
© 2019 NXP B.V.

Qi PC0 Transmitter Library User’s
Guide

1. Introduction

This document describes the API of the Qi PC0

Wireless Charging Transmitter (WCT) library,

which is based on voltage control. The library

enables you to evaluate the wireless charging Qi

solution easily in customer applications.

This document describes library interface and

software features and enables users to develop

customer applications based on the library.

NXP Semiconductors Document Number: QIPC0TLIBUG

User's Guide Rev. 4.1 04/2019

1. Introduction .. 1
2. Overview .. 2

2.1. WCT software layers ... 2
3. WCT library API .. 4

3.1. Macro, enumeration, and structs 4
3.2. WCT library configurations 7
3.3. WCT library API functions 11

4. WCT interface API ... 15
4.1. Middleware interface ... 15
4.2. HAL interface .. 23
4.3. Parameter interface .. 31

5. Typical application ... 32
5.1. Demo application .. 32
5.2. Dynamic timing analysis 32

6. New features of the library ... 33
7. Revision history .. 34

Contents

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

2 NXP Semiconductors

2. Overview

2.1. WCT software layers

The WCT library software layers are as follows:

The WCT library is provided as a binary format, while the application and Board Support Package

(BSP) are in the source format.

The main modules in the WCT library include:

• WCT Qi state machine

• Coil selection

• Qi communication module

• PID power transfer control

• Foreign Object Detection (FOD), power loss-based and quality factor-based methods

• Quick RX removal detection

The WCT library API and the WCT Hardware Abstraction Layer (HAL) API are exposed in the source

format, with these main functions:

• WCT library API

o Library version retrieval

o Library initialization

o Library main entry function

o Callbacks, such as the Qi communication interrupt callback

• WCT HAL API

o Coil-related HAL

o Voltage and current sensing HAL

o Enable/disable interrupt HAL

Application

WCT lib (binary)

WCT HAL

Platform HAL, BSP

Hardware driver

Callbacks

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 3

2.1.1. WCT software dynamics

For one instance:

• ADC_B is used to sample the coil current signal, which is synchronized with the PWM

frequency. This signal is used for DDM. ADC_A is used to sample the input voltage, current,

and so on.

• When a block (128 samples) of coil current data is saved, an interrupt is triggered to enable the

software to process in a batch for the communication decoder.

Software Hardware

Timer interrupt

ADC_A complete
interrupt

DMA interrupt

(ADC_B sync sampling)

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

4 NXP Semiconductors

3. WCT library API

3.1. Macro, enumeration, and structs

3.1.1. Definition

//For platform

#define FREQUENCY_CONTROL FALSE

#define PHASE_CONTROL FALSE

#define DUTY_CONTROL TRUE

#define RAIL_CONTROL TRUE

#define MAX_COIL_NUM_PER_DEVICE 10U

Note: The above definition means that the library supports rail voltage control and

enters the duty cycle control method when the rail voltage reaches its minimum. The

library supports a maximum of 10-coil array.

3.1.2. Library version

typedef struct

{

 uint8 bMajorVersion;

 uint8 bMinorVersion;

 uint8 bSubVersion;

} LIB_Version;

3.1.3. Power type

typedef enum

{

POWER_TYPE_ANALOG_PING = 0,

POWER_TYPE_DIGITAL_PING

} WCT_POWER_TYPE_E;

3.1.4. Charging type

typedef enum

{

 WPC_CHARGING = 0,

 PMA_CHARGING

} CHARGING_TYPE;

Note: Only support WPC charging type now

3.1.5. TX charging status

typedef enum

{

 TX_ERROR_HALT = 0,

 TX_APP_HALT,

 TX_OBJECT_DETECTION,

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 5

 TX_COIL_SELECTION,

 TX_COIL_SELECTION_CFM,

 TX_DIGITAL_PING,

 TX_IDENTIFICATION,

 TX_CONFIGURATION,

 TX_NEGOTIATION,

 TX_CALIBRATION,

 TX_POWER_TRANSFER,

 TX_RENEGOTIATION,

 TX_RECHARGE_RETRY

} TX_CHARGING_STATUS;

 TX charging status

Type Description

TX_ERROR_HALT Chip verification failed.

TX_APP_HALT Application stopped TX by calling WCT_Stop().

TX_OBJECT_DETECTION TX is detecting the existence of the RX.

TX_COIL_SELECTION TX is selecting the best coil.

TX_COIL_SELECTION_CFM TX is confirming the best coil.

TX_DIGITAL_PING TX has found the best coil. Do the digital ping as in the specification.

TX_IDENTIFICATION TX is in the identification state, as in the specification.

TX_CONFIGURATION TX is in the configuration state, as in the specification.

TX_NEGOTIATION TX is in the negotiation state, as in the specification.

TX_CALIBRATION TX is in the calibration state, as in the specification.

TX_POWER_TRANSFER TX is in the power transfer state, as in the specification.

TX_RENEGOTIATION TX is in the re-negotiation state, as in the specification.

TX_RECHARGE_RETRY TX waits some time to restart if an error occurs, unless the RX is removed.

3.1.6. TX charging error

typedef enum

{

 TX_SUCCESS = 0,

 TX_CHIP_ERROR,

TX_PRE_FOD_ERROR,

 TX_FOD_ERROR,

 TX_QFOD_ERROR,

 TX_RUNTIME_PARAM_ERROR,

 TX_CHARGE_REPEATED_FAIL

} TX_CHARGING_ERRORS;

 TX charging error

Type Description

TX_SUCCESS No error occurs.

TX_CHIP_ERROR Chip verification failed.

TX_PRE_FOD_ERROR FO is detected while no RX is on the TX surface.

TX_FOD_ERROR FOD by power loss method.

TX_QFOD_ERROR FOD by quality factor method.

TX_RUNTIME_PARAM_ERROR Runtime parameter error, such as current and voltage from the application.

TX_CHARGE_REPEATED_FAIL Repeated failure when charging an RX.

3.1.7. RX charging status

typedef enum

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

6 NXP Semiconductors

{

 RX_NONE = 0,

 RX_PREPARE_CHARGE,

 RX_CHARGING,

 RX_CHARGED,

 RX_UNDEFINE,

 RX_FAULT

} RX_CHARGING_STATUS;

 RX charging status

Type Description

RX_NONE RX is not detected yet, such as from start or reset.

RX_PREPARE_CHARGE Can be seen as RX detected and provides user indication during coil selection.

RX_CHARGING Real charging, after coil selection and confirmation.

RX_CHARGED RX sends EPT with CHARGED code.

