

User's Manual

M9328MX1ADSUM/D Rev 2 October 29, 2002

MOTOROLA intelligence everywhere^{**}

M9328MX1ADS Application Development System

Important Notice to Users

While every effort has been made to ensure the accuracy of all information in this document, Motorola assumes no liability to any party for any loss or damage caused by errors or omissions or by statements of any kind in this document, its updates, supplements, or special editions, whether such errors are omissions or statements resulting from negligence, accident, or any other cause. Motorola further assumes no liability arising out of the application or use of any information, product, or system described herein: nor any liability for incidental or consequential damages arising from the use of this document. Motorola disclaims all warranties regarding the information contained herein, whether expressed, implied, or statutory, *including implied warranties of merchantability or fitness for a particular purpose*. Motorola makes no representation that the interconnection of products in the manner described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting or license to make, use or sell equipment constructed in accordance with this description.

Trademarks

This document includes these trademarks:

Motorola and the Motorola logo are registered trademarks of Motorola, Inc.

Windows is a registered trademark of Microsoft Corporation in the U.S. and other countries.

Intel is a registered trademark of Intel Corporation.

Motorola, Inc., is an Equal Opportunity / Affirmative Action Employer.

For an electronic copy of this book, visit Motorola's web site at http://e-www.motorola.com/

© Motorola, Inc., 2002; All Rights Reserved

M9328MX1ADS Application Development System - Rev 2

Table Of Contents

Section 1 General Information

1.1	Description
1.2	Features
1.3	System and User Requirements
1.4	MX1ADS Diagram6
1.5	Specifications

Section 2 Configuration and Operation

2.1	Introduction
2.2	Configuring Board Components
2.2.1	Peripheral Selection Switch (S1) 10
2.2.2	Mode Switch (S22) 11
2.3	Operation
2.3.1	Functional Block Diagram13
2.3.2	On Board Memory 14
2.3.3	Memory Map
2.3.4	USB Interface
2.3.5	UART and IrDA17
2.3.6	Ethernet
2.3.7	CD Quality DAC and Analog I/O 18
2.3.8	Keypads and IO Expander 20
2.3.9	Led Indicators
2.4	Using The Board Connectors
2.5	Add On Module Connections and Usage
2.5.1	Using the TFT LCD Display Panel
2.5.2	Using a SODIMM Card
2.5.3	Using a SIM, SD/MMC, or Memory Stick Card26
2.5.4	Using the BlueTooth Daughter Board
2.5.5	Using the Image Sensor daughter boards

Section 3 Support Information

3.1	Introduction	29
3.2	S.O.DIMM Socket	29

M9328MX1ADS - Rev.	2
--------------------	---

3.3	UART Connectors
3.4	MultiICE Connector
3.5	Ethernet Connector
3.6	USB Connector
3.7	BlueTooth Connector
3.8	MultiTrace Connector
3.9	LCD Panel Connector
3.10	SIM Card Connector
3.11	Memory Stick Connector
3.12	SD/MMC Connector
3.13	Expansion Connector
3.14	Image Sensor Connector

M9328MX1ADS — Rev. 2

_

List of Figures

1-1	M9328MX1ADS Application Development System
2-1	Switch S1
2-2	Switch S22 12
2-3	Functional Block Diagram of MX1ADS13
2-4	SyncFlash Interface
2-5	SDRAM Interface
2-6	USB Interface
2-7	UARTs and IrDA Interface
2-8	Ethernet Interface
2-9	Keypads and I/O Expander Interface
2-10	Software Controlled Peripheral Enables
3-1	SODIMM Connector J2 Pin Assignments
3-2	Connector P11 (UART1), P12 (UART2) Pin Assignments 34
3-3	MultiICE Connector P24 Pin Assignments
3-4	Ethernet Connector J1 Pin Assignments
3-5	USB Connector P10 Pin Assignments
3-6	BlueTooth Connector P9 Pin Assignments
3-7	MultiTrace Connector P27 Pin Assignments
3-8	LCD Panel Connector P8 Pin Assignments
3-9	SIM Card Connector P3 Pin Assignments
3-10	Memory Stick Connector P5 Pin Assignments
3-11	SD/MMC Connector P2 Pin Assignments
3-12	Connectors P19 and P20 Pin Assignments

M9328MX1ADS Application Development System - Rev 2

MOTOROLA

List of Tables

1-1	Specifications
2-1	Component Configuration Settings
2-2	S1 Subswitch Settings 10
2-3	Boot Mode Subswitch Settings
2-4	Subswitch S22-5, S22-6 Settings 12
2-5	M9328MX1ADS Memory Map 16
2-6	Audio Connectors
2-7	Audio Header JP3 Signal Descriptions 19
2-8	Audio Header JP4 Signal Descriptions
2-9	Audio Header JP5 Signal Descriptions
2-10	Keypad I/O Expander Interface
2-11	I/O Expander to Peripherals (U42)
2-12	Function of LED Indicators
2-13	MX1ADS Connectors
3-1	SODIMM Connector J2 Signal Descriptions
3-2	Connector P11 (UART1), P12 (UART2) Signal Descriptions 34
3-3	MultiICE Connector P24 Signal Descriptions
3-4	Ethernet Connector J1 Signal Descriptions
3-5	USB Connector P10 Signal Descriptions
3-6	BlueTooth Connector P9 Signal Descriptions
3-7	MultiTrace Connector P27 Signal Descriptions
3-8	LCD Panel Connector P8 Signal Descriptions
3-9	SIM Card Connector P3 Signal Descriptions
3-10	Memory Stick Connector P5 Signal Descriptions
3-11	SD/MMC Connector P2 Signal Descriptions
3-12	Expansion Connector P19 Signal Description
3-13	Image Sensor Connector P20 Signal Description47

M9328MX1ADS Application Development System - Rev 2

MOTOROLA

Section 1 General Information

1.1 Description

This user's manual explains connection and operation of:

- The Motorola M9328MX1ADS DragonBall MX1 Application Development System (ADS) Standard Edition
- The Motorola M9328MX1ESBP DragonBall MX1 Application Development System (ADS) Professional Edition

Both boards are development tools which are designed to run software applications designed for DragonBall MX1 (MC9328MX1) microcontroller unit (MCU).

The M9328MX1ADS Standard Edition includes more than 15 interface ports or sockets that support application software, target-board debugging, or optional extra memory. It comes with a separate LCD display panel which includes the model LQ035Q2DD54 TFT LCD display from Sharp Corporation.

The M9328MX1ESBP Professional Edition has the same features as the Standard Edition but adds a MMM7400 Bluetooth RF module and an image sensor board to the system.

1.2 Features

MX1ADS and MX1ESBP features include:

- MC9328MX1 DragonBall MX1 MCU.
- Two clock-source crystals: 32 kilohertz and 16 megahertz.
- Voltage regulator that steps down the 3.0-volt VCC to the 1.8-volt QVDD core voltage.

