
ZigBee PRO Stack
User Guide

JN-UG-3101

Revision 1.5

26 April 2017

ZigBee PRO Stack
User Guide

2 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Contents

Preface 13
Organisation 13

Conventions 14

Acronyms and Abbreviations 15

Related Documents 16

Support Resources 16

Trademarks 16

Chip Compatibility 16

Part I: Concept and Operational Information

1. ZigBee PRO Overview 19
1.1 ZigBee Network Nodes 20

1.2 ZigBee PRO Network Topology 21

1.3 Ideal Applications for ZigBee 22

1.4 Wireless Radio Frequency Operation 23

1.5 Battery-Powered Components 24

1.6 Easy Installation and Configuration 25

1.7 Highly Reliable Operation 26

1.8 Secure Operating Environment 27

1.9 Co-existence and Interoperability 28

1.10 Profiles 29
1.10.1 Stack Profiles 29

1.10.2 Application Profiles 29

2. ZigBee PRO Architecture and Operation 31
2.1 Architectural Overview 31

2.2 Network Level Concepts 33
2.2.1 ZigBee Nodes 33

2.2.2 Network Topology 34

2.2.3 Neighbour Tables 35

2.2.4 Network Addressing 36

2.2.5 Network Identity 37

2.3 Network Creation 38
2.3.1 Starting a Network (Co-ordinator) 38

2.3.2 Joining a Network (Routers and End Devices) 39
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 3

Contents
2.4 Application Level Concepts 40
2.4.1 Multiple Applications and Endpoints 40

2.4.2 Descriptors 40

2.4.3 Application Profiles 41

2.4.4 Attributes and Clusters 42

2.4.5 Discovery 43

2.4.6 ZigBee Device Objects (ZDO) 44

2.5 Network Routing 45
2.5.1 Message Addressing and Propagation 45

2.5.2 Route Discovery 46

2.5.3 ‘Many-to-one’ Routing 47

2.6 Network Communications 48
2.6.1 Service Discovery 48

2.6.2 Binding 49

2.7 Detailed Architecture 51
2.7.1 Software Levels 52

3. ZigBee PRO Stack Software 55
3.1 Software Overview 55

3.1.1 ZigBee PRO APIs 56

3.1.2 JenOS APIs 57

3.2 Summary of API Functionality 58

4. Application Development Overview 59
4.1 Development Environment 59

4.2 Development Resources 60

4.3 Development Phases 60

5. Application Coding with ZigBee PRO APIs 61
5.1 Forming a Network 63

5.1.1 Starting the Co-ordinator 64

5.1.2 Starting Routers and End Devices 65

5.1.3 Pre-determined Parents 67

5.2 Discovering the Network 68
5.2.1 Obtaining Network Properties 68

5.2.2 Finding Compatible Endpoints 68

5.2.3 Obtaining and Maintaining Node Addresses 69
5.2.3.1 Obtaining IEEE Address 70
5.2.3.2 Obtaining Network Address 70

5.2.4 Obtaining Node Properties 71

5.2.5 Maintaining a Primary Discovery Cache 75

5.2.6 Discovering Routes 75

5.3 Managing Group Addresses 76
4 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
5.4 Binding 76
5.4.1 Setting Up Bind Request Server 77

5.4.2 Binding Endpoints 77

5.4.3 Unbinding Endpoints 78

5.4.4 Accessing Binding Tables 78

5.5 Transferring Data 79
5.5.1 Sending Data 79

5.5.1.1 Unicast 80
5.5.1.2 Broadcast 81
5.5.1.3 Group Multicast 81
5.5.1.4 Bound Transfer 82
5.5.1.5 Inter-PAN Transfer 83

5.5.2 Receiving Data 84

5.5.3 Polling for Data 85

5.5.4 Security in Data Transfers 85

5.6 Leaving and Rejoining the Network 86
5.6.1 Leaving the Network 86

5.6.2 Rejoining the Network 87

5.7 Return Codes and Extended Error Handling 89

5.8 Implementing ZigBee Security 90
5.8.1 Network-level Security Set-up 91

5.8.2 Application-level Security Set-up 93

5.8.3 Network Key Modification 94

Part II: Reference Information

6. ZigBee Device Objects (ZDO) API 97
6.1 ZDO API Functions 97

6.1.1 Network Deployment Functions 98

ZPS_eAplZdoStartStack 99

ZPS_eAplZdoGetDeviceType 100

ZPS_eAplZdoDiscoverNetworks 101

ZPS_eAplZdoJoinNetwork 102

ZPS_eAplZdoRejoinNetwork 103

ZPS_eAplZdoDirectJoinNetwork 104

ZPS_eAplZdoOrphanRejoinNetwork 105

ZPS_eAplZdoPermitJoining 106

ZPS_u16AplZdoGetNetworkPanId 107

ZPS_u64AplZdoGetNetworkExtendedPanId 108

ZPS_u8AplZdoGetRadioChannel 109

ZPS_eAplZdoBind 110

ZPS_eAplZdoUnbind 111

ZPS_eAplZdoBindGroup 112

ZPS_eAplZdoUnbindGroup 113

ZPS_ePurgeBindTable 114
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 5

Contents
ZPS_eAplZdoPoll 115

ZPS_eAplZdoLeaveNetwork 116

ZPS_vNwkNibSetLeaveAllowed 118

ZPS_vNwkSendNwkStatusCommand 119

ZPS_vRemoveMacTableEntry 120

ZPS_vSaveAllZpsRecords 121

6.1.2 Security Functions 122

ZPS_vAplSecSetInitialSecurityState 123

ZPS_eAplZdoTransportNwkKey 125

ZPS_eAplZdoSwitchKeyReq 126

ZPS_eAplZdoRequestKeyReq 127

ZPS_eAplZdoAddReplaceLinkKey 128

ZPS_eAplZdoRemoveLinkKey 129

ZPS_eAplZdoRemoveDeviceReq 130

ZPS_eAplZdoSetDevicePermission 131

ZPS_bAplZdoTrustCenterSetDevicePermissions 132

ZPS_bAplZdoTrustCenterGetDevicePermissions 133

ZPS_bAplZdoTrustCenterRemoveDevice 134

ZPS_vTCSetCallback 135

6.1.3 Addressing Functions 137

ZPS_u16AplZdoGetNwkAddr 138

ZPS_u64AplZdoGetIeeeAddr 139

ZPS_eAplZdoAddAddrMapEntry 140

ZPS_vPurgeAddressMap 141

ZPS_u16AplZdoLookupAddr 142

ZPS_u64AplZdoLookupIeeeAddr 143

ZPS_u64NwkNibGetMappedIeeeAddr 144

ZPS_bNwkFindAddIeeeAddr 145

ZPS_vSetOverrideLocalIeeeAddr 146

ZPS_eAplZdoGroupEndpointAdd 147

ZPS_eAplZdoGroupEndpointRemove 148

ZPS_eAplZdoGroupAllEndpointRemove 149

6.1.4 Routing Functions 150

ZPS_eAplZdoRouteRequest 151

ZPS_eAplZdoManyToOneRouteRequest 152

6.1.5 Object Handle Functions 153

ZPS_pvAplZdoGetAplHandle 154

ZPS_pvAplZdoGetMacHandle 155

ZPS_pvAplZdoGetNwkHandle 156

ZPS_psNwkNibGetHandle 157

ZPS_psAplAibGetAib 158

ZPS_psAplZdoGetNib 159

ZPS_u64NwkNibGetEpid 160

6.1.6 Optional Cluster Function 161

ZPS_eAplZdoRegisterZdoFilterCallback 162
6 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
6.2 ZDO Enumerations 163
6.2.1 Security Keys (ZPS_teZdoNwkKeyState) 163

6.2.2 Device Types (ZPS_teZdoDeviceType) 164

6.2.3 Device Permissions (ZPS_teDevicePermissions) 164

6.2.4 Trust Centre Permissions (ZPS_teTCDevicePermissions) 165

7. Application Framework (AF) API 167
7.1 AF API Functions 167

7.1.1 Initialisation Functions 167

ZPS_eAplAfInit 168

ZPS_eAplAibSetApsUseExtendedPanId 169

ZPS_vExtendedStatusSetCallback 170

ZPS_bAppAddBeaconFilter 171

ZPS_vAplAfEnableMcpsFilter 172

ZPS_vNwkLinkCostCallbackRegister 173

ZPS_vSetOrphanUpdateDisable 174

7.1.2 Data Transfer Functions 175

ZPS_eAplAfApsdeDataReq 176

ZPS_eAplAfUnicastDataReq 177

ZPS_eAplAfUnicastIeeeDataReq 179

ZPS_eAplAfUnicastAckDataReq 181

ZPS_eAplAfUnicastIeeeAckDataReq 183

ZPS_eAplAfGroupDataReq 185

ZPS_eAplAfBroadcastDataReq 187

ZPS_eAplAfBoundDataReq 189

ZPS_eAplAfBoundAckDataReq 191

ZPS_eAplAfInterPanDataReq 193

ZPS_u8AplGetMaxPayloadSize 194

7.1.3 Endpoint Functions 195

ZPS_vAplAfSetEndpointState 196

ZPS_eAplAfGetEndpointState 197

ZPS_eAplAfSetEndpointDiscovery 198

ZPS_eAplAfGetEndpointDiscovery 199

7.1.4 Descriptor Functions 200

ZPS_eAplAfGetNodeDescriptor 201

ZPS_eAplAfGetNodePowerDescriptor 202

ZPS_eAplAfGetSimpleDescriptor 203

7.2 AF Structures 204
7.2.1 Descriptor Structures 204

7.2.1.1 ZPS_tsAplAfNodeDescriptor 204
7.2.1.2 ZPS_tsAplAfNodePowerDescriptor 206
7.2.1.3 ZPS_tsAplAfSimpleDescriptor 207

7.2.2 Event Structures 208
7.2.2.1 ZPS_tsAfEvent 209
7.2.2.2 ZPS_tuAfEventData 209
7.2.2.3 ZPS_tsAfDataIndEvent 210
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 7

Contents
7.2.2.4 ZPS_tsAfDataConfEvent 211
7.2.2.5 ZPS_tsAfDataAckEvent 212
7.2.2.6 ZPS_tsAfNwkFormationEvent 213
7.2.2.7 ZPS_tsAfNwkJoinedEvent 213
7.2.2.8 ZPS_tsAfNwkJoinFailedEvent 213
7.2.2.9 ZPS_tsAfNwkDiscoveryEvent 214
7.2.2.10 ZPS_tsAfNwkJoinIndEvent 215
7.2.2.11 ZPS_tsAfNwkLeaveIndEvent 216
7.2.2.12 ZPS_tsAfNwkLeaveConfEvent 217
7.2.2.13 ZPS_tsAfNwkStatusIndEvent 217
7.2.2.14 ZPS_tsAfNwkRouteDiscoveryConfEvent 218
7.2.2.15 ZPS_tsAfPollConfEvent 218
7.2.2.16 ZPS_tsAfNwkEdScanConfEvent 218
7.2.2.17 ZPS_tsAfErrorEvent 219
7.2.2.18 ZPS_tsAfZdoBindEvent 221
7.2.2.19 ZPS_tsAfZdoUnbindEvent 222
7.2.2.20 ZPS_tsAfZdoLinkKeyEvent 222
7.2.2.21 ZPS_tsAfBindRequestServerEvent 222
7.2.2.22 ZPS_tsAfInterPanDataIndEvent 223
7.2.2.23 ZPS_tsAfInterPanDataConfEvent 224
7.2.2.24 ZPS_tsAfZdpEvent 224

7.2.3 Other Structures 228
7.2.3.1 ZPS_tsNwkNetworkDescr 228
7.2.3.2 ZPS_tsNwkNlmeCfmEdScan 229
7.2.3.3 ZPS_tsInterPanAddress 229
7.2.3.4 ZPS_tsAfProfileDataReq 230
7.2.3.5 tsBeaconFilterType 231

8. ZigBee Device Profile (ZDP) API 233
8.1 ZDP API Functions 233

8.1.1 Address Discovery Functions 234

ZPS_eAplZdpNwkAddrRequest 235

ZPS_eAplZdpIEEEAddrRequest 237

ZPS_eAplZdpDeviceAnnceRequest 238

8.1.2 Service Discovery Functions 239

ZPS_eAplZdpNodeDescRequest 240

ZPS_eAplZdpPowerDescRequest 241

ZPS_eAplZdpSimpleDescRequest 242

ZPS_eAplZdpExtendedSimpleDescRequest 243

ZPS_eAplZdpComplexDescRequest 245

ZPS_eAplZdpUserDescRequest 246

ZPS_eAplZdpMatchDescRequest 247

ZPS_eAplZdpActiveEpRequest 249

ZPS_eAplZdpExtendedActiveEpRequest 250

ZPS_eAplZdpUserDescSetRequest 252

ZPS_eAplZdpSystemServerDiscoveryRequest 254

ZPS_eAplZdpDiscoveryCacheRequest 255

ZPS_eAplZdpDiscoveryStoreRequest 256

ZPS_eAplZdpNodeDescStoreRequest 258
8 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpPowerDescStoreRequest 260

ZPS_eAplZdpSimpleDescStoreRequest 262

ZPS_eAplZdpActiveEpStoreRequest 264

ZPS_eAplZdpFindNodeCacheRequest 266

ZPS_eAplZdpRemoveNodeCacheRequest 267

8.1.3 Binding Functions 269

ZPS_eAplZdpEndDeviceBindRequest 270

ZPS_eAplZdpBindUnbindRequest 272

ZPS_eAplZdpBindRegisterRequest 274

ZPS_eAplZdpReplaceDeviceRequest 275

ZPS_eAplZdpStoreBkupBindEntryRequest 277

ZPS_eAplZdpRemoveBkupBindEntryRequest 279

ZPS_eAplZdpBackupBindTableRequest 281

ZPS_eAplZdpRecoverBindTableRequest 283

ZPS_eAplZdpBackupSourceBindRequest 285

ZPS_eAplZdpRecoverSourceBindRequest 287

8.1.4 Network Management Services Functions 289

ZPS_eAplZdpMgmtNwkDiscRequest 290

ZPS_eAplZdpMgmtLqiRequest 292

ZPS_eAplZdpMgmtRtgRequest 293

ZPS_eAplZdpMgmtBindRequest 294

ZPS_eAplZdpMgmtLeaveRequest 296

ZPS_eAplZdpMgmtDirectJoinRequest 298

ZPS_eAplZdpMgmtPermitJoiningRequest 300

ZPS_eAplZdpMgmtCacheRequest 302

ZPS_eAplZdpMgmtNwkUpdateRequest 304

8.1.5 Response Data Extraction Function 306

ZPS_bAplZdpUnpackResponse 307

8.2 ZDP Structures 308
8.2.1 Descriptor Structures 308

8.2.1.1 ZPS_tsAplZdpNodeDescriptor 308
8.2.1.2 ZPS_tsAplZdpNodePowerDescriptor 310
8.2.1.3 ZPS_tsAplZdpSimpleDescType 312

8.2.2 ZDP Request Structures 314
8.2.2.1 ZPS_tsAplZdpNwkAddrReq 315
8.2.2.2 ZPS_tsAplZdpIEEEAddrReq 316
8.2.2.3 ZPS_tsAplZdpDeviceAnnceReq 316
8.2.2.4 ZPS_tsAplZdpNodeDescReq 317
8.2.2.5 ZPS_tsAplZdpPowerDescReq 317
8.2.2.6 ZPS_tsAplZdpSimpleDescReq 317
8.2.2.7 ZPS_tsAplZdpExtendedSimpleDescReq 318
8.2.2.8 ZPS_tsAplZdpComplexDescReq 318
8.2.2.9 ZPS_tsAplZdpUserDescReq 318
8.2.2.10 ZPS_tsAplZdpMatchDescReq 319
8.2.2.11 ZPS_tsAplZdpActiveEpReq 319
8.2.2.12 ZPS_tsAplZdpExtendedActiveEpReq 320
8.2.2.13 ZPS_tsAplZdpUserDescSet 320
8.2.2.14 ZPS_tsAplZdpSystemServerDiscoveryReq 321
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 9

Contents
8.2.2.15 ZPS_tsAplZdpDiscoveryCacheReq 321
8.2.2.16 ZPS_tsAplZdpDiscoveryStoreReq 322
8.2.2.17 ZPS_tsAplZdpNodeDescStoreReq 323
8.2.2.18 ZPS_tsAplZdpPowerDescStoreReq 323
8.2.2.19 ZPS_tsAplZdpSimpleDescStoreReq 324
8.2.2.20 ZPS_tsAplZdpActiveEpStoreReq 324
8.2.2.21 ZPS_tsAplZdpFindNodeCacheReq 325
8.2.2.22 ZPS_tsAplZdpRemoveNodeCacheReq 325
8.2.2.23 ZPS_tsAplZdpEndDeviceBindReq 326
8.2.2.24 ZPS_tsAplZdpBindUnbindReq 327
8.2.2.25 ZPS_tsAplZdpBindRegisterReq 328
8.2.2.26 ZPS_tsAplZdpReplaceDeviceReq 328
8.2.2.27 ZPS_tsAplZdpStoreBkupBindEntryReq 329
8.2.2.28 ZPS_tsAplZdpRemoveBkupBindEntryReq 330
8.2.2.29 ZPS_tsAplZdpBackupBindTableReq 331
8.2.2.30 ZPS_tsAplZdpRecoverBindTableReq 333
8.2.2.31 ZPS_tsAplZdpBackupSourceBindReq 333
8.2.2.32 ZPS_tsAplZdpRecoverSourceBindReq 333
8.2.2.33 ZPS_tsAplZdpMgmtNwkDiscReq 334
8.2.2.34 ZPS_tsAplZdpMgmtLqiReq 334
8.2.2.35 ZPS_tsAplZdpMgmtRtgReq 335
8.2.2.36 ZPS_tsAplZdpMgmtBindReq 335
8.2.2.37 ZPS_tsAplZdpMgmtLeaveReq 335
8.2.2.38 ZPS_tsAplZdpMgmtDirectJoinReq 336
8.2.2.39 ZPS_tsAplZdpMgmtPermitJoiningReq 336
8.2.2.40 ZPS_tsAplZdpMgmtCacheReq 336
8.2.2.41 ZPS_tsAplZdpMgmtNwkUpdateReq 337

8.2.3 ZDP Response Structures 338
8.2.3.1 ZPS_tsAplZdpNwkAddrRsp 340
8.2.3.2 ZPS_tsAplZdpIeeeAddrRsp 341
8.2.3.3 ZPS_tsAplZdpNodeDescRsp 342
8.2.3.4 ZPS_tsAplZdpPowerDescRsp 342
8.2.3.5 ZPS_tsAplZdpSimpleDescRsp 343
8.2.3.6 ZPS_tsAplZdpExtendedSimpleDescRsp 344
8.2.3.7 ZPS_tsAplZdpComplexDescRsp 345
8.2.3.8 ZPS_tsAplZdpUserDescRsp 346
8.2.3.9 ZPS_tsAplZdpMatchDescRsp 346
8.2.3.10 ZPS_tsAplZdpActiveEpRsp 347
8.2.3.11 ZPS_tsAplZdpExtendedActiveEpRsp 348
8.2.3.12 ZPS_tsAplZdpUserDescConf 348
8.2.3.13 ZPS_tsAplZdpSystemServerDiscoveryRsp 349
8.2.3.14 ZPS_tsAplZdpDiscoveryCacheRsp 349
8.2.3.15 ZPS_tsAplZdpDiscoveryStoreRsp 350
8.2.3.16 ZPS_tsAplZdpNodeDescStoreRsp 350
8.2.3.17 ZPS_tsAplZdpPowerDescStoreRsp 350
8.2.3.18 ZPS_tsAplZdpSimpleDescStoreRsp 351
8.2.3.19 ZPS_tsAplZdpActiveEpStoreRsp 351
8.2.3.20 ZPS_tsAplZdpFindNodeCacheRsp 351
8.2.3.21 ZPS_tsAplZdpRemoveNodeCacheRsp 352
8.2.3.22 ZPS_tsAplZdpEndDeviceBindRsp 352
8.2.3.23 ZPS_tsAplZdpBindRsp 352
8.2.3.24 ZPS_tsAplZdpUnbindRsp 353
8.2.3.25 ZPS_tsAplZdpBindRegisterRsp 353
8.2.3.26 ZPS_tsAplZdpReplaceDeviceRsp 355
10 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.3.27 ZPS_tsAplZdpStoreBkupBindEntryRsp 355
8.2.3.28 ZPS_tsAplZdpRemoveBkupBindEntryRsp 356
8.2.3.29 ZPS_tsAplZdpBackupBindTableRsp 356
8.2.3.30 ZPS_tsAplZdpRecoverBindTableRsp 357
8.2.3.31 ZPS_tsAplZdpBackupSourceBindRsp 357
8.2.3.32 ZPS_tsAplZdpRecoverSourceBindRsp 358
8.2.3.33 ZPS_tsAplZdpMgmtNwkDiscRsp 359
8.2.3.34 ZPS_tsAplZdpMgmtLqiRsp 360
8.2.3.35 ZPS_tsAplZdpMgmtRtgRsp 362
8.2.3.36 ZPS_tsAplZdpMgmtBindRsp 364
8.2.3.37 ZPS_tsAplZdpMgmtLeaveRsp 364
8.2.3.38 ZPS_tsAplZdpMgmtDirectJoinRsp 365
8.2.3.39 ZPS_tsAplZdpMgmtPermitJoiningRsp 365
8.2.3.40 ZPS_tsAplZdpMgmtCacheRsp 366
8.2.3.41 ZPS_tsAplZdpMgmtNwkUpdateNotify 367

8.3 Broadcast Addresses 368

9. Event and Status Codes 369
9.1 Events 369

9.2 Return/Status Codes 373
9.2.1 ZDP Codes 373

9.2.2 APS Codes 374

9.2.3 NWK Codes 376

9.2.4 MAC Codes 377

9.2.5 Extended Error Codes 378

10. ZigBee Network Parameters 381
10.1 Basic Parameters 381

10.2 Profile Definition Parameters 382

10.3 Cluster Definition Parameters 382

10.4 Co-ordinator Parameters 383

10.5 Router Parameters 384

10.6 End Device Parameters 385

10.7 Advanced Device Parameters 386
10.7.1 Endpoint Parameters 390

10.7.2 Bound Addressing Table 392

10.7.3 PDU Manager 392

10.7.4 Group Addressing Table 393

10.7.5 RF Channels 393

10.7.6 Node Descriptor 394

10.7.7 Node Power Descriptor 396

10.7.8 Key Descriptor Table 396

10.7.9 Trust Centre 397

10.7.10 ZDO Configuration 398
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 11

Contents
Part III: Configuration Information

11.Network and OS Configuration 407
11.1 Configuration Principles 407

11.2 Configuring ZigBee Network Parameters 409

12. ZPS Configuration Editor 413
12.1 Getting Started 413

12.2 Using the ZPS Configuration Editor 414
12.2.1 Creating a New ZPS Configuration 414

12.2.2 Adding Device Types 415

12.2.3 Setting Co-ordinator Properties 417

12.2.4 Setting Advanced Device Parameters 421

Part IV: Appendices

A. Handling Stack Events 425

B. Application Design Notes 426
B.1 Fragmented Data Transfers 426
B.2 Sending Data to Sleeping End Devices 428
B.3 Clearing Stack Context Data Before a Rejoin 430
B.4 Beacon Filtering Guidelines 430
B.5 Table Configuration Guidelines 431
B.6 Received Message Queues 434
B.7 Filtering Packets on LQI Value/Link Cost 434
B.8 Disabling Orphan Notifications to the Trust Centre 437
B.9 Forcing Broadcast Retries 438
B.10 Noise Threshold for Forming a Network 439

C. Glossary 440
12 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Preface

This manual provides a single point of reference for information relating to the
ZigBee PRO wireless network protocol stack which can be implemented on the NXP
JN516x wireless microcontroller. The manual provides both conceptual and practical
information concerning the NXP ZigBee PRO stack software. Guidance is provided on
use of the Application Programming Interfaces (APIs) for ZigBee PRO. The API
resources (functions, network parameters, enumerations, data types, events, etc) are
fully detailed. The manual should be used as a reference resource throughout ZigBee
PRO application development.

For more detailed information on the ZigBee PRO standard, refer to the ZigBee
Specification (05347), available from the ZigBee Alliance.

Organisation

This manual is divided into four parts:

 Part I: Concept and Operational Information comprises five chapters:

 Chapter 1 introduces the ZigBee PRO wireless network protocol.

 Chapter 2 describes the architecture and features of ZigBee PRO.

 Chapter 3 introduces the NXP ZigBee PRO stack software.

 Chapter 4 provides an overview of the ZigBee PRO application
development environment and process.

 Chapter 5 describes how to perform common wireless network operations
using the functions of the NXP ZigBee PRO APIs.

 Part II: Reference Information comprises five chapters:

 Chapter 6 details the functions and associated resouces of the ZigBee
Device Objects (ZDO) API.

 Chapter 7 details the functions and associated resouces of the Application
Framework (AF) API.

Note 1: The development of wireless network
applications based on the NXP ZigBee PRO stack also
requires use of JenOS (Jennic Operating System),
which is fully detailed in the JenOS User Guide
(JN-UG-3075).

Note 2: This User Guide supports the ZigBee PRO
Software Developer’s Kits (SDKs) with part numbers
JN-SW-416x which are designed to be used with the
‘BeyondStudio for NXP’ toolchain (JN-SW-4141). It
replaces the User Guide JN-UG-3048 for these SDKs.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 13

Preface
 Chapter 8 details the functions and associated resouces of the ZigBee
Device Profile (ZDP) API.

 Chapter 9 details the stack events and the return/status codes used by the
ZigBee PRO APIs.

 Chapter 10 details the ZigBee network parameters.

 Part III: Configuration Information comprises two chapters:

 Chapter 11 introduces the configuration tools that are required to set up a
ZigBee PRO application, including the ZPS Configuration Editor.

 Chapter 12 describes how to use the ZPS Configuration Editor.

 Part IV: Appendices contains three appendices that provide various ancillary
information, including a description of the handling of ZigBee PRO stack
events, a set of application design notes and a glossary of terms used in
ZigBee PRO networks.

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
14 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Acronyms and Abbreviations

AF Application Framework

AIB APS Information Base

APDU Application Protocol Data Unit

API Application Programming Interface

APS Application Support (sub-layer)

APSDE Application Support (sub-layer) Data Entity

APSME Application Support (sub-layer) Management Entity

DBG Debug

DIO Digital Input/Output

EPID Extended PAN ID

HA Home Automation

HVAC Heating, Ventilation and Air-Conditioning

IO Input/Output

ISR Interrupt Service Routine

JenOS Jennic Operating System

MAC Media Access Control

PAN Personal Area Network

NIB NWK Information Base

NPDU Network Protocol Data Unit

NVM Non-Volatile Memory

NWK Network

PDU Protocol Data Unit

PDUM Protocol Data Unit Manager

PDM Persistent Data Manager

PIC Programmable Interrupt Controller

PWRM Power Manager

RF Radio Frequency

RTOS Real-Time Operating System

SAP Service Access Point

SDK Software Developer’s Kit

SE Smart Energy

UART Universal Asynchronous Receiver-Transmitter
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 15

Preface
ZCL ZigBee Cluster Library

ZCP ZigBee Compliant Platform

ZDO ZigBee Device Objects

ZDP ZigBee Device Profile

ZLL ZigBee Light Link

ZPS ZigBee PRO Stack

Related Documents

JN-UG-3103 ZigBee Cluster Library User Guide

JN-UG-3075 JenOS User Guide

JN-UG-3076 ZigBee Home Automation User Guide

JN-UG-3091 ZigBee Light Link User Guide

JN-UG-3087 JN516x Integrated Peripherals API User Guide

JN-UG-3098 BeyondStudio for NXP Installation and User Guide

05347 ZigBee Specification (from ZigBee Alliance)

075123 ZigBee Cluster Library Specification (from ZigBee Alliance)

Support Resources

To access online support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity area of the NXP web site:

www.nxp.com/products/wireless-connectivity

ZigBee resources can be accessed from the ZigBee page, which can be reached via
the short-cut www.nxp.com/zigbee.

All NXP resources referred to in this manual can be found at the above addresses,
unless otherwise stated.

Trademarks

All trademarks are the property of their respective owners.

Chip Compatibility

The software described in this manual can be used on the NXP JN516x family of
wireless microcontrollers with the exception of JN5161 device. However, the
supported devices will be referred to as JN516x.
16 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Part I:
Concept and Operational

Information
JN-UG-3101 v1.5 © NXP Laboratories Ltd 2017 17

18 © NXP Laboratories Ltd 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
1. ZigBee PRO Overview

The ZigBee protocol was developed to provide low-power, wireless connectivity for a
wide range of network applications concerned with monitoring and control. ZigBee is
a worldwide open standard controlled by the ZigBee Alliance. ZigBee PRO is an
enhancement of the original ZigBee protocol, providing a number of extra features that
are particularly useful for very large networks (that may include hundreds or even
thousands of nodes).

The ZigBee standard builds on the established IEEE 802.15.4 standard for packet-
based wireless transport. ZigBee enhances the functionality of IEEE 802.15.4 by
providing flexible, extendable network topologies with integrated set-up and routing
intelligence to facilitate easy installation and high resilience to failure. ZigBee networks
also incorporate listen-before-talk and rigorous security measures that enable them to
co-exist with other wireless technologies (such as Bluetooth and Wi-Fi) in the same
operating environment.

ZigBee's wireless connectivity means that it can be installed easily and cheaply, and
its built-in intelligence and flexibility allow networks to be easily adapted to changing
needs by adding, removing or moving network nodes. The protocol is designed such
that nodes can appear in and disappear from the network, allowing some devices to
be put into a power-saving mode when not active. This means that many devices in a
ZigBee network can be battery-powered, making them self-contained and, again,
reducing installation costs.

The figure below shows a simple example of a ZigBee network in a home heating and
air-conditioning system.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 19

Chapter 1
ZigBee PRO Overview

1.1 ZigBee Network Nodes

A wireless network comprises a set of nodes that can communicate with each other
by means of radio transmissions, according to a set of routing rules (for passing
messages between nodes). A ZigBee wireless network includes three types of node:

 Co-ordinator: This is the first node to be started and is responsible for forming
the network by allowing other nodes to join the network through it. Once the
network is established, the Co-ordinator has a routing role (is able to relay
messages from one node to another) and is also able to send/receive data.
Every network must have one and only one Co-ordinator.

 Router: This is a node with a routing capability, and is also able to send/receive
data. It also allows other nodes to join the network through it, so plays a role in
extending the network. A network may have many Routers.

 End Device: This is a node which is only capable of sending and receiving
data (it has no routing capability). A network may have many End Devices.

The deployment of these node types in a ZigBee PRO network is described in Section
1.2. More detailed information about the node types is provided in Section 2.2.1.

Figure 1: Simple ZigBee Network (Home Heating and Air-conditioning)

Air-conditioning thermostat
(Router)

Heating thermostat
(Router)

Fan control
(End Device)

Heater control
(End Device)

Heater control
(End Device)

Compressor control
(End Device)

Master switch
(End Device)

Controller/Timer
(Co-ordinator)
20 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
1.2 ZigBee PRO Network Topology

ZigBee facilitates a range of network topologies from the simplest Star topology,
through the highly structured Tree topology to the flexible Mesh topology. ZigBee PRO
is designed primarily for Mesh networks.

A Mesh network has little implicit structure. It is a collection of nodes comprising a Co-
ordinator and a number of Routers and/or End Devices, where:

 Each node, except the Co-ordinator, is associated with a Router or the Co-
ordinator - this is the node through which it joined the network and is known as
its ‘parent’. Each parent may have a number of ‘children’.

 An End Device can only communicate directly with its own parent.

 Each Router and the Co-ordinator can communicate directly with any other
Router/Co-ordinator within radio range.

It is the last property above that gives a Mesh network its flexibility and efficiency in
terms of inter-node communication. A Mesh network is illustrated in the figure below.

Mesh networks and their constituent nodes are described in more detail in Section
2.2.2.

Figure 2: Simple Mesh Network

End Device

Co-ordinator

RouterRouter

Router

End Device

End Device

Router
Router

End Device

End Device

End Device

Router
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 21

Chapter 1
ZigBee PRO Overview

1.3 Ideal Applications for ZigBee

ZigBee is suitable for a wide range of applications, covering both commercial and
domestic use, which include:

 Point-to-point cable replacement (e.g. wireless mouse, remote controls, toys)

 Security systems (e.g. fire and intruder)

 Environmental control (e.g. heating and air-conditioning)

 Hospital patient monitoring

 Lighting control

 Home automation (e.g. home entertainment, doors, gates, curtains and blinds)

 Automated meter reading (AMR)

 Industrial automation (e.g. plant monitoring and control)

ZigBee's wireless communications also enable some applications to be developed
that currently cannot be implemented with cabled systems. Examples are applications
that involve mobility, which must be free of cabling (e.g. long-term health monitoring,
asset tracking in warehouses). Existing applications (such as lighting control and
industrial plant monitoring) that currently rely on cable-based systems can be
implemented more cheaply as ZigBee reduces or removes cable installation costs.
ZigBee can also be beneficial in environments where cable-based solutions can be
difficult and expensive to install - for example, in home security systems, sensors need
to be easy to install (no cables or power supply wiring), small and self-contained
(battery-powered).
22 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
1.4 Wireless Radio Frequency Operation

The IEEE 802.15.4 protocol, on which ZigBee is built, provides radio-based network
connectivity operating in one of three possible RF (Radio Frequency) bands: 868, 915
or 2400 MHz. These bands are available for unlicensed use, depending on the
geographical area (check your local radio communication regulations).

The characteristics of these RF bands are shown in the table below.

The 868- and 915-MHz bands offer certain advantages such as fewer users, less
interference, and less absorption and reflection, but the 2400-MHz band is far more
widely adopted for a number of reasons:

 Worldwide availability for unlicensed use

 Higher data rate (250 kbps) and more channels

 Lower power (transmit/receive are on for shorter time due to higher data rate)

 Band more commonly understood and accepted by the marketplace

Therefore, the ZigBee standard assumes operation in the 2400-MHz band, although
it is possible to implement ZigBee networks in the other IEEE 802.15.4 bands.

ZigBee includes measures to avoid interference between radio communications. One
is its ability to automatically select the best frequency channel at initialisation. It is also
possible to adapt to a changing RF environment by moving the network to another
channel, if the current channel proves problematic - this ‘frequency agility’ is a core
feature of ZigBee PRO. Other measures are described in Section 1.7.

The range of a radio transmission is dependent on the operating environment - for
example, indoors or outdoors. Using an NXP JN516x standard module fitted with an
external dipole antenna, a range of over 1 km can typically be achieved in an open
area, but inside a building this can be reduced due to absorption, reflection, diffraction
and standing wave effects caused by walls and other solid objects. A high-power
module (greater than 15 dBm output power) can achieve a range which is a factor of
five greater than that of a standard module. In addition, the range between devices can
be extended in a ZigBee network since the network topology (see Section 2.2.2) can
use intermediate nodes (Routers) as stepping stones when passing data to
destinations.

RF Band
Frequency
Range (MHz)

Data Rate
(kbps)

Channel Number(s) Geographical Area

868 MHz 868.3 20 0 (1 channel) Europe

915 MHz 902-928 40 1-10 (10 channels) America
Australia

2400 MHz 2405-2480 250 11-26 (16 channels) Worldwide

Table 1: Wireless Network Radio Frequency Bands
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 23

Chapter 1
ZigBee PRO Overview

1.5 Battery-Powered Components

There are many wireless applications that benefit from battery power, including light-
switches, active tags and security detectors. The ZigBee and IEEE 802.15.4 protocols
are specifically designed for battery-powered applications. From a user perspective,
battery power has certain advantages:

 Easy and low-cost installation of nodes: No need to connect node to
separate power supply

 Flexible location of nodes: Nodes can be installed in difficult places where
there is no power supply, and can even be used as mobile devices

 Easily modified network: Nodes can easily be added or removed, on a
temporary or permanent basis

Since these devices are generally small, they use low-capacity batteries and therefore
battery use must be optimised. This is achieved by restricting the amount of time for
which energy is required by the device.

 Since the major power drain in the system is the operation of the radio, data
may be transmitted infrequently (perhaps once per hour or even once per
week), which results in a low duty cycle (transmission time as proportion of time
interval between transmissions).

 When data is not being sent, the device may revert to a low-power ‘sleep’ mode
to minimise power consumption.

In practice, not all nodes in a network can be battery-powered, notably those that need
to be switched on all the time for routing purposes (and therefore cannot sleep). These
devices can often be installed in a mains-powered appliance that is permanently
connected to the mains supply (even if not switched on) - for example, a ceiling lamp
or an electric radiator. This avoids the need to install a dedicated mains power
connection for the node. Only End Devices are normally battery-powered.

Note: A network device can also potentially use "energy
harvesting" to absorb and store energy from its
surroundings - for example, the use of a solar cell panel
on a device in a well-lit environment.
24 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
1.6 Easy Installation and Configuration

One of the great advantages of a ZigBee network is the ease with which it can be
installed and configured.

As already mentioned, the installation is simplified and streamlined by the use of
certain battery-powered devices with no need for power cabling. In addition, since the
whole system is radio-based, there is no need for control wiring to any of the network
devices. Therefore, ZigBee avoids much of the wiring and associated construction
work required when installing cable-based networks.

The configuration of the network depends on how the installed system has been
developed. There are three system possibilities: pre-configured, self-configuring and
custom.

 Pre-configured system: A system in which all parameters are configured by
the manufacturer. The system is used as delivered and cannot readily be
modified or extended. Examples: vending machine, patient monitoring unit.

 Self-configuring system: A system that is installed and configured by the
end-user. The network is initially configured by sending "discovery" messages
between devices. Some initial user intervention is required to set up the
devices - for example, by pressing buttons on the nodes. Once installed, the
system can be easily modified or extended without any re-configuration by the
user - the system detects when a node has been added, removed or simply
moved, and automatically adjusts the system settings. Example: off-the-shelf
home security or home lighting system in which extra devices can be added
later.

 Custom system: A system that is adapted for a specific application/location. It
is designed and installed by a system integrator using custom network devices.
The system is usually configured using a software tool.

As indicated above, system commissioning (individually configuring the network
nodes) can be performed either using an IO interface (e.g. buttons or a keypad) on the
node in a self-configuring system or using a commissioning tool (e.g. run on a lap-top
PC) which interacts with the node in a custom system. In the latter case, ZigBee PRO
allows commissioning to be conducted in a secure way - for example, using a security
key to gain access to the configurable parameters of the node, and using encryption
in any wireless communication between the commissioning tool and the node. For
more information on system security, refer to Section 1.8.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 25

Chapter 1
ZigBee PRO Overview

1.7 Highly Reliable Operation

ZigBee and IEEE 802.15.4 employ a range of techniques to ensure reliable
communications between network nodes - that is, to ensure communications reach
their destinations uncorrupted. Corruption could result, for example, from radio
interference or poor transmission/reception conditions.

 Data Coding: At a first level, a coding mechanism is applied to radio
transmissions. The coding method employed in the 2400-MHz band uses
QPSK (Quadrature Phase-Shift Keying) modulation with conversion of 4-bit
data symbols to 32-bit chip sequences. Due to this coding, there is a high
probability that a message will get through to its destination intact, even if there
are conflicting transmissions (more than one device transmitting in the same
frequency channel at the same time).

 Listen Before Send: The transmission scheme also avoids transmitting data
when there is activity on its chosen channel - this is known as Carrier Sense,
Multiple Access with Collision Avoidance (CSMA-CA). Put simply, this means
that before beginning a transmission, a node will listen on the channel to check
whether it is clear. If activity is detected on the channel, the node delays the
transmission for a random amount of time and listens again - if the channel is
now clear, the transmission can begin, otherwise the delay-and-listen cycle is
repeated.

 Acknowledgements: Two systems of acknowledgements are available to
ensure that messages reach their destinations:

 End-to-End: When a message arrives at its final destination, the receiving
device sends an acknowledgement to the source node to indicate that the
message has been received. End-to-end acknowledgements are optional.

 Next Hop: When a message is routed via intermediate nodes to reach its
destination, the next routing node (or ‘next hop’ node) in the route sends
an acknowledgement to the previous node to indicate that it has received
the message. Next-hop acknowledgements are always implemented.

In both cases, if the sending device does not receive an acknowledgement
within a certain time interval, it resends the original message (it can resend the
message several times until the message has been acknowledged).

 Frequency Agility: When a ZigBee network is initially set up, the ‘best’
channel in the relevant radio band is automatically chosen as the operating
channel. This is normally the quietest channel detected in an energy scan
across the band, but this may not always remain the quietest channel if other
networks that operate in the same channel are introduced nearby. For this
reason, ZigBee includes an optional frequency agility facility. If the operating
channel becomes too noisy, this feature allows the whole network to be moved
to a better channel in the radio band.

 Route Repair: Networks that employ a Mesh topology (see Section 1.2) have
built-in intelligence to ensure that messages reach their destinations. If the
default route to the destination node is down, due to a failed intermediate node
or link, the network can ‘discover’ and implement alternative routes for
message delivery. ZigBee PRO is designed for Mesh networks and therefore
incorporates “route repair” as a core feature.
26 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
The above reliability measures allow a ZigBee network to operate even when there
are other ZigBee networks nearby operating in the same frequency band. Therefore,
adjacent ZigBee networks will not interfere with each other. In addition, ZigBee
networks can also operate in the neighbourhood of networks based on other
standards, such as Wi-Fi and Bluetooth, without any interference.

1.8 Secure Operating Environment

ZigBee networks can be made highly secure - measures can be incorporated to
prevent intrusion from potentially hostile parties and from neighbouring ZigBee
networks. ZigBee also provides privacy measures for communication between pairs
of nodes of the same network.

ZigBee PRO provides two security modes, ‘standard security’ and ‘high security’, but
only standard security mode is currently included in the NXP ZigBee PRO
implementation (since there is currently little demand for high security mode).

The standard security mode of ZigBee PRO includes the following security features:

 Access control lists

 Key-based encryption of communications

 Frame counters

These security measures are outlined below.

Access Control Lists

An access control list allows only pre-defined ‘friendly’ nodes to join the network.

Key-based Encryption

A very high-security, 128-bit AES-based encryption system (built into the JN516x
device as a hardware function) is applied to network communications, preventing
external agents from interpreting ZigBee network data.

This encryption is key-based. Normally, the same ‘network key’ is used for all nodes
in the network. However, it is possible to use an individual ‘link key’ between a given
pair of network nodes, allowing communications (possibly containing sensitive data)
between the two nodes to be private from other nodes in the same network.

Keys can be pre-configured in nodes in the factory, commissioned during system
installation or distributed around a working network from a central ‘Trust Centre’ node.
A Trust Centre manages keys and security policies - for example, changing the
network key on all network nodes, issuing link keys for node pairs and restricting the
hours in which certain events or interactions can occur. Any node can be nominated
as the Trust Centre, but it is by default the Co-ordinator.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 27

Chapter 1
ZigBee PRO Overview

Frame Counters

The use of frame counters prevents sending the same message twice, and freshness
checking rejects any such repeated messages, preventing message replay attacks on
the network. An example of a replay attack would be someone recording the open
command for a garage door opener, and then replaying it to gain unauthorised entry
into the property.

1.9 Co-existence and Interoperability

ZigBee is an open standard devised by the ZigBee Alliance. Any device designed for
use in a ZigBee network must comply with the standard. This ensures "co-existence"
and, to a certain extent, "interoperability" of ZigBee devices:

 Co-existence: The ability of a device to operate in the same space and radio
channel as devices in other wireless networks (which possibly use protocols
other than ZigBee) without interfering with them

 Interoperability: The ability of a device to operate in the same ZigBee network
as devices from other manufacturers - that is, to communicate and function with
them

The ZigBee Alliance co-ordinates the compliance issues for products based on the
ZigBee protocol. It defines two levels of compliance:

 ZigBee Compliant Platform (ZCP) applies to modules or platforms intended
as building blocks for use in end-products. All NXP products based on the
supported chips are designed to be ZigBee Compliant Platforms. See “Chip
Compatibility” on page 16.

 ZigBee Certified Product applies to end-products that are built on ZigBee
Compliant Platforms and that use public ZigBee Alliance Application Profiles.
After successful completion of the ZigBee Alliance Certification programme, the
ZigBee Certified Product logo can be applied to the product.

Test service providers are authorised by the ZigBee Alliance to undertake testing and
certification. For details of authorised test houses, contact the ZigBee Alliance.

In addition, products using an NXP ZCP must also be checked against the radio
regulations of the country or countries where they are to be marketed (these checks
can often be performed by the same test house).

Note: End-products based on manufacturer-specific
profiles can also obtain ZigBee Certified Product status,
but such products cannot carry the ZigBee Certified
Product logo.
28 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
1.10 Profiles

For the purpose of interoperability (described in Section 1.9), the ZigBee Alliance has
introduced the concept of a device ‘profile’, which contains the essential properties of
a device for a particular application or market.

There are two classes of profile, the Stack Profile and the Application Profile,
described below.

1.10.1 Stack Profiles

The ZigBee specification contains both mandatory and optional features that are
available to a wireless network application. A manufacturer of ZigBee products may
implement only a subset of the optional features. The particular set of optional features
implemented determines the ‘Stack Profile’ used. Thus, the Stack Profile varies
between manufacturers and a particular ZigBee device may only operate with a
specific Stack Profile.

Currently, two standard ZigBee Alliance stack profiles are available for use with public
Application Profiles (see Section 1.10.2 below) - these stack profiles are ZigBee and
ZigBee PRO. The NXP software described in this manual uses the ZigBee PRO stack
profile and cannot be modified to use any other profile.

1.10.2 Application Profiles

An Application Profile defines a collection of devices that can be coherently used
together in implementing an application for a certain market sector. For example, the
ZigBee Alliance has defined the Home Automation (HA) profile for use in controlling
appliances and systems in the home, such as a lighting system. It defines a number
of devices and functions that are needed or are useful for controlling domestic
systems, such as switches, dimmers, occupancy sensors and load controllers for a
lighting system.

Application Profiles can be public or private, described below.

Public Profiles

The profiles introduced by the ZigBee Alliance are public profiles, for use by
manufacturers implementing devices that need to work with devices from other
manufacturers. For example, to allow a switch from one vendor to work with the light
fitting (containing a load controller) from another vendor, both should implement the
appropriate devices specified in the HA profile. Products implemented to a public
profile will be tested and certified for conformance to that profile, in order to ensure that
a device implementing a function in the profile will operate with another suitable
device. The main advantage of public profiles is that products (e.g. a light-switch) from
multiple manufacturers will work together.

A public Application Profile is identified by a 16-bit number, allocated by the ZigBee
Alliance, giving the possibility of many thousands of profiles. Public profiles can only
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 29

Chapter 1
ZigBee PRO Overview

be used on ZigBee Compliant Platforms based on either the ZigBee or ZigBee PRO
stack profile.

Private Profiles (also known as 'non-public' profiles)

Due to the huge diversity of market segments, geographic regions and products, many
applications are expected to be developed with private profiles. Products utilising
private profiles may still be able to co-exist and interoperate with other ZigBee
networks.

Private profiles have a number of advantages for manufacturers. They allow
manufacturers to introduce products to market for which public profiles do not exist,
and allow them to differentiate their products from others in the same market segment.

Note that private profiles can be used on platforms based on stack profiles other than
ZigBee and ZigBee PRO.
30 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
2. ZigBee PRO Architecture and Operation

This chapter introduces ZigBee PRO from architectural and operational view-points by
describing:

 Basic architecture on which ZigBee PRO is based (Section 2.1)

 Concepts for an understanding of ZigBee PRO at the network level
(Section 2.2)

 Process of network formation (Section 2.3)

 Concepts for an understanding of ZigBee PRO at the application level
(Section 2.4)

 Features and concepts related to message routing (Section 2.5)

 Features and concepts related to exchanging messages (Section 2.6)

 A detailed view of the ZigBee PRO software architecture (Section 2.7)

2.1 Architectural Overview

This section introduces the basic architecture of the software that runs on a ZigBee
PRO network node. The software architecture is built on top of IEEE 802.15.4, an
established and proven standard for wireless communication.

From a high-level view, the software architecture of any ZigBee network comprises
four basic stack layers: Application layer, Network layer, Data Link layer and Physical
layer. The Application layer is the highest level and the Physical layer is the lowest
level, as illustrated in the figure below.

Figure 3: Basic Software Architecture

Note: The NXP ZigBee PRO software is supplied with
JenOS (Jennic operating system), which sits alongside
and interacts with the above software stack. JenOS is
included in the description of the NXP ZigBee PRO
software architecture in Section 3.1.

Data Link layer

Network layer

Application layer

Physical layer
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 31

Chapter 2
ZigBee PRO Architecture and Operation

The basic layers of the ZigBee software stack are described below, from top to bottom:

 Application layer: The Application layer contains the applications that run on
the network node. These give the device its functionality - essentially an
application converts input into digital data, and/or converts digital data into
output. A single node may run several applications - for example, an
environmental sensor may contain separate applications to measure
temperature, humidity and atmospheric pressure.

 Network layer: The Network layer provides the ZigBee PRO functionality and
the application’s interface to the IEEE 802.15.4 layers (see below). The layer is
concerned with network structure and multi-hop routing.

 Data Link layer: The Data Link layer is provided by the IEEE 802.15.4
standard and is responsible for addressing - for outgoing data it determines
where the data is going, and for incoming data it determines where the data
has come from. It is also responsible for assembling data packets or frames to
be transmitted and disassembling received frames. In the IEEE 802.15.4
standard, the Data Link layer is referred to as IEEE 802.15.4 MAC (Media
Access Control) and the frames used are MAC frames.

 Physical layer: The Physical layer is provided by the IEEE 802.15.4 standard
and is concerned with the interface to the physical transmission medium (radio,
in this case), exchanging data bits with this medium, as well as exchanging
data bits with the layer above (the Data Link layer). In the IEEE 802.15.4
standard, the Physical layer is referred to as IEEE 802.15.4 PHY.

For a more detailed view of the software architecture of ZigBee PRO, refer to Section
Section 2.7.

Note: Security measures are implemented throughout
the stack, including the Application layer and lower
stack layers.
32 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
2.2 Network Level Concepts

This section describes important concepts relating to the work of the ZigBee stack.

2.2.1 ZigBee Nodes

There are three general types of node that can exist in a ZigBee network:

 Co-ordinator

 Router

 End Device

The roles of these node types are described in the sub-sections below.

Co-ordinator

All ZigBee networks must have one (and only one) Co-ordinator.

At the network level, the Co-ordinator is mainly needed at system initialisation - it is
the first node to be started and performs the following initialisation tasks:

 Selects the frequency channel to be used by the network (usually the one with
the least detected activity)

 Starts the network

 Allows child nodes to join the network through it

The Co-ordinator can additionally provide other services such as message routing and
security management. It may also provide services at the Application level. If any of
these additional services are used, the Co-ordinator must be able to provide them at
all times. However, if none of these additional services are used, the network will be
able to operate normally even if the Co-ordinator fails or is switched off.

Router

A ZigBee PRO network usually has at least one Router.

The main tasks of a Router are:

 Relays messages from one node to another

 Allows child nodes to join the network through it

Note that a Router cannot sleep, as it must always be available for routing.

Note: These roles exist at the network level - a ZigBee
node may also be performing tasks at the Application
level, independent of the role it plays in the network.
For example, a network of ZigBee devices measuring
temperature may have a temperature sensor application
in each node, irrespective of whether the node is an End
Device, Router or the Co-ordinator.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 33

Chapter 2
ZigBee PRO Architecture and Operation

End Device

The main tasks of an End Device at the network level are sending and receiving
messages. An End Device can only communicate directly with its parent, so all
messages to/from an End Device pass via its parent.

An End Device can be battery-powered and, when not transmitting or receiving, can
sleep in order to conserve power. Messages destined for a sleep-enabled End Device
are buffered by its parent for collection by the End Device once it is awake (also see
Section 2.2.2 below).

Note that End Devices cannot relay messages and cannot allow other nodes to
connect to the network through them - that is, they cannot have children.

2.2.2 Network Topology

The ZigBee PRO standard was designed to facilitate wireless networks with the Mesh
topology.

A Mesh network consists of a Co-ordinator, Routers and End Devices. The Co-
ordinator is associated with a set of Routers and End Devices - its children. A Router
may then be associated with more Routers and End Devices - its children. This can
continue to a number of levels. The relationships between the nodes must obey the
following rules:

 The Co-ordinator and Routers can have children, and can therefore be parents.

 A Router can be both a child and a parent.

 End Devices cannot have children, and therefore cannot be parents.

The communication rules for a Mesh network are as follows:

 An End Device can only directly communicate with its parent (and with no other
node).

 A Router can directly communicate with its children, with its own parent and
with any other Router or Co-ordinator within radio range.

 The Co-ordinator can directly communicate with its children and with any
Router within radio range.

The resulting structure is illustrated in Figure 4.

In ZigBee PRO, the maximum depth (number of levels below the Co-ordinator) of a
network is 15. The maximum number of hops that a message can make in travelling
between the source and destination nodes is 30 (twice the maximum depth).

The ability of a routing node (Router or Co-ordinator) to communicate directly with
other routing nodes (within radio range) is the specific property that distinguishes a
Mesh network from a Tree network. This property gives rise to very efficient and
flexible message propagation, and means that alternative routes can be found if a link
fails or there is congestion.

Note that an End Device which is able to sleep is unable to receive messages directly.
A message destined for a sleep-enabled End Device is always buffered in its parent
node, in case the End Device is asleep when the message arrives. Once the End
Device is awake, it must ask or ‘poll’ the parent for messages.
34 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
In the Mesh topology, a "route discovery" feature is provided which allows the network
to find the best available route for a message. Route discovery is described further in
Section 2.5.2.

Note that message propagation is handled by the network layer software and is
transparent to the application programs running on the nodes.

2.2.3 Neighbour Tables

A routing node (Router or Co-ordinator) holds information about its neighbouring
nodes. This information is stored in a Neighbour table containing entries for the node’s
immediate children, for its own parent and, in a Mesh network, for all peer Routers with
which the node has direct radio communication.

It is possible to define the maximum number of entries in a Neighbour table. If this
parameter is set to a low value, it will result in a ‘long, thin network’.

The structure and configuration of a Neighbour table are described in Appendix B.5.1.

Figure 4: Mesh Topology

End Device

Co-ordinator

RouterRouter

Router

End Device

End Device

Router
Router

End Device

End Device

End Device

Router
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 35

Chapter 2
ZigBee PRO Architecture and Operation

2.2.4 Network Addressing

In a ZigBee network, each node must have a unique identification. This is achieved by
means of two addresses:

 IEEE (MAC) address: This is a 64-bit address, allocated by the IEEE, which
uniquely identifies the device - no two devices in the world can have the same
IEEE address. It is often referred to as the MAC address and, in a ZigBee
network, is sometimes called the ‘extended’ address.

 Network address: This 16-bit address identifies the node in the network and is
local to that network (thus, two nodes in separate networks may have the same
network address). It is sometimes called the ‘short’ address.

In ZigBee PRO, the network address of a node is dynamically assigned as a
random 16-bit value by the parent when the node first joins the network. Due to
the randomness of the address allocation, this is known as stochastic
addressing. Although random, the parent ensures that the chosen address has
not already been assigned to one of its neighbours. In the unlikely event of the
address already existing in the network beyond the immediate neighbourhood,
a mechanism exists to automatically detect and resolve the conflict. The
allocated network address can be retained by the joining node, even if it later
loses its parent and acquires a new parent.

The Co-ordinator always has the network address 0x0000.

While an application on a node may use IEEE/MAC addresses or network addresses
to identify remote nodes, the ZigBee PRO stack always uses network addresses for
this purpose. To facilitate translation between IEEE/MAC addresses and network
addresses, an Address Map table may be maintained on the node, where each table
entry contains the pair of addresses for a remote node.

In the NXP implementation of ZigBee PRO, the IEEE/MAC addresses (of other
network nodes) are stored in a single place on a node, called the MAC Address table.
This avoids the need to repeat the 64-bit IEEE/MAC addresses in other tables, such
as the Address Map table and Neighbour table, and therefore saves storage space.
Instead, a 16-bit index to the relevant entry in the MAC Address table is stored in the
other tables.

It is also possible to define a 16-bit ‘group address’ which refers to a set of applications
(or endpoints - see Section 2.4.1) that may be located across several nodes.
Specifying a group address in a data transfer will result in the data being broadcast to
all nodes in the network but, at the destinations, the data will only be passed to those
applications which are covered by the group address. Refer to Section 5.3 for more
details of using group addresses.
36 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
2.2.5 Network Identity

A ZigBee network must be uniquely identifiable. This allows more than one ZigBee
network to operate in close proximity - nodes operating in the same space must be
able to identify which network they belong to.

For this purpose, ZigBee uses two identifiers, as follows:

 PAN ID: A 16-bit value called the PAN ID (Personal Area Network Identifier) is
used in inter-node communications (implemented at the IEEE 802.15.4 level of
the stack) to identify the relevant network. A value for the PAN ID is selected at
random by the Co-ordinator when the network is started. When other nodes
join the network, they learn the network’s PAN ID and use it in all subsequent
communications with the network.

It is possible that the PAN ID generated for a newly installed network will clash
with the PAN ID of another network already operating on the same radio
channel, in the same neighbourhood. In this case, ZigBee PRO automatically
resolves such a conflict by generating another random PAN ID for the new
network until a value is obtained that does not clash with the PAN ID of any other
detectable network.

 Extended PAN ID: A 64-bit value called the Extended PAN ID (EPID) is used in
forming the network and subsequently modifying the network, if necessary.
This identifier can be pre-set to a random value in the user application that runs
on the Co-ordinator. Alternatively, the identifier can be pre-set to zero, in which
case the Co-ordinator will adopt its own 64-bit IEEE/MAC address as the
Extended PAN ID when the network starts - this is a sure way of obtaining a
globally unique value (see Section 2.2.4).

When a Router or End Device first tries to find a network to join, it will use the
Extended PAN ID in either of following ways:

 If an Extended PAN ID has been pre-set in the user application for the
Router or End Device, the node will join the network which has this
Extended PAN ID (provided this network is detected).

 If there is no pre-set Extended PAN ID for the Router or End Device, the
node will join the first network detected, irrespective of the Extended PAN
ID. The joining node will then learn the Extended PAN ID of its network and
later use this identifier to rejoin the network if, for some reason, it loses
contact with the network (the node is orphaned).

For more information on joining a network, refer to Section 2.3.2.

Note: At the Application level, you only need to be
concerned with the Extended PAN ID, as the allocation
and use of the PAN ID is transparent to the application.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 37

Chapter 2
ZigBee PRO Architecture and Operation

2.3 Network Creation

This section outlines the process of starting and forming a ZigBee PRO network:

 Section 2.3.1 describes how the Co-ordinator starts a network.

 Section 2.3.2 describes how a Router or End Device joins a network as part of
the network formation process.

2.3.1 Starting a Network (Co-ordinator)

The Co-ordinator is responsible for starting a network. It must be the first node to be
started and, once powered on, goes through the following network initialisation steps:

1. Set EPID and Co-ordinator address

The Co-ordinator first sets the Extended PAN ID (EPID) for the network and the
device’s own network address:

 Sets the EPID to the 64-bit value specified in the Co-ordinator’s application
(if this value is zero, the EPID will be set to the 64-bit IEEE/MAC address
of the Co-ordinator device)

 Sets the 16-bit network address of the Co-ordinator to 0x0000

2. Select radio channel

The Co-ordinator then selects the radio channel in which the network will
operate, within the chosen RF band. The Co-ordinator performs an Energy
Detection Scan in which it scans the RF band to find a quiet channel (the scan
can be programmed to ‘listen’ to specific channels). The channel with the least
detected activity is chosen.

3. Set the PAN ID of the network

Once the radio channel has been selected, the Co-ordinator chooses a 16-bit
PAN ID for the network. To do this, it listens in the channel for traffic from other
networks and identifies the PAN IDs of these networks (if any). To avoid
conflicts, the Co-ordinator assigns its own network a random PAN ID that is not
in use by another network.

4. Receive join requests from other devices

The Co-ordinator is now ready to receive requests from other devices (Routers
and End Devices) to wirelessly connect to the network through it. For more
information on joining a network, refer to Section 2.3.2.

Note: The network formation actions described in this
section are performed automatically by the ZigBee
stack. The actions required at the application level are
described later in Section 5.1.
38 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
2.3.2 Joining a Network (Routers and End Devices)

Routers and End Devices can join an existing network already created by a Co-
ordinator. The Co-ordinator and Routers have the capability to allow other nodes to
join the network through them. The join process is as follows:

1. Search for network

The new node first scans the channels of the relevant RF band to find a
network. Multiple networks may operate, even in the same channel, and the
selection of a network is the responsibility of the application (for example, this
decision could be based on a pre-defined Extended PAN ID).

2. Select parent

The node now selects a parent node within the chosen network by listening to
network activity. The node may be able to 'hear' multiple Routers and the Co-
ordinator from the network. Given a choice of parents, the node chooses the
parent with the smallest depth in the network - that is, the parent closest to the
Co-ordinator (which is at depth zero).

3. Request joining

The node sends a message to the desired parent, asking to join the network.

4. Receive response

The node now waits for a response from the potential parent, which determines
whether the node is a permitted device and whether the parent is currently
allowing devices to join. To determine whether the joining node is a permitted
device, the parent consults the Trust Centre (if it is not the Trust Centre itseIf).
If these criteria are satisfied, the parent will then allow the node to join the
network as its child. In its acceptance response to its new child, the parent will
include the 16-bit network address that it has randomly allocated to the child
(see Section 2.2.4).

If the potential parent is unable to accept the node as a child, a rejection
response will be sent to the node, which must then try another potential parent
(or another network).

5. Learn network IDs

The new node learns the PAN ID and Extended PAN ID of the network, as well
as the network address that it has been assigned. It will need the PAN ID for
communications with the network and will need the Extended PAN ID if, at
some point in the future, it needs to rejoin the network (it will also be able to re-
use its network address if it later rejoins the network).

A Router or Co-ordinator can be configured to have a time-period during which joins
are allowed, controlled by its ‘permit joining’ status. The join period may be initiated by
a user action, such as pressing a button. An infinite join period can also be set, so that
child nodes can join the parent node at any time.

Note: When an orphaned node attempts to rejoin the
network, the ‘permit joining’ status of a potential parent
is ignored. Thus, the node is able to rejoin the network
through a parent on which ‘permit joining’ is disabled.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 39

Chapter 2
ZigBee PRO Architecture and Operation

2.4 Application Level Concepts

This section describes some key concepts required at the application level.

2.4.1 Multiple Applications and Endpoints

A node may have several applications running on it - for example, a node in an
environment monitoring network may be measuring temperature and humidity, each
of which is an application. Access to application instances is provided through
endpoints, which act as communication ports for the applications.

In order to direct a message to the appropriate application instance on a node, the
relevant endpoint must be specified. Endpoints are numbered from 1 to 240.
Therefore, to communicate with a remote application instance in a ZigBee network,
you need to supply the address of the remote node together with the required endpoint
number on the node.

Endpoint 255 is the broadcast endpoint number - the same data can be sent to all
application instances on a node by sending the message to this endpoint number.

2.4.2 Descriptors

An application may need to obtain information about the nodes of the network in which
it runs, as described in Section 2.4.5. For this, it uses information stored in descriptors
in the nodes.

There are three mandatory descriptors and two optional descriptors stored in a node.
The mandatory descriptors are the Node, Node Power and Simple descriptors, while
the optional descriptors are called the Complex and User descriptors

For each node, there is only one Node and Node Power descriptor, but there is a
Simple descriptor for each endpoint. There may also be Complex and User
descriptors in the device.

The Node, Node Power and Simple descriptors are outlined below. For full details of
the descriptors, refer to Section 8.2.1.

Node Descriptor

The Node descriptor contains information on the capabilities of the node, including:

 Type (End Device, Router or Co-ordinator)

 Frequency band in use (868 MHz, 902 MHz or 2400 MHz)

 IEEE 802.15.4 MAC capabilities - that is, whether:

 the device can be a PAN Co-ordinator

 the node implements a Full-Function or Reduced-Function IEEE 802.15.4
device

 the device is mains powered

 the device is capable of using MAC security
40 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
 the receiver stays on during idle periods

 Manufacturer code

 Maximum buffer size (the largest data packet that can be sent by an application
in one operation)

Node Power Descriptor

The Node Power descriptor contains information on how the node is powered:

 Power mode - whether the device receiver is on all the time, or wakes up
periodically as determined by the network or only when an application requires
(e.g. button press)

 Available power sources - indicates whether the mains supply, or rechargeable
or disposable batteries (or any combination) can be used to power the device

 Current power sources - indicates which power source (mains supply, or
rechargeable or disposable batteries) is currently being used to power the
device

 Current power source level - indicates the level of charge of the current power
source

Simple Descriptor

The Simple descriptor for an application includes:

 The endpoint on which the application communicates

 The Application Profile that it implements

 The Application Profile device identifier and version

 Whether there are corresponding Complex and User descriptors

 Lists of input and output clusters (see Section 2.4.1) that the application uses
and provides, respectively

2.4.3 Application Profiles

The Application Profile ensures the interoperability of ZigBee devices from different
manufacturers. This profile relates to a particular application area and/or market, and
contains descriptions of the device types and interfaces that are needed for the
relevant field of application.

An Application Profile is defined in terms of the device descriptors introduced in
Section 2.4.2. The ZigBee Alliance defines public profiles, such as the Home
Automation (HA) profile. Private and public profiles can be defined by individual
manufacturers, but all public profiles must use unique identifiers allocated by the
ZigBee Alliance.

As well as defining the device types supported, the Application Profile also specifies
the types of data supported and the operations that can be performed on this data.
These are defined in terms of the “clusters” for an endpoint, which are specified in the
Simple descriptor for the endpoint. Clusters are described in Section 2.4.4.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 41

Chapter 2
ZigBee PRO Architecture and Operation

2.4.4 Attributes and Clusters

A data entity (e.g. temperature measurement) handled by a ZigBee endpoint is
referred to as an attribute. The application may communicate via a set of attributes -
for example, a thermostat endpoint may have attributes for temperature, minimum
temperature, maximum temperature and tolerance.

ZigBee applications use the concept of a "cluster" for communicating attribute values.
A cluster comprises a set of related attributes together with a set of commands to
interact with the attributes - for example, the above temperature measurement
attributes together with commands for reading the attribute values.

A cluster has two aspects, which are respectively concerned with receiving and
sending commands. One or both aspects may be used by a ZigBee application. These
sides of a cluster are described below and illustrated in Figure 5.

 Input Cluster or Server Cluster: This side of a cluster is used to store
attributes and receive commands to manipulate the stored attributes (to which
the cluster may return responses) - for example, an input cluster would store a
temperature measurement and associated attributes, and respond to
commands which request readings of these attributes.

 Output Cluster or Client Cluster: This side of a cluster is used to manipulate
attributes in the corresponding input cluster by sending commands to it (and
receiving the responses). Normally, these are write commands to set attribute
values and read commands to obtain attribute values (the read values being
returned in responses).

The input clusters and output clusters communicated via an endpoint are listed
(separately) in the endpoint’s Simple descriptor, which forms part of the Application
Profile (see Section 2.4.3).

For consistency and interoperability, the ZigBee Alliance have defined a number of
standard clusters for different functional areas. These are collected together in the

Note: In the context of clusters and attributes, the
ZigBee standard sometimes refers to applications as
‘devices’.

Figure 5: Input and Output Clusters

Application A

Output Cluster
(Client)

Application B

Input Cluster
(Server)

Commands sent from client to server

Responses returned from server to client
(may contain attribute values read) Attributes written

or read, according
to command
42 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZigBee Cluster Library (ZCL). Thus, developers can use standard clusters from the
ZCL in their Application Profiles. The ZCL is fully detailed in the ZigBee Cluster Library
Specification (075123) from the ZigBee Alliance.

A Default cluster (with ID of 0xFFFF) is also available. If the Default cluster is present
on an endpoint and a message is received which is destined for a cluster that is not in
the endpoint's list of supported input clusters, this message will still be passed to the
application (provided it comes from a defined application profile). If it is required, the
Default cluster must be explicitly added to the endpoint (see Section 12.2.3).

2.4.5 Discovery

The ZigBee specification provides the facility for devices to find out about the
capabilities of other nodes in a network, such as their addresses, which types of
applications are running on them, their power source and sleep behaviour. This
information is stored in descriptors (see Section 2.4.5) on each node, and is used by
the enquiring node to adapt its behaviour to the requirements of the network.
Discovery is typically used when a node is being introduced into a user-configured
network, such as a domestic security or lighting control system. To integrate the
device into the network may require the user to start the integration process by
pressing a button or similar. The first task is to find out if there are any appropriate
devices with which the new node can communicate.

Device Discovery

Device discovery returns information about the addresses of a network node. The
retrieved information can be the IEEE/MAC address of the node with a given network
address, or the network address of a node with a given IEEE/MAC address. If the node
being interrogated is a Router or Co-ordinator, it may optionally supply the addresses
of all the devices that are associated with it, as well as its own address. In this way, it
is possible to discover all the devices in a network by requesting this information from
the Co-ordinator (network address 0x0000) and then using the list of addresses
corresponding to the children of the Co-ordinator to launch other queries about their
child nodes.