RX_UNDEFINE Meaningless state. For example, TX is in recharge retry state.

RX_FAULT Some RX-related errors occur.

3.1.8. RX charging error

typedef enum

{

 RX_SUCCESS = 0,

 RX_WPC_EPT_UNKNOWN,

 RX_WPC_EPT_INTERNAL_FAULT,

 RX_WPC_EPT_OVER_TEMP,

 RX_WPC_EPT_OVER_VOLT,

 RX_WPC_EPT_OVER_CURRENT,

 RX_WPC_EPT_BATTERY_FAILURE,

 RX_WPC_EPT_NO_RESPONSE,

 RX_WPC_EPT_RESTART_POWERTRANSFER,

 RX_WPC_EPT_NEGOTIATION_FAILURE,

 RX_WPC_EPT_RESERVED,

 RX_WPC_PACKET_INCOMPATIBLE,

 RX_WPC_PACKET_POWER_BEYOND_CAPABILITY,

 RX_WPC_PACKET_RCVPWR_TIMEOUT

} RX_CHARGING_ERRORS;

 RX charging error

Type Description

RX_SUCCESS No error occurs.

RX_WPC_EPT_UNKNOWN EPT with “Unknown” code.

RX_WPC_EPT_INTERNAL_FAULT EPT with “Internal Fault” code.

RX_WPC_EPT_OVER_TEMP EPT with “Over Temperature” code.

RX_WPC_EPT_OVER_VOLT EPT with “Over Voltage” code.

RX_WPC_EPT_OVER_CURRENT EPT with “Over Current” code.

RX_WPC_EPT_BATTERY_FAILURE EPT with “Battery Failure” code.

RX_WPC_EPT_NO_RESPONSE EPT with “No Response” code.

RX_WPC_EPT_RESTART_POWERTRANSFER EPT with “Restart Power Transfer” code.

RX_WPC_EPT_NEGOTIATION_FAILURE EPT with “Negotiation Failure” code.

RX_WPC_EPT_RESERVED EPT reserved packet (0x09, 0x0C-0xFF).

RX_WPC_PACKET_INCOMPATIBLE Packet timing or content is incorrect.

RX_WPC_PACKET_POWER_BEYOND_CAPABILITY Reported RX power level is out of TX's capability.

RX_WPC_PACKET_RCVPWR_TIMEOUT TX does not receive Received Power Packet and exceeds the

time threshold.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 7

3.1.9. Recharge error type

typedef enum

{

 RECHARGETIME_RX_UNKNOWN = 0,

 RECHARGETIME_RX_CHARGE_COMPLETE,

 RECHARGETIME_RX_INTERNAL_FAULT,

 RECHARGETIME_RX_OVER_TEMP,

 RECHARGETIME_RX_OVER_VOLT,

 RECHARGETIME_RX_OVER_CURRENT,

 RECHARGETIME_RX_BATTERY_FAILURE,

 RECHARGETIME_RX_NO_RESPONSE,

 RECHARGETIME_RX_RESTART_POWERXFER,

 RECHARGETIME_RX_NEGOTIATION_FAILURE,

 RECHARGETIME_RX_POWER_BEYOND_CAPABILITY,

 RECHARGETIME_TX_RCVPWR_TIMEOUT,

 RECHARGETIME_TX_PREFOD_ERROR,

 RECHARGETIME_TX_FOD_ERROR,

 RECHARGETIME_TX_QFOD_ERROR,

 RECHARGETIME_TX_CHARGE_REPEATED_FAIL

}E_RECHARGETIME_SETTYPE;

 Recharge error type

Type Description

RECHARGETIME_RX_UNKNOWN RX unknown error.

RECHARGETIME_RX_CHARGE_COMPLETE RX gets charged.

RECHARGETIME_RX_INTERNAL_FAULT RX internal fault.

RECHARGETIME_RX_OVER_TEMP RX over temperature.

RECHARGETIME_RX_OVER_VOLT RX over voltage.

RECHARGETIME_RX_OVER_CURRENT RX over current.

RECHARGETIME_RX_BATTERY_FAILURE RX battery fault.

RECHARGETIME_RX_NO_RESPONSE RX considers TX no response.

RECHARGETIME_RX_RESTART_POWERXFER RX requires restart power transfer.

RECHARGETIME_RX_NEGOTIATION_FAILURE RX negotiation failed.

RECHARGETIME_RX_POWER_BEYOND_CAPABILITY RX requires more power than TX could afford.

RECHARGETIME_TX_RCVPWR_TIMEOUT TX cannot get received power packet in

time(normally 23 s).

RECHARGETIME_TX_PREFOD_ERROR TX detect FO while no Rx on TX surface.

RECHARGETIME_TX_FOD_ERROR TX enter FOD status.

RECHARGETIME_TX_QFOD_ERROR TX cannot pass Q factor check when charging EPP

RX.

RECHARGETIME_TX_CHARGE_REPEATED_FAIL TX fails to charge RX.

3.2. WCT library configurations

WCT_PARAM_T structure contains the library configuration parameters.

 WCT library configurations

Parameter Description

byDeviceNum Device number. Default value is 1. The library supports multi-transmitter in

one wireless charging base station.

byCoilNumPerDevice Number of coils for each device.

wManufacturerCode TX manufacturer code.

wTxMaxPowerHalfWatts TX maximum power, in units of half watts.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

8 NXP Semiconductors

Parameter Description

wDeviceEnableFlag Device enable flag, with each bit corresponding to one device. Bit 0 is used

for device 0.

uCtrlBit WPC_CTRL structure, with each bit for one feature enable/disable. Check the

WPC_CTRL definition for details.

byTxPowerClass TX power class. TX maximum transmitted power =

wTxMaxPowerHalfWatts*10^byTxPowerClass.

byChargingTryNumOnOneCoilThreshold If the number of continue charging failures/stop exceeds this threshold,

TX_CHARGE_REPEATED_FAIL is triggered.

byRxRemovedConfirmDPNum During recharge retry period:

If TX cannot receive the data packet start bit and the counter exceeds this

threshold, TX judges that RX is removed, when uCtrlBit. bQfactorRetry=0;

If TX detect Q factor change exceed its threshold and the counter exceeds

this threshold, TX judges that RX moved, when uCtrlBit. bQfactorRetry=1.

byAnalogPingDetectAbsoluteValue Absolute difference for object detection during analog ping.

byAnalogPingDetectThresholdPercent Difference percent for object detection during analog ping.

byDigitalPingRetryInterval Forced digital ping time interval in the unit of 0.1 seconds.