General Information

- Two 4-megabyte × 16-bit SyncFlash memory devices, configured as one 32-bit device.
- Two 16-megabyte × 16-bit SDRAM devices, configured as one 32-bit device.
- SODIMM connector for SDRAM or EIM memory expansion.
- Connectors for SD/MCC, MemoryStick, and SIM memory cards.
- Two UART ports, each with RS232 transceiver and DB9 connector.
- An IrDA transceiver that conforms to Specification 1.0 of the Infra-red Data Association.
- PDIUSBP11A USB transceiver and series B USB connector
- Separate LCD panel assembly with a ribbon cable that connects to the main board and interfaces directly with the MC9328MX1ADS.
- Bluetooth RF module connector. (The MC9328MX1ESBP includes a Bluetooth MMM7400 card.)
- CMOS Image Sensor (CSI) Connector. (The MC9328MX1ESBP includes a compatible image-sensing components.)
- MultiICE and MultiTrace debug support connectors.
- DAC3550A CD Quality DAC that interfaces with SSI. System support includes two clock-source crystal oscillators and a 3.5mm speaker/headphone jack.
- Cirrus Logic CS8900A Ethernet controller, with a RJ-45 connector for connecting to a system hub.
- Two RJ-45 Ethernet cables, network and crossover (MC9328MX1ESBP only).
- Microphone/voice interface amplifier circuity, with 3.5mm voice out and microphone in jacks.
- 32×3 -pin DIN expansion connector with most MX1 I/O signals.
- LED indicators for power, external bus activity, Bluetooth data transfer, Ethernet activity, and two LEDs for user defined status indiction.
- Universal power supply with 3.0-volt output @1500ma.
- PC compatible USB cable.

- PC compatible RS232 serial cable.
- Metrowerks CodeWarrior[™] IDE software (evaluation copy).

1.3 System and User Requirements

To use an M9328MX1ADS Application Development System, you need:

- An IBM PC or compatible computer that has:
 - a Windows[®] 98, Windows ME[™], Windows XP[™], Windows 2000, or Windows NT[®] (version 4.0) operating system.
 - a parallel port if you are using a MultiICE device

or

- an RS-232 serial port, capable of operation at 9600 to 115200 bits per second operation, if you are using MetroTRK.
- A + 3.0-volt-to +3.3-volt power supply, at 1500mA, with a 2mm female (inside positive) power connector (included).
- An RS-232 cable (DB9 male-female, included) for connecting to the internal UART while using bootstrap mode or Metrowerks' MetroTRK.
- Hyperterminal (or a comparable terminal-emulation program) for downloading the MetroTRK image to MX1ADS SyncFlash memory.
- **CAUTION:** Never supply more than +3.3-volts power to your MX1ADS. Doing so could damage board components.

1.4 MX1ADS Diagram

Figure 1-1 shows the connectors and other major parts of the M9328MX1ADS.

Important board components are:

- U1 DragonBall MX1 MCU
- P2 SD/MCC connector (on bottom of board)

- P3 SIM card connector
- P5 Memory Stick connector
- P8 LCD/touch panel connector
- P9 BlueTooth connector
- P10 USB connector
- P11, P12 RS232 connectors to on chip UARTs
- P14, P15, P26 voice out, microphone in, and DAC out connectors
- P19 I/O expansion connector
- P20 image sensor connector
- P23 3.0-volt input power connector
- P24 ARM MultiICE connector
- P27 ARM MutliTrace connector
- J1 RJ-45 Ethernet connector
- J2 Custom SODIMM memory expansion connector
- S1 peripherals enable switches
- S5 S16, S18 S21 16 push button keypad keys
- S17 General function push button switch
- S22 boot and big/little endian mode select switch
- SW1 reset switch
- SW2 power switch
- LED2 and LED3 general-purpose LEDs (yellow)
- LED4 external bus activity LED (red)
- LED5 power LED (green)
- LED6 Bluetooth activity LED (yellow)
- LED7, LED8 Ethernet activity LEDs (green, orange)
- U12 IrDA transceiver

1.5 Specifications

Table 1-1 lists M9328MX1ADS specifications

Characteristic	Specifications
Clock speed	96/48 MegaHertz
Ports	10Base-T (RJ-45), RS-232 serial
Temperature operating storage	-10° to +50° C -40° to +85° C
Relative humidity	0 to 90% (noncondensing)
Power requirements	3.0V — 3.3 VDC at 1 A
Dimensions	7.28 x 6.0 inches (18.5 x 15.3centimeters)

Table 1-1 Specifications

Section 2 Configuration and Operation

2.1 Introduction

This section consists of configuration information, connection descriptions, and other operational information that may be useful in your development activities.

2.2 Configuring Board Components

Table 2-1 is a summary of configuration settings; subsections 2.2.1 through 2.2.2 give additional information.

Component	Position	Effect
System Power Switch, SW2	SW2 BRD EDGE	Move this switch to the ON position to enable the power source connected to P23 to power the system. Factory setting is OFF.
System Reset Switch, SW1		Push to reset the MX1ADS.
	SW1	
Peripheral Selection Switch, S1	S1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	Enables UART1 transceiver, UART2 transceiver, and buzzer. Disables IrDA module. Factory setting is shown. Subsection 2.2.1 explains other settings for this switch.

Table 2-1	Component	Configuration	Settings
-----------	-----------	---------------	----------

Configuration and Operation

Component	Position	Effect
Mode Switch, S22	S22 S22 S22 S22 S22	Configures 32-bit SyncFlash as the boot device, configures Little Endian mode, and Normal mode operation. Factory setting is shown Subsection 2.2.2 explains other settings for this switch.

Table 2-1 Component Configuration Settings (Continued)

2.2.1 Peripheral Selection Switch (S1)

Switch S1 enables or disables the UART transceivers, the IRDA buffers, and the buzzer.

Table 2-2 lists the functionality of these subswitches.

Subswitch, Function	Settin g	Effect
S1-1, UART1 transceiver	ON	Forces the UART1 transceiver to be enabled.
	OFF	UART1_EN bit of U42 controls the UART1 transceiver. Active low.*
S1-2, UART2 transceiver	ON	Forces the UART2 transceiver to be enabled.**.
	OFF	UART2_EN bit of U42 controls the UART2 transceiver. Active low.*
S1-3, IrDA module	ON	Forces the IrDA module buffers to be enabled.**
	OFF	IrDA_EN bit of U42 controls the IrDA buffers. Active low.*
S1-4, LCD		No effect
S1-5, Buzzer	ON	Enables the buzzer to be controlled by the PWMO output.
	OFF	PMWO is disconnected from the buzzer circuit.
S1-6, PEN_CS		No effect
S1-7, PEN_IRQ	—	No effect
S1-8		No effect

Table 2-2 S1 Subswitch Settings

* Setting the associated bit high (power on reset default) disables the interface. Setting the bit low will enable the interface.

**** Warning:** Do not enable UART2 and IRDA at the same time. Neither circuit will function properly and circuit damage could result.

Figure 2-1 shows a possible configuration: the UART1 transceiver and the IrDA module enabled; the UART2 transceiver and buzzer disabled.

Figure 2-1 Switch S1

2.2.2 Mode Switch (S22)

Switch S22 configures boot mode, configures endian state, and enables test mode. These switches only take effect on power up or after a reset is applied.

Table 2-3 lists settings for the boot-mode subswitches, S22-1 through S22-4. Table 2-4 lists the settings for subswitches S22-5 and S22-6.

Boot Mode, Device	S22-1	S22-2	S22-3	S22-4
Internal bootstrap ROM	ON	ON	ON	ON
CS0, 32-bit	ON	OFF	OFF	ON
CS0, 16-bit, D[15—0]	OFF	ON	OFF	ON
CS0, 16-bit, D[31—16]	ON	ON	OFF	ON
CS0, 8-bit, D[7—0]	OFF	OFF	ON	ON
CS3, 32-bit SyncFlash	ON	OFF	ON	ON
CS3, 16-bit SyncFlash, D[15—0]	OFF	ON	ON	ON

 Table 2-3 Boot Mode Subswitch Settings

Subswitch, Function	Setting	Effect
S22-5, Endian mode	ON	Configures Little Endian mode.
	OFF	Configures Big Endian mode.
S22-6, CPU Mode	ON	Selects Normal mode.
	OFF	Selects CPU Test mode.

