NXP Semiconductors Document Number: PEXFRDMBC3770EVBPUG
User’s guide Rev. 1.0, 2/2016

FRDM-BC3770-EVB Programming Guide

Contents
General INfO e 2

2 Embedded Component Description 2
2.1 Component APl . . e 2
2.2 EVENES .. e 3
2.3 Methodso e 3
2.4 PropertieS 5

3 Typical Usage 6
USBr Ty DS .« v ittt e e 7

© 2016 NXP B.V.

h
P

General Info

1 General Info

FRDM_BC3770 and BC_MC32BC3770 Processor Expert components are software drivers which
encapsulate functionality of MC32BC3770CS Battery charger and FRDM-BC3770-EVB Freedom board.
These components create a layer between hardware and user application and enable rapid application
development by providing an interface which covers options for charging parameters, settings of
registers, measurement and testing.

FRDM-BC3770-EVB is a Freedom development platform for quick application prototyping. This module
features MC32BC3770CS Battery charger, Current Sense Amplifiers (CSAs) which permit the real-time
measurement of current and voltage on the VBUS input supply, the VSYS output supply and the
battery. The Freedom board also features programmable Electronic load, programmable in range from 0
to 1 A, which is used to demonstrate system performance with an active load applied to either the
VSYS output or the battery. When attached to the battery, the Electronic load can be used to
discharge the battery in a controlled manner.

2 Embedded Component Description

2.1 Component API

FRDM_BC3770 component provides API, which can be used for dynamic real-time configuration of
device in user code. Available methods and events are listed under component selection Some of those
methods/events are marked with ticks and other ones with crosses, it distinguishes which
methods/events are supposed to be generated or not. You can change this setting in Processor Expert
Inspector. Note that methods with grey text are always generated because they are needed for proper
functionality. This forced behavior depends on various combinations of settings of component
properties. For summarization of available API methods and events and their descriptions, see Table 1
FRDM_BC3770 Component API

Table 1

Method Description

FreedomBoard_Init FreedomBoard_Init Initializes devices on the board: current
sense amplifiers and electronic load and assigns user defined
data to structure describing the board.

SelectDevice This method selects one of devices on the board: electronic load
or some of current sense amplifiers to measure current or volt-
age.

GetSelectedDevice This method returns last selected device.

ELO_Init ELO_Init This method initializes electronic load (ELOAD). De-

vice MPC4728 is initialized with default values. Outputs B, C
and D are in power down mode. Only output A, which is used
for ELOAD control, is in normal mode.

ELO_SetCurrent ELO_SetCurrent This method sets SetPoint of ELOAD (the
amount of current ELOAD will sink). This method is same as
internal ELO_SetPointEload except function parameter which is
a real number [mA]. This method sends command 'new value’
to output register of channel A. Resolution of output voltage is
12 bit. Command ’send new value’ sets default settings for other
registers.

CSA Init CSA _Init Initializes the device and sets default configuration
(see documentation of INA230) of VBUS, VSYS, BATTERY
amplifier and settings of calibration register.

CSA _ReadRegister CSA_ReadRegister This method reads a register of selected de-
vice. Read value is a 16 bit number from selected register.
CSA _WriteRegister CSA_WriteRegister This method writes a register of selected

device. Outgoing value is a 16 bit number.

FRDM-BC3770-EVB Programming Guide, Rev. 1.0
2 NXP Semiconductors

Embedded Component Description

CSA _GetCurrent CSA_GetCurrent This method reads content of Current Regis-
ter of selected device and converts it to current in milliamperes
[mA]. To change selected device use BCF_CSA _SelectDevice
method.

CSA _GetVoltage CSA_GetVoltage This method reads Bus Voltage or Shunt Volt-
age register of selected device according to the first parameter.
Value of register is converted to voltage in millivolts [mV].
NTC_GetTemperature NTC_GetTemperature This method measures voltage on NTC
thermistor and calculates temperature according to Stein-
hartHart equation. The temperature is thermodynamic T[K].
Precision of resulting temperature depends on NTC constants
of equation. Add correct constants A, B, C, D from your NTC
thermistor datasheet. For mor information see NTC datasheet.
SetLED This method turns on/off green or red LED.