wPingInterval Ping interval for a new round of analog ping, digital ping, or next digital ping /

Qf measurement during recharge retry period, in unit of ms.

wAnalogPingInterval Analog ping interval between adjacent coils in unit of ms.

wDigitalPingInterval Digital ping interval between adjacent coils in unit of ms.

wDigitalPingDuration Digital ping duration in unit of ms.

wNextPacketTimeOut Next packet timeout in ms, defined in WPC specification.

wFirstPacketDuration First packet duration in ms, defined in WPC specification.

wMaxPacketDuration Maximum packet duration in ms, defined in WPC specification.

wRPPTimeOut Received Power Packet timeout in ms, defined in WPC specification.

wCEPTimeOut Control Error Packet timeout in ms, defined in WPC specification.

wMsgHeaderTimeOut Data packet start bit timeout in ms.

wTimeForWaitNextNegotiationPacket Next packet timeout in ms during the negotiation phase.

wQPrepareInterval Interval for Q factor measurement preparation.

wQMeasureInterval Interval between the Q factor measurement operations.

wRailSetupTime Vrail voltage setup time of DCDC.

wAnalogPingPowerSetupTime Vrail voltage setup time of analog ping power source.

wRailDischargeTime Vrail discharge time.

wDDMStartDelayTimeAfterCharging Interval between DDM start and charging/inverter start.

wDDMRetryTimeout if DDM does not receive a packet within this value, DDM switches its ADC

trigger position.

wSendFSKDelay Interval between FSK responds and last packet received from RX.

wCalibrationTimeout Timeout for calibration phase duration.

wDefaultRailVoltageMv An array containing the default rail voltage for each coil.

wDigitalPingDuty Duty cycle for digital ping.

wDigitalPingPhase Phase for digital ping.

wMaxDuty Maximum duty cycle.

wMinDuty Minimum duty cycle.

wMaxPhase Maximum phase.

wMinPhase Minimum phase.

wMaxRailVoltageMv Maximum rail voltage in the unit of mV.

wMinRailVoltageMv Minimum rail voltage in the unit of mV.

dwDigitalPingFreq Digital ping frequency.

dwMaxFreq Maximum frequency.

dwMinFreq Minimum frequency.

dwFobAvoidFreqency Frequency to be jumped to when keyfob is enabled.

byDigitalPinglBridgeType Inverter bridge type for digital ping.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 9

Parameter Description

byNumFodTripsToIndication If power loss exceeds threshold for times defined by this value, TX starts the

accumulation of the FOD confirmation timer.

wBPPLPPowerLossThresholdInOperationM

ode

Power loss threshold for BPP LP RX.

wEPPMPPowerLossThresholdInOperation

Mode

Power loss threshold for EPP RX whose guaranteed power > 5 W.

wEPPLPPowerLossThresholdInOperationM

ode

Power loss threshold for EPP RX whose guaranteed power <= 5 W.

wPowerLossThresholdInCalibLightMode Power loss threshold for calibration light mode. If the threshold is exceeded,

TX sends a NAK response to the 24-bit power packet of light mode in

calibration phase from RX.

wPowerLossThresholdInCalibConnectMode Power loss threshold for calibration connect mode. If the threshold is

exceeded, TX sends a NAK response to the 24-bit power packet of

connection mode in calibration phase from RX.

wPowerLossIndicationToPwrCessationMs If the FOD confirmation timer exceeds this threshold, TX triggers

TX_FOD_ERROR error.

wPowerLossThresholdForLegacyRx Power loss threshold for those receivers whose version is earlier than V1.1.

byDefaultWindowSize Default window size in case the window size is not set correctly in the

configuration packet from RX.

byQfactorThresholdPercent If TX measured Q factor less than this value * Qf reported by RX, Tx consider

there is an FO.

byQfactorAdjsutPercent Adjust value of the measured Q factor of TX for each coil.

byEffiThresholdPercentForLegacyRx Efficiency threshold for the receivers whose version is earlier than V1.1.

If both byEffiThresholdPercentForLegacyRx and

PowerLossThresholdForLegacyRx are satisfied, TX considers there is a FO.

pFodExternalCheck Function pointer of customer FOD detection method.

sbyMaxErrorForLightMode Maximum error threshold for calibration light mode. If the threshold is

exceeded, TX sends a NAK response to the 24-bit power packet of light

mode from RX.

sbyMinErrorForLightMode Minimum error threshold for calibration light mode. If the threshold is

exceeded, TX sends a NAK response to the 24-bit power packet of light

mode from RX.

sbyMaxErrorForConnectMode Maximum error threshold for calibration connect mode. If the threshold is

exceeded, TX sends a NAK response to the 24-bit power packet of connect

mode from RX.

sbyMinErrorForConnectMode Minimum error threshold for calibration connect mode. If the threshold is

exceeded, TX sends a NAK response to the 24-bit power packet of connect

mode from RX.

wLightModeMaxRecvPwrThreshPercent Maximum percent threshold of negotiated guaranteed power for calibration

light mode. If the threshold is exceeded, TX sends a NAK response to the

24-bit power packet of light mode from RX.

wConnectModeMaxRecvPwrThreshPercent Maximum percent threshold of negotiated guaranteed power for calibration

connect mode. If the threshold is exceeded, TX sends a NAK response to the

24-bit power packet of connect mode from RX.
wPowerDiffThresholdBetweenCalibrationLig

htAndConnect

Received power difference threshold for calibration light and connect mode. If

not exceeds, the Ptx(for FOD usage) calibration is not performed.

byNumPidAdjustmentsPerActiveWindow Number of PID tuning within the active window after CEP packet.

byIntervalBetweenPidAdjust Time interval between adjacent PID tunes in ms.

wOverCurrentLimitMa Coil current over limit threshold in mA.

wRailStepMv Rail voltage control voltage step in mV.

wRailPidScaleFactor Rail voltage control scale factor.

wIntegralUpdateInterval Integral item update interval in ms.

wDerivativeUpdateInterval Derivative item update interval in ms.

swIntegralUpperLimit PID integral item upper limit.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

10 NXP Semiconductors

Parameter Description

swIntegralLowerLimit PID integral item lower limit.

swPidUpperLimit PID calculation output upper limit.

swPidLowerLimit PID calculation output lower limit.

byDefaultPidHoldTimeMs Default power control hold-off time in ms.

byMaxPidHoldTimeMs Maximum power control hold-off time in ms.

byActiveTimeMs Power control active time in ms, defined in specification.