Service Discovery

Service discovery allows a node to request information from a remote node about the
remote node's capabilities. This information is stored in a number of descriptors (see
Section 2.4.2) on the remote node, and includes:

 The device type and capabilities of the node

 The power characteristics of the node

 Information about each application running on the node

 Optional information such as serial numbers

 Other user-defined information - for example, easily understandable names
such as ‘MtgRoomLight’

Requests for these descriptors are made by a device during the discovery process
that is typically part of the device's configuration and integration into a ZigBee network.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 43

Chapter 2
ZigBee PRO Architecture and Operation

2.4.6 ZigBee Device Objects (ZDO)

A special application, common to all ZigBee devices, is provided to manage the
various processes which have been described. This application is the ZigBee Device
Objects or ZDO. It resides in the Application layer of a node, and can communicate
with remote nodes via endpoint 0 using the ZigBee Device Profile (ZDP) and
associated clusters. It has the following roles:

 Defines the type of network device: Co-ordinator, Router or End Device

 Initialises the node to allow applications to be run

 Performs the device discovery and service discovery processes

 Implements the processes needed to allow a Co-ordinator to create a network,
and Routers and End Devices to join and leave a network

 Initiates and responds to binding requests (see Section 2.6.2)

 Provides security services which allow secure relationships to be established
between applications

 Allows remote nodes to retrieve information from the node, such as Routing
and Binding tables, and to perform remote management of the node, such as
instructing it to leave the network

The ZDO uses services within the stack to implement these roles and provides a
means of allowing user applications to access stack services.
44 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
2.5 Network Routing

The basic operation in a network is to transfer data from one node to another. The data
is sourced from an input (possibly a switch or a sensor) on the originating node, and
is communicated to another node which can interpret and use the data.

In the simplest data communication, the data is transmitted directly from the source
node to the destination node. However, if the two nodes are far apart or in a difficult
environment, direct communication may not be possible. In this case, it is necessary
to send the data to another node within radio range, which then passes it on to another
node, and so on until the desired destination node is reached - that is, to use one or
more intermediate nodes as stepping stones. The process of receiving data destined
for another node and passing it on is known as routing.

Routing allows the range of a network to be extended beyond the distances supported
by direct radio communication. Remote devices can join the network by connecting to
a Router.

2.5.1 Message Addressing and Propagation

If a message sent from one node to another needs to pass through one or more
intermediate nodes to reach its final destination (up to 30 such hops are allowed), the
message carries two destination addresses:

 Address of the final destination

 Address of the node which is the next "hop"

ZigBee PRO is designed for Mesh networks (see Section 2.2.2) in which the message
propagation path (the route) depends on whether the target node is in radio range:

 If the target node is in range, only the "final destination" address is used.

 If the target node is not in range, the "next hop" address is that of the first node
in the route to the final destination.

Figure 6: Message Routing

Note: Application programs in intermediate nodes are
not aware of the relayed message or its contents - the
relaying mechanism is handled by the ZigBee stack.

Node 1

Node 2 Node 3

Node 4Desired route

Actual route
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 45

Chapter 2
ZigBee PRO Architecture and Operation

The “next hop” address is determined using information stored in a Routing table on
the routing node (Router or Co-ordinator). An entry of this table contains information
for a remote node, including the network addresses of the remote node and of the next
routing node in the route to the remote node. Thus, when a message is received by a
routing node, it looks for the destination address in its Routing table and extracts “next
hop” address from this table to insert into the message. The message is then passed
on and propagation continues in this way until the target node is reached.

Note that if the message originates from an End Device, the message will always be
first passed to the source node’s parent before being passed on.

2.5.2 Route Discovery

The ZigBee stack network layer supports a ‘route discovery’ facility which finds the
best available route to the destination, when sending a message. A message is
normally routed along an already discovered mesh route, if one exists, otherwise the
routing node (Router or the Co-ordinator) involved in sending the message initiates a
route discovery. Once complete, the message will be sent along the calculated route.

The mechanism for route discovery between two End Devices has the following steps:

1. A route discovery broadcast is sent by the parent of the source End Device,
and contains the destination End Device’s network address.

2. All routing nodes will eventually receive the broadcast, one of which is the
parent of the destination End Device

3. The parent of the destination node sends back a reply addressed to the parent
of the source node.

4. As the reply travels back through the network, the hop count and a signal
quality measure for each hop are recorded. Each routing node in the path can
build a Routing table entry containing the best path to the destination End
Device.

The choice of best path is usually the one with the least number of hops,
although if a hop on the most direct route has a poor signal quality (and hence
a greater chance that retries will be needed), a route with more hops may be
chosen.

5. Eventually each routing node in the path will have a Routing table entry and
the route from source to destination End Device is established. Note that the
corresponding route from destination to source is not known - the route
discovered is unidirectional.

A source Router implements route discovery in a similar way to the above except the
Router broadcasts its own route discovery message (without needing its parent to do
this). Similarly, the Co-ordinator broadcasts its own route discovery messages.

Note: Message routing is performed automatically by
the ZigBee stack and is transparent to the user
application. If required, route discovery is also automatic
and transparent to the application.
46 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
2.5.3 ‘Many-to-one’ Routing

A common scenario in a wireless network is the need for most network nodes to
communicate with a single node which performs some centralised function, e.g. a
gateway. This node is often referred to as a concentrator.

In order to establish communication with the concentrator, each remote node may
initiate a ‘route discovery’, resulting in a corresponding entry in the Routing table of
each routing node along the way. If most network nodes need to communicate with
the concentrator, many such route discoveries may be initiated. Where the resulting
routes have a common leg, the relevant Routing table entries will not be duplicated but
shared. However, a large number of simultaneous route discoveries may require
significant memory space in the nodes near the concentrator for the temporary
storage of route discovery information, and possibly result in memory overflow and
traffic congestion.

A more efficient method of establishing routes to a concentrator is for the concentrator
to initiate a ‘many-to-one’ route discovery for routes from all other network nodes to
itself. To do this, the concentrator broadcasts a route discovery request and the
Routing tables are updated as the broadcast propagates through the network. Since
no responses are generated, the temporary storage of route discovery information is
not required and network traffic congestion is minimised.

Many-to-one route discovery is illustrated in the figure below.

In order to avoid the storage of return routes (from the concentrator) in the Routing
tables of intermediate nodes, the technique of source routing is used - the outward
route taken by a message to the concentrator is remembered by the concentrator and
embedded in the response message. In this case, the response message must carry
up to 30 addresses of the nodes along the return route (maximum number of hops
allowed is 30).

Figure 7: ‘Many-to-one’ Route Discovery

"Concentrator" Node

Concentrator
broadcasts a route
discovery request for
routes back to itself
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 47

Chapter 2
ZigBee PRO Architecture and Operation

2.6 Network Communications

This section considers the processes that are needed to allow a network of devices to
exchange information and perform useful functions. In order to communicate with
each other, two nodes must be compatible in that one node can produce data which
the other node can accept and interpret in a meaningful way. For example, a
temperature sensor node produces a temperature measurement that a heating
controller node can use to control a central heating system.

When a new node joins a network, it must find compatible nodes with which it is able
to communicate - this process is facilitated by the Service Discovery mechanism. It
must then choose which of the compatible nodes it will communicate with. A method
of pairing nodes for easy communication is provided by the binding mechanism.

 Service Discovery and binding are covered in the sub-sections below.

2.6.1 Service Discovery

A device joining a network must be able to find other devices in the network that can
use the information it provides, or that can generate the information needed by the
device to perform its own function. A node can use Service Discovery to find nodes
with which it can communicate. Service Discovery is introduced in Section 2.4.5.

The node requests the required services from other nodes by means of a broadcast
message that propagates throughout the network. Any node that has the requested
services then uni-casts a response back to the requesting node. This means that the
requesting node may receive more than one response.

A response includes the network address of the remote node that contains the
requested services. The node stores this address locally and the application can then
use the address for all future communications to the remote node. This is referred to
as direct addressing.

Alternatively, rather than using direct addressing in their communications, two nodes
can communicate through the binding mechanism, described in Section 2.6.2 below.

Note: While you should always use Service Discovery
to find compatible nodes, binding is an optional method
for pairing compatible nodes.
48 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
2.6.2 Binding

Once two nodes have been found to be compatible through Service Discovery (see
Section 2.6.1), they may be paired for communication purposes. For example, a light-
switch may be paired with a particular light, and we must ensure that this light-switch
only ever switches the light that it is intended to control. An easy way to pair nodes for
communication is provided by the binding mechanism.

Binding allows nodes to be paired in such a way that a certain type of output data from
one node is automatically routed to the paired node, without the need to specify the
destination address and endpoint every time. The two nodes must first be bound
together using the address and relevant endpoint number for each node - these can
be obtained through Service Discovery, described in Section 2.6.1. A binding has a
source node and a destination node, relating to the direction in which data will be sent
between the nodes (from source to destination). The details of a binding are stored as
an entry in a binding table, normally held on the source node of the binding or
sometimes on another nominated node.

In order to establish a binding, it must be requested in either of the following ways:

 Binding request is submitted to the source node for the binding by either the
source node itself or a remote node (not one of the nodes to be bound).

 Binding requests are submitted to the Co-ordinator by the source and
destination nodes for the binding (for example, by pressing a button on each
node to generate a binding request). The two binding requests must be
received within a certain timeout period.

During the binding process, the Binding table for the source node is updated or, if
necessary, created.

Binding occurs at the application level using clusters (described in Section 2.4.4). In
order for two applications to be bound, they must support the same cluster.

The binding between two applications is specified by:

 The node address and endpoint number of the source of the binding
(e.g. a light-switch)

 The node address and endpoint number of the destination of the binding
(e.g. the load controller for a light)

 The cluster ID for the binding
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 49

Chapter 2
ZigBee PRO Architecture and Operation

The following types of binding can be achieved:

 One-to-one: This is a simple binding in which an endpoint is bound to one (and
only one) other endpoint, requiring a single Binding table entry.

 One-to-many: This is a binding in which a source endpoint is bound to more
than one destination endpoint. The binding is achieved by having multiple
Binding table entries for the same source endpoint.

 Many-to-one: This is a binding in which more than one source endpoint is
bound to a single destination endpoint. The binding is achieved by multiple
nodes having one-to-one bindings for the same destination endpoint.

These are illustrated in the figure below.

As an example of these bindings, consider a switch and load controller for lighting:

 In the one-to-one case, a single switch controls a single light

 In the one-to-many case, a single switch controls several lights

 In the many-to-one case, several switches control a single light, such as a light
on a staircase, where there are switches at the top and bottom of the stairs,
either of which can be used to switch on the light

It is also possible to envisage many-to-many bindings where in the last scenario there
are several lights on the staircase, all of which are controlled by either switch.

Figure 8: Types of Binding

One-to-one binding

One-to-many binding

...

...

Many-to-one binding
50 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
The way bindings are configured depends on the type of network (described in Section
1.6), as follows:

 Pre-configured system: Bindings are factory-configured and stored in the
application image.

 Self-configuring system: Bindings are automatically created during network
installation using discovery software that finds compatible nodes/clusters.

 Custom system: Bindings are created manually by the system integrator or
installation technician, who may use a graphical software tool to draw binding
lines between clusters on nodes.

2.7 Detailed Architecture

This section elaborates on the simplified software architecture presented in Section
2.1 The detailed architecture is illustrated in the figure below.

Figure 9: Detailed Software Architecture

IEEE 802.15.4 MAC layer

Application (APL) layer

IEEE 802.15.4 PHY layer

Application Support sub-layer (APS)

Application Framework (AF)

Application

object

Endpoint 240

...
ZigBee Device Objects

(ZDO)

Endpoint 0

Z
D

O

M
anagem

ent
plane

S
e

cu
ri

ty

S
er

vi
ce

P
ro

vi
de

r

Application

object

Endpoint 1

Network (NWK) layer
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 51

Chapter 2
ZigBee PRO Architecture and Operation

2.7.1 Software Levels

The software architecture diagram in Figure 9 shows (from top to bottom):

Application (APL) Layer

This includes:

 Applications: Up to 240 application instances may be supported on a single
ZigBee node. Each application instance communicates via an endpoint, where
endpoints are numbered between 1 and 240 (note that endpoint 0 is reserved
for the ZDO of the node - see below).

 Application Framework (AF): The AF facilitates interaction between the
applications and the APS layer (see below) through an interface known as a
Service Access Point or SAP. All application instances are contained inside this
framework.

 Application Support sub-layer (APS): The APS layer is responsible for:

 Communicating with the relevant application - for example, when a
message arrives to illuminate an LED, the APS layer relays this instruction
to the responsible application using the endpoint information in the
message.

 Maintaining binding tables (see Section 2.6.2) and sending messages
between bound nodes

 Providing communication with the Trust Centre to obtain authorisation

The APS layer has an associated database, called the APS Information Base
(AIB). This contains attributes that mainly relate to system security.

 ZigBee Device Objects (ZDO): The ZDO represents the ZigBee node type of
the device (Co-ordinator, Router or End Device) and has a number of
communication roles. The ZDO communicates via endpoint 0. For more
information, refer to Section 2.4.6.

 ZDO Management plane: This plane spans the NWK and APS layers, and
allows the ZigBee Device Objects (ZDO) to communicate with these layers
when performing its internal tasks. It also allows the ZDO to deal with requests
from applications for network access and security functions using ZigBee
Device Profile messages.

Network (NWK) Layer

The NWK layer handles network addressing and routing by invoking actions in the
MAC layer. It provides services for:

 Starting the network

 Assigning network addresses

 Adding devices to and removing them from the network

 Routing messages to their intended destinations

 Applying security to outgoing messages

 Implementing route discovery and storing Routing table information
52 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
The NWK layer has an associated database, called the NWK Information Base (NIB).
This contains attributes required in the management of the NWK layer.

Physical/Data Link Layers

This consists of the IEEE 802.15.4 PHY and MAC layers, described in Section 2.1.

Note: The Security Service Provider spans the APS and
NWK layers, providing security services - for example,
security key management, datastream encryption and
decryption. It may use hardware functions provided in
the node to perform the encode and decode operations
efficiently.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 53

Chapter 2
ZigBee PRO Architecture and Operation

54 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
3. ZigBee PRO Stack Software

This chapter introduces the NXP ZigBee PRO stack software and the associated
operating system, JenOS, for the JN516x microcontroller.

3.1 Software Overview

The NXP ZigBee PRO software provides all components of the ZigBee PRO stack
detailed in Section 2.7. In addition, it includes the Jennic Operating System, JenOS.
The basic architecture of this software, in relation to the wireless network application,
is illustrated in the figure below.

The NXP ZigBee PRO software includes Application Programming Interfaces (APIs)
to facilitate simplified application development for wireless networks. These APIs
comprise C functions that can be incorporated directly in application code.

Two general categories of API are supplied:

 ZigBee PRO APIs - see Section 3.1.1

 JenOS APIs - see Section 3.1.2

In addition, the above figure shows the Integrated Peripherals API that can be used to
interact with the on-chip hardware peripherals of the JN516x device. This API is
described in the JN516x Integrated Peripherals API User Guide (JN-UG-3087).

All the above APIs are supplied in the JN516x Software Developer’s Kits (SDKs) for
ZigBee application profiles. For more details on the SDKs, refer to Section 4.1.

Figure 10: Overview of NXP ZigBee PRO Software Architecture

JenOS

Integrated
Peripherals

API

ZigBee PRO Stack
(see Figure 11 for details)

Application

RTOS

PDM

PWRM

PDUM

DBG
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 55

Chapter 3
ZigBee PRO Stack Software

3.1.1 ZigBee PRO APIs

The ZigBee PRO APIs are concerned with network-specific operations and easy
interaction with the ZigBee PRO stack from the application code. These C-function
APIs are supplied in the JN516x SDK Libraries for ZigBee application profiles (see
Section 4.1).

There are three ZigBee PRO APIs:

 ZigBee Device Objects (ZDO) API: Concerned with the management of the
local device (e.g. introducing the device into a network)

 ZigBee Device Profile (ZDP) API: Concerned with the management of
remote devices (e.g. device discovery, service discovery, binding)

 Application Framework (AF) API: Concerned with creating data frames for
transmission and modifying device descriptors

The locations of these APIs within the Application layer of the stack are illustrated in
the figure below.

Figure 11: Locations of ZigBee PRO APIs

Note: The C functions of all the ZigBee PRO APIs are
fully detailed in Part II: Reference Information of this
manual.

Application layer

Application Support sub-layer (APS)

 AF API

ZigBee
Device
Objects
(ZDO)

Z
D

O
 M

anagem
ent

plane

Application Framework (AF)

ZDO APIApplication
object

JenOS

JenOS
APIs

ZDP API
56 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
3.1.2 JenOS APIs

The JenOS operating system provides an easy-to-use interface to simplify the
programming of a range of non-network-specific operations. JenOS is divided into a
number of modules, each comprising a C function API. In addition, a configuration
editor is provided which allows you to easily configure the use of OS resources in your
application - this tool is known as the JenOS Configuration Editor and is a plug-in for
the BeyondStudio for NXP IDE (Integrated Development Environment).

JenOS interacts with the:

 user application, through use of the supplied APIs in the application code

 ZigBee PRO stack

 JN516x integrated peripherals

JenOS is supplied in the JN516x SDKs for ZigBee application profiles. The JenOS
Configuration Editor plug-in is also provided in the SDKs. For more details of the
SDKs, refer to Section 4.1.

The JenOS modules are outlined below:

 Real-time Operating System (RTOS): This module provides a mechanism for
reacting to real-time events in a way that optimises the efficiency and reliability
of the system.

 Persistent Data Manager (PDM): This module handles the storage of context
and application data in Non-Volatile Memory (NVM), and the retrieval of this
data. It provides a mechanism by which the JN516x device can resume
operation without loss of continuity following a power loss.

 Power Manager (PWRM): This module manages the transitions of the JN516x
device into and out of low-power modes, such as sleep mode.

 Protocol Data Unit Manager (PDUM): This module is concerned with
managing memory, as well as inserting data into messages to be transmitted
and extracting data from messages that have been received.

 Debug module (DBG): This module allows diagnostic messages to be output
when the application runs, as an aid to debugging the application code.

Note: The JenOS modules are fully described in the
JenOS User Guide (JN-UG-3075), which you should
refer to in conjunction with this User Guide while
developing your ZigBee PRO application code.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 57

Chapter 3
ZigBee PRO Stack Software

3.2 Summary of API Functionality

This section summarises the roles of the NXP ZigBee PRO and JenOS APIs in an
application. The table below indicates the APIs needed for the different functionality
that your may require in your code:

Note that:

 ZigBee PRO API function names are prefixed with ‘ZPS’ (for ‘ZigBee PRO
Stack’ function). The function names also incorporate ‘Apl’ (for ‘Application’
function) and the acronym for the API to which the function belongs:

 ZDO function names include ‘Zdo’ (e.g. ZPS_eAplZdoPoll())

 ZDP function names include ‘Zdp’ (e.g. eAplZdpActiveEpRequest())

 AF function names include ‘Af’ (e.g. ZPS_eAplAfUnicastDataReq())

 JenOS API function names are prefixed with the acronym for the JenOS
module to which the function belongs:

 ‘OS’ for RTOS functions

 ‘PDM’ for PDM functions

 ‘PWRM’ for PWRM functions

 ‘PDUM’ for PDUM functions

 ‘DBG’ for DBG functions

A similar naming convention is used in structures and enumerations.

Functionality ZigBee PRO APIs JenOS APIs

Essential functionality, includ-
ing network formation and
management

ZDO API: Network formation
and local network management
ZDP API: Network discovery
and remote network manage-
ment

RTOS API: Managing tasks
and ISRs (Interrupt Service
Routines)

Basic data transfer AF API: Sending and receiving
data messages

PDUM API: Assembling and
disassembling data messages

Binding endpoints for data
transfers between them

ZDO API: Basic binding
ZDP API: Manipulation of
remote Binding tables

Low-power modes
(Sleep and Doze)

PWRM API: Managing low-
power modes

Preserving context data
(e.g. for resuming operation
after sleep without memory
held)

PDM API: Saving and restoring
context data

Diagnostic messages for
debugging

DBG API: Producing output for
tracking code execution

Table 2: Use of ZigBee PRO and JenOS APIs
58 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
4. Application Development Overview

This chapter provides an overview of the main phases in developing a ZigBee PRO
wireless network product. It is important that you refer to this chapter, particularly
Section 4.3, before and during your product development.

You will need to develop an application program for each node type in your product -
Co-ordinator, Router and End Device. If a node type has variants, you may need to
develop a separate application for each variant - for example, an End Device which is
an infra-red sensor and an End Device which is a vibration sensor in a security system.

4.1 Development Environment

This User Guide supports the NXP ZigBee PRO Software Developer’s Kits (SDKs)
that are designed to be used with the ‘BeyondStudio for NXP’ development platform
(JN-SW-4141). These SDKs have part numbers of the form JN-SW-416x and each
SDK supports one or more ZigBee application profiles (ZLL, HA, SE). Note that not all
profiles are currently supported for use with BeyondStudio for NXP.

The BeyondStudio for NXP toolchain provides the software tools needed to develop
applications for the JN516x devices, including:

 Eclipse-based IDE (Integrated Development Environment)

 JN51xx compiler

 JN51xx Flash programmer

This toolchain is fully detailed in the BeyondStudio for NXP Installation and User
Guide (JN-UG-3098).

The SDK is installed on top of the above toolchain, and provides the stack and API
software needed to develop ZigBee PRO applications with the required application
profile (ZLL, HA or SE) for the JN516x devices. It includes:

 ZigBee PRO and IEEE 802.15.4 stack software

 ZigBee PRO APIs

 JenOS APIs

 ZLL, HA or SE application profile software and APIs

 ZPS and JenOS Configuration Editors (plug-ins for BeyondStudio)

 Integrated Peripherals API and Board API

SDK installation instructions are provided in the BeyondStudio for NXP Installation
and User Guide (JN-UG-3098).

Note: The SDK and toolchain for a particular ZigBee
application profile can be obtained via the profile’s page
on the NXP web site. The profile pages can be
accessed from www.nxp.com/zigbee.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 59

Chapter 4
Application Development Overview

NXP-specific tools have been devised for BeyondStudio/Eclipse, including
configuration editors (see below), a compiler and a linker.

Network and OS configuration editors are provided in the SDKs as Eclipse plug-ins:

 ZPS Configuration Editor: This is used to set network parameters.

 JenOS Configuration Editor: This is used to configure JenOS resources.

The above configuration editors are introduced in Chapter 11.

4.2 Development Resources

While developing your ZigBee PRO application, you should consult this User Guide
along with the JenOS User Guide (JN-UG-3075) and, if required, the JN516x
Integrated Peripherals API User Guide (JN-UG-3087). Additional documentation is
available for developing JN516x ZigBee PRO applications with the ZigBee application
profiles - for example, refer to the ZigBee Home Automation User Guide
(JN-UG-3076) or ZigBee Light Link User Guide (JN-UG-3091). Further assistance in
developing ZigBee PRO applications for the JN516x devices is provided in NXP
Application Notes.

The resources relevant to a particular ZigBee application profile can be obtained via
the profile’s page on the NXP web site, accessible from www.nxp.com/zigbee.

4.3 Development Phases

The main phases of development of a ZigBee PRO application are as follows:

1. Network Configuration: Configure the network parameters for the nodes
using the ZPS Configuration Editor - refer to Chapter 10, Chapter 11 and
Chapter 12.

2. OS Configuration: Configure the JenOS resources to be used by your
application using the JenOS Configuration Editor - refer to the JenOS User
Guide (JN-UG-3075).

3. Application Code Development: Develop the application code for your
nodes using the ZigBee PRO APIs and JenOS APIs - refer to Chapter 5 and
the JenOS User Guide (JN-UG-3075). You may also use APIs and resources
from one of the ZigBee application profiles (e.g. ZLL).

4. Application Build: Build the application binaries for your nodes using the
NXP JN51xx compiler and linker built into BeyondStudio for NXP.

5. Node Programming: Load the application binaries into Flash memory on
your nodes using the JN51xx Flash Programmer in BeyondStudio for NXP.

Note: Before you attempt to configure JenOS
resources, you should familiarise yourself with the
JenOS modules by studying the JenOS User Guide.
60 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
5. Application Coding with ZigBee PRO APIs

This chapter outlines how to use functions of the NXP ZigBee PRO APIs to perform
common operations required in a ZigBee PRO wireless network application.
References are also made to certain JenOS API functions, but the JenOS APIs are
fully described in the JenOS User Guide (JN-UG-3075).

The topics covered in this chapter are:

 Forming a ZigBee PRO wireless network (Section 5.1)

 Discovering the properties of the formed network (Section 5.2)

 Managing group addresses (Section 5.3)

 Binding nodes for easy communication between them (Section 5.4)

 Transferring data between nodes (Section 5.5)

 Leaving and rejoining the network (Section 5.6)

 Function return codes and extended error handling (Section 5.7)

 Implementing ZigBee security (Section 5.8)

The main stages of the life-cycle of a wireless network are illustrated in Figure 12.
These stages incorporate many of the high-level operations described in this chapter.

Many of the functions referenced in this chapter are non-blocking functions that submit
a request to the relevant node(s) of the network and then return - these functions have
Request or Req in their names. The recipient of the request will normally reply by
sending a response to the node that initiated the request. Once received, this
response message can be collected using the JenOS RTOS function
OS_eCollectMessage().

The ZigBee PRO API functions mentioned in this chapter are fully detailed in Part II:
Reference Information of this manual.

Tip: Further assistance in developing your own JN516x
ZigBee PRO applications with the HA or ZLL profile is
provided in a range of NXP Application Notes, available
from the profile’s page on the NXP web site. The profile
pages can be accessed from www.nxp.com/zigbee
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 61

Chapter 5
Application Coding with ZigBee PRO APIs

Figure 12: Wireless Network Life-Cycle

Co-ordinator

Network
Other Node

Start stack

Discover other nodes
(node addresses
and properties)

Bind with other nodes
(if required)

 Send and
 receive data

Search for and join network

Leave network

Start stack and
initialise network

This is the wireless
network created by the
Co-ordinator.

Initially, it consists only
of the Co-ordinator,
which other nodes can
then join.

As Router nodes join,
the network can expand
since new nodes may
join the Routers instead
of the Co-ordinator.
62 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
5.1 Forming a Network

This section describes how to form a wireless network by first starting the Co-ordinator
and then starting the other nodes (which join the network initiated by the Co-ordinator).

At initialisation, the same function calls are needed for all node types (although, once
started, the stack will perform initialisation tasks according to the specific node type,
as described in Section 5.1.1 and Section 5.1.2). These function calls are listed below,
in the required order:

1. OS_vStart() must first be called to start the JenOS RTOS.

2. PDUM_vInit() must be called to initialise the JenOS PDU Manager.

3. PWRM_vInit() to initialise the JenOS Power Manager in order to facilitiate
low-power modes such as sleep and doze.

4. PDM_vInit() to initialise the JenOS Persistent Data Manager in order to save
context and application data for retrieval after a power break.

5. ZPS_eAplAfInit() must be called to initialise the Application Framework.

6. ZPS_eAplZdoStartStack() must be called to start the ZigBee PRO stack.

Important: In order to start any network node, certain
configuration values must have been pre-set for the
application. This configuration is performed using the
ZPS Configuration Editor, introduced in Chapter 11 and
detailed in Chapter 12.

Note 1: If you wish to use the JenOS Debug module,
you must call DBG_vInit() before calling any of the
above functions.

Note 2: If you wish to use the Integrated Peripherals
API to interface with JN516x on-chip peripherals, be
aware that this API is initialised automatically by JenOS
and you must not call the library initialisation function,
u32AHI_Init(), explicitly in your application code.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 63

Chapter 5
Application Coding with ZigBee PRO APIs

5.1.1 Starting the Co-ordinator

The Co-ordinator must be the first node to be started. This node is pre-configured
using the ZPS Configuration Editor. The functions that must be called in the Co-
ordinator application to initialise the node are those listed at the start of this section
(Section 5.1).

Once the stack has been started using ZPS_eAplZdoStartStack(), the Co-ordinator
works through the following process to establish a network:

1. Sets the radio channel for the network

The choice of 2.4-GHz band channel for the network is pre-configured via the
the ZPS Configuration Editor (see Section 12.2.3) as either a fixed channel (in
the range 11-26) or a set of channels from which the best channel will be
selected by the Co-ordinator. In the latter case, the Co-ordinator performs an
energy scan of the possible channels and chooses the quietest channel.

2. Sets the Extended PAN ID for the network

The 64-bit Extended PAN ID (EPID) for the network is obtained as follows:

 A pre-configured value may be set in the advanced device parameter APS
Use Extended PAN ID in the ZPS Configuration Editor (see Section
12.2.4).

 If the pre-set value is zero, the Co-ordinator will use its own IEEE/MAC
address as the EPID.

Note that the application may over-ride the EPID value set by the ZPS
Configuration Editor by calling ZPS_eAplAibSetApsUseExtendedPanId()
before calling ZPS_eAplZdoStartStack().

3. Accepts join requests from other devices (if enabled)

The Co-ordinator may now allow other devices (Routers and End Devices) to
join the network as its children, enabling the network to grow. A maximum
number of (direct) children of the Co-ordinator is pre-set via the advanced
network parameter Active Neighbour Table Size in the ZPS Configuration
Editor (see Section 12.2.4), beyond which the Co-ordinator will not accept any
further join requests from prospective children.

Note: The initial ‘permit joining’ status is pre-set via the
Co-ordinator parameter Permit Joining Time in the ZPS
Configuration Editor. If this is initially disabled, the Co-
ordinator may not accept children until joining has been
enabled using ZPS_eAplZdoPermitJoining().
However, the ‘permit joining’ status is ignored during a
join in which the pre-set EPID on the joining device is
non-zero and during any rejoin (see Section 5.6.2). The
above function can be used at any time to allow joinings
for a limited time-period or indefinitely, and can also be
used to disable joinings.
64 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Once the Co-ordinator (and therefore network) has started, the stack event
ZPS_EVENT_NWK_STARTED is generated on the device. If the Co-ordinator fails to
start, the stack event ZPS_EVENT_NWK_FAILED_TO_START is generated.

When a node joins the Co-ordinator, the stack event
ZPS_EVENT_NWK_NEW_NODE_HAS_JOINED is generated on the Co-ordinator.

5.1.2 Starting Routers and End Devices

A Router or End Device is pre-configured using the ZPS Configuration Editor. The
functions that must be called in a Router or End Device application to initialise the
node are those listed at the start of this section (Section 5.1).

Once the stack has been started using ZPS_eAplZdoStartStack(), a Router or End
Device works through the following process to join a network:

1. Searches for a network to join

As part of the ZPS_eAplZdoStartStack() function call, the device searches for
networks by listening for beacons from Routers and Co-ordinators of ZigBee
PRO networks in the neighbourhood. The radio channel for this search is pre-
configured via the ZPS Configuration Editor (see Section 12.2.3) in the same
way as for the Co-ordinator as either a fixed channel (in the range 11-26) or a
set of channels to scan. Thus, the device listens for beacons in the relevant
channel(s). A beacon filter can be optionally introduced using the function
ZPS_bAppAddBeaconFilter() to allow only beacons from networks of interest
to be considered - beacons can be filtered on the basis of Extended PAN ID,
LQI value, and device joining status/capacity (see Appendix B.4).

On completion of this search, the subsequent actions depend on the pre-set
value of the 64-bit Extended PAN ID (EPID), which is set via the advanced
device parameter APS Use Extended PAN ID in the ZPS Configuration Editor
(see Section 12.2.4):

 If the pre-set EPID value is non-zero, this value identifies a specific
network to join (assuming the Co-ordinator has been pre-set with the same
EPID - see Section 5.1.1). Provided that a network with this EPID has
been discovered in the search, the device attempts to join this network as
described in Step 3 below (therefore bypassing Step 2).

 If the pre-set EPID value is zero, the results of the search are reported in a
ZPS_EVENT_NWK_DISCOVERY_COMPLETE stack event, which
contains details of the networks discovered (see Section 5.2.1). The
device must then select a network to join, as described in Step 2 below.

2. Selects a network to join

On the basis of the results in ZPS_EVENT_NWK_DISCOVERY_COMPLETE,
the application must select a network which the device will attempt to join. The
search results contain a recommended network, selected as the first ZigBee

Note: The start-up and join process described in this
section is for a first-time join (cold start) only and not for
a rejoin (which is described in Section 5.6.2).
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 65

Chapter 5
Application Coding with ZigBee PRO APIs

PRO network detected that is allowing nodes to join. The application is,
however, free to choose another network, where this choice may be based on
LQI value (detected signal strength).

3. Submits a join request to network

Once the device has identified a network to join, a request to join the network
must be submitted. If a non-zero pre-configured EPID has been set (see
above), this join request is submitted automatically, otherwise the function
ZPS_eAplZdoJoinNetwork() must be called to submit the request. The
outcome of this request is reported in one of the following stack events on the
requesting device:

 ZPS_EVENT_NWK_JOINED_AS_ROUTER (if joined as Router)

 ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE (if joined as End Device)

 ZPS_EVENT_NWK_FAILED_TO_JOIN (if failed to join)

In the case of success, the above stack event contains the 16-bit network
address that the network has allocated to the local device. In addition, the event
ZPS_EVENT_NWK_NEW_NODE_HAS_JOINED is generated on the parent.

If the case of failure, the device can attempt another join by calling
ZPS_eAplZdoJoinNetwork() with a different result reported in the
ZPS_EVENT_NWK_DISCOVERY_COMPLETE event.

4. Records the network's EPID for application use

The function ZPS_eAplAibSetApsUseExtendedPanId() may now be used to
create a persistent record of the EPID of the network that the node has joined
(it will first be necessary to obtain the EPID value using the functions
ZPS_pvAplZdoGetNwkHandle() and ZPS_u64NwkGetEpid()). If this EPID
record is created, the node will automatically continue in the network following
a reset without explicitly rejoining.

5. Router accepts join requests from other devices (if enabled)

A Router may now allow other devices (Routers and End Devices) to join it as
its children. The number of (direct) children of the Router will be limited by the
maximum number of neighbours for the node, which is pre-set via the
advanced network parameter Active Neighbour Table Size in the ZPS
Configuration Editor (see Section 12.2.4).

Note: The initial ‘permit joining’ status is pre-set via the
Router parameter Permit Joining Time in the ZPS
Configuration Editor. If this is initially disabled, the
Router may not accept children until joining has been
enabled using ZPS_eAplZdoPermitJoining().
However, the ‘permit joining’ status is ignored during a
join in which the pre-set EPID on the joining device is
non-zero and during any rejoin (see Section 5.6.2). The
above function can be used at any time to allow joinings
for a limited time-period or indefinitely, and can also be
used to disable joinings.
66 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Once a node has joined the network, each endpoint application on the node is next
likely to search for compatible endpoints on remote nodes with which it can
communicate, as described in Section 5.2.2.

5.1.3 Pre-determined Parents

It is possible to force a parent (Router or the Co-ordinator) to accept certain nodes as
its (direct) children. The function ZPS_eAplZdoDirectJoinNetwork() can be used on
this parent to register a potential child node (with specified IEEE/MAC and network
addresses) by adding this node to the Neighbour table - never write to the Neighbour
table directly. The parent then regards this node as an orphaned child. This function
should only be called when the parent node is fully up and running - that is, the node
has been started as described in Section 5.1.1 or Section 5.1.2.

When one of the designated children is started, its application should call the function
ZPS_eAplZdoOrphanRejoinNetwork() in order to attempt to join the network as if it
were a previously orphaned node. This function will start the ZigBee PRO stack and
attempt to join the network whose EPID has been pre-configured on the node (using
the ZPS Configuration Editor). The function will only allow the node to join a parent
that already has knowledge of the node (in the parent’s Neighbour table).

If the node successfully joins the network (via the designated parent), the stack event
ZPS_EVENT_NWK_NEW_NODE_HAS_JOINED is generated on the parent node
and one of the following stack events is generated on the joined node:

 ZPS_EVENT_NWK_JOINED_AS_ROUTER (if joined as a Router)

 ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE (if joined as an End Device)

These events contain the network address that the parent has allocated to the joined
node.

If the join request is unsuccessful, the ZPS_EVENT_NWK_FAILED_TO_JOIN event
is generated on the joining node.

Note: A network can be set up such that an End Device
or Router joins a particular parent node. The required
configuration and function calls to employ pre-
determined parents are described in Section 5.1.3.

Note 1: When ZPS_eAplZdoOrphanRejoinNetwork()
is used, the start-up procedure described in Section
5.1.2 is not applicable to the joining node and the
function ZPS_eAplZdoStartStack() must not be
explicitly called on the node.

Note 2: When a node joins the network in this way, the
‘permit joining’ status on the parent is ignored.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 67

Chapter 5
Application Coding with ZigBee PRO APIs

Once the node has joined the pre-determined parent, the node is next likely to search
for compatible endpoints on remote nodes with which it can communicate, as
described in Section 5.2.2.

5.2 Discovering the Network

This section describes how to discover properties of the network, including general
network properties, node addresses and features, and the services offered by nodes.
The important task of finding nodes that can communicate with each other is
described. Maintenance of the ‘primary discovery cache’ of a node is also described -
this cache contains information about other nodes of the network (not all nodes will
host a primary discovery cache - only the Co-ordinator and Routers are allowed to).

5.2.1 Obtaining Network Properties

A ‘network discovery’ is implemented when the function ZPS_eAplZdoStartStack() is
called to start the stack on an End Device or Router node (which needs to find a
network to join). In addition, a network discovery can be explicitly started by calling the
function ZPS_eAplZdoDiscoverNetworks(). For example, this function could be
called if the initial network discovery did not find any suitable networks to join, in which
case the function may be used to initiate a scan of previously unscanned channels
(detailed in the stack event described below, resulting from the initial discovery).

Both of these function calls eventually result in the stack event
ZPS_EVENT_NWK_DISCOVERY_COMPLETE on the End Device or Router, where
this event reports the following properties of the discovered networks:

 Extended PAN ID

 ZigBee version

 ZigBee stack profile

This stack event also indicates the recommended network to join, which is taken to be
the first ZigBee PRO network detected that is allowing nodes to join.

For information on joining a network, refer to Section 5.1.2.

5.2.2 Finding Compatible Endpoints

An endpoint on a newly joined node must find compatible endpoints on remote nodes
with which to communicate. The decision of whether a remote endpoint is compatible
is based on the endpoint properties stored in its Simple descriptor, notably the
application profile and the input/output clusters supported.

The endpoint application can discover compatible nodes by sending out a
Match_Desc_req request identifying the required application profile and clusters. This
request is submitted by calling the function ZPS_eAplZdpMatchDescRequest(),
which allows the request to be sent as a broadcast to all nodes or as a unicast to a
particular node (the sending node may already have a record of the network nodes
and their addresses, as each node automatically announces itself in a broadcast when
68 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
it joins the network). The request is sent in an APDU (Application Protocol Data Unit)
which must first be allocated using the PDUM function
PDUM_hAPduAllocateAPduInstance().

A receiving endpoint which satisfies the supplied criteria replies to the request with a
Match_Desc_rsp response which, when received, must be collected on the requesting
node using the RTOS function OS_eCollectMessage(). The requesting application
may bind to a compatible endpoint (see Section 5.4) and communicate with the
endpoint using binding or addressing (see Section 5.5).

5.2.3 Obtaining and Maintaining Node Addresses

The addresses of network nodes are needed in order to access node information (see
Section 5.2.4), send data from one node to another (see Section 5.5) and bind nodes
together (see Section 5.4). In most of these operations, an application can specify
either 64-bit IEEE/MAC addresses or 16-bit network addresses, but the ZigBee PRO
stack always works with network addresses. If the IEEE address (rather than the
network address) of a remote node is specified by the application, the network
address must still be available to the stack in an Address Map - see below.

The IEEE address of a node is assigned at the time of device manufacture and is fixed,
while its network address is dynamically allocated by its parent when the device joins
the network (this address may change if the network is re-started or the device later
leaves and rejoins the network). Functions are provided to obtain the IEEE address of
a node given its network address or to obtain the network address given the IEEE
address. Use of these functions is described in Section 5.2.3.1 and Section 5.2.3.2.

An Address Map table can be maintained on a node, where each entry of this table
contains the pair of addresses for a remote node - the 64-bit IEEE/MAC address and
16-bit network address. In fact, the IEEE/MAC address is not directly stored in the
Address Map table but in a MAC Address table - the Address Map table contains the
index of this address in the MAC Address table. The Address Map is automatically
updated by the stack when a Device_annce announcement is received from a remote
node (described in the Note above), but you can also add an address-pair to this table
using the function ZPS_eAplZdoAddAddrMapEntry() - never write to the Address
Map table directly. The Address Map must be properly maintained if the application
employs IEEE/MAC addresses to identify remote nodes. In addition, when application-
level security (see Section 5.8) is used in sending data from one node to another, the
Address Map on the sending node must contain an entry for the target node.

Note: The IEEE/MAC and network addresses of a node
can be broadcast to all other nodes in the network using
the function ZPS_eAplZdpDeviceAnnceRequest().
For example, this function would typically be called
when the node joins or rejoins the network. The
information is sent in a Device_annce announcement,
which must be collected by the recipient nodes using
the RTOS function OS_eCollectMessage().
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 69

Chapter 5
Application Coding with ZigBee PRO APIs

5.2.3.1 Obtaining IEEE Address

You may wish to obtain the IEEE address of the node with a given network address -
for example, in order to know which physical node corresponds to a particular
dynamically allocated network address.

The IEEE address of the local node can be obtained simply by calling the function
ZPS_u64AplZdoGetIeeeAddr().

The IEEE address of a remote node can be obtained in either of two ways, depending
on whether an entry for the node exists in the local Address Map table:

 The function ZPS_u64AplZdoLookupIeeeAddr() can be used to search the
local Address Map table for the IEEE address which corresponds to a given
network address.

 The required IEEE address can be obtained directly from the remote node by
using the function ZPS_eAplZdpIeeeAddrRequest() to submit a request for
the IEEE address of the node with a particular network address. This request,
of type IEEE_addr_req, is sent in an APDU (Application Protocol Data Unit)
which must first be allocated using the PDUM function
PDUM_hAPduAllocateAPduInstance(). The request details are specified
through the structure ZPS_tsAplZdpIeeeAddrReq, which includes an option
to also request the IEEE addresses of all the target node’s children (if any). The
results are reported in an IEEE_addr_resp response.

5.2.3.2 Obtaining Network Address

You may wish to obtain the network address of the node with a given IEEE address -
for example, in order to know the network address that has been dynamically allocated
to a particular physical node.

The network address of the local node can be obtained simply by calling the function
ZPS_u16AplZdoGetNwkAddr().

The network address of a remote node can be obtained in either of two ways,
depending on whether an entry for the node exists in the local Address Map table:

 ZPS_u16AplZdoLookupAddr() can be used to search the local Address Map
table for the network address which corresponds to a given IEEE address.

 The required network address can be obtained directly from within the network
by using the function ZPS_eAplZdpNwkAddrRequest() to submit a request
for the network address of the node with a particular IEEE address. This
request can be either unicast or broadcast, as follows:

 Unicast to another node that will ‘know’ the required network address (this
may be the parent of the node of interest or the Co-ordinator)

 Broadcast to the network

This request, of type NWK_addr_req, is sent in an APDU (Application Protocol
Data Unit) which must first be allocated using the PDUM function
PDUM_hAPduAllocateAPduInstance(). The request details are specified
through the structure ZPS_tsAplZdpNwkAddrReq, which includes an option to
also request the network addresses of all the target node’s children (if any). The
results are reported in a NWK_addr_resp response.
70 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
5.2.4 Obtaining Node Properties

Functions are provided to obtain information about the properties of network nodes.
Much of this information is held on a node in special structures, referred to as
descriptors. Five types of descriptor are used:

 Node descriptor

 Node Power descriptor

 Simple descriptor

 User descriptor

 Complex descriptor

In addition to the above, information can be obtained about the active endpoints,
primary discovery cache and services of a node.

The required functions are detailed below. Functions are provided to obtain
descriptors from the local node and from a remote node. When obtaining information
from a remote node, the function sends a request in an APDU (Application Protocol
Data Unit) which must first be allocated using the PDUM function
PDUM_hAPduAllocateAPduInstance(). The results of the request are reported in a
response which must be collected using the RTOS function OS_eCollectMessage().

Node Descriptor

The Node descriptor contains basic information about the node, such as its ZigBee
node type and the radio frequency bands supported. The following functions can be
used to obtain a Node descriptor:

 ZPS_eAplAfGetNodeDescriptor() obtains the Node descriptor of the local
node. The result is stored in a structure of type
ZPS_tsAplAfNodeDescriptor.

 ZPS_eAplZdpNodeDescRequest() requests the Node descriptor of a remote
node. The result is stored in a structure of type
ZPS_tsAplZdpNodeDescriptor.

Note 1: When obtaining a descriptor of a remote node,
the request can be submitted to the node itself or to
another node which may hold the required descriptor in
its primary discovery cache.

Note 2: The structures that contain the descriptors
(referenced below) are described in Section 7.2 and
Section 8.2.1.

Note 3: Where 64-bit IEEE/MAC addresses are used to
identify remote nodes, the corresponding 16-bit network
addresses must be available in the local Address Map -
see Section 5.2.3.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 71

Chapter 5
Application Coding with ZigBee PRO APIs

Power Descriptor

The Node Power descriptor contains information about the node’s supported power
sources and present power source. The following functions can be used to obtain a
Power descriptor:

 ZPS_eAplAfGetNodePowerDescriptor() obtains the Node Power descriptor
of the local node. The result is stored in a structure of type
ZPS_tsAplAfNodePowerDescriptor.

 ZPS_eAplZdpPowerDescRequest() requests the Node Power descriptor of a
remote node. The result is stored in a structure of type
ZPS_tsAplZdpNodePowerDescriptor.

Note that elements of the Node Power descriptor can be set on the local node using
the ZPS Configuration Editor.

Simple Descriptor

There is a Simple descriptor for each endpoint on a node. The information in this
descriptor includes the ZigBee application profile supported by the endpoint as well as
details of its input and output clusters. The following functions can be used to obtain a
Simple descriptor:

 ZPS_eAplAfGetSimpleDescriptor() obtains the Simple descriptor of a
particular endpoint on the local node. The result is stored in a structure of type
ZPS_tsAplAfSimpleDescriptor.

 ZPS_eAplZdpSimpleDescRequest() requests the Simple descriptor of a
particular endpoint on a remote node. The result is stored in a structure of type
ZPS_tsAplZdpSimpleDescReq.

The returned Simple descriptor includes a list of input clusters and a list of output
clusters of the endpoint.

When requesting a Simple descriptor from a remote node, if the cluster lists are long,
the Simple descriptor may not fit into the APDU of the response. In this case, the
returned Simple descriptor will contain incomplete cluster lists, but the remainder of
the lists can be recovered using ZPS_eAplZdpExtendedSimpleDescRequest().

It is also possible to search for nodes on the basis of certain criteria in the Simple
descriptors of their endpoints - for example, search for endpoints which support a
particular ZigBee application profile, or which have a particular list of input clusters
and/or output clusters. Such a search can be performed using the function
ZPS_eAplZdpMatchDescRequest(). Use of this function is described in Section
5.2.2.
72 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
User Descriptor

The User descriptor is a user-defined character string, normally used to describe the
node (e.g. “Thermostat”). The maximum length of the character string is 16, by default.
A node need not have a User descriptor - if it has one, this must be indicated in the
Node descriptor. The following functions can be used to access a User descriptor:

 ZPS_eAplZdpUserDescSetRequest() sets the User descriptor of a remote
node.

 ZPS_eAplZdpUserDescRequest() requests the User descriptor of a remote
node. The result is stored in a structure of type ZPS_tsAplZdpUserDescReq.

The above functions can only be used to access the User descriptor of a
non-NXP device (which supports this descriptor), since the storage of a User
descriptor on an NXP JN516x device is not supported.

Complex Descriptor

The Complex descriptor is an optional descriptor which contains device information
such as manufacturer, model and serial number. The function
ZPS_eAplZdpComplexDescRequest() allows the Complex descriptor of a remote
node to be requested. However, the NXP ZigBee PRO stack does not support the
functionality to produce a valid response and this function is provided only for
compatibility with non-NXP products that do support the relevant functionality.

Active Endpoints

An endpoint on the local node can be configured as enabled or disabled using the
function ZPS_eAplAfSetEndpointState(). An enabled endpoint is described as
‘active’. The current state of a local endpoint can be obtained using the function
ZPS_eAplAfGetEndpointState().

It is also possible to configure whether a local endpoint will be included in the results
of network discovery operations, e.g. when ZPS_eAplZdpMatchDescRequest() is
called. The ‘discoverable’ state of a local endpoint can be set using the function
ZPS_eAplAfSetEndpointDiscovery(), while this state can be obtained using the
function ZPS_eAplAfGetEndpointDiscovery().

A list of the active endpoints on a remote can be obtain using the function
ZPS_eAplZdpActiveEpRequest(). This functions submits an Active_EP_req request
to the target node, which replies with an Active_EP_rsp response. If the active
endpoint list is too long to fit into the APDU of the response, the returned list will be
incomplete. However, the remainder of the list can be recovered using the function
ZPS_eAplZdpExtendedActiveEpRequest(). Note that an endpoint is included in the
list only if it is active and discoverable.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 73

Chapter 5
Application Coding with ZigBee PRO APIs

Primary Discovery Cache

A ZigBee routing node (Router or the Co-ordinator) may be able to host a ‘primary
discovery cache’. This is a database, held in memory, containing ‘discovery
information’ about a set of network nodes, normally children and possibly other
descendant nodes. The information held about a node includes the node’s addresses,
descriptors (Node, Node Power, Simple) and its list of active endpoints. Remote
nodes can then interrogate the primary discovery cache to obtain information about
other nodes in the network.

The function ZPS_eAplZdpDiscoveryCacheRequest() allows nodes which hold a
primary discovery cache to be detected. This function submits a
Discovery_Cache_req request to the network. Nodes with a primary discovery cache
reply with a Discovery_Cache_rsp response.

In addition, the function ZPS_eAplZdpFindNodeCacheRequest() can be used to
search for nodes with a primary discovery cache that holds information about a
particular node. This function submits a Find_node_cache_req request to the network.
Nodes with the required node information in their caches reply with a
Find_node_cache_rsp response.

Functions for storing node information in a primary discovery cache are described in
Section 5.2.5.

Servers

A node can host one or more of the following ‘servers’ in a ZigBee PRO network:

 Primary Trust Centre

 Backup Trust Centre

 Primary Binding Table Cache

 Backup Binding Table Cache

 Primary Discovery Cache

 Backup Discovery Cache

 Network Manager

The function ZPS_eAplZdpSystemServerDiscoveryRequest() can be used to
discover the servers hosted by other nodes in the network. The function broadcasts a
System_Server_Discovery_req request to all nodes. A remote node replies with a
System_Server_Discovery_rsp response containing a bitmap indicating the servers
hosted by the node.

Note: NXP nodes do not have the capability to hold a
primary discovery cache, but functions are provided to
interface with a primary discovery cache held on a node
from another manufacturer.
74 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
5.2.5 Maintaining a Primary Discovery Cache

Some routing nodes of a ZigBee PRO network may be capable of hosting a primary
discovery cache, which contains ‘discovery information’ relating to other nodes in the
network - see Primary Discovery Cache on page 74.

Functions are provided for storing the local node’s ‘discovery information’ in another
node’s primary discovery cache (normally in the parent or another ascendant node).
First of all, ZPS_eAplZdpDiscoveryStoreRequest() must be called to allocate
memory space for this information in the remote node’s cache. This function sends a
Discovery_store_req request to the remote node, which replies with a
Discovery_store_rsp response. The local node’s information can then be stored in the
remote node’s primary discovery cache using the following functions (which all
operate on a request/response basis):

 Node descriptor: Stored using ZPS_eAplZdpNodeDescStoreRequest()

 Power descriptor: Stored using ZPS_eAplZdpPowerDescStoreRequest()

 Simple descriptor: Stored using ZPS_eAplZdpSimpleDescStoreRequest()

 Active endpoints list: Stored using ZPS_eAplZdpActiveEpStoreRequest()

A node’s information can be removed from a primary discovery cache using the
function ZPS_eAplZdpRemoveNodeCacheRequest(). This function can be called
on the local node to remove a third node’s information from the primary discovery
cache of a remote node.

5.2.6 Discovering Routes

The route from one network node to another can be pre-established by implementing
a route discovery. As a result, each routing node along the route will contain a Routing
table entry for the destination node, where this entry consists of the destination
address and the ‘next hop’ address. Routing and route discovery are fully introduced
in Section 2.5.

Two functions are provided in the ZigBee PRO API to initiate route discoveries:

 ZPS_eAplZdoRouteRequest() can be used to establish a route from the local
node to a specific destination node. This kind of end-to-end route discovery is
outlined in Section 2.5.2.

 ZPS_eAplZdoManyToOneRouteRequest() can be used on a ‘concentrator’
node to implement a ‘many-to-one’ route discovery back to itself. The result is
that Routing tables in routing nodes within a certain radius of the concentrator
will acquire entries with the concentrator as the destination. Many-to-one
routing is outlined in Section 2.5.3.

Note: NXP nodes do not have the capability to hold a
primary discovery cache, but functions are provided to
interface with a primary discovery cache held on a node
from another manufacturer.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 75

Chapter 5
Application Coding with ZigBee PRO APIs

5.3 Managing Group Addresses

A ‘group address’ is a concept that simplifies data transfers (see Section 5.5) to
multiple nodes/endpoints. It is a collective 16-bit address which refers to a group of
destination endpoints (that may be located on different nodes). So, for example, when
a group address is specified as the destination address for a data transfer, the data
will be delivered to all the nodes/endpoints in the associated group. It is the
responsibility of the wireless network application to allocate and manage group
addresses on a network-wide basis.

A node which is to receive group-addressed communications must have a Group
Address table. This table contains information about all the groups to which endpoints
on the node belong - that is, each group address and the associated local endpoint
numbers. The table is consulted on receiving a data packet with a group address - if
the group address exists in the table, the packet is passed to the corresponding
endpoint(s).

A Group Address table is created on a node using the ZPS Configuration Editor. The
table can then be maintained by the application as follows:

 An endpoint can be added to a group by calling the function
ZPS_eAplZdoGroupEndpointAdd() on the local node (which contains the
endpoint).

 An endpoint can be removed from a group by calling the function
ZPS_eAplZdoGroupEndpointRemove() on the local node (which contains
the endpoint). Alternatively, ZPS_eAplZdoGroupAllEndpointRemove() can
be used to remove a specified local endpoint from all groups to which it
belongs.

The group addresses used in a network are defined by the application developer.

5.4 Binding

For the purpose of data communication between applications running on different
nodes, it may be useful to ‘bind’ the relevant source and destination endpoints. When
data is subsequently sent from the source endpoint, it is automatically routed to the
bound destination endpoint(s) without the need to specify a destination address. For
example, a binding could be created between the temperature sensor endpoint on a
thermostat node and the switch endpoint on a heating controller node. Details of a
binding are held in a Binding table on the source node. Binding is introduced more fully
in Section 2.6.2, where bindings are one-to-one, one-to-many or many-to-one.

This section describes setting up a Bind Request Server and how to bind together two
nodes, as well as how to unbind them. Access to the Binding tables is also described.

Note: Where 64-bit IEEE/MAC addresses are used to
identify remote nodes, the corresponding 16-bit network
addresses must be available in the local Address Map -
see Section 5.2.3.
76 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
5.4.1 Setting Up Bind Request Server

A Bind Request Server must be set up on each device that will be the source node of
a bound data transfer. This server manages a bound data transfer so that application
processing is not blocked by concurrent requests for transmissions to the multiple
destinations of the transfer. It does this by limiting the number of destinations and
inserting a time delay between consecutive transmissions of a bound transfer.

The server is configured in the ZPS Configuration Editor (introduced in Chapter 12).
Two parameter values must be set:

 Simultaneous Requests

This refers to the maximum number of destinations for a bound data transfer.
The value set must be less than or equal to the value of the ZigBee network
parameter Maximum Number of Simultaneous Data Requests or Maximum
Number of Simultaneous Data Requests with Acks, described in Section 10.7.

 Time Interval

This refers to the time interval between consecutive transmissions to the
different destinations of a bound data transfer and is measured in milliseconds.

In the ZPS Configuration Editor, these parameters are accessed by clicking on Bind
Request Server under ZDO Configuration for the device (the parameters appear in
the Properties tab of the bottom pane).

5.4.2 Binding Endpoints

An endpoint on the local node can be bound to one or more endpoints on remote
nodes using the following functions:

 ZPS_eAplZdoBind() creates a one-to-one binding to a single remote endpoint.

 ZPS_eAplZdoBindGroup() creates a one-to-many binding for which the
destination endpoints are specified via a group address (refer to Section 5.3).

The function ZPS_eAplZdpEndDeviceBindRequest() is also provided, which allows
an endpoint on one End Device to be bound to an endpoint on another End Device via
the Co-ordinator. This function must be called on both End Devices, where the
function call would typically be triggered by a user action such as pressing a button on
the node. The function submits an End_Device_Bind_req request to the Co-ordinator,
which replies with an End_Device_Bind_rsp response. The stack will then
automatically update the Binding tables on the End Devices (as the result of bind
requests from the Co-ordinator), and these updates will be indicated by a
ZPS_EVENT_ZDO_BIND event on each of the End Devices.

Note: The bound server can only handle one bound
request at a time. The application must wait for the
confirmation from the first bound request before
attempting to send a second bound request.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 77

Chapter 5
Application Coding with ZigBee PRO APIs

5.4.3 Unbinding Endpoints

Bindings can be removed using the following functions:

 Two endpoints previously bound using ZPS_eAplZdoBind() can be unbound
using the function ZPS_eAplZdoUnbind().

 Endpoints previously bound using ZPS_eAplZdoBindGroup() can be unbound
using the function ZPS_eAplZdoUnbindGroup().

5.4.4 Accessing Binding Tables

Information about established bindings is held in Binding tables on the relevant nodes.
Normally, a Binding table is held on a node which contains at least one source
endpoint for a binding - thus, the table includes entries for all bindings which involve
source endpoints on the local node. Alternatively, the Binding table entries for a
particular source node can be held in a primary Binding table cache on the node’s
parent or another ascendant node. However, if a primary Binding table cache exists
on an ascendant node, a source node can opt out of membership of this table by
calling the function ZPS_eAplZdpBindRegisterRequest() to indicate that the source
node will store its own Binding table entries locally.

Functions are provided which allow Binding tables to be remotely accessed and
modified. These functions are particularly useful in implementing a commissioning tool
application.

A binding can be remotely created or removed by requesting a modification to the
relevant Binding table on a remote node. The remote Binding table may be a primary
Binding table cache or the source node’s local Binding table, whichever is relevant for
the particular binding.

 The function ZPS_eAplZdpBindUnbindRequest() can be used to request that
a new binding is added to a remote Binding table. The addition of this binding is
signalled by a ZPS_EVENT_ZDO_BIND event on the remote node.

 The function ZPS_eAplZdpBindUnbindRequest() can also be used to
request that an existing binding is removed from a remote Binding table. The
removal of this binding is signalled by a ZPS_EVENT_ZDO_UNBIND event on
the remote node.

In addition, binding entries in a remote primary Binding table cache can be modified
using the function ZPS_eAplZdpReplaceDeviceRequest(), to replace an IEEE/MAC
address and/or endpoint number. This operation works on a ‘search and replace’
basis in the Binding table, and the address/endpoint number to be replaced could
occur in the source or destination of one or more table entries.

The function ZPS_eAplZdpMgmtBindRequest() is also provided, which can be used
to request the Binding table of a remote node.
78 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
5.5 Transferring Data

This section describes how to send data to a remote node and receive the data at the
destination. The data polling method is also described, which is used by an End
Device to obtain data that arrives at its parent while the End Device is asleep.

5.5.1 Sending Data

Data is sent across the wireless network in an Application Protocol Data Unit (APDU).
Before calling the function to send the data, an APDU instance must first be allocated
using the JenOS PDUM function PDUM_hAPduAllocateAPduInstance() and then
populated with data using the PDUM function PDUM_u16APduInstanceWriteNBO().

There are five ways to send data to one or more remote nodes:

 Unicast: Sending data to a single destination endpoint

 Broadcast: Sending data to (potentially) all endpoints

 Group Multicast: Sending data to a group of endpoints

 Bound Transfer: Sending data to bound endpoints

 Inter-PAN Transfer: Sending data to another ZigBee PRO network

These methods are described in the sub-sections below. However, in all cases except
the inter-PAN transfer, a general function ZPS_eAplAfApsdeDataReq() can be used
which imposes no restrictions on the destination address, destination application
profile, destination cluster and destination endpoint number - these destination
parameters do not need to be known to the stack or defined in the ZPS configuration.

Note 1: In all cases, once the data packet has been
successfully sent, a ‘DATA_CONFIRM’ stack event is
generated. When sending data to one or more individual
nodes (not broadcasting), this event is generated after a
MAC-level acknowledgement has been received from
the ‘next hop’ node.

Note 2: Where 64-bit IEEE/MAC addresses are used to
identify remote nodes, the corresponding 16-bit network
addresses must be available in the local Address Map -
see Section 5.2.3.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 79

Chapter 5
Application Coding with ZigBee PRO APIs

5.5.1.1 Unicast

A unicast is a data transmission to a single destination - in this case, a single endpoint.
The destination node for a unicast can be specified using the network address or the
IEEE/MAC address of the node:

 ZPS_eAplAfUnicastDataReq() is used to send a data packet to an endpoint
on a node with a given network address.

 ZPS_eAplAfUnicastIeeeDataReq() is used to send a data packet to an
endpoint on a node with a given IEEE/MAC address.

Neither of these functions provide any indication that the data packet has been
successfully delivered to its destination. It is possible that a unicast packet will not
reach its destination because the packet is lost - for example, it becomes caught in a
circular route. However, equivalent functions are available which request the
destination node to provide an acknowledgement of data received - these ‘with
acknowledgement’ functions are ZPS_eAplAfUnicastAckDataReq() and
ZPS_eAplAfUnicastIeeeAckDataReq(), requiring network and IEEE/MAC
addresses respectively. These functions request end-to-end acknowledgements
which, when received, generate ZPS_EVENT_APS_DATA_ACK events (note that the
‘next hop’ ZPS_EVENT_APS_DATA_CONFIRM events will also be generated). A
timeout of approximately 1600 ms is applied to the acknowledgements. If an
acknowledgement has not been received within the timeout period, the data is re-sent,
and up to 3 more re-tries can subsequently be performed before the data transfer is
abandoned completely (which occurs approximately 3 seconds after the initial send).

Unicasts from Sleepy Nodes

To allow a unicast acknowledgement to be received as described above, the source
node must remain awake for a time equal to the timeout period. On a battery-powered
node which sleeps, the use of acknowledgements and retries may not be desirable
from a power-saving point of view. In this case, acknowledgements should not be
used, but it is good practice for the application to monitor the route to a remote node
by periodically attempting to read an attribute on the node and wait for a response. If
the response is not observed within a pre-defined time then the application should
take one of the actions listed below, depending on whether the source node is an End
Device or Router.

Note: If a message is unicast to a destination for which
a route has not already been established, the message
will not be sent and a route discovery will be performed
instead. If this is the case, the unicast function will return
ZPS_NWK_ENUM_ROUTE_ERROR. The application
must then wait for the stack event
ZPS_EVENT_NWK_ROUTE_DISCOVERY_CONFIRM
(success or failure) before attempting to re-send the
message by calling the same unicast function again.
80 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
 If an End Device, the application should notify the parent node about the
routing problem by sending it a unicast network status command using the
function ZPS_vNwkSendNwkStatusCommand(), with the status as “No
Route Available (0x00)”

 If a Router, the application should initiate an explicit route discovery to the
destination node by calling the function ZPS_eAplZdoRouteRequest()

Fragmenting Large Unicast Packets

The unicast ‘with acknowledgement’ functions, ZPS_eAplAfUnicastAckDataReq()
and ZPS_eAplAfUnicastIeeeAckDataReq(), also allow a large data packet to be
sent that may be fragmented into multiple messages during transmission. Application
design issues concerned with fragmented data transfers are outlined in Appendix B.1.

5.5.1.2 Broadcast

A broadcast is a data transmission to all network nodes, although it is possible to
select a subset of nodes. The following destinations are possible:

 All nodes

 All nodes for which ‘receiver on when idle’ - these include the Co-ordinator,
Routers and non-sleeping End Devices

 All Routers and the Co-ordinator

The function ZPS_eAplAfBroadcastDataReq() is used to broadcast a data packet. It
is possible to specify a particular destination endpoint on the nodes (the same
endpoint number for all recipient nodes) or all endpoints. Following this function call,
the packet may be broadcast up to four times (in addition, the packet may be
subsequently re-broadcast up to four times by each intermediate routing node).

5.5.1.3 Group Multicast

A group multicast is a data transmission which is intended for a selection of network
nodes or, more specifically, a selection of endpoints on these nodes. The set of
destination endpoints must be pre-assembled into a group with an associated ‘group
address’, as described in Section 5.3.

The function ZPS_eAplAfGroupDataReq() is used to send a data packet to the group
of endpoints with a given group address. In practice, the data packet is broadcast to
all nodes in the network and it is the responsibility of each recipient node to determine
whether it has endpoints in the target group (and therefore whether the packet is of
interest).
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 81

Chapter 5
Application Coding with ZigBee PRO APIs

5.5.1.4 Bound Transfer

A data packet can be sent from an endpoint to all the remote endpoints with which the
source endpoint has been previously bound (see Section 5.4). The function
ZPS_eAplAfBoundDataReq() is used to implement this type of data transfer. This
method provides an alternative to a group multicast (see Section 5.5.1.3) for sending
data to selected endpoints.

An equivalent to the above function is provided which also requests an ‘end-to-end’
acknowledgement from the destination - ZPS_eAplAfBoundAckDataReq(). If an
acknowledgement has not been received within approximately 1600 ms of the initial
request, the data is re-sent, with up to 3 more subsequent re-tries before the data
transfer is abandoned completely.

ZPS_eAplAfBoundAckDataReq() also allows a large data packet to be sent that may
need to be fragmented into multiple messages during transmission. Application design
issues concerned with fragmented data transfers are outlined in Appendix B.1.

Following a call to one of the above bound transfer functions, a deferred
ZPS_EVENT_BIND_REQUEST_SERVER event is generated on the sending node.
This event summarises the status of the transmission (see Section 7.2.2.21), including
the number of bound endpoints for which the transmission failed. The event is
generated only after receiving MAC-level acknowledgements from the ‘next hop’
nodes or, if requested, after receiving end-to-end acknowledgements from the
destination nodes.

Note: In the case of a bound transfer, the ‘next hop’
ZPS_EVENT_APS_DATA_CONFIRM events and ‘end-
to-end’ ZPS_EVENT_APS_DATA_ACK events are
consumed and do not reach the application.
82 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
5.5.1.5 Inter-PAN Transfer

A data packet can be sent to nodes in other IEEE 15.4 networks - this is referred to as
an inter-PAN transfer or transmission. Typically, this mechanism could be used to
send information to optional low-cost devices that are not part of the local network.
Note that no security (encyption/decryption) can be applied to inter-PAN transfers and
only one application on a device can perform inter-PAN transmissions. The inter-PAN
messages are not forwarded and so will only be received by nodes within direct radio
range of the transmitter.

The inter-PAN feature is enabled via the ZPS Configuration Editor. The Inter PAN
value is set to true in the APS Layer Configuration section of the Advanced Properties
for the device.

The function ZPS_eAplAfInterPanDataReq() is used to request an inter-PAN
transmission. This function requires the destination(s) for the transfer to specified:

 Single destination node in a specific network
(PAN ID and node address must be specified)

 Multiple destination nodes in a specific network
(PAN ID and a group address for the nodes must be specified)

 All nodes in a specific network
(PAN ID and broadcast address of 0xFFFF must be specified)

 All nodes in all reachable networks
(broadcast PAN ID and broadcast address, both of 0xFFFF, must be specified)

After successfully sending the data packet, the stack will generate the event
ZPS_EVENT_APS_INTERPAN_DATA_CONFIRM (for a single destination, this
event is generated once the ‘next hop’ acknowledgement has been received).

A destination endpoint is not specified for this type of data transfer but an application
profile and cluster must be specified for the destination. On receiving the data packet,
the recipient node will automatically pass the packet to the endpoint which supports
the given cluster as part of the given application profile (see Section 5.5.2).
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 83

Chapter 5
Application Coding with ZigBee PRO APIs

5.5.2 Receiving Data

When a data packet (sent using one of the methods described in Section 5.5.1) is
received by the destination node, it is put into a message queue. A
ZPS_EVENT_AF_DATA_INDICATION stack event is generated on the destination
node to indicate that a data packet has arrived (the destination endpoint is indicated
in this event). The packet must then be collected from the message queue using the
RTOS function OS_eCollectMessage().

An End Device which is asleep will be unable to receive a data packet directly, so the
data is buffered by its parent for collection later. The End Device must explicitly
request this data, once awake. This method of receiving data is called data polling and
is described in Section 5.5.3.

Once a data packet has been collected from a message queue, the data can be
extracted from the APDU instance using the JenOS PDUM function
PDUM_u16APduInstanceReadNBO(). The APDU instance must then be released
using the JenOS function PDUM_eAPduFreeAPduInstance().

By default, received data packets are filtered on the basis of signal strength (LQI
value) such that packets received with a weak signal are discarded. If required, packet
filtering can be re-configured or disabled using the function
ZPS_vAplAfEnableMcpsFilter(). Packet filtering is fully described in Appendix B.7.

Note 1: In the case of a data packet received from
another network by means of an inter-PAN transfer, the
ZPS_EVENT_APS_INTERPAN_DATA_INDICATION
stack event will be generated. The data packet will be
passed to the endpoint which supports the specified
cluster as part of the specified application profile. The
application must always handle these inter-PAN packets
and release the APDU instances (see below). The event
will only be generated if the inter-PAN feature has been
enabled via the ZPS Configuration Editor. If an
application transmits inter-PAN messages but does not
need to receive them, the application must enable inter-
PAN in the ZPS Configuration Editor and handle any
ZPS_EVENT_APS_INTERPAN_DATA_INDICATION
events by releasing the APDU instances.

