in case of Hybrid
setup.

• Pdelay (propagation delay) is printed only for Domain 0. Link status, AS capability and Port Role are printed out for each
port and each gPTP domain.

Port 0 domain(0,0): Role: Disabled Link: Up AS_Capable: No neighborGptpCapable: No 
DelayMechanism: P2P
Port 1 domain(0,0): Role: Disabled Link: Up AS_Capable: No neighborGptpCapable: No 
DelayMechanism: P2P
Port 2 domain(0,0): Role: Disabled Link: Up AS_Capable: Yes neighborGptpCapable: Yes 
DelayMechanism: P2P
Port 2 domain(0,0): Propagation delay (ns): 433.98 min 425 avg 438 max 457 variance 87
Port 3 domain(0,0): Role: Disabled Link: Up AS_Capable: No neighborGptpCapable: No 
DelayMechanism: P2P
Port 4 domain(0,0): Role Master Link: Up AS_Capable: Yes neighborGptpCapable: Yes DelayMechanism: 
P2P
Port 4 domain(0,0): Propagation delay (ns): 433.98 min 425 avg 438 max 457 variance 87
...
Port 0 domain(1,20): Role: Disabled Link: Up AS_Capable: No neighborGptpCapable: No 
DelayMechanism: COMMON_P2P
Port 1 domain(1,20): Role: Disabled Link: Up AS_Capable: No neighborGptpCapable: No 
DelayMechanism: COMMON_P2P
Port 2 domain(1,20): Role: Disabled Link: Up AS_Capable: Yes neighborGptpCapable: Yes 
DelayMechanism: COMMON_P2P
Port 3 domain(1,20): Role: Disabled Link: Up AS_Capable: No neighborGptpCapable: No 
DelayMechanism: COMMON_P2P
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Port 4 domain(1,20): Role Master Link: Up AS_Capable: Yes neighborGptpCapable: Yes 
DelayMechanism: COMMON_P2P

4.2.6.3 SRP Bridge

Logs are stored in /var/log/avb-br.

• Linux command:

# tail –f /var/log/avb-br | grep srp

• SRP protocol information is reported per port

INFO  srp    msrp_vector_add_event            : port(0) domain(5, 2, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_JOINMT
INFO  srp    msrp_vector_add_event            : port(0) domain(6, 3, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_JOINMT
INFO  srp    msrp_vector_add_event            : port(1) domain(5, 2, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_JOINMT
INFO  srp    msrp_vector_add_event            : port(1) domain(6, 3, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_JOINMT
INFO  srp    msrp_vector_add_event            : port(2) domain(5, 2, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_JOINMT
INFO  srp    msrp_vector_add_event            : port(2) domain(6, 3, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_JOINMT
INFO  srp    msrp_vector_add_event            : port(4) domain(5, 2, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_JOINMT
INFO  srp    msrp_vector_add_event            : port(4) domain(6, 3, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_JOINMT
INFO  srp    msrp_vector_handler              : port(3) domain(5, 2, 2) MRP_ATTR_EVT_MT
INFO  srp    msrp_vector_handler              : port(3) domain(6, 3, 2) MRP_ATTR_EVT_MT
INFO  srp    msrp_vector_handler              : port(3) domain(5, 2, 2) MRP_ATTR_EVT_JOINMT
INFO  srp    msrp_vector_handler              : port(3) domain(6, 3, 2) MRP_ATTR_EVT_JOINMT
INFO  srp    msrp_vector_add_event            : port(3) domain(5, 2, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_JOININ
INFO  srp    msrp_vector_add_event            : port(3) domain(6, 3, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_JOININ
INFO  srp    msrp_vector_add_event            : port(3) domain(5, 2, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_JOININ
INFO  srp    msrp_vector_add_event            : port(3) domain(6, 3, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_JOININ
INFO  srp    msrp_vector_add_event            : port(0) domain(5, 2, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_MT
INFO  srp    msrp_vector_add_event            : port(0) domain(6, 3, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_MT
INFO  srp    msrp_vector_add_event            : port(1) domain(5, 2, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_MT
INFO  srp    msrp_vector_add_event            : port(1) domain(6, 3, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_MT
INFO  srp    msrp_vector_add_event            : port(2) domain(5, 2, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_MT
INFO  srp    msrp_vector_add_event            : port(2) domain(6, 3, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_MT
INFO  srp    msrp_vector_add_event            : port(4) domain(5, 2, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_MT
INFO  srp    msrp_vector_add_event            : port(4) domain(6, 3, 2) MSRP_ATTR_TYPE_DOMAIN 
MRP_ATTR_EVT_MT
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4.2.6.4 TSN Endpoint example application

Logs are stored in /var/log/tsn_app.

The TSN application has various counters and statistics which help to validate:

• application scheduling and processing timing statistics

• network traffic correctness and latency statistics

Most of the information in the logs are either:

• Counters: single integer values counting specific events (frames received, transmitted, errors, etc)

• Statistics: composite data over a series of measurements: min (minimum during the last period), mean (average of
measurements during the last period), max (maximum during the last period), rms^~(root mean square of measurements
during the last period), stddev^2 (square of standard deviation during the last period), absmin(absolute minimum since the
application start), absmax (absolute maximum since the application start)

• Histograms: number and size of slots of the histogram one the 1st line, array of counters for each slot on the 2nd line.

4.2.6.4.1 Main TSN task

The main TSN task logs are described below:

• Scheduling counters (“sched” should increment of 500 per second):

INFO 1604531064  tsn_task_stats_print             tsn task(0x37d8d630)
INFO 1604531064  tsn_task_stats_print             sched           : 1700000
INFO 1604531064  tsn_task_stats_print             sched early     : 0
INFO 1604531064  tsn_task_stats_print             sched late      : 0
INFO 1604531064  tsn_task_stats_print             sched missed    : 0
INFO 1604531064  tsn_task_stats_print             sched timeout   : 0
INFO 1604531064  tsn_task_stats_print             clock discont   : 0
INFO 1604531064  tsn_task_stats_print             clock err       : 0

• Scheduling error statistics (difference between actual task scheduling time and programmed time, in ns):

stats(0x2ddd4560) sched err min 8062 mean 10662 max 18862 rms^2 116252492 stddev^2 2558383 absmin 
2842 absmax 35082

• Scheduling error histogram (XXX ns bucket)

n_slot 101 slot_size 10000
18081119 21722197 1676 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0

• Processing time statistics (main task duration in ns)

stats(0x2ddd49c0) processing time min 21600 mean 27564 max 47460 rms^2 768483628 stddev^2 8664988 
absmin 12540 absmax 152100

• Processing time histogram (XXX ns bucket)

n_slot 101 slot_size 1000
0 0 0 0 0 0 0 0 0 0 0 0 9 13 7 259 302 187 14273 64041 91896 427011 1473790 2154889 4239252 
4681777 5682883 5516429 4915621 3789351 2688466 1709802 1036649 587716 327653 170711 89620 47637
 25422 15211 9573 6908 4852 3694 3101 2910 3028 3036 3331 3091 2842 2375 1748 1251 895 585 342 
208 100 63 64 26 21 13 9 14 6 7 4 4 6 3 4 1 0 2 2 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0
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• Total time statistics (scheduling error + processing time, in ins)

stats(0x2ddd4e20) total time min 30082 mean 38227 max 55862 rms^2 1473506486 stddev^2 12160755 
absmin 18962 absmax 170082

• Total time histogram (XXX ns bucket)

n_slot 101 slot_size 1000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 15 16 57 273 1674 7795 30165 80952 240707 651779 
1497160 2290907 3606869 4077757 4761502 4647779 4239893 3631222 2831749 2209868 1631293 1173544
 819740 536234 338535 201816 115114 65529 36480 21413 12892 8249 5613 4178 3310 3034 2890 2921 
2615 2461 2132 1790 1427 1082 844 585 353 266 170 98 73 48 20 25 6 14 14 1 6 2 3 8 2 2 1 3 2 1 1 
2 1 2 0 1 1 0 0 0 10 0

4.2.6.4.2 Network socket

Below is an example of the network socket logs:

• Low-level network socket. Only frames relevant to the network socket (Layer 2) are counted here:

INFO 1604531059 net_socket_stats_print net rx socket(0x37d8d660) 0
INFO 1604531059 net_socket_stats_print frames : 1697802
INFO 1604531059 net_socket_stats_print frames err : 0
INFO 1604531059 net_socket_stats_print net tx socket(0x37d8d6e0) 0
INFO 1604531059 net_socket_stats_print frames : 1697500
INFO 1604531059 net_socket_stats_print frames err : 0

4.2.6.4.3 Application socket

• Application header is checked at this level. Also, the timestamps from the remote peers are verified as well which
guarantees that only expected and in sequence data is processed.

INFO 1604531069 socket_stats_print cyclic rx socket(0x419560) net_sock(0x37d8d660) peer id: 1
INFO 1604531069 socket_stats_print valid frames : 1702497
INFO 1604531069 socket_stats_print err id : 0
INFO 1604531069 socket_stats_print err ts : 305
INFO 1604531069 socket_stats_print err underflow : 2
INFO 1604531069 socket_stats_print link up

• Traffic latency statistics (the difference between the theoretical scheduling time of the peer that sent the frame and the
frame receive time (measured by the MAC), in ns)

stats(0x419a28) traffic latency min 503417 mean 503503 max 503637 rms^2 253515981945 stddev^2 
2004 absmin 503397 absmax 504337

• Traffic latency histogram (XXX ns bucket)

n_slot 101 slot_size 1000 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 299998 0

4.3 IEEE 1588/802.1AS
IEEE 1588 is the IEEE standard for a precision clock synchronization protocol for networked measurement and control systems.
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IEEE 802.1AS is the IEEE standard for local and metropolitan area networks – timing and synchronization for time-sensitive
applications in bridged local area networks. It specifies the use of IEEE 1588 specifications where applicable in the context of IEEE
Std 802.1D-2004 and IEEE Std 802.1Q-2005.

NXP 's QorIQ platform provides hardware assist for 1588 compliant time stamping with the 1588 timer module to support
applications of IEEE 1588/802.1AS.

4.3.1 Introduction
NXP’s i.MX and Layerscape platforms provide hardware assist for 1588 compliant time stamping with the 1588 timer module. The
software components required to run IEEE 1588/802.1AS protocol utilizing the hardware feature are listed below:

1. Linux PTP Hardware Clock (PHC) driver

2. Linux Ethernet controller driver with hardware timestamping support

3. A software stack application for IEEE 1588/802.1AS

 
In this document, IEEE 1588 mentioned is IEEE 1588-2008, and IEEE 802.1AS mentioned is IEEE 802.1AS-2011.

  NOTE  

4.3.2 IEEE 1588 device types
There are five basic types of PTP devices in IEEE 1588.

• Ordinary clock

A clock that has a single Precision Time Protocol (PTP) port in a domain and maintains the timescale used in the domain. It may
serve as a source of time (if used as a master clock) or may synchronize with another clock (if used as a slave clock).

• Boundary clock

A clock that has multiple Precision Time Protocol (PTP) ports in a domain and maintains the timescale used in the domain. It may
serve as a source of time (be a master clock) or may synchronize to another clock (be a slave clock).

• End-to-end transparent clock

A transparent clock that supports the use of the end-to-end delay measurement mechanism between slave clocks and the
master clock.

• Peer-to-peer transparent clock

A transparent clock that provides Precision Time Protocol (PTP) event transit time information. It also provides corrections
for the propagation delay of the link connected to the port receiving the PTP event message. In the presence of peer-to-peer
transparent clocks, delay measurements between slave clocks and the master clock are performed using the peer-to-peer delay
measurement mechanism.

• Management node

A device that configures and monitors clocks.

 
Transparent clock is a device that measures the time taken for a PTP event message to transit the device. It
provides this information to clocks receiving the PTP event message.

  NOTE  

4.3.3 IEEE 802.1AS time-aware systems
In gPTP, there are only two types of time-aware systems: end stations and Bridges, while IEEE 1588 has ordinary clocks,
boundary clocks, end-to-end transparent clocks, and P2P transparent clocks. A time-aware end station corresponds to an IEEE
1588 ordinary clock, and a time-aware Bridge is a type of IEEE 1588 boundary clock where its operation is very tightly defined, so
much so that a time-aware Bridge with Ethernet ports can be shown to be mathematically equivalent to a P2P transparent clock
in terms of how synchronization is performed.

1. Time-aware end station
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An end station that is capable of acting as the source of synchronized time on

the network, or destination of synchronized time using the IEEE 802.1AS protocol, or both.

2. Time-aware bridge

A Bridge that is capable of communicating synchronized time received on one

port to other ports, using the IEEE 802.1AS protocol.

4.3.4 Software stacks

4.3.4.1 linuxptp stack

Features of open source linuxptp

• Supports hardware and software time stamping via the Linux SO_TIMESTAMPING socket option.

• Supports the Linux PTP Hardware Clock (PHC) subsystem by using the clock_gettime family of calls, including the
clock_adjtimex system call.

• Implements Boundary Clock (BC), Ordinary Clock (OC) and Transparent Clock (TC).

• Transport over UDP/IPv4, UDP/IPv6, and raw Ethernet (Layer 2).

• Supports IEEE 802.1AS-2011 in the role of end station.

• Modular design allowing painless addition of new transports and clock servos.

• Implements unicast operation.

• Supports a number of profiles, including:

— The automotive profile.

— The default 1588 profile.

— The enterprise profile.

— The telecom profiles G.8265.1, G.8275.1, and G.8275.2.

— Supports the NetSync Monitor protocol.

• Implements Peer to peer one-step.

• Supports bonded, IPoIB, and vlan interfaces.

Note: the features listed are from linuxptp website. It does not mean all these features work on release boards. The hardware 1588
capability, driver support and ptp4l version needs to be considered. Refer to following user manual of this chapter for what had
been verified.

Features added by Real-time Edge

• Supports IEEE 802.1AS-2011 in the role of time-aware bridge.

• Support dynamic direction in ts2phc to cooperate with ptp4l.

4.3.4.2 NXP GenAVB/TSN gPTP stack

Following are the features of the NXP GenAVB/TSN gPTP stack:

• Implements gPTP IEEE 802.1AS-2020, for both time-aware Endpoint and Bridge systems

• Implements gPTP BMCA

• Supports GrandMaster, Master, and Slave capabilities

• Supports multiple gPTP domains

• Supports Avnu Alliance Automotive profile
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• Supports configuration profiles for the stack

• Supports hardware time stamping via the Linux SO_TIMESTAMPING socket option

• Supports the Linux PTP Hardware Clock (PHC) subsystem by using the clock_gettime family of calls, including the
clock_adjtimex system call.

4.3.5 Quick Start for IEEE 1588

4.3.5.1 Ordinary clock verification

Connect two network interfaces in back-to-back manner for two boards. Make sure there is no MAC address conflict on the
boards, the IP addresses are set properly and ping the test network. Run linuxptp on each board. For example, eth0 is used on
each board.

$ ptp4l -i eth0 -m

On running the above command time synchronization will start, and the slave linuxptp selected automatically will synchronize to
master with synchronization messages displayed, such as time offset, path delay and so on. For example,

ptp4l[878.504]: master offset        -10 s2 freq   -2508 path delay      1826    
ptp4l[878.629]: master offset         -5 s2 freq   -2502 path delay      1826    
ptp4l[878.754]: master offset          0 s2 freq   -2495 path delay      1826    
ptp4l[878.879]: master offset          9 s2 freq   -2482 path delay      1826    
ptp4l[879.004]: master offset         -9 s2 freq   -2507 path delay      1826    
ptp4l[879.129]: master offset        -24 s2 freq   -2530 path delay      1826    
ptp4l[879.255]: master offset         -7 s2 freq   -2508 path delay      1826    
ptp4l[879.380]: master offset         -2 s2 freq   -2502 path delay      1826    
ptp4l[879.505]: master offset        -17 s2 freq   -2524 path delay      1827    
ptp4l[879.630]: master offset          6 s2 freq   -2493 path delay      1827    
ptp4l[879.755]: master offset          6 s2 freq   -2492 path delay      1827    
ptp4l[879.880]: master offset          0 s2 freq   -2500 path delay      1827

Some other options of ptp4l

Delay Mechanism
-E        E2E, delay request-response (default)
-P        P2P, peer delay mechanism

Network Transport
-2        IEEE 802.3
-4        UDP IPV4 (default)
-6        UDP IPV6

Note: must keep same delay mechanism and network transport protocol used on two boards.

Configure master mode

In default, the master clock is selected by BMC (Best Master Clock) algorithm. To appoint a specific clock as master, a lower
"priority1" attribute value than the other clock can be set. Lower value takes precedence. For example, in current case, specify
one clock as master with below option. (The other clock is using default priority1 value 128.)

--priority1=127

One-step timestamping

Currently one-step timestamping is supported only on DPAA2. To use one-step timestamping, add below option for ptp4l running.
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--twoStepFlag=0

4.3.5.2 Boundary clock verification

At least three boards are needed. Below is an example for three boards network connection. Make sure there is no MAC address
conflict on the boards, the IP addresses are set properly and ping the test network.

Run linuxptp on Board1 (boundary clock).

$ ptp4l -i eth0 -i eth1 -m

Run linuxptp on Board2/Board3 (ordinary clock).

$ ptp4l -i eth0 -m

On running the above command, time synchronization will start, and the slaves linuxptp selected automatically will synchronize
to the unique master with synchronization messages displayed such as time offset, path delay and so on. For example,

ptp4l[878.504]: master offset        -10 s2 freq   -2508 path delay      1826     
ptp4l[878.629]: master offset         -5 s2 freq   -2502 path delay      1826     
ptp4l[878.754]: master offset          0 s2 freq   -2495 path delay      1826     
ptp4l[878.879]: master offset          9 s2 freq   -2482 path delay      1826     
ptp4l[879.004]: master offset         -9 s2 freq   -2507 path delay      1826     
ptp4l[879.129]: master offset        -24 s2 freq   -2530 path delay      1826     
ptp4l[879.255]: master offset         -7 s2 freq   -2508 path delay      1826     
ptp4l[879.380]: master offset         -2 s2 freq   -2502 path delay      1826     
ptp4l[879.505]: master offset        -17 s2 freq   -2524 path delay      1827     
ptp4l[879.630]: master offset          6 s2 freq   -2493 path delay      1827     
ptp4l[879.755]: master offset          6 s2 freq   -2492 path delay      1827     
ptp4l[879.880]: master offset          0 s2 freq   -2500 path delay      1827

Some other options of ptp4l

Delay Mechanism
-E        E2E, delay request-response (default)
-P        P2P, peer delay mechanism
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Network Transport
-2        IEEE 802.3
-4        UDP IPV4 (default)
-6        UDP IPV6

Note: must keep same delay mechanism and network transport protocol used on these boards.

Configure master mode

In default, the master clock is selected by BMC (Best Master Clock) algorithm. To appoint a specific clock as master, a lower
"priority1" attribute value than the other clock can be set. Lower value takes precedence. For example, in current case, specify
one clock as master with below option. (The other clocks is using default priority1 value 128.)

--priority1=127

One-step timestamping

Currently one-step timestamping is supported only on DPAA2. To use one-step timestamping, add below option for ptp4l running.

--twoStepFlag=0

4.3.5.3 Transparent clock verification

At least three boards are needed. Below is an example for three boards network connection. Make sure there is no MAC address
conflict on the boards, the IP addresses are set properly, and ping the test network.

Run linuxptp on Board1 (transparent clock). If want Board1 works as E2E TC, use E2E-TC.cfg. If want Board1 works as P2P
TC, use P2P-TC.cfg.

$ ptp4l -i eth0 -i eth1 -f /etc/linuxptp/E2E-TC.cfg -m

Run linuxptp on Board2/Board3 (ordinary clock).

$ ptp4l -i eth0 -m
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On running the above commands, time synchronization will start between ordinary clocks, and the slave linuxptp selected
automatically will synchronize to the master with synchronization messages displayed such as time offset, path delay and so on.

4.3.6 Quick Start for IEEE 802.1AS
The following sections describe the steps for implementing IEEE 802.1AS on NXP boards. The following steps make use
of linuxptp stack but similar commands can be executed with NXP GenAVB/TSN gPTP stack on supported boards, as
described here.

4.3.6.1 Time-aware end station verification

Connect two network interfaces in back-to-back way for two boards. Make sure no MAC address conflict on the boards, IP address
set properly and ping test work.

Remove below option in /etc/linuxptp/gPTP.cfg to use default larger value, because estimate path delay including PHY delay may
exceed 800ns since hardware is using MAC timestamping.

neighborPropDelayThresh 800

Run linuxptp on each board. For example, eth0 is used on each board.

$ ptp4l -i eth0 -f /etc/linuxptp/gPTP.cfg -m

Time synchronization will start, and the slave linuxptp selected automatically will synchronize to master with synchronization
messages printed, like time offset, path delay and so on.

4.3.6.2 Time-aware bridge verification

At least three boards are needed for the time-aware bridge verification. Below is an example of the network connection amongst
the three boards. Make sure there is no MAC address conflict on the boards.

Figure 34. Setup for time-aware bridge verification

NXP Semiconductors
Real-time Networking

Real-time Edge Software User Guide, Rev. 2.1, 15-Dec-2021
User Guide 173 / 269



Remove the below option in /etc/linuxptp/gPTP.cfg file to use the default larger value, because estimated path delay including
PHY delay may exceed 800 ns since hardware is using MAC timestamping.

neighborPropDelayThresh 800

Run linuxptp on Board1 (time-aware bridge) using the command below:

$ ptp4l -i eth0 -i eth1 -f /etc/linuxptp/gPTP.cfg -m

Run linuxptp on Board2/Board3 (time-aware end station) using the command:

$ ptp4l -i eth0 -f /etc/linuxptp/gPTP.cfg -m

Time synchronization will start between the three boards, and the linuxptp slaves selected will automatically synchronize to the
unique master with synchronization messages displayed (such as time offset, path delay and so on).