2.2 Events

There are no Events in this component

2.3 Methods

FreedomBoard _Init - Initializes devices on the board: current sense amplifiers and electronic load
and assigns user defined data to structure describing the board.
ANSIC prototype: TDeviceDataPtr FreedomBoard_Init(TUserDataPtr *UserDataPtr)
TUserDataPtr : Pointer to UserDataPtr- User data pointer

Return value: TDeviceDataPtr - If initialization was successful method returns a pointer to a
structure describing the freedom board. Otherwise NULL pointer is returned. The structure
contains an item TUserDataPtr which enables to add any custom data to the structure.

SelectDevice - This method selects one of devices on the board: electronic load or some of current
sense amplifiers to measure current or voltage.
ANSIC prototype: LDD_TError SelectDevice(TDeviceName Device)

TDeviceName :Device- Device type. Possible values are: dnVBUS_CSA - 12C ADDR: 0x80
dnVSYS_CSA - 12C ADDR: 0x81 dnVBAT _CSA - 12C ADDR: 0x82 dnELOAD - 12C ADDR:
0xCO0

Return value:LDD_TError - ERR_OK : No error, ERR_PARAM_RANGE : Parameter is out of
defined range

GetSelectedDevice - This method returns last selected device.

ANSIC prototype: TDeviceName GetSelectedDevice(void)
Return value: TDeviceName - Device type. Possible values are: dnVBUS_CSA, dnVSYS_CSA,
dnVBAT_CSA, dnELOAD

ELO_Init - This method initializes electronic load (ELOAD). Device MPC4728 is initialized with
default values. Outputs B, C and D are in power down mode. Only output A, which is used for
ELOAD control, is in normal mode.

ANSIC prototype: LDD_TError ELO _Init(void)

Return value:LDD_TFError - ERR_OK : No error, ERR_.PARAM_RANGE : Parameter is out of

defined range, ERR_PARAM_ADRESS : NULL pointer, ERR_BUSY : 12C bus is not ready

ELO_SetCurrent - This method sets SetPoint of ELOAD (the amount of current ELOAD will sink).
This method is same as internal ELO_SetPointEload except function parameter which is a real number
[mA]. This method sends command 'new value’ to output register of channel A. Resolution of output
voltage is 12 bit. Command ’send new value’ sets default settings for other registers.

ANSIC prototype: LDD_TError ELO_SetCurrent(uint16_t Current_mA)

wint16_t :Current_mA- ELOAD current value in milliamperes [mA].

FRDM-BC3770-EVB Programming Guide, Rev. 1.0
NXP Semiconductors 3

Embedded Component Description

Return value:LDD_TError - ERR_OK : No error, ERR_-VALUE : Wrong value, ERR_BUSY : I2C
bus is not ready

CSA _Init - Initializes the device and sets default configuration (see documentation of INA230) of
VBUS, VSYS, BATTERY amplifier and settings of calibration register.
ANSIC prototype: LDD_TError CSA Init(void)
Return value:LDD_TFError - ERR_OK : No error, ERR_.PARAM_RANGE : Parameter is out of
defined range, ERR_BUSY : I12C bus is not ready

CSA_ReadRegister - This method reads a register of selected device. Read value is a 16 bit number
from selected register.
ANSIC prototype: LDD_TError CSA_ReadRegister(uint8_t RegAddress, uint16-t *RegValuePtr)

wint8_t : RegAddress- Address of register which you want to read. Addresses of registers are in
BCF_CSA_INA230.h.
wintl6_t : Pointer to RegValuePtr- Pointer to memory where read value will be stored.

Return value:LDD_TError - ERR_OK : No error, ERR_.PARAM_ADDRESS_TYPE : Invalid
address type, ERR_.PARAM_ADRESS : NULL pointer, ERR_-BUSY : I2C bus is not ready,
ERR_BUSOFF : Bus not available

CSA _WriteRegister - This method writes a register of selected device. Outgoing value is a 16 bit
number.
ANSIC prototype: LDD_TError CSA_WriteRegister(uint8_t RegAddress, uint16_t RegValue)

uint8_t : RegAddress- Address of register to be written. Addresses of registers are in
BCF_CSA_INA230.h.

wintl6_t : RegValue- Value to be sent to the register.