bySettleTimeMs Power control settling time in ms, defined in specification.

byRailKp Proportional gain for rail control.

byRailKi Integral gain for rail control.

byRailKd Derivative gain for rail control.

wDutyStep Duty cycle step.

wDutyPidScaleFactor Duty cycle scale factor.

byDutyKp Proportional gain for duty cycle control.

byDutyKi Integral gain for duty cycle control.

byDutyKd Derivative gain for duty cycle control.

byDDMThreshold Sensitive level for Qi communication signal judgement.

byMaxPreambleDuty Preamble is bit ‘1’, composed by one low and one high state. It defines its

maximum duty.

byMinPreambleDuty See byMaxPreambleDuty.

byMaxPreambleCount Maximum preamble count.

byMinPreambleCount Minimum preamble count for a valid preamble.

wCommunicationRate Qi communication (ASK, receiver sends to transmitter) baud rate.

wCommunicationRateTolerance Tolerance of ASK communication baud rate.

wCommunicationFailISRCount Count threshold for fail to get the Qi communication signal in continuous

decoder calling.

wRRQDInputCurrentAbsoluteThreshold RX removes quick detection input current absolute threshold.

wRRQDInputCurrentPercentThreshold RX removes quick detection input current percent threshold.

wRRQDCoilCurrentAbsoluteThreshold RX removes quick detection coil current absolute threshold.

wRRQDCoilCurrentPercentThreshold RX removes quick detection coil current percent threshold.

tDebugConfig Debug configuration, with each bit corresponding to one feature.

wMaxVolForLpPowerRx Maximum rail voltage for low power RX.

wMaxVolForMpPowerRx Maximum rail voltage for medium power RX.

wLowLoadingThreshold Transmitted power (loading) threshold to trigger

wCoilCurrentThresholdForLowLoading

wHeavyLoadingThreshold Transmitted power (loading) threshold to trigger

wMinPowerFactorForHeavyLoading

wMinPowerFactorForHeavyLoading Power factor threshold in heavy loading defined by

wHeavyLoadingThreshold. If the threshold is not exceeded, TX does not

response to positive CEP.

wMaxDigitalPingTimeRefCounts Reference count threshold for digital ping.

wFirstPacketTimeoutRefCounts Reference count threshold for the first packet.

wNextPacketTimeoutRefCounts Reference count threshold for interval between previous and next packets.

dwCommReferenceTimerFreq Reference counter frequency.

dwCommReferenceTimerMaxCount Maximum count value of the reference counter.

dwSafeDigitalPingFreq Frequency for safe digital ping.

wSafeDigitalPingCheckTime Duration for safe digital ping.

wSafeDigitalPingDuty Duty cycle for safe digital ping.

wSafeDigitalPingPhase Phase for safe digital ping.

bySafeDigitalPinglBridgeType Inverter bridge type for safe digital ping.

wQfactorChangeThreshold When recharge retries, TX considers that RX moved. When Q factor value

change exceeds this threshold and the counter exceeds

byRxRemovedConfirmDPNum, TX consider RX get moved when uCtrlBit.

bQfactorRetry=1.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 11

Parameter Description

byQfStableThreshold TX considers the measured Q factor is stable when current and previous Q

factor change is within this threshold, in unit of percentage.

byQfMeasureNum Maximum Q factor measurement times for getting a stable Q factor.

byFCSSThreshold Set it to 0.

byFCIncPercentForLowSS Set it to 0.

wAPPDumpPowerAbsoluteThreshold Absolute dump power threshold to trigger active power protection in unit of

mW.

byAPPRollBackWin TX inverter input power window which rolls back, to compare with current

input power. In unit of 4 ms.

byAPPDumpPowerPercentageThreshold Relative dump power threshold to trigger active power protection.

byAPPVolDumpScale Voltage (Vrail) dump scale (by percent) when APP(active power protection) is

triggered.

byMaxRxReportedQFactor RX reported Q factor limiter.

byQfAveNumForRetry Average number for Q factor measurement during recharge retry.

byMinTxMeasuredQfToStopRetry When TX measured Q factor is greater than this value, TX considers there is

no object on TX surface, and exit recharge retry.

wMPLHysteresis If transmitted power is less than MPL (maximum transmitted power limit) –

wMPLHysteresis, Tx exit MPL mode.

wMPLRxOffsetThre Maximum transmitted power is limited to Rx guaranteed power *

wMPLRxCoeffThre + wMPLRxOffsetThre.

wMPLRxCoeffThre See wMPLRxOffsetThre.

wPreFODQfThreshold If Tx measured Qf is less than this value, meanwhile Tx can’t detect Rx on its

surface, Tx consider there is FO and triggers

ECHARGETIME_TX_PREFOD_ERROR.

wPreFODTryNum Try number before trigger RECHARGETIME_TX_PREFOD_ERROR

wCoilCurrentThresholdForLowLoading Coil current limit for each coil when transmitted power is less than

wLowLoadingThreshold.

3.3. WCT library API functions

3.3.1. WCT_GetLibVer

Prototype:

void WCT_GetLibVer(LIB_Version *pLibVersion);

Description:

Gets the WCT library version.

Parameters:

pLibVersion: the data pointer for the version structure.

Return:

The version number is returned in the version structure pointer pLibVersion.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

12 NXP Semiconductors

3.3.2. WCT_Init

Prototype:

void WCT_Init(void);

Description:

WCT library initialization. It initializes and resets the WCT internal states.

3.3.3. WCT_Run

Prototype:

uint16 WCT_Run(uint16 wTimePassedMs);

Description:

Main entry function of the WCT library. Make sure that this function is called within a 1-ms interval

to ensure the timing requirements of the Qi certification.

Parameters:

wTimePassedMs: The time elapsed since the last call of this function.

Return:

The time length for the next WCT activity. It is used by the application to judge for how long to

enter the low-power mode.

3.3.4. WCT_Stop

Prototype:

void WCT_Stop(void);

Description:

Stops the WCT state machine from the application. If the WCT state machine must be started again,

call WCT_Init(). See the demo application.

3.3.5. WCT_CommAnalyse

Prototype:

void WCT_CommAnalyse(uint8 byDeviceId);

Description:

Library callback function of DMA interrupt for DDM only. In current implementation, when 128

samples of coil current are collected, this function is called.

Parameters:

byDevice: device ID

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 13

3.3.6. WCT_ChargeSpecificCoil

Prototype:

void WCT_ChargeSpecificCoil(uint8 byDeviceId, uint8 byCoilId, CHARGING_TYPE

ChargeType);

Description:

Application can select one coil and start charging directly without coil selection.