4.3.7 Long term test
This section describes the long term test results for Linux PTP stack implementation.

4.3.7.1 linuxptp basic synchronization

Linux PTP

Connection: back-to-back master to slave

Configuration: Sync internal is -3

Test boards: two LS1021A-TSN boards, one as master and another one as slave.
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Figure 35. Offset from master in start up state
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Figure 36. Offset from master in stable state

4.3.8 Known issues and limitations
1. When LS1028A TSN switch in Linux is configured as L2 switch, the interfaces should not be configured with IP addresses.
Running linuxptp on these interfaces must use Ethernet protocol instead of UDP/IP. The method is to add an option “-2” executing
ptp4l command. For example,

$ ptp4l -i eth0 -2 -m

2. i.MX 8M Plus current dwmac driver (eth1) initializes some hardware functions during opening net device, including PTP
initialization. Before that, the operations on it may not work, like ethtool queries, and PTP operations. So, the workaround is, do
operations on the eth1 and PTP of dwmac only after "ifconfig eth1 up".

3. If below error is reported during ptp4l running, just try to increase tx_timestamp_timeout. User space may need to wait longer
for TX timestamp.

For example, use option --tx_timestamp_timeout=20 when running ptp4l as shown below:

ptp4l[1560.726]: timed out while polling for tx timestamp
ptp4l[1560.726]: increasing tx_timestamp_timeout may correct this issue, but it is likely caused by a 
driver bug
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4.4 Networking

4.4.1 Q-in-Q on LS1028A Felix switch
1. Q-in-Q feature

Q-in-Q feature allows service providers to create a Layer 2 Ethernet connection between two user sites. Providers can
segregate different user's VLAN traffic on a link or bundle using different user VLANs. When using Q-in-Q, the user's
802.1Q VLAN tags (C-TAG:0x8100) are prepended by the service VLAN tag (S-TAG: 0x88A8).

2. Q-in-Q application scenario

In the following scenario, switch's port swp0 connects with Customer 1's LAN, swp1 connects with ISP's MAN,

The traffic with VLAN tag is shown below:

uplink: Customer LAN (only C-TAG) -> swp0 -> swp1 (add S-TAG) -> ISP MAN (S-TAG + C-TAG)

downlink: ISP MAN (S-TAG + C-TAG) -> swp1 (pop S-TAG)-> swp0 (only C-TAG) -> Customer LAN

3. Q-in-Q configuration example

a. Enable swp1 Q-in-Q mode

devlink dev param set pci/0000:00:00.5 name qinq_port_bitmap value 2 cmode runtime

 
• 0000:00:00.5 is the PCIe bus and device number of ocelot switch.

• The value 2 is bitmap for port 1. If port n is linked to ISP MAN, the related bit n should be set to 1.

  NOTE  

b. Create bridge and add ports:

ip link add dev br0 type bridge vlan_protocol 802.1ad
ip link set dev swp0 master br0
ip link set dev swp1 master br0
ip link set dev br0 type bridge vlan_filtering 1
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c. Set swp0 pvid and set untagged for egress traffic:

bridge vlan del dev swp0 vid 1 pvid
bridge vlan add dev swp0 vid 100 pvid untagged
bridge vlan add dev swp1 vid 100

d. Result

Customer(tpid:8100 vid:111) -> swp0 -> swp1 -> ISP(STAG tpid:88A8 vid:100, CTAG 
tpid:8100 vid:111)
ISP(tpid:88A8 vid:100 tpid:8100 vid:222) -> swp1 -> swp0 -> Customer(tpid:8100 vid:222)

4.4.2 VCAP on LS1028A Felix switch
The VCAP is a content-aware packet processor for wire-speed packet inspection. it is using “tc flower” command to set the filter
and actions. Following keys and actions are supported on LS1028A:

keys:
vlan_id
vlan_prio
dst_mac/src_mac for non IP frames
dst_ip/src_ip
dst_port/src_port

actions:
trap
drop
police
vlan modify
vlan push(Egress)

Use the following commands to set, get and delete VCAP rules:

tc qdisc add dev swp0 clsact
tc filter add dev swp0 ingress chain [chain-id] protocol [ip/802.1Q] flower skip_sw [keys] 
action [actions]
tc -s filter show dev swp0 ingress chain [chain-id]
tc filter del dev swp0 ingress chain [chain-id] pref [pref_id]

tc qdisc add dev swp1 clsact
tc filter add dev swp1 egress protocol 802.1Q flower skip_sw [keys] action vlan push id [value] 
priority [value]
tc filter show dev swp1 egress
tc filter del dev swp1 egress pref [pref_id]

There are two ingress VCAPs and one egress VCAPs. The tc-flower chains are used on LS1028A ingress ports. Each action has
a fixed chain. Following is the chain allocation:

Table 62. Chain allocation

chain ID Actions Hardware module keys

10000 skbedit priority IS1 lookup 0 Source MAC address,

source IP address (32 bits)

outer VLAN, IP protocol,

Table continues on the next page...
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Table 62. Chain allocation (continued)

chain ID Actions Hardware module keys

source TCP/UDP ports.

11000 vlan pop; vlan modify IS1 lookup 1 Inner and outer VLAN,

source and destination IP addresses (32 bits),

IP protocol,

source and destination TCP/UDP ports.

12000 goto chain [PAG] IS1 lookup 2 Source MAC address,

source IP address (32 bits)

outer VLAN, IP protocol,

source TCP/UDP ports.

20000-20255 police IS2 lookup 0 Source and destination MAC address,

source and destination IP addresses (32 bits),

IP protocol,

source and destination TCP/UDP ports.

21000-21255 drop; trap; redirect IS2 lookup 1 Source and destination MAC address,

source and destination IP addresses (32 bits),

IP protocol,

source and destination TCP/UDP ports.

30000 gate; police PSFP destination MAC address and Vlan ID

Before using chains, users should register each chain and set chain pipeline order for a packet. The hardware ingress order
is: IS1->IS2->PSFP.

tc qdisc add dev swp0 clsact
tc filter add dev swp0 ingress chain 0 pref 49152 flower skip_sw action goto chain 10000
tc filter add dev swp0 ingress chain 10000 pref 49152 flower skip_sw action goto chain 11000
tc filter add dev swp0 ingress chain 11000 pref 49152 flower skip_sw action goto chain 12000
tc filter add dev swp0 ingress chain 12000 pref 49152 flower skip_sw action goto chain 20000
tc filter add dev swp0 ingress chain 20000 pref 49152 flower skip_sw action goto chain 21000
tc filter add dev swp0 ingress chain 21000 pref 49152 flower skip_sw action goto chain 30000

After registering the chain, add rules to the corresponding chain. following are the use cases for testing:
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Figure 37. VCAP test

1. Drop all frames from source IP 192.168.2.1.

tc filter add dev swp0 ingress chain 21000 protocol ip flower skip_sw src_ip 192.168.2.1 
action drop

Set source IP as 192.168.2.1 and send IP package from TestCenter, package will be dropped on swp0.

2. Limit bandwidth of HTTP streams to 10 Mbps.

tc filter add dev swp0 ingress chain 20000 protocol ip flower skip_sw ip_proto tcp dst_port 80 
action police rate 10Mbit burst 10000 action goto chain 21000

Send TCP package and set destination port as 80 on TestCenter, set the stream bandwidth to 1Gbit/s, we can get a
10Mbits/s stream rate.

3. Filter frames that have a specific vlan tag (VID=1 and PCP=1). Then, modify the vlan tag (VID=2, PCP=2) and classified
to QoS traffic class 2.

ip link set switch type bridge vlan_filtering 1
tc filter add dev swp0 ingress chain 11000 protocol 802.1Q flower skip_sw vlan_id 1 vlan_prio 1 
action vlan modify id 2 priority 2 action goto chain 12000
bridge vlan add dev swp0 vid 2
bridge vlan add dev swp1 vid 2

Set vid=1 and pcp=1 in vlan tag. Then, send IP package from TestCenter. Thus you can get a package with vid=2, pcp=2
from swp1 on TestCenter.
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4. Push a specific vlan tag (vid=3, pcp=3) into frames (classified vid=2, pcp=2 in switch) egress from swp1.

tc qdisc add dev swp1 clsact
tc filter add dev swp1 egress protocol 802.1Q flower skip_sw vlan_id 2 vlan_prio 2 action vlan 
push id 3 priority 3

Set vid=1 and pcp=1 in vlan tag, then send IP package from TestCenter, the frame will hit rule in usecase 3 and retag the
vlan (vid=2, pcp=2). Thus, users can get a frame with vid=3, pcp=3 from swp1 on TestCenter.

5. Push double vlan tag(Q-in-Q) into frames egress to swp1.

ip link add dev br0 type bridge
ip link set dev swp0 master br0
ip link set dev swp1 master br0
ip link set br0 type bridge vlan_filtering 1
bridge vlan add dev swp0 vid 222
bridge vlan add dev swp1 vid 222
tc qdisc add dev swp1 clsact
tc filter add dev swp1 egress protocol 802.1Q flower skip_sw \
    vlan_id 222 vlan_prio 2 \
    action vlan push id 200 priority 1 protocol 802.1AD \
    action vlan push id 300 priority 3

Result: TX(tpid:8100 vid:222 pri:2) -> swp0 -> swp1 -> RX(S-TAG tpid:88A8 vid:200 pri:1, C-TAG
tpid:8100 vid:300 pri:3)

6. Pop single or double vlan tag(Q-in-Q) from frames ingress from swp0.

ip link add dev br0 type bridge
ip link set dev swp0 master br0
ip link set dev swp1 master br0
tc filter add dev swp0 ingress chain 11000 \
    protocol 802.1ad flower \
    vlan_id 111 vlan_prio 1 vlan_ethtype 802.1q \
    cvlan_id 222 cvlan_prio 2 cvlan_ethtype ipv4 \
    action vlan pop action goto chain 12000

Result: TX(S-TAG tpid:88A8 vid:111 pri:1, C-TAG tpid:8100 vid:222 pri:2) -> swp0 -> swp1 -> RX(TAG
tpid:8100 vid:222 pri:2)

tc filter add dev swp0 ingress chain 11000 \
    protocol 802.1ad flower \
    vlan_id 111 vlan_prio 1 vlan_ethtype 802.1q \
    cvlan_id 223 cvlan_prio 2 cvlan_ethtype ipv4 \
    action vlan pop \
    action vlan pop action goto chain 12000

Result: TX(S-TAG tpid:88A8 vid:111 pri:1, C-TAG tpid:8100 vid:223 pri:2) -> swp0 -> swp1 -> RX(received
packets without VLAN tag)
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Chapter 5
Protocols
5.1 EtherCAT
Real-time Edge supports the usage of EtherCAT ((Ethernet for Control Automation Technology) and integrates the IGH EtherCAT
master stack. EtherCAT is verified on NXP’s platforms.

5.1.1 Introduction
EtherCAT is an Ethernet-based fieldbus system, invented by BECKHOFF Automation. The protocol is standardized in IEC 61158
and is suitable for both hard and soft real-time computing requirements in automation technology. The goal during development
of EtherCAT was to apply Ethernet for automation applications requiring short data update times (also called cycle times; ≤ 100
µs) with low communication jitter (for precise synchronization purposes; ≤ 1 µs) and reduced hardware costs.

• EtherCAT is Fast: 1000 dig. I/O: 30 µs, 100 slaves: 100 µs.

• EtherCAT is Ethernet: Standard Ethernet at I/O level.

• EtherCAT is Flexible: Star, line, drop, with or without switch.

• EtherCAT is Inexpensive: Ethernet is mainstream technology, therefore inexpensive.

• EtherCAT is Easy: everybody knows Ethernet, it is simple to use.

At present, the EtherCAT master supports the common open source code for SOEM of RT - LAB development (Simple Open
Source EtherCAT Master) and EtherLab, the IGH EtherCAT master. To use SOEM is simpler than to use the IGH EtherCAT
Master, but IGH for the realization of the EtherCAT is more complete. For example, IGH supports more NIC. For more information,
see https://rt-labs.com/ethercat/ and http://www.etherlab.org. The integration in Real-time Edge is IGH EtherCAT master.

5.1.2 IGH EtherCAT architecture
The components of the master environment are described below:

• Master module: This is the kernel module containing one or more EtherCAT master instances, the ‘Device Interface’ and
the ‘Application Interface’.

• Device modules: These are EtherCAT-capable Ethernet device driver modules that offer their devices to the EtherCAT
master via the device interface. These modified network drivers can handle network devices used for EtherCAT operation
and ‘normal’ Ethernet devices in parallel. A master can accept a certain device and then, is able to send and receive
EtherCAT frames. Ethernet devices declined by the master module are connected to the kernel's network stack, as usual.

• Application: A program that uses the EtherCAT master (usually for cyclic exchange of process data with EtherCAT
slaves). These programs are not part of the EtherCAT master code, but require to be generated or written by the user.
An application can request a master through the application interface. If this succeeds, it has the control over the master:
It can provide a bus configuration and exchange process data. Applications can be kernel modules that use the kernel
application interface directly. They also include user space programs, which use the application interface via the EtherCAT
library or the RTDM library.

The following figure shows that IGH EtherCAT master architecture.
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Figure 38. IGH EtherCAT master architecture

5.1.3 EtherCAT protocol
Following are the characteristics of the EtherCAT protocol:

• The EtherCAT protocol is optimized for process data and is transported directly within the standard IEEE 802.3 Ethernet frame
using Ethertype 0x88a4.

• The data sequence is independent of the physical order of the nodes in the network; addressing can be in any order.

• Broadcast, multicast, and communication between slaves is possible, but must be initiated by the master device.

• If IP routing is required, the EtherCAT protocol can be inserted into UDP/IP datagrams. This also enables any control with
Ethernet protocol stack to address EtherCAT systems.

• It does not support shortened frames.

The following figure shows the EtherCAT frame structure.
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Figure 39. EtherCAT frame structure

5.1.4 IGH EtherCAT Device Modules
The EtherCAT protocol is based on the Ethernet standard, so a master relies on standard Ethernet hardware to communicate
with the bus. The term device is used as a synonym for Ethernet network interface hardware. There are two kinds of device
drivers modules:

1. Native Ethernet Device Drivers

Native Ethernet Device Drivers allow the EtherCAT master to direct and exclusive access to the Ethernet hardware. This implies
that the network device must not be connected to the kernel's stack as usual, which allows a high Real-time performance. In
Real-time Edge software, there are two Native Ethernet Drivers:

• ec_fec, the native driver "ec_fec" could be used for the FEC MAC on i.MX 8M Mini EVK and i.MX 8M Plus EVK. This driver
is not verified on other i.MX platforms in this release. Please note that the original Ethernet fec driver must be recompiled to
a module by reconfiguring Linux with command "make menuconfig" when using ec_fec native driver.

• ec_enetc, the native driver "ec_enetc" is used for ENETC MAC on the ls1028ardb platform.

2. Generic Ethernet Device Driver

The Generic driver uses the lower layers of the Linux network stack to connect to the hardware, independently of the actual
hardware driver. So it can be used to all the platforms Real-time Edge supportes. But the disadvantage is that the performance
is a little worse than the native driver, because the Ethernet frame date have to traverse the Linux network stack.

5.1.5 IGH EtherCAT Setup
Before the IGH EtherCAT daemon start, the Ethernet device and the Ethernet driver must be specified by setting the
"MASTER0_DEVICE" and "DEVICE_MODULES" variables on "/etc/ethercat.conf" file.

5.1.5.1 Specify the Ethernet device

The Ethernet device is specified by setting "MASTER0_DEVICE" variable to the MAC address of the Ethernet device to use as
the EtherCAT network interface as below:

MASTER0_DEVICE="00:04:9f:07:11:a6"
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5.1.5.2 Generic Ethernet Driver

The generic Ethernet driver is enabled on Real-time Edge images by default for all platforms. And it can be specified by setting
"DEVICE_MODULES" variable to "generic" as below on "/etc/ethercat.conf" file.

DEVICE_MODULES="generic"

5.1.5.3 Native Ethernet Driver for i.MX 8M Mini EVK

The native Ethernet driver "ec_fec" is enabled on Real-time Edge images by default for i.MX 8M Mini EVK. And it can be specified
by setting "DEVICE_MODULES" variable to "fec" as below on "/etc/ethercat.conf" file.

DEVICE_MODULES="fec"

But note that the original Ethernet fec driver must be compiled to modules by reconfiguring Linux menuconfig when the native
Ethernet driver "ec_fec" is enabled. On Real-time Edge, the original fec Ethernet driver has been configured as a module
by default.

5.1.5.4 Native Ethernet Driver for i.MX 8M Plus EVK

The native Ethernet driver 'ec_fec' is not enabled on Real-time Edge images by default for i.MX 8M Plus EVK. It can be enabled
manually before building the Real-time Edge images by following the steps listed below:

1. Reconfigure the original Ethernet fec driver to modules:

Like i.MX 8M Mini EVK, the original ENET fec driver must be compiled to modurles when the native Ethernet driver
'ec_fec' is enabled. The native Ethernet driver 'ec_fec' can be reconfigured by adding the below line on "source/
meta-real-time-edge/conf/distro/include/real-time-edge-base.inc" file.

DELTA_KERNEL_DEFCONFIG_append_mx8mp = " linux-fec.config"

2. Enable the native Ethernet driver 'ec_fec' for i.MX 8M Plus EVK:

The native Ethernet driver 'ec_fec' can be enabled by adding the below line on "source/meta-real-time-edge/conf/
distro/include/igh-ethercat.inc" file for i.MX 8M Plus EVK.

IGH_ETHERCAT_imx8mpevk = " fec "

 
Please note that the interface names of ENET and ENET_QOS are exchanged because modules are loaded
later than built-in drivers. It means that the ENET would be renamed "eth1". In the meantime, the ENET_QOS
interface would be renamed to "eth0" from "eth1". This change might break some existing scripts that use “eth1”
for ENET_QOS.

  NOTE  

5.1.5.5 Native Ethernet Driver for LS1028ARDB

The native Ethernet driver "ec_enetc" is enabled on Real-time Edge images by default for LS1028ARDB. And it can be specified
by setting "DEVICE_MODULES" variable to "enetc" as below on "/etc/ethercat.conf" file.

DEVICE_MODULES="enetc"

5.1.5.6 IGH EtherCAT Start

Use the below command to start IGH EtherCAT daemon:

$ ethercatctl start
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Also, the below commands are used to stop or restart it.

# ethercatctl stop
# ethercatctl restart

Note: If the generic driver is used, make sure using "ifconfig <ethX> up" command to enable the network Card.

IGH provides a powerful auxiliary command-line tool, named “ethercat”. it is can be used to query the master and all slaves
information and status. The usage is as below:

Usage: ethercat <COMMAND> [OPTIONS] [ARGUMENTS]
    
    Commands (can be abbreviated):
      alias      Write alias addresses.
      config     Show slave configurations.
      crc        CRC error register diagnosis.
      cstruct    Generate slave PDO information in C language.
      data       Output binary domain process data.
      debug      Set the master's debug level.
      domains    Show configured domains.
      download   Write an SDO entry to a slave.
      eoe        Display Ethernet over EtherCAT statictics.
      foe_read   Read a file from a slave via FoE.
      foe_write  Store a file on a slave via FoE.
      graph      Output the bus topology as a graph.
      master     Show master and Ethernet device information.
      pdos       List Sync managers, PDO assignment and mapping.
      reg_read   Output a slave's register contents.
      reg_write  Write data to a slave's registers.
      rescan     Rescan the bus.
      sdos       List SDO dictionaries.
      sii_read   Output a slave's SII contents.
      sii_write  Write SII contents to a slave.
      slaves     Display slaves on the bus.
      soe_read   Read an SoE IDN from a slave.
      soe_write  Write an SoE IDN to a slave.
      states     Request application-layer states.
      upload     Read an SDO entry from a slave.
      version    Show version information.
      xml        Generate slave information XML.

Real-time Edge also provides a systemd service to run IGH EtherCAT daemon as a system service.

# systemctl enable  ethercat
# systemctl start  ethercat

Also the below commands are used to stop or disable this service:

# systemctl stop  ethercat 
# systemctl disable  ethercat

5.1.6 real-time-edge-servo stack
real-time-edge-servo is a CiA402 (also referred to as DS402) profile framework based on Igh CoE interface (An EtherCAT
Master stack, see EtherCAT section for details). It abstracts the CiA 402 profile and provides an easily-usable API for the
Application developer.

The real-time-edge-servo project consists of a basic library libnservo and several auxiliary tools.

NXP Semiconductors
Protocols

Real-time Edge Software User Guide, Rev. 2.1, 15-Dec-2021
User Guide 186 / 269



The application developed with libnservo is flexible enough to adapt to the changing of CoE network by modifying the xml config
file, which is loaded when the application starts. The xml config file describes the necessary information, including EtherCAT
network topology, slaves configurations, masters configurations and all axles definitions.

The stack has been tested on below CoE servo production: DELTA ASDA-B3, HCFA SV-X6EB and SV-X3EB,

Just Motion Control 2HSS458-EC.

5.1.6.1 CoE network

A typical CoE network is shown in the figure below:

Figure 40. CoE network

There are three CoE servos on this network and we name them slave x as the position they are. Each CoE servo could have more
then one axle. The libnservo then initiates the CoE network and encapsulates the detail of network topology into axle nodes. So
the developer could focus on the each axle operation without taking care of the network topology.