Table 2-4 Subswitch S22-5, S22-6 Settings

Warning: Do not select CPU Test mode. Nothing good will come of it.

Figure 2-2 shows a possible configuration:

- Subswitches S22-1 through S22-4 configure the boot mode to be CS0, 8-bit, D[7] through D[0].
- Subswitch S22-5 configures Little Endian mode.
- Subswitch S22-6 selects Normal mode.

Figure 2-2 Switch S22

2.3 Operation

2.3.1 Functional Block Diagram

2.3.2 On Board Memory

Figure 2-4 and Figure 2-5 show the interface of the on-board memory. The ADS is equipped with 4Mx32-bit SyncFlash and 16Mx32-bit SDRAM. The chip select $\overline{CS3}$ ($\overline{CSD0}$) and $\overline{CS2}$ ($\overline{CSD1}$) are used for SyncFlash and SDRAM chip select respectively.

Figure 2-4 SyncFlash Interface

Figure 2-5 SDRAM Interface

2.3.3 Memory Map

Table 2-5 represents the memory mapping for the external peripherals on the M9328MX1ADS board. Note the Sync Flash and the Ethernet Controller have repeated memory blocks due to the fact they do not take up the entire address space of the associated chip select. Software can access the same physical memory location at several different addresses. For instance SDRAM uses the entire 64 MB address space allowed for $\overline{\text{CSD0}}$. The Sync Flash occupies only 16 MBs of the 64 MB space available to $\overline{\text{CSD1}}$, so its memory is repeated 4 times. $\overline{\text{CS4}}$ covers 16 MB allowing many repetitions of the Ethernet chip's internal registers.

Configuration and Operation

Peripheral	Chip Select	Address Range (HEX)	Act Mem Size
SDRAM	CSD0	0x0800 0000 to 0x0BFF FFFF	64MB
SYNC FLASH	CSD1	0x0C00 0000 to 0x0FFF FFFF	16MB
Ethernet Controller	CS4	0x1500 0000 to 0x15FF FFFF	16 BYTES
Internal SRAM	NA	0x0030 0000 to 0x0031 FFFF	128 KB

Table 2-5 M9328MX1ADS Memory Map

2.3.4 USB Interface

The USB Device Module of the MC9328MX1 interfaces the with a Phillips USB transceiver, PDIUSBP11A, connected to a USB type B connector, P10. For details on the operation of USB interface, please refer to MC9328MX1 data sheet. Figure 2-6 illustrates the USB interface connection.

Figure 2-6 USB Interface

2.3.5 UART and IrDA

Figure 2-7 shows how the UART and the IrDA circuits are connected.

Figure 2-7 UARTs and IrDA Interface

2.3.6 Ethernet

The M9328MX1ADS is equipped with Cirrus Logic CS8900A Crystal LAN ISA Ethernet Controller. The CS8900A has 10BaseT transmit and receive filters and can interface with the M9328MX1. The CS8900A is operating in I/O mode. Figure 2-8 shows an overview of the Ethernet interface.

Figure 2-8 Ethernet Interface

2.3.7 CD Quality DAC and Analog I/O

The M9328MX1ADS is equipped with Micronas Stereo Audio DAC. The DAC3350A, U32, is controlled by the MX1 which sends the DAC digital audio data via the I^2C bus. The I^2C slave address of the DAC3350A is 0x9A.

The DAC also provides volume control and a headphone amplifier output. This amplifier is connected to the P26 audio connector. A filtered low level audio output is connected to the JP3 header.

M9328MX1ADS - Rev 2

The mixing of external analog audio sources to the converted DAC signal is supported. These signals can be input at the JP4 and JP5 headers. Additionally the voice out signal from the MX1 is connected to the AUX1 input of the DAC3350A. This signal is also amplified and driven to a second headphone connector, P14.

The ADS also provides a microphone connector at P15. This input is suitable for dynamic microphones only. The microphone input signal level can be varied by VR74. The conditioned signal is then fed to the MIP input of the MX1.

Table 2-6 is a list of the audio connectors. All audio jacks are standard 3.5mm stereo connectors. Table 2-7 through Table 2-9 describe the header pin outs.

Connector	Descriptions
P26	Headphone jack for DAC3350A audio out.
P14	Headphone jack for MX1 Voice Out
P15	Dynamic microphone input jack

Table 2-6 Audio Connectors

 Table 2-7 Audio Header JP3 Signal Descriptions

Pin	Mnemonic	Signal
1	FINR	Filtered op amp output right, line out
2,3	AGND	Analog Ground
4	FINL	Filtered op amp output left, line out

Configuration and Operation

Pin	Mnemonic	Signal
1	AUX1R	Auxiliary Input 1, right channel*
2,3	AGND	Analog Ground
4	AUX1L	Auxiliary Input 1, left channel*

Table 2-8 Audio Header JP4 Signal Descriptions

* **Note:** The voice output from the MX1 also connects to both AUX1 channels causing them to be shorted. Remove zero ohm resistors R142 and R141 to break this connection.

Table 2-9 Audio Header JP5 Signal Descriptions

Pin	Mnemonic	Signal
1	AUX2R	Auxiliary Input 2, right channel
2,3	AGND	Analog Ground
4	AUX2L	Auxiliary Input 2, left channel

For the details on the operation of DAC3550A, please refer to its data sheet. The data sheet is available on the web:

http://www.micronas.com/

2.3.8 Keypads and IO Expander

The M9328MX1ADS is equipped with two Phillips PCF8575 I/O expanders. One is for the keypad array and the other is for peripheral control. The keypad array consist of a matrix of momentary push button switches mounted directly to the ADS board. Figure 2-9 and Table 2-10 shows the interface of the I/O expander to the keypads. The read slave address is 0x49. The PCF8575 can be used to generated an interrupt whenever a key is pressed or released. The interrupt signal is connected to the SIM_PD signal of the DBMX1 which should be configured as GPIO, PB15. There is an additional push button switch, S17, that is connected to the SPI_RDY signal of the DBMX1. That pin should be configured as GPIO, PC13, to use it with S17. When any switch is depressed it will cause a low (zero) to appear at the associated input pin. These switches have no hardware debounce so that function must be handled by the software.

M9328MX1ADS - Rev 2

Table 2-11 and Figure 2-10 shows the interface to software controlled peripheral enables. Peripherals can be enable or disable by programming the I/O expander. This depends on the state of the associated enable switch (S1) which can override software control. The write slave address is 0x44 and the read address is 0x45.