Return value:LDD_TError - ERR_OK : No error, ERR_PARAM_ADDRESS_TYPE : Invalid
address type, ERR_.PARAM_ADRESS : NULL pointer, ERR_-BUSY : I12C bus is not ready,
ERR_BUSOFF : Bus not available

CSA _GetCurrent - This method reads content of Current Register of selected device and converts it
to current in milliamperes [mA]. To change selected device use BCF_CSA _SelectDevice method.
ANSIC prototype: LDD _TError CSA_GetCurrent(float *CurrentPtr_mA)
float : Pointer to CurrentPtr-mA- Result of current measurement in milliamperes [mA].

Return value:LDD_TError - ERR_OK : No error, ERR_PARAM_RANGE : Parameter is out of
defined range, ERR_PARAM_ADRESS : NULL pointer, ERR_BUSY : I2C bus is not ready,
ERR_BUSOFF : Bus not available

CSA _GetVoltage - This method reads Bus Voltage or Shunt Voltage register of selected device
according to the first parameter. Value of register is converted to voltage in millivolts [mV].

ANSIC prototype: LDD_TError CSA_GetVoltage(CSA_TVoltage VoltageType,float
*VoltagePtr mV)

CSA_TVoltage :Voltage Type- BCF_CSA_TVoltage enum. There are two options: volCSA_SHUNT -
Shunt Voltage volCSA_BUS - BUS voltage

float : Pointer to VoltagePtr-mV- Result of voltage measurement in millivolts [mV] is written.

Return value:LDD_TFError - ERR_OK : No error, ERR_.PARAM_RANGE : Parameter is out of
defined range, ERR_PARAM_ADRESS : NULL pointer, ERR_BUSY : I2C bus is not ready,
ERR_BUSOFF : Bus not available

NTC_GetTemperature - This method measures voltage on NTC thermistor and calculates
temperature according to Steinhart-Hart equation. The temperature is thermodynamic T[K]. Precision
of resulting temperature depends on NTC constants of equation. Add correct constants A, B, C, D
from your NTC thermistor datasheet. For mor information see NTC datasheet.

ANSIC prototype: LDD_TError NTC_GetTemperature(float* TemperaturePtr_K)

Pointer to float :TemperaturePtr_K- Pointer to variable for saving current temperature T[K].

FRDM-BC3770-EVB Programming Guide, Rev. 1.0
4 NXP Semiconductors

Embedded Component Description

Return value:LDD_TError - ERR_OK : No error, ERR_.PARAM_VALUE : Wrong value,
ERR_PARAM_ADRESS : NULL pointer of parameter

SetLED - This method turns on/off green or red LED.

ANSIC prototype: LDD _TError SetLED(TLEDName LED,TLEDState State)
TLEDName :LED- Name of LED to turn on/off. Possible values are: InGreenLED, InRedLED.
TLEDState : State- New state of LED. Possible values are: IsLEDOn, IsLEDOff.

Return value:LDD_TError - ERR_OK : No error, ERR_PARAM_RANGE : Parameter is out of
defined range

2.4 Properties

Component Name - Name of the component.
BC_MC32BC3770 - Link to BC_.MC32BC3770 Battery Charger component.
ChannelAllocator - The component is used to manage allocation of ADC_LDD component channels.
I12C Communication - Settings for I2C communication.
I2C Link - Link to I2C_LDD component.
ELOAD - Settings for electronic load.

LDAC Link - Link to BitIO_LDD component.

LDAC Synchronization Pin - Link to LDAC pin which is used as a synchronization input.
When set to Low the contents of the DAC input registers is transfered to the output registers.

RDY/BSY Link - Link to Ready/Busy pin.

Ready/Busy Status Pin - This pin is a status indicator of EEPROM programming activity. If
it is "High” the EEPROM has no programming activity (is ready) and if it is "Low” the EEPROM
is in programming mode (busy).

ELoad Sink Current - This is the current that the electronic load sinks from either battery or
VSYS. Admissible range is from 0 to 1000 mA.

Voltage and Current Measurement - Voltage and current measurement through three current sense
amplifiers on board.

NTC Thermistor - External thermistor for temperature measurement settings.

ADC Link - Linked ADC_LDD component.