5.1.6.2 Libnservo architecture

real-time-edge-servo is running on top of Igh EtherCAT stack. And the Igh stack provides CoE communication mechanisms -
Mailbox and Process Data. Using these mechanisms, real-time-edge-servo could access the CiA Object Dictionary located on
CoE servo.
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Figure 41. Libnservo architecture

Control task initiates the master, all slaves on the CoE network and registers all PDOs to Igh stack, then constructs a data structure
to describe each axle. Finally, the control task creates a task to run the user task periodically.

5.1.6.3 real-time-edge-servo Xml configuration

This section focuses on how the xml config file describes a CoE network.

The skeleton of XML config is shown as in figure below:

<?xml version="1.0" encoding="utf-8"?>
<Config  Version="1.2">
    <PeriodTime>#10000000</PeriodTime>
    <MaxSafeStack>#8192</MaxSafeStack>
    <master_status_update_freq>#1</master_status_update_freq>
    <slave_status_update_freq>#1</slave_status_update_freq>
    <axle_status_update_freq>#1</axle_status_update_freq>
    <sync_ref_update_freq>#2</sync_ref_update_freq>
    <sched_priority>#90</sched_priority>
        <sched_policy>#SCHED_FIFO</sched_policy>
    <Masters>
        <Master>
            ...
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        <\Master>
        <Master>
            ...
        <\Master>
    <\Master>
    
    <Axles>
        <Axle>
            ...
        <\Axle>
        <Axle>
            ...
        <\Axle>
    <\Axles>    
</Config>

• All config elements must be inside the <Config> element.

• All config elements shown above are mandatory.

• The numerical value started with # means that it is a decimal value.

• The numerical value started with#x means that it is a hexadecimal value.

• <PeriodTime> element means that the period of control task is 10ms.

• <MaxSafeStack> means the stack size, and it is an estimated value. 8K is enough to satisfy most application.

• <master_status_update_freq> element means the frequency of masters status update. the value #x means update the
masters status every task period.

• <slave_status_update_freq> element means the frequency of slaves status update. the value #1 means update the slaves
status every task period.

• <axle_status_update_freq> element means the frequency of axles status update. the value #1 means update the axles status
every task period.

• <sync_ref_update_freq> element means the frequency of reference clock update. the value #2 means update the axles status
every two task period.

• <sched_policy > element specifies which schedule policy for user task.

• <sched_priority> element means the priority of the user task.

• <Masters> element could contain more than one Master element . For most cases, there is only one master on a host.

• <Axles> element could contain more than one Axle element, which is the developer really care about.

5.1.6.3.1 Master element

As CoE network section shown, the Master could has many slaves, so the Master element will consist of some Slave elements.

    <Master>
        <Master_index>#0</Master_index>
        <Reference_clock>#0</Reference_clock>
        <Slave  alias="#0" slave_position="#0">    
                ....
            </Slave>
            <Slave  alias="#1" slave_position="#1">    
                ....
            </Slave>
     </Master> 

• <Master_index> element means the index of the master. as mentioned above, for many cases, there is only one master, so
the value of this element is always #0.
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• <Reference_clock> element is used to indicate which slave will be used the reference clock.

• <Slave> element means there is a slave on this master.

5.1.6.3.1.1 Slave element

    <Slave  alias="#0" slave_position="#0">                
    <VendorId>#x66668888</VendorId>
    <ProductCode>#x20181302</ProductCode>
        <Name>2HSS458-EC</Name>
        <Emerg_size>#x08</Emerg_size>
    <WatchDog>
        <Divider>#x0</Divider>
        <Intervals>#4000</Intervals>
    </WatchDog>    
    <DC> 
        <SYNC SubIndex='#0'> 
            <Shift>#0</Shift>
        </SYNC>
    </DC>        
    <SyncManagers force_pdo_assign="#1">
        <SyncManager SubIndex="#0">
                ...
            </SyncManager>
        <SyncManager SubIndex="#1">
                ...
        </SyncManager>
    </SyncManagers>
    <Sdos>
        <Sdo>
            ...
        </Sdo>
        <Sdo>
        ...
        </Sdo>
    </Sdos>                    
    </Slave>

• alias attribute means the alias name of this slave.

• slave_position attribute means which position of the slave is on this network.

• <Name>element is the name of the slave.

• <Emerg_size> element is always 8 for all CoE device.

• <WatchDog> element is used to set the watch dog of this slave.

• <DC> element is used to set the sync info.

• <SyncManagers> element should contain all syncManager channels.

• <Sdos> element contains the default value we want to initiate by SDO channel.

5.1.6.3.1.1.1 SyncManagers Element
For a CoE device, there are generally four syncManager channels.

• SM0: Mailbox output

• SM1: Mailbox input

• SM2: Process data outputs
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• SM3: process data inputs

    <SyncManager SubIndex="#2">
        <Index>#x1c12</Index>
        <Name>Sync Manager 2</Name>
        <Dir>OUTPUT</Dir>
        <Watchdog>ENABLE</Watchdog>
        <PdoNum>#1</PdoNum>
        <Pdo SubIndex="#1">
            <Index>#x1600</Index>
            <Name>RxPdo 1</Name>                            
            <Entry SubIndex="#1">
                ...
            </Entry>
            <Entry SubIndex="#2">
                ...
            </Entry>
        </Pdo>
    </SyncManager>

• <Index> element is the object address.

• <Name> is a name of this syncmanager channel.

• <Dir> element is the direction of this syncmanager channel.

• <Watchdog> is used to set watchdog of this syncmanager channel.

• <PdoNum> element means how many PDO we want to set.

• <Pdo SubIndex="#1> element contains the object dictionary entry we want to mapped.

— <Index> PDO address.

— <Name> PDO name

— <Entry> the object dictionary we want to mapped.

The Entry element is used to describe a object dictionary we want to mapped.

    <Entry SubIndex="#1">
        <Index>#x6041</Index>
        <SubIndex>#x0</SubIndex>
        <DataType>UINT</DataType>
        <BitLen>#16</BitLen>
        <Name>statusword</Name>
    </Entry>

5.1.6.3.1.1.2 Sdo element
The Sdo element is used to set the default value of a object dictionary.

    <Sdo>    
        <Index>#x6085</Index>
        <Subindex>#x0</Subindex>
        <value>#x1000</value>
        <BitLen>#32</BitLen>
        <DataType>DINT</DataType>
        <Name>Quick_stop_deceleration</Name>
    </Sdo>

The element shown in figure above means set the Object Dictionary "6085" to 0x1000.
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5.1.6.3.2 Axle element

    <Axle master_index='#0' slave_position="#0" AxleIndex="#0" AxleOffset="#0">
        <Mode>pp</Mode>
        <Name>x-axle</Name>
        <reg_pdo>
        ...
        </reg_pdo>
        <reg_pdo>
        ...
        </reg_pdo>
    </Axle>

• master_index attribute indicates which master this axle belong to.

• slave_position attribute indicates which slave this axle belong to.

• AxleOffset attribute indicates which axle this axle is on the slave. As mentioned above, a CoE slave could have more then on
axle . If this axle is the second axle on the slave, set AxleOffset="#1" .

• <Mode> means which mode this axle will work on.

• <Name> is the name of this axle.

• <reg_pdo> is the PDO entry we want to register.

reg_pdo element

    <reg_pdo>    
        <Index>#x606c</Index>
        <Subindex>#x0</Subindex>
        <Name></Name>
    </reg_pdo>    

5.1.6.4 Test

5.1.6.4.1 Hardware preparation

• A CoE servo system

A CoE servo system includes a CoE servo and a motor. In this test, '2HSS458-EC' servo system shown as in figure below
will be used.

• A board supported by Real-time Edge

In this test, LS1046ARDB will be used.
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5.1.6.4.2 Software preparation

Make sure the below config options is selected when configuring Real-time Edge.

• igh-ethercat

• libxml2

• real-time-edge-servo

5.1.6.4.3 CoE network detection

• Igh configuration

— Configure the MASTER0_DEVICE field of the /etc/ethercat.conf

Set MASTER0_DEVICE to the MAC address to indicate which port the Igh uses .

— Configure DEVICE_MODULES="generic" of the /etc/ethercat.conf

• Using the command

 [root]# ethercatctl start

to start Igh service.

• Check CoE servo using below command.

[root]# ethercat slaves
0  0:0  PREOP  +  2HSS458-EC
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5.1.6.4.4 Start test

Note: The Position encoder resolution and Velocity encoder resolution of "2HSS458-EC" servo system are both 4000 . It means
the ratio of encoder increments per motor revolution.

• Profile Position mode test

— Start the test service as below.

[root]# nservo_run -f /root/nservo_example/hss248_ec_config_pp.xml &

— Check whether the status of the slave has been transferred from "PREOP" to "OP".

[root]# ethercat slaves
0  0:0  OP  +  2HSS458-EC

— Check whether the phase of the master has been transferred from "Idle" to "Operation".

[root]# ethercat master | grep Phase
  Phase: Operation

— Run below commands to test whether the motor works.

◦ Get current mode of axle 0.

[root]# nservo_client -a 0 -c get_mode
get_mode of the axle 0 : Profile Position Mode

◦ Get current position of axle 0.

[root]# nservo_client -a 0 -c get_position
get_current_position of the axle 0 : 0

◦ Get the profile speed of axle 0.

[root# nservo_client -a 0 -c get_profile_speed
get_profile_speed of the axle 0 : 800000

The value 800000 means 200 revolutions per second.

◦ Set profile speed of axle 0.

[root]# nservo_client -a 0 -c set_profile_speed:20000
set_profile_speed of the axle 0 : 20000

Set profile speed to 5 revolutions per second.

◦ Set target position of axle 0

[root]# nservo_client -c set_position:400000
set_position of the axle 0 : 400000

The value 400000 means that the motor will turn 100 rounds.

(target_position:400000 - current_position:0) / 4000 = 100

◦ Get current speed of axle 0

[root]# nservo_client -a 0 -c get_speed
get_speed of the axle 0 : 19999
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◦ Get target position of axle 0

[root]# nservo_client -a 0 -c get_target_position
get_target_position of the axle 0 : 400000

— Exit

[root]# nservo_client -c exit

• Profile Velocity mode test

— Start the test service as below.

[root]# nservo_run -f /root/nservo_example/hss248_ec_config_pv.xml &

— Check whether the status of the slave has been transferred from "PREOP" to "OP".

[root]# ethercat slaves
0  0:0  OP  +  2HSS458-EC       

— Check whether the phase of the master has been transferred from "Idle" to "Operation".

[root]# ethercat master | grep Phase
  Phase: Operation      

— Run below commands to test whether the motor works.

◦ Get current mode of axle 0.

[root]# nservo_client -a 0 -c get_mode
get_mode of the axle 0 : Profile Velocity Mode

◦ Set target speed of axle 0.

[root]# nservo_client -a 0 -c set_speed:40000
set_speed of the axle 0 : 40000

The value 40000 means that the motor will turn with 10 revolutions per second.

◦ Get current speed of axle 0.

[root]# nservo_client -a 0 -c get_speed
get_speed of the axle 0 : 32000

◦ Get target speed of axle 0.

[root]# nservo_client -a 0 -c get_target_speed
get_target_speed of the axle 0 : 40000

— Exit

[root]# nservo_client -c exit

5.2 FlexCAN and CAN Open
The following sections provide an introduction to the FlexCAN standard, details of the CAN bus, the Canopen communication
system, details of how to integrate FlexCAN with Real-time Edge, and running a FlexCAN application.

NXP Semiconductors
Protocols

Real-time Edge Software User Guide, Rev. 2.1, 15-Dec-2021
User Guide 195 / 269



5.2.1 Introduction
Both the LS1021A and LS1028A boards have the FlexCAN module. The FlexCAN module is a communication controller
implementing the CAN protocol according to the CAN 2.0 B protocol specification. The main sub-blocks implemented in the
FlexCAN module include an associated memory for storing message buffers, Receive (RX) Global Mask registers, Receive
Individual Mask registers, Receive FIFO filters, and Receive FIFO ID filters. A general block diagram is shown in the following
figure. The functions of these submodules are described in subsequent sections.

Figure 42. FlexCAN block diagram

5.2.1.1 CAN bus

CAN (Controller Area Network) is a serial bus system. A CAN bus is a robust vehicle bus standard designed to
allow microcontrollers and devices to communicate with each other in applications without a host computer. Bosch published
several versions of the CAN specification and the latest is CAN 2.0 published in 1991. This specification has two parts; part A is
for the standard format with an 11-bit identifier, and part B is for the extended format with a 29-bit identifier. A CAN device that
uses 11-bit identifiers is commonly called CAN 2.0A and a CAN device that uses 29-bit identifiers is commonly called CAN 2.0B. 

CAN is a multi-master serial bus standard for connecting Electronic Control Units [ECUs] also known as nodes. Two or more
nodes are required on the CAN network to communicate. The complexity of the node can range from a simple I/O device up to
an embedded computer with a CAN interface and sophisticated software. The node may also be a gateway allowing a standard
computer to communicate over a USB or Ethernet port to the devices on a CAN network. All nodes are connected to each other
through a two wire bus. The wires are a twisted pair with a 120 Ω (nominal) characteristic impedance.

High speed CAN signaling drives the CAN high wire towards 5 V and the CAN low wire towards 0 V when transmitting a dominant
(0), and does not drive either wire when transmitting a recessive (1). The dominant differential voltage is a nominal 2 V. The
termination resistor passively returns the two wires to a nominal differential voltage of 0 V. The dominant common mode voltage
must be within 1.5 to 3.5 V of common and the recessive common mode voltage must be within +/-12 of common.
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Figure 43. High speed CAN signaling

Figure 44. Base frame format

Figure 45. High speed CAN network

5.2.1.2 CANopen

CANopen is a CAN-based communication system. It comprises higher-layer protocols and profile specifications. CANopen has
been developed as a standardized embedded network with highly flexible configuration capabilities. Today it is used in various
application fields, such as medical equipment, off-road vehicles, maritime electronics, railway applications, or building automation.

CANopen provides several communication objects, which enable device designers to implement desired network behavior into
a device. With these communication objects, device designers can offer devices that can communicate process data, indicate
device-internal error conditions or influence and control the network behavior. As CANopen defines the internal device structure,
the system designer knows exactly how to access a CANopen device and how to adjust the intended device behavior.

• CANopen lower layers

CANopen is based on a data link layer according to ISO 11898-1. The CANopen bit timing is specified in CiA 301 and allows
the adjustment of data rates from 10 kbit/s to 1000 kbit/s. Although all specified CAN-ID addressing schemata are based on
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the 11-bit CAN-ID, CANopen supports the 29-bit CAN-ID as well. Nevertheless, CANopen does not exclude other physical
layer options.

• Internal device architecture

A CANopen device consists of three logical parts. The CANopen protocol stack handles the communication via the CAN
network. The application software provides the internal control functionality. The CANopen object dictionary interfaces the
protocol as well as the application software. It contains indices for all used data types and stores all communication and
application parameters.  The CANopen object dictionary is most important for CANopen device configuration and diagnostics.

• CANopen protocols

— SDO protocol

— PDO protocol

— NMT protocol

— Special function protocols

— Error control protocols

The following figure shows the CANopen architecture.

Figure 46. CANopen architecture
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5.2.2 FlexCAN integration in Real-time Edge
For LS1021A, there are four CAN controllers. Two CAN controllers (CAN3 and CAN4) are used to communicate with each other.
CAN4 is assigned to core0, which runs Linux and CANOpen as master node, whereas CAN3 is assigned to core1, which runs the
BareMetal and CANOpen as slave node. For LS1028A, there are two CAN controllers, CAN1 and CAN2, and both of them are
used in LS1028ARDB board.

5.2.2.1 LS1021AIOT CAN resource allocation

This section describes steps for assigning CAN4 to Linux and CAN3 to BareMetal core, and how to change or configure it. These
examples assume that CAN1 and CAN2 are not enabled, and the pins of CAN1 and CAN2 are used by other IPs.

1. Assigning CAN4 to Linux

In Linux, the port is allocated through the DTS file. DTS file path is industry-linux/arch/arm/boot/dts/ls1021a-
iot.dts. Content related to CAN ports is as follows:

    /* CAN3 port */
        &can2
            {
               status = " disabled ";
            };
    /* CAN4 port */
        &can3
            {
                status = "okay";
            };

2. Assigning CAN3 to BareMetal

In BareMetal, the port is allocated through the flexcan.c file. The flexcan.c path is industry-uboot/drivers/flexcan/
flexcan.c. In this file, users should define the following variables:

a. struct can_bittiming_t flexcan3_bittiming = CAN_BITTIM_INIT(CAN_500K);

 
Set bit timing and baud rate (500K) of the CAN port.

  NOTE  

b. struct can_ctrlmode_t flexcan3_ctrlmode

struct can_ctrlmode_t flexcan3_ctrlmode =
{
    .loopmode = 0, /* Indicates whether the loop mode is enabled */
    .listenonly = 0, /* Indicates whether the only-listen mode is enabled */ 
    .samples = 0, 
    .err_report = 1, 
}; 

c. struct can_init_t flexcan3

struct can_init_t flexcan3 = 
{
    .canx = CAN3, /* Specify CAN port */
    .bt = &flexcan3_bittiming,
    .ctrlmode = &flexcan3_ctrlmode,
    .reg_ctrl_default = 0,
    .reg_esr = 0
};

d. Optional parameters
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• CAN port

#define CAN3 ((struct can_module *)CAN3_BASE)
#define CAN4 ((struct can_module *)CAN4_BASE)

• Baud rate

#define CAN_1000K 10
#define CAN_500K 20
#define CAN_250K 40
#define CAN_200K 50
#define CAN_125K 80
#define CAN_100K 100
#define CAN_50K 200
#define CAN_20K 500
#define CAN_10K 1000
#define CAN_5K 2000

5.2.2.2 Introducing the function of CAN example code

CAN example code supports the CANopen protocol. It mainly implements three parts of functions: network manage function
(NMT protocol), service data transmission function (SDO protocol), and process data transmission function (PDO protocol). NMT
protocol can manage and monitor slave nodes, include heart beat message. SDO protocol can transmit single or block data. The
PDO protocol can transmit process data that requires real time.

CAN example calls the CANopen interfaces, described in the table below:

Table 63. CAN Net APIs and their description

API name (type) Description

UNS8 canReceive_driver (CAN_HANDLE fd0, Message * m) SocketCAN receives CAN messages

• fd0 – SocketCAN handle

• m – Receive buffer

UNS8 canSend_driver (CAN_HANDLE fd0, Message const
* m)

SocketCAN sends CAN messages

• fd0 – SocketCAN handle

• m – CAN message to be sent

void setNodeId(CO_Data* d, UNS8 nodeId) Set this node id value.

• d – object dictionary

• nodeId – id value (up to 127)

UNS8 setState(CO_Data* d, e_nodeState newState) Set node state

• d – object dictionary

• newState – The state that needs to be set

Returns 0 if OK, > 0 on error

void canDispatch(CO_Data* d, Message *m) CANopen handles data frames that CAN receive.

Table continues on the next page...
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Table 63. CAN Net APIs and their description (continued)

API name (type) Description

• d – object dictionary

• m – Received CAN message

void timerForCan(void) CANopen virtual clock counter.

UNS8 sendPDOrequest (CO_Data * d, UNS16 RPDOIndex) Master node requests slave node to feedback specified data.

• d – object dictionary

• RPDOIndex – index value of specified data

UNS8 readNetworkDictCallback (CO_Data* d, UNS8
nodeId, UNS16 index, UNS8 subIndex, UNS8 dataType,
SDOCallback_t Callback, UNS8 useBlockMode)

The master node gets the specified data from the slave node.

• d – object dictionary

• nodeId – the id value of slave node

• index – the index value of the specified data

• subIndex – the subindex value of the specified data

• dataType – the data type of the specified data

• Callback – callback function

• useBlockMode – specifies whether it is a
block transmission

UNS8 writeNetworkDictCallBack (CO_Data* d, UNS8 nodeId,
UNS16 index, UNS8 subIndex, UNS32 count, UNS8 dataType,
void *data, SDOCallback_t Callback, UNS8 useBlockMode)

The master node sets the specified data to the slave node.

• d – object dictionary

• nodeId – the id value of slave node

• index – the index value of the specified data

• subIndex – the subindex value of the specified data

• count – the length of the specified data

• dataType – the data type of the specified data

• Callback – callback function

• useBlockMode – specifies whether it is a
block transmission

5.2.3 Running a CAN application
The following sections describe the hardware and software preparation steps for running a CAN application. The hardware
preparation is described separately for the LS1021A-IoT and LS1028ARDB, but the sections Compiling the CANopen-app
binary for the master node, Running the CANopen application, and Running the SocketCAN commands are applicable to both
LS1021A-IoT and LS1028A platforms.

5.2.3.1 Hardware preparation for LS1021-IoT

For LS1021-IoT, the list of hardware required for implementing the FlexCAN demo is as follows:

• LS1021A-IoT boards

• Two CAN hardware interfaces (for example, CAN3 and CAN4 for LS1021A-IoT)
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• Two CAN transceivers (for example: TJA1050 )

Figure 47. Hardware diagram for the FlexCan demo

 
— Line1 and line3 are 5.0 V.

— Line2 and line4 are GND.

— Line5 is CAN3 TX.

— Line6 is CAN3 RX.

— Line7 is CAN4 RX.

— Line8 is CAN4 TX.

  NOTE  
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5.2.3.2 Hardware preparation for LS1028ARDB

For LS1028ARDB, below hardware is required:

• LS1028ARDB board

• Two cables to connect CAN1 and CAN.

The hardware connection diagram is as shown in the following figure

Figure 48. Physical connection for CAN using LS1028ARDB

5.2.3.3 Compiling the CANopen-app binary for the master node

This section describes the procedure for compiling the CANopen-app binary for the master node, for both LS1021A and
LS1028A platforms.