The PCF8575 consists of a 16-bit quasi-bidirectional port and an I^2C -bus interface. On power up all pins are configured as inputs. A non power up reset has no effect on the PCF8575 which communicates with the MC9328MX1 through the I^2C interface. For the details on the operation of PCF8575, please refer to its data sheet. The data sheet is available on the web:

http://www.semiconductors.philips.com

Figure 2-9 Keypads and I/O Expander Interface

Configuration and Operation

I/O Expander Port	Key Read	I/O Expander Port	Key Read
P00	Key 0 / S8	P10	Key 8 / S16
P01	Key 1 / S7	P11	Key 9 / S15
P02	Key 2 / S6	P12	Key 10 / S14
P03	Key 3 / S5	P13	Key 11 / S13
P04	Key 4 / S12	P14	Key 12 / S21
P05	Key 5 / S11	P15	Key 13 / S20
P06	Key 6 / S10	P16	Key 14 / S19
P07	Key 7 / S9	P17	Key 15 / S18

Table 2-10 Keypad I/O Expander Interface

Table 2-11 I/O Expander to Peripherals (U42)

I/O Expander Port	Mnemonic	Signal
P00	UART1_EN	UART1 enable
P01	UART2_EN*	UART2 enable*
P02	IrDA_EN*	IrDA enable*
P03	LCD_ON	Not used (reserved)
P04	BTRF_EN	Not used (reserved)
P05,P06,P07, P12-P17	NC	NO CONNECTION
P10	SD_WP	Secure Data Write Protect
P11	SD_CD	Secure Data Card Detect

Figure 2-10 Software Controlled Peripheral Enables

2.3.9 Led Indicators

Table 2-12 lists the meanings of the MX1ADS LED indicators.

Reference #	Color	Name	Function
LED2	Yellow	PA2	User status controlled by PA2*
LED3	Yellow	PA23	User status controlled by PA23*
LED4	Red	EXT BUS	Blinking indicates external bus activity
LED5	Green	PWR	Power is applied to the system with right polarity
LED6	Yellow	BTA	Blinking indicates Bluetooth activity
LED7	Green	ACTIVE	Blinking indicates LAN Activity
LED8	Orange	LINK	Link good or host controlled output 0

 Table 2-12 Function of LED Indicators

* A logic high level at the controlling pin will turn on the LED. A logic low turns it off. The schematic shows LED2 connected to PWMO and LED3 connected to $\overline{\text{CS5}}$ which are alternate functions for PA2 and PA23.

User's Manual

2.4 Using The Board Connectors

Table 2-13 lists the MX1ADS connectors, explaining their function, and anyspecial instructions for using the connector. Figure 1-1 shows the connectorlocations on the board along with their reference designators.

Connector	Purpose	Comments
J1	Ethernet	Standard Ethernet connector. A cable for direct network and one for crossover connections (direct to a PC) have been provided in the m9328MX1ESBP Professional Edition.
J2	SODIMM	Slide SODIMM card into the connector until it snaps into place. Not compatible with off the shelf DIMM modules.
JP3	FOUTR, FOUTL	Filtered output of right and left channels from the DAC3550A.
JP4	AUX1R, AUX1L,	Auxiliary audio input channel 1 with left and right stereo inputs. Compatible with low level outputs of most audio electronics.
JP5	AUX2R, AUX2L	Auxiliary audio input channel 2 with left and right stereo inputs. Compatible with low level outputs of most audio electronics.
P2	SD/MMC	Connector is on bottom of board, directly below the P5 memory stick connector. Slide the MMC unit into the connector until it snaps into place. Shares signals with the Memory Stick card interface.
P3	SIM	Unsnap latch, swing lid up. Slide SIM card inside, matching alignment of contacts at the connector base. Close the lid and push down to latch.
P5	Memory Stick	Slide the memory stick into the connector until it snaps into place. Shares signals with the SD/MMC card interface.
P8	LCD panel	Connect LCD ribbon cable between this connector and the corresponding connector of the LCD display panel, J11.
P9	BlueTooth module	Connect a compatible Bluetooth daughter board into this connector. A MMM7400 Bluetooth module is included in the M9328MX1ESBP kit.

Table 2-13 MX1ADS Connectors

Connector	Purpose	Comments
P10	USB	Standard USB connector.
P11	UART1	Standard DB9 connector set up for DCE operation.
P12	UART2	Standard DB9 connector set up for DCE operation.
P14	Voice Out	Standard 3.5 mm connector for stereo audio.This is the output of the amplified voice out from the MC9328MX1 suitable for use with standard headphones with a 16 to 32 ohms impedance.
P15	Microphone	Standard 3.5 mm connector for stereo audio. Use only dynamic microphones with a 200 to 600 ohms impedance.
P19	Expansion	Standard 48 pin, three row, male DIN connectors. Can connect directly or be cabled to a custom circuit board.
P20	Image sensor	Connect image-sensor daughter board to this connector, then connect ribbon cable and lens board to the daughter board.
P23	Power	Plug the 3-volt power-supply jack end into this connector.
P24	MultiICE	Standard ARM MultiICE connector.*
P26	Headphone	Standard 3.5 mm connector for stereo audio. This is the amplified stereo output of the DAC3550A. Use headphones with a 16 to 32 ohms impedance.
P27	MultiTrace	Standard ARM MultiTrace connector.*

Table 2-13 MX1ADS Connectors (Continued)

* For information on ARM supplied devices that are compatible with these connectors please visit ARM's web site at: http://www.arm.com

2.5 Add On Module Connections and Usage

2.5.1 Using the TFT LCD Display Panel

Your MX1ADS and MX1ESBP come equipped with a touch control enabled TFT (Thin Film Transistor) LCD display assembly. The TFT LCD component is from Sharp Corporation, model number LQ035Q2DD54. A detailed specification has been included on the documentation CD that came with your ADS.

User's Manual

To begin using your MX1ADS LCD module you must connect the 34 conductor ribbon cable (RE11057C) that came with your MX1ADS between connectors J11 on the LCD module and P8 on the MX1ADS main board.

Warning: Be sure input power to the main board is disconnected or switched off before the LCD module is connected. Connecting the module with power applied could damage the LCD module and/or the main board.

Your TFT LCD module has two variable resistors that allow users to vary the contrast, sometimes described as view angle, and the brightness of the FL backlight. Adjustment of VR1 will change the contrast and VR4 controls the backlight brightness. These potentiometers are recessed below the Plexiglas cover. You will need to use a suitable flat head or phillips head screwdriver to adjust them. This may be done with power applied but caution is advised when using a metal tool. A plastic bladed tools is recommend. While these controls were set at the factory, adjustment may be required to suit the user's preferences.

2.5.2 Using a SODIMM Card

This connector provide a way to add new circuit boards that may be developed in the future. Users can also develop compatible DIMM cards as well.

Caution should be used when developing such boards to avoid addressing conflicts with peripherals that already exits on the main board.

Warning: To avoid circuit damage, do not plug in SODIMM cards with power applied to the board.

2.5.3 Using a SIM, SD/MMC, or Memory Stick Card

The users must obtain their own compatible cards for use with these connectors. Please note the power is connected to VCC which is 3.0-volts when using the power supply provide with your kit.

Warning: To avoid circuit damage, do not plug in SIM, SD/MMC, or Memory Stick cards with power applied to the board.

M9328MX1ADS - Rev 2

2.5.4 Using the BlueTooth Daughter Board

This connector, P9, comes configured to operate directly with the Motorola MMM7400 Bluetooth RF module that is included in the M9328MX1ESBP. There are zero ohm resistor components that may be removed and/or added to change what signals are connected. This can be used to adapt the connector to other RF modules from other vendors. Software to control this interface using the MMM7400 may be found at the following web site:

http://www.motorola.com/dragonball

Warning: To avoid circuit damage, do not plug in a Bluetooth module with power applied to the board.

2.5.5 Using the Image Sensor daughter boards

This connector comes configured to operate directly with the CSI Daughter Card that is included in the M9328MX1ESBP. The communication with this card takes place through the I^2C interface. Refer to the specification for the SMC20014 included on the user documentation CD for information on how to use this device.