Note 2: In the case of the arrival of a response packet
which is destined for the ZDO, a
ZPS_EVENT_AF_DATA_INDICATION stack event will
be generated with a destination endpoint of 0. It will be
necessary for the application to call the function
ZPS_bAplZdpUnpackResponse() to extract the
response data from the event.
84 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
5.5.3 Polling for Data

In the case of an End Device which is capable of sleeping, messages are not delivered
directly to the device, since it may be asleep when the messages arrive. Instead, the
messages are temporarily buffered by the End Device’s parent. Once awake, the End
Device can then ask or ‘poll’ its parent for data.

Data polling is performed using the function ZPS_eAplZdoPoll() in the End Device
application. This function requests the buffered data and should normally be called
immediately after waking from sleep. If the poll request is successfully sent to the
parent, a ZPS_EVENT_NWK_POLL_CONFIRM stack event will occur on the End
Device. The subsequent arrival of data from the parent is indicated by the stack event
ZPS_EVENT_AF_DATA_INDICATION. Any messages forwarded from the parent
should then be collected from the relevant message queue using the RTOS function
OS_eCollectMessage(), just as for normal data reception described in Section 5.5.2.

Application design issues concerned with transferring data to a sleeping End Device
are outlined in Appendix B.2.

5.5.4 Security in Data Transfers

The ‘send data’ functions for unicast, broadcast, group transfer and bound transfer
contain a parameter to select the required security setting for the protection of the sent
message. In the NXP ZigBee PRO software, there are currently three security options,
as follows:

 No security

 Network-level security

 Application-level security

Application-level security is only available for unicast and bound transfers, while
network-level security is available for all transfer types except inter-PAN transfers.

Network-level and application-level security are detailed in Section 5.8.

Note: End Devices that are not enabled for sleep can
receive messages directly and therefore do not need to
poll. An End Device is pre-configured as either sleeping
or non-sleeping via the End Device parameter Sleeping
in the ZPS Configuration Editor (see Section 12.2.2).
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 85

Chapter 5
Application Coding with ZigBee PRO APIs

5.6 Leaving and Rejoining the Network

This section describes how a node may leave the network and later rejoin either the
same network or a different network.

5.6.1 Leaving the Network

A node may leave the network intentionally or unintentionally:

 The node may be intentionally (and temporarily) removed from the network for
maintenance work, such as the replacement of batteries.

 The node may unintentionally leave the network due to unforeseen
circumstances, such as a broken radio link with its parent (an obstacle may
have been introduced into the path of the signal).

A node can be intentionally removed from the network using the function
ZPS_eAplZdoLeaveNetwork(), which issues a leave request. The target node can
be the requesting node itself or a child of the requesting node. The application may be
designed to call this function when a button is pressed on the requesting node.

When calling ZPS_eAplZdoLeaveNetwork():

 You can specify whether the children of the leaving node should also be
requested to leave the network. If this is the case, the leaving node will first
automatically call ZPS_eAplZdoLeaveNetwork() for each of its children.

 You can specify whether the leaving node should immediately attempt to rejoin
the same network after leaving.

The stack event ZPS_EVENT_NWK_LEAVE_INDICATION is generated on the node
which has been requested to leave (this event is also generated when a neighbouring
node has left the network). Once a node has been successfully removed from the
network as the result of a call to ZPS_eAplZdoLeaveNetwork(), the stack event
ZPS_EVENT_NWK_LEAVE_CONFIRM is generated on the requesting node.

Note 1: Only ZigBee ‘standard security’ is available.
‘High security’, which is implemented at the ZigBee
stack APL (Application) layer, is not currently
implemented in the NXP ZigBee PRO software.

Note 2: No security is available for inter-PAN transfers
(to other networks).

Note 3: When application-level security is used in
sending data, the IEEE/MAC address and network
address of the target node must be available through
the local Address Map table - see Section 5.2.3.
86 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
The function ZPS_eAplZdpMgmtLeaveRequest() is also provided which can be
used to request a remote node to leave the network.

Some profiles permit a Router to ignore leave request messages. This is to prevent a
rogue node from disrupting the network. By default, a Router will always act on leave
request messages. However, if the function ZPS_vNwkNibSetLeaveAllowed() is
called with the bLeave parameter as FALSE, the Router will ignore network leave
requests. End Devices always act on leave requests from their parent and ignore
leave requests from other nodes.

5.6.2 Rejoining the Network

A node may leave its network - for example, by:

 losing radio contact with its parent - the stack on the ‘orphaned’ node will detect
this loss and automatically attempt to rejoin the network

 calling ZPS_eAplZdoLeaveNetwork() - the node will automatically attempt to
rejoin the network only if an immediate rejoin has been requested in the
function call

If the node successfully rejoins the network, the stack event
ZPS_EVENT_NWK_NEW_NODE_HAS_JOINED is generated on the parent node
and one of the following stack events is generated on the joined node:

 ZPS_EVENT_NWK_JOINED_AS_ROUTER (if joined as a Router)

 ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE (if joined as an End Device)

These events contain the network address that the parent has allocated to the joined
node (this may be different from the network address that the node previously had).

If the join request is unsuccessful, the ZPS_EVENT_NWK_FAILED_TO_JOIN event
is generated on the requesting node.

If an automatic rejoin has failed or has not been requested, the function
ZPS_eAplZdoRejoinNetwork() can be used to request a rejoin (this function must be
called on the node that needs to rejoin). The application may be designed to call this
function when a button is pressed on the node. The result of this function call will be
indicated by means of the above events.

The function ZPS_eAplZdpMgmtDirectJoinRequest() is also provided which
submits a request to a remote parent to allow a particular node to join it. In addition,
the function ZPS_eAplZdpMgmtPermitJoiningRequest() is provided which allows
joining to be enabled/disabled on a remote node.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 87

Chapter 5
Application Coding with ZigBee PRO APIs

Note 1: When a device rejoins a network, the ‘permit
joining’ status on the potential parent is ignored.

Note 2: When a device joins the network, its application
may call ZPS_eAplZdpDeviceAnnceRequest() to
announce the device’s membership and network
address to the rest of the network. The information is
sent in a Device_annce announcement, which must be
collected by the recipient nodes using the RTOS
function OS_eCollectMessage().

Caution: If a node rejoins the same secured network
but its stack context data was cleared before the rejoin
(by calling PDM_vDelete()), data sent by the node will
be rejected by the destination node since the frame
counter has been reset on the source node. Therefore,
you are not recommended to clear the stack context
data before a rejoin. For more information and advice,
refer to Appendix B.3.
88 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
5.7 Return Codes and Extended Error Handling

When a ZigBee PRO API function is called, a code is normally returned on completion
of the function to indicate the outcome. This code is taken from one of the following:

 ZPS_E_SUCCESS

 APS return codes, listed and described in Section 9.2.2

 NWK return codes, listed and described in Section 9.2.3

 MAC return codes, listed and described in Section 9.2.4

An extended error handling mechanism can be optionally implemented which allows
more detail to be obtained about certain errors that can occur during function
execution. The particular errors are:

 0xA3: ZPS_APL_APS_E_ILLEGAL_REQUEST

 0xA6: ZPS_APL_APS_E_INVALID_PARAMETER

 0xC2: ZPS_NWK_ENUM_INVALID_REQUEST

The extended error codes are listed and described in Section 9.2.5.

In order to implement the extended error handling mechanism, you must register a
callback function using the function ZPS_vExtendedStatusSetCallback(). This
registration function must be called before invoking the first API function for which
extended error handling is required. The registered callback function will then be
invoked during execution of the API function if one of the above errors occurs. The
callback function will return an extended error code (from those listed in Section 9.2.5)
but the API function will return only the basic error code.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 89

Chapter 5
Application Coding with ZigBee PRO APIs

5.8 Implementing ZigBee Security

The NXP ZigBee PRO APIs allow ZigBee ‘standard security’ to be implemented,
which applies key-based encryption to communications between network nodes. The
message frame content generated at the NWK layer and higher is encrypted using
128-bit AES-based encryption (see Section 1.8). The NWK payload of the frame is
encrypted, and the NWK header and payload are integrity-protected with a 32-bit
Message Integrity Code (MIC).

Two types of security can be applied:

 Network-level security: This uses a ‘network’ key which is common
throughout the network and is used to encrypt/decrypt all communications
between all nodes.

 Application-level security: This uses an application ‘link’ key which is used
(in addition to the network key) to encrypt/decrypt communications between a
particular pair of nodes.

If security is enabled in a ZigBee network then network-level security is always used,
while application-level security is optional. Security is enabled on a node via the
device parameter Security Enabled in the ZPS Configuration Editor. Enabling security
also enables many-to-one routing towards the Trust Centre, which becomes a network
concentrator (see Section 2.5.3).

A Trust Centre must be nominated (see Section 1.8) using the ZPS Configuration
Editor. The Co-ordinator is normally chosen as the Trust Centre. The maximum
number of nodes that will require the services of the Trust Centre must be set on the
nominated node using the network parameter Route Record Table Size in the ZPS
Configuration Editor (the default number is 4).

Security can be set up in the application code using the function
ZPS_vAplSecSetInitialSecurityState(), which must be called before
ZPS_eAplAfInit() and ZPS_eAplZdoStartStack() - see Section 5.1.

Once ZPS_vAplSecSetInitialSecurityState() has been called and the stack has
been started, the stack will automatically manage the subsequent network-level
security set-up and implementation. Network-level security is established using an
initial security key which must be specified in the function call. This key can be one of
the following types:

 Pre-configured network key

 Default network key

 Pre-configured global link key

 Pre-configured unique link key

Note: As an alternative to using the function
ZPS_vAplSecSetInitialSecurityState() in the
application code, ZigBee security can be set up in the
ZPS Configuration Editor (see Section 5.8.1).
90 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
The network-level security set-up process depends on the type of key specified - the
different set-up processes are described in Section 5.8.1.

Once network-level security is set up, a particular pair of nodes can opt to use
application-level security for private communications between the two nodes -
the application-level security set-up process is described in Section 5.8.2.

Network key modification is then described in Section 5.8.3.

5.8.1 Network-level Security Set-up

The function ZPS_vAplSecSetInitialSecurityState() initiates the set-up process for
network-level security and requires an initial security key, which can be one of three
types (listed above). These key types and the corresponding set-up processes are
described below.

Pre-configured Network Key

The pre-configured network key is pre-programmed into all the network nodes
(including the Trust Centre). As an alternative to specifying this key in the application
code, the key can be set through the parameter Initial Security Key in the ZPS
Configuration Editor by first specifying the key for the Trust Centre and then for the
other nodes.

This key can be used immediately to encrypt/decrypt network communications.

This network key does not need to be transported over-air and so is not exposed to
the risk of detection.

Default Network Key

The default network key is initially held only by the Trust Centre - it is either randomly
generated or pre-set on the Trust Centre (to randomly generate the key, it is necessary
to provide a NULL pointer in the key parameter in the function call). As an alternative
to specifying this key in the application code, the key can be set through the parameter
Initial Security Key in the ZPS Configuration Editor by specifying the key for the Trust
Centre only.

The Trust Centre must send this key unencrypted to any node that joins the network
directly via the Trust Centre. When a node joins the network via an existing Router,
this parent node must request the key from the Trust Centre on behalf of the new child
(the Trust Centre must verify that the new node is not blacklisted). While the Trust
Centre can transport the key encrypted down to the parent, the key will be
unencrypted during the final hop from the parent to the child.

Therefore, this key is exposed to the risk of detection during one hop while being
transported to a new node.

Pre-configured Global Link Key

A pre-configured link key is used to secure communication between the Trust Centre
and the joining node. Each node uses the same pre-configured link key, which is
programmed into all nodes and into the Trust Centre.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 91

Chapter 5
Application Coding with ZigBee PRO APIs

The Trust Centre generates a random network key to be used in network-level
communications between all nodes. When a new node joins the network, the Trust
Centre transports this network key, encrypted using the pre-configured link key, to the
newly joined node.

Pre-configured Unique Link Key

An individual pre-configured link key is used to secure communication between the
Trust Centre and one other node. Thus, a different pre-configured link key is used for
each node of the network, and must be pre-programmed into the node and into the
Trust Centre. As an alternative to specifying this key in the application code, the key
can be set through the Key Descriptor parameter Key in the ZPS Configuration Editor
by specifying the key first for the Trust Centre and then for the other node.
The IEEE/MAC address of the node must also be pre-programmed into the Trust
Centre along with the link key.

The Trust Centre generates a random network key to be used in network-level
communications between all nodes. When a new node joins the network, the Trust
Centre transports this network key, encrypted using the pre-configured link key, to the
newly joined node.

This key type provides the most secure method of setting up network-level security.

Note 1: The application on the Trust Centre can take
control (from the stack) of whether a node is allowed to
join the network (possibly using its pre-configured link
key) through a user-defined callback function. If
required, this callback function must be registered using
the function ZPS_vTCSetCallback(). For more details,
refer to the function description on page 135.

Note 2: When a device joins a ZigBee network and
requires authentication which involves transporting a
network key to it, the parent opens an authentication
interval during which the joining device must announce
itself to the network. This interval begins from the
transmission of a rejoin response (if the device joins
through a NWK layer rejoin) or an association response
(if it joins through an IEEE 802.15.4 association). If the
device fails to announce itself during this interval, the
parent removes the Neighbour table entry for the joining
device to ensure that the child capacity of the parent is
maintained. This authentication interval must be set on
all potential parent nodes via the network parameter
APS Security Timeout Period (see Section 10.7), which
is 1 second by default but 6 seconds is a more
reasonable setting.
92 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
5.8.2 Application-level Security Set-up

Once network-level security has been set up (as described in Section 5.8.1),
application-level security can be set up for an individual pair of nodes. Application-
level security is used when the communications between the two nodes must remain
private from the rest of the network. This requires their communications to be
encrypted/decrypted using an application link key which may be global or unique.

 A global link key is shared between all nodes on the network. Frame counters
are not checked for freshness when using a global link key.

 A unique link key is exclusive to a pair of nodes which need to communicate.
Frame counters are checked for freshness to prevent rogue nodes replaying
stale messages. This provides the most secure method of application security.

In order to set up application-level security between two nodes, the function
ZPS_eAplZdoRequestKeyReq() must be called on one of the nodes to request an
application link key from the Trust Centre. The Trust Centre responds to this request
by sending the same application link key to both nodes. The Trust Centre will ignore
the request if the node is not permitted to send APS secured data. Each of these
responses are encrypted as follows:

 If a link key exists for communications between the Trust Centre and the target
node (e.g. the pre-configured link key described in Section 5.8.1), this key and
the network key are both used to encrypt the transported application link key.

 Otherwise, only the network key is used to encrypt the application link key.

On receiving the application link key, the ZigBee stack on the two nodes will
automatically save the key. The event ZPS_EVENT_ZDO_LINK_KEY is generated to
indicate that the link key is available. Any subsequent unicast or bound data transfer
between these two nodes can opt to use this key (ZPS_E_APL_AF_SECURE_APL).

Note 1: An application link key can be introduced
directly by the application using the function
ZPS_eAplZdoAddReplaceLinkKey(). If a link key
already exists for the same node-pair, it will be replaced
by the new link key. This function must be called on both
nodes in the pair.

Note 2: When an application link key is used to encrypt
a data packet, the packet payload is encrypted at the
application level using the link key and then the packet
is encrypted at the ZigBee stack NWK layer using the
network key (therefore, both keys are used).

Note 3: When application-level security is used in
sending data, the IEEE/MAC address and network
address of the target node must be available through
the local Address Map table - see Section 5.2.3.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 93

Chapter 5
Application Coding with ZigBee PRO APIs

5.8.3 Network Key Modification

It is possible to store more than one network key on a node, although only one key can
be active at any one time. Each network key is identified by means of a unique ‘key
sequence number’ assigned by the Trust Centre application.

A new network key can be installed in a node in one of two ways:

 Distributed by the Trust Centre to one or multiple nodes of the network using
the function ZPS_eAplZdoTransportNwkKey(), which requires the associated
key sequence number to be specified

 Requested from the Trust Centre by calling the function
ZPS_eAplZdoRequestKeyReq() on the node that needs the network key

On reaching its destination(s), the transported key is automatically saved but not
activated. A stored network key can be adopted as the active key using the function
ZPS_eAplZdoSwitchKeyReq(), which is called on the Trust Centre and which
identifies the required key by means of its unique sequence number.
94 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Part II:
Reference Information
JN-UG-3101 v1.5 © NXP Laboratories Ltd 2017 95

96 © NXP Laboratories Ltd 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
6. ZigBee Device Objects (ZDO) API

The chapter describes the resources of the ZigBee Device Objects (ZDO) API. This
API is primarily concerned with starting, forming and modifying a ZigBee PRO
network. The API is defined in the header file zps_apl_zdo.h.

In this chapter:

 Section 6.1 details the ZDO API functions

 Section 6.2 details the ZDO API enumerations

6.1 ZDO API Functions

The ZDO API functions are divided into the following categories:

 Network Deployment functions, described in Section 6.1.1

 Security functions, described in Section 6.1.2

 Addressing functions, described in Section 6.1.3

 Routing functions, described in Section 6.1.4

 Object Handle functions, described in Section 6.1.5

 Optional Cluster function, described in Section 6.1.6
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 97

Chapter 6
ZigBee Device Objects (ZDO) API

6.1.1 Network Deployment Functions

The ZDO Network Deployment functions are used to start the ZigBee PRO stack, and
allow devices to join the network and bind to each other, as well as leave the network.

The functions are listed below, along with their page references:

Function Page

ZPS_eAplZdoStartStack 99

ZPS_eAplZdoGetDeviceType 100

ZPS_eAplZdoDiscoverNetworks 101

ZPS_eAplZdoJoinNetwork 102

ZPS_eAplZdoRejoinNetwork 103

ZPS_eAplZdoDirectJoinNetwork 104

ZPS_eAplZdoOrphanRejoinNetwork 105

ZPS_eAplZdoPermitJoining 106

ZPS_u16AplZdoGetNetworkPanId 107

ZPS_u64AplZdoGetNetworkExtendedPanId 108

ZPS_u8AplZdoGetRadioChannel 109

ZPS_eAplZdoBind 110

ZPS_eAplZdoUnbind 111

ZPS_eAplZdoBindGroup 112

ZPS_eAplZdoUnbindGroup 113

ZPS_ePurgeBindTable 114

ZPS_eAplZdoPoll 115

ZPS_eAplZdoLeaveNetwork 116

ZPS_vNwkNibSetLeaveAllowed 118

ZPS_vNwkSendNwkStatusCommand 119

ZPS_vRemoveMacTableEntry 120

ZPS_vSaveAllZpsRecords 121

Note: The ZDO initialisation and start stack functions
use network parameter values that have been pre-set
and saved using the ZPS Configuration Editor - see
Chapter 12.
98 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoStartStack

Description

This function starts the ZigBee PRO stack. The steps taken depend on the node type:

 If the device is the Co-ordinator, this function will start the network formation process.

 If the device is a Router or End Device, this function will start the network discovery
process - that is, the device will search for a network to join.

When the stack starts, the 2400-MHz radio channel to be used by the device is
selected. The channels (in the range 11 to 26) available to the device should be
specified in advance using the ZPS Configuration Editor (see Chapter 12) and can
be either of the following:

 A fixed channel

 A set of channels for a channel scan:

 If the device is the Co-ordinator, this is the set of channels that the device will
scan to find a suitable operating channel for the network.

 If the device is a Router or End Device, this is the set of channels that the device
will scan to find a network to join.

If this function successfully initiates network formation or discovery,
ZPS_E_SUCCESS will be returned. Subsequent results from this process will then
be reported through stack events (see Section 9.1 for details of these events):

 If the Co-ordinator successfully creates a network, the event
ZPS_EVENT_NWK_STARTED is generated. Otherwise, the event
ZPS_EVENT_NWK_FAILED_TO_START is generated.

 When the network discovery process for a Router or End Device has completed, the
subsequent actions depend on the Extended PAN ID (EPID) that has been pre-set
using the ZPS Configuration Editor:

 If a zero EPID value was pre-set, the stack event
ZPS_EVENT_NWK_DISCOVERY_COMPLETE is generated. This includes a list
of the detected networks and the index (in the list) of the recommended network to
join. You can then call ZPS_eAplZdoJoinNetwork() to join the desired network.

 If a non-zero EPID value was pre-set, the device will automatically attempt to join
the network with this EPID, provided that such a network has been discovered.
Note that the ‘permit joining’ setting of the potential parent will be ignored.

The maximum depth (number of levels below the Co-ordinator) of the network is 15.

Parameters

None

Returns

ZPS_E_SUCCESS (stack started and network formation/discovery begun)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoStartStack(void);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 99

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoGetDeviceType

Description

This function can be used to obtain the ZigBee device type (Co-ordinator, Router or
End Device) of the local node.

Parameters

None

Returns

ZigBee device type, one of:

ZPS_ZDO_DEVICE_COORD (Co-ordinator)

ZPS_ZDO_DEVICE_ROUTER (Router)

ZPS_ZDO_DEVICE_ENDDEVICE (End Device)

ZPS_teZdoDeviceType ZPS_eAplZdoGetDeviceType(void);
100 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoDiscoverNetworks

Description

This function can be used by a Router or End Device to initiate a network discovery
- that is, to find a network to join.

A network discovery is performed when the stack is started using the function
ZPS_eAplZdoStartStack(). The function ZPS_eAplZdoDiscoverNetworks() can
be used to perform subsequent network discoveries (for example, if the initial search
did not yield any suitable networks).

As part of this function call, you must specify a value which indicates the 2400-MHz
radio channels (numbered 11 to 26) to be used in the network search. There are two
ways of setting this parameter:

 A single value in the range 11 to 26 can be specified, indicating that the corresponding
channel (and no other) must be used - for example, 12 indicates use channel 12.

 A 32-bit mask can be used to specify a set of channels that the device will scan to find
a network - each of bits 11 to 26 represents the corresponding radio channel, where the
channel will be included in the scan if the bit is set to 1 (and excluded if cleared to 0).
Therefore, the value 0x07FFF800 represents all channels.

Note that if an invalid value is specified for this parameter, the default value of
0x07FFF800 (all channels) will be used.

If this function successfully initiates a network discovery, ZPS_E_SUCCESS will be
returned. The network discovery results will then be reported through the event
ZPS_EVENT_NWK_DISCOVERY_COMPLETE (for details of this event, refer to
Section 7.2.2.9). This includes a list of the detected networks and the index (in the
list) of the recommended network to join. You should then call
ZPS_eAplZdoJoinNetwork() to join the desired network.

Parameters

u32ChannelMask Radio channel(s) for network discovery (see above)

Returns

ZPS_E_SUCCESS (network discovery started)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoDiscoverNetworks(
uint32 u32ChannelMask);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 101

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoJoinNetwork

Description

This function can be used by a Router or End Device to send a request to join a
particular network, following a network discovery.

The required network is specified using its network descriptor, obtained in a
ZPS_EVENT_NWK_DISCOVERY_COMPLETE event which results from a network
discovery previously implemented using ZPS_eAplZdoStartStack() or
ZPS_eAplZdoDiscoverNetworks(). For details of this event, refer to Section
7.2.2.9.

If the join request is successfully sent, the function will return ZPS_E_SUCCESS
(note that this does not mean that device has joined the network). The result of the
join request will then be reported through a stack event (see Section 9.1 for details
of these events):

 If the device successfully joined the network as a Router, the event
ZPS_EVENT_NWK_JOINED_AS_ROUTER is generated. The allocated 16-bit
network address of the Router is returned as part of this stack event.

 If the device successfully joined the network as an End Device, the event
ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE is generated. The allocated 16-bit
network address of the End Device is returned as part of this stack event.

 If the join request was unsuccessful, the event ZPS_EVENT_NWK_FAILED_TO_JOIN
is generated.

Note that nodes can join a ZigBee PRO network to a maximum depth of 15 (levels
below the Co-ordinator).

Parameters

*psNetworkDescr Pointer to network descriptor of network to join

Returns

ZPS_E_SUCCESS (join request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoJoinNetwork(
ZPS_tsNwkNetworkDescr *psNetworkDescr);

Note: This function is not needed if the network to join has
been pre-determined by setting the advanced device
parameter APS Use Extended PAN Id using the ZPS
Configuration Editor. In this case, a join will be attempted
automatically after starting the stack.
102 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoRejoinNetwork

Description

This function can be used by an active Router or End Device to send a request to
rejoin its previous network. The function should be called if the application detects
that it has lost its connection to the network - this is indicated by an excessive number
of failed communications (for example, with many missing acknowledgements).

Options are provided to first perform a network discovery to find potential parents to
join or simply rejoin the previous parent.

If the rejoin request is successfully sent, the function will return ZPS_E_SUCCESS
(note that this does not mean that device has rejoined the network). The result of the
rejoin request will then be reported through a stack event (see Section 9.1 for details
of these events):

 If the device successfully rejoined the network as a Router, the event
ZPS_EVENT_NWK_JOINED_AS_ROUTER is generated.

 If the device successfully rejoined the network as an End Device, the event
ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE is generated.

 If the rejoin request was unsuccessful, the event
ZPS_EVENT_NWK_FAILED_TO_JOIN is generated.

In the case of a successful rejoin, the node will retain its previously allocated 16-bit
network address.

Note that the ‘permit joining’ status of the potential parent is ignored during a rejoin.

Parameters

bWithDiscovery Specifies whether a network discovery is required:
TRUE - perform network discovery before rejoining
FALSE - rejoin previous parent

Returns

ZPS_E_SUCCESS (rejoin request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoRejoinNetwork(
bool_t bWithDiscovery);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 103

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoDirectJoinNetwork

Description

This function can be used on a Router and on the Co-ordinator to pre-determine the
child nodes that will directly join it. The function is called to register each child node
separately, and the IEEE/MAC and network addresses of the child node must be
specified.

The function adds the registered node to its Neighour table (it actually adds the
node’s IEEE/MAC address to the MAC Address table and then includes the index of
this address in a Neighbour table entry for the node). The function must be called
only when the parent node is fully up and running in the network. Since the child node
has not yet joined the network but is in the Neighbour table, it will be perceived by
the parent as having been orphaned. Therefore, when the child node attempts to join
the network, it must perform a rejoin as an orphan by calling the function
ZPS_eAplZdoOrphanRejoinNetwork().

Parameters

u64Addr IEEE/MAC address of child node to be registered

u16Addr Network address of child node to be registered

u8Capability A bitmap indicating the operational capabilities of the child
node - this bitmap is detailed in Table 8 on page 216

Returns

ZPS_E_SUCCESS

(child node successfully registered)

ZPS_APL_APS_E_ILLEGAL_REQUEST

(address 0x0, address 0xFFFFFFFFFFFFFFFF, own address, ZDO busy)

ZPS_NWK_ENUM_ALREADY_PRESENT

ZPS_NWK_ENUM_NEIGHBOR_TABLE_FULL

ZPS_teStatus ZPS_eAplZdoDirectJoinNetwork(
uint64 u64Addr,
uint16 u16Addr,
uint8 u8Capability);

Caution: You should only modify to the Neighour table using
this function and never write to it directly.
104 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoOrphanRejoinNetwork

Description

This function can be used by an orphaned node to attempt to rejoin the network - the
orphaned node may be an End Device or a Router. The function should also be used
for a first-time join for which the parent has been pre-determined using the function
ZPS_eAplZdoDirectJoinNetwork().

The function starts the stack on the node. Therefore, when this function is used, there
is no need to explicitly start the stack using ZPS_eAplZdoStartStack().

If the rejoin request is successfully sent, the function will return ZPS_E_SUCCESS
(note that this does not mean that device has rejoined the network). The result of the
rejoin request will then be reported through a stack event (see Section 9.1 for details
of these events):

 If the device successfully rejoined the network as a Router, the event
ZPS_EVENT_NWK_JOINED_AS_ROUTER is generated.

 If the device successfully rejoined the network as an End Device, the event
ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE is generated.

 If the rejoin request was unsuccessful, the event
ZPS_EVENT_NWK_FAILED_TO_JOIN is generated.

In the case of a successful rejoin of a genuinely orphaned node, the node will retain
its previously allocated 16-bit network address.

Note that the ‘permit joining’ status of the potential parent is ignored during a rejoin.

Parameters

None

Returns

ZPS_E_SUCCESS

(rejoin request successfully sent)

ZPS_APL_APS_E_ILLEGAL_REQUEST

(missing EPID, called from Co-ordinator, ZDO busy)

ZPS_teStatus ZPS_eAplZdoOrphanRejoinNetwork(void);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 105

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoPermitJoining

Description

This function can be used on a Router or the Co-ordinator to control whether new
child nodes are allowed to join it - that is, to set the node’s ‘permit joining’ status. The
function can be used to enable joining permanently or for a fixed duration, or to
disable joining (permanently).

The specified parameter value determines the ‘permit joining’ status, as follows:

0 Disables joining

1 - 254 Enables joining for specified time interval, in seconds

255 Enables joining permanently

For example, if the parameter is set to 60, joining will be enabled for the next 60
seconds and then automatically disabled.

Parameters

u8PermitDuration Time duration, in seconds, for which joining will be permitted
(see above)

Returns

ZPS_E_SUCCESS (‘permit joining’ status successfully set)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoPermitJoining(
uint8 u8PermitDuration);

Caution: The ‘permit joining’ setting of a device is ignored
during a join attempt in which a non-zero Extended PAN ID is
specified on the joining device and during any rejoin attempt.
106 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_u16AplZdoGetNetworkPanId

Description

This function obtains the 16-bit PAN ID of the ZigBee network to which the local node
currently belongs.

Parameters

None

Returns

PAN ID of current network

uint16 ZPS_u16AplZdoGetNetworkPanId(void);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 107

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_u64AplZdoGetNetworkExtendedPanId

Description

This function obtains the 64-bit Extended PAN ID (EPID) of the ZigBee PRO network
to which the local node currently belongs.

Parameters

None

Returns

Extended PAN ID of current network

uint64 ZPS_u64AplZdoGetNetworkExtendedPanId(void)
108 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_u8AplZdoGetRadioChannel

Description

This function obtains the 2400-MHz band channel in which the local node is currently
operating. The channel is represented by an integer in the range 11 to 26.

Parameters

None

Returns

Radio channel number (in range 11-26)

uint8 ZPS_u8AplZdoGetRadioChannel(void);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 109

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoBind

Description

This function requests a binding to be created between an endpoint on the local node
and an endpoint on a remote node. The source endpoint and cluster must be
specified, as well as the destination node and endpoint. The destination node is
specified using both its 64-bit IEEE (MAC) address and its 16-bit network address.

The binding is added to the binding table on the local node.

A binding to multiple remote endpoints (collected into a group) can be created using
the function ZPS_eAplZdoBindGroup().

Parameters

u16ClusterId Identifier of cluster on source node to be bound

u8SrcEndpoint Number of endpoint (1-240) on source node to be bound

u16DstAddr 16-bit network address of destination for binding

u64DstIeeeAddr 64-bit IEEE (MAC) address of destination for binding

u8DstEndpoint Number of endpoint on destination node to be bound

Returns

ZPS_E_SUCCESS (binding successfully created)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoBind(
uint16 u16ClusterId,
uint8 u8SrcEndpoint,
uint16 u16DstAddr,
uint64 u64DstIeeeAddr,
uint8 u8DstEndpoint);
110 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoUnbind

Description

This function requests an existing binding to be removed between an endpoint on the
local node and an endpoint on a remote node, where this binding was created using
the function ZPS_eAplZdoBind(). The source endpoint and cluster must be
specified, as well as the destination node and endpoint. The destination node is
specified using both its 64-bit IEEE (MAC) address and its 16-bit network address.

The binding is removed from the binding table on the local node.

Parameters

u16ClusterId Identifier of bound cluster on source node

u8SrcEndpoint Number of bound endpoint (1-240) on source node

u16DstAddr 16-bit network address of destination for binding

u64DstIeeeAddr 64-bit IEEE (MAC) address of destination for binding

u8DstEndpoint Number of bound endpoint on destination node

Returns

ZPS_E_SUCCESS (binding successfully removed)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoUnbind(
uint16 u16ClusterId,
uint8 u8SrcEndpoint,
uint16 u16DstAddr,
uint64 u64DstIeeeAddr,
uint8 u8DstEndpoint);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 111

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoBindGroup

Description

This function requests a binding to be created between an endpoint on the local node
and multiple endpoints on remote nodes. The source endpoint and cluster must be
specified, as well as the destination nodes/endpoints for the binding, which must be
specified using a 16-bit group address, previously set up using
ZPS_eAplZdoGroupEndpointAdd().

The binding is added to the binding table on the local node.

Parameters

u16ClusterId Identifier of cluster on source node to be bound

u8SrcEndpoint Number of endpoint (1-240) on source node to be bound

u16DstGrpAddr 16-bit group address of destination group for binding

Returns

ZPS_E_SUCCESS (binding successfully created)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoBindGroup(
uint16 u16ClusterId,
uint8 u8SrcEndpoint,
uint16 u16DstGrpAddr);
112 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoUnbindGroup

Description

This function requests an existing binding to be removed between an endpoint on the
local node and a group of endpoints on remote nodes, where this binding was
created using the function ZPS_eAplZdoBindGroup(). The source endpoint and
cluster must be specified, as well as the destination nodes/endpoints for the binding,
which must be specified using a 16-bit group address.

The binding is removed from the binding table on the local node.

Parameters

u16ClusterId Identifier of bound cluster on source node

u8SrcEndpoint Number of bound endpoint (1-240) on source node

u16DstGrpAddr 16-bit group address of bound destination group

Returns

ZPS_E_SUCCESS (binding successfully removed)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoUnbindGroup(
uint16 u16ClusterId,
uint8 u8SrcEndpoint,
uint16 u16DstGrpAddr);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 113

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_ePurgeBindTable

Description

This function removes all bindings from the binding table on the local node.

Parameters

None

Returns

ZPS_E_SUCCESS (binding successfully removed)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_ePurgeBindTable(void);
114 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoPoll

Description

This function can be used by an End Device to poll its parent for pending data.

Since an End Device is able to sleep, messages addressed to the End Device are
buffered by the parent for delivery when the child is ready. This function requests this
buffered data and should normally be called immediately after waking from sleep.

This function call will trigger a confirmation event,
ZPS_EVENT_NWK_POLL_CONFIRM, if the poll request is successfully sent to the
parent. The subsequent arrival of data from the parent is indicated by a
ZPS_EVENT_APS_DATA_INDICATION event. Any messages forwarded from the
parent should then be collected using the RTOS function OS_eCollectMessage().

Parameters

None

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoPoll(void);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 115

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoLeaveNetwork

Description

This function can be used to request a node to leave the network. The leaving node
can be a child of the requesting node or can be the requesting node itself (excluding
the Co-ordinator).

The node being asked to leave the network is specified by means of its IEEE (MAC)
address (or zero, if a node is requesting itself to leave the network). You must also:

 Use the parameter bRemoveChildren to specify whether children of the leaving node
must leave their parent - if this is the case, the leaving node will automatically call
ZPS_eAplZdoLeaveNetwork() for each of its children. This parameter must always be
set to FALSE when the function is called on an End Device (as there are no children).

 Use the parameter bRejoin to specify whether the leaving node must attempt to rejoin
the network (probably via another parent) immediately after leaving.

If this function successfully initiates the removal of a node, ZPS_E_SUCCESS will
be returned. Subsequently, when the removal is complete, the stack event
ZPS_EVENT_NWK_LEAVE_CONFIRM is generated. For details of this event, refer
to Section 7.2.2.12.

Parameters

u64Addr 64-bit IEEE (MAC) address of node to leave network
(zero value will cause requesting node to leave network)

bRemoveChildren Boolean value indicating whether children of leaving node
must leave their parent:

TRUE: Children to leave
FALSE: Children not to leave

bRejoin Boolean value indicating whether leaving node must attempt
to rejoin network immediately after leaving:

TRUE: Rejoin network immediately
FALSE: Do not rejoin network

ZPS_teStatus ZPS_eAplZdoLeaveNetwork(
uint64 u64Addr,
bool bRemoveChildren,
bool bRejoin);

Tip: If you wish to move a whole network branch from under
the requesting node to a different parent node, set
bRemoveChildren to FALSE and bRejoin to TRUE.
116 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Returns

ZPS_E_SUCCESS (removal of node successfully started)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 117

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_vNwkNibSetLeaveAllowed

Description

This function controls the action of a Router node on receiving a leave request. It
has no effect on a Co-ordinator or End Device.

 If called with bLeave set to TRUE, the Router will obey a leave request.

 If called with bLeave set to FALSE, the Router will ignore leave request messages.

Parameters

pvNwk Pointer to NWK layer instance

bLeave Boolean value indicating whether the Router will leave the network when
requested or will ignore leave request messages:

TRUE - Obey leave request messages
FALSE - Ignore leave request messages

Returns

None

void ZPS_vNwkNibSetLeaveAllowed(void *pvNwk,
bool bLeave);
118 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_vNwkSendNwkStatusCommand

Description

This function can be used to send a network status command to another node. For
example, it can be used by an End Device to report a routing problem (concerning a
remote node) to its parent.

Parameters

pvNwk Pointer to NWK layer instance

u16DstAddress Network address of the remote node to which the status
command relates (e.g. the node for which a routing problem is
being reported)

u16TargetAddress Network address of the node to which the status command is
to be sent (e.g. the parent of the local node)

u8CommandId Value representing the network status command to be sent
(the possible values are provided in the ZigBee PRO
specification)

u8Radius Maximum number of hops permitted to target node (zero value
specifies that default maximum is to be used)

Returns

None

void ZPS_vNwkSendNwkStatusCommand(
void *pvNwk,
uint16 u16DstAddress,
uint16 u16TargetAddress,
uint8 u8CommandId,
uint8 u8Radius);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 119

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_vRemoveMacTableEntry

Description

This function can be used to remove the specified 64-bit IEEE/MAC address (of a
remote device) from the local MAC Address table.

It provides a safe mechanism for removing a MAC address from the table. The MAC
address may also be used elsewhere, so just removing it from the MAC Address
table may cause problems. The only safe method of removal is through this function.

The function will:

1. Remove the Neighbour table entry associated with the MAC address

2. Remove the address from the Address Map table

3. Remove the address from the MAC Address table

However, the MAC address can only be removed by this function if it is not used in
the Key Descriptor table, Trust Centre information base and Binding table. Before
calling this function, you must:

 Remove any associated link key using ZPS_eAplZdoRemoveLinkKey().

 If the local device is a Trust Centre, remove the remote device from the Trust Centre
information base using ZPS_bAplZdoTrustCenterRemoveDevice().

 Remove any associated bindings using ZPS_eAplZdoUnbind().

Parameters

u64MacAddress 64-bit IEEE/MAC address of node to be removed from the
MAC Address table

Returns

None

void ZPS_vRemoveMacTableEntry(uint64 u64MacAddress);
120 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_vSaveAllZpsRecords

Description

This function can be used to save all ZigBee PRO stack context data (that is
persisted in PDM records) in non-volatile memory.

Parameters

None

Returns

None

void ZPS_vSaveAllZpsRecords(void);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 121

Chapter 6
ZigBee Device Objects (ZDO) API

6.1.2 Security Functions

The ZDO Security functions are used to set up network security (at the ‘standard’
level), including the keys used in the encryption/decryption of network
communications.

The functions are listed below, along with their page references:

Function Page

ZPS_vAplSecSetInitialSecurityState 123

ZPS_eAplZdoTransportNwkKey 125

ZPS_eAplZdoSwitchKeyReq 126

ZPS_eAplZdoRequestKeyReq 127

ZPS_eAplZdoAddReplaceLinkKey 128

ZPS_eAplZdoRemoveLinkKey 129

ZPS_eAplZdoRemoveDeviceReq 130

ZPS_eAplZdoSetDevicePermission 131

ZPS_bAplZdoTrustCenterSetDevicePermissions 132

ZPS_bAplZdoTrustCenterGetDevicePermissions 133

ZPS_bAplZdoTrustCenterRemoveDevice 134

ZPS_vTCSetCallback 135

Note 1: Before using the above functions on a node,
security must be enabled on the node via the device
parameter Security Enabled in the ZPS Configuration
Editor (security is enabled by default).

Note 2: Enabling security also enables many-to-one
routing towards the Trust Centre, which will become a
network concentrator. You must set the maximum
number of nodes to be serviced by the Trust Centre
using its network parameter Route Record Table Size in
the ZPS Configuration Editor (the default number is 4).

Note 3: Many of the security settings and keys that are
set up using the above functions can alternatively be
pre-configured via the ZPS Configuration Editor.
122 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_vAplSecSetInitialSecurityState

Description

This function is used to configure the initial state of ZigBee security on the local node.
This requires a security key to be specified that will be used in setting up network-
level security. Note that before using this function, security must be enabled on the
node via the device parameter Security Enabled in the ZPS Configuration Editor.

You must provide a pointer to a security key of one of the following types:

 Default network key (only relevant to Trust Centre)

 Pre-configured network key

 Pre-configured link key

These keys are described in Section 5.8.1.

It is also possible to specify no network key. This option is required when the node is
in a network for which a ‘default network key’ has been defined on the Trust Centre.

You must also specify the sequence number for a default or pre-configured network
key (this number is used to uniquely identify the key).

A ZigBee Light Link (ZLL) network supports both the ZLL and Home Automation (HA)
joining mechanisms. This function must therefore be called twice:

1. Register the HA global link key with the state
ZPS_ZDO_PRECONFIGURED_LINK_KEY and the type
ZPS_APS_GLOBAL_LINK_KEY.

2. Register the ZLL key (production or test) with the state ZPS_ZDO_ZLL_LINK_KEY
and the type ZPS_APS_GLOBAL_LINK_KEY.

Parameters

eState The state of the key, one of:
ZPS_ZDO_NO_NETWORK_KEY
ZPS_ZDO_PRECONFIGURED_NETWORK_KEY
ZPS_ZDO_DEFAULT_NETWORK_KEY
ZPS_ZDO_PRECONFIGURED_LINK_KEY
ZPS_ZDO_ZLL_LINK_KEY

pu8Key Pointer to key

ZPS_teStatus ZPS_vAplSecSetInitialSecurityState(
ZPS_teZdoNwkKeyState eState,
uint8 *pu8Key,
uint8 u8KeySeqNum
ZPS_teApsLinkKeyType eKeyType);

Note: When this function is called on the Trust Centre, if a
‘default network key’ is selected but the parameter pu8Key is
set to a NULL pointer, the Trust Centre will generate a
random network key.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 123

Chapter 6
ZigBee Device Objects (ZDO) API

u8KeySeqNum Sequence number of specified network key
(parameter is ignored when specifying a link key)

eKeyType Type of key, one of:
ZPS_APS_UNIQUE_LINK_KEY
ZPS_APS_GLOBAL_LINK_KEY
(parameter is ignored when not specifying a link key)

Returns

ZPS_E_SUCCESS (security state successfully initialised)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
124 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoTransportNwkKey

Description

This function can be used on the Trust Centre to send the network key to one or
multiple nodes. On reaching the target node(s), the key is only stored but can be
subsequently designated the active network key using the function
ZPS_eAplZdoSwitchKeyReq().

The target node can be specified by means of its network address or IEEE/MAC
address. A broadcast to multiple nodes in the network can be achieved by specifying
a special network address or IEEE/MAC address - see Section 8.3.

If the destination is a single node, it is possible to send the key to the parent of the
destination node.

Note that this function will also reset the frame counter on the target node(s).

Parameters

u8DstAddrMode Type of destination address:

ZPS_E_ADDR_MODE_SHORT - 16-bit network address
ZPS_E_ADDR_MODE_IEEE - 64-bit IEEE/MAC address

All other values are reserved

uDstAddress Destination address (address type as specified through
u8DstAddrMode) - special broadcast addresses are detailed
in Section 8.3

au8Key[] Array containing the network key to be transported. This array
has a length equal to ZPS_SEC_KEY_LENGTH

u8KeySeqNum Sequence number of the specified key

bUseParent Indicates whether to send key to parent of target node:
TRUE - send to parent
FALSE - do not send to parent

u64ParentAddr 64-bit IEEE/MAC address of parent (if used)

Returns

ZPS_E_SUCCESS (key successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoTransportNwkKey(
uint8 u8DstAddrMode,
ZPS_tuAddress uDstAddress,
uint8 au8Key[ZPS_SEC_KEY_LENGTH],
uint8 u8KeySeqNum,
bool bUseParent,
uint64 u64ParentAddr);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 125

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoSwitchKeyReq

Description

This function can be used (normally by the Trust Centre) to request one or multiple
nodes to switch to a different active network key. The new network key is specified
using its unique sequence number and the key must have been pre-loaded into the
target node(s) using the function ZPS_eAplZdoTransportNwkKey() or
ZPS_eAplZdoRequestKeyReq().

The target node can be specified by means of its network address or IEEE/MAC
address. A broadcast to multiple nodes in the network can be achieved by specifying
a special network address or IEEE/MAC address - see Section 8.3.

Parameters

u8DstAddrMode Type of destination address:

ZPS_E_ADDR_MODE_SHORT - 16-bit network address
ZPS_E_ADDR_MODE_IEEE - 64-bit IEEE/MAC address

All other values are reserved

uDstAddress Destination address (address type as specified through
u8DstAddrMode) - special broadcast addresses are detailed
in Section 8.3

u8KeySeqNum Sequence number of new network key to adopt

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoSwitchKeyReq(
uint8 u8DstAddrMode,
ZPS_tuAddress uDstAddress,
uint8 u8KeySeqNum);
126 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoRequestKeyReq

Description

This function can be used to request an application link key or network key from the
Trust Centre:

 Application link key: This key will be used to encrypt/decrypt communications with
another ‘partner node’. The IEEE/MAC address of this partner node must be specified
as part of the function call. The Trust Centre will respond by sending the application link
key to both the local node and the partner node. When it arrives, this key will be
automatically saved by the stack and the event ZPS_EVENT_ZDO_LINK_KEY will be
generated once the link key has been installed and is ready to be used.

 Network key: This key can be used to encrypt/decrypt communications with all
network nodes. The Trust Centre will respond by sending the network key to the
requesting node. When it arrives, the key will be automatically saved by the stack but
not implemented (the key can be activated from the Trust Centre using the function
ZPS_eAplZdoSwitchKeyReq()).

In the case of requesting a network key, the function parameter u64IeeePartnerAddr
is ignored.

Parameters

u8KeyType Type of key to request:
1 - network key
2 - application link key
All other values reserved

u64IeeePartnerAddr 64-bit IEEE/MAC address of partner node (for link key only)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoRequestKeyReq(
uint8 u8KeyType,
uint64 u64IeeePartnerAddr);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 127

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoAddReplaceLinkKey

Description

This function can be used to introduce or replace the application link key on the local
node, where this key will be used to encrypt and decrypt communications with the
specified ‘partner node’.

The function must be called on both the local node and the partner node. Note that
the Trust Centre’s record of the application link key for this pair of nodes remains
unchanged.

If the JenOS Persistent Data Manager (PDM) module is enabled, this function will
also save the application link key to Non-Volatile Memory. This allows the key to be
automatically recovered during a subsequent cold start (e.g. following a power
failure).

Parameters

u64IeeeAddr 64-bit IEEE/MAC address of partner node for which the
specified link key is valid

au8Key[] Array containing the link key to be added/replaced. This array
has a length equal to ZPS_SEC_KEY_LENGTH

eKeyType The type of the key, one of:
ZPS_APS_UNIQUE_LINK_KEY
ZPS_APS_GLOBAL_LINK_KEY

Returns

ZPS_E_SUCCESS (link key successfully installed)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoAddReplaceLinkKey(
uint64 u64IeeeAddr,
uint8 au8Key[ZPS_SEC_KEY_LENGTH],
ZPS_teApsLinkKeyType eKeyType);
128 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoRemoveLinkKey

Description

This function can be used to remove the current application link key that is used to
encrypt and decrypt communications between the local node and the specified
‘partner node’.

The function must be called on both the local node and the partner node. Note that
the Trust Centre’s record of the application link key for this pair of nodes remains
unchanged.

In the absence of an application link key, communications between these nodes will
subsequently be secured using the network key.

Parameters

u64IeeeAddr 64-bit IEEE/MAC address of partner node for which the link
key is to be removed

Returns

ZPS_E_SUCCESS (link key successfully removed)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoRemoveLinkKey(
uint64 u64IeeeAddr);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 129

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoRemoveDeviceReq

Description

This function can be used (normally by the Co-ordinator/Trust Centre) to request
another node (such as a Router) to remove one of its children from the network (for
example, if the child node does not satisfy security requirements).

The Router receiving this request will ignore the request unless it has originated from
the Trust Centre or is a request to remove itself. If the request was sent without APS
layer encryption, the device will ignore the request. If APS layer security is not in use,
the alternative function ZPS_eAplZdoLeaveNetwork() should be used.

Parameters

u64ParentAddr 64-bit IEEE/MAC address of parent to be instructed

u64ChildAddr 64-bit IEEE/MAC address of child node to be removed

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoRemoveDeviceReq(
uint64 u64ParentAddr,
uint64 u64ChildAddr);
130 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoSetDevicePermission

Description

This function can be used on any device to set the permissions for certain requests
from other nodes. The possible settings are:

 Allow all requests from all other nodes (ALL_PERMITED)

 Do not allow join requests from all other nodes (JOIN_DISALLOWED)

 Do not allow data requests from all other nodes (DATA_REQUEST_DISALLOWED)

The function is particularly useful in disabling the generation of APS (end-to-end)
acknowledgements, using DATA_REQUEST_DISALLOWED.

Parameters

u8DevicePermissions Bitmap of permissions to be set, constructed using the
following enumerations:
ZPS_DEVICE_PERMISSIONS_ALL_PERMITED
ZPS_DEVICE_PERMISSIONS_JOIN_DISALLOWED
ZPS_DEVICE_PERMISSIONS_DATA_REQUEST_DISALLOWED

Returns

ZPS_E_SUCCESS (permissions successfully set)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

void ZPS_eAplZdoSetDevicePermission(
ZPS_teDevicePermissions u8DevicePermissions);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 131

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_bAplZdoTrustCenterSetDevicePermissions

Description

This function can be used by the Trust Centre to set the permissions for certain
requests from a particular node. The possible settings are:

 Allow all requests from the specified node (ALL_PERMITED)

 Do not allow join requests from the specified node (JOIN_DISALLOWED)

 Do not allow data requests from the specified node (DATA_REQUEST_DISALLOWED)

Parameters

u64DeviceAddr 64-bit IEEE/MAC address of node for which permissions are
to be set

u8DevicePermissions Bitmap of permissions to be set, constructed using the
following enumerations:
ZPS_TRUST_CENTER_ALL_PERMITED
ZPS_TRUST_CENTER_JOIN_DISALLOWED
ZPS_TRUST_CENTER_DATA_REQUEST_DISALLOWED

Returns

ZPS_E_SUCCESS (permissions successfully set)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus
ZPS_bAplZdoTrustCenterSetDevicePermissions(

uint64 u64DeviceAddr,
ZPS_teTCDevicePermissions u8DevicePermissions);
132 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_bAplZdoTrustCenterGetDevicePermissions

Description

This function can be used by the Trust Centre to obtain its own permissions for
certain requests from a particular node. The possible settings are:

 Allow all requests from the specified node

 Do not allow join requests from the specified node

 Do not allow data requests from the specified node

Parameters

u64DeviceAddr 64-bit IEEE/MAC address of node for which permissions
are to be obtained

pu8DevicePermissions Pointer to bitmap containing permissions obtained, where:
0 indicates all requests allowed
1 indicates join requests disallowed
2 indicates data requests disallowed
3 indicates data and join requests disallowed

 Higher bits are reserved for future use

Returns

ZPS_E_SUCCESS (permissions successfully obtained)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus
ZPS_bAplZdoTrustCenterGetDevicePermissions(

uint64 u64DeviceAddr,
ZPS_teTCDevicePermissions *pu8DevicePermissions);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 133

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_bAplZdoTrustCenterRemoveDevice

Description

This function can be used by the Trust Centre to delete a node in its information base.

Parameters

u64DeviceAddr 64-bit IEEE/MAC address of node to be removed from list

Returns

ZPS_E_SUCCESS (node successfully removed from list)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_bAplZdoTrustCenterRemoveDevice(
uint64 u64DeviceAddr);
134 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_vTCSetCallback

Description

This function can be used to register a user-defined callback function on the Trust
Centre, where this callback function allows the application to react to a notification
from another network node - for example, to decide whether to permit a node to join
that may or may not be known to the Trust Centre application.

The prototype of the user-defined callback function is:

bool_t bTransportKeyDecider(uint16 u16ShortAddr, uint64 u64DeviceAddress,
 uint64 u64ParentAddress, uint8 u8Status);

where:

 u16ShortAddr is the network address of the relevant node

 u64DeviceAddress is the IEEE/MAC address of the relevant node

 u64ParentAddress is the IEEE/MAC address of the parent that sent the notification

 u8Status is the nature of the notification:

0: Secure rejoin

1: Unsecure join (association)

2: Leave

3: Unsecure rejoin

To disallow the notified action (e.g. a join), the callback function should return
FALSE.

If the callback function is not registered or returns TRUE, the Trust Centre will allow
the notified action. In the case of a join, the Trust Centre will send the network key in
a ‘transport key’ command to the node, either:

 encrypted with the node’s pre-configured link key, if this key is known to the Trust
Centre, or

 encrypted with the Trust Centre’s default pre-configured link key otherwise (in this
case, the joining node will only be able to decrypt the ‘transport key’ command and
complete the join if it also has the Trust Centre’s default pre-configured link key)

Registration of this callback function may be useful in controlling rejoins. A node can
initially join a network using its pre-configured link key (which is also known by the
Trust Centre), but this key may subsequently be replaced on the Trust Centre by an
application link key (shared only by the node and the Trust Centre). If the node later
leaves the network and loses its context data (including the application link key), it
may attempt to rejoin the network using its pre-configured link key again. The
callback function can allow the application to decide whether to permit such a rejoin.
If the rejoin is to be allowed, the callback function must replace the stored application
link key with the pre-configured link key on the Trust Centre before returning TRUE.

Parameters

pCallbackFn Pointer to user-defined callback function

void ZPS_vTCSetCallback(void *pCallbackFn);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 135

Chapter 6
ZigBee Device Objects (ZDO) API

Returns

None
136 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
6.1.3 Addressing Functions

The ZDO Addressing functions allow node addresses to be stored and obtained. They
include the group address functions that allow a group of nodes/endpoints, with an
assigned group address, to be created and modified (this group can be used as the
destinations for a multicast message).

The functions are listed below, along with their page references:

Function Page

ZPS_u16AplZdoGetNwkAddr 138

ZPS_u64AplZdoGetIeeeAddr 139

ZPS_eAplZdoAddAddrMapEntry 140

ZPS_u16AplZdoLookupAddr 142

ZPS_u64AplZdoLookupIeeeAddr 143

ZPS_u64NwkNibGetMappedIeeeAddr 144

ZPS_bNwkFindAddIeeeAddr 145

ZPS_vSetOverrideLocalIeeeAddr 146

ZPS_eAplZdoGroupEndpointAdd 147

ZPS_eAplZdoGroupEndpointRemove 148

ZPS_eAplZdoGroupAllEndpointRemove 149

Note: Further addressing functions are provided in the
ZDP API and are described in Section 8.1.1.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 137

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_u16AplZdoGetNwkAddr

Description

This function obtains the 16-bit network address of the local node.

Parameters

None

Returns

16-bit network address obtained

uint16 ZPS_u16AplZdoGetNwkAddr(void);
138 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_u64AplZdoGetIeeeAddr

Description

This function obtains the 64-bit IEEE (MAC) address of the local node.

Parameters

None

Returns

64-bit IEEE/MAC address obtained

uint64 ZPS_u64AplZdoGetIeeeAddr(void);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 139

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoAddAddrMapEntry

Description

This function can be used to add the addresses of a remote node to the local Address
Map table. Each entry in this table stores a remote node’s 16-bit network address and
an index to its 64-bit IEEE (MAC) address in the MAC Address table (see Section
2.2.4). Thus, the function adds the IEEE address to the MAC Address table and then
the index of this entry to the Address Map table.

Parameters

u16NwkAddr 16-bit network address of node to be added

u64ExtAddr 64-bit IEEE/MAC address of node to be added

Returns

ZPS_E_SUCCESS (addresses successfully added to tables)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoAddAddrMapEntry(
uint16 u16NwkAddr,
uint64 u64ExtAddr);

Caution: You should only modify to the Address Map table
using the supplied API functions and never write to it directly.
140 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_vPurgeAddressMap

Description

This function removes all entries from the Address Map table on the local node.

Parameters

None

Returns

None

void ZPS_vPurgeAddressMap(void);

Caution: You should only modify to the Address Map table
using the supplied API functions and never write to it directly.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 141

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_u16AplZdoLookupAddr

Description

This function can be used to search the local Address Map table for the 16-bit
network address of the node with a given 64-bit IEEE (MAC) address.

Parameters

u64ExtAddr 64-bit IEEE/MAC address of node to be search for

Returns

16-bit network address obtained

uint16 ZPS_u16AplZdoLookupAddr(uint64 u64ExtAddr);
142 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_u64AplZdoLookupIeeeAddr

Description

This function can be used to search the local Address Map table for the 64-bit IEEE
(MAC) address of the node with a given 16-bit network address.

Parameters

u16NwkAddr 16-bit network address of node to be search for

Returns

64-bit IEEE/MAC address obtained

uint64 ZPS_u64AplZdoLookupIeeeAddr(
uint16 u16NwkAddr);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 143

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_u64NwkNibGetMappedIeeeAddr

Description

This function can be used to obtain the 64-bit IEEE (MAC) address that is stored in
a particular entry in the local MAC Address table. The number of the entry must be
specified as well as the handle of the relevant network.

Parameters

pvNwk Pointer to relevant NWK layer instance

u16Location Number of entry to access in MAC Address table

Returns

64-bit IEEE/MAC address obtained

uint64 ZPS_u64NwkNibGetMappedIeeeAddr(
void *pvNwk,
uint16 u16Location);
144 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_bNwkFindAddIeeeAddr

Description

This function can be used to add the 64-bit IEEE (MAC) address of a node to the local
MAC Address table. The function will first search the table to determine whether the
address already exists in the table. If there is no entry for this address, a new entry
for it will be added to the table. The number of the entry where the address was found
or added is returned in a specified location.

Parameters

pvNwk Pointer to relevant NWK layer instance

u64IeeeAddr 64-bit IEEE/MAC address to be added

pu16Location Pointer to location to receive number of entry in MAC Address
table where specified address was found or added

bNeighborTable Always set to FALSE

Returns

Boolean indicating the outcome of the operation:

TRUE - address successfully added to the table

FALSE - address found to already exist in the table

bool_t ZPS_bNwkFindAddIeeeAddr(
void *pvNwk,
uint64 u64IeeeAddr,
uint16 *pu16Location,
bool_t bNeighborTable;

Caution: You should only modify to the MAC Address table
using this API function and never write to it directly.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 145

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_vSetOverrideLocalIeeeAddr

Description

This function can be used to over-ride the 64-bit IEEE (MAC) address of a JN516x
device, where this address is stored locally in the index sector of Flash memory.

Parameters

pu64Address Pointer to the 64-bit IEEE MAC address

void ZPS_vSetOverrideLocalIeeeAddr(
uint64 *pu64Address);

Caution: If required, this function must be called before the
ZigBee PRO stack is initialised.

Caution: The stack stores a pointer to pu64Address and
does not take a copy of the address. The memory pointed to
by pu64Address must therefore be static or constant, and
must not be on the CPU stack.
146 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoGroupEndpointAdd

Description

This function requests that the specified endpoint (on the local node) is added to the
group with the specified group address. This means that this endpoint will become
one of the destinations for messages sent to the given group address.

To form a group comprising endpoints from different nodes, it is necessary to call this
function for each endpoint individually, on the endpoint’s local node.

An endpoint can belong to more than one group.

Information on the endpoints in a group can be obtained from the Group Address
table in the AIB (which can be accessed using the function ZPS_psAplAibGetAib()).

Parameters

u16GroupAddr 16-bit group address

u8DstEndpoint Number of destination endpoint (1-240) on local node

Returns

ZPS_E_SUCCESS (endpoint successfully added to group)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoGroupEndpointAdd(
uint16 u16GroupAddr,
uint8 u8DstEndpoint);

Note: In order to add an endpoint to a group using this
function, a Group Address table must exist on the local node.
This table is created using the ZPS Configuration Editor.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 147

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoGroupEndpointRemove

Description

This function requests that the specified endpoint (on the local node) is removed from
the group with the specified group address.

If you wish to remove an endpoint from all groups to which it belongs, use the function
ZPS_eAplZdoGroupAllEndpointRemove().

Information on the endpoints in a group can be obtained from the Group Address
table in the AIB (which can be accessed using the function
ZPS_psAplAibGetAib()).

Parameters

u16GroupAddr 16-bit group address

u8DstEndpoint Number of destination endpoint (1-240) on local node

Returns

ZPS_E_SUCCESS (endpoint successfully removed from group)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoGroupEndpointRemove(
uint16 u16GroupAddr,
uint8 u8DstEndpoint);
148 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoGroupAllEndpointRemove

Description

This function requests that the specified endpoint (on the local node) is removed from
all groups to which it currently belongs.

Information on the endpoints in a group can be obtained from the Group Address
table in the AIB (which can be accessed using the function
ZPS_psAplAibGetAib()).

Parameters

u8DstEndpoint Number of destination endpoint (1-240) on local node

Returns

ZPS_E_SUCCESS (endpoint successfully removed from all groups)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoGroupAllEndpointRemove(
uint8 u8DstEndpoint);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 149

Chapter 6
ZigBee Device Objects (ZDO) API

6.1.4 Routing Functions

The ZDO Routing functions can be used to make route discovery requests.

The functions are listed below, along with their page references:

Function Page

ZPS_eAplZdoRouteRequest 151

ZPS_eAplZdoManyToOneRouteRequest 152
150 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdoRouteRequest

Description

This function requests the discovery of a route to the specified remote node (and that
this route is added to the Routing tables in the relevant Router nodes).

Parameters

u16DstAddr 16-bit network address of destination node

u8Radius Maximum number of hops permitted to destination node
(zero value specifies that default maximum is to be used)

Returns

ZPS_E_SUCCESS (route discovery request successfully initiated)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoRouteRequest(
uint16 u16DstAddr,
uint8 u8Radius);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 151

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoManyToOneRouteRequest

Description

This function requests a ‘many-to-one’ route discovery and should be called on a
node that will act as a ‘concentrator’ in the network (that is, a node with which many
other nodes will need to communicate).

As a result of this function call, a route discovery message is broadcast across the
network and Routing table entries (for routes back to the concentrator) are stored in
the Router nodes.

The maximum number of hops to be taken by a route discovery message in this
broadcast must be specified. There is also an option to store the discovered routes
in a Route Record Table on the concentrator (for return communications).

Parameters

bCacheRoute Indicates whether to store routes in Route Record Table:
TRUE - store routes
FALSE - do not store routes

u8Radius Maximum number of hops of route discovery message
(zero value specifies that default maximum is to be used)

Returns

ZPS_E_SUCCESS (many-to-one route discovery successfully initiated)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoManyToOneRouteRequest(
bool bCacheRoute,
uint8 u8Radius);
152 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
6.1.5 Object Handle Functions

The ZDO Object Handle functions can be used to obtain the handles of various
objects.

The functions are listed below, along with their page references:

Function Page

ZPS_pvAplZdoGetAplHandle 154

ZPS_pvAplZdoGetMacHandle 155

ZPS_pvAplZdoGetNwkHandle 156

ZPS_psNwkNibGetHandle 157

ZPS_psAplAibGetAib 158

ZPS_psAplZdoGetNib 159

ZPS_u64NwkNibGetEpid 160
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 153

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_pvAplZdoGetAplHandle

Description

This function obtains a handle for the Application layer instance.

Parameters

None

Returns

Pointer to Application layer instance

void *ZPS_pvAplZdoGetAplHandle(void);
154 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_pvAplZdoGetMacHandle

Description

This function obtains a handle for the IEEE 802.15.4 MAC layer instance.

Parameters

None

Returns

Pointer to MAC layer instance

void *ZPS_pvAplZdoGetMacHandle(void);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 155

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_pvAplZdoGetNwkHandle

Description

This function obtains a handle for the ZigBee NWK layer instance.

Parameters

None

Returns

Pointer to NWK layer instance

void *ZPS_pvAplZdoGetNwkHandle(void);
156 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_psNwkNibGetHandle

Description

This function obtains a handle for the NIB (Network Information Base) corresponding
to the specified NWK layer instance.

The function should be called after ZPS_pvAplZdoGetNwkHandle(), which is used
to obtain a pointer to the NWK layer instance.

The NIB is detailed in the ZigBee Specification (05347) from the ZigBee Alliance.

This function is not strictly a ZDO function.

Parameters

pvNwk Pointer to NWK layer instance

Returns

Pointer to NIB structure

Example

void *pvNwk; = ZPS_pvAplZdoGetNwkHandle();

ZPS_tsNwkNib *pNib = ZPS_psNwkNibGetHandle(pvNwk);

ZPS_tsNwkNib *ZPS_psNwkNibGetHandle(void *pvNwk);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 157

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_psAplAibGetAib

Description

This function obtains a pointer to the AIB (Application Information Base) structure for
the application.

Parameters

None

Returns

Pointer to AIB structure

ZPS_tsAplAib *ZPS_psAplAibGetAib(void);
158 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_psAplZdoGetNib

Description

This function obtains a pointer to the NIB (Network Information Base) structure.

The NIB is detailed in the ZigBee Specification (05347) from the ZigBee Alliance.

Parameters

None

Returns

Pointer to NIB structure

ZPS_tsNwkNib *ZPS_psAplZdoGetNib(void);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 159

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_u64NwkNibGetEpid

Description

This function can be used to obtain the Extended PAN ID (EPID) from a local NIB
(Network Information Base).

The handle of the NWK layer instance that contains the relevant NIB must be
specified. This handle can be obtained using ZPS_pvAplZdoGetNwkHandle().

Parameters

pNibHandle Pointer to NWK layer instance that contains the NIB

Returns

64-bit Extended PAN ID from NIB

uint64 ZPS_u64NwkNibGetEpid(void *pvNwk);
160 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
6.1.6 Optional Cluster Function

The ZDO Optional Cluster function can be used to register a user-defined callback
function to handle messages for a ZDO cluster that is not currently supported by the
NXP ZigBee PRO stack.

The function is listed below, along with its page reference:

Function Page

ZPS_eAplZdoRegisterZdoFilterCallback 162
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 161

Chapter 6
ZigBee Device Objects (ZDO) API

ZPS_eAplZdoRegisterZdoFilterCallback

Description

This function can be used to register a user-defined callback function which handles
messages received for an unsupported cluster which resides on the ZDO endpoint
(0), such as the cluster for an optional descriptor (e.g. user descriptor).

The prototype of the user-defined callback function is:

bool fn(uint16 clusterid);

where clusterid is the ID of the cluster that the function handles.

Normally, a message arriving for an unsupported ZDO cluster is not handled and the
stack automatically returns an ‘unsupported’ message to the originating node. If this
function is used to register a callback function for an unsupported ZDO cluster then
on receiving a message for the cluster, the stack will invoke the callback function.
The stack will not respond with an ‘unsupported message’ provided that the callback
function returns TRUE, otherwise the normal stack behaviour will continue.

The callback function allows the received message to be passed to the application
for servicing.

Parameters

fnptr Pointer to user-defined callback function

Returns

ZPS_E_SUCCESS (callback function successfully registered)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdoRegisterZdoFilterCallback(
void *fnptr);
162 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
6.2 ZDO Enumerations

This section details the enumerated types used by the ZDO functions. These are all
defined in the header file zps_apl_zdo.h.

6.2.1 Security Keys (ZPS_teZdoNwkKeyState)

This structure ZPS_teZdoNwkKeyState contains the enumerations used to specify
a type of security key:

typedef enum

{

 ZPS_ZDO_NO_NETWORK_KEY,

 ZPS_ZDO_PRECONFIGURED_NETWORK_KEY,

 ZPS_ZDO_DEFAULT_NETWORK_KEY,

 ZPS_ZDO_PRECONFIGURED_LINK_KEY,

 ZPS_ZDO_ZLL_LINK_KEY

} PACK ZPS_teZdoNwkKeyState;

These enumerations are described in the table below:

Enumeration Description

ZPS_ZDO_NO_NETWORK_KEY No network key is to be used.

ZPS_ZDO_PRECONFIGURED_NETWORK_KEY A pre-configured network key is to be used. This key may be
fixed at the time of manufacture.

ZPS_ZDO_DEFAULT_NETWORK_KEY The default network key is to be used. This key is randomly
generated by the Trust Centre.

ZPS_ZDO_PRECONFIGURED_LINK_KEY A pre-configured link key is to be used. This key may be fixed
at the time of manufacture.

ZPS_ZDO_ZLL_LINK_KEY A pre-configured ZigBee Light Link (ZLL) link key is to be
used. This key may be fixed at the time of manufacture. A
ZLL node will contain both a
ZPS_ZDO_PRECONFIGURED_LINK_KEY for Home Auto-
mation (HA) compatibility and a ZPS_ZDO_ZLL_LINK_KEY
for ZLL networks.