CANopen application's name is CANopen-app. Perform the steps listed below to compile Canopen-app as linux command to the
target/usr/bin directory.

1. Configure cross-toolchain on user host environment.

2. Use the commands below:

$ cd yocto-real-time-edge/meta-real-time-edge
# open file: ./conf/distro/include/qoriq-baremetalenv.inc
# replace "ls1021aiot_baremetal_defconfig" with "ls1021aiot_baremetal_can_defconfig"
$ bitbake nxp-real-time-edge-baremetall

3. The generated Real-time Edge image file is in the tmp/deploy/images/ls1021aiot/ directory.

4. Download the image nxp-image-real-time-edge-ls1021aiot.wic.bz2 and decompress it and flash it to the SD card:
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In U-Boot mode, first run the tftp command for downloading nxp-image-real-time-edge-ls1021aiot.wic to the buffer. Then,
run the mmc command for downloading the nxp-image-real-time-edge-ls1021aiot.wic to SD card.

 
• The following options are displayed only when the canfestival option is set to Y.

• Linux uses the SocketCAN interface, so the driveroption selects the socket.

• The following additional configure options can be configured in the config.h file of CANopen:

Parameter description:

— --SDO_MAX_LENGTH_TRANSFER: Sets buffer size of SDO protocol.

— -- SDO_BLOCK_SIZE: Sets the maximum number of frames that can be sent by SDO block
transport protocol.

— --SDO_MAX_SIMULTANEOUS_TRANSFERS: Sets the number of SDO modules.

• Install binary application to filesystem, if theinstall examples option is set to Y.

  NOTE  

5.2.3.4 Running the CANopen application

This section describes the procedure for running the CANopen-app application. Only the LS1021A platforms support
this application.

1. First, boot the LS1021A-IoT board.

2. Waiting for the BareMetal core to output below information:

Note: the CANopen protocol starts to run!
=>

3. Then, run the CANopen-app command in any directory in Linux prompt. While executing this command, first run the
test code.

4. After the test code is completed, user can implement the required instructions. The command CANopen-app execution
process steps are described below:

a. First, indicate whether the CAN interface has opened successfully. All commands are dynamically registered. Then,
indicate whether the command was registered successfully.

• Command registration log

Command Registration Log:
[root@]# CANopen-app
[   80.899975] IPv6: ADDRCONF(NETDEV_CHANGE): can0: link becomes ready
Note: open the CAN interface successfully!
"can_quit" command: register OK!
"setState" command: register OK!
"showPdo" command: register OK!
"requestPdo" command: register OK!
"sdo" command: register OK!
"" command: register OK!
"test_startM" command: register OK!
"test_sdoSingle" command: register OK!
"test_sdoSingleW" command: register OK!
"test_sdoBlock" command: register OK!
"test_showPdoCyc" command: register OK!
"test_showpdoreq" command: register OK!
"test_requestpdo" command: register OK!

b. There are nine test code in total, tests 1 to 9. Test code details are shown in the test log.
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• Test code log “---test---” indicates that the test code begins.

• Firstly, the execution rights of the SDO and PDO protocol are explained.

• The tests 1~4 are SDO protocol test code. After starting the CANopen master node, it automatically enters into
initialization and pre-operation mode.

• The test5 is a test code that master node enters the operation mode and starts all slave nodes.

• The tests 6~9 are PDO protocol test code.

Test Code Log:
------------------------- test ---------------------------
Note: Test code start execute...
      SDO protocol is valid in preoperation mode, but PDO protocol is invalid!
      SDO and PDO protocol are both valid in operation mode!
      Console is invalid when testing!
----------------------------------------------------------
Note: test1--Read slave node single data by SDO.
Note: master node initialization is complete!
Note: master node entry into the preOperation mode!
Note: Alarm timer is running!
Note: slave node "0x02" entry into "Initialisation" state!
----------------------------------------------------------
Note: test2--Write 0x2CD5 to slave node by SDO.
Note: Master write a data to 0x02 node successfully.
----------------------------------------------------------
Note: test3--Read slave node single data by SDO again.
Note: reveived data is 0x2CD5
----------------------------------------------------------
Note: test4--Read slave node block data by SDO.
---------------- text ------------------
Note: reveived string ==>
CANopen is a CAN-based communication system.
It comprises higher-layer protocols and profile specifications.
CANopen has been developed as a standardized embedded network with highly flexible 
configuration capabilities.
It was designed originally for motion-oriented machine control systems, such as 
handling systems.
Today it is used in various application fields, such as medical equipment, off-road 
vehicles, maritime electronics, railway applications, or building automation.

----------------------------------------
----------------------------------------------------------
Note: test5--Master node entry operation mode, and start slave nodes!
Note: master node entry into the operation mode,and start all slave nodes!
----------------------------------------------------------
Note: test6--Master node show requested PDO data.
Note: Rpdo4 data is "       "
----------------------------------------------------------
Note: test7--Master node request PDO data.
----------------------------------------------------------
Note: test8--Master node show requested PDO data.
Note: Rpdo4 data is "require"
Note: slave node "0x02" entry into "Operational" state!
----------------------------------------------------------
Note: test9--Master node show received cycle PDO data.
Note: Rpdo2 data is "   cycle"
----------------------------------------------------------
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tests 1 to 9 are not commands.

  NOTE  

c. After the test code is executed, it automatically prints the list of commands. Num00~06 are normal commands. After
executing these instructions without parameters, the instruction usage is displayed. Num08~14 are test commands.
All test commands except num10 have no parameters. Argument of Num10 is a 16-bit integer.

• Now the user can execute any command in the command list.

Command List

Command List:
-------------------------------------------------------------------------
 num   |       command        |                introduction
-------------------------------------------------------------------------
 00    | ctrl_quit            |  console thread exit!
-------------------------------------------------------------------------
 01    |  help                |  command list
-------------------------------------------------------------------------
 02    | can_quit           |  exit CANopen thread
-------------------------------------------------------------------------
 03    |  setState           |  set the CANopen node state
-------------------------------------------------------------------------
 04    |  showPdo           |  show the data of RPDO
-------------------------------------------------------------------------
 05    |  requestPdo       |  request the data of RPDO
-------------------------------------------------------------------------
 06    | sdo           |  read/write one entry by SDO protocol
-------------------------------------------------------------------------
 07    |                     |  
-------------------------------------------------------------------------
 08    |  test_startM      |  test -- Start master
-------------------------------------------------------------------------
 09    |  test_sdoSingle      |  test -- Read slave node single data
-------------------------------------------------------------------------
 10    |  test_sdoSingleW     |  test -- Write slave node single data
-------------------------------------------------------------------------
 11    |  test_sdoBlock       |  test -- Read slave node block data
-------------------------------------------------------------------------
 12    |  test_showPdoCyc     |  test -- Show cycle PDO data
-------------------------------------------------------------------------
 13    |  test_showpdoreq     |  test -- Show requested PDO data
-------------------------------------------------------------------------
 14    |  test_requestpdo     |  test -- Request PDO data
-------------------------------------------------------------------------
Note: User can send command by console!
Note: Test code execution is complete!

Example: The following example shows the usage log after running the sdo command without any parameters.

SDO Command:
sdo
usage: sdo -type index subindex nodeid data
       type = "r"(read), "w"(write), "b"(block)
       index = 0~0xFFFF,unsigned short
       subindex = 0~0xFF,unsigned char
       nodeid = 1~127,unsigned char
       data = 0 ~ 0xFFFFFFFF
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5.2.3.5 Running the SocketCAN commands

This section describes the steps for running SocketCAN commands that can be performed on either of the boards (LS1021A-IoT
or LS1028ARDB). These commands are executed on Linux. The standard SocketCAN commands are the following:

1. Open the can0 port.

$ ip link set can0 up

2. Close the can0 port.

$ ip link set can0 down

3. Set the baud rate to 500K for the can0 port

$ ip link set can0 type can bitrate 500000

4. Set can0 port to Loopback mode.

$ ip link set can0 type can loopback on 

5. Send a message through can0. 002 (HEX) is node id, and this value must be 3 characters. 2288DD (HEX) is a message,
and can take a value up to 8 bytes.

$ cansend can0 002#2288DD

6. Monitor can0 port and wait for receiving data.

$ candump can0 

7. See can0 port details.

$ ip -details link show can0

 
The third and fourth commands are valid when the state of can0 port is closed.

  NOTE  

5.2.3.6 Testing CAN bus

Below is the sample code for testing the CAN bus on LS1028ARDB.

[root]# ip link set can0 down
[root]# ip link set can1 down
[root]# ip link set can0 type can loopback off
[root]# ip link set can1 type can loopback off
[root]# ip link set can0 type can bitrate 500000
[root]# ip link set can1 type can bitrate 500000
[root]# ip link set can0 up
[root]# ip link set can1 up
[root]# candump can0 &
[root]# candump can1 &
[root]# cansend can0 001#224466
  can0  001   [3]  22 44 66
[root]#   can1  001   [3]  22 44 66
[root]# cansend can1 001#224466
  can0  001   [3]  22 44 66
  can1  001   [3]  22 44 66
[root]# cansend can1 001#113355
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  can0  001   [3]  11 33 55
  can1  001   [3]  11 33 55
[root]# cansend can0 000#224466
  can0  000   [3]  22 44 66

5.3 OPC UA
OPC (originally known as “OLE for Process Control”, now “Open Platform Communications”) is a collection of multiple
specifications, most common of which is OPC Data Access (OPC DA).

OPC Unified Architecture (OPC UA) was released in 2010 by the OPC Foundation as a backward incompatible standard to OPC
Classic, under the name of IEC 62541.

OPC UA has turned away from the COM/DCOM (Microsoft proprietary technologies) communication model of OPC Classic, and
switched to a TCP/IP based communication stack (asynchronous request/response), layered into the following:

• Raw connections

• Secure channels

• Sessions

5.3.1 OPC introduction
OPC UA defines:

• The transport protocol for communication (that can take place over HTTP, SOAP/XML or directly over TCP).

• A set of 37 'services' that run on the OPC server, and which clients call into, via an asynchronous request/response
RPC mechanism.

• A basis for creating information models of data using object-oriented concepts and complex relationships.

The primary goal of OPC is to extract data from devices in the easiest way possible.

The Information Model provides a way for servers to not only provide data, but to do so in the most self-explanatory and intuitive
way possible.

 
Further references to 'OPC' in this document will imply OPC UA. OPC Classic is not discussed in this document.

  NOTE  

Following are the typical scenarios for embedding an OPC-enabled device into a project:

• Manually investigate (“browse”) the server’s Address Space looking for the data user need using a generic, GUI client (such
as UaExpert from Unified Automation, or the FreeOpcUa covered in this chapter).

• Using References and Attributes, understand the format it is in, and the steps that may be needed to convert the data.

• Have a custom OPC client (integrated into the application) subscribe directly to data changes of the node that contains the
desired data.

In a typical use case:

• The OPC server runs near the source of information (in industrial contexts, this means near the physical process – for
example, on a PLC on a plant floor).

• Clients consume the data at runtime (for example, logging into a database, or feeding it into another industrial process).

OPC-enabled applications can be composed: an industrial device may run an OPC client and feed the collected data into another
physical process, while also exposing the latter by running an OPC server.
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5.3.2 The node model
Data in an OPC server is structured in Nodes. The collection of all nodes that an OPC server exposes to its clients is known as
an Address Space. Some nodes have a predefined meaning, while others have meaning that is unique to the Information Model
of that specific OPC server.

Every Node has the following Attributes:

• an ID (unique)

• a Class (what type of node it is)

• a BrowseName (a string for machine use)

• a DisplayName (a string for human use)

Figure 49. OPC UA address space

Shown on the left-hand side of the figure is the Address Space (collection of information that the server makes available to clients)
of the OPC server found at opc.tcp://192.168.15.4:16664.

Selected is a node with NodeID ns=1;i=118, BrowseName=1:SJA1105 and of NodeClass Object.

The full path of the selected node is 0:Root,0:Objects,1:SJA1105.

5.3.3 Node Namespaces
Namespaces are the means for separating multiple Information Models present in the same Address Space of a server.

• Nodes that do not have the ns= prefix as part of the NodeID have an implicit ns=0; prefix (are part of the namespace zero).
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• Nodes in namespace * 0 have NodeID’s pre-defined by the OPC UA standard. For example, the 0:Server object, which holds
self-describing information (capabilities, diagnostics, and vendor information), has a predefined NodeID of ns=0;i=2253;.

It is considered a good practice to not alter any of the nodes exposed in the namespace * 0.

5.3.4 Node classes
OPC nodes have an inheritance model, based on their NodeClass.

There are eight base node classes defined by the standard:

• Object

• Variable

• Method

• View

• ObjectType

• VariableType

• ReferenceType

• DataType

All nodes have the same base Attributes (inherited from the Node object), plus additional ones depending on their NodeClass.

5.3.5 Node graph and references
It may appear that nodes are only chained hierarchically, in a simple parent-child relationship. However, in reality nodes are
chained in a complex directed graph, through References to other nodes.

Figure 50. Hierarchy of the standard ReferenceTypes, defined in Part 3 of the OPC UA specification (Image taken
from www.open62541.org)

In OPC, even ReferenceTypes are Nodes, and as such are structured hierarchically, as can be seen in the figure above.

The definitions of all OPC ReferenceTypes can be found under the 0:Root,0:Types,0:ReferenceTypes path.

The semantics of OPC references can be enriched by creating custom ReferenceType nodes.
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Figure 51. The 'Attributes' and 'References' views of the FreeOpcUa Client populated with details of the RGMII4 node

Selected in the Address Space is node ns=1;i=197. Conceptually, this represents one of the five Ethernet ports of the SJA1105
TSN switch.

Its NodeClass is Object, but it has a reference of type HasTypeDefinition to NodeID ns=1;i=117 which is 1:EthPortType. For
this reason, the 1:RGMII4 node is of the custom ObjectType EthPortType.

5.3.6 Open62541
Real-time Edge integrates the Open62541 software stack (https://open62541.org/). This supports both server-side and client-side
API for OPC UA applications. Only server-side capabilities of open62541 are being shown here.

Open62541 is distributed as a C-based dynamic library (libopen62541.so). The services run on pthreads, and the application code
runs inside an event loop.

Enable open62541 in Real-time Edge file ./recipes-nxp/packagegroups/packagegroup-real-time-edge-industrial.bb":

 libopen62541 \

In order to install Open62541 example application, file "meta-real-time-edge/conf/distro/include/libopen62541.inc" has been
included in distro configuration.

The following Open62541 example applications are included in the target image:

• open62541_access_control_client

• open62541_access_control_server

• open62541_client

• open62541_client_async
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• open62541_client_connect

• open62541_client_connectivitycheck_loop

• open62541_client_connect_loop

• open62541_client_subscription_loop

• open62541_custom_datatype_client

• open62541_custom_datatype_server

• open62541_server_ctt

• open62541_server_inheritance

• open62541_server_instantiation

• open62541_server_loglevel

• open62541_server_mainloop

• open62541_server_nodeset

• open62541_server_repeated_job

• open62541_tutorial_client_events

• open62541_tutorial_client_firststeps

• open62541_tutorial_datatypes

• open62541_tutorial_server_datasource

• open62541_tutorial_server_firststeps

• open62541_tutorial_server_method

• open62541_tutorial_server_monitoreditems

• open62541_tutorial_server_object

• open62541_tutorial_server_variable

• open62541_tutorial_server_variabletype

5.3.7 OPC UA Pub/Sub over TSN
This section introduces OPC UA PubSub and demonstrates how TSN can be used to make deterministic and reliable transmission
of OPC UA PubSub traffic as well as PTP traffic on a network co-existing with best effort traffic.

5.3.7.1 OPC UA Pub/Sub Introduction

The 14th part of the OPC UA specification defines the OPC UA PubSub communication model. It provides an OPC UA Publish
Subscribe model which complements the Client/Server communication model.

In PubSub, the participating OPC UA applications can assume the roles Publishers and Subscribers. Publishers are the sources
of data, while Subscribers consume that data. Communication in PubSub is message-based. Publishers send messages to a
Message Oriented Middleware, without knowledge of what, if any, Subscribers there may be. Similarly, Subscribers express
interest in specific types of data, and process messages that contain this data, without knowledge of what Publishers there are.

To cover a large number of use cases, OPC UA PubSub supports two largely different Message Oriented Middleware variants.
These are:

1. A broker-based form, where the core component of the Message Oriented Middleware is a message Broker. Subscribers
and Publishers use standard messaging protocols like AMQP or MQTT to communicate with the Broker.

2. A broker-less form, where the Message Oriented Middleware is the network infrastructure that is able to route datagram-
based messages. Subscribers and Publishers use datagram protocols like UDP or raw Ethernet as transport protocol. In
this form, the data sources (Publishers) and the data consumers (Subscribers) join a multicast group. Any data sent by
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a source to the group goes to all consumers subscribed to the same group. Joining is trivial in Ethernet (Layer 2): the
network broadcasts multicast frames everywhere, leaving it to receivers to decide whether to pick up the frame based on
the destination address. The OPC UA PubSub sample applications in this section will use this form.

Compared with client-server, the Publishers and Subscribers are decoupled. The number of Subscribers receiving data from a
Publisher does not influence the Publisher. This makes PubSub suitable for applications where location independence and/or
scalability are required.

One example use case for PubSub is generating logs to multiple systems. For example, sensors or actuators can write logs to a
monitoring system, an HMI, an archive application for later querying, and so on. In this case, the data is sent cyclically.

5.3.7.2 OPC UA PubSub over TSN

In general, OPC UA operates at the upper layers of the OSI reference model for networking, whereas TSN is a Layer 2 protocol.
TSN adds real-time capability to standard Ethernet. Operating at different layers, TSN and OPC UA PubSub complement each
other, yielding a complete communication stack for the industrial internet of things. OPC UA standardizes the protocols by which
applications exchange data and TSN enables this exchange to meet factories’ timing requirements.

One of the key things is to define a mechanism for OPC UA nodes to tell the TSN layers how to prioritize data streams. This
cross-layer control is essential to enabling operations technology (OT) using the OPC UA framework to get the data they need
when they need it. It also enables time-sensitive OT to coexist on the same network as information technology (IT) functions. In
this section, standard Linux tools (i.e. tc) are used to map packets from different sources to different traffic classes in order to use
TSN features like IEEE 802.1AS and IEEE 802.1Qbv.

5.3.7.3 OPC UA PubSub Components

The following figure shows the different components of OPC UA PubSub and their relation to each other. The WriterGroup,
DataSetWriter, and PublishedDataSet components define the data acquisition for the DataSets, the message generation and the
sending on the Publisher side. These parameters need to be known on the Subscriber side to configure DataSetReaders to filter
and process DataSetMessages.

1. PubSubConnection: It represents settings needed for the transport protocol. One connection can have a number of writer
groups and reader groups. A PubSub connection defines the used protocol and the network address for sending or
receiving messages. In the case of using raw Ethernet as transport protocol, the network address can be an MAC multicast
address. The Ethernet frame uses EtherType 0xB62C to encapsulate UADP (UA Datagram Protocol) NetworkMessages
as payload without IP or UDP headers.
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2. PublishedDataSet: It contains the collection of the published fields.

3. WriterGroup: Each writer group can have one or more DataSetWriters. A WriterGroup defines the timing (that is, publishing
interval) and header settings for PubSub NetworkMessages sent by a Publisher.

4. DataSetWriter: It is the glue between the WriterGroup and the PublishedDataSet. Each DataSetWriter is bound to a single
PublishedDataSet. A PublishedDataSet can have multiple DataSetWriters.

5. ReaderGroup: It is used to group a list of DataSetReaders and contains a few shared settings for them.

6. DataSetReader: It is the counterpart to a DataSetWriter on the Subscriber side. It defines the filter for the selection of the
Publisher and DataSetWriter of interest. The parameters for the filter include the publisher identifier, WriterGroup identifier
and DataSetWriter identifier.

7. SubscribedDataSet: Its parameters define the processing of the decoded DataSet in the Subscriber for one
DataSetReader. The default processing is a mapping to target variables in the Subscriber address space.

5.3.7.4 OPC UA PubSub Sample Application

There are two sample applications for demonstrating OPC UA PubSub on NXP development boards. One acts as Publisher and
the other acts as Subscriber.

On the Publisher:

1. A PubSubConnection is created with the required parameters passed in via command line arguments. These includes
the network address URL (e.g. opc.eth://01-00-5E-00-00-01) and the Ethernet interface (e.g. eth1 for ENET2 on i.MX8M
Plus EVK). Also the Publisher ID is hard-coded to 2234.

2. A PublishedDataSet is added with several DataSetFields added. One of the DataSetFields is the CPU temperature
measured by the thermal monitoring unit on i.MX8M Plus. Another DataSetField is the Tx HW timestamp of the
published packet.

3. A WriteGroup is added with WriterGroup ID hard-coded to 100 and the publishing interval set to 1 second. The
Publisher will transmit one packet per second cyclically. Each cycle aligns with whole second using Linux system clock
CLOCK_REALTIME.

4. A DataSetWriter is created with DataSetWriter ID hard-coded to 62541.

On the Subscriber:

1. A PubSubConnection is created with the required parameters passed in via command line arguments. These includes
the network address URL (e.g. opc.eth://01-00-5E-00-00-01) and the Ethernet interface (e.g. eth1 for ENET2 on i.MX8M
Plus EVK). Note that the Subscriber uses the same network address URL as the Publisher.

2. A ReaderGroup is added. Note that the Subscriber also runs cyclically with 1 second cycle time to receive packet. Each
cycle aligns with whole second with 500us offset to account for the application delay on the publisher and the path delay
from publisher to subscriber. Linux system clock CLOCK_REALTIME is used.