To install the image sensor boards, first locate the TetraCam sensor board. Plug its J1 connector into the J1 connector of the CSI Daughter Card. Make sure that JP1 has a jumper installed and that JP2 does not. Plug the 48 position DIN connect on the back side of the CSI daughter card into P20 of the main board. The two boards will be at a right angle to each other with the image sensor facing away from the main board.

Warning: To avoid circuit damage, do not plug in the TetraCam Image Sensor or CSI daughter card with power applied to the board.

User's Manual

Configuration and Operation

M9328MX1ADS - Rev 2

Section 3 Support Information

3.1 Introduction

This section consists of connector pin assignments, connector signal descriptions, and other information that may be useful in your development activities.

3.2 S.O.DIMM Socket

Connector J2 is the MX1ADS SODIMM connector. Figure 3-1 gives pin assignments for this connector and Table 3-1 gives signal descriptions for this connector. Please note this in not an industry standard pin out and that it is unlikely to be compatible with off the self DIMM cards

Support Information

.

		J2		
GND	1	• •	2	GND
D0	3	• •	4	~EB0
D1	5	• •	6	~EB1
D2	7	• •	8	~EB2
D3	9	• •	10	~EB3
VCC	11	• •	12	VCC
D4	13	• •	14	~OE
D5	15	• •	16	~WE
D6	17	• •	18	~ECB
D7	19	• •	20	~LBA
GND	21	• •	22	GND
DQM0	23	• •	24	A0
DQM1	25	• •	26	A1
VCC	27	• •	28	VCC
A2	29	• •	30	A5
A3	31	• •	32	A6
A4	33	• •	34	A7
GND	35	• •	36	GND
D8	37	• •	38	~BAA
D9	39	• •	40	~BCLK
D10	41	• •	42	NC
D11	43	• •	44	NC
VCC	45	• •	46	VCC
D12	47	• •	48	~CS0
D13	49	• •	50	~CS1
D14	51	• •	52	~CS4
D15	53	• •	54	~CS5
GND	55	• •	56	GND
~RESETSF	57	• •	58	MOSI
MISO	59	• •	60	SS
SDCLK	61	• •	62	SDCKE0
VCC	63	• •	64	VCC
~RAS	65	• •	66	~CAS
~SDWE	67	• •	68	SDCKE1
~CS2	69	• •	70	A13
~CS3	/1	• •	12	SPI_RDY
~KESEI	73	• •	14	SUCLK
	/5 77	• •	76	
	11	• •	78	
	/9 04	• •	80	
VCC	81	• •	82	VUU

D16	83	•	•	84	SIM SVEN
D17	85	•	•	86	SIM PD
D18	87	•	•	88	SIM CLK
D19	89	•	•	90	SIM RST
GND	91	٠	•	92	GND
D20	93	•	•	94	A16
D21	95	•	•	96	A17
D22	97	٠	٠	98	A18
D23	99	٠	٠	100	A19
VCC	101	٠	٠	102	VCC
A8	103	٠	٠	104	A9
A10	105	٠	٠	106	NC*
GND	107	٠	٠	108	GND
MA10	109	٠	٠	110	NC*
MA11	111	٠	٠	112	NC*
VCC	113	٠	٠	114	VCC
DQM2	115	٠	٠	116	A11
DQM3	117	٠	٠	118	A12
GND	119	٠	٠	120	GND
D24	121	٠	٠	122	A14
D25	123	٠	٠	124	A15
D26	125	٠	٠	126	A20
D27	127	٠	٠	128	A21
VCC	129	٠	٠	130	VCC
D28	131	٠	٠	132	A22
D29	133	٠	٠	134	A23
D30	135	٠	٠	136	A24
D31	137	٠	٠	138	NC
GND	139	٠	٠	140	GND
NC	141	٠	٠	142	NC
VCC	143	•	٠	144	VCC

Figure 3-1 SODIMM Connector J2 Pin Assignments

*These connector pins may be connected to address lines with the addition of a zero ohm resistor. For more details please refer to the M9328MX1ADS schematic, sheet 10 of 12.

Table 3-1 SODIMM Connector J2 Signal Descriptions

Pin	Mnemonic	Signal
1, 2, 21, 22, 35,	GND	GROUND
36, 55, 56, 75,		
76, 91, 92, 107,		
108, 119, 120,		
139, 140		

User's Manual

Table 3-1 SODIMM Connector J2 Signal Descriptions (Continued)

Pin	Mnemonic	Signal
3, 5, 7, 9, 13, 15, 17, 19, 37, 39, 41, 43, 47, 49, 51, 53, 83, 85, 87, 89, 93, 95, 97, 99, 121, 123, 125, 127, 131, 133, 135, 137	D0 — D31	DATA BUS (lines 0—31) — Bidirectional signals for transferring data between the processor and an external device.
4, 6, 8, 10	~EB0 — ~EB3	ENABLE BYTE (lines 0—3) — Active-low outputs that indicate active data bytes for the current access. ~EB0 corresponds to DATA[31—24], ~EB1 corresponds to DATA[23—16], ~EB2 corresponds to DATA[15—8], and ~EB3 corresponds to DATA[7—0]
11, 12, 27, 28, 45, 46, 63, 64, 81, 82, 101, 102, 113, 114, 129, 130, 143, 144	VCC	VCC (3.0-volts)
14	~OE	OUTPUT ENABLE — Active-low output that indicates that a bus access is a read access; enables slave devices to drive the data bus.
16	~WE	WRITE ENABLE — Active-low output
18	~ECB	END CURRENT BURST — Active-low input signal asserted by external burst devices; indicates the end of a burst sequence
20	~LBA	LOAD BURST ADDRESS — Active-low signal asserted during burst mode accesses; causes the external burst device to load a new starting burst address
23, 25, 115, 117	DQM0 — DQM3	SDRAM enable bytes (0-3) - Active-low output signals.
24, 26, 29 — 34, 70, 94, 96, 98, 100, 103 — 105, 116, 118, 122, 124, 126, 128, 132, 134, 136	A{0 — A24 (not in exact order)	ADDRESS BUS (0-24) - Output lines for addressing external devices.
38	~BAA	BURST ADDRESS ADVANCE — Active-low signal asserted during burst mode accesses; causes the external burst devices to increment internal burst counters.
40	~BCLK	BURST CLOCK — Output signal to external burst devices; synchronizes burst loading and incrementing
42, 44, 77, 79, 106, 110, 112, 138, 141, 142	NC	NO CONNECTION

Pin	Mnemonic	Signal
48, 50, 52, 54,	~CS0—~CS5	CHIP SELECTS (lines 0 - 5) - Chip-select signals, active-low outputs.
69, 71	(not in exact	
	order)	
57	~RESETSF	RESET SYNC FLASH - Active low output
58	MOSI	MASTER OUT / SLAVE IN - SPI data signal (bidirectional)
59	MISO	MASTER IN / SLAVE OUT - SPI data signal (bidirectional)
60	SS	SLAVE SELECT - bidirectional, active low, input in slave mode, output in master mode
61, 74	SDCLK	SDRAM clock - output to SDRAM
62, 68	SDCKE0, SDCKE1	SDRAM CLOCK ENABLE 0 & 1 - Active high outputs to SDRAM
65	~RAS	ROW ADDRESS STROBE -clocks row address to SDRAM
66	~CAS	COLUMN ADDRESS STROBE - clocks column address to SDRAM
67	SDWE	SDRAM WRITE ENABLE - write data strobe to SDRAM, active low
72	SPI_RDY	SPI READY - CSPI serial burst trigger, active low input
73	~RESET	RESET — Active-low reset signal to the processor
78,80	SIM_TX,SIM_RX	SIM TRANSMITTED/ SIM RECEIVED DATA - SIM card data, tied together externally through zero ohm resistor.
84	SIM_SVEN	SIM VCC ENABLE - enable power to the SIM card, active low
86	SIM_PD	SIM PRESENCE DETECT - Active low input
88	SIM_CLK	SIMCLOCK - output clock to SIM card
90	SIM_RST	SIM RESET - Active low output to SIM card
109, 111	MA10, MA11	MUXED ADDRESS 10 & 11 - Multiplexed addresses to SDRAM