Parameters:

byDeviceId: device ID

byCoilId: coil ID

ChargeType: the type of charging; only supports WPC now

3.3.7. WCT_GetChargingType

Prototype:

CHARGING_TYPE WCT_GetChargingType(uint8 byDeviceId);

Description:

Gets the current charging type.

Parameters:

byDeviceId: device ID

Return:

The current charging type.

3.3.8. WCT_GetTxStatus

Prototype:

TX_CHARGING_STATUS WCT_GetTxStatus(uint8 byDeviceId);

Description:

Gets the current TX charging status.

Parameters:

byDeviceId: device ID

Return:

The current TX charging status.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

14 NXP Semiconductors

3.3.9. WCT_GetTxError

Prototype:

TX_CHARGING_ERRORS WCT_GetTxError(uint8 byDeviceId);

Description:

Gets the current TX charging error.

Parameters:

byDeviceId: device ID

Return:

The current TX charging error.

3.3.10. WCT_GetRxStatus

Prototype:

RX_CHARGING_STATUS WCT_GetRxStatus(uint8 byDeviceId);

Description:

Gets the current RX charging status.

Parameters:

byDeviceId: device ID

Return:

The current RX charging status.

3.3.11. WCT_GetRxError

Prototype:

RX_CHARGING_ERRORS WCT_GetRxError(uint8 byDeviceId);

Description:

Gets the current RX charging error.

Parameters:

byDeviceId: device ID

Return:

The current RX charging error.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 15

3.3.12. FSK_IsBusy

Prototype:

uint8 FSK_IsBusy(uint8 byDeviceId);

Description:

Checks if TX is in the FSK process for transmitting information to RX.

Parameters:

byDeviceId: device ID

Return:

FSK module busy state. 1: busy; 0: idle.

3.3.13. FSK_ISR

Prototype:

void FSK_ISR(uint8 byDeviceId);

Description:

The function to implement the FSK process for transmitting information to RX. This function is

called from the hardware counter interrupt.

Parameters:

byDeviceId: device ID

4. WCT interface API

4.1. Middleware interface

4.1.1. WCT_OnWPCPacketRecv

Prototype:

void WCT_OnWPCPacketRecv(uint8 byDeviceId, uint8 bySize, uint8 *pbyData)

Description:

This is a callback function, called when a data packet is received from RX.

Parameters:

byDeviceId: device ID

bySize: data packet size

pbyData: data packet pointer

Return:

None.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

16 NXP Semiconductors

4.1.2. WCT_SetReChargeTimeOnAbnormal

Prototype:

uint32 WCT_SetReChargeTimeOnAbnormal(E_RECHARGETIME_SETTYPE eAbnormalType)

Description:

This is a callback function for the application to configure the wait time for recharge retry.

Parameters:

eAbnormalType: check E_RECHARGETIME_SETTYPE in the header file, which contains both

TX error and RX errors.

Return:

Wait time for recharge retry.

4.1.3. WCT_UpdateDevUsrIndication

Prototype:

void WCT_UpdateDevUsrIndication(uint8 byDeviceId)

Description:

This is a callback function to set the TX user indication (such as LED) when certain TX or RX

events occur.

Parameters:

byDeviceId: Device ID

Return:

 None.

4.1.4. DBG_Assert

Prototype:

void DBG_Assert(uint8 byAssert, uint32 dwAssertCode, uint32 dwParameter)

Description:

This is a debug function to identify serious bugs in the library.

Parameters:

byAssert: Assert flag.

dwAssertCode: Assert code, which helps to identify which part in library gets a problem.

dwParameter: Assert parameter, which is useful for debug.

Return:

 None.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 17

4.1.5. DBG_Warning

Prototype:

void DBG_Warning(uint8 byWarning, uint32 dwWarningCode, uint32 dwParameter)

Description:

This is a warning function to identify abnormal code routines in the library.

Parameters:

byWarning: Warning flag.

dwWarningCode: Warning code, which helps to identify which part of library gets a warning.

dwParameter: Warning parameter, which is useful for debug.

Return:

 None.

4.1.6. SPRT_PrintChar

Prototype:

void SPRT_PrintChar(uint8 byChar)

Description:

This is a print function to print a char.

Parameters:

byChar: print character.

Return:

 None.

4.1.7. SPRT_PrintString

Prototype:

void SPRT_PrintString(uint8 *pbyStr)

Description:

This is a print function to print a string.

Parameters:

pbyStr: Pointer of print string.

Return:

 None.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

18 NXP Semiconductors

4.1.8. SPRT_PrintDecChar

Prototype:

void SPRT_PrintDecChar(uint8 byChar)

Description:

This is a print function to print a character in a decimal format.

Parameters:

byChar: Decimal value.

Return:

 None.

4.1.9. SPRT_PrintHexChar

Prototype:

void SPRT_PrintHexChar(uint8 byChar)

Description:

This is a print function to print a character in a hex format.

Parameters:

byChar: hex value.

Return:

 None.

4.1.10. SPRT_PrintSignedDecChar

Prototype:

void SPRT_PrintSignedDecChar(uint8 byChar)

Description:

This is a print function to print a character in a signed decimal format.

Parameters:

byChar: signed decimal value.

Return:

 None.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 19

4.1.11. SPRT_PrintSignedDecWord

Prototype:

void SPRT_PrintSignedDecWord(uint16 wValue)

Description:

This is a print function to print a word variable in a signed decimal format.

Parameters:

wValue: variable in a word.

Return:

 None.

4.1.12. SPRT_PrintDoubleWordValue

Prototype:

void SPRT_PrintDoubleWordValue(uint32 dwValue)

Description:

This is a print function to print a double word variable in a decimal format.

Parameters:

dwValue: variable in a double word.

Return:

 None.

4.1.13. PROT_CheckRunTimeParams

Prototype:

boolean PROT_CheckRunTimeParams(uint8 byDeviceId, uint8 byCoilId, TX_CHARGING_STATUS

eState, uint16 wGuaranteedPower, uint16 wTimePassedMs)

Description:

This is a function to check the runtime parameters, such as the input current, rail voltage, coil

current, and input power.

Parameters:

byDeviceId: Device ID.

byCoilId: Coil ID.

eState: Charging state.

wGuaranteedPower: Maximum negotiated guaranteed power. This value is valid only when

eState = TX_CALIBRATION, TX_POWER_TRANSFER or TX_RENEGOTIATION.

wTimePassedMs: The time elapsed since the last call of this function.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

20 NXP Semiconductors

Return:

 Abnormal status. 0: normal; 1: abnormal.