3. A DataSetReader is added and configured with Publisher ID of 2234, WriterGroup ID of 100 and DataSetWriter ID
of 62541. Note that all these parameters match the corresponding settings on the Publisher in order to filter the
DataSetMessages to be processed by the DataSetReader.

4. A SubscribedDataSet is added with a list of targetVariables. The targetVariables corresponds to the DataSetFields in
the PublishedDataSet on the Publisher.

5. Besides the above, the Rx HW timestamp of the received packet is taken and the path delay is calculated by subtracting
the Rx HW timestamp taken on the Subscriber from the Tx HW timestamp taken on the Publisher for the same packet.
To achieve this, both the Publisher and the Subscriber must have synchronized time. This is achieved by running gPTP.

Both the Publisher and the Subscriber also runs a OPC UA server. User can use a OPC UA client running on a host PC to browse
the server’s Address Space on either the Publisher or the Subscriber.
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5.3.7.5 OPC UA PubSub Sample Application over TSN

Hardware Requirements:

1. Two or three i.MX8M Plus EVK boards

2. One LS1028ARDB board

Software Requirements:

1. linuxptp package which provides tools like ptp4l, phc2sys, phc_ctl and hwstamp_ctl.

2. iproute2 package which provides tools like tc.

3. Open source OPC UA stack open62541 compiled as shared library (libopen62541.so).

4. OPC UA PubSub sample application opcua_pubsub_publisher and opcua_pubsub_subscriber under /home/
root/open62541_example.

All the above software tools and binaries are already in the rootfs.

5.3.7.5.1 Case #1: two i.MX8M Plus EVK connected back-to-back

A simple setup could be made by connecting two i.MX8M Plus EVK back-to-back via ENET2 as shown in the following block
diagram. One i.MX8M Plus EVK (Board A) acts as Publisher and the other (Board B) acts as Subscriber. Also the ENET1 interface
on both boards is connected to LAN (i.e. office network). Note that the actual device name in Linux may change.

• On both boards, bring up ENET2 (i.e. eth1):

# ip link set eth1 up
# ethtool eth1

Command ethtool eth1 should show that Link detected: yes, otherwise check the hardware connection.
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• On the Publisher (i.MX8M Plus EVK - Board A), add one tc filter rule to match OPC UA PubSub packet (EtherType 0xb62c)
on ENET2 (i.e. eth1) and modify SKB priority to 2.

# tc qdisc add dev eth1 clsact
# tc filter add dev eth1 egress prio 1 u32 match u16 0xb62c 0xffff at -2 action skbedit priority 2
# tc filter show dev eth1 egress

• On both boards, run ptp4l for PTP time synchronization and run phc2sys to synchronize PHC clock to Linux system
clock (CLOCK_REALTIME).

Also on the Subscriber (i.MX8M Plus EVK - Board B), use hwstamp_ctl to change the RX hardware timestamp setting to 'time
stamp any incoming packet' in order to get the RX hardware timestamp of the packets transmitted by the Publisher.

On the Publisher (i.MX8M Plus EVK - Board A):

# cp /etc/ptp4l_cfg/gPTP.cfg .
# sed -i 's/priority1.*248/priority1\t\t246/g' ./gPTP.cfg
# ptp4l -i eth1 -p /dev/ptp1 -f ./gPTP.cfg -m > /var/log/ptp4l.log 2>&1 &
# phc2sys -s eth1 -O 0 -S 0.00002 -m > /var/log/phc2sys.log 2>&1 &

On the Subscriber (i.MX8M Plus EVK - Board B):

# ptp4l -i eth1 -p /dev/ptp1 -f /etc/ptp4l_cfg/gPTP.cfg -m > /var/log/ptp4l.log 2>&1 &
# phc2sys -s eth1 -O 0 -S 0.00002 -m > /var/log/phc2sys.log 2>&1 &
# hwstamp_ctl -i eth1 -r 1

On both boards, we can observe the logs of ptp4l and phc2sys to check the time synchronization progress by below
commands: (It is advised to SSH to both boards to check the logs of ptp4l and phc2sys so that we can continue to execute
other commands on the serial console).

# tail -f /var/log/ptp4l.log
# tail -f /var/log/phc2sys.log

On the Subscriber, the rms value reported by ptp4l shows the root mean square of the time offset between the PHC and the
GM clock. If ptp4l consistently reports rms lower than 100 ns, the PHC is synchronized. Example ptp4l log below:
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On both the Publisher and the Subscriber, the offset information reported by phc2sys shows the time offset between the PHC
and the system clock (CLOCK_REALTIME). If phc2sys consistently reports offset lower than 100 ns, the System clock is
synchronized. Example phc2sys log below:

After establishing the time synchronization successfully on both the Publisher and the Subscriber, we can configure TSN Qbv
and run the OPC UA PubSub sample applications as in the following steps.

• On the Publisher (i.MX8M Plus EVK - Board A), configure TSN Qbv on ENET2 (i.e. eth1) to map SKB priority to traffic class
to hardware queue as below, set gate control list to have 2 entries and total cycle time of 1ms (queue 4 has 500us for best
effort traffic, queue 0 and queue 2 share 500us for OPC UA PubSub and PTP traffic as well as other traffic like ping), also set
base time to 1ms so that the schedule is aligned to 1ms. This is just an example configuration for the schedule.

SKB priority 0 -> traffic class 0 -> queue 0

SKB priority 1 -> traffic class 1 -> queue 1

SKB priority 2 -> traffic class 2 -> queue 2

SKB priority 3 -> traffic class 3 -> queue 3
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SKB priority 4 -> traffic class 4 -> queue 4

# tc qdisc replace dev eth1 parent root handle 100 taprio num_tc 5 map 0 1 2 3 4 queues 1@0 1@1 
1@2 1@3 1@4 base-time 001000000 sched-entry S 0x10 500000 sched-entry S 0x05 500000 flags 2
# tc -g qdisc show dev eth1

Together with the tc filter rule configured previously, the above TSN Qbv configuration on ENET2 will distribute OPC UA
PubSub traffic into Tx hardware queue 2, PTP traffic into Tx hardware queue 0. Also, we will send best effort traffic to Tx
hardware queue 4. Other traffic like ping can still go into Tx hardware queue 0. Because the OPC UA PubSub and PTP traffic
have different Tx hardware queues and time slot than the best effort traffic, the latter can’t influence the former.

• On the Subscriber (i.MX8M Plus EVK - Board B), run the OPC UA PubSub Subscriber sample application. Run the Subscriber
application before the Publisher application so that we won’t miss any packet sent by the Publisher.

Note that octets in the MAC address should be separated by hyphens (-).

# /home/root/open62541_example/opcua_pubsub_subscriber -u opc.eth://01-00-5E-00-00-01 -d eth1

• On the Publisher (i.MX8M Plus EVK - Board A), run the OPC UA PubSub Publisher sample application.

Note that octets in the MAC address should be separated by hyphens (-).

# /home/root/open62541_example/opcua_pubsub_publisher -u opc.eth://01-00-5E-00-00-01 -d eth1

Example log on the Publisher:

Example log on the Subscriber:
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• On a PC connected to office network and with OPC UA Client installed (that is, UaExpert as in below snapshots), we can
browser either the OPC UA server’s Address Space on either the Publisher or the Subscriber. (We assume that eth0 has
obtained the IP address by DHCP automatically).

The URL of the OPC UA server on the Publisher is below:

opc.tcp://<IP_of_eth0_on_Publisher>:4840/

The URL of the OPC UA server on the Subscriber is below:

opc.tcp://<IP_of_eth0_on_Subscriber>:4801/

Example snapshot of UaExpert connected to the Publisher:

Example snapshot of UaExpert connected to the Subscriber:
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On the UaExpert client connected to the Subscriber, we can observe the CPU temperature published by the Publisher and
the path delay from Publisher to Subscriber which is close to 800ns.

• On the Publisher (i.MX8M Plus EVK - Board A), we can use pktgen to simulate high load best effort traffic which is sent to
queue 4 of ENET2.

# /home/root/samples/pktgen/pktgen_sample01_simple.sh -i eth1 -q 4 -s 1000 -n 0

Because the OPC UA PubSub traffic and PTP traffic are protected by TSN Qbv by having different Tx hardware queue and
time slot than the best effort traffic, we will still see consistent output on the console of the Publisher and the Subscriber, and
the path delay from Publisher to Subscriber is still close to 800ns.

In case TSN Qbv was not configured, after pktgen starts running, various issues may happen. First of all, the ptp4l application
will show timeout issue as below.

Example error log of ptp4l on the Publisher:

Example error log of ptp4l on the Subscriber:
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The OPC UA PubSub sample application may also be impacted by best effort traffic without TSN, especially when the publish
cycle time is very short (i.e. 2ms). Note that the publish cycle time is hard-coded to 1 second in the sample application to make
observation easier on the Subscriber console as well as on the UaExpert client. Several issues can be observed under high
load best effort traffic without TSN. For example, the Publisher application may print warning message timed out while polling
for tx timestamp!, the Subscriber application may show that the packet sequence number stops incrementing, and the path
delay from Publisher to Subscriber displayed on UaExpert may show large number due to packet transmission delay (when
this issue happened, it can only be recovered by restarting both the Publisher and Subscriber application).

5.3.7.5.2 Case #2: two i.MX 8M Plus EVK boards connected to LS1028ARDB TSN switch

The setup could use one LS1028ARDB as TSN switch plus two or three i.MX8M Plus EVK boards. One i.MX8M Plus EVK (Board
A) acts as Publisher and others act as Subscribers. The block diagram of this setup is below. The ENET2 interface on each i.MX8M
Plus EVK is connected to the switch port on LS1028ARDB. Also, the ENET1 interface on each i.MX8M Plus EVK is connected
to LAN (that is, office network). Note that the actual device name in Linux may change.

The following steps assumes two i.MX8M Plus EVK are used. Board A acts as Publisher and Board B acts as Subscriber. In this
setup, the switch port swp0 is the ingress port for OPC UA PubSub traffic and best effort traffic. The switch port swp1 is the egress
ports for OPC UA PubSub traffic and best effort traffic.

Since the TSN switch on LS1028ARDB uses the value of VLAN PCP field to map traffic to different Tx hardware queue on egress
switch port (that is, swp1), we will add VLAN header to the OPC UA PubSub packet and best effort packet. Note that the PTP packet
is untagged without VLAN header.

• On LS1028ARDB, configure Ethernet bridge on TSN switch and enable VLAN filtering.

# ip link set eno2 up
# ip link set swp0 up
# ip link set swp1 up
# ip link add name br0 type bridge vlan_filtering 1
# ip link set dev swp0 master br0
# ip link set dev swp1 master br0
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# ip link set dev br0 up
# bridge vlan add dev swp0 vid 100
# bridge vlan add dev swp1 vid 100
# bridge vlan show

• On both the Publisher (i.MX8M Plus EVK - Board A) and the Subscriber (i.MX8M Plus EVK - Board B), bring up ENET2
(i.e. eth1):

# ip link set eth1 up

• On the Publisher (i.MX8M Plus EVK - Board A), add one tc filter to match OPC UA PubSub packet (EtherType 0xb62c) on
ENET2 (i.e. eth1) and modify SKB priority to 2.

# tc qdisc add dev eth1 clsact # tc filter add dev eth1 egress prio 1 u32 match u16 0xb62c 0xffff 
at -2 action skbedit priority 2
# tc filter show dev eth1 egress

• On each board, run ptp4l for PTP time synchronization and run phc2sys to synchronize PHC clock to Linux system clock
(CLOCK_REALTIME).

Also on the Subscriber (i.MX8M Plus EVK - Board B), use hwstamp_ctl to change the RX hardware timestamp setting to 'time
stamp any incoming packet' in order to get the RX hardware timestamp of the packets transmitted by the Publisher.

On LS1028ARDB:

# ptp4l -i swp0 -i swp1 -p /dev/ptp1 -f /etc/ptp4l_cfg/gPTP.cfg -m > /var/log/ptp4l.log 2>&1 &
# phc2sys -s swp0 -O 0 -S 0.00002 -m > /var/log/phc2sys.log 2>&1 &

On the Publisher (i.MX8M Plus EVK - Board A):

# cp /etc/ptp4l_cfg/gPTP.cfg .
# sed -i 's/priority1.*248/priority1\t\t246/g' ./gPTP.cfg
# ptp4l -i eth1 -p /dev/ptp1 -f ./gPTP.cfg -m > /var/log/ptp4l.log 2>&1 &
# phc2sys -s eth1 -O 0 -S 0.00002 -m > /var/log/phc2sys.log 2>&1 &

On the Subscriber (i.MX8M Plus EVK - Board B):

# ptp4l -i eth1 -p /dev/ptp1 -f /etc/ptp4l_cfg/gPTP.cfg -m > /var/log/ptp4l.log 2>&1 &
# phc2sys -s eth1 -O 0 -S 0.00002 -m > /var/log/phc2sys.log 2>&1 &
# hwstamp_ctl -i eth1 -r 1

On each board, we can observe the logs of ptp4l and phc2sys to check the time synchronization progress by below
commands: (It is advised to SSH to each board to check the logs of ptp4l and phc2sys so that we can continue to execute
other commands on the serial console).

# tail -f /var/log/ptp4l.log
# tail -f /var/log/phc2sys.log

On LS1028ARDB and the Subscriber, the rms value reported by ptp4l shows the root mean square of the time offset between
the PHC and the GM clock. If ptp4l consistently reports rms lower than 100 ns, the PHC is synchronized. Refer to the example
log of ptp4l in the back-to-back case.

On each board, the offset information reported by phc2sys shows the time offset between the PHC and the system clock
(CLOCK_REALTIME). If phc2sys consistently reports offset lower than 100 ns, the System clock is synchronized. Refer to
the example log of phc2sys in the back-to-back case.

After establishing the time synchronization successfully on each board, we can configure TSN Qbv and run the OPC UA
PubSub sample applications as in the following steps.
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• On the Publisher (i.MX8M Plus EVK - Board A), configure TSN Qbv on ENET2to map SKB priority to traffic class to
hardware queue as below, set gate control list to have 2 entries and total cycle time of 1 ms (queue 4 has 500 μs for best
effort traffic, queue 0 and queue2 share 500 μs for OPC UA PubSub and PTP traffic as well as other traffic like ping), also
set base time to 1 ms so that the schedule is aligned to 1 ms. This is just an example configuration for the schedule.

SKB priority 0 -> traffic class 0 -> queue 0

SKB priority 1 -> traffic class 1 -> queue 1

SKB priority 2 -> traffic class 2 -> queue 2

SKB priority 3 -> traffic class 3 -> queue 3

SKB priority 4 -> traffic class 4 -> queue 4

# tc qdisc replace dev eth1 parent root handle 100 taprio num_tc 5 map 0 1 2 3 4 queues 1@0 1@1 
1@2 1@3 1@4 base-time 001000000 sched-entry S 0x10 500000 sched-entry S 0x05 500000 flags 2
# tc -g qdisc show dev eth1

Together with the tc filter rule configured previously, the above TSN Qbv configuration on ENET2 distributes OPC UA PubSub
traffic into Tx hardware queue 2, PTP traffic into Tx hardware queue 0. Also, send best effort traffic to Tx hardware queue 4.
Other traffic like ping can still go into Tx hardware queue 0. Because the OPC UA PubSub and PTP traffic have different Tx
hardware queues and time slot than the best effort traffic, the latter cannot influence the former.

On LS1028ARDB, configure TSN Qbv on swp1, set gate control list to have 2 entries and total cycle time of 200 μs (queue
4 has 500 μs for best effort traffic, queue 0 and queue 2 share 500 μs for OPC UA PubSub and PTP traffic as well as
other traffic like ping), also set base time to 1ms so that the schedule is aligned to 1ms as 1ms. Note that the TSN Qbv
configuration on LS1028ARDB TSN switch is used to protect the OPC UA PubSub traffic from traffic which may enter the
switch from other switch ports. It is optional in this use case and used as demonstration purpose only.

# tc qdisc replace dev swp1 root taprio num_tc 8 map 0 1 2 3 4 5 6 7 queues 1@0 1@1 1@2 1@3 1@4 
1@5 1@6 1@7 base-time 001000000 sched-entry S 0x10 500000 sched-entry S 0x05 500000 flags 0x2
# tc -g qdisc show dev swp1

With the above TSN Qbv configuration on egress switch port swp1, OPC UA PubSub traffic will go into Tx hardware queue 2
(We will add VLAN header with PCP field set to 2 for OPC UA PubSub packet). The best effort traffic will go into Tx hardware
queue 4 (We will add VLAN header with PCP field set to 4 using pktgen for generating best effort traffic). Note that the PTP
traffic is untagged without VLAN header and will use Tx hardware queue 0 of swp1 to transmit to the Subscriber. Similar to
the TSN Qbv configuration on Publisher, the OPC UA PubSub and PTP traffic have different Tx hardware queues and time
slot than the best effort traffic, the latter cannot influence the former.

• On the Subscriber (i.MX8M Plus EVK - Board B), run the OPC UA PubSub Subscriber sample application. Run the
Subscriber application before the Publisher application so that we won’t miss any packet sent by the Publisher.

Note that in the URL of below command 100.2 means VLAN ID 100 and PCP value 2 and it is separated from the MAC address
using a colon.

# /home/root/open62541_example/opcua_pubsub_subscriber -u opc.eth://01-00-5E-00-00-01:100.2 -
d eth1

• On the Publisher (i.MX8M Plus EVK - Board A), run the OPC UA PubSub Publisher sample application.

Note that in the URL of below command 100.2 means VLAN ID 100 and PCP value 2 and it is separated from the MAC address
using a colon.

# /home/root/open62541_example/opcua_pubsub_publisher -u opc.eth://01-00-5E-00-00-01:100.2 -d eth1

Example log on the Publisher:
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Example log on the Subscriber:

• On a PC connected to office network and with OPC UA Client installed (that is, UaExpert as in below snapshots), we can
browser either the OPC UA server’s Address Space on either the Publisher or the Subscriber. (We assume that eth0 have
got IP address by DHCP automatically.

The URL of the OPC UA server on the Publisher is below:

opc.tcp://<IP_of_eth0_on_Publisher>:4840/

The URL of the OPC UA server on the Subscriber is below:

opc.tcp://<IP_of_eth0_on_Subscriber>:4801/

Refer to the example snapshot of UaExpert in the back-to-back case. On the UaExpert client connected to the Subscriber,
we can observe the CPU temperature published by the Publisher and the path delay from Publisher to Subscriber which is
around 4 μs. Compared to the 800 ns in the back-to-back case, the increased path delay is added by the bridge.

• On the Publisher (i.MX8M Plus EVK - Board A), we can use pktgen to simulate high load best effort traffic with VLAN ID
set to 100 and VLAN PCP set to 4 in VLAN header.

# cp /home/root/samples/pktgen/pktgen_sample01_simple.sh /home/root/samples/pktgen/
pktgen_sample01_simple_vlan.sh
# sed -i '/^UDP_MAX=.*/a VLAN_ID=100\nVLAN_P=4' /home/root/samples/pktgen/
pktgen_sample01_simple_vlan.sh
# /home/root/samples/pktgen/pktgen_sample01_simple_vlan.sh -i eth1 -q 4 -s 1000 -n 0
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Note that the OPC UA PubSub traffic and PTP traffic are protected by TSN Qbv by having different Tx hardware queue
and time slot than the best effort traffic on both the Publisher and TSN switch. This ensures that users can get consistent
output on the console of the Publisher and the Subscriber, and the path delay from Publisher to Subscriber is still around 4
μs.

In case TSN Qbv was not configured, after pktgen starts running, various issues might occur. Refer to the issues detailed in
the back-to-back case.

On LS1028ARDB, it is possible to check the stats of Tx packets of swp1 by using the below command:

# ethtool -S swp1 | grep -i "tx_green_prio_"

Example log below: (tx_green_prio_0 mainly for PTP traffic, tx_green_prio_2 mainly for OPC UA PubSub traffic,
tx_green_prio_4 mainly for best effort traffic generated by pktgen).

5.3.8 OPC UA Client Installation and Usage

5.3.8.1 UaExpert

The UaExpert is an OPC UA Client developed by Unified Automation. It is free to download. Before downloading, you need to
register on the following link to create an free account. Then login using your account, download the installation file and install it
on a host PC. The UaExpert is available for both Windows and Linux.

https://www.unified-automation.com/downloads/opc-ua-clients.html

Below steps shows how to use UaExpert to connect to an OPC UA server on a Window10 PC.

• Open the UaExpert GUI. Click on the 'Add Server' button.
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• The ‘Add Server’ window will pop up. Select Custom Discovery and double click '< Double click to Add Server... >'. The 'Enter
URL' window will pop up. Input IP address and port number of the OPC UA server separated by colon. For example, the
complete URL is opc.tcp://10.193.20.15:4840 in below snapshot. Click OK.

• The new server (i.e. opc.tcp://10.193.20.15:4840) will be listed under Custom Discovery. Click to expand it. Then click to
expand 'open62541-based OPC UA Application (opc.tcp)'. A 'Replaced Hostname' window will pop up. Click 'Yes'.
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• Click to select 'None – None (…)' and click OK.

• Right click on the server listed under ‘Servers’ and click ‘Connect’.
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• You are now connected to the OPC UA server and can browse or monitor its object. To monitor the value of an object, you
can drag and drop the object to the ‘Data Access View’ area.

5.3.8.2 FreeOpcUa

FreeOpcUa is a project to implement an open-source (LGPL/GPL) OPC UA stack and associated tools. A GUI client from
FreeOpcUa is available. It is written using freeopcua python api and pyqt. Use below command to install it on a Linux PC using
pip3. Make sure python3 and python3-pip is installed.

$ sudo pip3 install opcua-client
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For installation on Windows, please refer to the instructions available from below link:

https://github.com/FreeOpcUa/opcua-client-gui

Below steps shows how to use FreeOpcUa GUI client to connect to an OPC UA server on a Ubuntu 18.04 PC.