Table 3-1 SODIMM Connector J2 Signal Descriptions (Continued)

3.3 UART Connectors

Connectors P11 and P12 are the MX1ADS UART connectors. Figure 3-2 gives the pin assignments and Table 3-2 gives the signal descriptions for UART1 connector P11 and UART2 connector P12.

Support Information

Figure 3-2 Connector P11 (UART1), P12 (UART2) Pin Assignments

Table 3-2 Connector P11 (UART1), P12 (UART2) Signal Descriptions

Pin	Mnemonic	Signal
1, 4, 6, 9	NC	NO CONNECTION
2	TXD	TRANSMITTED DATA — RS232 serial data output signal.
3	RXD	RECEIVED DATA – RS232 serial data input signal.
5	GND	GROUND
7	RTS	READY TO SEND — Active-positive, RS232 input signal.
8	CTS	CLEAR TO SEND — Active-positive RS232 output signal.

Waning: UART2 can not be used if IrDA is enabled.

3.4 MultilCE Connector

Connector P24 is the MX1ADS MultiICE connector. Figure 3-3 gives the pin assignments and Table 3-3 gives the signal descriptions for this connector.

		P24		
VCC	1	• •	2	VCC
~TRST	3	• •	4	GND
TDI	5	• •	6	GND
TMS	7	• •	8	GND
TCK	9	• •	10	GND
GND	11	• •	12	GND
TDO	13	• •	14	GND
~RESET	15	• •	16	GND
NC	17	• •	18	GND
NC	19	• •	20	GND

Figure 3-3 MultiICE Connector P24 Pin Assignments

Table 3-3 MultilCE	Connector P24	Signal Descriptions
---------------------------	---------------	---------------------

Pin	Mnemonic	Signal
1, 2	VCC	3.0-VOLT POWER
3	~TRST	TARGET RESET — Active-low output signal that resets the target.
4, 6, 8, 10 — 12, 14, 16, 18, 20	GND	GROUND
5	TDI	TEST DATA INPUT — Serial data output line, sampled on the rising edge of the TCK signal.
7	TMS	TEST MODE SELECT – Output signal that sequences the target's JTAG state machine, sampled on the rising edge of the TCK signal.
9	ТСК	TEST CLOCK — Output timing signal, for synchronizing test logic and control register access.
13	TDO	JTAG TEST DATA OUTPUT — Serial data input from the target.
15	~RESET	RESET — Active-low reset signal.
17, 19	NC	NO CONNECTION

3.5 Ethernet Connector

Connector J1 is the RJ-45 MX1ADS Ethernet connector. Figure 3-4 gives the pin assignments and Table 3-4 gives the signal descriptions for this connector.

User's Manual

Figure 3-4 Ethernet Connector J1 Pin Assignments

Table 3-4 Ethernet Connector J1 Signal Descriptions

Pin	Mnemonic	Signal
1	TPO+	DIFFERENTIAL OUTPUT PLUS
2	TPO-	DIFFERENTIAL OUTPUT MINUS
3	TPI+	DIFFERENTIAL INPUT PLUS
4, 5, 7, 8	NC	NO CONNECTION
6	TPI-	DIFFERENTIAL INPUT MINUS
9,10	GND	GROUND

3.6 USB Connector

Connector P10 is the USB connector. Figure 3-5 gives the pin assignments and Table 3-5 gives the signal descriptions for this connector.

Figure 3-5 USB	Connector P10	Pin Assignments
----------------	----------------------	------------------------

Table 3-5	USB Connector	P10 Signal	Descriptions
-----------	---------------	------------	--------------

Pin	Mnemonic	Signal
1	NC	NO CONNECTION
2	D-	USB DATA MINUS

M9328MX1ADS	- Rev 2
-------------	---------

Pin	Mnemonic	Signal
3	D+	USB DATA PLUS
4	GND	GROUND

Table 3-5 USB Connector P10 Signal Descriptions (Continued)

3.7 BlueTooth Connector

M9328MX1ADS provides a 20-pin connector, P9, for interfacing the MC9328MX1 with the MMM7400 RF (MC13180) Module.

The selection of the used interface is determined via software by programming internal registers. Note on the schematic several zero ohm resistors allow the user to reconfigure the pin out to accommodate a different RF module. Figure 3-6 gives the pin assignments and Table 3-6 gives the signal descriptions for this connector.

		P9		
GND	1	• •	2	GND
BT1	3	• •	4	BT2/BT3*
BT10	5	• •	6	BT12/BT4*
BT5	7	• •	8	NC
NC/BT7*	9	• •	10	NC
BT9	11	• •	12	SCLK/BTRF_EN*
BT11	13	• •	14	BT7
BT13	15	• •	16	BT4
BT8	17	• •	18	BT3
VDD	19	• •	20	BT6

Figure 3-6 BlueTooth Connector P9 Pin Assignments

* Controlled by zero ohm resistors. The inside signal is the one connected when the system is shipped from the factory.

Pin	Mnemonic	Signal	
1, 2	BTRF GND	GROUND for BT RF module	
3	BT1	Ref_Clk (24Mhz)	
4	BT2	Transmit Data	
5	BT10	Inverse BT_RF_OSC_EN/GPO2	
6	BT12	SPI data out	
7	BT5	Frame synch	
8, 10	NC	NO CONNECTION	
9,14	BT7	Diversity/BT_RF_OSC_EN	
11	BT9	RxTx_en/HOP_SRB	
12	SCLK	Should be configured as GPIO, PC14	
13	BT11	SPI enable	
15	BT13	SPI clock	
16	BT4	SPI data in	
17	BT8	PWM_RSSI/TXEN	
18	BT3	Receive Data	
19	BTRF VDD	Power supply for BT RF module	
20	BT6	PWM_Tx/GPO1	

Table 3-6 BlueTooth Connector P9 Signal Descriptions

3.8 MultiTrace Connector

Connector P27 is the MX1ADS MultiTrace connector. Figure 3-7 gives the pin assignments and Table 3-7 gives the signal descriptions for this connector.