Table 3: Security Key Enumerations
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 163

Chapter 6
ZigBee Device Objects (ZDO) API

6.2.2 Device Types (ZPS_teZdoDeviceType)

This structure ZPS_teZdoDeviceType contains the enumerations used to specify a
ZigBee device type

typedef enum

{

 ZPS_ZDO_DEVICE_COORD,

 ZPS_ZDO_DEVICE_ROUTER,

 ZPS_ZDO_DEVICE_ENDDEVICE

} PACK ZPS_teZdoDeviceType;

These enumerations are described in the table below.

6.2.3 Device Permissions (ZPS_teDevicePermissions)

This structure ZPS_teDevicePermissions contains the enumerations used on a
device to specify the permissions for certain requests from other nodes:

typedef enum

{

 ZPS_DEVICE_PERMISSIONS_ALL_PERMITED = 0,

 ZPS_DEVICE_PERMISSIONS_JOIN_DISALLOWED = 1,

 ZPS_DEVICE_PERMISSIONS_DATA_REQUEST_DISALLOWED = 2

} PACK ZPS_teDevicePermissions;

These enumerations are described in the table below:

Enumeration Description

ZPS_ZDO_DEVICE_COORD Co-ordinator

ZPS_ZDO_DEVICE_ROUTER Router

ZPS_ZDO_DEVICE_ENDDEVICE End Device

Table 4: Device Type Enumerations

Enumeration Description

ZPS_DEVICE_PERMISSIONS_ALL_PERMITED Allow all requests from other nodes

ZPS_DEVICE_PERMISSIONS_JOIN_DISALLOWED Do not allow join requests from other nodes

ZPS_DEVICE_PERMISSIONS_DATA_REQUEST_DISALLOWED Do not allow data requests from other nodes
and disable end-to-end acknowledgements

Table 5: Device Permissions Enumerations
164 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
6.2.4 Trust Centre Permissions (ZPS_teTCDevicePermissions)

This structure ZPS_teTCDevicePermissions contains the enumerations used on
the Trust Centre to specify the permissions for certain requests from a node:

typedef enum

{

 ZPS_TRUST_CENTER_ALL_PERMITED = 0,

 ZPS_TRUST_CENTER_JOIN_DISALLOWED = 1,

 ZPS_TRUST_CENTER_DATA_REQUEST_DISALLOWED = 2

} PACK ZPS_teTCDevicePermissions;

These enumerations are described in the table below:

Enumeration Description

ZPS_TRUST_CENTER_ALL_PERMITED Allow all requests from node

ZPS_TRUST_CENTER_JOIN_DISALLOWED Do not allow join requests from node

ZPS_TRUST_CENTER_DATA_REQUEST_DISALLOWED Do not allow key requests from node and disable
end-to-end acknowledgements

Table 6: Trust Centre Permissions Enumerations
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 165

Chapter 6
ZigBee Device Objects (ZDO) API

166 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
7. Application Framework (AF) API

The chapter describes the resources of the Application Framework (AF) API. This API
is concerned with transmitting data, controlling/monitoring local endpoints, and
copying descriptors to/from the context area of the stack. The API is defined in the
header file zps_apl_af.h.

In this chapter:

 Section 7.1 details the AF API functions

 Section 7.2 details the AF API structures

7.1 AF API Functions

The AF API functions are divided into the following categories:

 Initialisation functions, described in Section 7.1.1

 Data Transfer functions, described in Section 7.1.2

 Endpoint functions, described in Section 7.1.3

 Descriptor functions, described in Section 7.1.4

7.1.1 Initialisation Functions

The AF API contains a number of initialisation/set-up functions.

The functions are listed below, along with their page references:

Function Page

ZPS_eAplAfInit 168

ZPS_eAplAibSetApsUseExtendedPanId 169

ZPS_vExtendedStatusSetCallback 170

ZPS_bAppAddBeaconFilter 171

ZPS_vAplAfEnableMcpsFilter 172

ZPS_vNwkLinkCostCallbackRegister 173

ZPS_vSetOrphanUpdateDisable 174

Note: The function ZPS_eAplAfInit() is mandatory and
must be the first network function called in your
application.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 167

Chapter 7
Application Framework (AF) API

ZPS_eAplAfInit

Description

This function initialises the Application Framework and must be the first network
function called in your application code. The function will first request a reset of the
Network (NWK) layer of the ZigBee PRO stack. It will then initialise certain network
parameters with values that have been pre-configured using the ZPS Configuration
Editor (see Chapter 12). These parameters include the node type and the Extended
PAN ID of the network.

The device will be started as the pre-configured node type. If this is a Co-ordinator,
the Extended PAN ID of the node is set to the pre-configured value. Note that if a
zero value has been specified, the Co-ordinator will use its own IEEE/MAC address
for the Extended PAN ID.

Parameters

None

Returns

ZPS_E_SUCCESS (AF successfully initialised)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplAfInit(void);

Note: This function also resets the IEEE 802.15.4 MAC and
PHY levels of the stack. Therefore, if any customised MAC or
PHY settings are required, these must be made after this
function has been called (such settings could be made with
the 802.15.4 Stack API and/or the JN516x Integrated
Peripherals API, which are supplied in the JN516x SDKs).
168 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAibSetApsUseExtendedPanId

Description

This function can be used to create an application record of the Extended PAN ID
(EPID) of the network to which the local device belongs.

 The only use of this function for a Co-ordinator is described in Section 5.1.1.

 The function should only be called on a Router or End Device in the manner described
in Section 5.1.2.

Parameters

u64UseExtPanId Extended PAN ID of network to which device belongs

Returns

ZPS_E_SUCCESS (Extended PAN ID record successfully created)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplAibSetApsUseExtendedPanId(
uint64 u64UseExtPanId);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 169

Chapter 7
Application Framework (AF) API

ZPS_vExtendedStatusSetCallback

Description

This function can be used to register a callback function for extended error handling
(see Section 5.7).

The prototype of the callback function is:

ZPS_teExtendedStatus vExtendedStatusCb();

The registered callback function will be invoked if a subsequent API function call
results in one of the following errors:

 0xA3: ZPS_APL_APS_E_ILLEGAL_REQUEST

 0xA6: ZPS_APL_APS_E_INVALID_PARAMETER

 0xC2: ZPS_NWK_ENUM_INVALID_REQUEST

The callback function will return another error code (from those listed and described
in Section 9.2.5) which provides a more specific reason for the error.

Parameters

pfExtendedStatusCallBack Pointer to extended error handling callback function to
be registered

Returns

None

void ZPS_vExtendedStatusSetCallback(
tpfExtendedStatusCallBack pfExtendedStatusCallBack);
170 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_bAppAddBeaconFilter

Description

This function can be used to introduce a filter that will be used for filtering beacons in
network searches (on a Router or End Device). Beacons can be filtered on the basis
of Extended PAN ID, LQI value, and device joining status/capacity. The filter details
are provided in a tsBeaconFilterType structure (see Section 7.2.3.5).

If required, this function should be called immediately before
ZPS_eAplZdoDiscoverNetworks(), ZPS_eAplZdoRejoinNetwork() or
ZPS_eAplZdoStartStack().

Once the join or discovery has completed, the filter is automatically removed and will
need to be re-instated if a retry is required.

Guidelines on the implementation of beacon filters are provided in Appendix B.4.

Parameters

*psAppBeaconStruct Pointer to a structure containing the beacon filter details
(see Section 7.2.3.5)

Returns

None

void ZPS_bAppAddBeaconFilter(
 tsBeaconFilterType *psAppBeaconStruct);

Caution: A filter should NOT be implemented unless
attempting a join, as this will prevent some stack operations
from working correctly.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 171

Chapter 7
Application Framework (AF) API

ZPS_vAplAfEnableMcpsFilter

Description

This function allows packet filtering based on ‘link cost’ to be enabled/disabled, as
well as some basic configuration of the filtering. Packet filtering is enabled by default.

The default ‘link cost threshold’ is 5. This means that when packet filtering is enabled,
received packets with a link cost of 5 or less will be discarded by the stack and not
queued for processing. The link cost threshold can be modified (from the default
value of 5) using this function.

If required, this function can be called at any time after ZPS_eAplAfInit().

For more information on packet filtering and link costs, refer to Appendix B.7.

Parameters

bMcpsFilterEnable Enables or disables packet filtering:

TRUE - Enable packet filtering
FALSE - Disable packet filtering

u8ZpsDefaultFilterValue Link cost threshold to be set (only valid when packet
filtering is enabled)

Returns

None

void ZPS_vAplAfEnableMcpsFilter(
bool_t bMcpsFilterEnable,
uint8 u8ZpsDefaultFilterValue);
172 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_vNwkLinkCostCallbackRegister

Description

This function can be used to register a user-defined callback function which defines
custom mappings between LQI values and link costs that are to be used in packet
filtering based on link cost. When packet filtering is enabled, the stack uses a default
set of mappings, detailed in Appendix B.7.1. The callback function is only needed if
custom mappings are to be used that will over-ride the default mappings. If required,
this registration function must be called before ZPS_eAplAfInit(), and on both cold
and warm starts.

The user-defined callback function to be registered has the following prototype:

uint8 APP_u8LinkCost(uint8 u8Lqi);

This callback function translates a measured LQI value (u8Lqi) into a link cost value.
An example function is given in Appendix B.7.3.

For more information on packet filtering and link costs, refer to Appendix B.7.

Parameters

pvFn Pointer to user-defined callback function to be registered

Returns

None

void ZPS_vNwkLinkCostCallbackRegister(void *pvFn);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 173

Chapter 7
Application Framework (AF) API

ZPS_vSetOrphanUpdateDisable

Description

This function allows Orphan Notifications to the Trust Centre in a secured ZigBee
network to be disabled (they are enabled by default).

When an orphaned node tries to rejoin the network, the potential parent sends an
Orphan Notification to the Trust Centre. Disabling these notifications on the parent
will stop the Trust Centre from authenticating a rejoining node. For more information,
refer to Appendix B.8.

If required, this function can be called at any time after ZPS_eAplAfInit().

Parameters

bEnableOverride Enables or disables Orphan Notifications:

TRUE - Disable notifications
FALSE - Enable notifications

Returns

None

void ZPS_vSetOrphanUpdateDisable(
bool_t bEnableOverride);
174 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
7.1.2 Data Transfer Functions

The AF Data Transfer functions are used to request the transmission of data, in the
form of an Application Protocol Data Unit (APDU), to one or more remote nodes.

The functions are listed below, along with their page references:

Function Page

ZPS_eAplAfApsdeDataReq 176

ZPS_eAplAfUnicastDataReq 177

ZPS_eAplAfUnicastIeeeDataReq 179

ZPS_eAplAfUnicastAckDataReq 181

ZPS_eAplAfUnicastIeeeAckDataReq 183

ZPS_eAplAfGroupDataReq 185

ZPS_eAplAfBroadcastDataReq 187

ZPS_eAplAfBoundDataReq 189

ZPS_eAplAfBoundAckDataReq 191

ZPS_eAplAfInterPanDataReq 193

ZPS_u8AplGetMaxPayloadSize 194

APDUs for Requests and Responses

A request generated by this API is sent in an APDU (Application Protocol Data Unit).
A local APDU instance for the request must first be allocated using the PDUM function
PDUM_hAPduAllocateAPduInstance(). This function returns a handle for the
APDU instance, which is subsequently used in the relevant AF API request function.
Once the request has been successfully sent, the APDU instance is automatically de-
allocated by the stack (there is no need for the application to de-allocate it).

When a response is subsequently received, the stack automatically allocates a local
APDU instance and includes its handle in the notification event for the response. Once
the response has been dealt with, the application must de-allocate the APDU instance
using the function PDUM_eAPduFreeAPduInstance().

Note: Functions for handling APDUs are provided in the
JenOS PDUM API, described in the JenOS User Guide
(JN-UG-3075).

Note: If the request is not successfully sent (the send
function does not return ZPS_E_SUCCESS) then the
APDU instance will not be automatically de-allocated
and the application should de-allocate it using the
PDUM function PDUM_eAPduFreeAPduInstance().
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 175

Chapter 7
Application Framework (AF) API

ZPS_eAplAfApsdeDataReq

Description

This function submits a request to send data to a remote node, with no restrictions
on the type of transmission, destination address, destination application profile,
destination cluster and destination endpoint number - these destination parameters
do not need to be known to the stack or defined in the ZPS configuration. In this
sense, this is most general of the Data Transfer functions.

The destination details and type of transmission are specified in the function call in a
ZPS_tsAfProfileDataReq structure (see Section 7.2.3.4).

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be
allocated using the PDUM function PDUM_hAPduAllocateAPduInstance() and
then written to using PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, this
function call will fail (and return ZPS_E_ADSU_TOO_LONG). To send large APDUs,
use the function ZPS_eAplAfUnicastAckDataReq(), which automatically
implements data fragmentation (if required).

Once the sent data has reached the first hop node in the route to its destination, a
ZPS_EVENT_APS_DATA_CONFIRM event will be generated on the local node.

Parameters

hAPduInst Handle of APDU instance to be sent

*psProfileDataReq Pointer to structure containing the details for the transmission
(see Section 7.2.3.4)

*pu8SeqNum Pointer to location to receive sequence number assigned to
data transfer request. If not required, set to NULL

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplAfApsdeDataReq(
PDUM_thAPduInstance hAPduInst,
ZPS_tsAfProfileDataReq *psProfileDataReq,
uint8 *pu8SeqNum);
176 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfUnicastDataReq

Description

This function submits a request to send data to a remote node (unicast), using the
remote node’s network address. You must specify the local endpoint and output
cluster from which the data originates (the cluster must be in the Simple descriptor
for the endpoint), as well as the network address of the remote node and the
destination endpoint on the node.

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be
allocated using the PDUM function PDUM_hAPduAllocateAPduInstance() and
then written to using PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, this
function call will fail (and return ZPS_E_ADSU_TOO_LONG). To send large APDUs,
use the function ZPS_eAplAfUnicastAckDataReq(), which automatically
implements data fragmentation (if required).

Once the sent data has reached the first hop node in the route to its destination, a
ZPS_EVENT_APS_DATA_CONFIRM event will be generated on the local node.

If data is sent using this function to a destination for which a route has not already
been established, the data will not be sent and a route discovery will be performed
instead. In this case, the function will return ZPS_NWK_ENUM_ROUTE_ERROR
and must later be re-called to send the data (see Note under “Unicast” on page 80).

Security (encryption/decryption) can be applied to the APDU, where this security can
be implemented at the Application layer or the network (ZigBee) layer, or both.

Parameters

hAPduInst Handle of APDU instance to be sent

u16ClusterId Identifier of relevant output cluster on source endpoint

u8SrcEndpoint Source endpoint number (1-240) on local node

u8DstEndpoint Destination endpoint number (1-240) on remote node

u16DstAddr Network address of destination node

ZPS_teStatus ZPS_eAplAfUnicastDataReq(
PDUM_thAPduInstance hAPduInst,
uint16 u16ClusterId,
uint8 u8SrcEndpoint,
uint8 u8DstEndpoint,
uint16 u16DestAddr,
ZPS_teAplAfSecurityMode eSecurityMode,
uint8 u8Radius,
uint8 *pu8SeqNum);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 177

Chapter 7
Application Framework (AF) API

eSecurityMode Security mode for data transfer:
ZPS_E_APL_AF_UNSECURE
(no security enabled)
ZPS_E_APL_AF_SECURE
(Application-level security using link key and network key)
ZPS_E_APL_AF_SECURE_NWK
(Network-level security using network key)

ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE
(Application-level security using link key and network key with
the extended NONCE included in the frame)

ZPS_E_APL_AF_WILD_PROFILE
(May be combined with above flags using OR operator. Sends
the message using the wild card profile (0xFFFF) instead of
the profile in the associated Simple descriptor)

u8Radius Maximum number of hops permitted to destination node
(zero value specifies that default maximum is to be used)

*pu8SeqNum Pointer to location to receive sequence number assigned to
data transfer request. If not required, set to NULL

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
178 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfUnicastIeeeDataReq

Description

This function submits a request to send data to a remote node (unicast), using the
remote node’s IEEE (MAC) address. You must specify the local endpoint and output
cluster from which the data originates (the cluster must be in the Simple descriptor
for the endpoint), as well as the IEEE address of the remote node and the destination
endpoint on the node.

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be
allocated using the PDUM function PDUM_hAPduAllocateAPduInstance() and
then written to using PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, this
function call will fail (and return ZPS_E_ADSU_TOO_LONG). To send large APDUs,
use the function ZPS_eAplAfUnicastIeeeAckDataReq(), which automatically
implements data fragmentation (if required).

Once the sent data has reached the first hop node in the route to its destination, a
ZPS_EVENT_APS_DATA_CONFIRM event will be generated on the local node.

If data is sent using this function to a destination for which a route has not already
been established, the data will not be sent and a route discovery will be performed
instead. In this case, the function will return ZPS_NWK_ENUM_ROUTE_ERROR
and must later be re-called to send the data (see Note under “Unicast” on page 80).

Security (encryption/decryption) can be applied to the APDU, where this security can
be implemented at the Application layer or the network (ZigBee) layer, or both.

Parameters

hAPduInst Handle of APDU instance to be sent

u16ClusterId Identifier of relevant output cluster on source endpoint

u8SrcEndpoint Source endpoint number (1-240) on local node

u8DstEndpoint Destination endpoint number (1-240) on remote node

u64DestAddr IEEE (MAC) address of destination node

ZPS_teStatus ZPS_eAplAfUnicastIeeeDataReq(
PDUM_thAPduInstance hAPduInst,
uint16 u16ClusterId,
uint8 u8SrcEndpoint,
uint8 u8DstEndpoint,
uint64 u64DestAddr,
ZPS_teAplAfSecurityMode eSecurityMode,
uint8 u8Radius,
uint8 *pu8SeqNum);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 179

Chapter 7
Application Framework (AF) API

eSecurityMode Security mode for data transfer:
ZPS_E_APL_AF_UNSECURE
(no security enabled)
ZPS_E_APL_AF_SECURE
(Application-level security using link key and network key)
ZPS_E_APL_AF_SECURE_NWK
(Network-level security using network key)

ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE
(Application-level security using link key and network key with
the extended NONCE included in the frame)

ZPS_E_APL_AF_WILD_PROFILE
(May be combined with above flags using OR operator. Sends
the message using the wild card profile (0xFFFF) instead of
the profile in the associated Simple descriptor)

u8Radius Maximum number of hops permitted to destination node
(zero value specifies that default maximum is to be used)

*pu8SeqNum Pointer to location to receive sequence number assigned to
data transfer request. If not required, set to NULL

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
180 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfUnicastAckDataReq

Description

This function submits a request to send data to a remote node (unicast), using the
remote node’s network address, and requires an acknowledgement to be returned
by the remote node once the data reaches its destination. You must specify the local
endpoint and output cluster from which the data originates (the cluster must be in the
Simple descriptor for the endpoint), as well as the network address of the remote
node and the destination endpoint on the node.

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be
allocated using the PDUM function PDUM_hAPduAllocateAPduInstance() and
then written to using PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, the
APDU will be broken up into fragments (NPDUs) for transmission, provided that
fragmentation has been enabled by setting the ZigBee network parameter Maximum
Number of Transmitted Simultaneous Fragmented Messages to a non-zero value.

If data is sent using this function to a destination for which a route has not already
been established, the data will not be sent and a route discovery will be performed
instead. In this case, the function will return ZPS_NWK_ENUM_ROUTE_ERROR
and must later be re-called to send the data (see Note under “Unicast” on page 80).

Once the sent data has reached the first hop node in the route to its destination, a
ZPS_EVENT_APS_DATA_CONFIRM event will be generated on the local node.
Then, once an acknowledgement has been received from the destination node, a
ZPS_EVENT_APS_DATA_ACK will be generated on the sending node.

Security (encyption/decryption) can be applied to the APDU, where this security can
be implemented at the Application layer or the network (ZigBee) layer, or both.

Parameters

hAPduInst Handle of APDU instance to be sent

u16ClusterId Identifier of relevant output cluster on source endpoint

u8SrcEndpoint Source endpoint number (1-240) on local node

u8DstEndpoint Destination endpoint number (1-240) on remote node

u16DstAddr Network address of destination node

ZPS_teStatus ZPS_eAplAfUnicastAckDataReq(
PDUM_thAPduInstance hAPduInst,
uint16 u16ClusterId,
uint8 u8SrcEndpoint,
uint8 u8DstEndpoint,
uint16 u16DestAddr,
ZPS_teAplAfSecurityMode eSecurityMode,
uint8 u8Radius,
uint8 *pu8SeqNum);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 181

Chapter 7
Application Framework (AF) API

eSecurityMode Security mode for data transfer:
ZPS_E_APL_AF_UNSECURE
(no security enabled)
ZPS_E_APL_AF_SECURE
(Application-level security using link key and network key)
ZPS_E_APL_AF_SECURE_NWK
(Network-level security using network key)

ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE
(Application-level security using link key and network key with
the extended NONCE included in the frame)

ZPS_E_APL_AF_WILD_PROFILE
(May be combined with above flags using OR operator. Sends
the message using the wild card profile (0xFFFF) instead of
the profile in the associated Simple descriptor)

u8Radius Maximum number of hops permitted to destination node
(zero value specifies that default maximum is to be used)

*pu8SeqNum Pointer to location to receive sequence number assigned to
data transfer request. If not required, set to NULL

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
182 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfUnicastIeeeAckDataReq

Description

This function submits a request to send data to a remote node (unicast), using the
remote node’s IEEE (MAC) address, and requires an acknowledgement to be
returned by the remote node once the data reaches its destination. You must specify
the local endpoint and output cluster from which the data originates (the cluster must
be in the Simple descriptor for the endpoint), as well as the IEEE address of the
remote node and the destination endpoint on the node.

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be
allocated using the PDUM function PDUM_hAPduAllocateAPduInstance() and
then written to using PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, the
APDU will be broken up into fragments (NPDUs) for transmission, provided that
fragmentation has been enabled by setting the ZigBee network parameter Maximum
Number of Transmitted Simultaneous Fragmented Messages to a non-zero value.

If data is sent using this function to a destination for which a route has not already
been established, the data will not be sent and a route discovery will be performed
instead. In this case, the function will return ZPS_NWK_ENUM_ROUTE_ERROR
and must later be re-called to send the data (see Note under “Unicast” on page 80).

Once the sent data has reached the first hop node in the route to its destination, a
ZPS_EVENT_APS_DATA_CONFIRM event will be generated on the local node.
Then, once an acknowledgement has been received from the destination node, a
ZPS_EVENT_APS_DATA_ACK will be generated on the sending node.

Security (encyption/decryption) can be applied to the APDU, where this security can
be implemented at the Application layer or the network (ZigBee) layer, or both.

Parameters

hAPduInst Handle of APDU instance to be sent

u16ClusterId Identifier of relevant output cluster on source endpoint

u8SrcEndpoint Source endpoint number (1-240) on local node

u8DstEndpoint Destination endpoint number (1-240) on remote node

u64DestAddr IEEE (MAC) address of destination node

ZPS_teStatus ZPS_eAplAfUnicastIeeeAckDataReq(
PDUM_thAPduInstance hAPduInst,
uint16 u16ClusterId,
uint8 u8SrcEndpoint,
uint8 u8DstEndpoint,
uint64 u64DestAddr,
ZPS_teAplAfSecurityMode eSecurityMode,
uint8 u8Radius,
uint8 *pu8SeqNum);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 183

Chapter 7
Application Framework (AF) API

eSecurityMode Security mode for data transfer:
ZPS_E_APL_AF_UNSECURE
(no security enabled)
ZPS_E_APL_AF_SECURE
(Application-level security using link key and network key)
ZPS_E_APL_AF_SECURE_NWK
(Network-level security using network key)

ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE
(Application-level security using link key and network key with
the extended NONCE included in the frame)

ZPS_E_APL_AF_WILD_PROFILE
(May be combined with above flags using OR operator. Sends
the message using the wild card profile (0xFFFF) instead of
the profile in the associated Simple descriptor)

u8Radius Maximum number of hops permitted to destination node
(zero value specifies that default maximum is to be used)

*pu8SeqNum Pointer to location to receive sequence number assigned to
data transfer request. If not required, set to NULL

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
184 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfGroupDataReq

Description

This function submits a request to send data to a group of endpoints located on one
or more nodes (group multicast). You must specify the local endpoint and output
cluster from which the data originates (the cluster must be in the Simple descriptor
for the endpoint) as well as the ‘group address’ of the group of destination endpoints.
A group is set up using the function ZPS_eAplZdoGroupEndpointAdd(). The data
is actually broadcast to all network nodes and each recipient node assesses whether
it has endpoints in the specified group.

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be
allocated using the PDUM function PDUM_hAPduAllocateAPduInstance() and
then written to using PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, this
function call will fail (and return ZPS_E_ADSU_TOO_LONG).

Once the data has been transmitted, a ZPS_EVENT_APS_DATA_CONFIRM event
will be generated on the local node.

Security (encyption/decryption) can be applied to the APDU, where this security can
be implemented at the Application layer or the network (ZigBee) layer, or both.

Parameters

hAPduInst Handle of APDU instance to be sent

u16ClusterId Identifier of relevant output cluster on source endpoint

u8SrcEndpoint Source endpoint number (1-240) on local node

u16DstGroupAddr Group address of destination endpoints

eSecurityMode Security mode for data transfer, one of:
ZPS_E_APL_AF_UNSECURE
(no security enabled)
ZPS_E_APL_AF_SECURE_NWK
(Network-level security using network key)

ZPS_E_APL_AF_WILD_PROFILE
(May be combined with above flags using OR operator. Sends
the message using the wild card profile (0xFFFF) instead of
the profile in the associated Simple descriptor)

u8Radius Maximum number of hops permitted to destination node
(zero value specifies that default maximum is to be used)

ZPS_teStatus ZPS_eAplAfGroupDataReq(
PDUM_thAPduInstance hAPduInst,
uint16 u16ClusterId,
uint8 u8SrcEndpoint,
uint16 u16DstGroupAddr,
ZPS_teAplAfSecurityMode eSecurityMode,
uint8 u8Radius,
uint8 *pu8SeqNum);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 185

Chapter 7
Application Framework (AF) API

*pu8SeqNum Pointer to location to receive sequence number assigned to
data transfer request. If not required, set to NULL

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
186 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfBroadcastDataReq

Description

This function submits a request to send data to all network nodes that conform to the
specified broadcast mode. You must specify the local endpoint and output cluster
from which the data originates (the cluster must be in the Simple descriptor for the
endpoint), as well as the destination endpoint(s) on the remote nodes.

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be
allocated using the PDUM function PDUM_hAPduAllocateAPduInstance() and
then written to using PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, this
function call will fail (and return ZPS_E_ADSU_TOO_LONG).

Following this function call, the APDU may be broadcast up to four times by the
source node (in addition, the APDU may be subsequently re-broadcast up to four
times by each intermediate routing node). If the transmission is successful, the event
ZPS_EVENT_APS_DATA_CONFIRM will be generated on the local node.

Security (encyption/decryption) can be applied to the APDU, where this security can
be implemented at the Application layer or the network (ZigBee) layer, or both.

Parameters

hAPduInst Handle of APDU instance to be sent

u16ClusterId Identifier of relevant output cluster on source endpoint

u8SrcEndpoint Source endpoint number (1-240) on local node

u8DstEndpoint Destination endpoint number (1-240) on remote node, or 255
for all endpoints on node

eBroadcastMode Type of broadcast, one of:
ZPS_E_BROADCAST_ALL
(all nodes)
ZPS_E_BROADCAST_ALL RX_ON
(all nodes with radio receiver permanently enabled)
ZPS_E_BROADCAST_ZC_ZR
(all Routers and Co-ordinator)

ZPS_teStatus ZPS_eAplAfBroadcastDataReq(
PDUM_thAPduInstance hAPduInst,
uint16 u16ClusterId,
uint8 u8SrcEndpoint,
uint8 u8DstEndpoint,
ZPS_teAplAfBroadcastMode eBroadcastMode,
ZPS_teAplAfSecurityMode eSecurityMode,
uint8 u8Radius,
uint8 *pu8SeqNum);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 187

Chapter 7
Application Framework (AF) API

eSecurityMode Security mode for data transfer:
ZPS_E_APL_AF_UNSECURE
(no security enabled)
ZPS_E_APL_AF_SECURE_NWK
(Network-level security using network key)

ZPS_E_APL_AF_WILD_PROFILE
(May be combined with above flags using OR operator. Sends
the message using the wild card profile (0xFFFF) instead of
the profile in the associated Simple descriptor)

u8Radius Maximum number of hops permitted to destination node
(zero value specifies that default maximum is to be used)

*pu8SeqNum Pointer to location to receive sequence number assigned to
data transfer request. If not required, set to NULL

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
188 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfBoundDataReq

Description

This function submits a request to send data to all nodes/endpoints to which the
source node/endpoint has been previously bound (using the binding functions,
described in Section 8.1.3). You must specify the local endpoint and output cluster
from which the data originates (the cluster must be in the Simple descriptor for the
endpoint).

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be
allocated using the PDUM function PDUM_hAPduAllocateAPduInstance() and
then written to using PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, this
function call will fail (and return ZPS_E_ADSU_TOO_LONG).

Once the sent data has reached the first hop node in the route to its destination(s), a
ZPS_EVENT_BIND_REQUEST_SERVER event will be generated on the local
node. This event reports the status of the bound transmission, including the number
of bound endpoints for which the transmission has failed.

Security (encyption/decryption) can be applied to the APDU, where this security can
be implemented at the Application layer or the network (ZigBee) layer, or both.

Parameters

hAPduInst Handle of APDU instance to be sent

u16ClusterId Identifier of relevant output cluster on source endpoint

u8SrcEndpoint Source endpoint number (1-240) on local node

eSecurityMode Security mode for data transfer:
ZPS_E_APL_AF_UNSECURE
(no security enabled)
ZPS_E_APL_AF_SECURE
(Application-level security using link key and network key)
ZPS_E_APL_AF_SECURE_NWK
(Network-level security using network key)

ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE
(Application-level security using link key and network key with
the extended NONCE included in the frame)

ZPS_E_APL_AF_WILD_PROFILE
(May be combined with above flags using OR operator. Sends
the message using the wild card profile (0xFFFF) instead of
the profile in the associated Simple descriptor)

ZPS_teStatus ZPS_eAplAfBoundDataReq(
PDUM_thAPduInstance hAPduInst,
uint16 u16ClusterId,
uint8 u8SrcEndpoint,
ZPS_teAplAfSecurityMode eSecurityMode,
uint8 u8Radius,
uint8 *pu8SeqNum);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 189

Chapter 7
Application Framework (AF) API

u8Radius Maximum number of hops permitted to destination node
(zero value specifies that default maximum is to be used)

*pu8SeqNum Pointer to location to receive sequence number assigned to
data transfer request. If not required, set to NULL.

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
190 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfBoundAckDataReq

Description

This function submits a request to send data to all nodes/endpoints to which the
source node/endpoint has been previously bound (using the binding functions,
described in Section 8.1.3) and requires an acknowledgement to be returned by the
remote node(s) once the data reaches its destination(s). You must specify the local
endpoint and output cluster from which the data originates (the cluster must be in the
Simple descriptor for the endpoint).

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be
allocated using the PDUM function PDUM_hAPduAllocateAPduInstance() and
then written to using PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the network, the
APDU will be broken up into fragments (NPDUs) for transmission, provided that
fragmentation has been enabled by setting the ZigBee network parameter Maximum
Number of Transmitted Simultaneous Fragmented Messages to a non-zero value.

Once the sent data has reached its final destination node(s), a
ZPS_EVENT_BIND_REQUEST_SERVER event will be generated on the local
node. This event reports the status of the bound transmission, including the number
of bound endpoints for which the transmission has failed.

Security (encyption/decryption) can be applied to the APDU, where this security can
be implemented at the Application layer or the network (ZigBee) layer, or both.

Parameters

hAPduInst Handle of APDU instance to be sent

u16ClusterId Identifier of relevant output cluster on source endpoint

u8SrcEndpoint Source endpoint number (1-240) on local node

eSecurityMode Security mode for data transfer:
ZPS_E_APL_AF_UNSECURE
(no security enabled)
ZPS_E_APL_AF_SECURE
(Application-level security using link key and network key)
ZPS_E_APL_AF_SECURE_NWK
(Network-level security using network key)

ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE
(Application-level security using link key and network key with
the extended NONCE included in the frame)

ZPS_teStatus ZPS_eAplAfBoundAckDataReq(
PDUM_thAPduInstance hAPduInst,
uint16 u16ClusterId,
uint8 u8SrcEndpoint,
ZPS_teAplAfSecurityMode eSecurityMode,
uint8 u8Radius,
uint8 *pu8SeqNum);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 191

Chapter 7
Application Framework (AF) API

ZPS_E_APL_AF_WILD_PROFILE
(May be combined with above flags using OR operator. Sends
the message using the wild card profile (0xFFFF) instead of
the profile in the associated Simple descriptor)

u8Radius Maximum number of hops permitted to destination node
(zero value specifies that default maximum is to be used)

*pu8SeqNum Pointer to location to receive sequence number assigned to
data transfer request. If not required, set to NULL.

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
192 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfInterPanDataReq

Description

This function submits a request to send data to one or more nodes in another ZigBee
PRO network - that is, to implement an inter-PAN transmission. The destination for
the data is specified in a structure (detailed in Section 7.2.3.3) which contains:

 PAN ID of destination network (a broadcast to all reachable ZigBee PRO networks can
also be configured)

 Address of destination node (this can be an IEEE/MAC or network address for a single
node, a group address for multiple nodes or a broadcast address for all nodes)

The data is sent in an Application Protocol Data Unit (APDU) instance, which can be
allocated using the PDUM function PDUM_hAPduAllocateAPduInstance() and
then written to using PDUM_u16APduInstanceWriteNBO().

If the APDU size is larger than the maximum packet size allowed on the local
network, this function call will fail (and return ZPS_E_ADSU_TOO_LONG).

Once the sent data has reached the first hop node in the route to its destination, a
ZPS_EVENT_APS_INTERPAN_DATA_CONFIRM event will be generated on the
local node (in the case of a broadcast or group multicast, this event is simply
generated once the data has been sent from the local node).

Security (encyption/decryption) cannot be applied to inter-PAN transmissions.

Parameters

hAPduInst Handle of APDU instance to be sent

u16ClusterId Identifier of cluster for which data is intended at destination
(must be a cluster of the application profile specified below)

u16ProfileId Identifier of application profile for which data is intended at
destination

psDstAddr Pointer to stucture containing destination PAN ID and address
(see Section 7.2.3.3)

u8Handle Handle for internal use (set to any value)

Returns

ZPS_E_SUCCESS

ZPS_APL_APS_E_ILLEGAL_REQUEST

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplAfInterPanDataReq(
PDUM_thAPduInstance hAPduInst,
uint16 u16ClusterId,
uint16 u16ProfileId,
ZPS_tsInterPanAddress *psDstAddr,
uint8 u8Handle);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 193

Chapter 7
Application Framework (AF) API

ZPS_u8AplGetMaxPayloadSize

Description

This function obtains the effective payload size, in bytes, within an IEEE802.15.4
data frame to be sent to the node with the specified network address. The handle of
the relevant Application layer instance must also be specified, which can be obtained
using ZPS_pvAplZdoGetAplHandle().

An IEEE802.15.4 data frame contains 127 bytes, but the effective payload is reduced
by the various IEEE802.15.4 and ZigBee headers. The function returns the size of
the payload available for data but does not take into account bytes needed for ZCL
cluster headers (so may not reflect the exact amount of space available for data).

Parameters

pvApl Handle of handle for the Application layer instance

u16Addr 16-bit network address of node to which data is to be sent

Returns

Number of data frame payload bytes available for data (ignoring ZCL headers)

uint8 ZPS_u8AplGetMaxPayloadSize(void *pvApl,
uint16 u16Addr);
194 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
7.1.3 Endpoint Functions

The AF Endpoint functions are used to control and monitor the states of endpoints on
the local node.

The functions are listed below, along with their page references:

Function Page

ZPS_vAplAfSetEndpointState 196

ZPS_eAplAfGetEndpointState 197

ZPS_eAplAfSetEndpointDiscovery 198

ZPS_eAplAfGetEndpointDiscovery 199
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 195

Chapter 7
Application Framework (AF) API

ZPS_vAplAfSetEndpointState

Description

This function puts the specified endpoint on the local node into the specified state
(enabled or disabled).

Parameters

u8Endpoint Endpoint number (on local node)

bEnabled State in which to put endpoint, one of:
TRUE: enable endpoint
FALSE: disable endpoint

Returns

ZPS_E_SUCCESS (endpoint state successfully set)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplAfSetEndpointState(
uint8 u8Endpoint,
bool bEnabled);
196 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfGetEndpointState

Description

This function obtains the current state (enabled or disabled) of the specified endpoint
on the local node.

Parameters

u8Endpoint Endpoint number (on local node)

*pbEnabled Pointer to location to receive endpoint state. The returned
state is one of:
TRUE: endpoint enabled
FALSE: endpoint disabled

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplAfGetEndpointState(
uint8 u8Endpoint,
bool *pbEnabled);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 197

Chapter 7
Application Framework (AF) API

ZPS_eAplAfSetEndpointDiscovery

Description

This function sets the discoverable state of the specified cluster of the specified
endpoint on the local node - that is, whether the cluster/endpoint will be included in
‘device discoveries’ initiated on the network.

If the cluster/endpoint is discoverable, it will appear in the Simple descriptor of the
local node and will also be included in match results requested using the function
ZPS_eAplZdpMatchDescRequest().

The initial discoverable state of the cluster/endpoint is pre-set using the ZPS
Configuration Editor (see Chapter 12).

Parameters

u8Endpoint Endpoint number (on local node)

u16ClusterId Cluster ID

bOutput Type of cluster (output or input), one of:
TRUE: Output cluster
FALSE: Input cluster

bDiscoverable Discoverable state to set, one of:
TRUE: Discoverable
FALSE: Not discoverable

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplAfSetEndpointDiscovery(
uint8 u8Endpoint,
uint16 u16ClusterId,
bool bOutput,
bool bDiscoverable);
198 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfGetEndpointDiscovery

Description

This function obtains the discoverable state of the specified cluster of the specified
endpoint on the local node - that is, whether the cluster/endpoint will be included in
‘device discoveries’ initiated on the network.

If the cluster/endpoint is discoverable, it will appear in the Simple descriptor of the
local node and will also be included in match results requested using the function
ZPS_eAplZdpMatchDescRequest().

The initial discoverable state of the cluster/endpoint is pre-set using the ZPS
Configuration Editor (see Chapter 12). The state can subsequently be changed at
run-time using the function ZPS_eAplAfSetEndpointDiscovery().

Parameters

u8Endpoint Endpoint number (on local node)

u16ClusterId Cluster ID

bOutput Type of cluster (output or input), one of:
TRUE: Output cluster
FALSE: Input cluster

*pbDiscoverable Pointer to location to receive discoverable state, which will be
one of:
TRUE: Discoverable
FALSE: Not discoverable

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplAfGetEndpointDiscovery(
uint8 u8Endpoint,
uint16 u16ClusterId,
bool bOutput,
bool_t *pbDiscoverable);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 199

Chapter 7
Application Framework (AF) API

7.1.4 Descriptor Functions

The AF Descriptor functions allow ZigBee descriptors for the local node to be copied
to and from the context area of the ZigBee PRO stack.

The functions are listed below, along with their page references:

Function Page

ZPS_eAplAfGetNodeDescriptor 201

ZPS_eAplAfGetNodePowerDescriptor 202

ZPS_eAplAfGetSimpleDescriptor 203
200 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfGetNodeDescriptor

Description

This function copies the Node descriptor (for the local node) from the context area of
the stack to the specified structure (the descriptor is returned through the function’s
parameter).

Parameters

*psDesc Pointer to structure (see Section 7.2.1.1) to receive Node
descriptor

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplAfGetNodeDescriptor(
ZPS_tsAplAfNodeDescriptor *psDesc);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 201

Chapter 7
Application Framework (AF) API

ZPS_eAplAfGetNodePowerDescriptor

Description

This function copies the Node Power descriptor (for the local node) from the context
area of the stack to the specified structure (the descriptor is returned through the
function’s parameter).

Parameters

*psDesc Pointer to structure (see Section 7.2.1.2) to receive Node
Power descriptor

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplAfGetNodePowerDescriptor(
ZPS_tsAplAfNodePowerDescriptor *psDesc);
202 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplAfGetSimpleDescriptor

Description

This function copies the Simple descriptor for the specified endpoint (on the local
node) from the context area of the stack to the specified structure (the descriptor is
returned through the function’s parameter).

Parameters

*psDesc Pointer to structure (see Section 7.2.1.3) to receive Simple
descriptor

Returns

ZPS_E_SUCCESS

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplAfGetSimpleDescriptor(
uint8 u8Endpoint,
ZPS_tsAplAfSimpleDescriptor *psDesc);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 203

Chapter 7
Application Framework (AF) API

7.2 AF Structures

This section describes the structures of the Application Framework (AF) API.

These include the following categories of structure:

 Descriptor structures - see Section 7.2.1

 Event structures - see Section 7.2.2

 Other structures - see Section 7.2.3

7.2.1 Descriptor Structures

These structures are used to represent the following descriptors that contain
information about the host node:

 Node descriptor

 Node Power descriptor

 Simple descriptor

The structures are listed below, along with their page references.

Structure Page

ZPS_tsAplAfNodeDescriptor 204

ZPS_tsAplAfNodePowerDescriptor 206

ZPS_tsAplAfSimpleDescriptor 207

7.2.1.1 ZPS_tsAplAfNodeDescriptor

The AF Node descriptor structure ZPS_tsAplAfNodeDescriptor is shown below.

typedef struct {

 uint32 : 8; /* padding */

 uint32 eLogicalType : 3;

 uint32 bComplexDescAvail : 1;

 uint32 bUserDescAvail : 1;

 uint32 eReserved : 3; /* reserved */

 uint32 eFrequencyBand : 5;

 uint32 eApsFlags : 3;

 uint32 u8MacFlags : 8;

 uint16 u16ManufacturerCode;

 uint8 u8MaxBufferSize;

 uint16 u16MaxRxSize;

 uint16 u16ServerMask;

 uint16 u16MaxTxSize;

 uint8 u8DescriptorCapability;

} ZPS_tsAplAfNodeDescriptor;
204 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
where:

 eLogicalType contains 3 bits (bits 0-2) indicating the ZigBee device type of
the node, as follows:

 000: Co-ordinator

 001: Router

 010: End Device

 bComplexDescAvail is set to 1 if there is a Complex descriptor available for
node.

 bUserDescAvail is set to 1 if there is a User descriptor available for node.

 eReserved is reserved.

 eFrequencyBand contains 5 bits detailing the frequency bands supported by
the node, as follows (a bit is set to 1 if the corresponding band is supported):

 Bit 0: 868-868.6 MHz

 Bit 2: 902-928 MHz

 Bit 3: 2400-2483.5 MHz

 Bits 1 and 4 are reserved

 eApsFlags is not currently supported and set to zero.

 eMacFlags contains 8 bits (bits 0-7) indicating the node capabilities, as
required by the IEEE 802.15.4 MAC sub-layer. These node capability flags are
described in Table 8 on page 216.

 u16ManufacturerCode contains 16 bits (bits 0-15) indicating the
manufacturer code for the node, where this code is allocated to the
manufacturer by the ZigBee Alliance.

 u8MaxBufferSize is the maximum size, in bytes, of an NPDU (Network
Protocol Data Unit).

 u16MaxRxSize is the maximum size, in bytes, of an APDU (Application
Protocol Data Unit). This value can be greater than the value of
u8MaxBufferSize, due to the fragmentation of an APDU into NPDUs.

 u16ServerMask contains 8 bits (bits 0-7) indicating the server status of the
node. This server mask is detailed in Table 10 on page 321.

 u16MaxTxSize is the maximum size, in bytes, of the ASDU (Application Sub-
layer Data Unit) in which a message can be sent (the message may actually be
transmitted in smaller fragments)

 u8DescriptorCapability contains 8 bits (bits 0-7) indicating the properties
of the node that can be used by other nodes in network discovery, as follows:

Bit Description

0 Set to 1 if Extended Active Endpoint List is available
on the node, 0 otherwise

1 Set to 1 if Extended Simple Descriptor List is availa-
ble on the node, 0 otherwise

2-7 Reserved
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 205

Chapter 7
Application Framework (AF) API

7.2.1.2 ZPS_tsAplAfNodePowerDescriptor

The AF Node Power descriptor structure ZPS_tsAplAfNodePowerDescriptor is
shown below.

typedef struct {

uint32 eCurrentPowerMode : 4;

uint32 eAvailablePowerSources : 4;

uint32 eCurrentPowerSource : 4;

uint32 eCurrentPowerSourceLevel : 4;

} ZPS_tsAplAfNodePowerDescriptor;

where:

 eCurrentPowerMode contains 4 bits (bits 0-3) indicating the power mode
currently used by the node, as follows:

 0000: Receiver configured according to “Receiver on when idle” MAC flag
in the Node Descriptor (see Section 7.2.1.1)

 0001: Receiver switched on periodically
 0010: Receiver switched on when stimulated, e.g. by pressing a button
 All other values are reserved

 eAvailablePowerSources contains 4 bits (bits 0-3) indicating the available
power sources for the node, as follows (a bit is set to 1 if the corresponding
power source is available):

 Bit 0: Permanent mains supply

 Bit 1: Rechargeable battery

 Bit 2: Disposable battery

 Bit 4: Reserved

 eCurrentPowerSource contains 4 bits (bits 0-3) indicating the current power
source for the node, as detailed for the element above (the bit corresponding to
the current power source is set to 1, all other bits are set to 0).

 eCurrentPowerSourceLevel contains 4 bits (bit 0-3) indicating the current
level of charge of the node’s power source (mainly useful for batteries), as
follows:

 0000: Critically low

 0100: Approximately 33%

 1000: Approximately 66%

 1100: Approximately 100% (near fully charged)
206 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
7.2.1.3 ZPS_tsAplAfSimpleDescriptor

The AF Simple descriptor structure ZPS_tsAplAfSimpleDescriptor is shown below.

typedef struct {

uint16 u16ApplicationProfileId;

uint16 u16DeviceId;

uint8 u8DeviceVersion;

uint8 u8Endpoint;

uint8 u8InClusterCount;

uint8 u8OutClusterCount;

uint16 *pu16InClusterList;

uint16 *pu16OutClusterList;

} ZPS_tsAplAfSimpleDescriptor;

where:

 u16ApplicationProfileId is the 16-bit identifier of the ZigBee application
profile supported by the endpoint. This must be an application profile identifier
issued by the ZigBee Alliance.

 u16DeviceId is the 16-bit identifier of the ZigBee device description
supported by the endpoint. This must be a device description identifier issued
by the ZigBee Alliance.

 u8DeviceVersion contains 4 bits (bits 0-3) representing the version of the
supported device description (default is 0000, unless set to another value
according to the application profile used).

 u8Endpoint is the number, in the range 1-240, of the endpoint to which the
Simple descriptor corresponds.

 u8InClusterCount is an 8-bit count of the number of input clusters,
supported on the endpoint, that will appear in the list pointed to by the
pu16InClusterList element.

 u8OutClusterCount is an 8-bit count of the number of output clusters,
supported on the endpoint, that will appear in the pu16OutClusterList
element.

 *pu16InClusterList is a pointer to the list of input clusters supported by
the endpoint (for use during the service discovery and binding procedures).
This is a sequence of 16-bit values, representing the cluster numbers (in the
range 1-240), where the number of values is equal to count
u8InClusterCount. If this count is zero, the pointer can be set to NULL.

 *pu16OutClusterList is a pointer to the list of output clusters supported by
the endpoint (for use during the service discovery and binding procedures).
This is a sequence of 16-bit values, representing the cluster numbers (in the
range 1-240), where the number of values is equal to count
u8OutClusterCount. If this count is zero, the pointer can be set to NULL.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 207

Chapter 7
Application Framework (AF) API

7.2.2 Event Structures

These stuctures are used to contain events. Event details (type and associated data)
are passed to the application in the structure ZPS_tsAfEvent. Data structures for the
individual event types are contained in the union ZPS_tuAfEventData.

The structures are listed below, along with their page references.

Structure Page

ZPS_tsAfEvent 209

ZPS_tuAfEventData 209

ZPS_tsAfDataIndEvent 210

ZPS_tsAfDataConfEvent 211

ZPS_tsAfDataAckEvent 212

ZPS_tsAfNwkFormationEvent 213

ZPS_tsAfNwkJoinedEvent 213

ZPS_tsAfNwkJoinFailedEvent 213

ZPS_tsAfNwkDiscoveryEvent 214

ZPS_tsAfNwkJoinIndEvent 215

ZPS_tsAfNwkLeaveIndEvent 216

ZPS_tsAfNwkLeaveConfEvent 217

ZPS_tsAfNwkStatusIndEvent 217

ZPS_tsAfNwkRouteDiscoveryConfEvent 218

ZPS_tsAfPollConfEvent 218

ZPS_tsAfNwkEdScanConfEvent 218

ZPS_tsAfErrorEvent 219

ZPS_tsAfZdoBindEvent 221

ZPS_tsAfZdoUnbindEvent 222

ZPS_tsAfZdoLinkKeyEvent 222

ZPS_tsAfBindRequestServerEvent 222

ZPS_tsAfInterPanDataIndEvent 223

ZPS_tsAfInterPanDataConfEvent 224

ZPS_tsAfZdpEvent 224

Note: Enumerations for the event types are provided in
the stucture ZPS_teAfEventType. This structure and
the associated events are detailed in Section 9.1.
208 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
7.2.2.1 ZPS_tsAfEvent

This stucture contains the details of an event.

The ZPS_tsAfEvent structure is detailed below.

typedef struct {

 ZPS_teAfEventType eType;

 ZPS_tuAfEventData uEvent;

} ZPS_tsAfEvent;

where

 eType indicates the event type, using the enumerations listed and described in
Section 9.1

 uEvent is a structure containing the event data from the union of structures
detailed in Section 7.2.2.2

7.2.2.2 ZPS_tuAfEventData

This structure is a union of the data structures for the individual events described in
Section 7.2.2.3 through to Section 7.2.2.24.

The ZPS_tuAfEventData structure is detailed below.

typedef union

{

 ZPS_tsAfDataIndEvent sApsDataIndEvent;

 ZPS_tsAfDataConfEvent sApsDataConfirmEvent;

 ZPS_tsAfDataAckEvent sApsDataAckEvent;

 ZPS_tsAfNwkFormationEvent sNwkFormationEvent;

 ZPS_tsAfNwkJoinedEvent sNwkJoinedEvent;

 ZPS_tsAfNwkJoinFailedEvent sNwkJoinFailedEvent;

 ZPS_tsAfNwkDiscoveryEvent sNwkDiscoveryEvent;

 ZPS_tsAfNwkJoinIndEvent sNwkJoinIndicationEvent;

 ZPS_tsAfNwkLeaveIndEvent sNwkLeaveIndicationEvent;

 ZPS_tsAfNwkLeaveConfEvent sNwkLeaveConfirmEvent;

 ZPS_tsAfNwkStatusIndEvent sNwkStatusIndicationEvent;

 ZPS_tsAfNwkRouteDiscoveryConfEvent sNwkRouteDiscoveryConfirmEvent;

 ZPS_tsAfPollConfEvent sNwkPollConfirmEvent;

 ZPS_tsAfNwkEdScanConfEvent sNwkEdScanConfirmEvent;

 ZPS_tsAfErrorEvent sAfErrorEvent;

 ZPS_tsAfZdoBindEvent sZdoBindEvent;

 ZPS_tsAfZdoUnbindEvent sZdoUnbindEvent;

 ZPS_tsAfZdoLinkKeyEvent sZdoLinkKeyEvent;

 ZPS_tsAfBindRequestServerEvent sBindRequestServerEvent;

 ZPS_tsAfInterPanDataIndEvent sApsInterPanDataIndEvent;

 ZPS_tsAfInterPanDataConfEvent sApsInterPanDataConfirmEvent;

 ZPS_tsAfZdpEvent sApsZdpEvent;

} ZPS_tuAfEventData;
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 209

Chapter 7
Application Framework (AF) API

7.2.2.3 ZPS_tsAfDataIndEvent

This structure is used in the ZPS_EVENT_APS_DATA_INDICATION event, which
indicates the arrival of data on the local node.

The ZPS_tsAfDataIndEvent structure is detailed below.

typedef struct

{

 uint8 u8DstAddrMode;

 ZPS_tuAddress uDstAddress;

 uint8 u8DstEndpoint;

 uint8 u8SrcAddrMode;

 ZPS_tuAddress uSrcAddress;

 uint8 u8SrcEndpoint;

 uint16 u16ProfileId;

 uint16 u16ClusterId;

 PDUM_thAPduInstance hAPduInst;

 uint8 eStatus;

 uint8 eSecurityStatus;

 uint8 u8LinkQuality;

 uint32 u32RxTime;

} ZPS_tsAfDataIndEvent;

where:

 u8DstAddrMode indicates the type of destination address specified through the
element uDstAddress (see Table 7 below)

 uDstAddress is the address of the destination node for the data packet (the
type of address is specified using the element u8DstAddrMode above)

 u8DstEndpoint is the number of the destination endpoint (in range 0-240)

 u8SrcAddrMode indicates the type of source address specified through the
element uSrcAddress (below) - this can be a 64-bit MAC/IEEE address or a
16-bit network address

 uSrcAddress is the address of the source node for the data packet (the type of
address is specified using the element u8SrcAddrMode above)

 u8SrcEndpoint is the number of the source endpoint (in range 1-240)

 u16ProfileId is the identifier of the ZigBee device profile of the device which
can interpret the data

 u16ClusterId is the identifier of the cluster (which belongs to the device profile
specified in u16ProfileId) which is capable of interpreting the data

 hAPduInst is the handle of the APDU which contains the data

 eStatus is one of the status codes from the NWK layer or MAC layer, detailed
in Section 9.2.3 and Section 9.2.4

 eSecurityStatus indicates the type of security with which the packet was sent
- unsecured (0xAF), secured with network key (0xAC) or secured with link key
(0xAB)
210 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
 u8LinkQuality is a measure of the signal strength of the radio link over which
the data packet was sent (for the last hop)

 u32RxTime is reserved for future use.

7.2.2.4 ZPS_tsAfDataConfEvent

This structure is used in the ZPS_EVENT_APS_DATA_CONFIRM event, which
confirms that a data packet sent by the local node has been successfully passed down
the stack to the MAC layer and has made its first hop towards its destination (an
acknowledgement has been received from the next hop node).

The ZPS_tsAfDataConfEvent structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint8 u8SrcEndpoint;

 uint8 u8DstEndpoint;

 uint8 u8DstAddrMode;

 ZPS_tuAddress uDstAddr;

 uint8 u8SequenceNum;

} ZPS_tsAfDataConfEvent;

where:

 u8Status is one of the status codes from the lower stack layers, detailed in
Section 9.2.

 u8SrcEndpoint is the number of the (local) source endpoint for the data
transfer (in range 1-240)

 u8DstEndpoint is the number of the destination endpoint for the data transfer
(in range 1-240)

 u8DstAddrMode indicates the type of destination address specified through the
element uDstAddr (see Table 7 on page 211) - only values 0x02 (group
address) and 0x03 (network address) are valid in this structure

 uDstAddr is the address of the destination node for the data packet (the type of
address is specified using the element u8DstAddrMode above)

 u8SequenceNum is the sequence number of the request that initiated the data
transfer

u8DstAddrMode Code Description

0x00 ZPS_E_ADDR_MODE_BOUND Bound endpoint

0x01 ZPS_E_ADDR_MODE_GROUP 16-bit Group address

0x02 ZPS_E_ADDR_MODE_SHORT 16-bit Network (Short) address

0x03 ZPS_E_ADDR_MODE_IEEE 64-bit IEEE/MAC address

Table 7: Addressing Modes
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 211

Chapter 7
Application Framework (AF) API

7.2.2.5 ZPS_tsAfDataAckEvent

This structure is used in the ZPS_EVENT_APS_DATA_ACK event, which is
generated when an end-to-end acknowledgement is received from the destination
node during a data transfer in which an acknowledgement was requested.

typedef struct {

 uint8 u8Status;

 uint8 u8SrcEndpoint;

 uint8 u8DstEndpoint;

 uint8 u8DstAddrMode;

 uint16 u16DstAddr;

 uint8 u8SequenceNum;

 uint16 u16ProfileId;

 uint16 u16ClusterId;

} ZPS_tsAfDataAckEvent;

where:

 u8Status is one of the status codes from the lower stack layers, detailed in
Section 9.2

 u8SrcEndpoint is the number of the (local) source endpoint for the data
transfer (in range 1-240)

 u8DstEndpoint is the number of the destination endpoint for the data transfer
(in range 1-240)

 u8DstAddrMode indicates the type of destination address specified through the
element u16DstAddr (see Table 7 on page 211) - only values 0x01 (group
address) and 0x02 (network address) are valid in this structure

 u16DstAddr is the 16-bit address of the destination node for the data transfer
and therefore of the node that sent the acknowledgement (the type of address
is specified using the element u8DstAddrMode above)

 u8SequenceNum is the sequence number of the request that initiated the data
transfer

 u16ProfileId is the identifier of the ZigBee device profile of the device for
which the data transfer was intended

 u16ClusterId is the identifier of the cluster (which belongs to the device profile
specified in u16ProfileId) for which the data transfer was intended
212 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
7.2.2.6 ZPS_tsAfNwkFormationEvent

This structure is used in the event ZPS_EVENT_NWK_STARTED, which indicates
whether the network has been started (on the Co-ordinator).

The ZPS_tsAfNwkFormationEvent structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAfNwkFormationEvent;

where is one of the status codes from the lower stack layers, detailed in Section 9.2.

7.2.2.7 ZPS_tsAfNwkJoinedEvent

This structure is used in the events ZPS_EVENT_NWK_JOINED_AS_ROUTER and
ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE, which confirm that the local device
(Router or End Device) has successfully joined a network.

The ZPS_tsAfNwkJoinedEvent structure reports the network address that the
parent has assigned to the new node and is detailed below.

typedef struct

{

 uint16 u16Addr;

} ZPS_tsAfNwkJoinedEvent;

where u16Addr is the 16-bit network address allocated to the joining node.

7.2.2.8 ZPS_tsAfNwkJoinFailedEvent

This structure is used in the event ZPS_EVENT_NWK_FAILED_TO_JOIN, which
indicates that the local device has failed to join a network.

The ZPS_tsAfNwkJoinFailedEvent structure is detailed below.

typedef struct

{

 uint8 u8Status;

} ZPS_tsAfNwkJoinFailedEvent;

where u8Status is one of the status codes from the lower stack layers, detailed in
Section 9.2.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 213

Chapter 7
Application Framework (AF) API

7.2.2.9 ZPS_tsAfNwkDiscoveryEvent

This structure is used in the ZPS_EVENT_NWK_DISCOVERY_COMPLETE event,
which reports the details of the networks detected in a network discovery initiated by
a Router or End Device that needs to join a network.

The ZPS_tsAfNwkDiscoveryEvent structure is detailed below.

typedef struct

{

 uint32 u32UnscannedChannels;

 uint8 eStatus;

 uint8 u8NetworkCount;

 uint8 u8SelectedNetwork;

 ZPS_tsNwkNetworkDescr *psNwkDescriptors;

} ZPS_tsAfNwkDiscoveryEvent;

where:

 u32UnscannedChannels is a 32-bit bitmap representing the set of channels
from the network discovery that had not yet been scanned when this event was
generated. Bits 11 to 26 represent the 2400-MHz channels 11 to 26, where 1
indicates channel scanned and 0 indicates channel not yet scanned.

 estatus is the status of the network discovery process, returned by the lower
layers (see Section 9.2) - MAC_ENUM_SUCCESS, if the discovery was
successfully completed.

 u8NetworkCount is the number of networks that had been discovered when
this event was generated.

 u8SelectedNetwork is the index of the recommended network in the array of
reported networks (see below).

 psNwkDescriptors is a pointer to the network discovery table in the network
NIB. The network discovery table contains array of data structures, where each
structure contains details of a discovered network. Each array element is a
structure of the type ZPS_tsNwkNetworkDescr, described in Section 7.2.3.1.
The number of array elements is given by u8NetworkCount, described above.
214 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
7.2.2.10 ZPS_tsAfNwkJoinIndEvent

This structure is used in the event ZPS_EVENT_NWK_NEW_NODE_HAS_JOINED,
which notifies a Router or the Co-ordinator that a new child node has joined the
network.

The ZPS_tsAfNwkJoinIndEvent structure contains information about the new
node and is detailed below.

typedef struct

{

 uint64 u64ExtAddr;

 uint16 u16NwkAddr;

 uint8 u8Capability;

 uint8 u8Rejoin;

 uint8 u8SecureRejoin;

} ZPS_tsAfNwkJoinIndEvent;

where:

 u64ExtAddr is the 64-bit IEEE (MAC) address of the joining node

 u16NwkAddr is the 16-bit network address assigned to the joining node

 u8Capability is a bitmap indicating the operational capabilities of the joining
node. This bitmap is detailed in Table 8 below

 u8Rejoin indicates the method used to join the network:

 0x00 if joined through association

 0x01 if joined directly or used orphaning

 0x02 if was network rejoin

 u8SecureRejoin indicates whether the join was performed in a secure manner
- zero represents FALSE and a non-zero value represents TRUE
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 215

Chapter 7
Application Framework (AF) API

7.2.2.11 ZPS_tsAfNwkLeaveIndEvent

This structure is used in the ZPS_EVENT_LEAVE_INDICATION event, which
indicates that a neighbouring node has left the network or a remote node has
requested the local node to leave.

The ZPS_tsAfNwkLeaveIndEvent structure is detailed below.

typedef struct {

 uint64 u64ExtAddr;

 uint8 u8Rejoin;

} ZPS_tsAfNwkLeaveIndEvent;

where:

 u64ExtAddr is the 64-bit IEEE (MAC) address of the node that has left the
network, or is zero if the local node has been requested to leave the network

 u8Rejoin indicates whether the leaving node was requested to attempt a
subsequent rejoin of the network - zero represents FALSE and a non-zero
value represents TRUE

Bits Description

0 Co-ordinator capability:
1: Node able to act as Co-ordinator
0: Node not able to act as Co-ordinator

1 Device type:
1: Full-Function Device (FFD)
0: Reduced-Function Device (RFD)
An FFD can act as any node type while an RFD cannot act
as the network Co-ordinator.

2 Power source:
1: Node is mains-powered
0: Node is not mains-powered

3 Receiver on when idle:
1: Receiver enabled during idle periods
0: Receiver disabled during idle periods to conserve power

4-5 Reserved

6 Security capability:
1: High security
0: Standard security

7 Allocate address:
1: Network address should be allocated to node
0: Network address need not be allocated to node

Table 8: Node Capabilities Bitmap
216 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
7.2.2.12 ZPS_tsAfNwkLeaveConfEvent

This structure is used in the event ZPS_EVENT_NWK_LEAVE_CONFIRM, which
reports the results of a node leave request issued by the local node.

The ZPS_tsAfNwkLeaveConfEvent structure is detailed below.

typedef struct {

 uint64 u64ExtAddr;

 uint8 eStatus;

} ZPS_tsAfNwkLeaveConfEvent;

where:

 u64ExtAddr is the 64-bit IEEE (MAC) address of the leaving node. This value
is zero if the local node itself is leaving

 eStatus is the leave status returned by the lower layers -
ZPS_NWK_ENUM_SUCCESS, if the leave request has been successful

7.2.2.13 ZPS_tsAfNwkStatusIndEvent

This structure is used in the ZPS_EVENT_NWK_STATUS_INDICATION event, which
reports status information from the NWK layer of the stack.

The ZPS_tsAfNwkStatusIndEvent structure is detailed below.

typedef struct {

 uint16 u16NwkAddr;

 uint8 u8Status;

} ZPS_tsAfNwkStatusIndEvent;

where:

 u16NwkAddr is the 16-bit network address of the node associated with the
event

 u8Status is one of the status codes from the lower stack layers, detailed in
Section 9.2.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 217

Chapter 7
Application Framework (AF) API

7.2.2.14 ZPS_tsAfNwkRouteDiscoveryConfEvent

This structure is used in the ZPS_EVENT_NWK_ROUTE_DISCOVERY_CONFIRM
event, which confirms that a route discovery has been performed.

The ZPS_tsAfNwkRouteDiscoveryConfEvent structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint8 u8NwkStatus;

} ZPS_tsAfNwkRouteDiscoveryConfEvent;

where:

 u8Status is one of the status codes from the MAC layer, detailed in Section
9.2.4

 u8NwkStatus is one of the status codes from the NWK layer, detailed in
Section 9.2.3

7.2.2.15 ZPS_tsAfPollConfEvent

This structure is used in the ZPS_EVENT_NWK_POLL_CONFIRM event, which
reports the completion of a poll request sent from the (local) End Device to its parent.

The ZPS_tsAfPollConfEvent structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAfPollConfEvent;

where u8Status is one of the status codes from the lower stack layers, detailed in
Section 9.2.

7.2.2.16 ZPS_tsAfNwkEdScanConfEvent

This structure is used in the ZPS_EVENT_NWK_ED_SCAN event, which indicates
that an ‘energy detect’ scan in the 2.4-GHz radio band has completed.

The ZPS_tsAfNwkEdScanConfEvent structure is defined as:

typedef ZPS_tsNwkNlmeCfmEdScan ZPS_tsAfNwkEdScanConfEvent;

where ZPS_tsNwkNlmeCfmEdScan is described in Section 7.2.3.2.
218 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
7.2.2.17 ZPS_tsAfErrorEvent

This structure is used in the ZPS_EVENT_ERROR event, which reports error
situations concerning the storage of received messages in APDU instances.

The ZPS_tsAfErrorEvent structure is detailed below.

typedef struct {

 enum {

 ZPS_ERROR_APDU_TOO_SMALL,

 ZPS_ERROR_APDU_INSTANCES_EXHAUSTED,

 ZPS_ERROR_NO_APDU_CONFIGURED,

 ZPS_ERROR_OS_MESSAGE_QUEUE_OVERRUN

 } eError;

 union {

 struct {

 uint16 u16ProfileId;

 uint16 u16ClusterId;

 uint16 u16SrcAddr;

 uint16 u16DataSize;

 PDUM_thAPdu hAPdu;

 uint8 u8SrcEndpoint;

 uint8 u8DstEndpoint;

 }sAfErrorApdu;

 struct {

 OS_thMessage hMessage;

 } sAfErrorOsMessageOverrun;

 } uErrorData;

} ZPS_tsAfErrorEvent;

The member enumerations and structures of the above structure are detailed below.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 219

Chapter 7
Application Framework (AF) API

eError Enumerations

The error enumerations which are part of the ZPS_tsAfErrorEvent structure are
listed and described below.

sAfErrorApdu

This structure is used in the following errors:

 ZPS_ERROR_APDU_TOO_SMALL, which reports that the allocated APDU
instance is too small to store a received message

 ZPS_ERROR_APDU_INSTANCES_EXHAUSTED, which reports that there
are no allocated APDU instances left to store a received message

 ZPS_ERROR_NO_APDU_CONFIGURED, which reports that no APDU has
been configured to store the received message

The sAfErrorApdu structure is detailed below.

struct {

 uint16 u16ProfileId;

 uint16 u16ClusterId;

 uint16 u16SrcAddr;

 uint16 u16DataSize;

 PDUM_thAPdu hAPdu;

 uint8 u8SrcEndpoint;

 uint8 u8DstEndpoint;

}sAfErrorApdu;

where:

 u16ProfileId is the identifier of the ZigBee application profile associated
with the source and destination endpoints for the message

 u16ClusterId is the identifier of the cluster associated with the source and
destination endpoints for the message

 u16SrcAddr is the 16-bit network address of the source node of the message

eError Enumeration Description

ZPS_ERROR_APDU_TOO_SMALL Allocated APDU instance is too small to accommodate
received message. This error is detailed in the structure
sAfErrorApdu, which is described below.

ZPS_ERROR_APDU_INSTANCES_EXHAUSTED The are no APDU instances available to accommodate
the received message. This error is detailed in the struc-
ture sAfErrorApdu, which is described below.

ZPS_ERROR_NO_APDU_CONFIGURED No APDU has been configured to accommodate the
received message. This error is detailed in the structure
sAfErrorApdu, which is described below.

ZPS_ERROR_OS_MESSAGE_QUEUE_OVERRUN A message queue is full and can accept no more mes-
sages. This error is detailed in the structure sAfErro-
rOsMessageOverrun, which is described below.

Table 9: eError Enumerations
220 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
 u16DataSize is the size of the received message, in bytes

 hAPdu is the handle of the local APDU pool from which the APDU instance
comes

 u8SrcEndpoint is the number of the source endpoint of the message

 u8DstEndpoint is the number of the destination endpoint of the message

sAfErrorOsMessageOverrun

This structure is used in the ZPS_ERROR_OS_MESSAGE_QUEUE_OVERRUN
error, which indicates that a message queue is full and can accept no more messages.

The sAfErrorOsMessageOverrun structure is detailed below.

struct {

 OS_thMessage hMessage;

} sAfErrorOsMessageOverrun;

where hMessage is the handle of the message type for the queue which is full.

7.2.2.18 ZPS_tsAfZdoBindEvent

This structure is used in the ZPS_EVENT_ZDO_BIND event, which indicates that the
local node has been successfully bound to one or more remote nodes.

The ZPS_tsAfZdoBindEvent structure is detailed below.

typedef struct {

 ZPS_tuAddress uDstAddr;

 uint8 u8DstAddrMode;

 uint8 u8SrcEp;

 uint8 u8DstEp;

} ZPS_tsAfZdoBindEvent;

where

 uDstAddr is the address of the remote node for the binding (the type of
address is specified using the element u8DstAddrMode above)

 u8DstAddrMode indicates the type of address specified through the element
uDstAddr (see Table 7 on page 211)

 u8SrcEp is the number of the source endpoint for the binding (in range 1-240)

 u8DstEp is the number of the destination endpoint for the binding
(in range 1-240)
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 221

Chapter 7
Application Framework (AF) API

7.2.2.19 ZPS_tsAfZdoUnbindEvent

This structure is used in the ZPS_EVENT_ZDO_UNBIND event, which indicates that
the local node has been successfully unbound from one or more remote nodes.