4.1.14. PROT_SafeDigitalPingParamCheck

Prototype:

boolean PROT_SafeDigitalPingParamCheck(uint8 byDeviceId)

Description:

This function is called after a digital ping starts for gWCT_Params.wSafeDigitalPingCheckTime.

Parameters:

byDeviceId: Device ID.

Return:

 Abnormal status. 0: normal; 1: abnormal.

4.1.15. PROT_GetRRQDFittingInputCurrent

Prototype:

uint16 PROT_GetRRQDFittingInputCurrent(uint8 byDeviceId, uint8 byCoilId, uint16

wRailVoltage, uint32 dwFreq)

Description:

This function returns the input current at wRailVoltage for byCoilId when it works without any

object on it.

Parameters:

byDeviceId: device id

byCoilId: coil id

wRailVoltage: rail voltage in mV

dwFreq: working frequency

Return:

 Input current in mA.

4.1.16. PROT_GetRRQDFittingCoilCurrent

Prototype:

uint16 PROT_GetRRQDFittingCoilCurrent(uint8 byDeviceId, uint8 byCoilId, uint16

wRailVoltage, uint32 dwFreq)

Description:

This function returns the coil current at wRailVoltage for byCoilId when it works without any object

on it.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 21

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

wRailVoltage: Rail voltage in mV
dwFreq: working frequency

Return:

 Coil current in mA.

4.1.17. ST_GetTimerTick

Prototype:

uint16 ST_GetTimerTick(void)

Description:

Returns the tick time in ms.

Parameters:

None.

Return:

 Tick time in ms.

4.1.18. ST_GetElapasedTime

Prototype:

uint16 ST_GetElapasedTime(uint16 wLastTick)

Description:

Returns the elapsed time since wLastTick.

Parameters:

wLastTick: previous time mark for the tick timer.

Return:

 Elapsed time since wLastTick in ms.

4.1.19. ST_WaitMs

Prototype:

void ST_WaitMs(uint16 wNumMs)

Description:

Wait wNumMs ms in the block mode.

Parameters:

wNumMs: wait time in ms.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

22 NXP Semiconductors

Return:

 None.

4.1.20. QF_QMeasurePrepare

Prototype:

QF_MEASURE_RESULT_E QF_QMeasurePrepare(uint8 byDeviceId, uint8 byCoilId)

Description:

Preparation before the Q factor measurement.

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

Return:

 Execution result of the preparation. See QF_MEASURE_RESULT_E.

4.1.21. QF_QMeasure

Prototype:

QF_MEASURE_RESULT_E QF_QMeasure(uint8 byDeviceId, uint8 byCoilId)

Description:

Perform measurement for Q factor of LC resonance tank.

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

Return:

Execution result of measurement. See QF_MEASURE_RESULT_E.

4.1.22. QF_GetQFactor

Prototype:

QF_MEASURE_RESULT_E QF_GetQFactor(uint8 byDeviceId, uint8 byCoilId, uint32 *pFreq,

uint32* plcQ)

Description:

Gets the measured Q factor of the LC resonance tank.

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

pFreq: Pointer for saving the resonance frequency

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 23

plcQ: Pointer for saving the Q factor of the LC resonance tank

Return:

Execution result. See QF_MEASURE_RESULT_E.

4.2. HAL interface

4.2.1. HAL_DisableIRQ

Prototype:

uint8 HAL_DisableIRQ(void);

Description:

Disables the global IRQ.

Parameters:

None.

Return:

The global IRQ status before the global IRQ is disabled.

4.2.2. HAL_RestoreIRQ

Prototype:

void HAL_RestoreIRQ(uint8 bySts);

Description:

Restores the global IRQ.

Parameters:

bySts : The global IRQ status. 0: disable; 1: enable.

Return:

None.

4.2.3. HAL_GetRailVoltage

Prototype:

uint16 HAL_GetRailVoltage(uint8 byDeviceId);

Description:

Gets the rail voltage of the inverter.

Parameters:

byDeviceId : Device ID.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

24 NXP Semiconductors

Return:

The rail voltage in mV.

4.2.4. HAL_GetBatteryVoltage

Prototype:

uint16 HAL_GetBatteryVoltage(void);

Description:

Gets the input voltage of the board.

Parameters:

None.

Return:

The board input voltage in mV.

4.2.5. HAL_GetCoilCurrent

Prototype:

uint16 HAL_GetCoilCurrent(uint8 byDeviceId, uint8 byCoilId);

Description:

Gets the coil current of a coil.

Parameters:

byDeviceId: Device id

byCoilId: Coil id

Return:

The coil current (RMS) in mA.

4.2.6. HAL_GetInputCurrent

Prototype:

uint16 HAL_GetInputCurrent(uint8 byDeviceId);

Description:

Gets the input current of the inverter.

Parameters:

byDeviceId: device id

Return:

The input current in mA.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 25

4.2.7. HAL_EnableDDM

Prototype:

void HAL_EnableDDM(uint8 byDeviceId, uint8 byCoilId, uint8 byIsEn);

Description:

Enable or disable the DDM operation on the hardware level.

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

byIsEn: 0: disable; 1: enable.

Return:

None.

4.2.8. HAL_AnalogPing

Prototype:

uint16 HAL_AnalogPing(uint8 byDeviceId, uint8 byCoilId);

Description:

Does an analog ping and returns the result of the analog ping.

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

Return:

The result of an analog ping (typically represents an analog variable in a real word).

4.2.9. HAL_FindAdcTriggerPos

Prototype:

uint16 HAL_FindAdcTriggerPos(uint8 byDeviceId, uint8 byCoilId, uint8 byDiv, uint32

dwFreq, uint32 dwDuty, uint32 dwPhase);

Description:

Searches for the valley position of the DDM signal (scaled down from resonance signal) and sets the

DDM trigger position, depending on byDiv. Meanwhile, it also calculates the coil current according

to the DDM signal valley value and the power factor of the inverter.

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

byDiv: DDM trigger position setting. 0, 1: the valley position; 2: right to valley position; 3: left to

valley position.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

26 NXP Semiconductors

dwFreq: Working frequency of the resonance tank

dwDuty: Working duty of the resonance tank

dwPhase: Working phase (in a full bridge topology) of the resonance tank

Return:

The power factor of the inverter.

4.2.10. HAL_SetChargingBridge

Prototype:

void HAL_SetChargingBridge(uint8 byDeviceId, uint8 byCoilId, uint8 byBridge);

Description:

Sets the topology of the inverter which drives the resonance tank.