		P27		
NC	1	• •	2	NC
NC	3	• •	4	NC
GND	5	• •	6	A23
NC	7	• •	8	NC
~RESET	9	• •	10	NC
TDO	11	• •	12	VCC
NC	13	• •	14	NC
TCLK	15	• •	16	~ECB
TMS	17	• •	18	~LBA
TDI	19	• •	20	~BCLK
~TRST	21	• •	22	~BAA
GND	23	• •	24	A19
GND	25	• •	26	A18
GND	27	• •	28	A17
GND	29	• •	30	A16
GND	31	• •	32	A24
GND	33	• •	34	A22
GND	35	• •	36	A21
GND	37	• •	38	A20

Figure 3-7 Multi	Frace Connector	P27 Pin	Assignments
------------------	------------------------	---------	-------------

Table 3-7	MultiTrace	Connector P27	Signal	Descriptions
-----------	------------	----------------------	--------	--------------

Pin	Mnemonic	Signal
1 — 4, 7, 8, 10, 13, 14,	NC	NO CONNECTION
5, 23, 25, 27, 29, 31, 33, 35, 37	GND	GROUND
6, 24, 26, 28, 30, 32, 34, 36, 38	A16 — A24 (not in exact order)	ADDRESS BUS (lines 16—24) — Output lines for addressing external devices.
9	~RESET	RESET — Active-low reset signal.
11	TDO	JTAG TEST DATA OUTPUT — Serial data input from the target
12	VCC	3.3-VOLT POWER
15	TCLK	TEST CLOCK — Output timing signal, for synchronizing test logic and control register access.

User's Manual

N

Pin	Mnemonic	Signal
16	~ECB	END CURRENT BURST — Active-low input signal asserted by external burst devices; indicates the end of a burst sequence.
17	TMS	TEST MODE SELECT – Output signal that sequences the target's JTAG state machine, sampled on the rising edge of the TCK signal.
18	~LBA	LOAD BURST ADDRESS — Active-low signal asserted during burst mode accesses; causes the external burst device to load a new starting burst address.
19	TDI	TEST DATA INPUT — Serial data output line, sampled on the rising edge of the TCK signal.
20	~BCLK	BURST CLOCK — Output signal to external burst devices; synchronizes burst loading and incrementing.
21	~TRST	TARGET RESET — Active-low output signal that resets the target.
22	~BAA	BURST ADDRESS ADVANCE — Active-low signal asserted during burst mode accesses; causes the external burst devices to increment internal burst counters.

Table 3-7 MultiTrace Connector P27 Signal Descriptions (Continued)

3.9 LCD Panel Connector

Connector P8 is the MX1ADS LCD panel connectors. Figure 3-8 gives the pin assignments and Table 3-8 gives the signal descriptions this connector.

		P8		
VCC	1	• •	2	GND
LADC	3	• •	4	FLM
LP	5	• •	6	LSCLK
LD4	7	• •	8	LD3
LD2	9	• •	10	LD1
LD10	11	• •	12	LD9
LD8	13	• •	14	LD7
LD15	15	• •	16	LD14
LD13	17	• •	18	LD12
CONTRAST	19	• •	20	MISO
SPL_SPR	21	• •	22	REV
PS	23	• •	24	CLS
LD0	25	• •	26	GND
LD6	27	• •	28	LD5
LD11	29	• •	30	GND
TOP	31	• •	32	BOTTOM
LEFT	33	• •	34	RIGHT

Table 3-8 LCD Panel Connector P8 Signal Description

Pin	Mnemonic	Signal
1	VCC	Input power (3.0-volts)
2, 26,30	GND	GROUND
3	LADC	ACD/OE Alternate Crystal Direction/Output Enable*
4	FLM	FLM/VSYNC First Line Marker/Vertical Synchronization*
5	LP	LP/HSYNC Line Pulse/Horizontal Synchronization *
6	LSCLK	SCLK Shift Clock
7 — 18, 25, 27 — 29	LD0 — LD15 (not in exact order)	LCD data bus
19	CONTRAST	LCD bias voltage used as contrast control
20	MISO	Configure as GPIO, PC16. Used for an LCD enable
21	SPL_SPR	Horizontal scan direction (Sharp panel dedicated signal)
22	REV	Signal for common electrode driving signal preparation (Sharp panel dedicated signal)

User's Manual

Pin	Mnemonic	Signal
23	PS	Control signal output for source driver (Sharp panel dedicated signal)
24	CLS	Start signal output for gate driver. This signal is inverted version of PS (Sharp panel dedicated signal)
31	TOP	Negative pen-Y analog input
32	BOTTOM	Positive pen-Y analog input
33	LEFT	Negative pen-X analog input
34	RIGHT	Positive pen-X analog input

Table 3-8 LCD Panel Connector P8 Signal Descriptions (Continued)

* Passive/Active LCD matrix functions, signal function depends on the LCD type configuration selected.

3.10 SIM Card Connector

Connector P3 is the MX1ADS SIM card connector. Figure 3-9 gives the pin assignments and Table 3-9 gives the signal descriptions for this connector.

		ק
6	• 1	LSL
5	• 2	Q Q
4	• <u>3</u>	m Z

Figure 3-9 SIM Card Connector P3 Pin Assignments

Table 3-9 SIM Card Connector P3 Signal Descriptions

Pin	Mnemonic	Signal
1	SIM_TX/SIM_RX	SIM TRANSMITTED/ SIM RECEIVED DATA - SIM card data, tied together externally through zero ohm resistor.
2, 4	VCC	VCC (3.0-volts) SIM card power
3	GND	GROUND
5	SIM_RST	SIM RESET - Active low output to SIM card
6	SIM_CLK	SIMCLOCK - output clock to SIM card

3.11 Memory Stick Connector

Connector P5 is the MX1ADS memory stick connector. Figure 3-10 gives the pin assignments and Table 3-10 gives the signal descriptions for this connector.

Figure 3-10 Memory Stick Connector P5 Pin Assignments

Pin	Mnemonic	Signal
1,10	GND	Ground
2	SD_CMD	BS Memory Stick Bus Status (Connected to SD_CMD)
3,9	VCC	VCC (3.0-volts)
4	SD_DAT3	SDIO Memory Stick Serial Data Input/Output (Connected to SD_DAT3)
5,7	NC	NO CONNECTION
6	SD_DAT0	INS Stick Detect (Connected to SD_DAT0)
8	SD_CLK	SCLK Memory Stick Serial Clock (Connected to SD_CLK)

Table 3-10 Memory Stick Connector P5 Signal Descriptions

3.12 SD/MMC Connector

Connector P2 is the MX1ADS SD/MMC connector. Figure 3-11 gives the pin assignments and Table 3-11 gives the signal descriptions for this connector.

Support Information

Figure 3-11 SD/MMC Connector P2 Pin Assignments

Table 3-11 SD/MMC Connector P2 Signal Descriptions

			Signal					
Pin	Mnemonic	MMC Card	SD	D Card				
			1-Bit Mode	4-Bit Mode				
1	SD_DAT3	Reserved	Reserved Not Used Data Line D					
2	SD_CMD		Command / Respo	nse				
3	GND		Ground					
4	VCC		Supply Voltage (3.0-	volts)				
5	SD_CLK	Clock						
6	GND	Ground						
7	SD_DAT0		Data Line DAT0					
8	SD_DAT1	Not Used Interrupt (IRQ) Data Line DAT1 Interrupt (IRQ)						
9	SD_DAT2	Not Used ReadWait (RW) Data Line DAT2 o Read Wait (RW)						
10	USBD_AFE	Card Detect, configured as GPIO, PB20						
11	GND		Ground					
16	SD_WP	Write Protect Detect, connects to I/O Expander, U42-13 (P10)						

3.13 Expansion Connector

Connector P19 is the Expansion connector. All the signals of MC9328MX1 are connected to this 16x3-pin connector except data bus, address bus, EIM control signals and SDRAM control signals. Figure 3-12 gives the pin assignment and Table 3-12. gives the signal descriptions for this connector.