ADC Device - name of component driving ADC peripheral

ADC Conversion Time - duration of ADC conversion

NTC_TEMP Pin - ADC pin which is connected to NTC thermistor

NTC Reference [Ohm] - resistance of thermistor at 25 C

NTC A [10°3 K9 - first coefficient of Steinhart-Hart equation. Note: The format of coefficients
varies from datasheet to datasheet, so it is important to pay attention to position of decimal point.
For example, if datasheet says 0.5x10™ (or 0.5E-04) convert this to 0.05x10% and enter only the
significand part of the number (i.e. 0.05)

NTC B [10* KU - second coefficient of Steinhart-Hart equation. Note: The format of
coefficients varies from datasheet to datasheet, so it is important to pay attention to position of
decimal point.

For example, if datasheet says 0.5x10° (or 0.5E-05) convert this to 0.05x10™* and enter only the
significand part of the number (i.e. 0.05)

NTC C [10® K- - third coefficient of Steinhart-Hart equation. Note: The format of coefficients
varies from datasheet to datasheet, so it is important to pay attention to position of decimal point.

For example, if datasheet says 0.5x1077 (or 0.5E-07) convert this to 0.05x10° and enter only the
significand part of the number (i.e. 0.05)

FRDM-BC3770-EVB Programming Guide, Rev. 1.0

NXP Semiconductors 5

Typical Usage

NTC D [10°7 K3 - fourth coefficient of Steinhart-Hart eqution. Note: The format of coefficients
varies from datasheet to datasheet, so it is important to pay attention to position of decimal point.
For example, if datasheet says 0.5x10°® (or 0.5E-07) convert this to 0.05x10°7 and enter only the
significand part of the number (i.e. 0.05)

Additional Pins - Pins for green and red LEDs for various indication.

Green LED Pin - green LED indicates charging
Red LED Pin - red LED indicates discharging

Auto Initialization - When auto initialization is enabled, Init method will be called automatically
within PE initialization function - PE_low_level_init().

3 Typical Usage
Examples of typical settings and usage of FRDM_BC3770 component
Device initialization.
Setting ELOAD current and measurement of voltage, current and temperature.
Device initialization.
This example shows how to handle device initialization when auto-initialization feature is disabled.

Required component setup and dependencies:

Auto Initialization: no
Methods: FreedomBoard_Init

Content of main.c:

Listing 1: Source code

void main(void)

{

BCF1_TDeviceDataPtr BCF1_DeviceDataPtr;

BCF1_DeviceDataPtr = BCF1_FreedomBoard_Init(&UserData); /* It is
possible to pass pointer to your own data, which is then stored in device
data structure as TUserDataPtr. x/

if (BCF1._DeviceDataPtr != NULL) {

/* Initialization was successful. %/

} oelse {

/* Initialization was not successful. x/

TUserData «MyData = (TUserData x)(BCF1_DeviceDataPtr—>UserDataPtr);
/* You can access your data later. Explicit retype is needed because
UserDataPtr is just typedef of (void *). x/

}

Setting ELOAD current and measurement of voltage, current and temperature.

This example shows how to set electronic load (ELOAD) current and measure VBUS, VSYS and VBAT
voltages and currents and NTC thermistor temperature.

It is important to note, that ELOAD and all current sense amplifiers (CSAs) share the
same I2C bus and in order to operate them, you need to call SelectDevice method first.
ELO_SetCurrent method already contains this call. All currents (both to set and measured) are
in milliamperes, voltages in millivolts and temperature in Kelvins.

Required component setup and dependencies:

FRDM-BC3770-EVB Programming Guide, Rev. 1.0
6 NXP Semiconductors

User Types

ELOAD: Enabled

Voltage and Current Measurement: Enabled

NTC Thermistor: Enabled

All corresponding pins properly set

Methods: SelectDevice ELO_SetCurrent CSA_GetCurrent CSA _GetVoltage NTC_GetTemperature

Content of main.c:

Listing 2: Source code
void main(void)
{
float Current[3], Voltage[3], Temp[1l]; /* Measured currents,
voltages and temperature. x/

/* Set ELOAD current to 200 mA. x/

/* You don’t need to use SelectDevice for ELOAD — it is directly in
ELO_SetCurrent. =/

BCF1_ELO_SetCurrent (200) ;

for (55) {
/* Measure VBUS current and voltage. x/
BCF1_SelectDevice (dnVBUS.CSA) ;
BCF1_CSA_GetCurrent(& Current [0]) ;
BCF1_CSA_GetVoltage (volCSA_BUS, &Voltage[0]) ;