The ZPS_tsAfZdoUnbindEvent structure is defined as:

typedef ZPS_tsAfZdoBindEvent ZPS_tsAfZdoUnbindEvent;

where ZPS_tsAfZdoBindEvent is described in Section 7.2.2.18 (but for this event,
the data in the structure relates to unbinding rather than binding).

7.2.2.20 ZPS_tsAfZdoLinkKeyEvent

This structure is used in the ZPS_EVENT_ZDO_LINK_KEY event, which indicates
that a new application link key has been received and installed, and is ready for use.

The ZPS_tsAfZdoLinkKeyEvent structure is defined as:

typedef struct {

 uint64 u64IeeeLinkAddr;

} ZPS_tsAfZdoLinkKeyEvent;

where u64IeeeLinkAddr is the IEEE/MAC address of the remote device with which
the installed link key is valid.

7.2.2.21 ZPS_tsAfBindRequestServerEvent

This structure is used in the ZPS_EVENT_BIND_REQUEST_SERVER event, which
reports the status of a data transmission sent from the (local) node to a set of bound
endpoints.

The ZPS_tsAfBindRequestServerEvent structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint8 u8SrcEndpoint;

 uint32 u32FailureCount;

} ZPS_tsAfBindRequestServerEvent;

where:

 u8Status is the overall status of the bound data transmission:

 Success (0) indicates that the data packet was successfully transmitted to
all bound endpoints

 Failure (non-zero value) indicates that the data packet was not
successfully sent to at least one bound endpoint (see u32FailureCount
below)

 u8SrcEndpoint is the number of the local endpoint from which the data
packet was sent

 u32FailureCount is the number of bound endpoints for which the
transmission failed
222 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
7.2.2.22 ZPS_tsAfInterPanDataIndEvent

This structure is used in the ZPS_EVENT_APS_INTERPAN_DATA_INDICATION
event, which indicates that an inter-PAN data packet has arrived.

The ZPS_tsAfInterPanDataIndEvent structure is detailed below.

typedef struct

{

 ZPS_tsInterPanAddress sDstAddr;

 uint8 u8SrcAddrMode;

 uint16 u16SrcPan;

 uint64 u64SrcAddress;

 uint16 u16ProfileId;

 uint16 u16ClusterId;

 PDUM_thAPduInstance hAPduInst;

 uint8 eStatus;

 uint8 u8DstEndpoint;

 uint8 u8LinkQuality;

} ZPS_tsAfInterPanDataIndEvent;

where

 sDstAddr is a structure of the type ZPS_tsInterPanAddress (see Section
7.2.3.3) which contains the PAN ID and address for the destination node(s) of
the inter-PAN data packet

 u8SrcAddrMode indicates the type of address specified through the element
u64SrcAddress (see Table 7 on page 211)

 u16SrcPan is the PAN ID of the network from which the data packet originates

 u64SrcAddress is the address of the node which sent the data packet (the
type of address is specified using the element u8SrcAddrMode above)

 u16ProfileId is the identifier of the application profile for which the data
packet is intended

 u16ClusterId is the identifier of the cluster for which the data packet is
intended

 hAPduInst is the handle of the APDU instance for the data packet

 eStatus is one of the status codes from the lower stack layers, detailed in
Section 9.2

 u8DstEndpoint is the number of the destination endpoint for the data packet
(in range 1-240)

 u8LinkQuality is an LQI value indicating the perceived strength of the radio
signal which carried the received data packet
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 223

Chapter 7
Application Framework (AF) API

7.2.2.23 ZPS_tsAfInterPanDataConfEvent

This structure is used in the ZPS_EVENT_APS_INTERPAN_DATA_CONFIRM
event, which indicates that an inter-PAN communication has been sent by the local
node and an acknowledgement has been received from the first hop node (this
acknowledgement is not generated in the case of a broadcast).

The ZPS_tsAfInterPanDataConfEvent structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint8 u8Handle;

} ZPS_tsAfInterPanDataConfEvent;

where

 u8Status is one of the status codes from the lower stack layers, detailed in
Section 9.2.

 u8Handle is a handle for internal use

7.2.2.24 ZPS_tsAfZdpEvent

This structure is used when a ZPS_EVENT_APS_DATA_INDICATION event is
generated containing a response which is destined for the ZDO at endpoint 0. The
application can extract the response data from the event using the function
ZPS_bAplZdpUnpackResponse() and this structure is used to receive the extracted
data.

The ZPS_tsAfZdpEvent structure is detailed below.

typedef struct {

 uint8 u8SequNumber;

 uint16 u16ClusterId;

 union {

 ZPS_tsAplZdpDeviceAnnceReq sDeviceAnnce;

 ZPS_tsAplZdpMgmtNwkUpdateReq sMgmtNwkUpdateReq;

 ZPS_tsAplZdpMgmtPermitJoiningReq sPermitJoiningReq;

 ZPS_tsAplZdpDiscoveryCacheRsp sDiscoveryCacheRsp;

 ZPS_tsAplZdpDiscoveryStoreRsp sDiscoveryStoreRsp;

 ZPS_tsAplZdpNodeDescStoreRsp sNodeDescStoreRsp;

 ZPS_tsAplZdpActiveEpStoreRsp sActiveEpStoreRsp;

 ZPS_tsAplZdpSimpleDescStoreRsp sSimpleDescStoreRsp;

 ZPS_tsAplZdpRemoveNodeCacheRsp sRemoveNodeCacheRsp;

 ZPS_tsAplZdpEndDeviceBindRsp sEndDeviceBindRsp;

 ZPS_tsAplZdpBindRsp sBindRsp;

 ZPS_tsAplZdpUnbindRsp sUnbindRsp;

 ZPS_tsAplZdpReplaceDeviceRsp sReplaceDeviceRsp;

 ZPS_tsAplZdpStoreBkupBindEntryRsp sStoreBkupBindEntryRsp;

 ZPS_tsAplZdpRemoveBkupBindEntryRsp sRemoveBkupBindEntryRsp;

 ZPS_tsAplZdpBackupSourceBindRsp sBackupSourceBindRsp;

 ZPS_tsAplZdpMgmtLeaveRsp sMgmtLeaveRsp;

 ZPS_tsAplZdpMgmtDirectJoinRsp sMgmtDirectJoinRsp;
224 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
 ZPS_tsAplZdpMgmtPermitJoiningRsp sPermitJoiningRsp;

 ZPS_tsAplZdpNodeDescRsp sNodeDescRsp;

 ZPS_tsAplZdpPowerDescRsp sPowerDescRsp;

 ZPS_tsAplZdpSimpleDescRsp sSimpleDescRsp;

 ZPS_tsAplZdpNwkAddrRsp sNwkAddrRsp;

 ZPS_tsAplZdpIeeeAddrRsp sIeeeAddrRsp;

 ZPS_tsAplZdpUserDescConf sUserDescConf;

 ZPS_tsAplZdpSystemServerDiscoveryRsp sSystemServerDiscoveryRsp;

 ZPS_tsAplZdpPowerDescStoreRsp sPowerDescStoreRsp;

 ZPS_tsAplZdpUserDescRsp sUserDescRsp;

 ZPS_tsAplZdpActiveEpRsp sActiveEpRsp;

 ZPS_tsAplZdpMatchDescRsp sMatchDescRsp;

 ZPS_tsAplZdpComplexDescRsp sComplexDescRsp;

 ZPS_tsAplZdpFindNodeCacheRsp sFindNodeCacheRsp;

 ZPS_tsAplZdpExtendedSimpleDescRsp sExtendedSimpleDescRsp;

 ZPS_tsAplZdpExtendedActiveEpRsp sExtendedActiveEpRsp;

 ZPS_tsAplZdpBindRegisterRsp sBindRegisterRsp;

 ZPS_tsAplZdpBackupBindTableRsp sBackupBindTableRsp;

 ZPS_tsAplZdpRecoverBindTableRsp sRecoverBindTableRsp;

 ZPS_tsAplZdpRecoverSourceBindRsp sRecoverSourceBindRsp;

 ZPS_tsAplZdpMgmtNwkDiscRsp sMgmtNwkDiscRsp;

 ZPS_tsAplZdpMgmtLqiRsp sMgmtLqiRsp;

 ZPS_tsAplZdpMgmtRtgRsp sRtgRsp;

 ZPS_tsAplZdpMgmtBindRsp sMgmtBindRsp;

 ZPS_tsAplZdpMgmtCacheRsp sMgmtCacheRsp;

 ZPS_tsAplZdpMgmtNwkUpdateNotify sMgmtNwkUpdateNotify;

 }uZdpData;

 union {

 ZPS_tsAplZdpBindingTableEntry asBindingTable[5];

 ZPS_tsAplZdpNetworkDescr asNwkDescTable[5];

 ZPS_tsAplZdpNtListEntry asNtList[2];

 ZPS_tsAplDiscoveryCache aDiscCache[5];

 uint16 au16Data[34];

 uint8 au8Data[77];

 uint64 au64Data[9];

 }uLists;

}ZPS_tsAfZdpEvent;

where:

 u8SequNumber is the sequence number of the ZDP request/response

 u16ClusterId is the ID of the cluster to which the request/response relates

 uZdpData is a union of the different ZDP request/response types:

 sDeviceAnnce is a structure of the type
ZPS_tsAplZdpDeviceAnnceReq, described in Section 8.2.2.3

 sMgmtNwkUpdateReq is a structure of the type
ZPS_tsAplZdpMgmtNwkUpdateReq, described in Section 8.2.2.41

 sPermitJoiningReq is a structure of the type
ZPS_tsAplZdpMgmtPermitJoiningReq, described in Section 8.2.3.39
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 225

Chapter 7
Application Framework (AF) API

 sDiscoveryCacheRsp is a structure of the type
ZPS_tsAplZdpDiscoveryCacheRsp, described in Section 8.2.3.14

 sDiscoveryStoreRsp is a structure of the type
ZPS_tsAplZdpDiscoveryStoreRsp, described in Section 8.2.3.15

 sNodeDescStoreRsp is a structure of the type
ZPS_tsAplZdpNodeDescStoreRsp, described in Section 8.2.3.16

 sActiveEpStoreRsp is a structure of the type
ZPS_tsAplZdpActiveEpStoreRsp, described in Section 8.2.3.19

 sSimpleDescStoreRsp is a structure of the type
ZPS_tsAplZdpSimpleDescStoreRsp, described in Section 8.2.3.18

 sRemoveNodeCacheRsp is a structure of the type
ZPS_tsAplZdpRemoveNodeCacheRsp, described in Section 8.2.3.21

 sEndDeviceBindRsp is a structure of the type
ZPS_tsAplZdpEndDeviceBindRsp, described in Section 8.2.3.22

 sBindRsp is a structure of the type ZPS_tsAplZdpBindRsp, described
in Section 8.2.3.23

 sUnbindRsp is a structure of the type ZPS_tsAplZdpUnbindRsp,
described in Section 8.2.3.24

 sReplaceDeviceRsp is a structure of the type
ZPS_tsAplZdpReplaceDeviceRsp, described in Section 8.2.3.26

 sStoreBkupBindEntryRsp is a structure of the type
ZPS_tsAplZdpStoreBkupBindEntryRsp, described in Section
8.2.2.27

 sRemoveBkupBindEntryRsp is a structure of the type
ZPS_tsAplZdpRemoveBkupBindEntryRsp, described in Section
8.2.2.28

 sBackupSourceBindRsp is a structure of the type
ZPS_tsAplZdpBackupSourceBindRsp, described in Section 8.2.3.31

 sMgmtLeaveRsp is a structure of the type
ZPS_tsAplZdpMgmtLeaveRsp, described in Section 8.2.3.37

 sMgmtDirectJoinRsp is a structure of the type
ZPS_tsAplZdpMgmtDirectJoinRsp, described in Section 8.2.3.38

 sPermitJoiningRsp is a structure of the type
ZPS_tsAplZdpMgmtPermitJoiningRsp, described in Section 8.2.3.39

 sNodeDescRsp is a structure of the type ZPS_tsAplZdpNodeDescRsp,
described in Section 8.2.3.3

 sPowerDescRsp is a structure of the type
ZPS_tsAplZdpPowerDescRsp, described in Section 8.2.3.4

 sSimpleDescRsp is a structure of the type
ZPS_tsAplZdpSimpleDescRsp, described in Section 8.2.3.5

 sNwkAddrRsp is a structure of the type ZPS_tsAplZdpNwkAddrRsp,
described in Section 8.2.3.1

 sIeeeAddrRsp is a structure of the type ZPS_tsAplZdpIeeeAddrRsp,
described in Section 8.2.3.2
226 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
 sUserDescConf is a structure of the type
ZPS_tsAplZdpUserDescConf, described in Section 8.2.3.12

 sSystemServerDiscoveryRsp is a structure of the type
ZPS_tsAplZdpSystemServerDiscoveryRsp, described in Section
8.2.3.13

 sPowerDescStoreRsp is a structure of the type
ZPS_tsAplZdpPowerDescStoreRsp, described in Section 8.2.3.17

 sUserDescRsp is a structure of the type ZPS_tsAplZdpUserDescRsp,
described in Section 8.2.3.8

 sActiveEpRsp is a structure of the type ZPS_tsAplZdpActiveEpRsp,
described in Section 8.2.3.10

 sMatchDescRsp is a structure of the type
ZPS_tsAplZdpMatchDescRsp, described in Section 8.2.3.9

 sComplexDescRsp is a structure of the type
ZPS_tsAplZdpComplexDescRsp, described in Section 8.2.3.7

 sFindNodeCacheRsp is a structure of the type
ZPS_tsAplZdpFindNodeCacheRsp, described in Section 8.2.3.20

 sExtendedSimpleDescRsp is a structure of the type
ZPS_tsAplZdpExtendedSimpleDescRsp, described in Section 8.2.3.6

 sExtendedActiveEpRsp is a structure of the type
ZPS_tsAplZdpExtendedActiveEpRsp, described in Section 8.2.3.11

 sBindRegisterRsp is a structure of the type
ZPS_tsAplZdpBindRegisterRsp, described in Section 8.2.3.25

 sBackupBindTableRsp is a structure of the type
ZPS_tsAplZdpBackupBindTableRsp, described in Section 8.2.3.29

 sRecoverBindTableRsp is a structure of the type
ZPS_tsAplZdpRecoverBindTableRsp, described in Section 8.2.3.30

 sRecoverSourceBindRsp is a structure of the type
ZPS_tsAplZdpRecoverSourceBindRsp, described in Section 8.2.3.32

 sMgmtNwkDiscRsp is a structure of the type
ZPS_tsAplZdpMgmtNwkDiscRsp, described in Section 8.2.3.33

 sMgmtLqiRsp is a structure of the type ZPS_tsAplZdpMgmtLqiRsp,
described in Section 8.2.3.34

 sRtgRsp is a structure of the type ZPS_tsAplZdpMgmtRtgRsp,
described in Section 8.2.3.35

 sMgmtBindRsp is a structure of the type ZPS_tsAplZdpMgmtBindRsp,
described in Section 8.2.3.36

 sMgmtCacheRsp is a structure of the type
ZPS_tsAplZdpMgmtCacheRsp, described in Section 8.2.3.40

 sMgmtNwkUpdateNotify is a structure of the type
ZPS_tsAplZdpMgmtNwkUpdateNotify, described in Section 8.2.3.41

 uLists is a union of the different arrays/tables which act as temporary storage
for data elements used by the stack (and are therefore for internal use only)
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 227

Chapter 7
Application Framework (AF) API

7.2.3 Other Structures

This section describes various structures used by the AF API.

The structures are listed below, along with their page references.

Structure Page

ZPS_tsNwkNetworkDescr 228

ZPS_tsNwkNlmeCfmEdScan 229

ZPS_tsInterPanAddress 229

7.2.3.1 ZPS_tsNwkNetworkDescr

This structure is used in an array element in the structure
ZPS_tsAfNwkDiscoveryEvent, which is created as part of the
ZPS_EVENT_NWK_DISCOVERY_COMPLETE event which reports the networks
detected during a network discovery (see Section 7.2.2.9).

The ZPS_tsNwkNetworkDescr structure contains information on a detected
network and is detailed below.

typedef struct

{

uint64 u64ExtPanId;

uint8 u8LogicalChan;

uint8 u8StackProfile;

uint8 u8ZigBeeVersion;

uint8 u8PermitJoining;

uint8 u8RouterCapacity;

uint8 u8EndDeviceCapacity;

} ZPS_tsNwkNetworkDescr;

where:

 u64ExtPanId is the Extended PAN ID of the discovered network

 u8LogicalChan is the 2400-MHz channel on which the network was found

 u8StackProfile is the Stack Profile of the discovered network
(0 - manufacturer-specific, 1 - ZigBee, 2 - ZigBee PRO, other values reserved)
and is fixed at 2 for the NXP stack

 u8ZigBeeVersion is the ZigBee version of the discovered network

 u8PermitJoining indicates the number of detected nodes with ‘permit joining’
enabled (and therefore allowing nodes to join the network through them)

 u8RouterCapacity indicates the number of detected nodes that are allowing
Routers to join the network through them

 u8EndDeviceCapacity indicates the number of detected nodes that are
allowing End Devices to join the network through them
228 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
7.2.3.2 ZPS_tsNwkNlmeCfmEdScan

This structure is used by the structure ZPS_tsAfNwkEdScanConfEvent, which is
created as part of the ZPS_EVENT_NWK_ED_SCAN event which reports the results
of an ‘energy detect’ scan in the 2.4-GHz radio band.

The ZPS_tsNwkNlmeCfmEdScant structure is detailed below.

typedef struct

{

 uint8 u8Status;

 uint8 u8ResultListSize;

 uint8 au8EnergyDetect[ZPS_NWK_MAX_ED_RESULTS];

} ZPS_tsNwkNlmeCfmEdScan;

where

 u8Status is one of the status codes from the lower stack layers, detailed in
Section 9.2.

 u8ResultListSize is the number of entries in the results list (see below)

 au8EnergyDetect[] is an array containing the list of results of the energy scan
(8-bit values representing the detected energy levels in the channels) - there is
one array element for each channel scanned, where element 0 is for the first
channel scanned, element 1 is for the second channel scanned, etc.

7.2.3.3 ZPS_tsInterPanAddress

This structure is used to specify the destination for an inter-PAN transmission.

The ZPS_tsInterPanAddress structure is detailed below.

typedef struct

{

 enum {

 ZPS_E_AM_INTERPAN_GROUP = 0x01,

 ZPS_E_AM_INTERPAN_SHORT,

 ZPS_E_AM_INTERPAN_IEEE

 }eMode;

 uint16 u16PanId;

 ZPS_tuAddress uAddress;

} ZPS_tsInterPanAddress;

where:

 eMode is used to specify the type of destination address that will be used in the
field uAddress below - one of the following enumerations must be specified:

 ZPS_E_AM_INTERPAN_GROUP indicates that a 16-bit group address
will be used to specify multiple target nodes in the destination network (the
group address must be valid in the destination network)
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 229

Chapter 7
Application Framework (AF) API

 ZPS_E_AM_INTERPAN_SHORT indicates that a 16-bit network/short
address will be used to specify a single target node or a broadcast to all
nodes in the destination network

 ZPS_E_AM_INTERPAN_IEEE indicates that a 64-bit IEEE/MAC address
will be used to specify a single target node in the destination network

 u16PanId is the PAN ID of the destination network - a value 0xFFFF can be
used to specify a broadcast to all reachable ZigBee PRO networks

 uAddress is the address of the target node(s) in the destination network (the
address type must be as specified above in the eMode field) - a value of
0xFFFF can be used to specify a broadcast to all nodes in the destination
network(s)

7.2.3.4 ZPS_tsAfProfileDataReq

This structure is used to specify the transmission details for a data transmission
submitted using the function ZPS_eAplAfApsdeDataReq().

The ZPS_tsAfProfileDataReq structure is detailed below.

typedef struct {

 ZPS_tuAddress uDstAddr;

 uint16 u16ClusterId;

 uint16 u16ProfileId;

 uint8 u8SrcEp;

 ZPS_teAplApsdeAddressMode eDstAddrMode;

 uint8 u8DstEp;

 ZPS_teAplAfSecurityMode eSecurityMode;

 uint8 u8Radius;

}ZPS_tsAfProfileDataReq;

where:

 uDstAddr is the address of the destination node for the transmission request
(can be 16- or 64-bit, as specified by eDstAddrMode)

 u16ClusterId is the Cluster ID of the destination cluster

 u16ProfileId is the Profile ID of the destination application profile

 u8SrcEp is the source endpoint number (1-240) on the local node

 eDstAddrMode is the type of destination address, one of (also see Table 7 on
page 211):

 ZPS_E_ADDR_MODE_BOUND
(no address needed for bound nodes)

 ZPS_E_ADDR_MODE_GROUP
(16-bit group address)

 ZPS_E_ADDR_MODE_SHORT
(16-bit network address)

 ZPS_E_ADDR_MODE_IEEE
(64-bit IEEE/MAC address)
230 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
 u8DstEp is the destination endpoint number (1-240) on the remote node

 eSecurityMode is the security mode for the data transfer, one of:

 ZPS_E_APL_AF_UNSECURE
(no security enabled)

 ZPS_E_APL_AF_SECURE
(Application-level security using link key and network key)

 ZPS_E_APL_AF_SECURE_NWK
(Network-level security using network key)

 ZPS_E_APL_AF_SECURE | ZPS_E_APL_AF_EXT_NONCE
(Application-level security using link key and network key with the
extended NONCE included in the frame)

 ZPS_E_APL_AF_WILD_PROFILE
(May be combined with above flags using OR operator. Sends the
message using the wild card profile (0xFFFF) instead of the profile in the
associated Simple descriptor)

 u8Radius is the maximum number of hops permitted to the destination node
(zero value specifies that default maximum is to be used)

7.2.3.5 tsBeaconFilterType

This structure contains the details of a beacon filter that can be introduced using the
function ZPS_bAppAddBeaconFilter().

The tsBeaconFilterType structure is detailed below.

typedef struct

{

uint64 *pu64ExtendPanIdList;

uint8 u8ListSize;

uint8 u8Lqi;

uint8 u8FilterMap;

} tsBeaconFilterType;

where:

 pu64ExtendPanIdList is a pointer to a list of 64-bit Extended PAN IDs
(EPIDs) which acts as a blacklist or whitelist of networks, depending on the
settings of bits 0 and 1 in the u8FilterMap bitmap:

 If this is a blacklist, beacons from networks with EPIDs in the list will not be
accepted

 If this is a whitelist, only beacons from networks with EPIDs in the list will
be accepted

 u8ListSize is the number of Extended PAN IDs in the list pointed to by
pu64ExtendPanIdList

 u8Lqi is the minimum LQI value (in the range 0 to 255) of an acceptable
beacon (any beacon with LQI value less than this minimum will be filtered out) -
if required, this field must be enabled through bit 2 in the u8FilterMap bitmap
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 231

Chapter 7
Application Framework (AF) API

 u8FilterMap is an 8-bit bitmap detailing the filtering requirements, as follows:

Note: Bits 0 and 1 must not both be set

Bit Enumeration Description

0 BF_BITMAP_BLACKLIST(0x1) If set, field pu64ExtendPanIdList points
to a blacklist of networks

1 BF_BITMAP_WHITELIST (0x2) If set, field pu64ExtendPanIdList points
to a whitelist of networks

2 BF_BITMAP_LQI (0x4) If set, beacons must be filtered according to
LQI value using the minimum in field u8Lqi

3 BF_BITMAP_CAP_ENDDEVICE (0x8) If set, beacons from nodes with capacity for
End Device children can be accepted

4 BF_BITMAP_CAP_ROUTER (0x10) If set, beacons from nodes with capacity for
Router children can be accepted

5 BF_BITMAP_PERMIT_JOIN (0x20) If set, beacons from nodes with ‘permit join-
ing’ enabled can be accepted

6 - Reserved

7 - Reserved

Note: After each discovery or rejoin, the flags contained
in the u8FilterMap field will be cleared while all other
fields of this structure will remain intact.
232 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8. ZigBee Device Profile (ZDP) API

The chapter describes the resources of the ZigBee Device Profile (ZDP) API. This API
is concerned with sending network requests (e.g. binding requests) and receiving
responses. The API is defined in the header file zps_apl_zdp.h.

In this chapter:

 Section 8.1 details the ZDP API functions

 Section 8.2 details the ZDP API structures

 Section 8.3 describes the broadcast options when sending requests using the
ZDP API functions

8.1 ZDP API Functions

The ZDP API functions are divided into the following categories:

 Address Discovery functions, described in Section 8.1.1

 Service Discovery functions, described in Section 8.1.2

 Binding functions, described in Section 8.1.3

 Network Management Service functions, described in Section 8.1.4

 Response Data Extraction function, described in Section 8.1.5

Common Parameters

All the ZDP API functions, except ZPS_bAplZdpUnpackResponse(), are concerned
with sending out a request and all use a similar set of parameters. These parameters
are described below, but more specific information is provided as part of the function
descriptions:

 hAPdu: This is the unique handle of the APDU (Application Protocol Data Unit)
instance for the request to be sent (see below).

 uDstAddr: This is the IEEE address or network address of the node to which
the request will be sent (the parameter bExtAddr must be set according to the
type of address used). For a broadcast, uDstAddr must be set to a special
address, as described in Section 8.3.

 bExtAddr: This is a Boolean indicating the type of address specified in the
parameter uDstAddr as a 64-bit IEEE address (TRUE) or 16-bit network
address (FALSE).

 pu8SeqNumber: This is a pointer to the sequence number for the request -
each request must have a unique sequence number to help determine the
order in which requests were sent. On sending a request, the function
automatically increments the sequence number for the next request.

 u16ProfileId: This is the identifier of the ZigBee application profile being used.

 psZdpNwkAddrReq: This is a pointer to a structure representing the request.
The structure used is dependent on the specific function. The different request
structures are detailed in Section 8.2.2.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 233

Chapter 8
ZigBee Device Profile (ZDP) API

APDUs for Requests and Responses

A request generated by this API is sent in an APDU (Application Protocol Data Unit).
A local APDU instance for the request must first be allocated using the PDUM function
PDUM_hAPduAllocateAPduInstance(). This function returns a handle for the
APDU instance, which is subsequently used in the relevant ZDP API request function.
Once the request has been successfully sent, the APDU instance is automatically de-
allocated by the stack (there is no need for the application to de-allocate it).

When a response is subsequently received, the stack automatically allocates a local
APDU instance and includes its handle in the notification event for the response. Once
the response has been dealt with, the application must de-allocate the APDU instance
using the function PDUM_eAPduFreeAPduInstance().

8.1.1 Address Discovery Functions

The ZDP Address Discovery functions are concerned with obtaining addresses of
nodes in the network.

The functions are listed below, along with their page references:

Function Page

ZPS_eAplZdpNwkAddrRequest 235

ZPS_eAplZdpIEEEAddrRequest 237

ZPS_eAplZdpDeviceAnnceRequest 238

Note: If the request is not successfully sent (the send
function does not return ZPS_E_SUCCESS) then the
APDU instance will not be automatically de-allocated
and the application should de-allocate it using the
PDUM function PDUM_eAPduFreeAPduInstance().

Note: Further addressing functions are provided in the
ZDO API and are described in Section 6.1.3.
234 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpNwkAddrRequest

Description

This function requests the 16-bit network address of the node with a particular 64-bit
IEEE (MAC) address. The function sends out an NWK_addr_req request, which can
be either unicast or broadcast, as follows:

 Unicast to another node, specified through uDstAddr, that will ‘know’ the required
network address (this may be the parent of the node of interest or the Co-ordinator)

 Broadcast to the network, in which case uDstAddr must be set to the special network
address 0xFFFF (see Section 8.3)

The IEEE address of the node of interest must be specified in the request,
represented by the structure below (detailed further in Section 8.2.2.1).

 typedef struct {

 uint64 u64IeeeAddr;

 uint8 u8RequestType;

 uint8 u8StartIndex;

 } ZPS_tsAplZdpNwkAddrReq;

The required network address will be received in an NWK_addr_resp response,
which should be collected using the RTOS function OS_eCollectMessage() and
stored in a structure of type ZPS_tsAplZdpNwkAddrRsp (detailed in Section
8.2.3.1). Note that this response can optionally contain the network addresses of the
responding node’s neighbours (this option is selected as part of the request through
u8RequestType).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpNwkAddrReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpNwkAddrRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpNwkAddrReq *psZdpNwkAddrReq);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 235

Chapter 8
ZigBee Device Profile (ZDP) API

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
236 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpIEEEAddrRequest

Description

This function requests the 64-bit IEEE (MAC) address of the node with a particular
16-bit network address. The function sends an IEEE_addr_req request to the
relevant node, specified through uDstAddr.

The network address of the node of interest must also be specified in the request,
represented by the structure below (detailed further in Section 8.2.2.2).

 typedef struct {

 uint16 u16NwkAddrOfInterest;

 uint8 u8RequestType;

 uint8 u8StartIndex;

 } ZPS_tsAplZdpIeeeAddrReq;

The required IEEE address will be received in an IEEE_addr_resp response, which
should be collected using the RTOS function OS_eCollectMessage() and stored in
a structure of type ZPS_tsAplZdpIeeeAddrRsp (detailed in Section 8.2.3.2). Note
that this response can optionally contain the IEEE addresses of the responding
node’s neighbours (this option is selected as part of the request through
u8RequestType).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Network address of destination node of request
(bExtAddr must be set to FALSE - see below)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpIeeeAddrReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpIeeeAddrRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpIeeeAddrReq *psZdpIeeeAddrReq);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 237

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpDeviceAnnceRequest

Description

This function is used to notify other nodes that the local node has joined or rejoined
the network. The function broadcasts a Device_annce announcement to the network
and is normally automatically called by the ZDO when the local node joins or rejoins
the network.

The IEEE (MAC) and allocated network addresses as well as the capabilities of the
sending node must be specified in the announcement, represented by the structure
below (detailed further in Section 8.2.2.3).

 typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 uint8 u8Capability;

 } ZPS_tsAplZdpDeviceAnnceReq;

On receiving this announcement, a network node will update any information it holds
that relates to the supplied IEEE and network addresses:

 If it already holds the supplied IEEE address, it will update the corresponding network
address with the supplied one (if necessary).

 If it already holds the supplied network address but with a different corresponding IEEE
address, the latter will be marked as not having a valid corresponding network address.

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

*pu8SeqNumber Pointer to sequence number of announcement

*psZdpDeviceAnnceReq Pointer to announcement (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpDeviceAnnceRequest(
PDUM_thAPduInstance hAPduInst,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpDeviceAnnceReq *psZdpDeviceAnnceReq);
238 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.1.2 Service Discovery Functions

The ZDP Service Discovery functions are concerned with obtaining information about
the nature and capabilities of a network node.

The functions are listed below, along with their page references:

Function Page

ZPS_eAplZdpNodeDescRequest 240

ZPS_eAplZdpPowerDescRequest 241

ZPS_eAplZdpSimpleDescRequest 242

ZPS_eAplZdpExtendedSimpleDescRequest 243

ZPS_eAplZdpComplexDescRequest 245

ZPS_eAplZdpUserDescRequest 246

ZPS_eAplZdpMatchDescRequest 247

ZPS_eAplZdpActiveEpRequest 249

ZPS_eAplZdpExtendedActiveEpRequest 250

ZPS_eAplZdpUserDescSetRequest 252

ZPS_eAplZdpSystemServerDiscoveryRequest 254

ZPS_eAplZdpDiscoveryCacheRequest 255

ZPS_eAplZdpDiscoveryStoreRequest 256

ZPS_eAplZdpNodeDescStoreRequest 258

ZPS_eAplZdpPowerDescStoreRequest 260

ZPS_eAplZdpSimpleDescStoreRequest 262

ZPS_eAplZdpActiveEpStoreRequest 264

ZPS_eAplZdpFindNodeCacheRequest 266

ZPS_eAplZdpRemoveNodeCacheRequest 267
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 239

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpNodeDescRequest

Description

This function requests the Node descriptor of the node with a particular network
address. The function sends a Node_Desc_req request either to the relevant node
or to another node that may hold the required information in its primary discovery
cache.

The network address of the node of interest must be specified in the request, which
is represented by the structure below (further detailed in Section 8.2.2.4).

 typedef struct {

 uint16 u16NwkAddrOfInterest;

 } ZPS_tsAplZdpNodeDescReq;

The required Node descriptor will be received in a Node_Desc_rsp response, which
should be collected using the RTOS function OS_eCollectMessage() and stored in
a structure of type ZPS_tsAplZdpNodeDescRsp (detailed in Section 8.2.3.3).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpNodeDescReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpNodeDescRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpNodeDescReq *psZdpNodeDescReq);
240 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpPowerDescRequest

Description

This function requests the Power descriptor of the node with a particular network
address. The function sends a Power_Desc_req request either to the relevant node
or to another node that may hold the required information in its primary discovery
cache.

The network address of the node of interest must be specified in the request, which
is represented by the structure below (further detailed in Section 8.2.2.5).

 typedef struct {

 uint16 u16NwkAddrOfInterest;

 } ZPS_tsAplZdpPowerDescReq;

The required Power descriptor will be received in a Power_Desc_rsp response,
which should be collected using the RTOS function OS_eCollectMessage() and
stored in a structure of type ZPS_tsAplZdpPowerDescRsp (detailed in Section
8.2.3.4).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpPowerDescReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpPowerDescRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpPowerDescReq *psZdpPowerDescReq);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 241

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpSimpleDescRequest

Description

This function requests the Simple descriptor for a specific endpoint on the node with
a particular network address. The function sends a Simple_Desc_req request either
to the relevant node or to another node that may hold the required information in its
primary discovery cache.

The network address of the node of interest and the relevant endpoint on the node
must be specified in the request, which is represented by the structure below (further
detailed in Section 8.2.2.6).

 typedef struct {

 uint16 u16NwkAddrOfInterest;

 uint8 u8EndPoint;

 } ZPS_tsAplZdpSimpleDescReq;

The required Simple descriptor will be received in a Simple_Desc_rsp response,
which should be collected using the RTOS function OS_eCollectMessage() and
stored in a structure of type ZPS_tsAplZdpSimpleDescRsp (detailed in Section
8.2.3.5).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpSimpleDescReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpSimpleDescRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpSimpleDescReq *psZdpSimpleDescReq);
242 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpExtendedSimpleDescRequest

Description

This function requests a cluster list for a specific endpoint on the node with a
particular network address. The function should be called if the endpoint has more
input or output clusters than could be included in the response to
ZPS_eAplZdpSimpleDescRequest(). The function sends an
Extended_Simple_Desc_req request either to the relevant node or to another node
that may hold the required information in its primary discovery cache.

The network address of the node of interest and the relevant endpoint on the node
must be specified in the request, which is represented by the structure below (further
detailed in Section 8.2.2.7).

 typedef struct {

 uint16 u16NwkAddr;

 uint8 u8EndPoint;

 uint8 u8StartIndex;

 } ZPS_tsAplZdpExtendedSimpleDescReq;

This structure allows you to specify the first input/output cluster of interest in the
endpoint’s input and output cluster lists. Thus, this should normally be the cluster
after the last one reported following a call to ZPS_eAplZdpSimpleDescRequest().

The required cluster information will be received in a Extended_Simple_Desc_rsp
response, which should be collected using the RTOS function
OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpExtendedSimpleDescRsp (detailed in Section 8.2.3.6).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpExtendedSimpleDescReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpExtendedSimpleDescRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpExtendedSimpleDescReq

*psZdpExtendedSimpleDescReq);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 243

Chapter 8
ZigBee Device Profile (ZDP) API

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
244 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpComplexDescRequest

Description

This function requests the Complex descriptor of the node with a particular network
address. The function sends a Complex_Desc_req request either to the relevant
node or to another node that may hold the required information in its primary
discovery cache.

The network address of the node of interest must be specified in the request, which
is represented by the structure below (further detailed in Section 8.2.2.8).

 typedef struct {

 uint16 u16NwkAddrOfInterest;

 } ZPS_tsAplZdpComplexDescReq;

The required Complex descriptor will be received in a Complex_Desc_rsp response,
which should be collected using the RTOS function OS_eCollectMessage() and
stored in a structure of type ZPS_tsAplZdpComplexDescRsp (detailed in Section
8.2.3.7).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpComplexDescReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpComplexDescRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpComplexDescReq *psZdpComplexDescReq);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 245

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpUserDescRequest

Description

This function requests the User descriptor of the node with a particular network
address. The function sends a User_Desc_req request either to the relevant node or
to another node that may hold the required information in its primary discovery cache.

The network address of the node of interest must be specified in the request, which
is represented by the structure below (further detailed in Section 8.2.2.9).

 typedef struct {

 uint16 u16NwkAddrOfInterest;

 } ZPS_tsAplZdpUserDescReq;

The required User descriptor will be received in a User_Desc_rsp response, which
should be collected using the RTOS function OS_eCollectMessage() and stored in
a structure of type ZPS_tsAplZdpUserDescRsp (detailed in Section 8.2.3.8).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpUserDescReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpUserDescRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpUserDescReq *psZdpUserDescReq);

Note: This function can only be used to access the User
descriptor of a non-NXP device (which supports this
descriptor), since the storage of a User descriptor on an NXP
JN516x device is not supported.
246 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpMatchDescRequest

Description

This function requests responses from network nodes with endpoints that match
specified criteria in their Simple descriptors. More specifically, these criteria include:
application profile, number of input clusters, number of output clusters, list of input
clusters, list of output clusters. The function sends out a Match_Desc_req command,
as a broadcast to all network nodes, or as a unicast to either a specific node of
interest or another node that may hold the required information in its primary
discovery cache. The wild card profile (0xFFFF) can be used to match any profile ID.

The request is represented by the structure below (further detailed in Section
8.2.2.10).

 typedef struct {

 uint16 u16NwkAddrOfInterest;

 uint16 u16ProfileId;

 /* rest of message is variable length */

 uint8 u8NumInClusters;

 uint16* pu16InClusterList;

 uint8 u8NumOutClusters;

 uint16* pu16OutClusterList;

 } ZPS_tsAplZdpMatchDescReq;

A node with matching endpoint criteria will respond with a Match_Desc_rsp
response, which should be collected using the RTOS function
OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpMatchDescRsp (detailed in Section 8.2.3.9).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpMatchDescReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpMatchDescRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpMatchDescReq *psZdpMatchDescReq);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 247

Chapter 8
ZigBee Device Profile (ZDP) API

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
248 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpActiveEpRequest

Description

This function requests a list of the active endpoints on a remote node. The function
sends an Active_EP_req request either to the relevant node or to another node that
may hold the required information in its primary discovery cache.

The network address of the node of interest must be specified in the request, which
is represented by the structure below (further detailed in Section 8.2.2.11).

 typedef struct {

 uint16 u16NwkAddrOfInterest;

 } ZPS_tsAplZdpActiveEpReq;

The endpoint list will be received in an Active_EP_rsp response, which should be
collected using the RTOS function OS_eCollectMessage() and stored in a structure
of type ZPS_tsAplZdpActiveEpRsp (detailed in Section 8.2.3.10).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpActiveEpReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpActiveEpRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpActiveEpReq *psZdpActiveEpReq);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 249

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpExtendedActiveEpRequest

Description

This function requests a list of the active endpoints on a remote node. The function
should be called if the node has more active endpoints than could be included in a
response to ZPS_eAplZdpActiveEpRequest(). The function sends an
Extended_Active_EP_req request either to the relevant node or to another node that
may hold the required information in its primary discovery cache.

The network address of the node of interest must be specified in the request, which
is represented by the structure below (further detailed in Section 8.2.2.12).

 typedef struct {

 uint16 u16NwkAddr;

 uint8 u8StartIndex;

 } ZPS_tsAplZdpExtendedActiveEpReq;

This structure allows you to specify the first endpoint of interest for the request.

The endpoint list will be received in an Extended_Active_EP_rsp response, which
should be collected using the RTOS function OS_eCollectMessage() and stored in
a structure of type ZPS_tsAplZdpExtendedActiveEpRsp (detailed in Section
8.2.3.11).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpActiveEpReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpExtendedActiveEpRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpExtendedActiveEpReq

 *psZdpExtendedActiveEpReq);
250 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 251

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpUserDescSetRequest

Description

This function can be used to configure the User descriptor on a remote node. The
function sends a User_Desc_set request either to the remote node or to another
node that may hold the relevant User descriptor in its primary discovery cache.

The network address of the node of interest as well as the required modifications
must be specified in the request, which is represented by the structure below (further
detailed in Section 8.2.2.13).

 typedef struct {

 uint16 u16NwkAddrOfInterest;

 uint8 u8Length;

 char szUserDescriptor[ZPS_ZDP_LENGTH_OF_USER_DESC];

 } ZPS_tsAplZdpUserDescSet;

If the specified User descriptor was successfully modified, a User_Desc_conf
response will be received. This response should be collected by the application task
using the RTOS function OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpUserDescConf (detailed in Section 8.2.3.12).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpUserDescSetReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpUserDescSetRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpUserDescSet *psZdpUserDescSetReq);

Note: This function can only be used to access the User
descriptor of a non-NXP device (which supports this
descriptor), since the storage of a User descriptor on an NXP
JN516x device is not supported.
252 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 253

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpSystemServerDiscoveryRequest

Description

This function can be used to request information on the available servers hosted by
remote nodes (Primary or Backup Trust Centre, Primary or Backup Binding Table
Cache, Primary or Backup Discovery Cache, Network Manager). The function
broadcasts a System_Server_Discovery_req request to all network nodes.

The required servers must be specified by means of a bitmask in the request, which
is represented by the structure below (further detailed in Section 8.2.2.14).

 typedef struct {

 uint16 u16ServerMask;

 } ZPS_tsAplZdpSystemServerDiscoveryReq;

A remote node will reply with a System_Server_Discovery_rsp response, indicating
which of the requested servers are implemented. This response should be collected
using the RTOS function OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpSystemServerDiscoveryRsp (detailed in Section 8.2.3.13).

Parameters

hAPduInst Handle of APDU instance in which request
will be sent

*pu8SeqNumber Pointer to sequence number of request

*psZdpSystemServerDiscoveryReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpSystemServerDiscoveryRequest(
 PDUM_thAPduInstance hAPduInst,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpSystemServerDiscoveryReq

*psZdpSystemServerDiscoveryReq);
254 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpDiscoveryCacheRequest

Description

This function is used to discover which nodes in the network have a primary
discovery cache - that is, a bank of information about other nodes in the network. The
function broadcasts a Discovery_Cache_req request to the network.

The request includes the network and IEEE addresses of the sending device, and is
represented by the structure below (further detailed in Section 8.2.2.15).

 typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 } ZPS_tsAplZdpDiscoveryCacheReq;

A node with a primary discovery cache replies with a Discovery_Cache_rsp
response, which should be collected using the RTOS function
OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpDiscoveryCacheRsp (detailed in Section 8.2.3.14).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

*pu8SeqNumber Pointer to sequence number of request

*psZdpDiscoveryCacheReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpDiscoveryCacheRequest(
 PDUM_thAPduInstance hAPduInst,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpDiscoveryCacheReq

*psZdpDiscoveryCacheReq);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 255

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpDiscoveryStoreRequest

Description

This function can be called on an End Device to request a remote node to reserve
memory space to store the local node’s ‘discovery information’. To do this, the
remote node must contain a primary discovery cache. The ‘discovery information’
includes the local node’s IEEE address, network address, Node descriptor, Power
descriptor, Simple descriptor and number of active endpoints. The function sends a
Discovery_store_req request to the remote node.

This request includes the network and IEEE addresses of the sending node as well
as the amount of storage space (in bytes) needed to store the information. The
request is represented by the structure below (further detailed in Section 8.2.2.16).

 typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 uint8 u8NodeDescSize;

 uint8 u8PowerDescSize;

 uint8 u8ActiveEpSize;

 uint8 u8SimpleDescCount;

 /* Rest of message is variable length */

 uint8* pu8SimpleDescSizeList;

 } ZPS_tsAplZdpDiscoveryStoreReq;

On receiving this request, the remote node will first check whether it has a primary
discovery cache. If this is the case, it will check whether it has storage space in the
cache for the new discovery information. If the space is available, it will be reserved
until the information is later uploaded from the local node.

The node replies with a Discovery_store_rsp response, which should be collected
using the RTOS function OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpDiscoveryStoreRsp (detailed in Section 8.2.3.15).

ZPS_teStatus ZPS_eAplZdpDiscoveryStoreRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpDiscoveryStoreReq

*psZdpDiscoveryStoreReq);
256 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Parameters

hAPduInst, Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpDiscoveryStoreReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 257

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpNodeDescStoreRequest

Description

This function can be called on an End Device to upload the local node’s Node
descriptor for storage in the primary discovery cache on a remote node. The function
sends a Node_Desc_store_req command to the remote node.

This request includes the network and IEEE addresses of the sending node as well
as the Node descriptor to store. The request is represented by the structure below
(further detailed in Section 8.2.2.17).

 typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 /* Rest of message is variable length */

 ZPS_tsAplZdpNodeDescriptor sNodeDescriptor;

 } ZPS_tsAplZdpNodeDescStoreReq;

On receiving the request, the remote node will first check whether it has a primary
discovery cache. If this is the case, it will check whether it has previously reserved
storage space in its cache for the local node. If it has, it will store the Node descriptor
in its cache.

The node replies with a Node_Desc_store_rsp response, which should be collected
using the RTOS function OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpNodeDescStoreRsp (detailed in Section 8.2.3.16).

ZPS_teStatus ZPS_eAplZdpNodeDescStoreRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpNodeDescStoreReq

*psZdpNodeDescStoreReq);

Note: This function should only be called if storage space for
the local node’s ‘discovery information’ has previously been
reserved on the remote node following a call to
ZPS_eAplZdpDiscoveryStoreRequest().
258 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpNodeDescStoreReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 259

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpPowerDescStoreRequest

Description

This function can be called on an End Device to upload the local node’s Power
descriptor for storage in the primary discovery cache on a remote node. The function
sends a Power_Desc_store_req request to the remote node.

This request includes the network and IEEE addresses of the sending node as well
as the Power descriptor to store. The request is represented by the structure below
(further detailed in Section 8.2.2.18).

 typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 /* Rest of message is variable length */

 ZPS_tsAplZdpNodePowerDescriptor sPowerDescriptor;

 } ZPS_tsAplZdpPowerDescStoreReq;

On receiving the request, the remote node will first check whether it has a primary
discovery cache. If this is the case, it will check whether it has previously reserved
storage space in its cache for the local node. If it has, it will store the Power descriptor
in its cache.

The node replies with a Power_Desc_store_rsp response, which should be collected
using the RTOS function OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpPowerDescStoreRsp (detailed in Section 8.2.3.17).

ZPS_teStatus ZPS_eAplZdpPowerDescStoreRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpPowerDescStoreReq

*psZdpPowerDescStoreReq);

Note: This function should only be called if storage space for
the local node’s ‘discovery information’ has previously been
reserved on the remote node following a call to
ZPS_eAplZdpDiscoveryStoreRequest().
260 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpPowerDescStoreReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 261

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpSimpleDescStoreRequest

Description

This function can be called on an End Device to upload a Simple descriptor from the
local node for storage in the primary discovery cache on the specified remote node.
The Simple descriptor for each endpoint on the local node must be uploaded
separately using this function. The function sends a Simple_Desc_store_req request
to the remote node.

This request includes the network and IEEE addresses of the sending node as well
as the Simple descriptor to store. The request is represented by the structure below
(further detailed in Section 8.2.2.19).

 typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 uint8 u8Length;

 /* Rest of message is variable length */

 ZPS_tsAplZdpSimpleDescType sSimpleDescriptor;

 } ZPS_tsAplZdpSimpleDescStoreReq;

On receiving the request, the remote node will first check whether it has a primary
discovery cache. If this is the case, it will check whether it has previously reserved
storage space in its cache for the local node. If it has, it will store the Simple
descriptor in its cache.

The node replies with a Simple_Desc_store_rsp response, which should be collected
using the RTOS function OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpSimpleDescStoreRsp (detailed in Section 8.2.3.18).

ZPS_teStatus ZPS_eAplZdpSimpleDescStoreRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpSimpleDescStoreReq

*psZdpSimpleDescStoreReq);

Note: This function should only be called if storage space for
the local node’s ‘discovery information’ has previously been
reserved on the remote node following a call to
ZPS_eAplZdpDiscoveryStoreRequest().
262 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpSimpleDescStoreReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 263

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpActiveEpStoreRequest

Description

This function can be called on an End Device to upload a list of its active endpoints
for storage in the primary discovery cache on a remote node. The function sends an
Active_EP_store_req command to the remote node.

This request includes the network and IEEE addresses of the sending node as well
as the list of active endpoints to store. The request is represented by the structure
below (further detailed in Section 8.2.2.20).

 typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 uint8 u8ActiveEPCount;

 /* Rest of message is variable length */

 uint8* pu8ActiveEpList;

 } ZPS_tsAplZdpActiveEpStoreReq;

On receiving the request, the remote node will first check whether it has a primary
discovery cache. If this is the case, it will check whether it has previously reserved
storage space in its cache for the local node. If it has, it will store the list of active
endpoints in its cache.

The node replies with an Active_EP_store_rsp response, which should be collected
using the RTOS function OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpActiveEpStoreRsp (detailed in Section 8.2.3.19).

ZPS_teStatus ZPS_eAplZdpActiveEpStoreRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpActiveEpStoreReq

*psZdpActiveEpStoreReq);

Note: This function should only be called if storage space for
the local node’s ‘discovery information’ has previously been
reserved on the remote node following a call to
ZPS_eAplZdpDiscoveryStoreRequest().
264 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpActiveEpStoreReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 265

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpFindNodeCacheRequest

Description

This function can be used to search for nodes in the network that hold ‘discovery
information’ about a particular node. The function broadcasts a
Find_node_cache_req request to the network.

This request includes the network and IEEE addresses of the node of interest. The
request is represented by the structure below (further detailed in Section 8.2.2.21).

 typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 } ZPS_tsAplZdpFindNodeCacheReq;

On receiving the request, a remote node will first check whether it has a primary
discovery cache, or is the specified node itself. If either is the case, it will check
whether it holds the required information and, if this is the case, will reply with a
Find_node_cache_rsp response. This response should be collected using the RTOS
function OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpFindNodeCacheRsp (detailed in Section 8.2.3.20).

Only nodes that hold the required information will respond.

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

*pu8SeqNumber Pointer to sequence number of request

*psZdpFindNodeCacheReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpFindNodeCacheRequest(
 PDUM_thAPduInstance hAPduInst,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpFindNodeCacheReq

*psZdpFindNodeCacheReq);
266 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpRemoveNodeCacheRequest

Description

This function requests a Primary Discovery Cache node to remove from its cache all
‘discovery information’ relating to a particular End Device. The function sends a
Remove_node_cache_req request to the Primary Discovery Cache node.

The effect of a successful request is to remove the relevant ‘discovery information’
and free the corresponding storage space in the cache previously reserved by
ZPS_eAplZdpDiscoveryStoreRequest() (which may have been called from
another node in the network).

This request includes the network and IEEE addresses of the End Device whose
‘discovery information’ is to be removed. The request is represented by the structure
below (further detailed in Section 8.2.2.22).

 typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 } ZPS_tsAplZdpRemoveNodeCacheReq;

On receiving the request, the remote node will first check whether it has a primary
discovery cache. If this is the case, it will check whether it has previously received
and implemented a Discovery_store_req request for the specified End Device,
resulting from a call to ZPS_eAplZdpDiscoveryStoreRequest(). If it has, it will
delete the relevant data and unreserve the corresponding part of the cache.

The node replies with a Remove_node_cache_rsp response, which should be
collected using the RTOS function OS_eCollectMessage() and stored in a structure
of type ZPS_tsAplZdpRemoveNodeCacheRsp (detailed in Section 8.2.3.21).

ZPS_teStatus ZPS_eAplZdpRemoveNodeCacheRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpRemoveNodeCacheReq

*psZdpRemoveNodeCacheReq);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 267

Chapter 8
ZigBee Device Profile (ZDP) API

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpRemoveNodeCacheReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
268 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.1.3 Binding Functions

The ZDP Binding functions are concerned with binding nodes together, to aid
communication between them, and managing binding tables.

The functions are listed below, along with their page references:

Function Page

ZPS_eAplZdpEndDeviceBindRequest 270

ZPS_eAplZdpBindUnbindRequest 272

ZPS_eAplZdpBindRegisterRequest 274

ZPS_eAplZdpReplaceDeviceRequest 275

ZPS_eAplZdpStoreBkupBindEntryRequest 277

ZPS_eAplZdpRemoveBkupBindEntryRequest 279

ZPS_eAplZdpBackupBindTableRequest 281

ZPS_eAplZdpRecoverBindTableRequest 283

ZPS_eAplZdpBackupSourceBindRequest 285

ZPS_eAplZdpRecoverSourceBindRequest 287

Note 1: Some of the above binding functions cannot be
used to send requests to nodes that run the NXP
ZigBee PRO stack. They are supplied in the NXP ZDP
API in order to facilitate interoperability with nodes
based on non-NXP software which supports the
corresponding requests. If applicable, this restriction is
noted in the function description.

Note 2: Further binding functions are provided in the
ZDO API and are described in Section 6.1.1.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 269

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpEndDeviceBindRequest

Description

This function sends a binding request to the Co-ordinator in order to bind an endpoint
on the local node to an endpoint on a remote node (these nodes can be End Devices
or Routers). The function should normally be invoked as the result of a user action
on the local node, such as pressing a button. The function sends an
End_Device_Bind_req request to the Co-ordinator.

This request includes details of the source node, endpoint and clusters. The request
is represented by the structure below (further detailed in Section 8.2.2.23).

 typedef struct {

 uint16 u16BindingTarget;

 uint64 u64SrcIeeeAddress;

 uint8 u8SrcEndpoint;

 uint16 u16ProfileId;

 /* Rest of message is variable length */

 uint8 u8NumInClusters;

 uint16 *pu16InClusterList;

 uint8 u8NumOutClusters;

 uint16 *pu16OutClusterList;

 } ZPS_tsAplZdpEndDeviceBindReq;

On receiving the request, the Co-ordinator waits (for a pre-defined timeout period) for
another binding request, from a different node, so that it can pair the requests and
bind the endpoints. In order to bind the endpoints, their application profile IDs must
match, and they must have compatible clusters in their input and output cluster lists.

The Co-ordinator replies to a binding request with an End_Device_Bind_rsp
response, which should be collected on the requesting node using the RTOS
function OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpEndDeviceBindRsp (detailed in Section 8.2.3.22).

The stack will automatically update the Binding tables on the two End Devices
(following further bind requests from the Co-ordinator) and an
ZPS_EVENT_ZDO_BIND event will be generated on the End Devices to signal
these updates.

ZPS_teStatus ZPS_eAplZdpEndDeviceBindRequest(
 PDUM_thAPduInstance hAPduInst,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpEndDeviceBindReq

*psZdpEndDeviceBindReq);
270 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Parameters

hAPduInst Handle of APDU instance in which request will be
sent

*pu8SeqNumber Pointer to sequence number of request

*psZdpEndDeviceBindReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 271

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpBindUnbindRequest

Description

This function sends a binding or unbinding request (as specified) to a remote node
which hosts a binding table. The function requests a modification of the binding table
in order to bind or unbind two endpoints of nodes in the network. The nodes to be
bound/unbound may be different from the node sending the request and the node
receiving the request. The latter must be either a node with a primary binding table
cache or the source node for the binding. This function could typically be used in a
commissioning application to configure bindings between nodes during system set-
up.

The function sends a Bind_req or Unbind_req request to the remote node which
hosts the binding table to be modified. This request includes details of the source
node and endpoint, and the target node and endpoint for the binding. The request is
represented by the structure below (further detailed in Section 8.2.2.24).

 typedef struct {

 uint64 u64SrcAddress;

 uint8 u8SrcEndpoint;

 uint16 u16ClusterId;

 uint8 u8DstAddrMode;

 union {

 struct {

 uint16 u16DstAddress;

 } sShort;

 struct {

 uint64 u64DstAddress;

 uint8 u8DstEndPoint;

 } sExtended;

 } uAddressField;

 } ZPS_tsAplZdpBindUnbindReq;

On receiving the request, the remote node adds or removes the relevant entry in its
binding table and locally generates the event ZPS_EVENT_ZDO_BIND or
ZPS_EVENT_ZDO_UNBIND, as appropriate, to signal the relevant update.

ZPS_teStatus ZPS_eAplZdpBindUnbindRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
bool bBindReq,
ZPS_tsAplZdpBindUnbindReq *psZdpBindReq);
272 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
If the remote node holds a primary binding table cache, it will check whether the
source node for the binding holds a table of its own source bindings (see the
description of ZPS_eAplZdpBindRegisterRequest()) and, if so, automatically
requests an update of this table. A node with a primary binding table cache will also
request an update of the back-up cache, if one exists.

The remote node replies with a Bind_rsp or Unbind_rsp response, which should be
collected using the RTOS function OS_eCollectMessage() and stored in a structure
of type ZPS_tsAplZdpBindRsp (detailed in Section 8.2.3.23) or
ZPS_tsAplZdpUnbindRsp (detailed in Section 8.2.3.24).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

bBindReq Bind or unbind request:
TRUE: bind
FALSE: unbind

*psZdpBindReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 273

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpBindRegisterRequest

Description

This function informs a remote node with a primary binding table cache that the local
node will hold its own binding table entries (and therefore the remote node does not
need to hold these entries). The function sends a Bind_Register_req request to the
remote node.

The IEEE address of the local node must be specified in the request, which is
represented by the structure below (further detailed in Section 8.2.2.25).

 typedef struct {

 uint64 u64NodeAddress;

 } ZPS_tsAplZdpBindRegisterReq;

The remote node will reply with a Bind_Register_rsp response, which should be
collected using the RTOS function OS_eCollectMessage() and stored in a structure
of type ZPS_tsAplZdpBindRegisterRsp (detailed in Section 8.2.3.25). This
response contains any information stored about the binding on the remote.

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpPowerDescReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpBindRegisterRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpBindRegisterReq *psZdpBindRegisterReq);
274 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpReplaceDeviceRequest

Description

This function requests a remote node with a primary binding table cache to modify
binding table entries with new data - more specifically, binding table entries can be
modified by replacing an IEEE address and/or associated endpoint number. This
function could typically be used in a commissioning application to modify bindings
between nodes. The function sends a Replace_Device_req request to the remote
node.

This request must include the old IEEE address and its replacement, as well as the
corresponding endpoint number and its replacement (if any). The request is
represented by the structure below (further detailed in Section 8.2.2.26).

 typedef struct {

 uint64 u64OldAddress;

 uint8 u8OldEndPoint;

 uint64 u64NewAddress;

 uint8 u8NewEndPoint;

 } ZPS_tsAplZdpReplaceDeviceReq;

On receiving this request, the remote node will search its binding table for entries
containing the old IEEE address and old endpoint number from the request - this pair
of values may make up the source or destination data of the binding table entry.
These values will be replaced by the new IEEE address and endpoint number from
the request. Note that if the endpoint number in the request is zero, only the address
will be included in the ‘search and replace’ (the endpoint number in the modified
binding table entries will be left unchanged).

The remote node will check whether a node affected by a binding table change holds
a table of its own source bindings (see ZPS_eAplZdpBindRegisterRequest()) and,
if so, automatically requests an update of this table. The remote node will also
request an update of the back-up of the primary binding table cache, if one exists.

The remote node will reply with a Replace_Device_rsp response, which should be
collected using the RTOS function OS_eCollectMessage() and stored in a structure
of type ZPS_tsAplZdpReplaceDeviceRsp (detailed in Section 8.2.3.26).

ZPS_teStatus ZPS_eAplZdpReplaceDeviceRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpReplaceDeviceReq *psZdpReplaceDeviceReq);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 275

Chapter 8
ZigBee Device Profile (ZDP) API

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpReplaceDeviceReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
276 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpStoreBkupBindEntryRequest

Description

This function requests that a back-up of an entry in the local primary binding table
cache is performed on a remote node. The destination node of the request must hold
the corresponding back-up binding table cache. The back-up operation is normally
required when a new entry has been added to the primary binding table cache.

This request must include the binding table entry to be backed up. The request is
represented by the structure below (further detailed in Section 8.2.2.27).

typedef struct {

 uint64 u64SrcAddress;

 uint8 u8SrcEndPoint;

 uint16 u16ClusterId;

 uint8 u8DstAddrMode;

 union {

 struct {

 uint16 u16DstAddress;

 } sShort;

 struct {

 uint64 u64DstAddress;

 uint8 u8DstEndPoint;

 } sExtended;

 };

} ZPS_tsAplZdpStoreBkupBindEntryReq;

On receiving the request, the remote node adds the specified binding table entry to
its back-up binding table cache, if possible.

ZPS_teStatus ZPS_eAplZdpStoreBkupBindEntryRequest(
 PDUM_thAPdu hAPdu,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 uint16 u16ProfileId,
 ZPS_tsAplZdpStoreBkupBindEntryReq

*psZdpStoreBkupBindEntryReq);

Note: This function is provided in the NXP ZDP API for the
reason of interoperability with nodes running non-NXP ZigBee
PRO stacks that support the generated request. On receiving
a request from this function, the NXP ZigBee PRO stack will
return the status ZPS_ZDP_NOT_SUPPORTED.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 277

Chapter 8
ZigBee Device Profile (ZDP) API

The remote node replies with a Store_Bkup_Bind_Entry_rsp response, which should
be collected using the RTOS function OS_eCollectMessage() and stored in a
structure of type ZPS_tsAplZdpStoreBkupBindEntryRsp (detailed in Section
8.2.3.27).

Parameters

hAPdu Handle of APDU in which request will be sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

u16ProfileId Application profile ID

*psZdpStoreBkupBindEntryReqPointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
278 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpRemoveBkupBindEntryRequest

Description

This function requests the removal of an entry in the back-up binding table cache on
a remote node. The function must be called from the node with the corresponding
primary binding table cache. The removal of a back-up entry is normally required
when an entry in the primary binding table cache has been removed.

This request must include the binding table entry to be removed. The request is
represented by the structure below (further detailed in Section 8.2.2.28).

typedef struct {

 uint64 u64SrcAddress;

 uint8 u8SrcEndPoint;

 uint16 u16ClusterId;

 uint8 u8DstAddrMode;

 union {

 struct {

 uint16 u16DstAddress;

 } sShort;

 struct {

 uint64 u64DstAddress;

 uint8 u8DstEndPoint;

 } sExtended;

 };

} ZPS_tsAplZdpRemoveBkupBindEntryReq;

On receiving the request, the remote node removes the specified binding table entry
from its back-up binding table cache, if possible.

ZPS_teStatus ZPS_eAplZdpRemoveBkupBindEntryRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpRemoveBkupBindEntryReq

*psZdpRemoveBkupBindEntryReq);

Note: This function is provided in the NXP ZDP API for the
reason of interoperability with nodes running non-NXP ZigBee
PRO stacks that support the generated request. On receiving
a request from this function, the NXP ZigBee PRO stack will
return the status ZPS_ZDP_NOT_SUPPORTED.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 279

Chapter 8
ZigBee Device Profile (ZDP) API

The remote node replies with a Remove_Bkup_Bind_Entry_rsp response, which
should be collected using the RTOS function OS_eCollectMessage() and stored in
a structure of type ZPS_tsAplZdpRemoveBkupBindEntryRsp (detailed in
Section 8.2.3.28).

Parameters

hAPduInst Handle of APDU instance in which request will
be sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpRemoveBkupBindEntryReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
280 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpBackupBindTableRequest

Description

This function requests that a back-up of the locally held primary binding table cache
is performed on a remote node - the whole or part of the table can be backed up. The
destination node of the request must hold the corresponding back-up binding table
cache. The latter must already exist and be associated with the cache on the local
node through a previous discovery.

This request must include the binding table entries to be backed up. The request is
represented by the structure below (further detailed in Section 8.2.2.29).

typedef struct {

 uint16 u16BindingTableEntries;

 uint16 u16StartIndex;

 uint16 u16BindingTableListCount;

 /* Rest of message is variable length */

 ZPS_tsAplZdpBindingTable sBindingTable;

} ZPS_tsAplZdpBackupBindTableReq;

On receiving the request, the remote node saves the new binding table, if possible,
overwriting existing entries. If the new table is longer than the previous one, as many
extra entries as possible will be saved.

The remote node replies with a Backup_Bind_Table_rsp response, which should be
collected using the RTOS function OS_eCollectMessage() and stored in a structure
of type ZPS_tsAplZdpBackupBindTableRsp (detailed in Section 8.2.3.29).

ZPS_teStatus ZPS_eAplZdpBackupBindTableRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpBackupBindTableReq

*psZdpBackupBindTableReq);

Note: This function is provided in the NXP ZDP API for the
reason of interoperability with nodes running non-NXP ZigBee
PRO stacks that support the generated request. On receiving
a request from this function, the NXP ZigBee PRO stack will
return the status ZPS_ZDP_NOT_SUPPORTED.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 281

Chapter 8
ZigBee Device Profile (ZDP) API

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpBackupBindTableReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
282 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpRecoverBindTableRequest

Description

This function requests that a back-up of the locally held primary binding table cache
is recovered from a remote node. The destination node of the request must hold the
back-up binding table cache which is associated with the primary cache on the local
node.

This request must indicate the starting index in the binding table for the recovery. The
request is represented by the structure below (further detailed in Section 8.2.2.30).

typedef struct {

 uint16 u16StartIndex;

} ZPS_tsAplZdpRecoverBindTableReq;

The remote node replies with a Recover_Bind_Table_rsp response containing the
required binding table entries, which should be collected using the RTOS function
OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpRecoverBindTableRsp (detailed in Section 8.2.3.30). As many
binding entries as possible are included in this response. If the returned binding table
is incomplete, this is indicated in the response and this function must be called again,
with the appropriate starting index, to recover the rest of the table.

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpRecoverBindTableReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpRecoverBindTableRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpRecoverBindTableReq

*psZdpRecoverBindTableReq);

Note: This function is provided in the NXP ZDP API for the
reason of interoperability with nodes running non-NXP ZigBee
PRO stacks that support the generated request. On receiving
a request from this function, the NXP ZigBee PRO stack will
return the status ZPS_ZDP_NOT_SUPPORTED.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 283

Chapter 8
ZigBee Device Profile (ZDP) API

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
284 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpBackupSourceBindRequest

Description

This function requests that a back-up of the locally held source binding table is
performed on a remote node. This source binding table contains entries only relevant
to the local node. The function must be called from a node with a primary binding
table cache and the destination node of the request must hold the corresponding
back-up binding table cache.

This request must include the source binding table entries to be backed up. The
request is represented by the structure below (further detailed in Section 8.2.2.31).

typedef struct {

 uint16 u16SourceTableEntries;

 uint16 u16StartIndex;

 uint16 u16SourceTableListCount;

 /* Rest of message is variable length */

 uint64* pu64SourceAddress;

} ZPS_tsAplZdpBackupSourceBindReq;

On receiving the request, the remote node saves the new source binding table, if
possible, overwriting existing entries. If the new table is longer than the previous one,
as many extra entries as possible will be saved.

The remote node replies with a Backup_Source_Bind_rsp response, which should
be collected using the RTOS function OS_eCollectMessage() and stored in a
structure of type ZPS_tsAplZdpBackupSourceBindRsp (detailed in Section
8.2.3.31).

ZPS_teStatus ZPS_eAplZdpBackupSourceBindRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpBackupSourceBindReq

*psZdpBackupSourceBindReq);

Note: This function is provided in the NXP ZDP API for the
reason of interoperability with nodes running non-NXP ZigBee
PRO stacks that support the generated request. On receiving
a request from this function, the NXP ZigBee PRO stack will
return the status ZPS_ZDP_NOT_SUPPORTED.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 285

Chapter 8
ZigBee Device Profile (ZDP) API

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpBackupSourceBindReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
286 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpRecoverSourceBindRequest

Description

This function requests that a back-up of the locally held source binding table is
recovered from a remote node. The function must be called from a node with a
primary binding table cache and the destination node of the request must hold the
corresponding back-up binding table cache.

This request must indicate the starting index in the binding table for the recovery. The
request is represented by the structure below (further detailed in Section 8.2.2.32).

typedef struct {

 uint16 u16StartIndex;

} ZPS_tsAplZdpRecoverSourceBindReq;

The remote node replies with a Recover_Source_Bind_rsp response containing the
required binding table entries, which should be collected using the RTOS function
OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpRecoverSourceBindRsp (detailed in Section 8.2.3.32). As many
binding entries as possible are included in this response. If the returned binding table
is incomplete, this is indicated in the response and this function must be called again,
with the appropriate starting index, to recover the rest of the table.

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpRecoverSourceBindReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpRecoverSourceBindRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpRecoverSourceBindReq

*psZdpRecoverSourceBindReq);

Note: This function is provided in the NXP ZDP API for the
reason of interoperability with nodes running non-NXP ZigBee
PRO stacks that support the generated request. On receiving
a request from this function, the NXP ZigBee PRO stack will
return the status ZPS_ZDP_NOT_SUPPORTED.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 287

Chapter 8
ZigBee Device Profile (ZDP) API

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
288 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.1.4 Network Management Services Functions

The ZDP Network Management Services functions are concerned with requests for
network operations to be implemented remotely.