1) Launch the FreeOpcUa GUI client from the terminal on the Linux host PC:

$ opcua-client

In the FreeOpcUa GUI client, input the URL (i.e. opc.tcp://10.193.20.15:4840) and click ‘Connect’. You are now connected to the
OPC UA server and can browse or monitor its object.

5.4 NETCONF/YANG
This chapter provides an overview of the NETCONF protocol and Yang (a data modeling language for NETCONF). It describes the
applications, installation and configuration steps, operation examples, Web UI demo, and troubleshooting aspects of NETCONF.
It also describes how to enable the NETCONF feature in this Real-time Edge software.

5.4.1 Overview
The NETCONF protocol defines a mechanism for device management and configuration retrieval and modification. It uses a
remote procedure call (RPC) paradigm and a system of exposing device (server) capabilities, which enables a client to adjust
to the specific features of any network equipment. NETCONF further distinguishes between state data (which is read-only) and
configuration data (which can be modified). Any NETCONF communication happens on four layers as shown in the table below.
XML is used as the encoding format.
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Table 64. The NETCONF layers

Layer Purpose Example

1 Content Configuration data, Notification data

2 Operations <edit-config>

3 Messages <rpc>, <rpc-reply>, <notification>

4 Secure Transport SSH, TLS

YANG is a standards-based, extensible, hierarchical data modeling language that is used to model the configuration and state
data used by NETCONF operations, remote procedure calls (RPCs), and server event notifications. The device configuration
data are stored in the form of an XML document. The specific nodes in the document as well as the allowed values are defined
by a model, which is usually in YANG format or possibly transformed into YIN format with XML-based syntax. There are many
such models created directly by IETF to further support standardization and unification of the NETCONF interface of the common
network devices. For example, the general system settings of a standard computer are described in the IETF-system model
(rfc7317) or the configuration of its network interfaces defined by the IETF-interfaces model (rfc7223). However, it is common for
every system to have some specific parts exclusive to it. In that case there are mechanisms defined to enable extensions while
keeping the support for the standardized core. Also, as this whole mechanism is designed in a liberal fashion, the configuration
does not have to concern strictly network. Even RPCs additional to those defined by NETCONF can be characterized. Therefore,
it allows the client to request an explicit action from the server.

A YANG module defines a data model through its data, and the hierarchical organization of and constraints on that data. A module
can be a complete, standalone entity, or it can reference definitions in other modules and sub-modules as well as augment other
data models with additional nodes. The module dictates how the data is represented in XML.

A YANG module defines not only the syntax but also the semantics of the data. It explicitly defines relationships between and
constraints on the data. This enables user to create syntactically correct configuration data that meets constraint requirements
and enables user to validate the data against the model before uploading it and committing it on a device.

For information about NETCONF, see RFC 6241, NETCONF Configuration Protocol.

For information about YANG, see RFC 6020, YANG - A Data Modeling Language for the Network Configuration Protocol
(NETCONF), and related RFCs.

5.4.2 Netopeer2

5.4.2.1 Overview

Netopeer2 is a set of tools implementing network configuration tools based on the NETCONF protocol. This is the second
generation of the toolset, originally available as the Netopeer project. It is based on the new generation of the NETCONF and
YANG libraries - libyang and libnetconf2. The Netopeer2 server uses sysrepo as a NETCONF datastore implementation. In
Real-time Edge software, version v0.7-r2 was used. It allows developers to control their devices via NETCONF and operators to
connect to their NETCONF-enabled devices.
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Figure 52. High level architecture of Netopeer and sysrepo

5.4.2.2 Installing Netopeer2-cli on Ubuntu18.04

Use the following steps for installing Netopeer2-cli on Ubuntu18.04 operating systems.

1. Install the following packages:

$ sudo apt install -y git cmake build-essential bison autoconf dh-autoreconf flex
$ sudo apt install -y libavl-dev libprotobuf-c-dev protobuf-c-compiler zlib1g-dev
$ sudo apt install -y libgcrypt20-dev libssh-dev libev-dev libpcre3-dev

2. Install libyang:

$ git clone https://github.com/CESNET/libyang.git
$ cd libyang;
$ git checkout v1.0-r4 -b v1.0-r4
$ mkdir build; cd build
$ cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr ..
$ make
$ sudo make install

3. Install sysrepo (v0.7.8):

$ git clone https://github.com/sysrepo/sysrepo.git
$ cd sysrepo
$ git checkout v0.7.8 -b v0.7.8
$ mkdir build; cd build
$ cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX:PATH=/usr ..
$ make
$ sudo make install

4. Install libnetconf2:

$ git clone https://github.com/CESNET/libnetconf2.git
$ cd libnetconf2
$ git checkout v0.12-r2 -b v0.12-r2
$ mkdir build; cd build
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$ cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr ..
$ make
$ sudo make install

5. Install protobuf:

$ git clone https://github.com/protocolbuffers/protobuf.git
$ cd protobuf
$ git submodule update --init --recursive
$ ./autogen.sh
$ ./configure
$ make
$ sudo make install
$ sudo ldconfig # refresh shared library cache.

6. Install Netopeer2-cli(v0.7-r2):

$ git clone https://github.com/CESNET/Netopeer2.git
$ cd Netopeer2
$ git checkout v0.7-r2 -b v0.7-r2
$ cd cli
$ cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr .
$ make
$ sudo make install

5.4.2.3 Sysrepo

Sysrepo is an YANG-based configuration and operational state data store for Unix/Linux applications.

Applications can use sysrepo to store their configuration modeled by provided YANG model instead of using e.g. flat configuration
files. In Real-time Edge software, version v0.7.8 was used. Sysrepo will ensure data consistency of the data stored in the datastore
and enforce data constraints defined by YANG model. Applications can currently use C language API of sysrepo Client Library to
access the configuration in the datastore, but the support for other programming languages is planned for later too (since sysrepo
uses Google Protocol Buffers as the interface between the datastore and client library, writing of a native client library for any
programing language that supports GPB is possible).

For information about sysrepo, see:

http://www.sysrepo.org/static/doc/html/index.html

5.4.2.4 Netopeer2 server

Netopeer2 software is a collection of utilities and tools to support the main application, Netopeer2 server, which is a NETCONF
server implementation. It uses libnetconf2 for all NETCONF communication. Conforming to the relevant RFCs2 and still being part
of the aforementioned library, it supports the mandatory SSH as the transport protocol but also TLS. Once a client successfully
connects using either of these transport protocols and establishes a NETCONF session, it can send NETCONF RPCs and the
Netopeer2 server responds with correct replies.

The following set of tools are a part of the Netopeer server:

• Netopeer2-keystored as a tool for the storage and process of keys.

• Netopeer2-server as the main service daemon integrating the SSH/TLS server.

5.4.2.5 Netopeer2 client

Netopeer2-cli is a CLI interface that allows user to connect to a NETCONF-enabled device and obtain and manipulate its
configuration data.
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This application is a part of the Netopeer2 software bundle, but compiled and installed separately. It is a NETCONF client with a
command line interface developed and primarily used for Netopeer2 server testing, but allowing all the standards and even some
optional features of a full-fledged NETCONF client.

Netopeer2-cli serves as a generic NETCONF client providing a simple interactive command line interface. It allows user
to establish a NETCONF session with a NETCONF-enabled device on the network and to obtain and manipulate its
configuration data.

5.4.2.6 Workflow in application practice

In practical application, we use the YANG language to model the device and generate the YANG model. The model is then
instantiated to generate configuration files in XML format. The device was then configured using this configuration file as input
via netopeer.

Figure 53. Workflow for netopeer

5.4.3 Configuration

5.4.3.1 Enabling NETCONF feature

This feature is enabled by default in Real-time Edge software, build the image using the below command

DISTRO=nxp-real-time-edge MACHINE=ls1028ardb source real-time-edge-setup-env.sh -b build-ls1028ardb

or

DISTRO=nxp-real-time-edge MACHINE=ls1021atsn source real-time-edge-setup-env.sh -b build-ls1021atsn

Below packages are enabled by default in Real-time Edge software:

 netopeer2-keystored netopeer2-server real-time-edge-sysrepo

sysrepo-tsn is daemon application to implement tsn configuration based on sysrepo. It was enabled for LS1028ARDB,
LS1021A-TSN and i.MX 8M Plus EVK.
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• For LS1028ARDB board, Qbv, Qbu, Qci, stream identification in CB, IP, MAC, and VLAN are supported.

• For LS1021ATSN board, Qbv, IP, MAC and VLAN are supported.

• real-time-edge-sysrepo was only verified in environment build by LS1028ARDB, LS1021ATSN and i.MX 8M
Plus EVK.

  NOTE  

5.4.3.2 Netopeer2-server

The netopeer2-server is the NETCONF protocol server running as a system daemon. The netopeer2-server is based on sysrepo
and libnetconf2 library.

• -U listen locally on a unix socket

• -d debug mode (do not daemonize and print verbose messages to stderr instead of syslog)

• -V: Show program version.

• -v level verbose output level(0 : errors, 1 : errors and warnings, 2 : errors, warnings, and verbose messages).

5.4.3.3 Netopeer2-cli

The netopeer2-cli is command line interface similar to the NETCONF client. It serves as a generic NETCONF client providing a
simple interactive command line interface. It allows user to establish a NETCONF session with a NETCONF-enabled device on
the network and to obtain and manipulate its configuration data. netopeer2-cli is limited to a single NETCONF connection at a time
via a forward or a reverse (Call Home) connecting method.

5.4.3.3.1 Netopeer2 CLI commands

Following are the Netopeer2 CLI commands:

1. help: Displays a list of commands. The --help option is also accepted by all commands to show detailed information about
the command.

2. connect: Connects to a NETCONF server.

connect [--help] [--ssh] [--host <hostname>] [--port <num>] [--login <username>]

The connect command has the following arguments:

• --login user name: Specifies the user to log in as on the NETCONF server. If not specified, current local user name
is taken.

• --port num

— Port to connect to on the NETCONF server. By default, port 830 for SSH or 6513 for TLS transport is used.

• host

— Hostname or ip-address of the target NETCONF server.

3. disconnect: disconnects from a NETCONF server.

4. commit

• Performs the NETCONF commit operation. For details, see RFC 6241, section 8.3.4.1.

5. copy-config: Performs NETCONF copy-config operation. For details, see RFC 6241 section 7.3.

copy-config [--help] --target running|startup|candidate|url:<url> (--source running|startup|
candidate|url:<url> | --src-config[=<file>])
    [--defaults report-all|report-all-tagged|trim|explicit]  

Where, the arguments are the following:
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• --defaults mode: Use: with the -defaults capability with specified retrieval mode. For details, refer to the RFC 6243
section 3 or WITH-DEFAULTS section of this manual.

• --target datastore: Specifies the target datastore for the copy-config operation. For description of the datastore
parameter, refer to Netopeer2 CLI datastore.

• --source datastore: Specifies the source datastore for the copy-config operation. For description of the datastore
parameter, refer to Netopeer2 CLI datastore.

6. delete-config Performs NETCONF delete-config operation. Refer to section 7.4 of the RFC 6241 specification for
more details.

delete-config [--help] --target startup|url:<url>

Where

• target datastore: Specifies the target datastore for the delete-config operation.

7. edit-config

Performs NETCONF edit-config operation. For details, refer to RFC 6241 section 7.2.

edit-config [--help] --target running|candidate (--config[=<file>] | --url <url>) 
    [--defop merge|replace|none] [--test set|test-only|test-then-set] [--error stop|
continue|rollback]

Where

• --defop operation:

Specifies default operation for applying configuration data.

— merge: Merges configuration data at the corresponding level. By default, the value is merge.

— replace: Edits configuration data completely replaces the configuration in the target datastore.

— none: The target datastore is unaffected by the edit configuration data, unless and until the edit configuration data
contains the operation attribute to request a different operation. For more information, see the EDIT-CONFIG
section of RFC 6241.

 
To delete non-mandatory items, nc:operation="delete" should be added into the end of start tag of the item to
be deleted. At the same time, the namespace xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" should also be
added to the start tag of the root node. Mandatory items cannot be deleted individually. They can only be deleted
with their parent node.

  NOTE  

• --error action

Sets reaction to an error.

— Stop: Aborts the operation on first error. This is the default value.

— Continue: Continues to process configuration data on error. The error is recorded and negative response
is returned.

— Rollback: Stops the operation processing on error and restore the configuration to its complete state at the start
of this operation. This action is available only if the server supports rollback-on-error capability (see RFC 6241
section 8.5).

• --test option

Performs validation of the modified configuration data. This option is available only if the server
supports :validate:1.1 capability (see RFC 6241 section 8.6).

— set: Does not perform validation test.
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— test-only: Does not apply the modified data, only performs the validation test.

— test-then-set: Performs a validation test before attempting to apply modified configuration data. test-then-
set is the default value.

• --config file

— Specifies path to a file containing edit configuration data. The content of the file is placed into the config element
of the edit-config operation. Therefore, it does not have to be a well-formed XML document with only a single root
element. If neither --config nor --url is specified, user is prompted to write edit configuration data manually. For
examples, see the EDIT-CONFIG section of RFC 6241.

• --url URI

— Specifies remote location of the file containing the configuration data hierarchy to be modified, encoded in XML
under the element config in the urn:ietf:params:xml:ns:netconf:base:1.0 namespace. Note, that this
differs from file parameter, where the config element is not expected.

• --target

— Target datastore to modify. For description of possible values, refer to Netopeer2 CLI datastore. Note that the url
configuration datastore cannot be modified.

8. get: Performs NETCONF get operation. Receives both the status as well as configuration data from the current running
datastore. Refer to section 7.7 of the RFC 6241 specification for more details. The command format is as follows:

get [--help] [--filter-subtree[=<file>] | --filter-xpath <XPath>] [--defaults report-all|report-
all-tagged|trim|explicit] [--out <file>]

• --defaults mode

— Use with the -defaults capability with specified retrieval mode. For further details, refer to the Section 3 or
'WITH-DEFAULTS' section of the RFC 6241 specification.

• --filter [file]

— Specifies if the request will contain subtree filter (RFC 6241 section 6). The option is able to accept path
to the file containing the filter specification. If the path is not specified, user is prompted to write the filter
specification manually.

9. get-config Performs NETCONF get-config operation. Retrieves only configuration data from the specified
target_datastore. For details, refer to RFC 6241 section 7.1.

get-config [--help] --source running|startup|candidate [--filter-subtree[=<file>] | --filter-
xpath <XPath>]
    [--defaults report-all|report-all-tagged|trim|explicit] [--out <file>]

10. --defaults mode

• Use: with the -defaults capability with specified retrieval mode. For more details see RFC 6243 section 3 or
WITH-DEFAULTS section of this manual.

11. --filter [file]

• Specifies if the request will contain subtree filter (RFC 6241 section 6). The option is able to accept path to the file
containing the filter specification. If the path is not specified, user is prompted to write the filter specification manually.

12. --target

• Target datastore to retrieve. For description of possible values, refer to Netopeer2 CLI datastore. Note, that the url
configuration datastore cannot be retrieved.

13. lock
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Performs the NETCONF lock operation to lock the entire configuration datastore of a server. For details, see RFC 6241
section 7.5.

lock [--help] --target running|startup|candidate

Where the

• --target: specifies the target datastore to lock. For description of possible values, refer to Netopeer2 CLI datastore.
Note, that the url configuration datastore cannot be locked.

14. unlock: Performs the NETCONF unlock operation to release a configuration lock, previously obtained with the lock
operation. Refer to section 7.6 of the RFC 6241 specification for more details.

unlock [--help] --target running|startup|candidate

where

• --target: specifies the target datastore to unlock. For description of possible values, refer to Netopeer2 CLI datastore.
Note, that the url configuration datastore cannot be unlocked.

15. verb

• Enables/disables verbose messages.

16. quit

• Quits the program.

5.4.3.3.2 Netopeer2 CLI datastore

Following are the netopeer2 CLI datastores:

• running

— This is the base NETCONF configuration datastore holding the complete configuration currently active on the device.
This datastore always exists.

• startup

— The configuration datastore holding the configuration loaded by the device when it boots. This datastore is available only
on servers that implement the :startup capability.

• candidate

— The configuration datastore that can be manipulated without impacting the device's current configuration and
that can be committed to the running configuration datastore. This datastore is available only on servers that
implement :candidate capability.

• url:URI

— Refers to a remote configuration datastore located at URI. The file that the URI refers to contains
the configuration data hierarchy to be modified, encoded in XML under the element config in the
urn:ietf:params:xml:ns:netconf:base:1.0 namespace. This datastore is available only on servers that implement
the :url capability.

5.4.3.4 Sysrepod

Sysrepo deamon provides the functionality of the datastore on the system (executes the system-wide Sysrepo Engine). In normal
circumstances, it gets automatically started when the system starts up. However, auto-start is not configured by cmake install
operation and user should configure it manually, according to the guidelines of user's system.

Usage:

sysrepod [-h] [-v] [-d] [-l <level>]
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Options:

• -h Prints usage help.

• -v Prints version.

• -d Debug mode - daemon runs in the foreground and print logs to stderr instead of syslog.

• -l <level> Sets verbosity level of logging:

— 0 = all logging turned off

— 1 = log only error messages

— 2 = (default) log error and warning messages

— 3 = log error, warning and informational messages

— 4 = log everything, including development debug messages

5.4.3.5 Sysrepocfg

sysrepocfg is a command-line tool for editing, importing, and exporting configuration stored in Sysrepo datastore. It allows users
to edit startup or running configuration of specified module in a preferred text editor. It also propagates the performed changes
into the datastore transparently for all subscribed applications. Moreover, the user can export the current configuration into a file
or get it printed to the standard output. Similarly, an already prepared configuration can be imported from a file or read from the
standard input.

In the background, sysrepocfg uses Sysrepo client library for any data manipulation rather than directly accessing configuration
data files. Thus, it effectively inherits all main features of Sysrepo, such as YANG-based data validation, full transaction and
concurrency support. Most importantly, subscribed applications are notified about the changes made using \fBsysrepocfg\fP and
can immediately take the new configuration into account.

5.4.3.6 Sysrepoctl

The sysrepoctl provides functions to manage modules. It can be configured using the options and commands described below.

operation-operations

• --help: Prints the generic description and a list of commands. The detailed description and list of arguments for the specific
command are displayed by using --help argument of the command.

• --install: Installs specified schema into sysrepo (--yang or --yin must be specified).

• --uninstall: Uninstalls specified schema from sysrepo (--module must be specified).

• --list: Lists YANG modules installed in sysrepo (note that Conformance Installed implies also Implemented).

• --change : Changes specified module in sysrepo (--module must be specified).

• --feature-enable: Enables a feature within a module in sysrepo (feature name is the argument, --module must be
specified).

• --feature-disable: Disables a feature within a module in sysrepo (feature name is the argument, --module must be
specified).

Other-options

• --yang : Path to the file with schema in YANG format (--install operation).

• --yin : Path to the file with schema in YIN format (--install operation).

• --module : Name of the module to be operated on (--change, --feature-enable, --feature-disable operations, --uninstall -
several modules can be delimited with ',').

• --permissions : Access permissions of the module's data in chmod format (--install, --change operations).

Examples
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• Installs a new module by specifying YANG file, ownership and access permissions:

sysrepoctl --install --yang=/home/user/ietf-interfaces.yang --owner=admin:admin --permissions=644

• Changes the ownership and permissions of an existing YANG module:

sysrepoctl --change --module=ietf-interfaces --owner=admin:admin --permissions=644

• Enables a feature within a YANG module:

sysrepoctl --feature-enable=if-mib --module=ietf-interfaces

• Uninstalls 2 modules, second one is without revision:

sysrepoctl --uninstall --module=mod-a,mod-b --revision=2035-05-05

5.4.3.7 Operation examples

The following figure describes the steps to configure device via netopeer2:
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Figure 54. Steps to configure device via netopeer2

In sysrepo-tsn, there are some instance files to configure TSN features on LS1028ARDB board:

• Instance files for TSN configuration

Users can configure TSN functions of LS1028ARDB board using these instance files. Before starting, make sure that sysrepod,
sysrepo-plugind, sysrepo-tsn and netopeer2-server are running on the board. Use the following steps to configure TSN feature
on LS1028ARDB board.

1. Start netopeer2-cli on the computer with netopeer2-cli installed:

$ netopeer2-cli

2. Connect to netopeer2-server on LS1028ARDB board (use the IP on LS1028ARDB, here 10.193.20.53 is example):

> connect --login root --host 10.193.20.53

3. Get status data of server:

> get

4. Get configuration data in running datastore:

> get-config --source running

5. Configure QBV feature of LS1028ARDB with qbv-eno0-enable.xml

> edit-config --target running --config=qbv-eno0-enable.xml

6. Check configuration data of QBV:

> get-config --source running --filter-xpath /ietf-interfaces:interfaces/interface[name='eno0']/
ieee802-dot1q-sched:gate-parameters

7. Copy configuration data in running datastore to startup datastore:

> copy-config --source running --target startup
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8. Disconnect with netopeer2-server:

> disconnect

5.4.3.8 Application scenarios

 
The related xml file in the following cases can be obtained from the link: https://github.com/real-time-edge-sw/
real-time-edge-sysrepo/blob/master/Instances.

  NOTE  

 
The interface name in the xml file should match with the actual interface name used on the board.