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

byBridge: Topology type. 0: half bridge; 1: full bridge

Return:

None.

4.2.11. HAL_EnableCoilDischarge

Prototype:

void HAL_EnableCoilDischarge(uint8 byDeviceId, uint8 byCoilId, boolean bIsEn);

Description:

Discharges the resonance tank circuit (normally called when the inverter/resonance tank is not

working).

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

bIsEn: 0: not discharge; 1: discharge

Return:

None.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 27

4.2.12. HAL_EnableChargingOnCoil

Prototype:

void HAL_EnableChargingOnCoil(uint8 byDeviceId, uint8 byCoilId, boolean bIsEn);

Description:

Start/stop to work (charge) on a specific coil (inverter).

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

bIsEn: 0: stop charging; 1: start charging

Return:

None.

4.2.13. HAL_SetChargingFreqDutyPhase

Prototype:

void HAL_SetChargingFreqDutyPhase(uint8 byDeviceId, uint8 byCoilId, uint32 dwFreq,

uint32 dwDuty, uint32 dwPhase);

Description:

Sets the parameter for a specific coil inverter.

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

dwFreq: Frequency for the inverter

dwDuty: Duty cycle for the inverter

dwPhase: Phase for the inverter (if inverter is full bridge)

Return:

None.

4.2.14. HAL_EnableCoils

Prototype:

void HAL_EnableCoils(uint8 byDeviceId, uint8 byCoilId, boolean bIsEn);

Description:

Selects/de-selects a specific coil (for working).

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

bIsEn: 0: de-select the coil; 1: select the coil

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

28 NXP Semiconductors

Return:

None.

4.2.15. HAL_SetVrailVoltage

Prototype:

void HAL_SetVrailVoltage(uint8 byDeviceId, uint16 wVoltage);

Description:

Sets the rail voltage for a specific device.

Parameters:

byDeviceId: Device ID

wVoltage: Setting voltage in units of mV

Return:

None.

4.2.16. HAL_EnableWCT

Prototype:

void HAL_EnableWCT(uint8 byDeviceId, boolean bIsEn);

Description:

Enables/disables the wireless charging of a relevant hardware.

Parameters:

byDeviceId: Device ID

bIsEn: 0: disable; 1: enable

Return:

None.

4.2.17. HAL_GetFSKFreq

Prototype:

uint32 HAL_GetFSKFreq(uint8 byDeviceId, uint8 byFSKParam, uint32 dwWorkingFreq);

Description:

Gets the FSK modulation frequency.

Parameters:

byDeviceId: Device ID

byFSKParam: FSK parameter. BIT1-BIT0: FSK depth; BIT2: FSK polarity.

dwWorkingFreq: Current working frequency

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 29

Return:

The FSK modulation frequency in Hz.

4.2.18. HAL_FSKModulation

Prototype:

void HAL_FSKModulation(uint8 byDeviceId, uint8 byCoilId, uint32 dwFreq, uint32

dwDuty, uint32 dwPhase);

Description:

Sets new parameters of an inverter for the FSK communication.

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

dwFreq: New frequency for inverter

dwDuty: New duty cycle for inverter

dwPhase: New phase for inverter (if full bridge)

Return:

None.

4.2.19. HAL_GetRefTimer

Prototype:

uint16 HAL_GetRefTimer(void);

Description:

Gets the reference count value of a high-resolution hardware counter.

Parameters:

None.

Return:

Reference count.

4.2.20. HAL_GetElasedRefTime

Prototype:

uint32 HAL_GetElasedRefTime(uint32 dwTimeMark);

Description:

Gets the elapsed reference counter value since dwTimeMark.

Parameters:

dwTimeMark: Reference counter time mark.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

30 NXP Semiconductors

Return:

The elapsed reference counter value since dwTimeMark.

4.2.21. HAL_PreparePowerSwitch

Prototype:

void HAL_PreparePowerSwitch(uint8 byDeviceId);

Description:

Prepare the work before the rail voltage source switch (cut off all voltage sources, enable rail voltage

discharging).

Parameters:

byDeviceId: Device ID

Return:

None.

4.2.22. HAL_PowerSwitch

Prototype:

void HAL_PowerSwitch(uint8 byDeviceId, WCT_POWER_TYPE_E ePowerType);

Description:

Switches/connects the rail voltage to the voltage source indicated by ePowerType.

Parameters:

byDeviceId: Device ID

ePowerType: Voltage source

Return:

None.

4.2.23. HAL_GetDDMBuffer

Prototype:

sint16* HAL_GetDDMBuffer(uint8 byDeviceId);

Description:

Gets the pointer of DDM buffer.

Parameters:

byDeviceId: Device ID.

Return:

The pointer of the DDM buffer.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 31

4.2.24. HAL_CheckFobActive

Prototype:

boolean HAL_CheckFobActive(void);

Description:

Checks the key FOB status.

Parameters:

None.

Return:

FOB status. 0: none fob status; 1: fob status

4.3. Parameter interface

4.3.1. WCT_GetQFParams

Prototype:

void WCT_GetQFParams(uint8 byDeviceId, uint8 byCoilId, uint32 *pInitFreq, uint32

*pInitQlc)

Description:

Gets the Q factor initial parameters.

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

pInitFreq: Initial frequency

pInitQlc: Initial Q factor of LC tank

Return:

None.

4.3.2. WCT_GetCharacterizatioinParams

Prototype:

FOD_CHARACTERIZATION_PARAMS* WCT_GetCharacterizatioinParams(uint8 byDeviceId, uint8

byCoilId, uint8 byControlType)

Description:

Gets the pointer of the FOD calibration parameter.

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

32 NXP Semiconductors

byControlType: Inverter control type

Return:

Pointer of the FOD calibration parameter struct.

4.3.3. WCT_GetNormalizationParams

Prototype:

FOD_NORMALIZATION_PARAMS* WCT_GetNormalizationParams(uint8 byDeviceId, uint8

byCoilId, uint8 byControlType)

Description:

Gets the pointer of the normalization parameter.

Parameters:

byDeviceId: Device ID

byCoilId: Coil ID

byControlType: Inverter control type

Return:

Pointer of the normalization parameter struct.

5. Typical application

5.1. Demo application

See the demo application in the release package.

5.2. Dynamic timing analysis

The WCT library dynamic timing analysis is provided for the customer application performance

consideration.

The below data are measured on one instance, based on the WCT1013A, at 100-MB core clock.