The functions are listed below, along with their page references:

Function Page

ZPS_eAplZdpMgmtNwkDiscRequest 290

ZPS_eAplZdpMgmtLqiRequest 292

ZPS_eAplZdpMgmtRtgRequest 293

ZPS_eAplZdpMgmtBindRequest 294

ZPS_eAplZdpMgmtLeaveRequest 296

ZPS_eAplZdpMgmtDirectJoinRequest 298

ZPS_eAplZdpMgmtPermitJoiningRequest 300

ZPS_eAplZdpMgmtCacheRequest 302

ZPS_eAplZdpMgmtNwkUpdateRequest 304

Note: Some of these functions cannot be used to send
requests to nodes that run the NXP ZigBee PRO stack.
They are supplied in the ZDP API in order to facilitate
interoperability with nodes based on non-NXP software
which supports the corresponding requests.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 289

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpMgmtNwkDiscRequest

Description

This function requests a remote node to perform a channel scan in order to discover
any other wireless networks that are operating in the neighbourhood.

This request must specify the requirements for the scan: channels to scan, duration
of scan, starting channel. The request is represented by the structure below (further
detailed in Section 8.2.2.33).

typedef struct {

 uint32 u32ScanChannels;

 uint8 u8ScanDuration;

 uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtNwkDiscReq;

The remote node replies with a Mgmt_NWK_Disc_rsp response containing the scan
results, which should be collected using the RTOS function OS_eCollectMessage()
and stored in a structure of type ZPS_tsAplZdpMgmtNwkDiscRsp (detailed in
Section 8.2.3.33).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpMgmtNwkDiscReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpMgmtNwkDiscRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtNwkDiscReq

*psZdpMgmtNwkDiscReq);

Note: This function is provided in the ZDP API for the reason
of interoperability with nodes running non-NXP ZigBee PRO
stacks that support the generated request. On receiving a
request from this function, the NXP ZigBee PRO stack will
return the status ZPS_ZDP_NOT_SUPPORTED.
290 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 291

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpMgmtLqiRequest

Description

This function requests a remote node to provide a list of neighbouring nodes, from its
Neighbour table, including LQI (link quality) values for radio transmissions from each
of these nodes. The destination node of this request must be a Router or the Co-
ordinator.

This request must specify the index of the first node in the Neighbour table to report.
The request is represented by the structure below (further detailed in Section
8.2.2.34).

typedef struct {

 uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtLqiReq;

The remote node replies with a Mgmt_Lqi_rsp response containing the required
information, which should be collected using the RTOS function
OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpMgmtLqiRsp (detailed in Section 8.2.3.34).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpMgmtLqiReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpMgmtLqiRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpMgmtLqiReq *psZdpMgmtLqiReq);
292 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_eAplZdpMgmtRtgRequest

Description

This function requests a remote node to provide the contents of its Routing table. The
destination node of this request must be a Router or the Co-ordinator.

This request must specify the index of the first entry in the Routing table to report.
The request is represented by the structure below (further detailed in Section
8.2.2.35).

typedef struct {

 uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtRtgReq;

The remote node replies with a Mgmt_Rtg_rsp response containing the required
information, which should be collected using the RTOS function
OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpMgmtRtgRsp (detailed in Section 8.2.3.35).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpMgmtRtgReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

ZPS_teStatus ZPS_eAplZdpMgmtRtgRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpMgmtRtgReq *psZdpMgmtRtgReq);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 293

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpMgmtBindRequest

Description

This function requests a remote node to provide the contents of its Binding table. The
destination node of this request must be a Router or the Co-ordinator.

This request must specify the index of the first entry in the Binding table to report.
The request is represented by the structure below (further detailed in Section
8.2.2.36).

typedef struct {

 uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtBindReq;

The remote node replies with a Mgmt_Bind_rsp response containing the required
information, which should be collected using the RTOS function
OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpMgmtBindRsp (detailed in Section 8.2.3.36).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpMgmtBindReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpMgmtBindRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpMgmtBindReq *psZdpMgmtBindReq);
294 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 295

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpMgmtLeaveRequest

Description

This function requests a remote node to leave the network. The request also
indicates whether the children of the leaving node should also be requested to leave
and whether the leaving node(s) should subsequently attempt to rejoin the network.

The IEEE address of the node to leave the network must be included in the request,
as well as flags indicating the children and rejoin choices (see above). The request
is represented by the structure below (further detailed in Section 8.2.2.37).

typedef struct {

 uint64 u64DeviceAddress;

 uint8 u8Flags;

} ZPS_tsAplZdpMgmtLeaveReq;

The remote node replies with a Mgmt_Leave_rsp response, which should be
collected using the RTOS function OS_eCollectMessage() and stored in a structure
of type ZPS_tsAplZdpMgmtLeaveRsp (detailed in Section 8.2.3.37).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpMgmtLeaveReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpMgmtLeaveRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpMgmtLeaveReq *psZdpMgmtLeaveReq);

Note: This function is provided in the ZDP API for the reason
of interoperability with nodes running non-NXP ZigBee PRO
stacks that support the generated request. On receiving a
request from this function, the NXP ZigBee PRO stack will
return the status ZPS_ZDP_NOT_SUPPORTED.
296 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 297

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpMgmtDirectJoinRequest

Description

This function requests a remote node to allow a particular device (identified through
its IEEE address) to join the network as a child of the node. Thus, joining should be
enabled on the remote node just for the nominated device. The destination node of
this request must be a Router or the Co-ordinator.

The IEEE address of the nominated device as well as its capabilities must be
included in the request. The request is represented by the structure below (further
detailed in Section 8.2.2.38).

typedef struct {

 uint64 u64DeviceAddress;

 uint8 u8Capability;

} ZPS_tsAplZdpMgmtDirectJoinReq;

The remote node replies with a Mgmt_Direct_Join_req response, which should be
collected using the RTOS function OS_eCollectMessage() and stored in a structure
of type ZPS_tsAplZdpMgmtDirectJoinRsp (detailed in Section 8.2.3.38).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpMgmtDirectJoinReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpMgmtDirectJoinRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtDirectJoinReq

*psZdpMgmtDirectJoinReq);

Note: This function is provided in the ZDP API for the reason
of interoperability with nodes running non-NXP ZigBee PRO
stacks that support the generated request. On receiving a
request from this function, the NXP ZigBee PRO stack will
return the status ZPS_ZDP_NOT_SUPPORTED.
298 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 299

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpMgmtPermitJoiningRequest

Description

This function requests a remote node to enable or disable joining for a specified
amount of time. The destination node of this request must be a Router or the Co-
ordinator. The request can be unicast to a particular node or broadcast to all routing
nodes (for which the destination address must be set to the 16-bit network address
0xFFFC).

The duration of the enable or disable joining state must be specified in the request.
The request is represented by the structure below (further detailed in Section
8.2.2.39).

typedef struct {

 uint8 u8PermitDuration;

 bool_t bTcSignificance;

} ZPS_tsAplZdpMgmtPermitJoiningReq;

If the request was unicast, the remote node replies with a Mgmt_Permit_Joining_rsp
response, which should be collected using the RTOS function
OS_eCollectMessage() and stored in a structure of type
ZPS_tsAplZdpMgmtPermitJoiningRsp (detailed in Section 8.2.3.39).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpMgmtPermitJoiningReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpMgmtPermitJoiningRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtPermitJoiningReq

*psZdpMgmtPermitJoiningReq);

Note: This function is provided in the ZDP API for the reason
of interoperability with nodes running non-NXP ZigBee PRO
stacks that support the generated request. On receiving a
request from this function, the NXP ZigBee PRO stack will
return the status ZPS_ZDP_NOT_SUPPORTED.
300 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 301

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpMgmtCacheRequest

Description

This function requests a remote node to provide a list of the End Devices registered
in its primary discovery cache. Therefore, the destination node must contain a
primary discovery cache.

The request is represented by the structure below (further detailed in Section
8.2.2.40).

typedef struct {

 uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtCacheReq;

The remote node replies with a Mgmt_Cache_rsp response, which should be
collected using the RTOS function OS_eCollectMessage() and stored in a structure
of type ZPS_tsAplZdpMgmtCacheRsp (detailed in Section 8.2.3.40).

Parameters

hAPduInst Handle of APDU in which request will be sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpMgmtCacheReq Pointer to request (see above)

ZPS_teStatus ZPS_eAplZdpMgmtCacheRequest(
PDUM_thAPduInstance hAPduInst,
ZPS_tuAddress uDstAddr,
bool bExtAddr,
uint8 *pu8SeqNumber,
ZPS_tsAplZdpMgmtCacheReq *psZdpMgmtCacheReq);

Note: This function is provided in the ZDP API for the reason
of interoperability with nodes running non-NXP ZigBee PRO
stacks that support the generated request. On receiving a
request from this function, the NXP ZigBee PRO stack will
return the status ZPS_ZDP_NOT_SUPPORTED.
302 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 303

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_eAplZdpMgmtNwkUpdateRequest

Description

This function requests an update of network parameters related to radio
communication. The request can specify any of the following:

 update the radio channel mask (for scans) and the 16-bit network address of the
network manager (node nominated to manage radio-band operation of network)

 change the radio channel used

 scan radio channels and report the results

The request can be broadcast or unicast to nodes with radio receivers that are
configured to remain on during idle periods.

The request is represented by the structure below (further detailed in Section
8.2.2.41).

typedef struct {

 uint32 u32ScanChannels;

 uint8 u8ScanDuration;

 uint8 u8ScanCount;

 uint8 u8NwkUpdateId;

 uint16 u16NwkManagerAddr;

} ZPS_tsAplZdpMgmtNwkUpdateReq;

The specific action to be taken as a result of this request is indicated through the
element u8ScanDuration, as described in the table below.

ZPS_teStatus ZPS_eAplZdpMgmtNwkUpdateRequest(
 PDUM_thAPduInstance hAPduInst,
 ZPS_tuAddress uDstAddr,
 bool bExtAddr,
 uint8 *pu8SeqNumber,
 ZPS_tsAplZdpMgmtNwkUpdateReq

*psZdpMgmtNwkUpdateReq);
304 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
The remote node replies with a Mgmt_NWK_Update_notify notification, which should
be collected using the RTOS function OS_eCollectMessage() and stored in a
structure of type ZPS_tsAplZdpMgmtNwkUpdateNotify (detailed in Section
8.2.3.41).

Parameters

hAPduInst Handle of APDU instance in which request will be
sent

uDstAddr Address of destination node of request
(can be 16- or 64-bit, as specified by bExtAddr)

bExtAddr Type of destination address:
TRUE: 64-bit IEEE (MAC) address
FALSE: 16-bit network address

*pu8SeqNumber Pointer to sequence number of request

*psZdpMgmtNwkUpdateReq Pointer to request (see above)

Returns

ZPS_E_SUCCESS (request successfully sent)

APS return codes, listed and described in Section 9.2.2

NWK return codes, listed and described in Section 9.2.3

MAC return codes, listed and described in Section 9.2.4

u8ScanDuration Action

0x00-0x05 Perform radio channel scan on the set of channels
specified through u32ScanChannels. The time, in
seconds, spent scanning each channel is determined
by the value of u8ScanDuration and the number of
scans is equal to the value of u8ScanCount. Valid for
unicasts only.

0x06-0xFD Reserved

0xFE Change radio channel to single channel specified
through u32ScanChannels and set the network man-
ager address to that specified through
u16NwkManagerAddr. Valid for broadcasts only.

0xFF Update the stored radio channel mask with that speci-
fied through u32ScanChannels (but do not scan).
Valid for broadcasts only.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 305

Chapter 8
ZigBee Device Profile (ZDP) API

8.1.5 Response Data Extraction Function

The ZDP Response Data Extraction function is concerned with obtaining the data from
a received response packet which is destined for the ZDO. The function should be
called when a ZPS_EVENT_APS_DATA_INDICATION event is generated for
destination endpoint 0.

The function is listed below, along with its page reference:

Function Page

ZPS_bAplZdpUnpackResponse 307

Note: This function and the related structure
ZPS_tsAfZdpEvent are defined in the header file
appZdpExtraction.h.
306 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_bAplZdpUnpackResponse

Description

This function can be used to extract data received in a response packet which is
destined for the ZDO (at endpoint 0). When such a packet is received, the event
ZPS_EVENT_APS_DATA_INDICATION is generated. The application must then
check whether the destination endpoint number is 0 in the event and, if this is the
case, call this function to extract the response data from the event.

A pointer to a ZPS_tsAfZdpEvent structure must be provided, which the function
will populate with the extracted data.

Parameters

*psZdoServerEvent Pointer to structure containing the event (see
Section 7.2.2.1)

*psReturnStruct Pointer to structure to receive extracted data (see
Section 7.2.2.24)

Returns

TRUE if data successfully extracted

FALSE if data not successfully extracted

bool ZPS_bAplZdpUnpackResponse(
ZPS_tsAfEvent *psZdoServerEvent,
ZPS_tsAfZdpEvent *psReturnStruct);
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 307

Chapter 8
ZigBee Device Profile (ZDP) API

8.2 ZDP Structures

This section describes the structures used by the ZigBee Device Profile (ZDP) API.

Three sets of structures are presented:

 Structures used to represent the descriptors that reside on a node - see Section
8.2.1

 Structures used to issue requests using the ZDP functions - see Section 8.2.2

 Structures used to receive responses to the ZDP requests - see Section 8.2.3

8.2.1 Descriptor Structures

These structures are used to represent the following descriptors that contain
information about the host node:

 Node descriptor

 Node Power descriptor

 Simple descriptor

The structures are listed below, along with their page references.

Structure Page

ZPS_tsAplZdpNodeDescriptor 308

ZPS_tsAplZdpNodePowerDescriptor 310

ZPS_tsAplZdpSimpleDescType 312

8.2.1.1 ZPS_tsAplZdpNodeDescriptor

The ZDP Node descriptor structure ZPS_tsAplZdpNodeDescriptor is shown below.

typedef struct {

 union

 {

 ZPS_tsAplZdpNodeDescBitFields sBitFields;

 uint16 u16Value;

 } uBitUnion;

 uint8 u8MacFlags;

 uint16 u16ManufacturerCode;

 uint8 u8MaxBufferSize;

 uint16 u16MaxRxSize;

 uint16 u16ServerMask;

 uint16 u16MaxTxSize;

 uint8 u8DescriptorCapability;

} ZPS_tsAplZdpNodeDescriptor;

where:
308 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
 sBitFields is a structure of the type ZPS_tsAplZdpNodeDescBitFields
(described below) containing various items of information about the node.

 u16Value is used for the union and should be set to 0x0000.

 eMacFlags contains 8 bits (bits 0-7) indicating the node capabilities, as
required by the IEEE 802.15.4 MAC sub-layer. These node capability flags are
described in Table 8 on page 216.

 u16ManufacturerCode contains 16 bits (bits 0-15) indicating the
manufacturer code for the node, where this code is allocated to the
manufacturer by the ZigBee Alliance.

 u8MaxBufferSize is the maximum size, in bytes, of an NPDU (Network
Protocol Data Unit).

 u16MaxRxSize is the maximum size, in bytes, of an APDU (Application
Protocol Data Unit). This value can be greater than the value of
u8MaxBufferSize, due to the fragmentation of an APDU into NPDUs.

 u16ServerMask contains 8 bits (bits 0-7) indicating the server status of the
node. This server mask is detailed in Table 15 on page 349.

 u16MaxTxSize is the maximum size, in bytes, of the ASDU (Application Sub-
layer Data Unit) in which a message can be sent (the message may actually be
transmitted in smaller fragments)

 u8DescriptorCapability contains 8 bits (bits 0-7) indicating the properties
of the node that can be used by other nodes in network discovery, as indicated
in the table below.

ZPS_tsAplZdpNodeDescBitFields

The ZPS_tsAplZdpNodeDescBitFields structure is used by the sBitFields
element in the Node descriptor structure (see above), and is shown below:

typedef struct {

 unsigned eFrequencyBand : 5;

 unsigned eApsFlags : 3;

 unsigned eReserved : 3; /* reserved */

 unsigned bUserDescAvail : 1;

 unsigned bComplexDescAvail : 1;

 unsigned eLogicalType : 3;

}ZPS_tsAplZdpNodeDescBitFields;

where:

Bit Description

0 Set to 1 if Extended Active Endpoint List is available
on the node, 0 otherwise

1 Set to 1 if Extended Simple Descriptor List is availa-
ble on the node, 0 otherwise

2-7 Reserved
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 309

Chapter 8
ZigBee Device Profile (ZDP) API

 eFrequencyBand is a 5-bit value representing the IEEE 802.15.4 radio-
frequency band used by the node:

 0: 868-MHz band

 2: 915-MHz band

 3: 2400-MHz band

 eApsFlags is a 3-bit value containing flags that indicate the ZigBee APS
capabilities of the node (not currently supported and should be set to 0).

 eReserved is a 3-bit reserved value.

 bUserDescAvail is a 1-bit value indicating whether a User descriptor is
available for the node - 1 indicates available, 0 indicates unavailable.

 bComplexDescAvail is a 1-bit value indicating whether a Complex descriptor
is available for the node - 1 indicates available, 0 indicates unavailable.

 eLogicalType is a 3-bit value indicating the ZigBee device of the node:

 0: Co-ordinator

 1: Router

 2: End Device

8.2.1.2 ZPS_tsAplZdpNodePowerDescriptor

The ZDP Node Power descriptor structure ZPS_tsAplZdpNodePowerDescriptor is
shown below.

typedef struct {

 union

 {

 ZPS_tsAplZdpPowerDescBitFields sBitFields;

 uint16 u16Value;

 }uBitUnion;

} ZPS_tsAplZdpNodePowerDescriptor;

where:

 sBitFields is a structure of type ZPS_tsAplZdpPowerDescBitFields
(described below) containing various items of information about the node’s
power.

 u16value is used for the union and should be set to 0x0000.
310 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_tsAplZdpPowerDescBitFields

The ZPS_tsAplZdpPowerDescBitFields structure is used by the sBitFields
element in the Node Power descriptor structure (see above), and is shown below:

typedef struct {

 unsigned eCurrentPowerSourceLevel : 4;

 unsigned eCurrentPowerSource : 4;

 unsigned eAvailablePowerSource : 4;

 unsigned eCurrentPowerMode : 4;

}ZPS_tsAplZdpPowerDescBitFields;

where:

 eCurrentPowerSourceLevel is a 4-bit value roughly indicating the level of
charge of the node’s power source (mainly useful for batteries), as follows:

 0000: Critically low

 0100: Approximately 33%

 1000: Approximately 66%

 1100: Approximately 100% (near fully charged)

 eCurrentPowerSource is a 4-bit value indicating the current power source for
the node, as detailed below (the bit corresponding to the current power source
is set to 1, all other bits are set to 0):

 Bit 0: Permanent mains supply

 Bit 1: Rechargeable battery

 Bit 2: Disposable battery

 Bit 4: Reserved

 eAvailablePowerSource is a 4-bit value indicating the available power
sources for the node, as detailed above (a bit is set to 1 if the corresponding
power source is available).

 eCurrentPowerMode is a 4-bit value indicating the power mode currently
used by the node, as follows:

 0000: Receiver synchronised with the “receiver on when idle” subfield of
the Node descriptor

 0001: Receiver switched on periodically, as defined by the Node Power
descriptor

 0010: Receiver switched on when stimulated, e.g. by pressing a button

 All other values are reserved
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 311

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.1.3 ZPS_tsAplZdpSimpleDescType

The ZDP Simple descriptor structure ZPS_tsAplZdpSimpleDescType is shown below.

typedef struct {

 uint8 u8Endpoint;

 uint16 u16ApplicationProfileId;

 uint16 u16DeviceId;

 union

 {

 ZPS_tsAplZdpSimpleDescBitFields sBitFields;

 uint8 u8Value;

 }uBitUnion;

 uint8 u8InClusterCount;

 uint16* pu16InClusterList;

 uint8 u8OutClusterCount;

 uint16* pu16OutClusterList;

}ZPS_tsAplZdpSimpleDescType;

where:

 u8Endpoint is the number, in the range 1-240, of the endpoint to which the
Simple descriptor corresponds.

 u16ApplicationProfileId is the 16-bit identifier of the ZigBee application
profile supported by the endpoint. This must be an application profile identifier
issued by the ZigBee Alliance.

 u16DeviceId is the 16-bit identifier of the ZigBee device description
supported by the endpoint. This must be a device description identifier issued
by the ZigBee Alliance.

 sBitFields is a structure of type ZPS_tsAplZdpSimpleDescBitFields
(described below) containing information about the endpoint.

 u8Value is used for the union and must be set to 0x00.

 u8InClusterCount is an 8-bit count of the number of input clusters,
supported on the endpoint, that will appear in the list pointed to by the
pu16InClusterList element.

 *pu16InClusterList is a pointer to the list of input clusters supported by
the endpoint (for use during the service discovery and binding procedures).
This is a sequence of 16-bit values, representing the cluster numbers (in the
range 1-240), where the number of values is equal to count
u8InClusterCount. If this count is zero, the pointer can be set to NULL.

 u8OutClusterCount is an 8-bit count of the number of output clusters,
supported on the endpoint, that will appear in the pu16OutClusterList
element.

 *pu16OutClusterList is a pointer to the list of output clusters supported by
the endpoint (for use during the service discovery and binding procedures).
This is a sequence of 16-bit values, representing the cluster numbers (in the
range 1-240), where the number of values is equal to count
u8OutClusterCount. If this count is zero, the pointer can be set to NULL.
312 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_tsAplZdpSimpleDescBitFields

The ZPS_tsAplZdpSimpleDescBitFields structure is used by the sBitFields
element in the Simple descriptor structure (see above), and is shown below:

typedef struct

{

 unsigned eDeviceVersion :4;

 unsigned eReserved :4;

}ZPS_tsAplZdpSimpleDescBitFields;

where:

 eDeviceVersion is a 4-bit value identifying the version of the device
description supported by the endpoint.

 eReserved is a 4-bit reserved value.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 313

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.2 ZDP Request Structures

These structures are used to represent requests in the ZDP functions.

The ZDP request structures are listed below, along with their page references.

Structure Page

Address Discovery Request Structures

ZPS_tsAplZdpNwkAddrReq 315

ZPS_tsAplZdpIEEEAddrReq 316

ZPS_tsAplZdpDeviceAnnceReq 316

Service Discovery Request Structures

ZPS_tsAplZdpNodeDescReq 317

ZPS_tsAplZdpPowerDescReq 317

ZPS_tsAplZdpSimpleDescReq 317

ZPS_tsAplZdpExtendedSimpleDescReq 318

ZPS_tsAplZdpComplexDescReq 318

ZPS_tsAplZdpUserDescReq 318

ZPS_tsAplZdpMatchDescReq 319

ZPS_tsAplZdpActiveEpReq 319

ZPS_tsAplZdpExtendedActiveEpReq 320

ZPS_tsAplZdpUserDescSet 320

ZPS_tsAplZdpSystemServerDiscoveryReq 321

ZPS_tsAplZdpDiscoveryCacheReq 321

ZPS_tsAplZdpDiscoveryStoreReq 322

ZPS_tsAplZdpNodeDescStoreReq 323

ZPS_tsAplZdpPowerDescStoreReq 323

ZPS_tsAplZdpSimpleDescStoreReq 324

ZPS_tsAplZdpActiveEpStoreReq 324

ZPS_tsAplZdpFindNodeCacheReq 325

ZPS_tsAplZdpRemoveNodeCacheReq 325

Binding Request Structures

ZPS_tsAplZdpEndDeviceBindReq 326

ZPS_tsAplZdpBindUnbindReq 327

ZPS_tsAplZdpBindRegisterReq 328

ZPS_tsAplZdpReplaceDeviceReq 328

ZPS_tsAplZdpStoreBkupBindEntryReq 329

ZPS_tsAplZdpRemoveBkupBindEntryReq 330

ZPS_tsAplZdpBackupBindTableReq 331

ZPS_tsAplZdpRecoverBindTableReq 333

ZPS_tsAplZdpBackupSourceBindReq 333

ZPS_tsAplZdpRecoverSourceBindReq 333
314 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Network Management Services Request Structures

ZPS_tsAplZdpMgmtNwkDiscReq 334

ZPS_tsAplZdpMgmtLqiReq 334

ZPS_tsAplZdpMgmtRtgReq 335

ZPS_tsAplZdpMgmtBindReq 335

ZPS_tsAplZdpMgmtLeaveReq 335

ZPS_tsAplZdpMgmtDirectJoinReq 336

ZPS_tsAplZdpMgmtPermitJoiningReq 336

ZPS_tsAplZdpMgmtCacheReq 336

ZPS_tsAplZdpMgmtNwkUpdateReq 337

8.2.2.1 ZPS_tsAplZdpNwkAddrReq

This structure is used by the function ZPS_eAplZdpNwkAddrRequest(). It
represents a request for the network address of the node with a given IEEE address.

The ZPS_tsAplZdpNwkAddrReq structure is detailed below.

typedef struct {

 uint64 u64IeeeAddr;

 uint8 u8RequestType;

 uint8 u8StartIndex;

} ZPS_tsAplZdpNwkAddrReq;

where:

 u64IeeeAddr is the IEEE address of the node of interest

 u8RequestType is the type of response required:

 0x00: Single device response, which will contain only the network address
of the target node

 0x01: Extended response, which will also include the network addresses
of neighbouring nodes

 All other values are reserved

 u8StartIndex is the Neighbour table index of the first neighbouring node to be
included in the response, if an extended response has been selected
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 315

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.2.2 ZPS_tsAplZdpIEEEAddrReq

This structure is used by the function ZPS_eAplZdpIEEEAddrRequest(). It
represents a request for the IEEE address of a node with a given network address.

The ZPS_tsAplZdpIEEEAddrReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddrOfInterest;

 uint8 u8RequestType;

 uint8 u8StartIndex;

} ZPS_tsAplZdpIEEEAddrReq;

where:

 u16NwkAddrOfInterest is the network address of the node of interest

 u8RequestType is the type of response required:

 0x00: Single device response, which will contain only the IEEE address of
the target node

 0x01: Extended response, which will also include the IEEE addresses of
neighbouring nodes

 All other values are reserved

 u8StartIndex is the Neighbour table index of the first neighbouring node to be
included in the response, if an extended response has been selected

8.2.2.3 ZPS_tsAplZdpDeviceAnnceReq

This structure is used by the function ZPS_eAplZdpDeviceAnnceRequest(). It
represents an announcement that the sending node has joined or rejoined the
network.

The ZPS_tsAplZdpDeviceAnnceReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 uint8 u8Capability;

} ZPS_tsAplZdpDeviceAnnceReq;

where:

 u16NwkAddr is the network address of the sending node

 u64IeeeAddr is the IEEE address of the sending node

 u8Capability is a bitmap representing the capabilities of the sending node.
This bitmap is detailed in Table 8 on page 216
316 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.2.4 ZPS_tsAplZdpNodeDescReq

This structure is used by the function ZPS_eAplZdpNodeDescRequest(). It
represents a request for the Node descriptor of the node with a given network address.

The ZPS_tsAplZdpNodeDescReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpNodeDescReq;

where u16NwkAddrOfInterest is the network address of the node of interest.

8.2.2.5 ZPS_tsAplZdpPowerDescReq

This structure is used by the function ZPS_eAplZdpPowerDescRequest(). It
represents a request for the Power descriptor of the node with a given network
address.

The ZPS_tsAplZdpPowerDescReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpPowerDescReq;

where u16NwkAddrOfInterest is the network address of the node of interest.

8.2.2.6 ZPS_tsAplZdpSimpleDescReq

This structure is used by the function ZPS_eAplZdpSimpleDescRequest(). It
represents a request for the Simple descriptor of an endpoint on the node with a given
network address.

The ZPS_tsAplZdpSimpleDescReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddrOfInterest;

 uint8 u8EndPoint;

} ZPS_tsAplZdpSimpleDescReq;

where:

 u16NwkAddrOfInterest is the network address of the node of interest

 u8EndPoint is the number of the relevant endpoint on the node (1-240)
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 317

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.2.7 ZPS_tsAplZdpExtendedSimpleDescReq

This structure is used by the ZPS_eAplZdpExtendedSimpleDescRequest()
function. It represents a request for the Simple descriptor of an endpoint on the node
with a given network address. This request is required when the endpoint has more
input/output clusters than the usual ZPS_eAplZdpSimpleDescRequest() function
can deal with.

The ZPS_tsAplZdpExtendedSimpleDescReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddr;

 uint8 u8EndPoint;

 uint8 u8StartIndex;

} ZPS_tsAplZdpExtendedSimpleDescReq;

where:

 u16NwkAddrOfInterest is the network address of the node of interest

 u8EndPoint is the number of the relevant endpoint on the node (1-240)

 u8StartIndex is the index of the first cluster of interest in the input and output
cluster lists for the endpoint (this and subsequent clusters will be reported in the
response)

8.2.2.8 ZPS_tsAplZdpComplexDescReq

This structure is used by the function ZPS_eAplZdpComplexDescRequest(). It
represents a request for the Complex descriptor of the node with a given network
address.

The ZPS_tsAplZdpComplexDescReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpComplexDescReq;

where u16NwkAddrOfInterest is the network address of the node of interest.

8.2.2.9 ZPS_tsAplZdpUserDescReq

This structure is used by the function ZPS_eAplZdpUserDescRequest(). It
represents a request for the User descriptor of the node with a given network address.

The ZPS_tsAplZdpUserDescReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpUserDescReq;

where u16NwkAddrOfInterest is the network address of the node of interest.
318 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.2.10 ZPS_tsAplZdpMatchDescReq

This structure is used by the function ZPS_eAplZdpMatchDescRequest(). It
represents a request for nodes with endpoints that match certain criteria in their
Simple descriptors.

The ZPS_tsAplZdpMatchDescReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddrOfInterest;

 uint16 u16ProfileId;

 /* rest of message is variable length */

 uint8 u8NumInClusters;

 uint16* pu16InClusterList;

 uint8 u8NumOutClusters;

 uint16* pu16OutClusterList;

} ZPS_tsAplZdpMatchDescReq;

where:

 u16NwkAddrOfInterest is the network address of the node of interest

 u16ProfileId is the identifier of the ZigBee application profile used

 u8NumInClusters is the number of input clusters to be matched

 pu16InClusterList is a pointer to the list of input clusters to be matched -
this is a variable-length list of input cluster IDs, two bytes for each cluster

 u8NumOutClusters is the number of output clusters to be matched

 pu16OutClusterList is a pointer to the list of output clusters to be matched -
this is a variable-length list of output cluster IDs, two bytes for each cluster

8.2.2.11 ZPS_tsAplZdpActiveEpReq

This structure is used by the function ZPS_eAplZdpActiveEpRequest(). It
represents a request for a list of the active endpoints on the node with a given network
address.

The ZPS_tsAplZdpActiveEpReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpActiveEpReq;

where u16NwkAddrOfInterest is the network address of the node of interest.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 319

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.2.12 ZPS_tsAplZdpExtendedActiveEpReq

This structure is used by the function ZPS_eAplZdpExtendedActiveEpRequest(). It
represents a request for a list of the active endpoints on the node with a given network
address. This request is required when the node has more active endpoints than the
usual ZPS_eAplZdpActiveEpRequest() function can deal with.

The ZPS_tsAplZdpExtendedActiveEpReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddr;

 uint8 u8StartIndex;

} ZPS_tsAplZdpExtendedActiveEpReq;

where:

 u16NwkAddr is the network address of the node of interest

 u8StartIndex is the index of the first endpoint of interest in the list of active
endpoints (this and subsequent endpoints will be reported in the response)

8.2.2.13 ZPS_tsAplZdpUserDescSet

This structure is used by the function ZPS_eAplZdpUserDescSetRequest(). It
represents a request used to configure the User descriptor on a remote node.

The ZPS_tsAplZdpUserDescSet structure is detailed below.

typedef struct {

 uint16 u16NwkAddrOfInterest;

 uint8 u8Length;

 char szUserDescriptor[ZPS_ZDP_LENGTH_OF_USER_DESC];

} ZPS_tsAplZdpUserDescSet;

where:

 u16NwkAddrOfInterest is the network address of the node of interest

 u8Length is the length of the User descriptor

 szUserDescriptor is the new User descriptor for the remote node as a
character array.
320 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.2.14 ZPS_tsAplZdpSystemServerDiscoveryReq

This structure is used by the ZPS_eAplZdpSystemServerDiscoveryRequest()
function. It represents a request for information on the available services of a remote
node.

The ZPS_tsAplZdpSystemServerDiscoveryReq structure is detailed below.

 typedef struct {

 uint16 u16ServerMask;

 } ZPS_tsAplZdpSystemServerDiscoveryReq;

where u16ServerMask is a bitmask representing the required services (1 for
‘required’, 0 for ‘not required’). This bitmask is detailed in the table below.

8.2.2.15 ZPS_tsAplZdpDiscoveryCacheReq

This structure is used by the function ZPS_eAplZdpDiscoveryCacheRequest(). It
represents a request to find the nodes in the network which have a primary discovery
cache.

The ZPS_tsAplZdpDiscoveryCacheReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

} ZPS_tsAplZdpDiscoveryCacheReq;

where:

 u16NwkAddr is the network address of the sending node

 u64IeeeAddr is the IEEE address of the sending node

Bit Service

0 Primary Trust Centre

1 Backup Trust Centre

2 Primary Binding Table Cache

3 Backup Binding Table Cache

4 Primary Discovery Cache

5 Back-up Discovery Cache

6 Network Manager

7-15 Reserved

Table 10: Services Bitmask
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 321

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.2.16 ZPS_tsAplZdpDiscoveryStoreReq

This structure is used by the function ZPS_eAplZdpDiscoveryStoreRequest(). It
represents a request to a remote node to reserve memory space to store the local
node’s ‘discovery information’.

The ZPS_tsAplZdpDiscoveryStoreReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 uint8 u8NodeDescSize;

 uint8 u8PowerDescSize;

 uint8 u8ActiveEpSize;

 uint8 u8SimpleDescCount;

 /* Rest of message is variable length */

 uint8* pu8SimpleDescSizeList;

} ZPS_tsAplZdpDiscoveryStoreReq;

where:

 u16NwkAddr is the network address of the sending node

 u64IeeeAddr is the IEEE address of the sending node

 u8NodeDescSize is the size of the Node descriptor to store

 u8PowerDescSize is the size of the Power descriptor to store

 u8ActiveEpSize is the size of the list of active endpoints to store

 u8SimpleDescCount is the number of Simple descriptors to store

 pu8SimpleDescSizeList is a pointer to a list of sizes of the Simple descriptors
322 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.2.17 ZPS_tsAplZdpNodeDescStoreReq

This structure is used by the function ZPS_eAplZdpNodeDescStoreRequest(). It
represents a request to a remote node to store the Node descriptor of the local node.

The ZPS_tsAplZdpNodeDescStoreReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 /* Rest of message is variable length */

 ZPS_tsAplZdpNodeDescriptor sNodeDescriptor;

} ZPS_tsAplZdpNodeDescStoreReq;

where:

 u16NwkAddr is the network address of the sending node

 u64IeeeAddr is the IEEE address of the sending node

 sNodeDescriptor is a pointer to the Node descriptor to store (this is itself a
structure of the type ZPS_tsAplZdpNodeDescriptor, detailed in Section
8.2.1.1)

8.2.2.18 ZPS_tsAplZdpPowerDescStoreReq

This structure is used by the function ZPS_eAplZdpPowerDescStoreRequest(). It
represents a request to a remote node to store the Power descriptor of the local node.

The ZPS_tsAplZdpPowerDescStoreReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 /* Rest of message is variable length */

 ZPS_tsAplZdpNodePowerDescriptor sPowerDescriptor;

} ZPS_tsAplZdpPowerDescStoreReq;

where:

 u16NwkAddr is the network address of the sending node

 u64IeeeAddr is the IEEE address of the sending node

 sPowerDescriptor is a pointer to the Power descriptor to store (this is itself a
structure of the type ZPS_tsAplZdpNodePowerDescriptor, detailed in Section
8.2.1.2)
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 323

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.2.19 ZPS_tsAplZdpSimpleDescStoreReq

This structure is used by the function ZPS_eAplZdpSimpleDescStoreRequest(). It
represents a request to a remote node to store the Simple descriptor of one of the local
node’s endpoints.

The ZPS_tsAplZdpSimpleDescStoreReq structure is detailed below.

typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 uint8 u8Length;

 /* Rest of message is variable length */

 ZPS_tsAplZdpSimpleDescType sSimpleDescriptor;

} ZPS_tsAplZdpSimpleDescStoreReq;

where:

 u16NwkAddr is the network address of the sending node

 u64IeeeAddr is the IEEE address of the sending node

 u8Length is the length of the Simple descriptor to store

 sSimpleDescriptor is a pointer to the Simple descriptor to store (this is itself a
structure of the type ZPS_tsAplZdpSimpleDescType, detailed in Section
8.2.1.3)

8.2.2.20 ZPS_tsAplZdpActiveEpStoreReq

This structure is used by the function ZPS_eAplZdpActiveEpStoreRequest(). It
represents a request to a remote node to store the list of active endpoints of the local
node.

The ZPS_tsAplZdpActiveEpStoreReq structure is detailed below.

 typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 uint8 u8ActiveEPCount;

 /* Rest of message is variable length */

 uint8* pu8ActiveEpList;

 } ZPS_tsAplZdpActiveEpStoreReq;

where:

 u16NwkAddr is the network address of the sending node

 u64IeeeAddr is the IEEE address of the sending node

 u8ActiveEPCount is the number of active endpoints in the list to store

 pu8ActiveEpList is a pointer to the list of active endpoints to store
324 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.2.21 ZPS_tsAplZdpFindNodeCacheReq

This structure is used by the function ZPS_eAplZdpActiveEpStoreRequest(). It
represents a request to search for nodes in the network that hold ‘discovery
information’ about a particular node.

The ZPS_tsAplZdpFindNodeCacheReq structure is detailed below.

 typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 } ZPS_tsAplZdpFindNodeCacheReq;

where:

 u16NwkAddr is the network address of the node of interest

 u64IeeeAddr is the IEEE address of the node of interest

8.2.2.22 ZPS_tsAplZdpRemoveNodeCacheReq

This structure is used by the function ZPS_eAplZdpActiveEpStoreRequest(). It
represents a request to a remote node to remove from its Primary Discovery Cache
all ‘discovery information’ relating to a particular End Device.

The ZPS_tsAplZdpRemoveNodeCacheReq structure is detailed below.

 typedef struct {

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

 } ZPS_tsAplZdpRemoveNodeCacheReq;

where:

 u16NwkAddr is the network address of the End Device of interest

 u64IeeeAddr is the IEEE address of the End Device of interest
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 325

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.2.23 ZPS_tsAplZdpEndDeviceBindReq

This structure is used by the function ZPS_eAplZdpEndDeviceBindRequest(). It
represents a request to the Co-ordinator to bind an endpoint on the local node to an
endpoint on a remote node (the Co-ordinator must match two such binding requests,
from the local node and remote node).

The ZPS_tsAplZdpEndDeviceBindReq structure is detailed below.

 typedef struct {
 uint16 u16BindingTarget;

 uint64 u64SrcIeeeAddress;

 uint8 u8SrcEndpoint;

 uint16 u16ProfileId;

 /* Rest of message is variable length */

 uint8 u8NumInClusters;

 uint16 *pu16InClusterList;

 uint8 u8NumOutClusters;

 uint16 *pu16OutClusterList;

 } ZPS_tsAplZdpEndDeviceBindReq;

where:

 u16BindingTarget is the network address of the node to hold the binding
(either a node with primary binding table cache or the local node)

 u64SrcIeeeAddress is the IEEE address of the local node

 u8SrcEndpoint is the number of the local endpoint to be bound (1-240)

 u16ProfileId is the application profile ID to be matched for the binding

 u8NumInClusters is the number of input clusters of the local endpoint
(available for matching with output clusters of remote node to be bound)

 pu16InClusterList is a pointer to the input cluster list of the local endpoint
(containing clusters for matching with output clusters of remote node)

 u8NumOutClusters is the number of output clusters of the local endpoint
(available for matching with input clusters of remote node to be bound)

 pu16OutClusterList is a pointer to the output cluster list of the local endpoint
(containing clusters for matching with input clusters of remote node)
326 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.2.24 ZPS_tsAplZdpBindUnbindReq

This structure is used by the function ZPS_eAplZdpBindUnbindRequest(). It
represents a request for a modification of the Binding table on the target node, in order
to either bind or unbind two nodes in the network.

The ZPS_tsAplZdpBindUnbindReq structure is detailed below.

 typedef struct {

 uint64 u64SrcAddress;

 uint8 u8SrcEndpoint;

 uint16 u16ClusterId;

 uint8 u8DstAddrMode;

 union {

 struct {

 uint16 u16DstAddress;

 } sShort;

 struct {

 uint64 u64DstAddress;

 uint8 u8DstEndPoint;

 } sExtended;

 } uAddressField;

 } ZPS_tsAplZdpBindUnbindReq;

where:

 u64SrcAddress is the IEEE address of the source node for the binding

 u8SrcEndpoint is the number of the source endpoint for the binding (1-240)

 u16ClusterId is the ID of the cluster (on the local endpoint) for the binding

 u8DstAddrMode is the destination addressing mode (see Table 11 below):

 ZPS_E_ADDR_MODE_SHORT: network address
(u8DstEndPoint is unspecified)

 ZPS_E_ADDR_MODE_IEEE: IEEE address
(u8DstEndPoint is specified)

 All other values are reserved

 u16DstAddress or u64DstAddress is the address of the destination node for
the binding:

 network address u16DstAddress if u8DstAddrMode is set to
ZPS_E_ADDR_MODE_SHORT

 IEEE address u64DstAddress if 8DstAddrMode is set to
ZPS_E_ADDR_MODE_IEEE

 u8DstEndPoint is the number of the destination endpoint for the binding
(1-240) - not required if u8DstAddrMode set to ZPS_E_ADDR_MODE_SHORT
(network address)
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 327

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.2.25 ZPS_tsAplZdpBindRegisterReq

This structure is used by the function ZPS_eAplZdpBindRegisterRequest(). It
represents a request to inform a remote node with a primary binding table cache that
the local node will hold its own Binding table entries.

The ZPS_tsAplZdpBindRegisterReq structure is detailed below.

 typedef struct {

 uint64 u64NodeAddress;

 } ZPS_tsAplZdpBindRegisterReq;

where u64NodeAddress is the IEEE address of the local node.

8.2.2.26 ZPS_tsAplZdpReplaceDeviceReq

This structure is used by the function ZPS_eAplZdpReplaceDeviceRequest(). It
represents a request to a remote node (with a primary binding table cache) to modify
its binding table entries by replacing an IEEE address and/or associated endpoint
number.

The ZPS_tsAplZdpReplaceDeviceReq structure is detailed below.

 typedef struct {

 uint64 u64OldAddress;

 uint8 u8OldEndPoint;

 uint64 u64NewAddress;

 uint8 u8NewEndPoint;

 } ZPS_tsAplZdpReplaceDeviceReq;

where:

 u64OldAddress is the IEEE address to be replaced

 u8OldEndPoint is the endpoint number to be replaced
(0-240, where 0 indicates that the endpoint number is not to be replaced)

 u64NewAddress is the replacement IEEE address

 u8NewEndPoint is the replacement endpoint number (1-240)

u8DstAddrMode Code Description

0x02 ZPS_E_ADDR_MODE_SHORT 16-bit Network (Short) address

0x03 ZPS_E_ADDR_MODE_IEEE 64-bit IEEE/MAC address

Table 11: Addressing Modes
328 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.2.27 ZPS_tsAplZdpStoreBkupBindEntryReq

This structure is used by the function ZPS_eAplZdpStoreBkupBindEntryRequest().
It represents a request to a remote node to save a back-up of an entry from the local
primary binding table cache.

The ZPS_tsAplZdpStoreBkupBindEntryReq structure is detailed below.

typedef struct {

 uint64 u64SrcAddress;

 uint8 u8SrcEndPoint;

 uint16 u16ClusterId;

 uint8 u8DstAddrMode;

 union {

 struct {

 uint16 u16DstAddress;

 } sShort;

 struct {

 uint64 u64DstAddress;

 uint8 u8DstEndPoint;

 } sExtended;

 };

} ZPS_tsAplZdpStoreBkupBindEntryReq;

where:

 u64SrcAddress is the IEEE address of the source node for the binding entry

 u8SrcEndpoint is the number of the source endpoint for the binding (1-240)

 u16ClusterId is the ID of the cluster (on the local endpoint) for the binding

 u8DstAddrMode is the destination addressing mode for remaining elements
(see Table 12 below)

 u16DstAddress is the address of the destination node for the binding
(address type according to setting of u8DstAddrMode)

 u8DstEndPoint is the number of the destination endpoint for the binding
(1-240)

u8DstAddrMode Code Description

0x01 ZPS_E_ADDR_MODE_GROUP 16-bit Group address

0x03 ZPS_E_ADDR_MODE_IEEE 64-bit IEEE/MAC address

Table 12: Addressing Modes
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 329

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.2.28 ZPS_tsAplZdpRemoveBkupBindEntryReq

This structure is used by the ZPS_eAplZdpRemoveBkupBindEntryRequest()
function. It represents a request to a remote node to remove the back-up of an entry
from the local primary binding table cache.

The ZPS_tsAplZdpRemoveBkupBindEntryReq structure is detailed below.

typedef struct {

 uint64 u64SrcAddress;

 uint8 u8SrcEndPoint;

 uint16 u16ClusterId;

 uint8 u8DstAddrMode;

 union {

 struct {

 uint16 u16DstAddress;

 } sShort;

 struct {

 uint64 u64DstAddress;

 uint8 u8DstEndPoint;

 } sExtended;

 };

} ZPS_tsAplZdpRemoveBkupBindEntryReq;

where:

 u64SrcAddress is the IEEE address of the source node for the binding entry

 u8SrcEndpoint is the number of the source endpoint for the binding (1-240)

 u16ClusterId is the ID of the cluster (on the local endpoint) for the binding

 u8DstAddrMode is the destination addressing mode for remaining elements
(see Table 13 below)

 u16DstAddress is the address the destination node for the binding
(address type according to setting of u8DstAddrMode)

 u8DstEndPoint is the number of the destination endpoint for the binding
(1-240)

u8DstAddrMode Code Description

0x01 ZPS_E_ADDR_MODE_GROUP 16-bit Group address

0x03 ZPS_E_ADDR_MODE_IEEE 64-bit IEEE/MAC address

Table 13: Addressing Modes
330 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.2.29 ZPS_tsAplZdpBackupBindTableReq

This structure is used by the function ZPS_eAplZdpBackupBindTableRequest(). It
represents a request to a remote node to save a back-up of the local primary binding
table cache (whole or in part).

The ZPS_tsAplZdpBackupBindTableReq structure is detailed below.

typedef struct {

 uint16 u16BindingTableEntries;

 uint16 u16StartIndex;

 uint16 u16BindingTableListCount;

 /* Rest of message is variable length */

 ZPS_tsAplZdpBindingTable sBindingTable;

} ZPS_tsAplZdpBackupBindTableReq;

where:

 u16BindingTableEntries is the total number of entries in the primary binding
table cache

 u16StartIndex is the binding table index of the first entry to be backed up

 u16BindingTableListCount is the number of binding table entries in the list to
be backed up (sBindingTable)

 sBindingTable is a pointer to the list of binding table entries to be backed up.
Each list item is of the type ZPS_tsAplZdpBindingTable detailed below

ZPS_tsAplZdpBindingTable

typedef struct

{

 uint64 u64SourceAddress;

 ZPS_tsAplZdpBindingTableEntry* psBindingTableEntryForSpSrcAddr;

}ZPS_tsAplZdpBindingTable;

where:

 u64SourceAddress is the IEEE source address for the binding table entry

 psBindingTableEntryForSpSrcAddr is the binding table entry. This is of the
type ZPS_tsAplZdpBindingTableEntry detailed below
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 331

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_tsAplZdpBindingTableEntry

typedef struct

{

 uint16 u16ClusterId;

 uint8 u8SourceEndpoint;

 uint8 u8DstAddrMode;

 union {

 struct {

 uint16 u16DstAddress;

 } sShort;

 struct {

 uint64 u64DstAddress;

 uint8 u8DstEndPoint;

 } sExtended;

 };

}ZPS_tsAplZdpBindingTableEntry;

where:

 u16ClusterId is the ID of the cluster (on the local endpoint) for the binding

 u8SrcEndpoint is the number of the source endpoint for the binding (1-240)

 u8DstAddrMode is the destination addressing mode for remaining elements
(see Table 14 below)

 u16DstAddress is the address the destination node for the binding
(address type according to setting of u8DstAddrMode)

 u8DstEndPoint is the number of the destination endpoint for the binding
(1-240)

u8DstAddrMode Code Description

0x01 ZPS_E_ADDR_MODE_GROUP 16-bit Group address

0x03 ZPS_E_ADDR_MODE_IEEE 64-bit IEEE/MAC address

Table 14: Addressing Modes
332 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.2.30 ZPS_tsAplZdpRecoverBindTableReq

This structure is used by the function ZPS_eAplZdpRecoverBindTableRequest(). It
represents a request to a remote node to recover a back-up of the local primary
binding table cache.

The ZPS_tsAplZdpRecoverBindTableReq structure is detailed below.

typedef struct {

 uint16 u16StartIndex;

} ZPS_tsAplZdpRecoverBindTableReq;

where u16StartIndex is the binding table index of the first entry to be recovered.

8.2.2.31 ZPS_tsAplZdpBackupSourceBindReq

This structure is used by the function ZPS_eAplZdpBackupSourceBindRequest().
It represents a request to a remote node to save a back-up of the local node’s source
binding table (whole or in part).

The ZPS_tsAplZdpBackupSourceBindReq structure is detailed below.

typedef struct {

 uint16 u16SourceTableEntries;

 uint16 u16StartIndex;

 uint16 u16SourceTableListCount;

 /* Rest of message is variable length */

 uint64* pu64SourceAddress;

} ZPS_tsAplZdpBackupSourceBindReq;

where:

 u16SourceTableEntries is the total number of entries in the source binding
table

 u16StartIndex is the binding table index of the first entry to be backed up

 u16SourceTableListCount is the number of binding table entries in the list to
be backed up (pu64SourceAddress)

 pu64SourceAddress is a pointer to the list of IEEE source addresses
corresponding to the binding table entries to be backed up

8.2.2.32 ZPS_tsAplZdpRecoverSourceBindReq

This structure is used by the function ZPS_eAplZdpRecoverSourceBindRequest().
It represents a request to a remote node to recover the back-up of the local node’s
source binding table (whole or in part).

The ZPS_tsAplZdpRecoverSourceBindReq structure is detailed below.

typedef struct {

 uint16 u16StartIndex;

} ZPS_tsAplZdpRecoverSourceBindReq;

where u16StartIndex is the binding table index of the first entry to be recovered.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 333

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.2.33 ZPS_tsAplZdpMgmtNwkDiscReq

This structure is used by the function ZPS_eAplZdpMgmtNwkDiscRequest(). It
represents a request to a remote node to discover any other wireless networks that
are operating in the neighbourhood.

The ZPS_tsAplZdpMgmtNwkDiscReq structure is detailed below.

typedef struct {

 uint32 u32ScanChannels;

 uint8 u8ScanDuration;

 uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtNwkDiscReq;

where:

 u32ScanChannels is a bitmask of the radio channels to scan
(‘1’ means scan, ‘0’ means do not scan):

 Bits 0 to 26 respectively represent channels 0 to 26 (only bits 11 to 26 are
relevant to the 2400-MHz band)

 Bits 27 to 31 are reserved

 u8ScanDuration is a value in the range 0x00 to 0x0E that determines the time
spent scanning each channel - this time is proportional to 2u8ScanDuration+1

 u8StartIndex is the index of the first result from the results list to include in the
response to this request

8.2.2.34 ZPS_tsAplZdpMgmtLqiReq

This structure is used by the function ZPS_eAplZdpMgmtLqiRequest(). It represents
a request to a remote node to provide a list of neighbouring nodes, from its Neighbour
table, including a radio signal strength (LQI) value for each of these nodes.

The ZPS_tsAplZdpMgmtLqiReq structure is detailed below.

typedef struct {

 uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtLqiReq;

where u8StartIndex is the Neighbour table index of the first entry to be included in
the response to this request.
334 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.2.35 ZPS_tsAplZdpMgmtRtgReq

This structure is used by the function ZPS_eAplZdpMgmtRtgRequest(). It
represents a request to a remote node to provide the contents of its Routing table.

The ZPS_tsAplZdpMgmtRtgReq structure is detailed below.

typedef struct {

 uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtRtgReq;

where u8StartIndex is the Routing table index of the first entry to be included in the
response to this request.

8.2.2.36 ZPS_tsAplZdpMgmtBindReq

This structure is used by the function ZPS_eAplZdpMgmtBindRequest(). It
represents a request to a remote node to provide the contents of its Binding table.

The ZPS_tsAplZdpMgmtBindReq structure is detailed below.

typedef struct {

 uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtBindReq;

where u8StartIndex is the Binding table index of the first entry to be included in the
response to this request.

8.2.2.37 ZPS_tsAplZdpMgmtLeaveReq

This structure is used by the function ZPS_eAplZdpMgmtLeaveRequest(). It
requests a remote node to leave the network.

The ZPS_tsAplZdpMgmtLeaveReq structure is detailed below.

typedef struct {

 uint64 u64DeviceAddress;

 uint8 u8Flags;

} ZPS_tsAplZdpMgmtLeaveReq;

where:

 u64DeviceAddress is the IEEE address of the device being asked to leave the
network

 u8Flags is an 8-bit bitmap containing the following flags:

 Rejoin flag (bit 0): Set to 1 if the node requested to leave the network
should immediately try to rejoin the network, otherwise set to 0.

 Remove Children flag (bit 1): Set to 1 if the node requested to leave the
network should also request its own children (if any) to leave the network,
otherwise set to 0.

 Reserved (bits 7-2)
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 335

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.2.38 ZPS_tsAplZdpMgmtDirectJoinReq

This structure is used by the function ZPS_eAplZdpMgmtDirectJoinRequest(). It
requests a remote node to allow a particular device to join it (and therefore the
network).

The ZPS_tsAplZdpMgmtDirectJoinReq structure is detailed below.

typedef struct {

 uint64 u64DeviceAddress;

 uint8 u8Capability;

} ZPS_tsAplZdpMgmtDirectJoinReq;

where:

 u64DeviceAddress is the IEEE address of the device to be allowed to join

 u8Capability is a bitmask of the operating capabilities of the device to be
allowed to join. This bitmask is detailed in Table 8 on page 216

8.2.2.39 ZPS_tsAplZdpMgmtPermitJoiningReq

This structure is used by the function ZPS_eAplZdpMgmtPermitJoiningRequest().
It requests a remote node (Router or Co-ordinator) to enable or disable joining for a
specified amount of time.

The ZPS_tsAplZdpMgmtPermitJoiningReq structure is detailed below.

typedef struct {

 uint8 u8PermitDuration;

 bool_t bTcSignificance;

} ZPS_tsAplZdpMgmtPermitJoiningReq;

 where:

 u8PermitDuration is the time period, in seconds, during which joining will be
allowed (0x00 means that joining is enabled or disabled with no time limit)

 bTcSignificance determines whether the remote device is a ‘Trust Centre’:

 TRUE: A Trust Centre
 FALSE: Not a Trust Centre

8.2.2.40 ZPS_tsAplZdpMgmtCacheReq

This structure is used by the function ZPS_eAplZdpMgmtCacheRequest(). It
requests a remote node to provide a list of the End Devices registered in its primary
discovery cache.

The ZPS_tsAplZdpMgmtCacheReq structure is detailed below.

typedef struct {

 uint8 u8StartIndex;

} ZPS_tsAplZdpMgmtCacheReq;

where u8StartIndex is the discovery cache index of the first entry to be included in
the response to this request.
336 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.2.41 ZPS_tsAplZdpMgmtNwkUpdateReq

This structure is used by the function ZPS_eAplZdpMgmtNwkUpdateRequest(). It
requests an update of network parameters related to radio communication and may
optionally initiate an energy scan in the 2400-MHz band.

The ZPS_tsAplZdpMgmtNwkUpdateReq structure is detailed below.

typedef struct {

 uint32 u32ScanChannels;

 uint8 u8ScanDuration;

 uint8 u8ScanCount;

 uint8 u8NwkUpdateId;

 uint16 u16NwkManagerAddr;

} ZPS_tsAplZdpMgmtNwkUpdateReq;

where:

 u32ScanChannels is a bitmask of the radio channels to be scanned
(‘1’ means scan, ‘0’ means do not scan):

 Bits 0 to 26 respectively represent channels 0 to 26 (only bits 11 to 26 are
relevant to the 2400-MHz band)

 Bits 27 to 31 are reserved

 u8ScanDuration is a key value used to determine the action to be taken, as
follows:

 0x00-0x05: Indicates that an energy scan is required and determines the
time to be spent scanning each channel - this time is proportional to
2u8ScanDuration+1. The set of channels to scan is specified through
u32ScanChannels and the maximum number of scans is equal to the
value of u8ScanCount. Valid for unicasts only

 0x06-0xFD: Reserved

 0xFE: Indicates that radio channel is to be changed to single channel
specified through u32ScanChannels and that network manager address to
be set to that specified through u16NwkManagerAddr. Valid for broadcasts
only

 0xFF: Indicates that stored radio channel mask to be updated with that
specified through u32ScanChannels (but scan not required). Valid for
broadcasts only.

 u8ScanCount is the number of energy scans to be conducted and reported.
Valid only if a scan has been enabled through u8ScanDuration (0x00-0x05)

 u8NwkUpdateId is a value set by the Network Channel Manager before the
request is sent. Valid only if u8ScanDuration set to 0xFE or 0xFF

 u16NwkManagerAddr is the 16-bit network address of the Network Manager
(node nominated to manage radio-band operation of network). Valid only if
u8ScanDuration set to 0xFF
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 337

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.3 ZDP Response Structures

This section details the structures that are used to store ZDP responses, resulting
from requests sent using the ZDP functions. A received response is collected using
the RTOS function OS_eCollectMessage(). As part of this function call, you must
provide a pointer to a structure to store the message data. This structure must be of
the appropriate type for the response, from those described in this section.

The ZDP response structures are listed below, along with their page references.

Structure Page

Address Discovery Response Structures

ZPS_tsAplZdpNwkAddrRsp 340

ZPS_tsAplZdpIeeeAddrRsp 341

Service Discovery Response Structures

ZPS_tsAplZdpNodeDescRsp 342

ZPS_tsAplZdpPowerDescRsp 342

ZPS_tsAplZdpSimpleDescRsp 343

ZPS_tsAplZdpExtendedSimpleDescRsp 344

ZPS_tsAplZdpComplexDescRsp 345

ZPS_tsAplZdpUserDescRsp 346

ZPS_tsAplZdpMatchDescRsp 346

ZPS_tsAplZdpActiveEpRsp 347

ZPS_tsAplZdpExtendedActiveEpRsp 348

ZPS_tsAplZdpUserDescConf 348

ZPS_tsAplZdpSystemServerDiscoveryRsp 349

ZPS_tsAplZdpDiscoveryCacheRsp 349

ZPS_tsAplZdpDiscoveryStoreRsp 350

ZPS_tsAplZdpNodeDescStoreRsp 350

ZPS_tsAplZdpPowerDescStoreRsp 350

ZPS_tsAplZdpSimpleDescStoreRsp 351

ZPS_tsAplZdpActiveEpStoreRsp 351

ZPS_tsAplZdpFindNodeCacheRsp 351

ZPS_tsAplZdpRemoveNodeCacheRsp 352

Binding Response Structures

ZPS_tsAplZdpEndDeviceBindRsp 352

ZPS_tsAplZdpBindRsp 352

ZPS_tsAplZdpUnbindRsp 353

ZPS_tsAplZdpBindRegisterRsp 353

ZPS_tsAplZdpReplaceDeviceRsp 355

ZPS_tsAplZdpStoreBkupBindEntryRsp 355

ZPS_tsAplZdpRemoveBkupBindEntryRsp 356

ZPS_tsAplZdpBackupBindTableRsp 356
338 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_tsAplZdpRecoverBindTableRsp 357

ZPS_tsAplZdpBackupSourceBindRsp 357

ZPS_tsAplZdpRecoverSourceBindRsp 358

Network Management Services Response Structures

ZPS_tsAplZdpMgmtNwkDiscRsp 359

ZPS_tsAplZdpMgmtLqiRsp 360

ZPS_tsAplZdpMgmtRtgRsp 362

ZPS_tsAplZdpMgmtBindRsp 364

ZPS_tsAplZdpMgmtLeaveRsp 364

ZPS_tsAplZdpMgmtDirectJoinRsp 365

ZPS_tsAplZdpMgmtPermitJoiningRsp 365

ZPS_tsAplZdpMgmtCacheRsp 366

ZPS_tsAplZdpMgmtNwkUpdateNotify 367
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 339

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.3.1 ZPS_tsAplZdpNwkAddrRsp

This structure is used to store NWK_addr_rsp message data - a response to a call to
the function ZPS_eAplZdpNwkAddrRequest(). This response contains the network
address of the node with a given IEEE address.

The ZPS_tsAplZdpNwkAddrRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint64 u64IeeeAddrRemoteDev;

 uint16 u16NwkAddrRemoteDev;

 uint8 u8NumAssocDev;

 uint8 u8StartIndex;

 /* Rest of the message is variable Length */

 uint16* pNwkAddrAssocDevList;

} ZPS_tsAplZdpNwkAddrRsp;

where:

 u8Status is the return status for ZPS_eAplZdpNwkAddrRequest()

 u64IeeeAddrRemoteDev is the IEEE address of the remote node that sent the
response (this is the IEEE address specified in the original request)

 u16NwkAddrRemoteDev is the network address of the remote node that sent the
response (this is the network address that was requested)

 u8NumAssocDev is the number of neighbouring nodes for which network
addresses are also being reported (in the remainder of the structure)

 u8StartIndex is the index in the remote node’s Neighbour table of the first
entry to be included in this report. This element should be ignored if the
element u8NumAssocDev is 0.

 pNwkAddrAssocDevList is a pointer to a list of 16-bit network addresses of the
remote node’s neighbours (this is a variable-length list with four bytes per
node). This element should be ignored if the element u8NumAssocDev is 0.
340 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.3.2 ZPS_tsAplZdpIeeeAddrRsp

This structure is used to store IEEE_addr_rsp message data - a response to a call to
the function ZPS_eAplZdpIeeeAddrRequest(). This response contains the IEEE
address of the node with a given network address.

The ZPS_tsAplZdpIeeeAddrRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint64 u64IeeeAddrRemoteDev;

 uint16 u16NwkAddrRemoteDev;

 uint8 u8NumAssocDev;

 uint8 u8StartIndex;

 /* Rest of the message is variable Length */

 uint16* pNwkAddrAssocDevList;

} ZPS_tsAplZdpIeeeAddrRsp;

where:

 u8Status is the return status for ZPS_eAplZdpIeeeAddrRequest()

 u64IeeeAddrRemoteDev is the IEEE address of the remote node that sent the
response (this is the IEEE address that was requested)

 u16NwkAddrRemoteDev is the network address of the remote node that sent the
response (this is the network address specified in the original request)

 u8NumAssocDev is the number of neighbouring nodes for which network
addresses are also being reported (in the remainder of the structure)

 u8StartIndex is the index in the remote node’s Neighbour table of the first
entry to be included in this report. This element should be ignored if the
element u8NumAssocDev is 0.

 pNwkAddrAssocDevList is a pointer to a list of 16-bit network addresses of the
remote node’s neighbours (this is a variable-length list with four bytes per
node). This element should be ignored if the element u8NumAssocDev is 0.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 341

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.3.3 ZPS_tsAplZdpNodeDescRsp

This structure is used to store Node_Desc_rsp message data - a response to a call to
the function ZPS_eAplZdpNodeDescRequest(). This response contains the Node
descriptor of the node with a given network address.

The ZPS_tsAplZdpNodeDescRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16NwkAddrOfInterest;

 /* Rest of the message is variable length */

 ZPS_tsAplZdpNodeDescriptor tsNodeDescriptor;

} ZPS_tsAplZdpNodeDescRsp;

where:

 u8Status is the return status for ZPS_eAplZdpNodeDescRequest()

 u16NwkAddrOfInterest is the network address of the remote node that sent
the response (this is the network address that was specified in the request)

 tsNodeDescriptor is the returned Node descriptor, a structure of type
ZPS_tsAplZdpNodeDescriptor (detailed in Section 8.2.1.1). This is only
included if u8Status reports success

8.2.3.4 ZPS_tsAplZdpPowerDescRsp

This structure is used to store Power_Desc_rsp message data - a response to a call
to the function ZPS_eAplZdpPowerDescRequest(). This response contains the
Power descriptor of the node with a given network address.

The ZPS_tsAplZdpPowerDescRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16NwkAddrOfInterest;

 /* Rest of the message is variable length */

 ZPS_tsAplZdpNodePowerDescriptor sPowerDescriptor;

} ZPS_tsAplZdpPowerDescRsp;

where:

 u8Status is the return status for ZPS_eAplZdpPowerDescRequest()

 u16NwkAddrOfInterest is the network address of the remote node that sent
the response (this is the network address that was specified in the request)

 sPowerDescriptor is the returned Power descriptor, a structure of type
ZPS_tsAplZdpNodePowerDescriptor (detailed in Section 8.2.1.2). This is only
included if u8Status reports success
342 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.3.5 ZPS_tsAplZdpSimpleDescRsp

This structure is used to store Simple_Desc_rsp message data - a response to a call
to the function ZPS_eAplZdpSimpleDescRequest(). This response contains the
Simple descriptor of a given endpoint on the node with a given network address.

The ZPS_tsAplZdpSimpleDescRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16NwkAddrOfInterest;

 uint8 u8Length;

 /* Rest of the message is variable length */

 ZPS_tsAplZdpSimpleDescType sSimpleDescriptor;

} ZPS_tsAplZdpSimpleDescRsp;

where:

 u8Status is the return status for ZPS_eAplZdpSimpleDescRequest()

 u16NwkAddrOfInterest is the network address of the remote node that sent
the response (this is the network address that was specified in the request)

 u8Length is the length of the returned Simple descriptor, in bytes (depends on
the number of clusters supported by the endpoint)

 sSimpleDescriptor is the returned Simple descriptor, a structure of type
ZPS_tsAplZdpSimpleDescType (detailed in Section 8.2.1.3). This is only
included if u8Status reports success
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 343

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.3.6 ZPS_tsAplZdpExtendedSimpleDescRsp

This structure is used to store Extended_Simple_Desc_rsp message data - a
response to a call to the function ZPS_eAplZdpExtendedSimpleDescRequest().
This response contains a cluster list (combined input and output) for a given endpoint
on the node with a given network address.

The ZPS_tsAplZdpExtendedSimpleDescRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16NwkAddr;

 uint8 u8EndPoint;

 uint8 u8AppInputClusterCount;

 uint8 u8AppOutputClusterCount;

 uint8 u8StartIndex;

 /* Rest of the message is variable length */

 uint16* pAppClusterList;

} ZPS_tsAplZdpExtendedSimpleDescRsp;

where:

 u8Status is the return status for
ZPS_eAplZdpExtendedSimpleDescRequest()

 u16NwkAddr is the network address of the remote node that sent the response
(this is the network address that was specified in the request)

 u8EndPoint is the number of the endpoint for which the response was sent
(this is the endpoint number that was specified in the request)

 u8AppInputClusterCount is the total number of input clusters in the
endpoint’s complete input cluster list

 u8AppOutputClusterCount is the total number of output clusters in the
endpoint’s complete output cluster list

 u8StartIndex is the index, in the endpoint’s complete input or output cluster
list, of the first cluster reported in this response

 pAppClusterList is a pointer to the reported cluster list, input clusters first
then output clusters. This is only included if u8Status reports success
344 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.3.7 ZPS_tsAplZdpComplexDescRsp

This structure is used to store Complex_Desc_rsp message data - a response to a call
to the function ZPS_eAplZdpComplexDescRequest(). This response contains the
Complex descriptor of the node with a given network address.

The ZPS_tsAplZdpComplexDescRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16NwkAddrOfInterest;

 uint8 u8Length;

 /* Rest of the message is variable Length */

 ZPS_tsAplZdpComplexDescElement sComplexDescriptor;

} ZPS_tsAplZdpComplexDescRsp;

where:

 u8Status is the return status for ZPS_eAplZdpComplexDescRequest()

 u16NwkAddrOfInterest is the network address of the remote node that sent
the response (this is the network address that was specified in the request)

 u8Length is the length of the returned Complex descriptor, in bytes

 sComplexDescriptor is the returned Complex descriptor, a structure of type
ZPS_tsAplZdpComplexDescRsp (described below). This is only included if
u8Status reports success

ZPS_tsAplZdpComplexDescElement

typedef struct {

 uint8 u8XMLTag;

 uint8 u8FieldCount;

 uint8 *pu8Data;

} ZPS_tsAplZdpComplexDescElement;

where:

 u8XMLTag is the XML tag for the current field

 u8FieldCount is the number of fields in the Complex descriptor

 *pu8Data is a pointer to the data of the current field
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 345

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.3.8 ZPS_tsAplZdpUserDescRsp

This structure is used to store User_Desc_rsp message data - a response to a call to
the function ZPS_eAplZdpUserDescRequest(). This response contains the User
descriptor of the node with a given network address.