  NOTE  

1. Prerequisites:

a. Start netopeer2-cli on the computer with netopeer2-cli installed:

$ netopeer2-cli 

b. Connect to the notopeer2-server using the command below:

> connect --login root --host 10.193.20.53

2. Configure the IP address:

a. Edit configuration file, change Ethernet interface name and IP:

$ vim ietf-ip-cfg.xml

b. Send the configuration file:

> edit-config --target running --config=ietf-ip-cfg.xml

3. Configure the MAC address for the bridge:

a. Create a bridge named br1:

 $ ip link add name br1 type bridge

b. Edit the configuration file, change bridge name and MAC:

$ vim ietf-mac-cfg.xml

c. Send the configuration file:

$ edit-config --target running --config=ietf-mac-cfg.xml

4. Add VLAN for Ethernet interface:

a. Create bridge named "br1" if not existing:

$ ip link add name br1 type bridge

b. Edit the configuration file to change the interface name and VLAN ID:

$ vim ietf-vlan-cfg.xml
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c. Send the configuration file:

> edit-config --target running --config=ietf-vlan-cfg.xml

5. Configure LS1028ARDB Qbv via tc.

a. Edit the configuration file to change the interface name and VLAN ID:

$ vim qbv-swp0-enable.xml

b. Send the configuration file:

> edit-config --target running --config=qbv-swp0-enable.xml

c. Show the result.

# tc qdisc show dev swp0

 
If using tc or ethtool commands instead of libtsn, enable "real-time-edge-sysrepo-tc" in conf/
distro/include/real-time-edge-base.inc as shown below:

REAL_TIME_EDGE_SYSREPO_ls1028ardb = "real-time-edge-sysrepo-tc"

Otherwise, disable "real-time-edge-sysrepo-tc":

REAL_TIME_EDGE_SYSREPO_ls1028ardb = ""

  NOTE  

• For LS1028ARDB board, if real-time-edge-sysrepo-tc is enabled, you should set prerequisite for swpx (swp0 swp1
or swp2 ...) port using the following commands:

# tc qdisc add dev swpx ingress
# tc filter add dev swpx ingress chain 0 pref 49152 flower skip_sw action goto chain 10000
# tc filter add dev swpx ingress chain 10000 pref 49152 flower skip_sw # action goto 
chain 11000
# tc filter add dev swpx ingress chain 11000 pref 49152 flower skip_sw action goto 
chain 12000
# tc filter add dev swpx ingress chain 12000 pref 49152 flower skip_sw action goto 
chain 20000
# tc filter add dev swpx ingress chain 20000 pref 49152 flower skip_sw action goto 
chain 21000
# tc filter add dev swpx ingress chain 21000 pref 49152 flower skip_sw action goto 
chain 30000

6. Configure LS1028ARDB Qci via tc using the steps below.

a. Create a bridge named "switch" if not existing:

# ip link add name switch type bridge

b. Edit and send configuration file:

edit-config --target running --config=switch-qci-fm-gate-enable.xml

c. Show the result.

# tc filter show dev swp0 ingress
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d. Disable the configuration.

> edit-config --target running --config=switch-qci-fm-gate-disable.xml

 
• The destination-address in instance file should be learned by switch.

• Users should send switch-qci-fm-gate-disable.xml after switch-qci-fm-gate-enable.xml

  NOTE  

7. Configure LS1028ARDB Qbu via ethtool using the steps below.

a. Edit and send configuration file:

> edit-config --target running --config=qbu-swp0.xml

b. Show the result:

# ethtool --show-frame-preemption swp0

8. Configure LS1028ARDB VLAN ID and priority filter via tc:

a. Edit configuration file, change the interface name and action_spec:

$ vim ietf-br-vlan-cfg.xml

b. Send the configuration file:

> edit-config --target running --config=ietf-br-vlan-cfg.xml

9. Configure SJA1105 Qbv via tc

a. Edit and send configuration file

> edit-config --target running --config=qbv-swp5-tc.xml

b. Show the result:

# tc qdisc show dev swp5

 
Due to hardware limitation of SJA1105, if you want to config qbv again, you should delete the former qdisc using
the following command:

  NOTE  

  # tc qdisc del dev swp5 parent root handle 100

10. Configure SJA1105 Qci gate via tc

a. Create bridge named "switch" if not existing:

# ip link add name switch type bridge

b. Edit and send configuration file:

> edit-config --target running --config=switch-qci-gate-swp2-enable.xml

c. Show the result:

# tc filter show dev swp2 ingress
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If you want to test Qci flow meter, you must send switch-qci-fm-swp2-enable.xml.

  NOTE  

 
The engine used to schedule the ingress gate operations is the same that the one used for the tc-taprio offload.
Therefore, the restrictions regarding the fact that no two gate actions (either tc-gate or tc-taprio gates) may fire at
the same time (during the same 200 ns slot) still apply.

  NOTE  

11. Configure i.MX 8M Plus Qbv via tc.

a. Edit and send configuration file:

> edit-config --target running --config=qbv-eth1-enable.xml

b. Display the result using the command below:

# tc qdisc show dev eth1

12. Configure i.MX 8M Plus Qbu via ethtool.

a. Edit and send configuration file:

> edit-config --target running --config=qbu-eth1.xml

b. Display the result using the command below:

# ethtool --show-frame-preemption eth1

5.4.4 Troubleshooting
1. Connection fails at client side:

nc ERROR: Remote host key changed, the connection will be terminated!
nc ERROR: Checking the host key failed.
cmd_connect: Connecting to the 10.193.20.4:830 as user "root" failed.

Fixing:

The reason is that the SSHD key changed at the server.

• First, users should get host list using the command knownhosts.

• Then, remove the related item. For example knownhosts --del 19.

2. Request could not be completed because the relevant data model content does not exist.

type:     application
tag:      data-missing
severity: error
path:     /ietf-interfaces:interfaces/interface[name='eno0']/ieee802-dot1q-sched:gate-
parameters/admin-gate-states
message:  Request could not be completed because the relevant data model content does not exist.

Fixing:

The reason is that the configuration data in xpath does not exist in the datastore. Such as deleting a node that does not exist.

When encountering such an error, user can get configuration data in the board with get-config command, and check
whether the operation type (add/delete/modify) of the node in the path is reasonable or not.
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5.5 Graphics on LS1028A
This chaper is applicable to LS1028A. For i.MX 8M Plus and 8M Mini, refer to i.MX Graphics User's Guide for verification
of features.

5.5.1 GPU
The GPU consists of a 3D graphics core and a 2D graphics core.

3D graphics core features are the following:

• Supports 166 million triangles/sec

• Supports 1 Giga pixel/sec fill rate

• Supports 16 GFLOPs

• Supports OpenGL ES 1.1, 2.0, 3.0, 3.1

• Supports OpenCL 1.2

• Vulkan

2D graphics core features are:

• Supports multi-source composition

• Supports one-pass filter

• Supports tile format from 3D graphics core

• Supports tile format from VPU

Step1: Software setting and configuration

GPU is enabled by default when compiling the image for i.MX 8M Plus, i.MX 8M Mini and LS1028A.

Step 2: Hardware setup

• For LS1028ARDB, connect the monitor and LS1028ARDB with DP cable.

• For i.MX 8M Mini EVK, connect MIPI-DSI to HDMI module, then connect to monitor.

• For i.MX 8M Plus EVK, connect the monitor and i.MX 8M Plus EVK with HDMI cable.

Insert the USB mouse into USB port in the keyboard.

Step 3: Running GPU demo

OpenCL demo (example A and B) just suites to LS1028ARDB and i.MX 8M Plus EVK. i.MX 8M Mini EVK does not support
this feature.

 
Weston is running by default, before doing below demo, need to exit weston by command "killall weston".

  NOTE  

A. OpenCL information

root@ls1028ardb:~# cd /opt/viv_samples/cl11/UnitTest
root@ls1028ardb:/opt/viv_samples/cl11/UnitTest# ./clinfo

>>>>>>>> ./clinfo Starting...

Available platforms: 1

Platform ID: 0
         CL_PLATFORM_NAME:       Vivante OpenCL Platform
         CL_PLATFORM_PROFILE:    FULL_PROFILE
         CL_PLATFORM_VERSION:    OpenCL 1.2 V6.4.0.p2.234062
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         CL_PLATFORM_VENDOR:     Vivante Corporation
         CL_PLATFORM_EXTENSIONS: cl_khr_icd

         Available devices:      1

         Device ID:     0
         Device Ptr:    0xd04742f0
                 CL_DEVICE_NAME: Vivante OpenCL Device GC7000UL.6202.0000
                 CL_DEVICE_VENDOR: Vivante Corporation
                 CL_DEVICE_TYPE:                                GPU
                 CL_DEVICE_OPENCL_C_VERSION:                    OpenCL C 1.2
                 CL_DEVICE_VENDOR_ID:                           0x00564956
                 CL_DEVICE_PLATFORM:                            0x9e272728
                 CL_DEVICE_VERSION:                             OpenCL 1.2
                 CL_DEVICE_PROFILE:                             FULL_PROFILE
                 CL_DRIVER_VERSION:                             OpenCL 1.2 V6.4.0.p2.234062
                 CL_DEVICE_MAX_COMPUTE_UNITS:                   1
                 CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS:            3
                         CL_DEVICE_MAX_WORK_ITEM_SIZES[0]:      512
                         CL_DEVICE_MAX_WORK_ITEM_SIZES[1]:      512
                         CL_DEVICE_MAX_WORK_ITEM_SIZES[2]:      512
                 CL_DEVICE_MAX_WORK_GROUP_SIZE:                 512
                 CL_DEVICE_MAX_CLOCK_FREQUENCY:                 650 MHz
                 CL_DEVICE_IMAGE_SUPPORT:                       Yes
                         CL_DEVICE_MAX_READ_IMAGE_ARGS:         128
                         CL_DEVICE_MAX_WRITE_IMAGE_ARGS:        8
                         CL_DEVICE_IMAGE2D_MAX_WIDTH:           8192
                         CL_DEVICE_IMAGE2D_MAX_HEIGHT:          8192
                         CL_DEVICE_IMAGE3D_MAX_WIDTH:           8192
                         CL_DEVICE_IMAGE3D_MAX_HEIGHT:          8192
                         CL_DEVICE_IMAGE3D_MAX_DEPTH:           8192
                         CL_DEVICE_MAX_SAMPLERS:                16
... 

B. Fourier transform based on GPU

root@ls1028ardb:~# cd /opt/viv_samples/cl11/fft/
root@ls1028ardb:/opt/viv_samples/cl11/fft# ./fft 16
Block size: 16
Print result: yes

Initializing device(s)...
Get the Device info and select Device...
# of Devices Available = 1
# of Compute Units = 1
# compute units = 1
Creating Command Queue...
log2(fft size) = log2(16)=4
Compiling  radix-2 FFT Program for GPU...
creating radix-2 kernels...
Creating kernel fft_radix2 0 (p=1)...
Creating kernel fft_radix2 1 (p=2)...
Creating kernel fft_radix2 2 (p=4)...
Creating kernel fft_radix2 3 (p=8)...
Setting kernel args for kernel 0 (p=1)...
Setting kernel args for kernel 1 (p=2)...
Setting kernel args for kernel 2 (p=4)...
Setting kernel args for kernel 3 (p=8)...
running kernel 0 (p=1)...
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running kernel 1 (p=2)...
running kernel 2 (p=4)...
running kernel 3 (p=8)...
Kernel execution time on GPU (kernel 0) :   0.000118 seconds
Kernel execution time on GPU (kernel 1) :   0.000122 seconds
Kernel execution time on GPU (kernel 2) :   0.000102 seconds
Kernel execution time on GPU (kernel 3) :   0.000076 seconds
Total Kernel execution time on GPU :   0.000418 seconds
Successful.

C. OpenGL ES demo

kmscube is used to test OpenGL ES, it supports HDMI and eDP interface.

For eDP interface, 4K resolution is not supported due to firmware limitation.

root@LS1028ARDB:~# kmscube
Using display 0x3107b6d0 with EGL version 1.5
===================================
EGL information:
  version: "1.5"
  vendor: "Vivante Corporation"
  client extensions: "EGL_EXT_client_extensions EGL_EXT_platform_base EGL_KHR_platform_wayland 
EGL_EXT_platform_wayland EGL_KHR_platform_gbm"
  display extensions: "EGL_KHR_fence_sync EGL_KHR_reusable_sync EGL_KHR_wait_sync EGL_KHR_image 
EGL_KHR_image_base EGL_KHR_image_pixmap EGL_KHR_gl_texture_2D_image EGL_KHR_gl_texture_cubemap_image 
EGL_KHR_gl_renderbuffer_image EGL_EXT_image_dma_buf_import EGL_EXT_image_dma_buf_import_modifiers 
EGL_KHR_lock_surface EGL_KHR_create_context EGL_KHR_no_config_context EGL_KHR_surfaceless_context 
EGL_KHR_get_all_proc_addresses EGL_EXT_create_context_robustness EGL_EXT_protected_surface 
EGL_EXT_protected_content EGL_EXT_buffer_age EGL_ANDROID_native_fence_sync 
EGL_WL_bind_wayland_display EGL_WL_create_wayland_buffer_from_image EGL_KHR_partial_update 
EGL_EXT_swap_buffers_with_damage EGL_KHR_swap_buffers_with_damage"
===================================
OpenGL ES 2.x information:
  version: "OpenGL ES 3.1 V6.4.0.p2.234062"
  shading language version: "OpenGL ES GLSL ES 3.10"
  vendor: "Vivante Corporation"
  renderer: "Vivante GC7000UL"
  extensions: "GL_OES_vertex_type_10_10_10_2 GL_OES_vertex_half_float GL_OES_element_index_uint 
GL_OES_mapbuffer GL_OES_vertex_array_object GL_OES_compressed_ETC1_RGB8_texture 
GL_OES_compressed_paletted_texture GL_OES_texture_npot GL_OES_rgb8_rgba8 GL_OES_depth_texture 
GL_OES_depth_texture_cube_map GL_OES_depth24 GL_OES_depth32 GL_OES_packed_depth_stencil 
GL_OES_fbo_render_mipmap GL_OES_get_program_binary GL_OES_fragment_precision_high 
GL_OES_standard_derivatives GL_OES_EGL_image GL_OES_EGL_sync GL_OES_texture_stencil8 
GL_OES_shader_image_atomic GL_OES_texture_storage_multisample_2d_array GL_OES_required_internalformat 
GL_OES_surfaceless_context GL_OES_draw_buffers_indexed GL_OES_texture_border_clamp 
GL_OES_texture_buffer GL_OES_texture_cube_map_array GL_OES_draw_elements_base_vertex 
GL_OES_texture_half_float GL_OES_texture_float GL_KHR_blend_equation_advanced GL_KHR_debug 
GL_KHR_robustness GL_KHR_robust_buffer_access_behavior GL_EXT_texture_type_2_10_10_10_REV 
GL_EXT_texture_compression_dxt1 GL_EXT_texture_format_BGRA8888 GL_EXT_texture_compression_s3tc 
GL_EXT_read_format_bgra GL_EXT_multi_draw_arrays GL_EXT_frag_depth GL_EXT_discard_framebuffer 
GL_EXT_blend_minmax GL_EXT_multisampled_render_to_texture GL_EXT_color_buffer_half_float 
GL_EXT_color_buffer_float GL_EXT_robustness GL_EXT_texture_sRGB_decode GL_EXT_draw_buffers_indexed 
GL_EXT_texture_border_clamp GL_EXT_texture_buffer GL_EXT_texture_cube_map_array 
GL_EXT_multi_draw_indirect GL_EXT_draw_elements_base_vertex GL_EXT_texture_rg 
GL_EXT_protected_textures GL_EXT_sRGB GL_VIV_direct_texture "
===================================
Rendered 120 frames in 2.000008 sec (59.999758 fps)
Rendered 241 frames in 4.016689 sec (59.999663 fps)
Rendered 361 frames in 6.016730 sec (59.999368 fps)
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Below is the snapshort on screen.

Figure 55. OpenGL ES demo with kmscube

5.5.2 Wayland and Weston
Weston is the reference implementation of a Wayland, this section describes how to enable Weston on NXP platforms. Weston
is supported by LS1028ARDB, iMX 8M Plus EVK and iMX 8M Mini EVK platforms.

1. Software setting and configuration

It's been enabled by default when compiling image for i.MX 8M Plus, i.MX 8M Mini and LS1028A.

2. Hardware setup

• For LS1028ARDB, connect the monitor and LS1028ARDB with DP cable.

• For i.MX 8M Plus EVK, connect the monitor and i.MX 8M Plus EVK with HDMI cable.

• For i.MX 8M Mini EVK, connect MIPI-DSI to HDMI module, then connect to monitor. Then, insert USB mouse and
keyboard into USB port.

3. Run the lightweight desktop

root@ls1028ardb:~# mkdir -p /run/user/0/
root@ls1028ardb:~# export XDG_RUNTIME_DIR="/run/user/0/"
root@ls1028ardb:~# weston --tty=1
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# With parameter "-i" or "--idle-time" to set the time to enter idle state, default is 300s.
# "0" means weston will not enter idle state.
root@ls1028ardb:~# weston --tty=1 -i 0                # or 
root@ls1028ardb:~# weston --tty=1 --idle-time=0

Date: 2020-08-20 UTC
[14:38:00.002] weston 8.0.0
               https://wayland.freedesktop.org
               Bug reports to: https://gitlab.freedesktop.org/wayland/weston/issues/
               Build: 8.0.0
[14:38:00.002] Command line: weston --tty=1
[14:38:00.002] OS: Linux, 5.4.3-rt1, #1 SMP PREEMPT_RT Tue Aug 18 14:49:14 CST 2020, aarch64
[14:38:00.002] Starting with no config file.
[14:38:00.005] Output repaint window is 16 ms maximum.
[14:38:00.007] Loading module '/usr/lib/libweston-8/drm-backend.so'
[14:38:00.050] initializing drm backend
[14:38:00.054] using /dev/dri/card0
[14:38:00.054] DRM: supports universal planes
[14:38:00.054] DRM: supports atomic modesetting
[14:38:00.054] DRM: supports picture aspect ratio
[14:38:00.056] Loading module '/usr/lib/libweston-8/gl-renderer.so'
[14:38:00.208] EGL client extensions: EGL_EXT_client_extensions
               EGL_EXT_platform_base EGL_KHR_platform_wayland
               EGL_EXT_platform_wayland EGL_KHR_platform_gbm
[14:38:00.224] EGL version: 1.5
[14:38:00.224] EGL vendor: Vivante Corporation
[14:38:00.224] EGL client APIs: OpenGL_ES OpenGL OpenVG
[14:38:00.224] EGL extensions: EGL_KHR_fence_sync EGL_KHR_reusable_sync
               EGL_KHR_wait_sync EGL_KHR_image EGL_KHR_image_base
               EGL_KHR_image_pixmap EGL_KHR_gl_texture_2D_image
               EGL_KHR_gl_texture_cubemap_image EGL_KHR_gl_renderbuffer_image
               EGL_EXT_image_dma_buf_import
               EGL_EXT_image_dma_buf_import_modifiers EGL_KHR_lock_surface
               EGL_KHR_create_context EGL_KHR_no_config_context
               EGL_KHR_surfaceless_context EGL_KHR_get_all_proc_addresses
               EGL_EXT_create_context_robustness EGL_EXT_protected_surface
               EGL_EXT_protected_content EGL_EXT_buffer_age
               EGL_ANDROID_native_fence_sync EGL_WL_bind_wayland_display
               EGL_WL_create_wayland_buffer_from_image EGL_KHR_partial_update
               EGL_EXT_swap_buffers_with_damage
               EGL_KHR_swap_buffers_with_damage
[14:38:00.224] EGL_KHR_surfaceless_context available
[14:38:00.310] GL version: OpenGL ES 3.1 V6.4.0.p2.234062
[14:38:00.311] GLSL version: OpenGL ES GLSL ES 3.10
[14:38:00.311] GL vendor: Vivante Corporation
[14:38:00.311] GL renderer: Vivante GC7000UL
[14:38:00.311] GL extensions: GL_OES_vertex_type_10_10_10_2
               GL_OES_vertex_half_float GL_OES_element_index_uint
               GL_OES_mapbuffer GL_OES_vertex_array_object
               GL_OES_compressed_ETC1_RGB8_texture
               GL_OES_compressed_paletted_texture GL_OES_texture_npot
               GL_OES_rgb8_rgba8 GL_OES_depth_texture
               GL_OES_depth_texture_cube_map GL_OES_depth24 GL_OES_depth32
               GL_OES_packed_depth_stencil GL_OES_fbo_render_mipmap
               GL_OES_get_program_binary GL_OES_fragment_precision_high
               GL_OES_standard_derivatives GL_OES_EGL_image GL_OES_EGL_sync
               GL_OES_texture_stencil8 GL_OES_shader_image_atomic
               GL_OES_texture_storage_multisample_2d_array
               GL_OES_required_internalformat GL_OES_surfaceless_context
               GL_OES_draw_buffers_indexed GL_OES_texture_border_clamp
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               GL_OES_texture_buffer GL_OES_texture_cube_map_array
               GL_OES_draw_elements_base_vertex GL_OES_texture_half_float
               GL_OES_texture_float GL_KHR_blend_equation_advanced
               GL_KHR_debug GL_KHR_robustness
               GL_KHR_robust_buffer_access_behavior
               GL_EXT_texture_type_2_10_10_10_REV
               GL_EXT_texture_compression_dxt1 GL_EXT_texture_format_BGRA8888
               GL_EXT_texture_compression_s3tc GL_EXT_read_format_bgra
               GL_EXT_multi_draw_arrays GL_EXT_frag_depth
               GL_EXT_discard_framebuffer GL_EXT_blend_minmax
               GL_EXT_multisampled_render_to_texture
               GL_EXT_color_buffer_half_float GL_EXT_color_buffer_float
               GL_EXT_robustness GL_EXT_texture_sRGB_decode
               GL_EXT_draw_buffers_indexed GL_EXT_texture_border_clamp
               GL_EXT_texture_buffer GL_EXT_texture_cube_map_array
               GL_EXT_multi_draw_indirect GL_EXT_draw_elements_base_vertex
               GL_EXT_texture_rg GL_EXT_protected_textures GL_EXT_sRGB
               GL_VIV_direct_texture
[14:38:00.311] GL ES 2 renderer features:
               read-back format: BGRA
               wl_shm sub-image to texture: yes
               EGL Wayland extension: yes
[14:38:00.343] warning: no input devices on entering Weston. Possible causes:
        - no permissions to read /dev/input/event*
        - seats misconfigured (Weston backend option 'seat', udev device property ID_SEAT)
[14:38:00.343] failed to create input devices
[14:38:00.349] DRM: head 'DP-1' found, connector 56 is connected, EDID make 'DEL', model 'DELL 
P2417H', serial 'C9G5D7561ECB'
[14:38:00.349] Registered plugin API 'weston_drm_output_api_v1' of size 24
[14:38:00.357] Chosen EGL config details: id:  41 rgba: 8 8 8 0 buf: 24 dep:  0 stcl: 0 int: 1-60 
type: win|pix|pbf|swap_preserved vis_id: XRGB8888 (0x34325258)
[14:38:00.357] Output DP-1 (crtc 48) video modes:
               1920x1080@60.0, preferred, current, 148.5 MHz
               1600x900@60.0, 108.0 MHz
               1280x1024@75.0, 135.0 MHz
               1280x1024@60.0, 108.0 MHz
               1152x864@75.0, 108.0 MHz
               1024x768@75.0, 78.8 MHz
               1024x768@60.0, 65.0 MHz
               800x600@75.0, 49.5 MHz
               800x600@60.3, 40.0 MHz
               640x480@75.0, 31.5 MHz
               640x480@59.9, 25.2 MHz
               720x400@70.1, 28.3 MHz
[14:38:00.357] Output 'DP-1' enabled with head(s) DP-1
[14:38:00.357] Compositor capabilities:
               arbitrary surface rotation: yes
               screen capture uses y-flip: yes
               presentation clock: CLOCK_MONOTONIC, id 1
               presentation clock resolution: 0.000000001 s
[14:38:00.359] Loading module '/usr/lib/weston/desktop-shell.so'
[14:38:00.367] launching '/usr/libexec/weston-keyboard'
[14:38:00.373] launching '/usr/libexec/weston-desktop-shell'
[14:39:23.341] event0  - Logitech USB Optical Mouse: is tagged by udev as: Mouse
[14:39:23.341] event0  - Logitech USB Optical Mouse: device is a pointer
[14:39:23.341] libinput: configuring device "Logitech USB Optical Mouse".
[14:39:23.342] associating input device event0 with output DP-1 (none by udev)
could not load cursor 'dnd-move'
could not load cursor 'dnd-copy'
could not load cursor 'dnd-none'
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[14:39:33.459] event0  - Logitech USB Optical Mouse: device removed
[14:39:51.794] event0  - Dell Dell USB Keyboard: is tagged by udev as: Keyboard
[14:39:51.794] event0  - Dell Dell USB Keyboard: device is a keyboard
[14:39:51.859] libinput: configuring device "Dell Dell USB Keyboard".
[14:39:51.859] associating input device event0 with output DP-1 (none by udev)
[14:40:03.937] event0  - Dell Dell USB Keyboard: device removed
[14:40:11.758] event0  - Logitech USB Optical Mouse: is tagged by udev as: Mouse
[14:40:11.758] event0  - Logitech USB Optical Mouse: device is a pointer
[14:40:11.758] libinput: configuring device "Logitech USB Optical Mouse".
[14:40:11.758] associating input device event0 with output DP-1 (none by udev)
[14:40:19.403] event0  - Logitech USB Optical Mouse: device removed
[14:40:29.454] event0  - Dell Dell USB Keyboard: is tagged by udev as: Keyboard
[14:40:29.454] event0  - Dell Dell USB Keyboard: device is a keyboard
[14:40:29.454] libinput: configuring device "Dell Dell USB Keyboard".
[14:40:29.454] associating input device event0 with output DP-1 (none by udev)
[14:41:00.156] event0  - Dell Dell USB Keyboard: device removed