For DDM, the coil current signal is sampled by the ADC_B synced with the PWM frequency. After a

block (128 samples) of coil current data is sampled, a DMA (timer) interrupt is triggered to let the

software process it in a batch for the DDM operation. The following time count uses 2560 ns as the time

resolution.

• DDM filtering: 128 points to be processed at once with an interrupt.

Data time interval: 128 * 1/125K = 1024 µs.

Processing (WCT_CommAnalyse) counter value for WPC Qi: 112, corresponding time interval:

286 µs.

• ADC_A interrupt: ADC_A is triggered every 1 ms (in the tick timer interrupt), the ADC_A

interrupt process time can be omitted, because it is slight.

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

NXP Semiconductors 33

• Tick timer interrupt: occurs every 1 ms, tick timer interrupt process time is slight, 10 s - 20 s.

• Main loop:

o Most use cases: Processing counter value ~15, corresponding time interval 38 µs

o Rare use case: Processing counter value ~450, corresponding time interval 1152 µs. Due to

the DDM additional function to re-sync the sampling point when receiving a data packet,

which may take 90 PWM cycles, corresponding to delay of 720 µs (90 * 1/128 K).

The following figure shows the time slot of the WPC Qi DDM software processing:

6. New features of the library

The library has the following new features since GA4.0:

• Maximum transmitted power limit function.

• Pre-FOD function, based on Q factor method.

• Duty cycle control method when the rail voltage reaches its minimum.

• Code quality improvement to be MISRA-compliant.

• MVL(for Rx) feature based on the Tx coil current limitation.

WCT_CommAnalyse
Analyse
Tick timer ISR

Others timeslot for main loop processing

DDM ISR
Interval1024

µs

Tick Timer ISR
Interval1000 µs

DDM ISR
~286µs

Tick Timer ISR
~10-20 µs

 Qi PC0 Transmitter Library User’s Guide, Rev 4.1, 04/2019

34 NXP Semiconductors

7. Revision history

The following table provides the revision history.

 Revision history

Revision number Date Substantive changes

GA 3.1 09/2017 Initial formal release

GA 4.0 05/2018 Update according to software changes.

GA 4.1 03/2019 Update according to software changes.

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

www.nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C‑Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9,

Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,

DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,

SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited

(or its subsidiaries) in the US and/or elsewhere. The related technology may be

protected by any or all of patents, copyrights, designs and trade secrets. All rights

reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and

related marks are trademarks and service marks licensed by Power.org.

© 2019 NXP B.V.

How to Reach Us:

Home Page:

www.nxp.com

Web Support:

www.nxp.com/support

Rev. 4.1
04/2019

http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/
http://www.nxp.com/
http://www.nxp.com/support

	Qi PC0 Transmitter Library User’s Guide
	1. Introduction
	2. Overview
	2.1. WCT software layers
	2.1.1. WCT software dynamics

	3. WCT library API
	3.1. Macro, enumeration, and structs
	3.1.1. Definition
	3.1.2. Library version
	3.1.3. Power type
	3.1.4. Charging type
	3.1.5. TX charging status
	3.1.6. TX charging error
	3.1.7. RX charging status
	3.1.8. RX charging error
	3.1.9. Recharge error type

	3.2. WCT library configurations
	3.3. WCT library API functions
	3.3.1. WCT_GetLibVer
	3.3.2. WCT_Init
	3.3.3. WCT_Run
	3.3.4. WCT_Stop
	3.3.5. WCT_CommAnalyse
	3.3.6. WCT_ChargeSpecificCoil
	3.3.7. WCT_GetChargingType
	3.3.8. WCT_GetTxStatus
	3.3.9. WCT_GetTxError
	3.3.10. WCT_GetRxStatus
	3.3.11. WCT_GetRxError
	3.3.12. FSK_IsBusy
	3.3.13. FSK_ISR

	4. WCT interface API
	4.1. Middleware interface
	4.1.1. WCT_OnWPCPacketRecv
	4.1.2. WCT_SetReChargeTimeOnAbnormal
	4.1.3. WCT_UpdateDevUsrIndication
	4.1.4. DBG_Assert
	4.1.5. DBG_Warning
	4.1.6. SPRT_PrintChar
	4.1.7. SPRT_PrintString
	4.1.8. SPRT_PrintDecChar
	4.1.9. SPRT_PrintHexChar
	4.1.10. SPRT_PrintSignedDecChar
	4.1.11. SPRT_PrintSignedDecWord
	4.1.12. SPRT_PrintDoubleWordValue
	4.1.13. PROT_CheckRunTimeParams
	4.1.14. PROT_SafeDigitalPingParamCheck
	4.1.15. PROT_GetRRQDFittingInputCurrent
	4.1.16. PROT_GetRRQDFittingCoilCurrent
	4.1.17. ST_GetTimerTick
	4.1.18. ST_GetElapasedTime
	4.1.19. ST_WaitMs
	4.1.20. QF_QMeasurePrepare
	4.1.21. QF_QMeasure
	4.1.22. QF_GetQFactor

	4.2. HAL interface
	4.2.1. HAL_DisableIRQ
	4.2.2. HAL_RestoreIRQ
	4.2.3. HAL_GetRailVoltage
	4.2.4. HAL_GetBatteryVoltage
	4.2.5. HAL_GetCoilCurrent
	4.2.6. HAL_GetInputCurrent
	4.2.7. HAL_EnableDDM
	4.2.8. HAL_AnalogPing
	4.2.9. HAL_FindAdcTriggerPos
	4.2.10. HAL_SetChargingBridge
	4.2.11. HAL_EnableCoilDischarge
	4.2.12. HAL_EnableChargingOnCoil
	4.2.13. HAL_SetChargingFreqDutyPhase
	4.2.14. HAL_EnableCoils
	4.2.15. HAL_SetVrailVoltage
	4.2.16. HAL_EnableWCT
	4.2.17. HAL_GetFSKFreq
	4.2.18. HAL_FSKModulation
	4.2.19. HAL_GetRefTimer
	4.2.20. HAL_GetElasedRefTime
	4.2.21. HAL_PreparePowerSwitch
	4.2.22. HAL_PowerSwitch
	4.2.23. HAL_GetDDMBuffer
	4.2.24. HAL_CheckFobActive

	4.3. Parameter interface
	4.3.1. WCT_GetQFParams
	4.3.2. WCT_GetCharacterizatioinParams
	4.3.3. WCT_GetNormalizationParams

	5. Typical application
	5.1. Demo application
	5.2. Dynamic timing analysis

	6. New features of the library
	7. Revision history