The ZPS_tsAplZdpUserDescRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16NwkAddrOfInterest;

 uint8 u8Length;

 /* Rest of the message is variable Length */

 char szUserDescriptor[ZPS_ZDP_LENGTH_OF_USER_DESC];

} ZPS_tsAplZdpUserDescRsp;

where:

 u8Status is the return status for ZPS_eAplZdpUserDescRequest()

 u16NwkAddrOfInterest is the network address of the remote node that sent
the response (this is the network address that was specified in the request)

 u8Length is the length of the returned User descriptor, in bytes (maximum: 16)

 szUserDescriptor is the returned User descriptor as a character array. This is
only included if u8Status reports success

8.2.3.9 ZPS_tsAplZdpMatchDescRsp

This structure is used to store Match_Desc_rsp message data - a response to a call
to the function ZPS_eAplZdpMatchDescRequest(). This response contains details
of the endpoints on the remote node that matched the criteria specified in the original
request.

The ZPS_tsAplZdpMatchDescRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16NwkAddrOfInterest;

 uint8 u8MatchLength;

 /* Rest of message is variable length */

 uint8* u8MatchList;

} ZPS_tsAplZdpMatchDescRsp;

where:

 u8Status is the return status for ZPS_eAplZdpMatchDescRequest()

 u16NwkAddrOfInterest is the network address of the remote node that sent
the response (this is the network address that was specified in the request)

 u8MatchLength is the length of the list of matched endpoints, in bytes

 u8MatchList is a pointer to the list of matched endpoints, where each endpoint
is represented by an 8-bit value (in the range 1-240)
346 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.3.10 ZPS_tsAplZdpActiveEpRsp

This structure is used to store Active_EP_rsp message data - a response to a call to
the function ZPS_eAplZdpActiveEpRequest(). This response contains a list of the
active endpoints on a given network node.

The ZPS_tsAplZdpActiveEpRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16NwkAddrOfInterest;

 uint8 u8ActiveEpCount;

 /* Rest of the message is variable */

 uint8* pActiveEpList;

} ZPS_tsAplZdpActiveEpRsp;

where:

 u8Status is the return status for ZPS_eAplZdpActiveEpRequest()

 u16NwkAddrOfInterest is the network address of the remote node that sent
the response (this is the network address that was specified in the request)

 u8ActiveEpCount is the number of active endpoints on the node

 pActiveEpList is a pointer to the list of active endpoints, where each endpoint
is represented by an 8-bit value (in the range 1-240).
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 347

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.3.11 ZPS_tsAplZdpExtendedActiveEpRsp

This structure is used to store Extended_Active_EP_rsp message data - a response
to a call to the function ZPS_eAplZdpExtendedActiveEpRequest(). This response
contains a list of the active endpoints on the node with a given network address.

The ZPS_tsAplZdpExtendedActiveEpRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16NwkAddr;

 uint8 u8ActiveEpCount;

 uint8 u8StartIndex;

 /* Rest of the message is variable Length */

 uint8* pActiveEpList;

} ZPS_tsAplZdpExtendedActiveEpRsp;

where:

 u8Status is the return status for ZPS_eAplZdpExtendedActiveEpRequest()

 16NwkAddr is the network address of the remote node that sent the response
(this is the network address that was specified in the request)

 u8ActiveEpCount is the total number of active endpoints on the node

 u8StartIndex is the index, in the node’s list of active endpoints, of the first
endpoint reported in this response

 pActiveEpList is a pointer to the reported list of active endpoints (starting with
the endpoint with index u8StartIndex).

8.2.3.12 ZPS_tsAplZdpUserDescConf

This structure is used to store User_Desc_conf message data - a response to a call
to the function ZPS_eAplZdpUserDescSetRequest(). This response contains a
confirmation of the requested configuration of the User descriptor on a given network
node.

The ZPS_tsAplZdpUserDescConf structure is detailed below.

typedef struct {

uint8 u8Status;

uint16 u16NwkAddrOfInterest;

} ZPS_tsAplZdpUserDescConf;

where:

 u8Status is the return status for ZPS_eAplZdpUserDescSetRequest()

 u16NwkAddrOfInterest is the network address of the remote node that sent
the response (this is the network address that was specified in the request)
348 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.3.13 ZPS_tsAplZdpSystemServerDiscoveryRsp

This structure is used to store System_Server_Discovery_rsp message data - a
response to a call to the function ZPS_eAplZdpSystemServerDiscoveryRequest().
This response indicates which of the requested services are supported by a given
network node.

The ZPS_tsAplZdpSystemServerDiscoveryRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16ServerMask;

} ZPS_tsAplZdpSystemServerDiscoveryRsp;

where:

 u8Status is the return status for the function
ZPS_eAplZdpSystemServerDiscoveryRequest()

 u16ServerMask is the returned bitmask that summarises the requested
services supported by the node (1 for ‘supported’, 0 for ‘not supported’ or ‘not
requested’). This bitmask is detailed in the table below.

8.2.3.14 ZPS_tsAplZdpDiscoveryCacheRsp

This structure is used to store Discovery_Cache_rsp message data - a response to a
call to the function ZPS_eAplZdpDiscoveryCacheRequest(). This response
indicates that the sending node has a primary discovery cache.

The ZPS_tsAplZdpDiscoveryCacheRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpDiscoveryCacheRsp;

where u8Status is the return status for ZPS_eAplZdpDiscoveryCacheRequest().

Bit Service

0 Primary Trust Centre

1 Backup Trust Centre

2 Primary Binding Table Cache

3 Backup Binding Table Cache

4 Primary Discovery Cache

5 Back-up Discovery Cache

6 Network Manager

7-15 Reserved

Table 15: Services Bitmask
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 349

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.3.15 ZPS_tsAplZdpDiscoveryStoreRsp

This structure is used to store Discovery_Store_rsp message data - a response to a
call to the function ZPS_eAplZdpDiscoveryStoreRequest(). This response indicates
whether the sending node has successfully reserved space in its primary discovery
cache.

The ZPS_tsAplZdpDiscoveryStoreRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpDiscoveryStoreRsp;

where u8Status is the return status for ZPS_eAplZdpDiscoveryStoreRequest().

8.2.3.16 ZPS_tsAplZdpNodeDescStoreRsp

This structure is used to store Node_Desc_store_rsp message data - a response to a
call to the function ZPS_eAplZdpNodeDescStoreRequest(). This response
indicates whether the sending node has successfully stored the received Node
descriptor in its primary discovery cache.

The ZPS_tsAplZdpNodeDescStoreRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpNodeDescStoreRsp;

where u8Status is the return status for ZPS_eAplZdpNodeDescStoreRequest().

8.2.3.17 ZPS_tsAplZdpPowerDescStoreRsp

This structure is used to store Power_Desc_store_rsp message data - a response to
a call to the function ZPS_eAplZdpPowerDescStoreRequest(). This response
indicates whether the sending node has successfully stored the received Power
descriptor in its primary discovery cache.

The ZPS_tsAplZdpPowerDescStoreRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint64 u64IeeeAddr;

 /* Rest of message is variable length */

 ZPS_tsAplZdpNodePowerDescriptor sPowerDescriptor;

} ZPS_tsAplZdpPowerDescStoreRsp;

where:

 u8Status is the return status for ZPS_eAplZdpPowerDescStoreRequest().

 u64IeeeAddr is the IEEE/MAC address of the device whose Power descriptor
has been stored in the primary discovery cache.

 sPowerDescriptor is the Power descriptor stored (see Section 8.2.1.1).
350 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.3.18 ZPS_tsAplZdpSimpleDescStoreRsp

This structure is used to store Power_Desc_store_rsp message data - a response to
a call to the function ZPS_eAplZdpSimpleDescStoreRequest(). This response
indicates whether the sending node has successfully stored the received Simple
descriptor in its primary discovery cache.

The ZPS_tsAplZdpSimpleDescStoreRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpSimpleDescStoreRsp;

where u8Status is the return status for ZPS_eAplZdpSimpleDescStoreRequest().

8.2.3.19 ZPS_tsAplZdpActiveEpStoreRsp

This structure is used to store Active_EP_store_rsp message data - a response to a
call to the function ZPS_eAplZdpActiveEpStoreRequest(). This response indicates
whether the sending node has successfully stored the received list of active endpoints
in its primary discovery cache.

The ZPS_tsAplZdpActiveEpStoreRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpActiveEpStoreRsp;

where u8Status is the return status for ZPS_eAplZdpActiveEpStoreRequest().

8.2.3.20 ZPS_tsAplZdpFindNodeCacheRsp

This structure is used to store Find_node_cache_rsp message data - a response to a
call to the function ZPS_eAplZdpFindNodeCacheRequest(). This response
indicates that the sending node holds ‘discovery information’ about a given network
node in its primary discovery cache.

The ZPS_tsAplZdpFindNodeCacheRsp structure is detailed below.

typedef struct {

 uint16 u16CacheNwkAddr;

 uint16 u16NwkAddr;

 uint64 u64IeeeAddr;

} ZPS_tsAplZdpFindNodeCacheRsp;

where:

 u16CacheNwkAddr is the network address of the remote node that sent the
response

 u16NwkAddr is the network address of the node of interest (this is the network
address that was specified in the request)

 u64IeeeAddr is the IEEE address of the node of interest (this is the IEEE
address that was specified in the request)
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 351

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.3.21 ZPS_tsAplZdpRemoveNodeCacheRsp

This structure is used to store Remove_node_cache_rsp message data - a response
to a call to the function ZPS_eAplZdpRemoveNodeCacheRequest(). This response
indicates whether the sending node has successfully removed from its primary
discovery cache all ‘discovery information’ relating to a given End Device node.

The ZPS_tsAplZdpRemoveNodeCacheRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpRemoveNodeCacheRsp;

where u8Status is the return status for the function
ZPS_eAplZdpRemoveNodeCacheRequest().

8.2.3.22 ZPS_tsAplZdpEndDeviceBindRsp

This structure is used to store End_Device_Bind_rsp message data - a response to a
call to the function ZPS_eAplZdpEndDeviceBindRequest(). This response is issued
by the Co-ordinator to indicate the status of an End Device binding request.

The ZPS_tsAplZdpEndDeviceBindRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpEndDeviceBindRsp;

where u8Status is the return status for ZPS_eAplZdpEndDeviceBindRequest().

8.2.3.23 ZPS_tsAplZdpBindRsp

This structure is used to store Bind_rsp message data - a response to a call to the
function ZPS_eAplZdpBindUnbindRequest(). This response indicates the status of
a binding request (a request to modify of a binding table).

The ZPS_tsAplZdpBindRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpBindRsp;

where u8Status is the return status for ZPS_eAplZdpBindUnbindRequest().
352 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.3.24 ZPS_tsAplZdpUnbindRsp

This structure is used to store Unbind_rsp message data - a response to a call to the
function ZPS_eAplZdpBindUnbindRequest(). This response indicates the status of
an unbinding request (a request to modify of a binding table).

The ZPS_tsAplZdpUnbindRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpUnbindRsp;

where u8Status is the return status for ZPS_eAplZdpBindUnbindRequest().

8.2.3.25 ZPS_tsAplZdpBindRegisterRsp

This structure is used to store Bind_Register_rsp message data - a response to a call
to the function ZPS_eAplZdpBindRegisterRequest(). This response contains
binding information held on the responding node concerning the requesting node.

The ZPS_tsAplZdpBindRegisterRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16BindingTableEntries;

 uint16 u16BindingTableListCount;

 /* Rest of the message is variable Length */

 ZPS_tsAplZdpBindingTable sBindingTableList;

} ZPS_tsAplZdpBindRegisterRsp;

where:

 u8Status is the return status for ZPS_eAplZdpBindRegisterRequest()

 u16BindingTableEntries is the total number of binding table entries
concerning the requesting node held on the responding node

 u16BindingTableListCount is the number of binding table entries concerning
the requesting node contained in this response

 sBindingTableList is a pointer to the first item in the list of reported binding
table entries. A list item is of type ZPS_tsAplZdpBindingTable detailed below
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 353

Chapter 8
ZigBee Device Profile (ZDP) API

ZPS_tsAplZdpBindingTable

typedef struct

{

 uint64 u64SourceAddress;

 ZPS_tsAplZdpBindingTableEntry* psBindingTableEntryForSpSrcAddr;

}ZPS_tsAplZdpBindingTable;

where:

 u64SourceAddress is the IEEE address of the node to which the binding table
entry relates

 psBindingTableEntryForSpSrcAddr is a pointer to the relevant binding table
information. This information is contained in a structure of type
ZPS_tsAplZdpBindingTableEntry detailed below

ZPS_tsAplZdpBindingTableEntry

typedef struct

{

 uint8 u8SourceEndpoint;

 uint16 u16ClusterId;

 uint8 u8DstAddrMode;

 union {

 struct {

 uint16 u16DstAddress;

 } sShort;

 struct {

 uint64 u64DstAddress;

 uint8 u8DstEndPoint;

 } sExtended;

 };

}ZPS_tsAplZdpBindingTableEntry;

where:

 u8SourceEndpoint is the number of the bound endpoint (1-240) on the source
node of the binding

 u16ClusterId is the ID of the cluster involved in the binding, on the source
node of the binding

 u8DstAddrMode is the addressing mode used in the rest of the structure (see
Table 16 below)

 u16DstAddress is the network address of the destination node of the binding
(this is only application if u8DstAddrMode is set to 0x03)

 u64DstAddress is the IEEE address of the destination node of the binding
(this is only application if u8DstAddrMode is set to 0x04)

 u8DstEndPoint is the number of the bound endpoint (1-240) on the destination
node of the binding
354 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide

8.2.3.26 ZPS_tsAplZdpReplaceDeviceRsp

This structure is used to store Replace_Device_rsp message data - a response to a
call to the function ZPS_eAplZdpReplaceDeviceRequest(). This response indicates
the status of the replace request.

The ZPS_tsAplZdpReplaceDeviceRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpReplaceDeviceRsp;

where u8Status is the return status for ZPS_eAplZdpReplaceDeviceRequest().

8.2.3.27 ZPS_tsAplZdpStoreBkupBindEntryRsp

This structure is used to store Store_Bkup_Bind_Entry_rsp message data - a
response to a call to the function ZPS_eAplZdpStoreBkupBindEntryRequest().
This response indicates the status of the back-up request.

The ZPS_tsAplZdpStoreBkupBindEntryRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpStoreBkupBindEntryRsp;

where u8Status is the return status for the function
ZPS_eAplZdpStoreBkupBindEntryRequest().

u8DstAddrMode Code Description

0x00 ZPS_E_ADDR_MODE_BOUND Bound endpoint

0x01 ZPS_E_ADDR_MODE_GROUP 16-bit Group address

0x02 ZPS_E_ADDR_MODE_SHORT 16-bit Network (Short) address

0x03 ZPS_E_ADDR_MODE_IEEE 64-bit IEEE/MAC address

Table 16: Addressing Modes
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 355

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.3.28 ZPS_tsAplZdpRemoveBkupBindEntryRsp

This structure is used to store Remove_Bkup_Bind_Entry_rsp message data - a
response to a call to the function ZPS_eAplZdpRemoveBkupBindEntryRequest().
This response indicates the status of the remove request.

The ZPS_tsAplZdpRemoveBkupBindEntryRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpRemoveBkupBindEntryRsp;

where u8Status is the return status for the function
ZPS_eAplZdpRemoveBkupBindEntryRequest().

8.2.3.29 ZPS_tsAplZdpBackupBindTableRsp

This structure is used to store Backup_Bind_Table_rsp message data - a response to
a call to the function ZPS_eAplZdpBackupBindTableRequest(). This response
indicates the status of the back-up request.

The ZPS_tsAplZdpBackupBindTableRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16EntryCount;

} ZPS_tsAplZdpBackupBindTableRsp;

where:

 u8Status is the return status for ZPS_eAplZdpBackupBindTableRequest()

 u16EntryCount is the number of binding table entries that have been backed
up
356 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.3.30 ZPS_tsAplZdpRecoverBindTableRsp

This structure is used to store Recover_Bind_Table_rsp message data - a response
to a call to the function ZPS_eAplZdpRecoverBindTableRequest(). This response
indicates the status of the recover request and contains the recovered binding table
entries.

The ZPS_tsAplZdpRecoverBindTableRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16StartIndex;

 uint16 u16BindingTableEntries;

 uint16 u16BindingTableListCount;

 /* Rest of the message is variable length */

 ZPS_tsAplZdpBindingTable sBindingTableList;

} ZPS_tsAplZdpRecoverBindTableRsp;

where:

 u8Status is the return status for ZPS_eAplZdpRecoverBindTableRequest()

 u16StartIndex is the binding table index of the first entry in the set of
recovered binding table entries (sBindingTableList)

 u16BindingTableEntries is the total number of entries in the back-up binding
table cache

 u16BindingTableListCount is the number of entries in the set of recovered
binding table entries (sBindingTableList)

 sBindingTableList is a pointer to the first item in the list of recovered binding
table entries. A list item is of type ZPS_tsAplZdpBindingTable, detailed in
Section 8.2.3.25

8.2.3.31 ZPS_tsAplZdpBackupSourceBindRsp

This structure is used to store Backup_Source_Bind_rsp message data - a response
to a call to the function ZPS_eAplZdpBackupSourceBindRequest(). This response
indicates the status of the back-up request.

The ZPS_tsAplZdpBackupSourceBindRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpBackupSourceBindRsp;

where u8Status is the return status for the function
ZPS_eAplZdpBackupSourceBindRequest().
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 357

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.3.32 ZPS_tsAplZdpRecoverSourceBindRsp

This structure is used to store Recover_Source_Bind_rsp message data - a response
to a call to the function ZPS_eAplZdpRecoverSourceBindRequest(). This response
indicates the status of the recover request and contains the recovered binding table
entries.

The ZPS_tsAplZdpRecoverSourceBindRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16StartIndex;

 uint16 u16SourceTableEntries;

 uint16 u16SourceTableListCount;

 /* Rest of the message is variable length */

 uint64* pu64SourceTableList;

} ZPS_tsAplZdpRecoverSourceBindRsp;

where:

 u8Status is the return status for the function
ZPS_eAplZdpRecoverSourceBindRequest()

 u16StartIndex is the binding table index of the first entry in the set of
recovered binding table entries (pu64SourceTableList)

 u16SourceTableEntries is the total number of source binding table entries in
the back-up binding table cache

 u16SourceTableListCount is the number of entries in the set of recovered
binding table entries (pu64SourceTableList)

 pu64SourceTableList is a pointer to the first item in the list of recovered
binding table entries
358 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.3.33 ZPS_tsAplZdpMgmtNwkDiscRsp

This structure is used to store Mgmt_NWK_Disc_rsp message data - a response to a
call to the function ZPS_eAplZdpMgmtNwkDiscRequest(). This response reports
the networks discovered in a network discovery (all the networks or a subset).

The ZPS_tsAplZdpMgmtNwkDiscRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint8 u8NetworkCount;

 uint8 u8StartIndex;

 uint8 u8NetworkListCount;

 /* Rest of the message is variable length */

 ZPS_tsAplZdpNetworkDescr* psNetworkDescrList;

} ZPS_tsAplZdpMgmtNwkDiscRsp;

where:

 u8Status is the return status for ZPS_eAplZdpMgmtNwkDiscRequest()

 u8NetworkCount is the total number of networks discovered

 u8StartIndex is the index, in the complete list of discovered networks, of the
first network reported in this response (through psNetworkDescrList)

 u8NetworkListCount is the number of discovered networks reported in this
response (through psNetworkDescrList)

 psNetworkDescrList is a pointer to the first entry in a list of network
descriptors for the discovered networks. Each entry is of the type
ZPS_tsAplZdpNetworkDescr detailed below

ZPS_tsAplZdpNetworkDescr

typedef struct

{

 uint64 u64ExtPanId;

 uint8 u8LogicalChan;

 uint8 u8StackProfile;

 uint8 u8ZigBeeVersion;

 uint8 u8PermitJoining;

 uint8 u8RouterCapacity;

 uint8 u8EndDeviceCapacity;

} ZPS_tsAplZdpNetworkDescr;

where:

 u64ExtPanId is the 64-bit extended PAN ID of the discovered network

 u8LogicalChan is the radio channel in which the discovered network operates
(value in range 0 to 26, but only channels 11 to 26 relevant to 2400-MHz band)

 u8StackProfile is the 4-bit identifier of the ZigBee stack profile used by the
discovered network (0 - manufacturer-specific, 1 - ZigBee, 2 - ZigBee PRO,
other values reserved) and is fixed at 2 for the NXP stack
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 359

Chapter 8
ZigBee Device Profile (ZDP) API

 u8ZigBeeVersion is the 4-bit version of the ZigBee protocol used by the
discovered network

 u8PermitJoining indicates whether the discovered network is currently
allowing joinings - that is, at least one node (a Router or the Co-ordinator) of
the network is allowing other nodes to join it:

 0x01: Joinings allowed

 0x00: Joinings not allowed

 All other values reserved

 u8RouterCapacity indicates whether the device is capable of accepting join
requests from Routers - set to TRUE if capable, FALSE otherwise

 u8EndDeviceCapacity indicates whether the device is capable of accepting
join requests from End Devices - set to TRUE capable, FALSE otherwise

8.2.3.34 ZPS_tsAplZdpMgmtLqiRsp

This structure is used to store Mgmt_Lqi_rsp message data - a response to a call to
the function ZPS_eAplZdpMgmtLqiRequest(). This response reports a list of
neighbouring nodes along with their LQI (link quality) values.

The ZPS_tsAplZdpMgmtLqiRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint8 u8NeighborTableEntries;

 uint8 u8StartIndex;

 uint8 u8NeighborTableListCount;

 /* Rest of the message is variable length */

 ZPS_tsAplZdpNtListEntry* pNetworkTableList;

} ZPS_tsAplZdpMgmtLqiRsp;

where:

 u8Status is the return status for ZPS_eAplZdpMgmtLqiRequest()

 u8NeighborTableEntries is the total number of Neighbour table entries on
the remote node

 u8StartIndex is the Neighbour table index of the first entry reported in this
response (through pNetworkTableList)

 u8NetworkListCount is the number of Neighbour table entries reported in this
response (through pNetworkTableList)

 pNetworkTableList is a pointer to the first entry in the list of reported
Neighbour table entries. Each entry is of the type ZPS_tsAplZdpNtListEntry
detailed below
360 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_tsAplZdpNtListEntry

typedef struct

{

 uint64 u64ExtPanId;

 uint64 u64ExtendedAddress;

 uint16 u16NwkAddr;

 uint8 u8LinkQuality;

 uint8 u8Depth;

 /*

 * Bitfields are used for syntactic neatness and space saving.

 * May need to assess whether these are suitable for embedded
environment and may need to watch endianness on u8Assignment

 */

 union

 {

 struct

 {

 unsigned u1Reserved1:1;

 unsigned u2Relationship:3;

 unsigned u2RxOnWhenIdle:2;

 unsigned u2DeviceType:2;

 unsigned u6Reserved2:6;

 unsigned u2PermitJoining:2;

 } ;

 uint8 au8Field[2];

 } uAncAttrs;

} ZPS_tsAplZdpNtListEntry;

where:

 u64ExtPanId is the 64-bit extended PAN ID of the network

 u64ExtendedAddress is the IEEE address of the neighbouring node

 u16NwkAddr is the network address of the neighbouring node

 u8LinkQuality is the estimated LQI (link quality) value for radio transmissions
from the neighbouring node

 u8Depth is the tree depth of the neighbouring node (where the Co-ordinator is
at depth zero)

 u1Reserved1:1 is a 1-bit reserved value and should be set zero.

 u2Relationship:3 is a 3-bit value representing the neighbouring node’s
relationship to the local node:

 0: Neighbour is the parent

 1: Neighbour is a child

 2: Neighbour is a sibling (has same parent)

 3: None of the above
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 361

Chapter 8
ZigBee Device Profile (ZDP) API

 4: Neighbour is a former child

 u2RxOnWhenIdle:2 is a 2-bit value indicating whether the neighbouring node’s
receiver is enable during idle periods:

 0: Receiver off when idle (sleeping device)

 1: Receiver on when idle (non-sleeping device)

 2: Unknown

 u2DeviceType:2 is a 2-bit value representing the ZigBee device type of the
neighbouring node:

 0: Co-ordinator

 1: Router

 2: End Device

 3: Unknown

 u6Reserved2:6 is a 6-bit reserved value and should be set zero.

 u2PermitJoining:2 is a 2-bit value indicating whether the neighbouring node
is accepting joining requests:

 0: Not accepting join requests

 1: Accepting join requests

 2: Unknown

 au8Field[2] is the allocation of two bytes for the union.

8.2.3.35 ZPS_tsAplZdpMgmtRtgRsp

This structure is used to store Mgmt_Rtg_rsp message data - a response to a call to
the function ZPS_eAplZdpMgmtRtgRequest(). This response reports the contents of
the remote node’s Routing table

The ZPS_tsAplZdpMgmtRtgRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint8 u8RoutingTableEntries;

 uint8 u8StartIndex;

 uint8 u8RoutingTableCount;

 /* Rest of the message is variable length */

 ZPS_tsAplZdpRtEntry* pRoutingTableList;

} ZPS_tsAplZdpMgmtRtgRsp;

where:

 u8Status is the return status for ZPS_eAplZdpMgmtRtgRequest()

 u8RoutingTableEntries is the total number of Routing table entries on the
remote node

 u8StartIndex is the Routing table index of the first entry reported in this
response (through pRoutingTableList)
362 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
 u8RoutingTableCount is the number of Routing table entries reported in this
response (through pRoutingTableList)

 pRoutingTableList is a pointer to the first entry in the list of reported Routing
table entries. Each entry is of the type ZPS_tsAplZdpRtEntry detailed below

ZPS_tsAplZdpRtEntry

typedef struct

{

 uint16 u16NwkDstAddr; /**< Destination Network address */

 uint16 u16NwkNxtHopAddr; /**< Next hop Network address */

 union

 {

 struct

 {

 unsigned u3Status:3;

 unsigned u1MemConst:1;

 unsigned u1ManyToOne:1;

 unsigned u1RouteRecordReqd:1;

 unsigned u1Reserved:2;

 } bfBitfields;

 uint8 u8Field;

 } uAncAttrs;

} ZPS_tsAplZdpRtEntry;

where:

 u16NwkDstAddr is the destination network address of the route

 u16NwkNxtHopAddr is the ‘next hop’ network address of the route

 u3Status:3 is the 3-bit status for the route:

 000 = ACTIVE

 001 = DISCOVERY_UNDERWAY

 010 = DISCOVERY_FAILED

 011 = INACTIVE

 100 = VALIDATION_UNDERWAY

 101-111 = Reserved

 u1MemConst:1 is a bit indicating whether the device is a memory-constrained
concentrator

 u1ManyToOne:1 is a bit indicating whether the destination node is a
concentrator that issued a many-to-one request

 u1RouteRecordReqd:1 is a bit indicating whether a route record command
frame should be sent to the destination before the next data packet

 u1Reserved:2 are reserved bits
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 363

Chapter 8
ZigBee Device Profile (ZDP) API

 u8Field contains the full set of flags of the bfBitfields sub-structure, with
u3Status:3 occupying the most significant bits and u1Reserved:2
occupying the least significant bits (for a big-endian device)

8.2.3.36 ZPS_tsAplZdpMgmtBindRsp

This structure is used to store Mgmt_Bind_rsp message data - a response to a call to
the function ZPS_eAplZdpMgmtBindRequest(). This response reports the contents
of the remote node’s Binding table.

The ZPS_tsAplZdpMgmtBindRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint16 u16BindingTableEntries;

 uint16 u16StartIndex;

 uint16 u16BindingTableListCount;

 /* Rest of the message is variable length */

 ZPS_tsAplZdpBindingTable sBindingTableList;

} ZPS_tsAplZdpMgmtBindRsp;

where:

 u8Status is the return status for ZPS_eAplZdpMgmtBindRequest()

 u16BindingTableEntries is the total number of Binding table entries on the
remote node

 u8StartIndex is the Binding table index of the first entry reported in this
response (through sBindingTableList)

 u16BindingTableListCount is the number of Binding table entries reported in
this response (through sBindingTableList)

 sBindingTableList is a pointer to the first entry in the list of reported Binding
table entries. Each entry is of the type ZPS_tsAplZdpBindingTable, detailed
in Section 8.2.2.29

8.2.3.37 ZPS_tsAplZdpMgmtLeaveRsp

This structure is used to store Mgmt_Leave_rsp message data - a response to a call
to the function ZPS_eAplZdpMgmtLeaveRequest(). This response is issued by a
remote node that has been requested to leave the network.

The ZPS_tsAplZdpMgmtLeaveRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpMgmtLeaveRsp;

where u8Status is the return status for ZPS_eAplZdpMgmtLeaveRequest().
364 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.3.38 ZPS_tsAplZdpMgmtDirectJoinRsp

This structure is used to store Mgmt_Direct_Join_rsp message data - a response to a
call to the function ZPS_eAplZdpMgmtDirectJoinRequest(). This response is
issued by a remote node (Router or Co-ordinator) that has been requested to allow a
particular device to join the network as a child of the node.

The ZPS_tsAplZdpMgmtDirectJoinRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpMgmtDirectJoinRsp;

where u8Status is the return status for ZPS_eAplZdpMgmtDirectJoinRequest().

8.2.3.39 ZPS_tsAplZdpMgmtPermitJoiningRsp

This structure is used to store Mgmt_Permit_Joining_rsp message data - a response
to a call to the function ZPS_eAplZdpMgmtPermitJoiningRequest(). This response
is issued by a remote node (Router or Co-ordinator) that has been requested to enable
or disable joining for a specified amount of time. The response is only sent if the
original request was unicast (and not if it was broadcast).

The ZPS_tsAplZdpMgmtPermitJoiningRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

} ZPS_tsAplZdpMgmtPermitJoiningRsp;

where u8Status is the return status for the function
ZPS_eAplZdpMgmtPermitJoiningRequest().
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 365

Chapter 8
ZigBee Device Profile (ZDP) API

8.2.3.40 ZPS_tsAplZdpMgmtCacheRsp

This structure is used to store Mgmt_Cache_rsp message data - a response to a call
to the function ZPS_eAplZdpMgmtCacheRequest(). This response reports a list of
the End Devices registered in the node’s primary discovery cache.

The ZPS_tsAplZdpMgmtCacheRsp structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint8 u8DiscoveryCacheEntries;

 uint8 u8StartIndex;

 uint8 u8DiscoveryCacheListCount;

 /* Rest of the message is variable length */

 ZPS_tsAplDiscoveryCache* pDiscoveryCacheList;

} ZPS_tsAplZdpMgmtCacheRsp;

where:

 u8Status is the return status for ZPS_eAplZdpMgmtCacheRequest()

 u8DiscoveryCacheEntries is the total number of discovery cache entries on
the remote node

 u8StartIndex is the discovery cache index of the first entry reported in this
response (through pDiscoveryCacheList)

 u8DiscoveryCacheListCount is the number of discovery cache entries
reported in this response (through pDiscoveryCacheList)

 pRoutingTableList is a pointer to the first entry in the list of reported
discovery cache entries. Each entry is of the type ZPS_tsAplDiscoveryCache
detailed below

ZPS_tsAplDiscoveryCache

typedef struct {

 uint64 u64ExtendedAddress;

 uint16 u16NwkAddress;

} ZPS_tsAplDiscoveryCache;

where:

 u64ExtendedAddress is the IEEE address of the End Device

 u16NwkAddress is the network address of the End Device
366 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
8.2.3.41 ZPS_tsAplZdpMgmtNwkUpdateNotify

This structure is used to store Mgmt_NWK_Update_notify message data - a
notification which can be sent in response to a call to the function
ZPS_eAplZdpMgmtNwkUpdateRequest(). This notification reports the results of an
energy scan on the wireless network radio channels.

The ZPS_tsAplZdpMgmtNwkUpdateNotify structure is detailed below.

typedef struct {

 uint8 u8Status;

 uint32 u32ScannedChannels;

 uint16 u16TotalTransmissions;

 uint16 u16TransmissionFailures;

 uint8 u8ScannedChannelListCount;

 /* Rest of the message is variable Length */

 uint8* u8EnergyValuesList;

} ZPS_tsAplZdpMgmtNwkUpdateNotify;

where:

 u8Status is the return status for ZPS_eAplZdpMgmtNwkUpdateRequest()

 u32ScannedChannels is a bitmask of the set of scanned radio channels
(‘1’ means scanned, ‘0’ means not scanned):

 Bits 0 to 26 respectively represent channels 0 to 26 (only bits 11 to 26 are
relevant to the 2400-MHz band)

 Bits 27 to 31 are reserved

 u16TotalTransmissions is the total number of transmissions (from other
networks) detected during the scan

 u16TransmissionFailures is the number of failed transmissions detected
during the scan

 u8ScannedChannelListCount is the number of energy-level measurements
(one per scanned channel) reported in this notification (through
u8EnergyValuesList)

 u8EnergyValuesList is a pointer to the first in the set of reported energy-level
measurements (the value 0xFF indicates there is too much interference on the
channel)
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 367

Chapter 8
ZigBee Device Profile (ZDP) API

8.3 Broadcast Addresses

When sending a request using a ZDP API function, the request can be broadcast to
all nodes in the network by specifying a special 16-bit network address (0xFFFF) or
64-bit IEEE/MAC address (0xFFFFFFFFFFFFFFFF). Other broadcast options are
also available in order to target particular groups of nodes, as indicated in the table
below.

Address Type Broadcast Address Target Nodes

Network (16-bit) 0xFFFF All nodes in the network

0xFFFD All nodes for which ‘Rx on when idle’ is TRUE

0xFFFC All Routers and the Co-ordinator

IEEE/MAC (64-bit) 0xFFFFFFFFFFFFFFFF All nodes in the network

Table 17: Broadcast Addresses and Target Nodes
368 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
9. Event and Status Codes

This chapter summarises the event and return/status codes of the ZigBee PRO stack.

9.1 Events

The events that can be generated by the ZigBee PRO stack are enumerated in the
structure ZPS_teAfEventType (from the AF API), shown below.

typedef enum {

 ZPS_EVENT_NONE,

 ZPS_EVENT_APS_DATA_INDICATION,

 ZPS_EVENT_APS_DATA_CONFIRM,

 ZPS_EVENT_APS_DATA_ACK,

 ZPS_EVENT_NWK_STARTED,

 ZPS_EVENT_NWK_JOINED_AS_ROUTER,

 ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE,

 ZPS_EVENT_NWK_FAILED_TO_START,

 ZPS_EVENT_NWK_FAILED_TO_JOIN,

 ZPS_EVENT_NWK_NEW_NODE_HAS_JOINED,

 ZPS_EVENT_NWK_DISCOVERY_COMPLETE,

 ZPS_EVENT_NWK_LEAVE_INDICATION,

 ZPS_EVENT_NWK_LEAVE_CONFIRM,

 ZPS_EVENT_NWK_STATUS_INDICATION,

 ZPS_EVENT_NWK_ROUTE_DISCOVERY_CONFIRM,

 ZPS_EVENT_NWK_POLL_CONFIRM,

 ZPS_EVENT_NWK_ED_SCAN,

 ZPS_EVENT_ZDO_BIND,

 ZPS_EVENT_ZDO_UNBIND,

 ZPS_EVENT_ZDO_LINK_KEY,

 ZPS_EVENT_BIND_REQUEST_SERVER

 ZPS_EVENT_ERROR,

 ZPS_EVENT_APS_INTERPAN_DATA_INDICATION,

 ZPS_EVENT_APS_INTERPAN_DATA_CONFIRM,

} ZPS_teAfEventType;

The events in the above structure are outlined in Table 18 below.

Note: The AF structures which contain the data for the
above events are detailed in Section 7.2.2.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 369

Chapter 9
Event and Status Codes

Stack Event Description

ZPS_EVENT_NONE Used as initial value in structure which receives a mes-
sage collected from a message queue.

ZPS_EVENT_APS_DATA_INDICATION Indicates that data has arrived on the local node. The
event provides information about the data packet
through the structure ZPS_tsAfDataIndEvent - see
Section 7.2.2.3.

ZPS_EVENT_APS_DATA_CONFIRM Indicates whether a sent data packet has been suc-
cessfully passed down the stack and has reached the
next hop node towards its destination. The results are
reported through the structure
ZPS_tsAfDataConfEvent - see Section 7.2.2.4.

ZPS_EVENT_APS_DATA_ACK Indicates that a sent message has reached its destina-
tion node. Details of the received acknowledgement are
reported through the structure
ZPS_tsAfDataAckEvent - see Section 7.2.2.5.

ZPS_EVENT_NWK_STARTED Indicates that network has started on Co-ordinator. This
is reported through the structure
ZPS_tsAfNwkFormationEvent - see Section
7.2.2.6. ‘Permit joining’ state is set as specified in APL
data structure.

ZPS_EVENT_NWK_JOINED_AS_ROUTER Indicates that device has successfully joined network -
as Router and reports allocated network address
through the structure ZPS_tsAfNwkJoinedEvent -
see Section 7.2.2.7.

ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE Indicates that device has successfully joined network as
End Device and reports allocated network address
through the structure ZPS_tsAfNwkJoinedEvent -
see Section 7.2.2.7.

ZPS_EVENT_NWK_FAILED_TO_START Indicates that network has failed to start on Co-ordina-
tor.

ZPS_EVENT_NWK_FAILED_TO_JOIN Indicates that device failed to join network. This is
reported through the structure
ZPS_tsAfNwkJoinFailedEvent - see Section
7.2.2.8

ZPS_EVENT_NWK_NEW_NODE_HAS_JOINED Indicates to Co-ordinator or Router that new node has
joined as child and reports details of new child through
the structure ZPS_tsAfNwkJoinIndEvent - see Sec-
tion 7.2.2.10.

ZPS_EVENT_NWK_DISCOVERY_COMPLETE Indicates that network discovery on Router or End
Device has finished and reports details of detected net-
work through the structure
ZPS_tsAfNwkDiscoveryEvent - see Section
7.2.2.9. This event (and associated structure) is gener-
ated for each network detected.

Table 18: Stack Events
370 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_EVENT_NWK_LEAVE_INDICATION Indicates that a neighbouring node has left the network
or a remote node has requested the local node to leave.
Details are provided through the structure
ZPS_tsAfNwkLeaveIndEvent - see Section 7.2.2.11.

ZPS_EVENT_NWK_LEAVE_CONFIRM Reports the results of a node leave request issued by
the local node. The results are reported through the
structure ZPS_tsAfNwkLeaveConfEvent - see Sec-
tion 7.2.2.12.

ZPS_EVENT_NWK_STATUS_INDICATION Reports network status event from a remote or local
node through the structure
ZPS_tsAfNwkStatusIndEvent - see Section
7.2.2.13.

ZPS_EVENT_NWK_ROUTE_DISCOVERY_CONFIRM Indicates that a route discovery has been performed.
The results are reported in the structure
ZPS_tsAfNwkRouteDiscoveryConfEvent - see
Section 7.2.2.14.

ZPS_EVENT_NWK_POLL_CONFIRM Generated on an End Device to indicate that a poll
request submitted to its parent has completed. The out-
come of the poll request is indicated through the struc-
ture ZPS_tsAfPollConfEvent - see Section
7.2.2.15.

ZPS_EVENT_NWK_ED_SCAN Indicates that an ‘energy detect’ scan in the 2.4-GHz
radio band has completed. The results of the scan are
reported through the structure
ZPS_tsAfNwkEdScanConfEvent - see Section
7.2.2.16.

ZPS_EVENT_ZDO_BIND Indicates that the local node has been successfully
bound to one or more remote nodes. The details of the
binding are reported through the structure
ZPS_tsAfZdoBindEvent - see Section 7.2.2.18.

ZPS_EVENT_ZDO_UNBIND Indicates that the local node has been successfully
unbound from one or more remote nodes. The details of
the unbinding are reported through the structure
ZPS_tsAfZdoUnbindEvent - see Section 7.2.2.19.

ZPS_EVENT_ZDO_LINK_KEY Indicates that a new application link key has been
received and installed, and is ready for use. The details
of the link key are reported through the structure
ZPS_tsAfZdoLinkKeyEvent - see Section 7.2.2.20.

ZPS_EVENT_BIND_REQUEST_SERVER Indicates the results of a bound data transmission. The
results are reported through the structure
ZPS_tsAfBindRequestServerEvent - see Section
7.2.2.21.

ZPS_EVENT_ERROR Indicates that an error has occurred on the local node.
The nature of the error is reported through the structure
ZPS_tsAfErrorEvent - see Section 7.2.2.17.

Stack Event Description

Table 18: Stack Events
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 371

Chapter 9
Event and Status Codes

ZPS_EVENT_APS_INTERPAN_DATA_INDICATION Indicates that an inter-PAN communication has arrived
(from a node in another network). Details of the inter-
PAN communication are reported through the structure
ZPS_tsAfInterPanDataIndEvent - see Section
7.2.2.22.

ZPS_EVENT_APS_INTERPAN_DATA_CONFIRM Indicates that an inter-PAN communication (to another
network) has been sent by the local node and an
acknowledgement has been received from the first hop
node (this acknowledgement is not generated in the
case of a broadcast). The status of the inter-PAN com-
munication is reported through the structure
ZPS_tsAfInterPanDataConfEvent - see Section
7.2.2.23.

Note: Events are handled using the JenOS RTOS.
Event handling is outlined in Appendix A.

Stack Event Description

Table 18: Stack Events
372 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
9.2 Return/Status Codes

The return/status codes that can result from ZigBee PRO API function calls are
divided into the following groups:

 ZDP codes - see Section 9.2.1

 APS codes - see Section 9.2.2

 NWK codes - see Section 9.2.3

 MAC codes - see Section 9.2.4

 Extended error codes - see Section 9.2.5

9.2.1 ZDP Codes

The ZDP codes are carried in request and response messages.

Name Value Description

ZPS_APL_ZDP_E_INV_REQUESTTYPE 0x80 The supplied request type was invalid.

ZPS_APL_ZDP_E_DEVICE_NOT_FOUND 0x81 The requested device did not exist on a device following
a child descriptor request to a parent.

ZPS_APL_ZDP_E_INVALID_EP 0x82 The supplied endpoint was equal to 0x00 or between
0xF1 and 0xFF.

ZPS_APL_ZDP_E_NOT_ACTIVE 0x83 The requested endpoint is not described by a Simple
descriptor.

ZPS_APL_ZDP_E_NOT_SUPPORTED 0x84 The requested optional feature is not supported on the
target device.

ZPS_APL_ZDP_E_TIMEOUT 0x85 A timeout has occurred with the requested operation.

ZPS_APL_ZDP_E_NO_MATCH 0x86 The End Device bind request was unsuccessful due to a
failure to match any suitable clusters.

ZPS_APL_ZDP_E_NO_ENTRY 0x88 The unbind request was unsuccessful due to the Co-
ordinator or source device not having an entry in its
binding table to unbind.

ZPS_APL_ZDP_E_NO_DESCRIPTOR 0x89 A child descriptor was not available following a discov-
ery request to a parent.

ZPS_APL_ZDP_E_INSUFFICIENT_SPACE 0x8A The device does not have storage space to support the
requested operation.

ZPS_APL_ZDP_E_NOT_PERMITTED 0x8B The device is not in the proper state to support the
requested operation.

ZPS_APL_ZDP_E_TABLE_FULL 0x8C The device does not have table space to support the
operation.

ZPS_APL_ZDP_E_NOT_AUTHORIZED 0x8D The permissions configuration table on the target indi-
cates that the request is not authorised from this device.

Table 19: ZDP Codes
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 373

Chapter 9
Event and Status Codes

9.2.2 APS Codes

The APS codes relate to sending/receiving messages.

Name Value Description

ZPS_APL_APS_E_ASDU_TOO_LONG 0xA0 A transmit request failed since the ASDU is
too large and fragmentation is not supported.

ZPS_APL_APS_E_DEFRAG_DEFERRED 0xA1 A received fragmented frame could not be
defragmented at the current time.

ZPS_APL_APS_E_DEFRAG_UNSUPPORTED 0xA2 A received fragmented frame could not be
defragmented since the device does not
support fragmentation.

ZPS_APL_APS_E_ILLEGAL_REQUEST 0xA3 A parameter value was out of range.

ZPS_APL_APS_E_INVALID_BINDING 0xA4 An APSME-UNBIND.request failed due to
the requested binding link not existing in the
binding table.

ZPS_APL_APS_E_INVALID_GROUP 0xA5 An APSME-REMOVE-GROUP.request has
been issued with a group identifier that does
not appear in the group table.

ZPS_APL_APS_E_INVALID_PARAMETER 0xA6 A parameter value was invalid or out of
range.

ZPS_APL_APS_E_NO_ACK 0xA7 An APSDE-DATA.request requesting
acknowledged transmission failed due to no
acknowledgement being received.

ZPS_APL_APS_E_NO_BOUND_DEVICE 0xA8 An APSDE-DATA.request with a destination
addressing mode set to 0x00 failed due to
there being no devices bound to this device.

ZPS_APL_APS_E_NO_SHORT_ADDRESS 0xA9 An APSDE-DATA.request with a destination
addressing mode set to 0x03 failed due to no
corresponding short address found in the
address map table.

ZPS_APL_APS_E_NOT_SUPPORTED 0xAA An APSDE-DATA.request with a destination
addressing mode set to 0x00 failed due to a
binding table not being supported on the
device.

ZPS_APL_APS_E_SECURED_LINK_KEY 0xAB An ASDU was received that was secured
using a link key.

ZPS_APL_APS_E_SECURED_NWK_KEY 0xAC An ASDU was received that was secured
using a network key.

ZPS_APL_APS_E_SECURITY_FAIL 0xAD An APSDE-DATA.request requesting
security has resulted in an error during the
corresponding security processing.

Table 20: APS Codes
374 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_APL_APS_E_TABLE_FULL 0xAE An APSME-BIND.request or
APSME.ADDGROUP.request issued when the
binding or group tables, respectively, were full.

ZPS_APL_APS_E_UNSECURED 0xAF An ASDU was received without any security.

ZPS_APL_APS_E_UNSUPPORTED_ATTRIBUTE 0xB0 An APSME-GET.request or APSMESET.
request has been issued with an
unknown attribute identifier.

Name Value Description

Table 20: APS Codes
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 375

Chapter 9
Event and Status Codes

9.2.3 NWK Codes

The NWK codes come from the NWK layer of the stack and may be returned by any
ZigBee PRO API function with a non-void return.

Name Value Description

ZPS_NWK_ENUM_SUCCESS 0x00 Success

ZPS_NWK_ENUM_INVALID_PARAMETER 0xC1 An invalid or out-of-range parameter has been
passed

ZPS_NWK_ENUM_INVALID_REQUEST 0xC2 Request cannot be processed

ZPS_NWK_ENUM_NOT_PERMITTED 0xC3 NLME-JOIN.request not permitted

ZPS_NWK_ENUM_STARTUP_FAILURE 0xC4 NLME-NETWORK-FORMATION.request failed

ZPS_NWK_ENUM_ALREADY_PRESENT 0xC5 NLME-DIRECT-JOIN.request failure - device
already present

ZPS_NWK_ENUM_SYNC_FAILURE 0xC6 NLME-SYNC.request has failed

ZPS_NWK_ENUM_NEIGHBOR_TABLE_FULL 0xC7 NLME-DIRECT-JOIN.request failure - no space
in Router table

ZPS_NWK_ENUM_UNKNOWN_DEVICE 0xC8 NLME-LEAVE.request failure - device not in
Neighbour table

ZPS_NWK_ENUM_UNSUPPORTED_ATTRIBUTE 0xC9 NLME-GET/SET.request unknown attribute iden-
tifier

ZPS_NWK_ENUM_NO_NETWORKS 0xCA NLME-JOIN.request detected no networks

ZPS_NWK_ENUM_RESERVED_1 0xCB Reserved

ZPS_NWK_ENUM_MAX_FRM_CTR 0xCC Security processing has failed on outgoing frame
due to maximum frame counter

ZPS_NWK_ENUM_NO_KEY 0xCD Security processing has failed on outgoing frame
due to no key

ZPS_NWK_ENUM_BAD_CCM_OUTPUT 0xCE Security processing has failed on outgoing frame
due CCM

ZPS_NWK_ENUM_NO_ROUTING_CAPACITY 0xCF Attempt at route discovery has failed due to lack
of table space

ZPS_NWK_ENUM_ROUTE_DISCOVERY_FAILED 0xD0 Attempt at route discovery has failed due to any
reason except lack of table space

ZPS_NWK_ENUM_ROUTE_ERROR 0xD1 NLDE-DATA.request has failed due to routing
failure on sending device

ZPS_NWK_ENUM_BT_TABLE_FULL 0xD2 Broadcast or broadcast-mode multicast has
failed as there is no room in BTT

ZPS_NWK_ENUM_FRAME_NOT_BUFFERED 0xD3 Unicast mode multi-cast frame was discarded
pending route discovery

Table 21: NWK Codes
376 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
9.2.4 MAC Codes

The MAC codes come from the IEEE 802.15.4 MAC layer of the stack and may be
returned by any ZigBee PRO API function with a non-void return. The codes are also
described in the IEEE 802.15.4 Stack User Guide (JN-UG-3024).

Name Value Description

MAC_ENUM_SUCCESS 0x00 Success

MAC_ENUM_BEACON_LOSS 0xE0 Beacon loss after synchronisation request

MAC_ENUM_CHANNEL_ACCESS_FAILURE 0xE1 CSMA/CA channel access failure

MAC_ENUM_DENIED 0xE2 GTS request denied

MAC_ENUM_DISABLE_TRX_FAILURE 0xE3 Could not disable transmit or receive

MAC_ENUM_FAILED_SECURITY_CHECK 0xE4 Incoming frame failed security check

MAC_ENUM_FRAME_TOO_LONG 0xE5 Frame too long, after security processing, to be sent

MAC_ENUM_INVALID_GTS 0xE6 GTS transmission failed

MAC_ENUM_INVALID_HANDLE 0xE7 Purge request failed to find entry in queue

MAC_ENUM_INVALID_PARAMETER 0xE8 Out-of-range parameter in function

MAC_ENUM_NO_ACK 0xE9 No acknowledgement received when expected

MAC_ENUM_NO_BEACON 0xEA Scan failed to find any beacons

MAC_ENUM_NO_DATA 0xEB No response data after a data request

MAC_ENUM_NO_SHORT_ADDRESS 0xEC No allocated network (short) address for operation

MAC_ENUM_OUT_OF_CAP 0xED Receiver-enable request could not be executed, as
CAP finished

MAC_ENUM_PAN_ID_CONFLICT 0xEE PAN ID conflict has been detected

MAC_ENUM_REALIGNMENT 0xEF Co-ordinator realignment has been received

MAC_ENUM_TRANSACTION_EXPIRED 0xF0 Pending transaction has expired and data discarded

MAC_ENUM_TRANSACTION_OVERFLOW 0xF1 No capacity to store transaction

MAC_ENUM_TX_ACTIVE 0xF2 Receiver-enable request could not be executed, as in
transmit state

MAC_ENUM_UNAVAILABLE_KEY 0xF3 Appropriate key is not available in ACL

MAC_ENUM_UNSUPPORTED_ATTRIBUTE 0xF4 PIB Set/Get on unsupported attribute

Table 22: MAC Codes
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 377

Chapter 9
Event and Status Codes

9.2.5 Extended Error Codes

If extended error handling is implemented (see Section 5.7), it provides more detail
about the error that led to any one of the following function return codes:

 APS codes 0xA3 and 0xA6 (see Section 9.2.2)

 NWK code 0xC2 (see Section 9.2.3)

The extended error codes which elaborate on the above codes are provided in the
ZPS_teExtendedStatus enumerations.

Name Value Description

ZPS_XS_OK 0x00 Success

ZPS_XS_E_FATAL 0x01 Fatal error - retrying will cause the error again

ZPS_XS_E_LOOPBACK_BAD_ENDPOINT 0x02 Endpoint is not valid for loopback (fatal error)

ZPS_XS_E_SIMPLE_DESCRIPTOR_NO_
OUTPUT_CLUSTER

0x03 No output cluster in the Simple descriptor for this
endpoint/cluster (fatal error)

ZPS_XS_E_FRAG_NEEDS_ACK 0x04 Fragmented data requests must be sent with
APS ack (fatal error)

ZPS_XS_E_COMMAND_MANAGER_BAD_
PARAMETER

0x05 Bad parameter has been passed to the command
manager (fatal error)

ZPS_XS_E_INVALID_ADDRESS 0x06 Address parameter is out-of-range (fatal error),
e.g. broadcast address when calling unicast func-
tion

ZPS_XS_E_INVALID_TX_ACK_FOR_LOCAL_EP 0x07 TX ACK bit has been set when attempting to post
to a local endpoint (fatal error)

ZPS_XS_E_RESOURCE 0x08 Resource error/shortage - retrying may succeed

ZPS_XS_E_NO_FREE_NPDU 0x80 No free NPDUs (resource error) - the number of
NPDUs is set in the "Number of NPDUs" property
of the "PDU Manager" section of the ZPS Config-
uration Editor

ZPS_XS_E_NO_FREE_APDU 0x81 No free APDUs (resource error) - the number of
APDUs is set in the "Instances" property of the
appropriate "APDU" child of the "PDU Manager"
section of the ZPS Configuration Editor

ZPS_XS_E_NO_FREE_SIM_DATA_REQ 0x82 No free simultaneous data request handles
(resource error) - the number of handles is set in
the "Maximum Number of Simultaneous Data
Requests" field of the "APS layer configuration"
section of the ZPS Configuration Editor

Table 23: Extended Error Codes
378 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
ZPS_XS_E_NO_FREE_APS_ACK 0x83 No free APS acknowledgement handles
(resource error) - the number of handles is set in
the "Maximum Number of Simultaneous Data
Requests with Acks" field of the "APS layer con-
figuration" section of the ZPS Configuration Edi-
tor

ZPS_XS_E_NO_FREE_FRAG_RECORD 0x84 No free fragment record handles (resource error)
- the number of handles is set in the "Maximum
Number of Transmitted Simultaneous Frag-
mented Messages" field of the "APS layer config-
uration" section of the ZPS Configuration Editor

ZPS_XS_E_NO_FREE_MCPS_REQ 0x85 No free MCPS request descriptors (resource
error) - there are 8 MCPS request descriptors
and these are only ever likely to be exhausted
under a very heavy network load or when trying
to transmit too many frames too close together

ZPS_XS_E_NO_FREE_LOOPBACK 0x86 Loopback send is currently busy (resource error)
- there can be only one loopback request at a
time

ZPS_XS_E_NO_FREE_EXTENDED_ADDR 0x87 No free entries in the extended address table
(resource error) - this table is configured in the
ZPS Configuration Editor

ZPS_XS_E_SIMPLE_DESCRIPTOR_NOT_
FOUND

0x88 Simple descriptor does not exist for this endpoint/
cluster

ZPS_XS_E_BAD_PARAM_APSDE_REQ_RSP 0x89 Bad parameter has been found while processing
an APSDE request or response

Name Value Description

Table 23: Extended Error Codes
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 379

Chapter 9
Event and Status Codes

380 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
10. ZigBee Network Parameters

This chapter lists and describes the ZigBee network parameters that can be set using
the ZPS Configuration Editor described in Chapter 11 and Chapter 12.

10.1 Basic Parameters

The basic parameters are listed and described in the table below.

The rest of the network parameters are detailed in the sections that follow, according
to their area of application.

Parameter Name Description Default Value Range

Default Extended Pan ID The default Extended PAN ID (EPID) when add-
ing new devices to the wireless network. The
extended PAN ID is the globally unique 64-bit
identifier for the network. This identifier is used to
avoid PAN ID conflicts between distinct networks
and must be unique among the networks overlap-
ping in a given area. If the value is zero on the
Co-ordinator, the device will use its own IEEE/
MAC address as the EPID. A zero value on a
Router/End Device means that the device will not
look for a particular EPID when joining a network.
Note that this value is the default EPID used
when adding devices in the ZPS Configuration
Editor. The actual EPID used for an individual
device can be set via the parameter APS Use
Extended PAN ID – see Section 10.7.

0 64 bits

Default Security Enabled The default setting for Security Enabled when
adding new devices to the wireless network.

true true / false

Maximum Number of Nodes The maximum number of nodes for the wireless
network. This setting controls the size of tables
when adding new devices to the network to
ensure adequate resources are available for cor-
rect operation a network of the specified size.

20

Table 24: ZigBee Wireless Network Parameters
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 381

Chapter 10
ZigBee Network Parameters

10.2 Profile Definition Parameters

There is one ZigBee Device Profile (ZDP) and there can be one or more Application
Profiles associated with a project. Application profiles are agreements for messages,
message formats and processing actions that enable developers to create an
interoperable, distributed application employing application entities that reside on
separate devices. These application profiles enable applications to send commands,
request data, and process commands and requests. Frames to the application layer
are normally filtered by the ZigBee PRO stack unless the profile ID in the frame
matches the local profile ID. The wild card profile can be used to bypass this check.

10.3 Cluster Definition Parameters

A cluster is an application message, which may be a container for one or more
attributes. As an example, the ZigBee Device Profile (ZDP) defines commands and
responses. These are contained in Clusters with the cluster identifiers enumerated for
each command and response. Each ZDP message is then defined as a cluster.
Alternatively, an application profile may create sub-types within the cluster known as
attributes. In this case, the cluster is a collection of attributes specified to accompany
a specific cluster identifier (sub-type messages).

Parameter Name Description Default Value Range

Profile Id The profile number. These are obtained
from the ZigBee Alliance for public pro-
files, unless using a private profile.

16 bits
(Value 0 is reserved
for the ZDP, 0xFFFF
is wild card profile)

Name Textual name for the profile. This is
used as a prefix for generated macro
definitions in zps_gen.h.

Valid C identifier.
(“ZDP” is reserved for
the ZigBee Device
Profile)

Table 25: Profile Definition Parameters

Parameter Name Description Default Value Range

Cluster Id The cluster number. These are defined in public pro-
files by ZigBee Alliance or can be manufacturer spe-
cific.
This is a reference to an enumeration of clusters
within a specific application profile or collection of
application profiles. The cluster identifier is a 16-bit
number unique within the scope of each application
profile and identifies a specific cluster. Conventions
may be established across application profiles for
common definitions of cluster identifiers whereby
each application profile defines a set of cluster identi-
fiers identically. Cluster identifiers are designated as
inputs or outputs in the simple descriptor for use in
creating a binding table.

16 bits

Table 26: Cluster Definition Parameters
382 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
10.4 Co-ordinator Parameters

Name Textual name for the cluster. This is used as a prefix
for generated macro definitions in zps_gen.h.

Valid C identifier

Parameter Name Description Default Value Range

Miscellaneous Co-ordinator Parameters

Name Textual name for the node. Used as a
prefix when generating macro defini-
tions in zps_gen.h.

Valid C identifier

Permit Joining Time Default number of seconds for which
permit joining is enabled.

• 255 means permanently on

• 0 means permanently off

255 0-255

Security Enabled Specifies whether the Co-ordinator will
secure communication with other
devices in the network.

true true / false

Initial Security Key The initial key that will be used when
security is enabled. These are selected
from the keys available on the Trust
Centre.

Default
Network Key

Table 27: Co-ordinator Node Type Parameters

Table 26: Cluster Definition Parameters
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 383

Chapter 10
ZigBee Network Parameters

10.5 Router Parameters

Parameter Name Description Default Value Range

Miscellaneous Router Parameters

Name Textual name for the node. Used as a pre-
fix when generating macro definitions in
zps_gen.h.

Valid C identifier

Permit Joining Time Default number of seconds for which per-
mit joining is enabled.

• 255 means permanently on

• 0 means permanently off

255 0-255

Scan Duration Time The length of time to scan the selected RF
channels when searching for a netwok to
join.

The time spent scanning each channel is:

[aBaseSuperframeDuration x (2n + 1)]
symbols

where n is the value of the
Scan Duration Time parameter.

3 0 – 14

Security Enabled Specifies whether the Router will secure
communication with other devices in the
network.

true true / false

Initial Security Key The initial key that will be used when secu-
rity is enabled. These are selected from the
keys available on the Trust Centre.

Default
Network Key

Table 28: Router Node Type Parameters
384 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
10.6 End Device Parameters

Parameter Name Description Default Value Range

Miscellaneous End Device Parameters

Name Textual name for the node. Used as a prefix
when generating macro definitions in
zps_gen.h.

Valid C identifier

Scan Duration Time The length of time to scan the selected RF
channels when searching for a netwok to
join.

The time spent scanning each channel is:

(aBaseSuperframeDuration * (2n + 1))
symbols

where n is the value of the
Scan Duration Time parameter.

3 0 – 14

Security Enabled Specifies whether the End Device will
secure communication with other devices in
the network.

true true / false

Initial Security Key The initial key that will be used when secu-
rity is enabled. These are selected from the
keys available on the Trust Centre.

Default
Network Key

Sleeping Indicates whether the device will turn its
receiver off and enter a low-power mode.
The End Device’s parent will buffer any
incoming data until the device returns to its
normal operating state and issues a poll
request.

false true / false

Number of Poll Failures
Before Rejoin

This parameter controls the number of con-
secutive poll failures from when the device
returns to its normal operating state before
attempting to find a new parent by initiating
a network rejoin.

5 0 will disable this
behaviour

Table 29: End Device Node Type Parameters
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 385

Chapter 10
ZigBee Network Parameters

10.7 Advanced Device Parameters

These are advanced parameters for Co-ordinator, Router and End Device.

Parameter Name Description Default Value Range

AF Parameters

Default Event RTOS Mes-
sage Name

The default RTOS message that will
receive events from the stack if no other
message has been configured.

APP_msgZps
Events

Valid C identifier

AIB Parameters

APS Designated Coordinator
(read only)

Indicates that on start-up the node
should assume the Co-ordinator role
within the network.

true for
Co-ordinator
false for
Routers / End
Devices

true / false

APS Use Extended
PAN ID

Indicates the Extended PAN ID (EPID)
that the device will use. This is the glob-
ally unique 64-bit identifier for the net-
work. This identifier is used to avoid
PAN ID conflicts between distinct net-
works and must be unique among the
networks overlapping in a given area. If
the value is zero on the Co-ordinator,
the device will use its own IEEE/MAC
address as the EPID. A zero value on a
Router/End Device means that the
device will not look for a particular EPID
when joining a network.

Default
Extended
PAN ID

64 bits

APS Inter-frame Delay Number of milliseconds between APS
data frames. Following transmission of
each data block, the APS starts a timer.
If there are more unacknowledged
blocks to send in the current transmis-
sion window then, after a delay of
apsInterframeDelay milliseconds the
next block is passed to the NWK data
service. Otherwise, the timer is set to
apscAckWaitDuration seconds.

10 10-255

Table 30: Advanced Device Parameters
386 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
APS Max Window Size APS fragmented data window size.
Fragmentation is a way of sending mes-
sages (APDUs) longer than the payload
of a single NPDU. The ASDU is seg-
mented and split across a number of
NPDUs, then reassembled at the desti-
nation. APS Max Window Size defines
how many fragments are sent before an
acknowledgement is expected. For
example, if APS Max Window Size is
set to 4 and a message is split into 16
fragments, then an acknowledgement is
expected after sending fragments 1-4.
Sending of fragments 5-8 does not
commence until this acknowledgement
is received.

8 1-8

APS Non-member Radius Multicast non-member radius size.
Defines the number of hops away from
the core multi-cast members that a
multi-cast transmission can be
received.

2 0-7

APS Security Timeout
Period

Authentication timeout period in milli-
seconds for nodes joining the network.
If either the initiator or responder waits
for an expected incoming message for a
time greater than APS Security Timeout
Period then a TIMEOUT error is gener-
ated.

1000
(6000 is
advised)

APS Use Insecure Join Controls action when a secured network
rejoin fails. If true, a join using the MAC
layer association procedure is per-
formed when a secure rejoin fails.

true true / false

APS Layer Configuration Parameters

APS Duplicate Table Size The size of the APS layer duplicate
rejection table. This removes duplicated
APS packets.

8 1 or higher

APS Persistence Time Time, in milliseconds, for which the
resources associated with an incoming
fragmented message will be retained
after the complete message has been
received.

100 1-255

Maximum Number of Simul-
taneous Data Requests

The maximum number of simultaneous
APSDE data requests without APS
acknowledgements. Should be set to
the maximum number of target nodes in
one bound transmission.

5 1 or higher

Table 30: Advanced Device Parameters
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 387

Chapter 10
ZigBee Network Parameters

Maximum Number of Simul-
taneous Data Requests with
Acks

The maximum number of simultaneous
APSDE data requests with APS
acknowledgements. Should be set to
the maximum number of target nodes in
one bound transmission. Note that the
maximum number of APDU instances
must be set to three times this value -
see Table 36 on page 392.

3 1 or higher

Inter PAN True if inter PAN functionality is ena-
bled, see Section 5.5.1.5

false true or false

APS Poll Period The polling period, in milliseconds, of a
sleeping End Device collecting data of
any kind (received messages, received
fragmented messages and all transmit
acknowledgements).

100 25 or higher

Maximum Number of
Received Simultaneous
Fragmented Messages

Maximum number of simultaneous
fragmented APSDE incoming data
requests. Set to a non-zero value to
enable reception of fragmented mes-
sages (note that this will increase the
stack size).

0 1 or higher

Maximum Number of Trans-
mitted Simultaneous Frag-
mented Messages

Maximum number of simultaneous
fragmented APSDE outgoing data
requests. Set to a non-zero value to
enable transmission of fragmented
messages (note that this will increase
the stack size).

0 1 or higher

Network Layer Configuration Parameters for Co-ordinator and Routers

Active Neighbour Table Size Size of the active Neighbour table. Each
routing node (Co-ordinator or Router)
has a Neighbour table which must be
large enough to accommodate entries
for the node’s immediate children, for its
own parent and, in a Mesh network, for
all peer Routers with which the node
has direct radio communication.

26 1 or higher

Child Table Size Size of the child sub-table of the active
Neighbour table. This value determines
the number of children that the node is
allowed to have.

5 1 or higher

Address Map Table Size Size of the address map, which maps
64-bit IEEE addresses to 16-bit network
(short) addresses. Should be set to the
number of nodes in the network.

10 1 or higher

Broadcast Transaction Table
Size

Size of broadcast transaction table. The
broadcast transaction table stores the
broadcast transaction records, which
are records of the broadcast messages
received by the node.

9 1 or higher

Table 30: Advanced Device Parameters
388 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Discovery Neighbour Table
Size

Size of the Discovery Neighbour table.
This table keeps a list of the neighbour-
ing devices associated with the node.

8 8-16

Route Discovery Table Size Size of the Route Discovery table. This
table is used by the node to store tem-
porary information used during route
discovery. Route Discovery table entries
last only as long as the duration of a sin-
gle route discovery operation.

2 1 or higher

Route Record Table Size Size of the Route Record table. Each
route record contains the destination
network address, a count of the number
of relay nodes to reach the destination,
and a list of the network addresses of
the relay nodes.

1 1 or higher

Routing Table Size Size of the Routing table. This table
stores the information required for the
node to participate in the routing of
message packets. Each table entry con-
tains the destination address, the status
of the route, various flags and the net-
work address of the next hop on the
way to the destination. A Routing table
entry is made when a new route is initi-
ated by the node or routed via the node.
The entry is stored in the Routing table
and is read whenever that route is used;
the entry is only deleted if the route is
no longer valid. A node is said to have
routing capacity if there are free entries
in the routing table.

70 1 or higher

Security Material Sets Number of supported network keys. 2 1 or higher

Network Layer Configuration Parameters for End Devices

Active Neighbour Table Size Size of the active Neighbour table. Set
to one (for the parent).

2 1

Address Map Table Size Size of the address map, which maps
64-bit IEEE addresses to 16-bit network
(short) addresses. Should be set to the
number of nodes that the End Device
application needs to communicate with
plus one (for the parent).

10 1 or higher

Broadcast Transaction Table
Size

Size of broadcast transaction table. The
broadcast transaction table stores the
broadcast transaction records, which
are records of the broadcast messages
received by the node.

9 1 or higher

Discovery Neighbour Table
Size

Size of the Discovery Neighbour table.
This table keeps a list of the neighbour-
ing devices associated with the node.

8 8-16

Table 30: Advanced Device Parameters
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 389

Chapter 10
ZigBee Network Parameters

10.7.1 Endpoint Parameters

Route Discovery Table Size Not applicable - set to one. 2 1

Route Record Table Size Not applicable - set to one. 1 1

Routing Table Size Not applicable - set to one. 70 1

Security Material Sets Number of supported network keys. 2 1 or higher

Stack Profile The Zigbee Stack Profile which defines
the stack features supported. Set to
one for Zigbee, two for Zigbee Pro or
any other value for a private stack pro-
file.

2 0 to 15

Parameter Name Description Default Value Range

Application Device Id Device ID for the endpoint.

Application Device Version Version number for the device.

Enabled Whether the endpoint is enabled or dis-
abled.

true true / false

End Point Id The endpoint number (must be unique
within the network).

1-240

RTOS Message The RTOS message that will receive
data events for this endpoint. If unspeci-
fied the endpoint uses the default mes-
sage for the node (AF.Default Message
Name).

Name Textual name for the endpoint. Used as
a prefix when generating macro defini-
tions.

Valid C identifier

Profile The profile for the endpoint. This as a
link to a profile definition.

Table 31: Endpoint Parameters

Table 30: Advanced Device Parameters
390 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Input Cluster

Specifies that the endpoint will receive the specified cluster.

Output Cluster

Specifies that the endpoint will transmit the specified cluster.

Parameter Name Description Default Value Range

Cluster A link to a cluster defined within the pro-
file specified by the endpoint that will be
received.

Receive APDU A link to an APDU that will buffer any
incoming messages.

Discoverable Defines whether the input cluster will be
present in the endpoints simple descrip-
tor which is used for service discovery.

true true / false

Table 32: Input Cluster Parameters

Parameter Name Description Default Value Range

Cluster A link to a cluster defined within the pro-
file specified by the endpoint that is to
be transmitted.