[14:42:29.287] event0  - Logitech USB Optical Mouse: is tagged by udev as: Mouse
[14:42:29.287] event0  - Logitech USB Optical Mouse: device is a pointer
[14:42:29.287] libinput: configuring device "Logitech USB Optical Mouse".
[14:42:29.287] associating input device event0 with output DP-1 (none by udev)
[14:42:35.418] event1  - Dell Dell USB Keyboard: is tagged by udev as: Keyboard
[14:42:35.419] event1  - Dell Dell USB Keyboard: device is a keyboard
[14:42:35.419] libinput: configuring device "Dell Dell USB Keyboard".
[14:42:35.419] associating input device event1 with output DP-1 (none by udev)

Below is the snapshot.
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Figure 56. Weston demo

5.5.3 CSI Camera
NXP provides i.MX 8M Mini EVK board that have CSI MIPI and DSI MIPI interfaces. The gstreamer video stream captures video
frame from CSI camera and displays it to screen via DSI MIPI interface. The element waylandsink is based on wayland library
and Weston desktop. Refer to Wayland and Weston to enable them. Users should follow the steps below to enable gstreamer
on a target board.

1. Software setting and configuration

Gstream is enabled by default.

2. Hardware setup

• For i.MX 8M Mini EVK boards, DSI MIPI and CSI MIPI modules are connected to the board.

• MIPI-DSI to HDMI interface:
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Figure 57. MIPI-DSI to HDMI interface

3. MIPI-CSI camera module: The following figure shows the MIPI-CSI camera module:

Figure 58. MIPI-CSI camera module

4. Run gstreamer for camera.

After entering Linux prompt, run gstreamer command as shown in the below steps:

[root@imx8mmevk ~] # gst-launch-1.0 v4l2src device= /dev/video0 ! 'video/x-
raw,width=640,height=480,framerate=(fraction)30/1' ! videoconvert ! fbdevsink

Below is the snapshot with fbdevsink:
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Figure 59. fbdevsink

5. Run wayland and weston for waylandsink using the commands shown below:

[root@imx8mmevk ~] # mkdir -p /run/user/0/
[root@imx8mmevk ~] # export XDG_RUNTIME_DIR="/run/user/0/"
[root@imx8mmevk ~] # weston --tty=1 &
[root@imx8mmevk ~] # gst-launch-1.0 v4l2src device= /dev/video0 ! 'video/x-
raw,width=640,height=480,framerate=(fraction)30/1' ! videoconvert ! waylandsink

The below snapshot shows waylandsink implementation:
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Figure 60. Waylandsink implementation

5.6 Wireless on LS1028A

5.6.1 NFC
NFC click board is a mikroBUS™ add-on board with a versatile near field communications controller from NXP — the PN7120
IC. NFC devices are used in contactless payment systems, electronic ticketing, smartcards. In retail and advertising, inexpensive
NFC tags can be embedded into packaging labels, flyers, or posters.

This board is fully compliant with NFC Forum specifications. This implies that users can use the full potential of NFC and its three
distinct operating modes listed below:

1. Card emulation

2. Read/Write

3. P2P

5.6.1.1 Introduction

The NXP’s PN7120 IC integrates an Arm™ Cortex-M0 MCU, which enables easier integration into designs, because it requires
fewer resources from the host MCU. The integrated firmware provides all NFC protocols for performing the contactless
communication in charge of the modulation, data processing, and error detection.

The board communicates with the target board MCU through the mikroBUS™ I2C interface, in compliance with NCI (NFC
controller interface) 1.0 host protocols. RST and INT pins provide additional functionality. The board uses a 3.3 V power supply.

NXP Semiconductors
Protocols

Real-time Edge Software User Guide, Rev. 2.1, 15-Dec-2021
User Guide 255 / 269

http://cache.nxp.com/documents/data_sheet/PN7120.pdf?pspll=1
http://cache.nxp.com/documents/data_sheet/PN7120.pdf?pspll=1


5.6.1.2 PN7120 features

PN7120 IC embeds a new generation RF contactless front-end, supporting various transmission modes according to NFCIP-1 and
NFCIP-2, ISO/IEC14443, ISO/IEC 15693, ISO/IEC 18000-3, MIFARE, and FeliCa specifications. It embeds an Arm Cortex-M0
microcontroller core loaded with the integrated firmware supporting the NCI 1.0 host communication.

5.6.1.3 Hardware preparation

Use the following hardware items for the NFC clickboard demo setup:

1. LS1028ARDB

2. NFC click board

3. NFC sample card (tag)

 
Users should insert the NFC click board into the LS1028ARDB mikroBUS1 slot.

  NOTE  

5.6.1.4 Software preparation

In order to support NFC click board, use the following steps:

1. In Real-time Edge, libnfc-nci is enabled by default.

2. In Linux kernel configuration, make sure the below options are enabled:

[*] Networking support --->
    <M>   NFC subsystem support   --->
        Near Field Communication (NFC) devices  --->
            <M> NXP PN5XX based driver 

 
The NXP PN5XX based driver only supports the Module mode.

  NOTE  

3. Use the make command to create the images.

5.6.1.5 Testing the NFC click board

Use the following steps for testing the NFC Clickboard:

1. Install NFC driver module

[root]# modprobe pn5xx_i2c.ko

2. The following log appears at the console after the above command is successful. The error information can be ignored in
this case.
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3. Run the nfcDemoApp application:

 [root]# nfcDemoApp poll

4. Put the NFC Sample Card (tag) on top of the NFC click board:

Display of the above information indicates successful card reading.

5.6.2 Bluetooth Low Energy
This chapter introduces the features of the Bluetooth Low Energy P click board and how to use it on NXP's LS1028A reference
design board (RDB).

5.6.2.1 Introduction

Bluetooth Low Energy P click carries the nRF8001 IC that allows user to add Bluetooth 4.0 to user's device. The click
communicates with the target board MCU through mikroBUS™ SPI (CS, SCK, MISO, MOSI), RDY and ACT lines, and runs on
3.3 V power supply.

Bluetooth Low Energy P click features a PCB trace antenna, designed for the 2400 MHz to 2483.5 MHz frequency band. The
maximum device range is up to 40 meters in open space.
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5.6.2.2 Bluetooth Low Energy

LS1028ARDB support Bluetooth Low Energy click board, Bluetooth Low Energy P click carries the nRF8001 IC that allows user
to add Bluetooth 4.0 to the device.

5.6.2.3 Features

Following are the features provided by BLE P clickboard:

• nRF8001 Bluetooth low energy RF transceiver

— 16 MHz crystal oscillator

— Ultra-low peak current consumption <14 mA

— Low current for connection-oriented profiles, typically 2 μA

• PCB trace antenna (2400-2483.5 MHz, up to 40 meters)

• BLE Android app

• Interface: SPI (CS, SCK, MISO, MOSI), RDY, and ACT lines

• 3.3 V power supply

5.6.2.4 Hardware preparation

Use the following hardware items for the BLE P click board demo setup:

1. LS1028ARDB

2. BLE P Click board

3. Android phone (option)

The figure below depicts the hardware setup required for the demo:
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Figure 61. BLE P click board hardware setup

5.6.2.5 Software preparation

Use these steps for the BLE P click board demo software setup:

• Download the JUMA UART (Android app) by using the link: https://apkpure.com/juma-uart/com.juma.UART

• Then, run the steps below in order to support BLE P click board:

1. In Real-time Edge, libblep is enabled by default.

2. In Linux kernel configuration, make sure the below options are enabled:

Device Drivers --->
    SPI support --->
        <*>   Freescale DSPI controller
        <*>   User mode SPI device driver support
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3. Use the make command to create the images.

5.6.2.6 Testing the BLE P click board

Use the following steps for testing the BLE P click board:

1. Running the blep_demo application.

The following log is displayed to indicate that the BLE P click board is initialized. After this, users can scan from their mobile
phone or computer's Bluetooth device for the BLE P click board. The name of the BLE P click board used is “MikroE”.

2. Connection log

Connect the BLE P click board via mobile app. On successful connection, the following log is displayed. Thereafter, the
application can communicate with the BLE P click board.

3. Disconnection log

Click the Disconnect button of the Android APP to disconnect from the BLE P click board. The following log displays that
the disconnection is successful:

4. Command line introduction
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The blep _demo application supports four command lines: devaddr, name=, version, and echo.

a. devaddr

This command is used to obtain the MAC address of the BLE P click board. User can run this command at any time.

b. name=

This command is used to set the Bluetooth name of the BLE P click board while broadcasting. No spaces are required
after the equal sign "=", and the content after the 'equal to' sign is the set name. The maximum length is 16 characters.

c. version

This command is used to obtain the version of the BLE P click board. User can run this command at any time.

d. echo

This command is used to send a string to the Android app. This command should be executed after the connection
is established. The maximum length is 20 characters.

The below log displays the message displayed after user tries to send a string when no connection is established:

The below log is displayed when user sends a string after a connection is established:
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5. Receiving data

When the Android app sends a string:

5.6.3 BEE
This chapter introduces the features of the BEE Click Board and how to use it on LS1028ARDB.

5.6.3.1 BEE/ZigBEE

LS1028ARDB supports BEE click board, which can implement the MRF24J40MA 2.4 GHz IEEE 802.15.4 radio transceiver
module from Microchip.

5.6.3.2 Introduction

The BEE Click Board features the MRF24J40MA 2.4 GHz IEEE 802.15.4 radio transceiver module from Microchip. The click is
designed to run on 3.3 V power supply only. It communicates with the target controller over an SPI interface.

5.6.3.3 Features

The features of the BEE Click Board are listed below:

• PCB antenna

• MRF24J40MA module

• Low current consumption (TX 23 mA, RX 19 mA, Sleep 2 μA)

• ZigBee stack

• MiWi™ stack

• SPI Interface

• 3.3 V power supply

5.6.3.4 Hardware preparation

Use the following hardware items for the BEE Click Board demo setup:

• Two LS1028ARDB Boards

• Two BEE Click Boards

The figure below describes the hardware setup for the BEE Click Board.
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Figure 62. BEE Click Board hardware setup

 
The WA pin of BEE Click Board connects with the NC pin.

  NOTE  

5.6.3.5 Software preparation

In order to support BEE click board, use the following steps:

1. In Real-time Edge, libbee is enabled by default.

2. In Linux kernel configuration, make sure the below options are enabled:

Device Drivers --->
  SPI support --->
    <*>   Freescale DSPI controller
    <*> User mode SPI device driver support
  -*- GPIO Support  --->
    [*]   /sys/class/gpio/... (sysfs interface)
          Memory mapped GPIO drivers  --->
            [*] MPC512x/MPC8xxx/QorIQ GPIO support

3. Use the make command to create the images.
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5.6.3.6 Testing the BEE click board

The test application bee_demo is created by using the BEE Click Board library. This application can transfer the file between two
BEE Click Boards.

1. Users should create a file in any path. For example, ./samples/test.txt.

2. First, start a server node by running the command below:

bee_demo -s -f=XXX

The command parameters are as below:

• -s: This device node acts as a server.

• -f=XXX: This parameter is valid only on the server node. XXX is the file path (relative or absolute) to be transferred.

[root]# ls
samples
[root]# bee_demo -s -f=./samples/test.txt
spi mode: 0x0
bits per word: 8
max speed: 500000 Hz (500 KHz)
BEE  Click  Board  Demo.
This node is a server node.
Waiting for a client
Reading the content of the file

3. Start a client node on another LS1028ARDB by running the command bee_demo -c. In the above command, the parameter
-c implies that this device node acts as a client. After receiving the file, the client node automatically exits. The received file
is saved in the current path.

[root]# ls
samples
[root]# bee_demo -c
                    spi mode: 0x0
                    bits per word: 8
                    max speed: 500000 Hz (500 KHz)
                    BEE  Click  Board  Demo.
                    This node is a client node.
                    Starting to get a file
                    Send the SEQ_REQ command.
                    Send the SEQ_START command.
                    Send the SEQ_START command.
[root]# ls
samples  test.txt
[root]#

4. The following log indicates that the server node has finished sending a file.

Send the SEQ_INFO command.
Start to send the file
It's completed to send a file.
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Chapter 6
Revision history
The table below summarizes revisions to this document.

Table 65. Document revision history

Date Document
version

Topic cross-reference Change description

15/12/2021 2.1 What's new in Real-time
Edge software v2.1

Added the section. Updated for Real-time Edge Software Rev 2.1.

Open, fixed, and closed
issues

Updated the section.

29/07/2021 2.0 - • 'Real-time Edge Software' introduced instead of 'Open
Industrial Linux', with real-time feature support.

• Rearranged the document structure to include the Chapters:
Real-time System, Real-time Networking, and Protocols.

- Added support for building Real-time Edge image using Yocto
Project build environment. Details are provided in the Real-time
Edge Yocto Project User Guide.

What's new Added the section.

- Integrated BareMetal framework in the document.

26/04/2021 1.11 What's new Added the section that describes the new features of each
release.

- Updated the section 'Getting Open IL'.

- Deleted references to Edgescale, OP-TEE, OTA throughout the
document and other minor updates.

22/12/2020 1.10 GenAVB/TSN stack Added the chapter and related contents.

- Added the 'Camera' section and related details.

- Added the Host setup for i.MX 8M Plus EVK board details.

15/09/2020 1.9 IEEE 1588/802.1AS Added the section.

GPU Added the chapter and related description.

Wayland and Weston Added the chapter and related description..

real-time-edge-servo stack Made it a part of the chapter "EtherCAT".

29/05/2020 1.8 Preempt-RT Linux Added the section in Protocols.

- Updated this section Interface naming in Linux for LS1028ARDB.

- Updated the section Host system requirements for Open IL.

- Updated the section Running Selinux demo.

20/02/20 1.7.1 Operation examples Updated this section.

Table continues on the next page...
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Table 65. Document revision history (continued)

Date Document
version

Topic cross-reference Change description

17/01/20 1.7 real-time-edge-servo stack Added the chapter (nxp servo).

IEEE 1588/802.1AS Added the chapter

Getting Open IL Updated the section.

NETCONF/YANG Other updates.

31/08/19 1.6 TSN on LS1028A • Information related to pcpmap command removed from the
section TSN configuration on ENETC and TSN configuration
on Felix switch.

• Port names "eno/swp0" changed to "swp0" for few tsntool
commands.

• Note added in section Stream identification for usage of
nulltagged and streamhandle parameters.

• Added the section TSN stream identification.

• Other minor updates.

- Updated the table "Host system mandatory packages". Added
autogen autoconf libtool and pkg-config packages.

BEE Added this Chapter.

- Updated NETCONF/YANG.

NETCONF/YANG • Added the section Enabling NETCONF feature and other
updates.

01/05/2019 1.5 - Added the section to describe interface naming for U-Boot and
Linux for LS1028ARDB.

TSN on LS1028A Updated this section in the Chapter Time Sensitive Networking
(TSN) on NXP platforms.

Bluetooth Low Energy Added the Chapter.

- Added the Chapter 'EdgeScale Client'.

- Updated the OpenIL version and Git tag in the section 'Getting
Open IL'.

01/02/2019 1.4 Supported NXP platforms Added support for LS1028ARDB (64-bit and Ubuntu). Updated
various sections accordingly.

- Updated the OpenIL version and Git tag in the section 'Getting
Open IL'.

- Added this Section for LS1028ARDB support.

Time Sensitive Networking
(TSN) on NXP platforms

Reorganized this Chapter and added separate Section for TSN
on LS1028A.

NFC Added the Chapter.

Table continues on the next page...
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Table 65. Document revision history (continued)

Date Document
version

Topic cross-reference Change description

FlexCAN and CAN Open Minor updates in this Chapter. Also added the section, Hardware
preparation for LS1028ARDB and Testing CAN bus.

- Added the Chapter QT.

15/10/2018 1.3.1 - Updated the OpenIL version and Git tag in the section 'Getting
Open IL'.

31/08/2018 1.3 EtherCAT Added the chapter.

FlexCAN Added the chapter.

i.MX6QSabreSD support. Added the section in chapter NXP OpenIL platforms. Updated
other sections for i.MX6Q Sabre support.

Getting Open IL Updated the section.

Selinux demo Added the section, #unique_384 and updated Basic setup.
Updates in other sections.

31/05/2018 1.2 - Updated the Section, "Hardware requirements" for RTnet.

- Updated the Section, "Software requirements" for RTnet.

18/04/2018 1.1.1 - Added the Section, "RTnet".

- Added a note for LS1043A switch setting.

30/03/2018 1.1 - Added support for industrial IoT BareMetal framework in this
section.

- Added a note for steps to be performed before booting up the
board.

Related documentation Added the section.

22/12/2017 1.0 OPC UA Added the Chapter.

Time Sensitive Networking
(TSN) on NXP platforms

Chapters for "1-board TSN demo" and "3-board TSN demo"
replaced by a single chapter, "TSN demo".

Protocols • Updated the section, 'Industrial Features'.

• -IEEE 1588 -'sja1105-ptp' support removed.

25/08/2017 0.3 - Set up the OpenIL websitehttp://www.openil.org/.

- OTA - Xenomai Cobalt 64-bit and SJA1105 support added.

Time Sensitive Networking
(TSN) on NXP platforms

Qbv support added.

- SELinux support for LS1043 / LS1046 Ubuntu Userland added.

- OP-TEE support for LS1021ATSN platform added.

- 4G LTE module - 64-bit support for LS1043ARDB, LS1046ARDB,
and LS1012ARDB added.

Table continues on the next page...
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Table 65. Document revision history (continued)

Date Document
version

Topic cross-reference Change description

Real-time Networking Ubuntu Userland support for 64-bit LS1043ARDB and 64-bit
LS1046ARDB added.

26/05/2017 0.2 - Initial public release.
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