 -	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
С	•	٠	٠	•	٠	٠	•	•	•	٠	٠	٠	٠	٠	٠	•	
В	•	•	•	•	٠	٠	•	٠	•	•	٠	٠	٠	٠	•	•	
Α	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	

Figure 3-12 Connectors P19 and P20 Pin Assignments

Pin	Mnemonic	Signal					
A1,B1,C1	GND	GROUND					
A2	PWMO	PULSE WIDTH MODULATED OUTPUT - Output of the PWM module					
A3	MOSI	MASTER OUT / SLAVE IN - SPI data signal (bidirectional)					
A4	SCLK	SERIAL CLOCK					
A5	UART1_TXD	UART1 TRANSMITTED DATA - Serial output signal.					
A6	SSI_TXCLK	SYCHRONOUS SERIAL INTERFACE TRANSMITTER CLOCK - Bidirectional					
A7	SSI_RXDAT	SYCHRONOUS SERIAL INTERFACE RECEIVED DATA - Serial input signal					
A8	UART2_RXD	UART2 RECEIVED DATA - Serial output signal					
A9	UART2_CTS	UART2 CLEAR TO SEND - Active low output signal					
A10	USBD_VM	USB VOLTAGE MINUS INPUT					
A11	USBD_RCV	USB RECEIVED DATA INPUT					
A12	SIM_CLK	SIMCLOCK - Output clock to SIM card					
A13,C12	SIM_TX,SIM _RX	SIM TRANSMITTED/ SIM RECEIVED DATA - SIM card data, tied together externally through zero ohm resistor.					
A14	SD_CMD	SD/MMC COMMAND - Serial command bit to SD/MMC card, bidirectional					

Table 3-12. Expansion Connector P19 Signal Description

User's Manual

Table 3-12. Expansion Connector P19 Signal Description

A15	SD_DAT2	SD/MMC DATA BIT 2 - Serial data bit to SD/MMC card, bidirectional
A16,B16,C16	VCC	VCC (3.0-volts)
B2	TIN	TIMER INPUT CAPTURE - Timer input
B3	MISO	MASTER IN / SLAVE OUT - SPI data signal (bidirectional
B4	SPI_RDY	SPI READY - CSPI serial burst trigger, active low input
B5	UART1_RTS	UART1 REQUEST TO SEND - Active low input signal
B6	SSI_TXFS	SYCHRONOUS SERIAL INTERFACE TRANSMITTER FRAME SYNC
B7	SSI_RXCLK	SYCHRONOUS SERIAL INTERFACE RECEIVER CLOCK - Bidirectional
B8	UART2_TXD	UART2 TRANSMITTED DATA - Serial output signal
B9	USBD_VMO	USB VOLTAGE MINUS OUPUT
B10	USBD_VP	USB VOLTAGE POSITIVE INPUT
B11	USBD_ROE	USB DATA RECEIVED OUTPUT ENABLE - Active low output
B12	SIM_RST	SIM RESET - Active low output to SIM card
B13	SIM_PD	SIM PRESENCE DETECT - Active low input
B14	SD_CLK	SD/MMC CLOCK - Clock output to SD/MMC card
B15	SD_DAT1	SD/MMC DATA BIT 1 - Serial data bit to SD/MMC card, bidirectional
C2	TOUT12	TIMER OUTPUT COMPARE
C3	SS	SLAVE SELECT - Bidirectional, active low, slave mode input, master mode output.
C4	UART1_RXD	UART1 RECEIVED DATA - Serial output signal
C5	UART1_CTS	UART1 CLEAR TO SEND - Active low output signal
C6	SSI_TXDAT	SYCHRONOUS SERIAL INTERFACE TRANSMITTED DATA - Serial output signal
C7	SSI_RXFS	SYCHRONOUS SERIAL INTERFACE RECEIVER FRAME SYNC - Bidirectional
C8	UART2_RTS	UART2 REQUEST TO SEND - Active low input signal
C9	USBD_VPO	USB VOLTAGE POSITIVE OUTPUT
C10	USBD_SUSP ND	USB SUSPEND OUTPUT
C11	USBD_AFE	USB ANALOG FRONT END ENABLE
C13	SIM_SVEN	SIM VCC ENABLE - Enable power to the SIM card, active low

M9328MX1ADS - Rev 2

C14	SD_DAT3	SD/MMC DATA BIT 3 - Serial data bit to SD/MMC card, bidirectional
C15	SD_DAT0	SD/MMC DATA BIT 0 - Serial data bit to SD/MMC card, bidirectional

Table 3-12. Expansion Connector P19 Signal Description

3.14 Image Sensor Connector

P20 is a 16x3-pin connector P20 is assigned with signals for Image Sensor. Daughter card supporting different image sensor can plugged to this connectors. Figure 3-12 gives the pin assignment of this connector and Table 3-13. gives the signal descriptions for this connector.

Pin	Mnemonic	Signal
A1,B1,C1	GND	GROUND
A2	CSI_D0	CMOS SENSOR INTERFACE DATA 0 - Data input from Image Sensor
A3	CSI_D2	CMOS SENSOR INTERFACE DATA 2- Data input from Image Sensor
A4	CSI_D4	CMOS SENSOR INTERFACE DATA 4- Data input from Image Sensor
A5	CSI_D6	CMOS SENSOR INTERFACE DATA 6- Data input from Image Sensor
A6	CSI_PIXCLK	CMOS SENSOR INTERFACE PIXAL CLOCK - Data latch strobe
A7	CSI_VSYNC	CMOS SENSOR INTERFACE VERTICAL SYNC - Control input
A8	I2C_CLK	I SQUARED C CLOCK - Serial clock, bidirectional
A9	MOSI/PC17	MASTER OUT / SLAVE IN or PORT C BIT 17 - Not used by CSI daughter card
A10	~CS4/PA22	CHIP SELECT 4 / PORT A BIT 23 - Not used by CSI daughter card
A11-A15	NC	NO CONNECTION
A16,B16,C16	VCC	VCC (3.0-volts)
B2-B15	NC	NO CONNECTION
C2	CSI_D1	CMOS SENSOR INTERFACE DATA 1- Data input from Image Sensor
C3	CSI_D3	CMOS SENSOR INTERFACE DATA 3- Data input from Image Sensor
C4	CSI_D5	CMOS SENSOR INTERFACE DATA 5 - Data input from Image Sensor
C5	CSI_D7	CMOS SENSOR INTERFACE DATA 7 - Data input from Image Sensor
C6	CSI_HSYNC	CMOS SENSOR INTERFACE HORIZONTAL SYNC- Active low input

Table 3-13. Image Sensor Connector P20 Signal Description

User's Manual

C7	CSI_MCLK	CMOS SENSOR INTERFACE MASTER CLOCK - Clock output to sensor card
C8	I2C_DAT	I SQUARED C DATA - Serial data, bidirectional
C9	TIN/PA1	TIMER INPUT CAPTURE/ PORT A BIT 1 Not used by CSI daughter card
C10	~CS5/PA23	CHIP SELECT 5 / PORT A BIT 23 - Configured for GPIO to act as a SYNC signal
C11	SIM_RST	SIM RESET - Configured as GPIO for Image sensor's Unit signal.
C12	SIM_CLK	SIM CLOCK -
C13-C15	NC	NO CONNECTION

Table 3-13. Image Sensor Connector P20 Signal Description

HOW TO REACH US:

World Wide Web Address

Motorola: http://www.motorola.com/General/index.html

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002