/* Measure VSYS current and voltage. x/
BCF1_SelectDevice (dnVSYS_CSA) ;
BCF1_CSA_GetCurrent(&Current [1]) ;
BCF1_CSA_GetVoltage (volCSA_BUS, &Voltage [1]) ;

/* Measure VBAT current and voltage. x/
BCF1_SelectDevice (dnVBAT_CSA) ;
BCF1_CSA_GetCurrent(&Current [2]) ;

BCF1_CSA _GetVoltage (volCSA_BUS, &Voltage [2]) ;

/% Measure NTC temperature, convert from Kelvin to Celsius.

BCF1_NTC_GetTemperature (Temp) ;
Temp[0] = Temp[0] — 273.15;

4 User Types

ComponentName_CSA _TVoltage = enum { volCSA_BUS, volCSA_SHUNT } Which voltage we
want to measure. Either BUS voltage or SHUNT wvoltage.

ComponentName_TDeviceName = enum { dnELOAD, dnVSYS_CSA, dnVBAT _CSA,
dnVBUS_CSA } Name of a device that we want to talk to.

ComponentName_CSA_TMode = enum { omCSA_ POWERDOWN,
omCSA_SHUNT _TRIGGERED, omCSA _BUS_TRIGGERED,

omCSA _SHUNT BUS_TRIGGERED, omCSA_SHUNT_CONTINUOUS,

omCSA _BUS_CONTINUOUS, omCSA_SHUNT_BUS_CONTINUOUS } Operating Mode

FRDM-BC3770-EVB Programming Guide, Rev. 1.0

NXP Semiconductors 7

User Types

ComponentName_CSA_TVscht = enum { ctCSA_VSHCT_140_US, ctCSA_VSHCT_204_US,
ctCSA_VSHCT_332_US, ctCSA_VSHCT_588_US, ctCSA_VSHCT_1_1_MS, ctCSA_VSHCT_2_1_MS,
ctCSA_VSHCT 4.1_MS, ctCSA_VSHCT 82_MS } Shunt Voltage Conversion Time

ComponentName_CSA_TVbusct = enum { ctCSA_VBUSCT _140_US,
ctCSA_VBUSCT_204_US, ctCSA_VBUSCT_332_US, ctCSA_VBUSCT _588_US,
ctCSA_VBUSCT_1_1_MS, ¢tCSA_VBUSCT_2_1_MS, ctCSA_VBUSCT_4_1_MS,
ctCSA_VBUSCT_82_.MS } Bus Voltage Conversion Time

ComponentName_CSA_TAvg = enum { amCSA_AVG_1 = 0, amCSA_AVG 4,
amCSA_AVG_16, amCSA_AVG _64, amCSA_AVG_128, amCSA_AVG_256, amCSA_AVG_512,
amCSA_AVG_1024 } Averaging Mode

ComponentName_ TLEDName = enum { InGreenLED, InRedLED } LED Name
ComponentName_TLEDState = enum { IsSLEDOn, ISLEDOff } State of LED

ComponentName_TUserDataPtr = User data pointer

FRDM-BC3770-EVB Programming Guide, Rev. 1.0

NXP Semiconductors

How to Reach Us:

Home Page:
NXP.com

Web Support:
http://www.nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no expressed or implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves the right to make changes without
further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation, consequential or incidental damages.
"Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating parameters, including "typicals," must be
validated for each customer application by the customer's technical experts. NXP does not convey any license
under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of
sale, which can be found at the following address:

http://www.nxp.com/terms-of-use.html.

NXP, the NXP logo, Freescale and the Freescale logo are trademarks of NXP B.V. All other product or service
names are the property of their respective owners. All rights reserved.
© 2016 NXP B.V.

Document Number: PEXFRDMBC3770EVBPUG
Rev. 1.0
2/2016

A 4
A\

http://www.nxp.com/terms-of-use.html
http://www.nxp.com/
http://www.nxp.com/support

	FRDM-BC3770-EVB Programming Guide
	General Info
	Embedded Component Description
	Component API
	Events
	Methods
	Properties

	Typical Usage
	User Types