Transmit APDUs List of APDUs that will be used to trans-
mit the cluster.

Discoverable Defines whether the input cluster will be
present in the endpoints Simple
descriptor which is used for service dis-
covery.

true true / false

Table 33: Output Cluster Parameters
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 391

Chapter 10
ZigBee Network Parameters

10.7.2 Bound Addressing Table

Specifies that the device should include a Binding table. Binding is optional. If Binding
tables are used, they are located on any node which is a source for a binding, but the
ZigBee Co-ordinator handles end device bind requests on behalf of all devices in the
network. Nodes that use Binding tables should be allocated enough Binding table
entries to handle their own communication needs.

10.7.3 PDU Manager

The Protocol Data Unit Manager (PDUM) configuration is mandatory and must always
be present.

APDU

Specifies a buffer to contain instances of a cluster.

Parameter Name Description Default Value Range

Size The size of the Binding table. Each
binding table entry contains:

• The node address and endpoint
number of the source of the binding

• The node address and endpoint
number of the destination of the
binding

• The cluster ID for the binding

If a binding is one-to-many then a table
entry is required for each destination.

Table 34: Bound Addressing Table Parameters

Parameter Name Description Default Value Range

Number of NPDUs The number of NPDUs available to the
ZigBee stack. These are internal to the
stack.

16 8 or higher

Table 35: PDU Manager Parameters

Parameter Name Description Default Value Range

Instances The maximum number of instances of
this APDU. Note that this value must be
set to three times the value of the
parameter Maximum Number of Simul-
taneous Data Requests with Acks - see
Table 30 on page 386.

Name The name of the APDU. This is the
identifier that should be used in the
application C code to refer to the APDU.

Valid C identifier

Size The maximum size of the APDU.

Table 36: APDU Parameters
392 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
10.7.4 Group Addressing Table

Specifies that the device contains a Group table.

10.7.5 RF Channels

Specifies the default RF channels that the device will operate on. If not present, the
default will be all channels.

Parameter Name Description Default Value Range

Size The size of the Group table. Group
membership for endpoints on the cur-
rent device is controlled by adding and
removing entries in the Group table.

Table 37: Group Addressing Table Parameters

Parameter Name Description Default Value Range

Channel x
(x=11-26)

Control for channel x – setting to true
includes the channel in energy scan. By
default, only channel 15 is included.

true for x=15,
false for all
other values

true / false

Table 38: RF Channels Parameters
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 393

Chapter 10
ZigBee Network Parameters

10.7.6 Node Descriptor

This is mandatory and defines the type and capabilities of the node.

Parameter Name Description Default Value Range

Descriptor Availability Parameters

Complex Descriptor Availa-
ble

Complex descriptors are not supported.
Not editable.

false false

User Descriptor Available Indicates whether a user descriptor is
present. Not editable.

false true / false

Descriptor Capabilities Parameters

Extended Active Endpoint
List Available

Indicates whether an extended active
endpoint list is available. Not editable.

false false

Extended Simple Descriptor
List Available

Indicates whether an extended simple
descriptor list is available. Not editable.

false false

MAC Capability Flags

Allocate Address Indicates whether the device will allo-
cate short (network) addresses or not.
Not editable.

true / false

Alternate PAN Coordinator Indicates whether the device will act as
an alternative PAN Co-ordinator. Not
editable.

true / false

Device type Indicates whether the device is a Full
Functionality Device (FFD) or Reduced
Functionality Device (RFD). Not edit-
able.

true / false

Power source Indicates whether the device is mains
powered or not. Not editable.

true / false

Rx On When Idle Indicates whether the device has its
receiver enabled while the device is
idle. Not editable.

true / false

Security Indicates whether the device uses high
or standard security. Only standard
security is supported. Not editable.

false true / false

Miscellaneous parameters

APS flags Not editable. 0 0

Frequency Band Frequency band of radio. Only 2.4 GHz
is supported by JN516x hardware. Not
editable.

2.4 GHz 2.4 GHz

Logical Type The device type (i.e. Co-ordinator,
Router or End Device). Not editable.

ZC/ZR/ZED

Table 39: Node Descriptor Parameters
394 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Manufacturer Code The manufacturer ID code.
These are allocated by the ZigBee Alli-
ance.

0 - 65535

Maximum buffer size The maximum buffer size. Not editable. 127

Maximum incoming transfer
size

The maximum incoming transfer size
supported by the device. This is calcu-
lated from the APDU sizes for input
clusters. Not editable.

Maximum outgoing transfer
size

The maximum incoming transfer size
supported by the device. This is calcu-
lated from the APDU sizes for output
clusters. Not editable

System Server Capabilities parameters

Backup binding table cache Indicates if the node can act as a back-
up binding table cache. Not supported
and not editable.

false true / false

Backup discovery cache Indicates if the node can act as a back-
up discovery cache. Not supported and
not editable.

false true / false

Backup trust center Indicates if the node can act as a back-
up trust centre. Not supported and not
editable.

false true / false

Network manager Indicates if the node can act as a net-
work manager. Not editable.

false true / false

Primary binding table cache Indicates if the node can act as a pri-
mary binding table cache. Not sup-
ported and not editable.

false true / false

Primary discovery cache Indicates if the node can act as a pri-
mary discovery cache. Not supported
and not editable.

false true / false

Primary trust center Indicates if the node can act as a trust
center. Not editable.

false true / false

Table 39: Node Descriptor Parameters
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 395

Chapter 10
ZigBee Network Parameters

10.7.7 Node Power Descriptor

The Node Power descriptor for the device is mandatory.

10.7.8 Key Descriptor Table

Specifies that the device should contain a Key Descriptor Table (for APS security).

Preconfigured Key

Specifies a pre-configured link key for the Key Descriptor Table.

Parameter Name Description Default Value Range

Available Power Sources parameters

Constant power Indicates whether a constant power
source is available.

false true / false

Disposable Battery Indicates whether a disposable battery
power source is available.

false true / false

Rechargable Battery Indicates whether a rechargable battery
power source is available.

false true / false

Miscellaneous parameters

Default power mode The default power mode of the device. Synchronised
with RxOn-
WhenIdle

Synchronised with
RxOnWhenIdle / Peri-
odic / Constant Power

Default power source The default power source of the device. Constant /
rechargeable /
disposable

Constant

Table 40: Node Power Descriptor Parameters

Parameter Name Description Default Value Range

Size The size of the key descriptor table. 1 or higher

Table 41: Key Descriptor Table Parameters

Parameter Name Description Default Value Range

IEEE address The IEEE address to use with the key. 64 bit

Key The pre-configured key value. 128 bit

Table 42: Preconfigured Key Parameters
396 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
10.7.9 Trust Centre

Specifies that the device will have the capability to act as a Trust Centre.

One (and only one) of the following keys can be defined for use in network-level
security set-up: Default Network Key, Preconfigured Network Key, Preconfigured
Trust Center Link Key. The properties of these objects are detailed below.

Default Network Key

Preconfigured Network Key

Preconfigured Trust Center Link Key

No parameters, but the link key must be pre-set in the Key Descriptor Table (see
Section 10.7.8) on each node.

Parameter Name Description Default Value Range

Device Table Size The size of the Trust Centre's device
table.

Maximum
Number of
Nodes setting
from the
ZigBee PRO
Wireless
Network

1 or higher

Table 43: Trust Centre Parameters

Parameter Name Description Default Value Range

Random Indicates whether the default network
key will be randomly generated (true) or
pre-set (false) by the Trust Centre.

true true / false

Key Pre-set default network key (only
required if Random set to false).

Key Seq Num Unique sequence number of pre-set
default network key (only required if
Random set to false).

Table 44: Default Network Key Parameters

Parameter Name Description Default Value Range

Key Pre-configured network key (which is
pre-programmed into all nodes).

Key Seq Num Unique sequence number of pre-config-
ured network key.

Table 45: Preconfigured Network Key Parameters
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 397

Chapter 10
ZigBee Network Parameters

10.7.10 ZDO Configuration

Specifies which ZigBee Device Object (ZDO) servers are present on the device. Most
of these are mandatory for a ZCP.

The ZDO configuration parameters are detailed in the following categories:

Category Page

Default Server 399

ZDO Client 399

Device Annce Server 399

Active Ep Server 399

Nwk Addr Server 399

IEEE Address Server 400

System Server Discovery Server 400

Permit Joining Server 400

Node Descriptor Server 400

Power Descriptor Server 400

Match Descriptor Server 401

Simple Descriptor Server 401

Mgmt Lqi Server 401

Mgmt Rtg Server 401

Mgmt Leave Server 401

Mgmt NWK Update Server 402

Bind Unbind Server 402

Extended Active Ep Server 402

Extended Simple Descriptor Server 402

End Device Bind Server 403
398 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Default Server

Mandatory. Replies to any unimplemented server requests.

ZDO Client

Mandatory. Processes ZDO client messages.

Device Annce Server

Mandatory. Processes device announcements.

Active Ep Server

Mandatory. Processes active endpoint requests.

Nwk Addr Server

Mandatory. Processes network address discovery requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
unimplemented server request mes-
sages.

apduZDP

Table 46: Default Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to ZDO
client messages.

apduZDP

Table 47: ZDO Client Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
device announcement messages.

apduZDP

Table 48: Default Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
active endpoint request messages.

apduZDP

Table 49: Active Ep Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to net-
work address discovery request mes-
sages.

apduZDP

Table 50: Nwk Addr Server Parameters
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 399

Chapter 10
ZigBee Network Parameters

IEEE Address Server

Mandatory. Processes IEEE address discovery requests.

System Server Discovery Server

Mandatory. Processes system server discovery requests.

Permit Joining Server

Mandatory. Processes 'permit joining' requests.

Node Descriptor Server

Mandatory. Processes Node descriptor requests.

Power Descriptor Server

Mandatory. Processes Node Power descriptor requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
IEEE address discovery request mes-
sages.

apduZDP

Table 51: IEEE Address Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to sys-
tem server discovery request mes-
sages.

apduZDP

Table 52: System Server Discovery Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to per-
mit joining request messages.

apduZDP

Table 53: Permit Joining Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to node
descriptor request messages.

apduZDP

Table 54: Node Descriptor Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
power descriptor request messages.

apduZDP

Table 55: Power Descriptor Server Parameters
400 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Match Descriptor Server

Mandatory. Processes Match descriptor requests.

Simple Descriptor Server

Mandatory. Processes simple descriptor requests.

Mgmt Lqi Server

Mandatory. Processes management LQI requests.

Mgmt Rtg Server

Mandatory. Processes management routing requests.

Mgmt Leave Server

Mandatory. Processes management leave requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
Match descriptor request messages.

apduZDP

Table 56: Match Descriptor Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to Sim-
ple descriptor request messages.

apduZDP

Table 57: Simple Descriptor Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to Link
Quality Indicator (LQI) request mes-
sages.

apduZDP

Table 58: Mgmt Lqi Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
management routing request mes-
sages.

apduZDP

Table 59: Mgmt Rtg Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
management leave request messages.

apduZDP

Table 60: Mgmt Leave Server Parameters
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 401

Chapter 10
ZigBee Network Parameters

Mgmt NWK Update Server

Mandatory. Processes management network update requests.

Bind Unbind Server

Mandatory. Processes both bind and unbind requests.

Extended Active Ep Server

Mandatory. Processes extended active endpoint discovery requests.

Extended Simple Descriptor Server

Mandatory. Processes extended Simple descriptor discovery requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
management network update request
messages.

apduZDP

Table 61: Mgmt NWK Update Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to bind
and unbind request messages.

apduZDP

Table 62: Bind Unbind Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
extended active endpoint discovery
request messages.

apduZDP

Table 63: Active Ep Server Parameters

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to
extended Simple descriptor discovery
request messages.

apduZDP

Table 64: Extended Simple Descriptor Server Parameters
402 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
End Device Bind Server

Mandatory (Co-ordinator only). Processes End Device bind requests.

Parameter Name Description Default Value Range

Output APDU The APDU to use when replying to end
device bind request messages.

apduZDP

Timeout Number of seconds before timing out an
End Device bind request.

5 1 or higher

Bind Num Retries Number of binding retries attempted if a
binding request (zdo_bind_req or
end_device_bind_req) fails.

Table 65: End Device Bind Server Parameters
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 403

Chapter 10
ZigBee Network Parameters

404 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Part III:
Configuration Information
JN-UG-3101 v1.5 © NXP Laboratories Ltd 2017 405

406 © NXP Laboratories Ltd 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
11. Network and OS Configuration

In developing a ZigBee PRO application, certain static configuration is required for
ZigBee PRO and JenOS (in particular, the RTOS and PDU Manager) before the
application is built. This chapter introduces the configuration editors that are used to
simplify this static configuration. These editors are supplied as NXP plug-ins for the
BeyondStudio for NXP platform and are provided in the JN516x ZigBee SDKs. For
more details of the SDKs, refer to Section 4.1.

The following editors provide easy-to-use interfaces which streamline network and OS
configuration for a ZigBee PRO wireless application:

 ZPS Configuration Editor: This editor provides a convenient way to set
ZigBee network parameters, such as the properties of the Co-ordinator,
Routers and End Devices (for example, by setting elements of the device
descriptors). For more information, refer to Section 11.2.

 JenOS Configuration Editor: This editor provides a graphical interface for
configuring the way an application uses JenOS resources, such as timers,
mutexes and ISRs. For more information, refer to the JenOS User Guide
(JN-UG-3075).

The principles of this configuration are described in Section 11.1.

11.1 Configuration Principles

The build process for a ZigBee PRO application takes a number of configuration files,
in addition to the application source file and header file. The following files are
generated from BeyondStudio to feed into the build process:

 ZigBee PRO Stack files:

 zps_gen.c

 zps_gen.h

 PDU Manager files:

 pdum_gen.c

 pdum_gen.h

 RTOS files:

 os_gen.c

 os_gen.h

 os_irq.s

All of the above files are produced according to the same basic principles. The NXP
plug-ins in BeyondStudio are used to edit the configuration data and output this data
as XML files (the XML files can be coded manually, outside of BeyondStudio, but this
is not recommended). As part of the build process, the application's makefile invokes
command line utilities that use the XML files to generate the files listed above.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 407

Chapter 11
Network and OS Configuration

The full build process is illustrated in Figure 13.

Figure 13: Application Build Process

BeyondStudio

JenOS
Configuration

Editor

zps_gen.c

zps_gen.h

pdum_gen.c

pdum_gen.h

os_gen.c

os_gen.h

os_irq.s

Compiler

user_app.c

user_app.h

Application
(unlinked)

Linker

user_app.bin

ZigBee
Libraries

ZPS
Configuration

Editor
XML

XML

XML

File
generation

by
command
line utilities
408 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
11.2 Configuring ZigBee Network Parameters

The ZPS Configuration Editor allows ZigBee network parameters to be configured
through an easy-to-use Windows Explorer-style interface. This interface is outlined
below, but is more fully described in Chapter 12.

The parameter values for the whole network are stored in a file with extension .zpscfg,
and the ZPS Configuration Editor provides a convenient way to view and edit the
contents of this file. The network parameters are presented in an expandible tree, as
shown below.

Entries that sit at the same level in the tree are termed ‘siblings’, while an entry that
sits under another entry in the tree (a sub-entry) is termed a ‘child’.

The top level of the tree shows the Extended PAN ID. The next level shows the
following siblings:

 Entries for the ZigBee application profiles used in the network

 Entry for the Co-ordinator

 Entries for the Routers

 Entries for the End Devices

The information under each of these entries is described below.

Profile

An application profile has a numeric ID and a name. The Profile entry contains child
entries for the clusters supported by the profile - each cluster is identified by a numeric
ID and a name.

Figure 14: Network Parameters

Note: There must be entries for all application profiles
supported by the network. An individual device may not
use all profiles, although a device can use more than
one profile to support multiple features (for example,
measurement of temperature, humidity and light level).
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 409

Chapter 11
Network and OS Configuration

Co-ordinator

The Co-ordinator entry contains a name and a number of associated parameters,
mainly related to the APS and NWK layers of the ZigBee PRO stack.

The child entries for the Co-ordinator are shown above and include the following:

 Endpoint entries, one for each endpoint on the Co-ordinator, with each endpoint
having child entries specifying the input and output clusters used (note that
each input cluster must be paired with an APDU)

 PDU Manager, with child entries specifying the APDUs used

 Channel Mask, specifying the 2.4-GHz band channels to scan when creating
the network

 Node Descriptor for the Co-ordinator

 Node Power Descriptor for the Co-ordinator

Router

Each Router entry contains a name and a number of associated parameters, mainly
related to the APS and NWK layers of the ZigBee PRO stack. The child entries for a
Router include the following:

 Endpoint entries, one for each endpoint on the Router, with each endpoint
having child entries specifying input and output clusters used (note that each
input cluster must be paired with an APDU)

 PDU Manager, with child entries specifying the APDUs used

 Channel Mask, specifying the 2.4-GHz band channels to scan when attempting
to join a network

 Node Descriptor for the Router

 Node Power Descriptor for the Router
410 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
End Device

Each End Device entry contains a name and a number of associated parameters,
mainly related to the APS and NWK layers of the ZigBee PRO stack. The child entries
for an End Device include the following:

 Endpoint entries, one for each endpoint on the End Device, with each endpoint
having child entries specifying the input and output clusters used (note that
each input cluster must be paired with an APDU)

 PDU Manager, with child entries specifying the APDUs used

 Channel Mask, specifying the 2.4-GHz band channels to scan when attempting
to join a network

 Node Descriptor for the End Device

 Node Power Descriptor for the End Device
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 411

Chapter 11
Network and OS Configuration

412 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
12. ZPS Configuration Editor

The ZigBee PRO Stack (ZPS) Configuration Editor is a graphical editor which runs as
a plug-in within the Eclipse-based ‘BeyondStudio for NXP’ IDE. It is used to create a
network configuration for a ZigBee PRO project, allowing ZigBee network parameters
to be set (see Chapter 10). The ZPS Configuration Editor is introduced in Section 11.2.
This chapter provides operational instructions for this editor.

12.1 Getting Started

Before you can start to create a new ZigBee PRO stack configuration, the ZPS
Configuration Editor plug-in must be installed in the BeyondStudio/Eclipse IDE.

To check if the plug-in is already installed, start Eclipse and select File > New > Other
from the main menu. Check that a Jennic option exists in the Select a Wizard
dialogue box - expanding the Jennic option should show "ZBPro Configuration", as
illustrated in the screenshot below. If this is not present, install the ZPS Configuration
Editor plug-in, which is supplied in the JN516x ZigBee SDKs.

Using the wizard shown in the screenshot above, you can start to create a new ZigBee
PRO configuration.

Figure 15: Select a Wizard
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 413

Chapter 12
ZPS Configuration Editor

12.2 Using the ZPS Configuration Editor

12.2.1 Creating a New ZPS Configuration

Step 1 In the Eclipse Select a wizard box shown in Figure 15 in Section 12.1, click Next.

The New dialogue box opens for the ZBPro Configuration.

Step 2 Click on your project to select it as the parent folder. In the File name field, enter a
name for the configuration file (keep the extension .zpscfg) and then click Finish.

A new configuration (with the default set of parameters) will open in the editor, as
shown below.

Note: This section assumes that you wish to add a
ZigBee PRO stack configuration to a project which you
have already created in Eclipse (in this example,
HelloWorld).

Figure 16: New ZPS Configuration
414 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
12.2.2 Adding Device Types

To add devices

Step 1 Right-click on ZigBee PRO Wireless Network and select New Child > Coordinator
from the drop-down menu. This inserts a Co-ordinator with the minimum necessary
child elements.

Step 2 Add Routers and End Devices in the same way, as required. The network can only
have one Co-ordinator, but as many different Router or End Device types
(i.e. running different application features and with different endpoints) as required.

Step 3 For each new device, use the Properties tab (bottom pane) to enter the required top-
level parameters. For a sleeping End Device, set Sleeping to True (by right-clicking
on the value and using the drop-down box).

Figure 17: ZPS Configuration Editor Window

Note: To display the advanced properties, click the
Advanced tool button to the right of the Properties
view tab - see Section 12.2.4. These properties are all
set to default values and can be left unchanged, unless
specific changes are required.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 415

Chapter 12
ZPS Configuration Editor

To add a profile

Step 1 Right-click on ZigBee PRO Wireless Network and select New Child > Profile from
the drop-down menu. This inserts a profile with no child elements.

Step 2 Edit the properties in the Properties tab to set Name and Id for the new profile.

To add clusters to the new profile

Step 1 Right-click on the new profile created above and select New Child > Cluster from
the drop-down menu.

Step 2 Edit the properties in the Properties tab to set Name and Id for the new cluster.

Step 3 Repeat Step 1 and Step 2 to add more clusters, as required.

Figure 18: Cluster Properties
416 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
12.2.3 Setting Co-ordinator Properties

To set the channel mask and Node Power descriptor

Step 1 Expand the Co-ordinator node in the editor. This will reveal the default set of features
for the Co-ordinator, ZDO endpoint and ZDO servers.

Step 2 Click on the RF Channels element to modify the channel mask.

There are 16 channels available, numbered 11 to 26, which are now shown in the
Properties tab. A single channel or a set of channels can be selected for the channel
mask, as required.

Step 3 In the Properties tab, set the desired channel(s) to true (by right-clicking on the value
and using the drop-down box).

Step 4 Click to select the Node Power Descriptor.

Step 5 Edit the properties in the Properties tab, as required.

Figure 19: Channel Mask Selection
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 417

Chapter 12
ZPS Configuration Editor

To add a new endpoint

Step 1 Right-click on the Co-ordinator node and select New Child > End Point from the
drop-down menu.

Step 2 Edit the properties in the Properties tab to set Name and Profile for the endpoint
(the profile is selected from the drop-down box).

Step 3 Edit the properties to set RTOS Message with the name of the message queue to
which the stack will deliver events for the endpoint, or leave it blank if the default
queue is to be used (the default queue is named in the AF section of the Advanced
properties of each node).

Step 4 Repeat Step 1 to Step 3 for as many endpoints as are required.

Figure 20: Endpoint Properties
418 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
To add an APDU

At least one APDU is required before an endpoint can send or receive data. The same
APDU can be used to send and receive data, or different APDUs can be set up for
send and receive - this allows control of buffering and memory resources, and is the
decision of the application designer.

Step 1 Right-click on PDU Manager and select New Child > APDU from the drop-down
menu.

Step 2 Edit the properties in the Properties tab to set Name, Instances (number of) and
Size (of each instance - this should be set to the size of the largest APDU to be
received).

Figure 21: APDU Properties
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 419

Chapter 12
ZPS Configuration Editor

To add input and output clusters to an endpoint

Step 1 Right-click on the endpoint and select New Child > Input Cluster or New Child >
Output Cluster, as required, from the drop-down menu.

Step 2 Edit the properties in the Properties tab to set Cluster - select from the available
clusters in the drop-down list.

Step 3 Edit the Rx APDU or Tx APDU property to assign an APDU to the cluster - select
from the available APDUs in the drop-down list.

To receive data, a cluster must have an assigned APDU. The same cluster can be
both an input and output cluster, i.e. it will both send and receive data.

When an endpoint with an output cluster sends data, the receiving endpoint must have
an input cluster in order to receive the data, otherwise the stack will reject it and will
not notify the receiving endpoint. However, the Default cluster can be added to the
endpoint in order to deal with received data that is destined for input clusters not
supported by the endpoint (see the Note below this procedure).

Step 4 Repeat Step 1 to Step 3 to add as many clusters as are required for the endpoint.

Step 5 Repeat Step 1 to Step 4 for Routers and End Devices, as required.

Figure 22: Input and Output Clusters
420 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
12.2.4 Setting Advanced Device Parameters

You can set the advanced device parameters (detailed in Section 10.7) for a device
as follows:

Step 1 Click on the relevant device (e.g. Coordinator) in the Resource Set pane.

Step 2 Click on the Advanced Device Parameters button in the tool bar of the lower pane
(indicated below).

Step 3 Edit the relevant parameters in the Properties tab of the lower pane.

Step 4 Save your settings.

Note: In the above procedure, you may want to add the
Default cluster (with a Cluster ID of 0xFFFF) as an input
cluster. The inclusion of the Default cluster means that
received messages that were intended for input clusters
not supported by the endpoint will still be passed to the
application. The messages must, however, come from
defined application profiles, otherwise they are
discarded.

Note: You will need to edit the advanced device
parameters in order to change the Extended PAN ID
(APS Use Extended PAN ID parameter) and the
maximum number of children of the Co-ordinator or
Router (Active Neighbour Table Size parameter) from
the default values - see Section 5.1.1 and Section 5.1.2.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 421

Chapter 12
ZPS Configuration Editor

422 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Part IV:
Appendices
JN-UG-3101 v1.5 © NXP Laboratories Ltd 2017 423

424 © NXP Laboratories Ltd 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
A. Handling Stack Events

Stack events in an NXP ZigBee PRO network are handled by the JenOS RTOS using
its message exchange mechanism (described in the JenOS User Guide
(JN-UG-3075)). The stack events are listed below (they are detailed in Section 9.1):

ZPS_EVENT_NONE
ZPS_EVENT_APS_DATA_INDICATION
ZPS_EVENT_APS_DATA_CONFIRM
ZPS_EVENT_APS_DATA_ACK
ZPS_EVENT_NWK_STARTED
ZPS_EVENT_NWK_JOINED_AS_ROUTER
ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE
ZPS_EVENT_NWK_FAILED_TO_START
ZPS_EVENT_NWK_FAILED_TO_JOIN
ZPS_EVENT_NWK_NEW_NODE_HAS_JOINED
ZPS_EVENT_NWK_DISCOVERY_COMPLETE
ZPS_EVENT_NWK_LEAVE_INDICATION
ZPS_EVENT_NWK_LEAVE_CONFIRM
ZPS_EVENT_NWK_STATUS_INDICATION
ZPS_EVENT_NWK_ROUTE_DISCOVERY_CONFIRM
ZPS_EVENT_NWK_POLL_CONFIRM
ZPS_EVENT_NWK_ED_SCAN
ZPS_EVENT_ZDO_BIND
ZPS_EVENT_ZDO_UNBIND
ZPS_EVENT_ZDO_LINK_KEY
ZPS_EVENT_BIND_REQUEST_SERVER
ZPS_EVENT_ERROR
ZPS_EVENT_APS_INTERPAN_DATA_INDICATION
ZPS_EVENT_APS_INTERPAN_DATA_CONFIRM

Each type of stack event is assigned to a message queue when the RTOS resources
are pre-configured using the JenOS Configuration Editor. Generally, the management
events (such as start, join and leave) are all assigned to the same message queue.
Data events, however, may be filtered by assigning them to different message queues
(for example, according to their source).

A task/ISR must collect stack events from a message queue using the function
OS_eCollectMessage(). Before calling this function, the task/ISR can determine
whether there are any events in the queue using OS_eGetMessageStatus().
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 425

Appendices
B. Application Design Notes

This appendix collects together information and advice that will be useful to designers
who are incorporating non-routine operations in their applications. The topics are:

 Fragmented data transfers (Appendix B.1)

 Sending data to sleeping End Devices (Appendix B.2)

 Clearing stack context data before a rejoin (Appendix B.3)

 Beacon filtering - (Appendix B.4)

 Table configuration guidelines (Appendix B.5)

 Received message queues (Appendix B.6)

 Filtering packets on LQI value/link cost (Appendix B.7)

 Disabling Orphan Notifications to the Trust Centre (Appendix B.8)

 Forcing broadcast retries (Appendix B.9)

 Noise threshold for network formation (Appendix B.10)

B.1 Fragmented Data Transfers

The send ‘with acknowledgement’ functions (ZPS_eAplAfUnicastAckDataReq() and
ZPS_eAplAfUnicastIeeeAckDataReq() and ZPS_eAplAfBoundAckDataReq())
allow a large data packet to be sent that may be fragmented into multiple messages/
frames during transmission. As a general rule, one of these two functions should be
used when sending a data packet with a payload size greater than 80 bytes (note,
however, that the use of APS security will reduce this limit, as payload bytes are taken
up by security data). The processes of fragmentation at the sender and de-
fragmentation at the receiver are transparent to the applications at the two ends, but
the points described in the sub-sections below should be noted.

Note 1: Fragmentation is described further in Appendix
B.2.2 in connection with fragmented data transfers to
sleeping End Devices.

Note 2: The ZigBee network parameters referenced in
this appendix are configured using the ZPS
Configuration Editor and are described in Chapter 10.
426 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
B.1.1 Enabling/Disabling Fragmentation

In order to allow fragmented data transfers between two nodes, you must
appropriately configure two ZigBee network parameters:

 Set the parameter Maximum Number of Transmitted Simultaneous Fragmented
Messages to a non-zero value on the sending node, to allow transmitted
messages to be fragmented.

 Set the parameter Maximum Number of Received Simultaneous Fragmented
Messages to a non-zero value on the receiving node, to allow received
fragmented messages to be re-assembled.

Note that setting either of these parameters to zero will disable the corresponding
fragmentation feature but will reduce the size of your compiled application code.

B.1.2 Configuring Acknowledgements

You can configure how acknowledgements will be generated during a fragmented
data transfer by setting the ZigBee network parameter APS Max Window Size, which
must be set to the same value on the source and destination nodes. This parameter
determines the number of fragments to be transferred before an acknowledgement is
generated - for example, if a data packet is divided into 6 fragments and this parameter
is set to 3, an acknowledgement will be generated after the third fragment and after
the sixth fragment. Note that setting this parameter to a low value will result in a high
level of network traffic, since a large number of acknowledgement packets are sent.

The acknowledgement for a group of fragments contains an indication of any missing
fragments from the group, thus requesting the missing fragment(s) to be re-sent.

B.1.3 Acknowledgement Timeout

A timeout of approximately 1600 ms is applied to each acknowledgement, measured
from the time at which the last data fragment in the relevant group was transmitted - if
no acknowledgement is received within this timeout period, the entire group of
fragments is automatically re-sent. Up to 3 more re-tries can subsequently be
performed. For a fragmented data transfer, the time that elapses before a completely
unacknowledged transmission is abandoned is difficult to estimate, since this time
depends on the number of fragments, the network parameter APS Max Window Size
and the network parameter APS Inter-frame Delay (time between transmissions of
consecutive fragments).
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 427

Appendices
B.2 Sending Data to Sleeping End Devices

As described in Section 5.5.3, data sent to a sleeping End Device is buffered in the
node’s parent until the End Device collects the data through a polling mechanism,
typically on waking from sleep. It is important that the polling interval is not too long,
as the buffered data will be discarded after 7 seconds. In addition, there is limited
buffering space in the parent and the buffers are shared by all the children of the
parent. Therefore, applications should be designed in such a way that data is only sent
to a sleeping End Device when it is either awake or will wake in a timely manner to
collect the data from its parent.

The following issues should also be considered when sending data to a sleeping End
Device using one of the send ‘with acknowledgement’ functions:
ZPS_eAplAfUnicastAckDataReq(), ZPS_eAplAfUnicastIeeeAckDataReq(),
ZPS_eAplAfBoundAckDataReq().

B.2.1 Acknowledged Data Transmission to Sleeping End Device

When data is sent and an acknowledgement is required from the receiver, a timeout
of approximately 1600 ms is applied to the acknowledgement - if no acknowledgement
is received by the sender within this timeout period, the data is automatically re-sent.
Up to 3 more re-tries can subsequently be performed, totalling just over 3 seconds
before the data transfer is finally abandoned.

In the case of data sent to a sleeping End Device, the acknowledgement is generated
by the End Device after collecting the data from its parent. Thus, if the data is not
collected within the acknowledgement timeout period, the data will be re-sent to the
End Device (via its parent).

Note that if the buffered data is collected by the End Device after the final re-try by the
sender but before the data is discarded by the parent (between approximately 3 and
7 seconds after the initial transmission), the acknowledgement that is eventually
generated by the End Device will be ignored by the sender, since the transaction has
already timed out and terminated.

Note: The ZigBee network parameters referenced in
this appendix are configured using the ZPS
Configuration Editor and are described in Chapter 10.
428 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
B.2.2 Fragmented Data Transmission to Sleeping End Device

As explained in Section 5.5.1 and Appendix B.1, the send ‘with acknowledgement’
functions can be used to send large data packets that may need to be fragmented into
multiple NPDUs during transmission. Therefore, when sending a fragmented data
packet to a sleeping End Device, the issues described in Appendix B.2.1 apply.

In such a data transfer, the End Device should aim to collect all buffered data
fragments from its parent before the transfer has completely timed out on the sender.
Once the sender has abandoned the transaction, it will not respond to any
acknowledgements requesting missing fragments (see Appendix B.1).

Once the End Device starts to receive fragmented data, it will stay awake until the
transaction is complete and will run its own poll timer to automatically collect each
fragment - the polling period for this timer is set through the ZigBee advanced device
parameter APS Poll Period. This poll timer will run for the duration of the fragmented
transaction and then stop. The responsibility for polling will then return to the
application.

Sending fragmented data to a sleeping End Device is likely to result in duplicate
fragments of the message being sent. A list of the last few fragments received, called
the APS Duplicate table, is maintained in the End Device. This table allows new
fragments to be compared with previous fragments and duplicates identified. The
maximum number of entries (fragments) in this table can be configured through the
network parameter APS Duplicate Table Size. This table size should not be made too
small, as a short table will prevent duplicate fragments from being caught (4 may be a
suitable value). This value should be considered in conjunction with the value of the
network parameter APS Persistence Time, which represents the time for which
resources associated with a message will be retained after the complete message has
been received (once the resources have been released, they may be used for a new
transaction) - during this period, any duplicate fragments that are received will be
ignored.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 429

Appendices
B.3 Clearing Stack Context Data Before a Rejoin

If a node rejoins the same secured network (with ZigBee PRO security enabled) but
its stack context data was cleared before the rejoin (by calling PDM_vDelete()), data
sent by the node will be rejected by the destination node since the frame counter has
been reset on the source node (frame counters are described in Section 1.8). Sent
data will be accepted again by the destination node when the frame counter for the
source node reaches its last count known before the rejoin. Therefore, you are not
recommended to clear the stack context data before a rejoin.

However, it is worth noting that frame counters are reset across the entire network
when a new network key is broadcast by the Trust Centre using the function
ZPS_eAplZdoTransportNwkKey() - see Section 5.8.3. Thus, if stack context data is
cleared before a rejoin, the frame counter problem can be avoided by broadcasting a
new network key from the Trust Centre (normally the Co-ordinator) immediately after
the rejoin.

B.4 Beacon Filtering Guidelines

A filter can be introduced for filtering beacons in network searches (on a Router or End
Device). Beacons can be filtered on the basis of Extended PAN ID (EPID), LQI value
and device joining status/capacity (see below). The filter can be applied using the
function ZPS_bAppAddBeaconFilter().

If required, the above function must be called immediately before
ZPS_eAplZdoDiscoverNetworks(), ZPS_eAplZdoRejoinNetwork() or
ZPS_eAplZdoStartStack().

A tsBeaconFilterType structure is supplied to the ZPS_bAppAddBeaconFilter()
function in order to specify the details of the filter to be implemented, including:

 A blacklist or whitelist of networks in terms of a list of EPIDs

 The minimum LQI value of an acceptable beacon

 Flags indicating the properties on which beacons will be filtered, which include:

 LQI value of beacon

 Permit Join enabled on sending device

 Capacity of sending device to accept Router children

 Capacity of sending device to accept End Device children

After each discovery or rejoin, the flags will be cleared while all other fields of the
structure will remain intact. The structure is detailed in Section 7.2.3.5.

The following general guidelines should be followed in using beacon filters:

 Do not implement a filter unless attempting a join, as this will prevent some
stack operations from working correctly

 Do not enable a blacklist and whitelist at the same time

 Do not declare your filter structure as a local variable in a function, as it needs
to exist for the duration of the discovery
430 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
The following guidelines are relevant to network rejoins and associations.

Network Rejoin

 Do set up a whitelist containing a single EPID corresponding to the network
that the node is to rejoin (if only one network is of interest)

 Do set up an LQI filter to reject distant beacons, if required

 Do not enable filtering on Permit Join or Router/End Device Capacity

Association

 Do set up an LQI filter to reject distant beacons, if required

 Do filter on the Permit Join status to only find potential parents and networks
that are accepting association requests

 Do filter on Router/End Device Capacity, if required, depending on device type

B.5 Table Configuration Guidelines

This section provides guidelines on configuring various tables used by the ZigBee
PRO stack. These tables can be configured through ZigBee network parameters in the
ZPS Configuration Editor. The tables are sized, by default, to support a network of up
to 250 nodes. The table sizes can be increased to support more nodes, but this will be
at the expense of RAM and/or EEPROM usage.

The tables and their configuration are individually described in the sections below,
which reference to the ZigBee network parameters used to configure the table sizes
(the network parameters are detailed in Chapter 10).

B.5.1 Neighbour Table

The Neighbour table on a routing node (Router or Co-ordinator) holds information
about the node’s immediate neighbours:

 The first entry in the table contains information about the node’s parent

 Part of the table (a sub-table) holds information about child nodes which have
joined the network through the local device

 The rest of the table holds information about nodes which are neither children
nor the parent (these ‘other’ nodes are only relevant to Mesh networks)

The Neighbour table size is, by default, set to 26 - this is the minimum size required
for a ZigBee-Compliant Platform. The table size may be increased through the
parameter Active Neighbour Table Size to reflect the density of the network, but
increasing the table size will use more RAM. Increasing the Neighbour table size

Note: A blacklist can be built up over several attempts
to discover and associate, by keep adding to the array
of EPIDs as each network is rejected.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 431

Appendices
beyond 26 will also result in an extra link status packet (since one of these packets
can accommodate a maximum of 26 neighbours), thus doubling the traffic for these
periodic packets.

The size of the child sub-table determines the number of children that the device is
allowed to have. The child sub-table size should never be greater than the Neighbour
table size. The default size for this sub-table is 5, but the size can be changed through
the parameter Child Table Size. The contents of the child sub-table is persisted in
EEPROM - therefore, increasing the child sub-table size will use more EEPROM.

B.5.2 Address Map Table

The Address Map table on a node is used to keep a record of the address-pairs of
network nodes with which the local node needs to communicate directly - that is, the
IEEE/MAC address and network address of each of these nodes. In fact, an Address
Map table entry only contains an index to an entry in the MAC Address table, where
the actual addresses of the node are stored (see Appendix B.5.3). The population of
these tables is done as the result of device announcement messages.

The default size of the Address Map table is 10, but the size can be changed through
the parameter Address Map Table Size. The Address Map table is fully persisted in
EEPROM. Therefore, increasing the size of this table will impact both RAM and
EEPROM usage.

B.5.3 MAC Address Table

The MAC Address table on a node is used to store the address-pairs of other network
nodes - that is, the IEEE/MAC address and network address of each of these nodes.
The entries in the MAC Address table are referenced from entries of both the
Neighbour table and Address Map table. Therefore, the MAC Address table should be
sized according to the combined sizes of the Neighbour table and Address Map table.

The default size of the MAC Address table is 36, but the size can be changed through
the parameter Maximum Number of Nodes. The MAC Address table is fully persisted
in EEPROM. Therefore, increasing the size of this table will impact both RAM and
EEPROM usage.

B.5.4 Routing Table

A Routing table is held by the Co-ordinator and Router nodes to store routing
information to other nodes in the network.

The default size of the Routing table is 70, which should be sufficient for most
applications, but the size can be changed through the parameter Routing Table Size.
The table size should be increased if routing bottlenecks are observed. The Co-
ordinator needs to store routes to all the nodes in the network if it is required to
communicate with every node - in this case, the Routing table size should be
increased to the size of the network.

The Routing table is not persisted and any increase will therefore only affect RAM
usage.
432 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
B.5.5 Broadcast Transaction Table

The Broadcast Transaction table is used for the origination, processing and passive
acknowledgement of broadcast transmissions. The minimum required size of this
table for a ZigBee-Compliant Platform is 9. However, an application that produces a
large number of broadcasts may need a larger table. The size of the table can be set
through the parameter Broadcast Transaction Table Size.

B.5.6 Route Discovery Table

The Route Discovery table is used to hold temporary details of a route discovery
transaction. The table size dictates how many individual route discoveries can occur
on the local node at a given time. The default size of the Route Discovery table is 2,
but the size can be changed through the parameter Route Discovery Table Size. The
default value severely restricts the number route discoveries and hence broadcasts on
the network. Increasing the table size also requires increases in the Routing table and
Broadcast Transaction table sizes.

The Route Discovery table is not persisted and any increase will therefore only affect
RAM usage.

B.5.7 Discovery Table

A Discovery table is held by the Router and End Device nodes to store the results of
a channel scan when searching for a network to join. The default size of the Discovery
table is 8, but the size can be changed through the parameter Discovery Neighbour
Table Size.

B.5.8 Route Record Table

The Route Record table is only relevant to a device which will be the concentrator in
a network, if many-to-one routing is implemented. This table replaces the Routing
table in the node.

The size of the Route Record table can be set through the parameter Route Record
Table Size. In the concentrator node, this table size should be set to the size of the
network. Since this table then replaces the Routing table in the node, the Routing table
size should be set to 1 (see Appendix B.5.4). In all other network nodes, the size of
the Route Record table should be set to 1.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 433

Appendices
B.6 Received Message Queues

All messages received on a network node are pushed into one of the following two
queues:

 zps_msgMlmeDcfmInd

 zps_msgMcpsDcfmInd

These queues exist in the JenOS Configuration diagram and are described below.

zps_msgMlmeDcfmInd

All IEEE 802.15.4 MAC command packets are added to this queue. Each received
beacon is also put in this queue. The queue may overflow in a very busy network when
a network discovery results in many network nodes sending beacons back.

The default size of the queue is 8. This size should be sufficient for most applications.

zps_msgMcpsDcfmInd

All IEEE 802.15.4 MAC data packets are added to this queue. The default size of this
queue is 20 but the queue size can be set in the Property view for the queue in the
JenOS Configuration Editor. The queue can overflow if there is heavy network traffic.
Any increase in the size of this queue will also require an increase in the number
NPDUs by the same amount, through the network parameter Number of NPDUs.

B.7 Filtering Packets on LQI Value/Link Cost

This section describes the operation and configuration of the filtering of received data
packets based on LQI value (detected signal strength). Packet filtering results in some
received packets with low LQI values being discarded. It is enabled in the stack by
default but can be disabled by the application, if required.

Packet filtering can be beneficial during:

 network joining

 route discovery

 normal network operation

In practice, the measured LQI values of packets are translated into ‘link cost’ values
for filtering, as detailed in Appendix B.7.1.

The operation and benefits of packet filtering are described in Appendix B.7.2.

Packet filtering can be modified or disabled using the function
ZPS_vAplAfEnableMcpsFilter(), as described in Appendix B.7.3.

Note: The collection of received messages from the
above queues is handled by the application using
functions of the JenOS RTOS, as described in the
JenOS User Guide (JN-UG-3075).
434 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
B.7.1 Link Cost

For the purpose of packet filtering, LQI values are translated into ‘link cost’ values.
Thus, a range of LQI values maps to a single link cost, which is an integer value. The
default mappings implemented by the ZigBee PRO stack are shown in Table 66
below.

The above mappings can be modified, as described in Appendix B.7.3.

A link cost of 5 is used as the packet filtering threshold by the NXP ZigBee PRO stack.
Thus, packets with link costs greater than 5 may be discarded. For the JN516x
devices, this threshold is more suitable than the value of 3 proposed in the ZigBee
specification. However, the threshold is configurable, as described in Appendix B.7.3.

B.7.2 Packet Filtering in Operation

Packet filtering is a feature of the ZigBee PRO stack that is applied by the
IEEE 802.15.4 MAC layer. It is useful during network joining, route discovery and
normal network operation to optimise the processing of received packets.

Network Joining

During network joining, a form of packet filtering is applied to the results of the network
discovery phase. Any potential parents that have been discovered are filtered such
that nodes with link costs greater than 5 (low LQI values) are discarded. This feature
aids the formation of networks with strong links between neighbours and is most
effective in dense networks. For more information about this process during network
joining, refer to the ZigBee specification.

LQI Range Link Cost

 51 1

46 50 2

41 45 3

39 40 4

36 38 5

25 35 6

 24 7

Table 66: ‘LQI to Link Cost’ Mappings
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 435

Appendices
Route Discovery and Normal Network Operation

In a large network, traffic levels are high during both route discovery and normal
operation, and a node is likely to receive many data packets. There is, however,
limited storage capacity on a node to hold these packets until they can be processed.
To restrict the number of received packets that are submitted to the receive queue, the
following filtering system is applied:

 All unicast packets are queued (without filtering) provided that sufficient space
is available in the receive queue.

 Broadcast packets are queued provided that at least 50% of the receive queue
capacity is free, otherwise the packet filtering mechanism is applied and only
packets with a link cost of 5 or less are queued.

During route discovery, this filtering prevents nodes with low associated LQI values
from being entered into the Neighbour table, allowing reliable routes to be established.
For example, it may be more desirable to establish a route comprising multiple hops
with good LQI values than a single hop with a poor LQI value.

B.7.3 Packet Filtering Configuration

Packet filtering is enabled by default with a link cost threshold of 5, but can be re-
configured or disabled as described below.

Disabling Packet Filtering

If packet filtering is not required, it can be disabled using the function
ZPS_vAplAfEnableMcpsFilter() by setting the bMcpsFilterEnable parameter to
FALSE. This function is detailed in Section 7.1.1. It can be called at any time after
ZPS_eAplAfInit().

Basic Configuration

The function ZPS_vAplAfEnableMcpsFilter() also allows packet filtering to be re-
configured by adjusting the link cost threshold (from the default value of 5).

Link Cost Configuration

The mappings between LQI values and link costs can be modified from the default
mappings detailed in Appendix B.7.1. To modify the mappings, the following function
must be user-defined, which translates an LQI value (input) into a link cost (output):

uint8 APP_u8LinkCost(uint8 u8Lqi);

An example function which implements the default mappings is shown below.
436 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
PRIVATE uint8 APP_u8LinkCost (uint8 u8Lqi)
{
 uint8 u8Lc;
 if (u8Lqi > 50)
 {
 u8Lc = 1;
 }
 else if ((u8Lqi <= 50) && (u8Lqi > 45))
 {
 u8Lc = 2;
 }
 else if ((u8Lqi <= 45) && (u8Lqi > 40))
 {
 u8Lc = 3;
 }
 else if ((u8Lqi <= 40) && (u8Lqi > 38))
 {
 u8Lc = 4;
 }
 else if ((u8Lqi <= 38) && (u8Lqi > 35))
 {
 u8Lc = 5;
 }
 else if ((u8Lqi <= 35) && (u8Lqi > 24))
 {
 u8Lc = 6;
 }
 else
 {
 u8Lc = 7;
 }
 return u8Lc;
}

The above function must be registered as a callback function using the following
callback registration function ZPS_vNwkLinkCostCallbackRegister(), which is
detailed in Section 7.1.1. This function takes a pointer to the APP_u8LinkCost()
function to be registered. If required, the registration function must be called before
ZPS_eAplAfInit(), and on both cold and warm starts.

B.8 Disabling Orphan Notifications to the Trust Centre

When an orphaned node attempts to rejoin a network with ZigBee security
implemented, the potential parent sends an Orphan Notification to the Trust Centre,
This notification prompts the Trust Centre to authenticate the rejoining node and send
a transport key to it. This authentication by the Trust Centre can be avoided by
suppressing the Orphan Notifications on the prospective parent.

Orphan Notifications are enabled by default but can be disabled by the application on
a node through a call to the function ZPS_vSetOrphanUpdateDisable(), which is
detailed in Section 7.1.1. The same function can be used to later re-enable Orphan
Notifications, if required.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 437

Appendices
B.9 Forcing Broadcast Retries

When a node broadcasts a message, it subsequently listens for re-broadcasts of this
message from other nodes (the routing nodes in its Neighbour table). These received
re-broadcasted messages are called ‘passive acknowledgements’. If no passive
acknowledgements are received, the node will re-broadcast the message and this can
happen up to three times. Passive acknowledgements are also used in the same way
by those nodes that re-broadcast the message.

The danger in this implementation is that receiving just a single passive
acknowledgement will stop the node from performing broadcast retries. Therefore, the
retries are abandoned even though there is no guarantee that the message has
reached all the nodes in the Neighbour table.

To avoid the above situation, it is possible to disable the use of passive
acknowledgements on a node and force the broadcast retries. In this case, the node
will ignore any passive acknowledgements and always re-broadcast the message
three times (making a total of four broadcasts). To do this, declare the following
Boolean in your application code:

extern bool_t bSuppressPassiveAcks;

and then set it to TRUE:

bSuppressPassiveAcks = TRUE;
438 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
B.10 Noise Threshold for Forming a Network

The ZigBee PRO stack provides a mechanism for forming a new network in the
quietest IEEE802.15.4 radio channel. The Co-ordinator (centralised network) or
Router (distributed network) that forms the network performs a channel scan to listen
for activity from other local networks.

During the channel scan, the activity in each channel is assigned a noise level in the
range 0 to 254. This result is compared with a noise level threshold, which is defined
by the NIB value u8VsFormEdThreshold (which is part of the structure
zps_tsNwkNibInitialValues). If the measured noise level for a channel is above
this threshold, the channel will be excluded from further consideration. Therefore, if all
the channels in the scan are noisier than the threshold allows, no network will be
formed.

The stack then re-scans the channels that passed the noise threshold test (if any) and
selects the one with the lowest beacon count in which to form the network. Note that:

 This assessment takes into account IEEE802.15.4 beacons only and no activity
from networks based on other systems, such as Wi-Fi

 The assessment is based on beacons only and does not consider the noise
levels of the shortlisted channels

Default Behaviour

To avoid the situation in which no network is formed, the default value of
u8VsFormEdThreshold is 0xFF, which is a special value and not a noise threshold.
In this case, the network is always formed in the channel with the lowest IEEE802.15.4
beacon activity (no noise level assessment is performed).

Customising the Scan

You can implement network formation based on the noise level threshold, as
described above, by setting u8VsFormEdThreshold to an appropriate value in the
range 0 to 254. In the following code fragment, a noise level threshold of 100 is set:

ZPS_psNwkNibGetHandle(ZPS_pvAplZdoGetNwkHandle())->u8VsFormEdThreshold = 100

Thus, in the above case, all channels with a noise level above 100 will be rejected.

If no suitable channel is found and no network formed, the application can dynamically
increase the value of u8VsFormEdThreshold and initiate another scan.
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 439

Appendices
C. Glossary

Term Description

Address A numeric value that is used to identify a network node. In ZigBee, the
device’s 64-bit IEEE/MAC address or 16-bit network address is used.

AIB APS Information Base: A database for the Application Support (APS) layer
of the ZigBee stack, containing attributes concerned with system security.

APDU Application Protocol Data Unit: Part of a wireless network message that is
handled by the application and contains user data.

API Application Programming Interface: A set of programming functions that
can be incorporated in application code to provide an easy-to-use interface
to underlying functionality and resources.

APS Application Support: A sub-layer of the Application layer of the ZigBee
stack, relating to communications with applications, binding and security.

Application The program that deals with the input/output/processing requirements of
the node, as well as high-level interfacing to the network.

Application Profile A collection of device descriptors that characterise an application for a par-
ticular market sector. An application profile can be public or private. A pub-
lic profile is identified by a 16-bit number, assigned by the ZigBee Alliance.

Attribute A data entity used by an application, e.g. a temperature measurement. It is
part of a ‘cluster’ along with a set of commands which can be used to pass
attribute values between applications or modify attributes.

Binding The process of associating an endpoint on one node with an endpoint on
another node, so that communications from the source endpoint are auto-
matically routed to the destination endpoint without specifying addresses.

Channel A narrow frequency range within the designated radio band - for example,
the IEEE 802.15.4 2400-MHz band is divided into 16 channels. A wireless
network operates in a single channel which is determined at network initial-
isation.

Child A node which is connected directly to a parent node and for which the par-
ent node provides routing functionality. A child can be an End Device or
Router. Also see Parent.

Cluster A collection of attributes and commands associated with the endpoint for
an application. The commands are used to communicate or modify attrib-
ute values. A cluster has input and output sides - an output cluster issues a
command which is received and acted on by an input cluster.

Context Data Data which reflects the current state of the node. The context data must be
preserved during sleep (of an End Device).

Co-ordinator The node through which a network is started, initialised and formed - the
Co-ordinator acts as the seed from which the network grows, as it is joined
by other nodes. The Co-ordinator also usually provides a routing function.
All networks must have one and only one Co-ordinator.

End Device A node which has no networking role (such as routing) and is only con-
cerned with data input/output/processing. As such, an End Device cannot
be a parent but can sleep to conserve power.
440 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Endpoint A software entity that acts as a communications port for an application on a
ZigBee node. A node can support up to 240 endpoints, numbered 1 to 240.
Two special endpoints are also supported - endpoint 0 is used by the ZDO
and endpoint 255 is used for a broadcast to all endpoints on the node.

Extended PAN ID
(EPID)

A 64-bit identifier for a ZigBee PRO network that is assigned when the net-
work is started. A value can be pre-set or, alternatively, the IEEE/MAC
address of the Co-ordinator can be used as the EPID.

IEEE 802.15.4 A standard network protocol that is used as the lowest level of the ZigBee
software stack. Among other functionality, it provides the physical interface
to the network’s transmission medium (radio).

IEEE/MAC Address A unique 64-bit address that is allocated to a device at the time of manufac-
ture and is retained by the device for its lifetime. No two devices in the
world can have the same IEEE/MAC address.

Joining The process by which a device becomes a node of a network. The device
transmits a joining request. If this is received and accepted by a parent
node (Co-ordinator or Router), the device becomes a child of the parent.
Note that the parent must have “permit joining” enabled.

Mesh Network A wireless network topology in which all routing nodes (Routers and the
Co-ordinator) can communicate directly with each other, provided that they
are within radio range. This allows optimal and flexible routing, with alterna-
tive routes if the most direct route is not available.

Network Address A 16-bit address that is allocated to a ZigBee node when it joins a network.
The Co-ordinator always has the network address 0x0000. In IEEE
802.15.4 terminology, it is called the short address.

NIB NWK Information Base: A database containing attributes needed in the
management of the Network (NWK) layer of the ZigBee stack.

Node Descriptor A set of information about the capabilities of a node.

Node Power
Descriptor

A set of information about a node’s current and potential power supply.

NPDU Network Protocol Data Unit: The transmitted form of a wireless network
message (incorporates APDU and header/footer information from stack).

PAN ID Personal Area Network Identifier: This is a 16-bit value that uniquely identi-
fies the network - all neighbouring networks must have different PAN IDs.

Parent A node which allows other nodes (children) to join the network through it
and provides a routing function for these child nodes. A parent can be a
Router or the Co-ordinator. Also see Child.

Router A node which provides routing functionality (in addition to input/output/pro-
cessing) if used as a parent node. Also see Routing.

Routing The ability of a node to pass messages from one node to another, acting as
a stepping stone from the source node to the target node. Routing function-
ality is provided by Routers and the Co-ordinator. Routing is handled by the
network level software and is transparent to the application on the node.

Simple Descriptor A set of assorted information about a particular application/endpoint.

Term Description
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 441

Appendices
Sleep Mode An operating state of a node in which the device consumes minimal power.
During sleep, the only activity of the node may be to time the sleep duration
to determine when to wake up and resume normal operation. Only End
Devices can sleep.

Stack The hierarchical set of software layers used to operate a system. The high-
level user application is at the top of the stack and the low-level interface to
the transmission medium is at the bottom of the stack.

Stack Profile The set of features implemented from the ZigBee specification - that is, all
the mandatory features together with a subset of the optional features. The
ZigBee Alliance define two Stack Profiles for use with public Application
Profiles - ZigBee and ZigBee PRO.

UART Universal Asynchronous Receiver Transmitter: A standard interface used
for cabled serial communications between two devices (each device must
have a UART).

User Descriptor A user-defined description of a node (e.g. “KitchenLight“).

ZigBee Certified
Product

An end-product that uses ZigBee Compliant Platforms and public Applica-
tion Profiles, and which has been tested for ZigBee compliance and subse-
quently authorised to carry the ZigBee Alliance logo.

ZigBee Cluster
Library (ZCL)

A collection of clusters that can be individually employed in ZigBee
devices, as required, to implement the functionality of a device.

ZigBee Compliant
Platform

A component (such as a module) that has been tested for ZigBee compli-
ance and authorised to be used as a building block for a ZigBee end-prod-
uct.

ZigBee Device
Objects (ZDO)

A special application which resides in the Application Layer on all nodes
and performs various standard tasks (e.g. device discovery, binding). The
ZDO communicates via endpoint 0.

Term Description
442 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

 ZigBee PRO Stack
User Guide
Revision History

Version Date Comments

1.0 14-May-2015 First release of this User Guide which supports ZigBee SDK releases
with part numbers JN-SW-41xx that use the ‘BeyondStudio for NXP’
development platform.

The content of this User Guide follows on from JN-UG-3048 v2.5 and
includes the following updates: Default cluster, MAC Address table,
ZPS_bAplZdpUnpackResponse() and ZPS_eAplAfApsdeDataReq()
functions, extended error code handling, beacon filtering, table con-
figuration guidelines and other minor changes/corrections.

1.1 3-June-2015 Added recommended value of 6 seconds for ZigBee network param-
eter APS Security Timeout Period.

1.2 10-July-2015 Corrected description of callback function bTransportKeyDecider() to
include two parameters.

1.3 3-Aug-2016 Added:

• function ZPS_vAplAfEnableMcpsFilter() and description of packet
filtering on LQI value/link cost

• function ZPS_vSetOrphanUpdateDisable() and description of
disabling Orphan Notifications to the Trust Centre

• guidance on forcing retries of a message broadcast

1.4 19-Sep-2016 • Updated description of ZPS_vTCSetCallback() function and
bTransportKeyDecider() callback function

• Added appendix section on noise level assessment during network
formation

1.5 26-Apr-2017 • Corrected description of ZPS_tsAfBindRequestServerEvent
structure

• Added functions ZPS_vRemoveMacTableEntry() and
ZPS_u8AplGetMaxPayloadSize()
JN-UG-3101 v1.5 © NXP Laboratories UK 2017 443

ZigBee PRO Stack
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Semiconductors

For online support resources and contact details of your local NXP office or distributor, refer to:

www.nxp.com
444 © NXP Laboratories UK 2017 JN-UG-3101 v1.5

	Contents
	Preface
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Support Resources
	Trademarks
	Chip Compatibility

	Part I: Concept and Operational Information
	1. ZigBee PRO Overview
	1.1 ZigBee Network Nodes
	1.2 ZigBee PRO Network Topology
	1.3 Ideal Applications for ZigBee
	1.4 Wireless Radio Frequency Operation
	1.5 Battery-Powered Components
	1.6 Easy Installation and Configuration
	1.7 Highly Reliable Operation
	1.8 Secure Operating Environment
	1.9 Co-existence and Interoperability
	1.10 Profiles
	1.10.1 Stack Profiles
	1.10.2 Application Profiles

	2. ZigBee PRO Architecture and Operation
	2.1 Architectural Overview
	2.2 Network Level Concepts
	2.2.1 ZigBee Nodes
	2.2.2 Network Topology
	2.2.3 Neighbour Tables
	2.2.4 Network Addressing
	2.2.5 Network Identity

	2.3 Network Creation
	2.3.1 Starting a Network (Co-ordinator)
	2.3.2 Joining a Network (Routers and End Devices)

	2.4 Application Level Concepts
	2.4.1 Multiple Applications and Endpoints
	2.4.2 Descriptors
	2.4.3 Application Profiles
	2.4.4 Attributes and Clusters
	2.4.5 Discovery
	2.4.6 ZigBee Device Objects (ZDO)

	2.5 Network Routing
	2.5.1 Message Addressing and Propagation
	2.5.2 Route Discovery
	2.5.3 ‘Many-to-one’ Routing

	2.6 Network Communications
	2.6.1 Service Discovery
	2.6.2 Binding

	2.7 Detailed Architecture
	2.7.1 Software Levels

	3. ZigBee PRO Stack Software
	3.1 Software Overview
	3.1.1 ZigBee PRO APIs
	3.1.2 JenOS APIs

	3.2 Summary of API Functionality

	4. Application Development Overview
	4.1 Development Environment
	4.2 Development Resources
	4.3 Development Phases

	5. Application Coding with ZigBee PRO APIs
	5.1 Forming a Network
	5.1.1 Starting the Co-ordinator
	5.1.2 Starting Routers and End Devices
	5.1.3 Pre-determined Parents

	5.2 Discovering the Network
	5.2.1 Obtaining Network Properties
	5.2.2 Finding Compatible Endpoints
	5.2.3 Obtaining and Maintaining Node Addresses
	5.2.3.1 Obtaining IEEE Address
	5.2.3.2 Obtaining Network Address

	5.2.4 Obtaining Node Properties
	5.2.5 Maintaining a Primary Discovery Cache
	5.2.6 Discovering Routes

	5.3 Managing Group Addresses
	5.4 Binding
	5.4.1 Setting Up Bind Request Server
	5.4.2 Binding Endpoints
	5.4.3 Unbinding Endpoints
	5.4.4 Accessing Binding Tables

	5.5 Transferring Data
	5.5.1 Sending Data
	5.5.1.1 Unicast
	5.5.1.2 Broadcast
	5.5.1.3 Group Multicast
	5.5.1.4 Bound Transfer
	5.5.1.5 Inter-PAN Transfer

	5.5.2 Receiving Data
	5.5.3 Polling for Data
	5.5.4 Security in Data Transfers

	5.6 Leaving and Rejoining the Network
	5.6.1 Leaving the Network
	5.6.2 Rejoining the Network

	5.7 Return Codes and Extended Error Handling
	5.8 Implementing ZigBee Security
	5.8.1 Network-level Security Set-up
	5.8.2 Application-level Security Set-up
	5.8.3 Network Key Modification

	Part II: Reference Information
	6. ZigBee Device Objects (ZDO) API
	6.1 ZDO API Functions
	6.1.1 Network Deployment Functions
	ZPS_eAplZdoStartStack
	ZPS_eAplZdoGetDeviceType
	ZPS_eAplZdoDiscoverNetworks
	ZPS_eAplZdoJoinNetwork
	ZPS_eAplZdoRejoinNetwork
	ZPS_eAplZdoDirectJoinNetwork
	ZPS_eAplZdoOrphanRejoinNetwork
	ZPS_eAplZdoPermitJoining
	ZPS_u16AplZdoGetNetworkPanId
	ZPS_u64AplZdoGetNetworkExtendedPanId
	ZPS_u8AplZdoGetRadioChannel
	ZPS_eAplZdoBind
	ZPS_eAplZdoUnbind
	ZPS_eAplZdoBindGroup
	ZPS_eAplZdoUnbindGroup
	ZPS_ePurgeBindTable
	ZPS_eAplZdoPoll
	ZPS_eAplZdoLeaveNetwork
	ZPS_vNwkNibSetLeaveAllowed
	ZPS_vNwkSendNwkStatusCommand
	ZPS_vRemoveMacTableEntry
	ZPS_vSaveAllZpsRecords

	6.1.2 Security Functions
	ZPS_vAplSecSetInitialSecurityState
	ZPS_eAplZdoTransportNwkKey
	ZPS_eAplZdoSwitchKeyReq
	ZPS_eAplZdoRequestKeyReq
	ZPS_eAplZdoAddReplaceLinkKey
	ZPS_eAplZdoRemoveLinkKey
	ZPS_eAplZdoRemoveDeviceReq
	ZPS_eAplZdoSetDevicePermission
	ZPS_bAplZdoTrustCenterSetDevicePermissions
	ZPS_bAplZdoTrustCenterGetDevicePermissions
	ZPS_bAplZdoTrustCenterRemoveDevice
	ZPS_vTCSetCallback

	6.1.3 Addressing Functions
	ZPS_u16AplZdoGetNwkAddr
	ZPS_u64AplZdoGetIeeeAddr
	ZPS_eAplZdoAddAddrMapEntry
	ZPS_vPurgeAddressMap
	ZPS_u16AplZdoLookupAddr
	ZPS_u64AplZdoLookupIeeeAddr
	ZPS_u64NwkNibGetMappedIeeeAddr
	ZPS_bNwkFindAddIeeeAddr
	ZPS_vSetOverrideLocalIeeeAddr
	ZPS_eAplZdoGroupEndpointAdd
	ZPS_eAplZdoGroupEndpointRemove
	ZPS_eAplZdoGroupAllEndpointRemove

	6.1.4 Routing Functions
	ZPS_eAplZdoRouteRequest
	ZPS_eAplZdoManyToOneRouteRequest

	6.1.5 Object Handle Functions
	ZPS_pvAplZdoGetAplHandle
	ZPS_pvAplZdoGetMacHandle
	ZPS_pvAplZdoGetNwkHandle
	ZPS_psNwkNibGetHandle
	ZPS_psAplAibGetAib
	ZPS_psAplZdoGetNib
	ZPS_u64NwkNibGetEpid

	6.1.6 Optional Cluster Function
	ZPS_eAplZdoRegisterZdoFilterCallback

	6.2 ZDO Enumerations
	6.2.1 Security Keys (ZPS_teZdoNwkKeyState)
	6.2.2 Device Types (ZPS_teZdoDeviceType)
	6.2.3 Device Permissions (ZPS_teDevicePermissions)
	6.2.4 Trust Centre Permissions (ZPS_teTCDevicePermissions)

	7. Application Framework (AF) API
	7.1 AF API Functions
	7.1.1 Initialisation Functions
	ZPS_eAplAfInit
	ZPS_eAplAibSetApsUseExtendedPanId
	ZPS_vExtendedStatusSetCallback
	ZPS_bAppAddBeaconFilter
	ZPS_vAplAfEnableMcpsFilter
	ZPS_vNwkLinkCostCallbackRegister
	ZPS_vSetOrphanUpdateDisable

	7.1.2 Data Transfer Functions
	ZPS_eAplAfApsdeDataReq
	ZPS_eAplAfUnicastDataReq
	ZPS_eAplAfUnicastIeeeDataReq
	ZPS_eAplAfUnicastAckDataReq
	ZPS_eAplAfUnicastIeeeAckDataReq
	ZPS_eAplAfGroupDataReq
	ZPS_eAplAfBroadcastDataReq
	ZPS_eAplAfBoundDataReq
	ZPS_eAplAfBoundAckDataReq
	ZPS_eAplAfInterPanDataReq
	ZPS_u8AplGetMaxPayloadSize

	7.1.3 Endpoint Functions
	ZPS_vAplAfSetEndpointState
	ZPS_eAplAfGetEndpointState
	ZPS_eAplAfSetEndpointDiscovery
	ZPS_eAplAfGetEndpointDiscovery

	7.1.4 Descriptor Functions
	ZPS_eAplAfGetNodeDescriptor
	ZPS_eAplAfGetNodePowerDescriptor
	ZPS_eAplAfGetSimpleDescriptor

	7.2 AF Structures
	7.2.1 Descriptor Structures
	7.2.1.1 ZPS_tsAplAfNodeDescriptor
	7.2.1.2 ZPS_tsAplAfNodePowerDescriptor
	7.2.1.3 ZPS_tsAplAfSimpleDescriptor

	7.2.2 Event Structures
	7.2.2.1 ZPS_tsAfEvent
	7.2.2.2 ZPS_tuAfEventData
	7.2.2.3 ZPS_tsAfDataIndEvent
	7.2.2.4 ZPS_tsAfDataConfEvent
	7.2.2.5 ZPS_tsAfDataAckEvent
	7.2.2.6 ZPS_tsAfNwkFormationEvent
	7.2.2.7 ZPS_tsAfNwkJoinedEvent
	7.2.2.8 ZPS_tsAfNwkJoinFailedEvent
	7.2.2.9 ZPS_tsAfNwkDiscoveryEvent
	7.2.2.10 ZPS_tsAfNwkJoinIndEvent
	7.2.2.11 ZPS_tsAfNwkLeaveIndEvent
	7.2.2.12 ZPS_tsAfNwkLeaveConfEvent
	7.2.2.13 ZPS_tsAfNwkStatusIndEvent
	7.2.2.14 ZPS_tsAfNwkRouteDiscoveryConfEvent
	7.2.2.15 ZPS_tsAfPollConfEvent
	7.2.2.16 ZPS_tsAfNwkEdScanConfEvent
	7.2.2.17 ZPS_tsAfErrorEvent
	7.2.2.18 ZPS_tsAfZdoBindEvent
	7.2.2.19 ZPS_tsAfZdoUnbindEvent
	7.2.2.20 ZPS_tsAfZdoLinkKeyEvent
	7.2.2.21 ZPS_tsAfBindRequestServerEvent
	7.2.2.22 ZPS_tsAfInterPanDataIndEvent
	7.2.2.23 ZPS_tsAfInterPanDataConfEvent
	7.2.2.24 ZPS_tsAfZdpEvent

	7.2.3 Other Structures
	7.2.3.1 ZPS_tsNwkNetworkDescr
	7.2.3.2 ZPS_tsNwkNlmeCfmEdScan
	7.2.3.3 ZPS_tsInterPanAddress
	7.2.3.4 ZPS_tsAfProfileDataReq
	7.2.3.5 tsBeaconFilterType

	8. ZigBee Device Profile (ZDP) API
	8.1 ZDP API Functions
	8.1.1 Address Discovery Functions
	ZPS_eAplZdpNwkAddrRequest
	ZPS_eAplZdpIEEEAddrRequest
	ZPS_eAplZdpDeviceAnnceRequest

	8.1.2 Service Discovery Functions
	ZPS_eAplZdpNodeDescRequest
	ZPS_eAplZdpPowerDescRequest
	ZPS_eAplZdpSimpleDescRequest
	ZPS_eAplZdpExtendedSimpleDescRequest
	ZPS_eAplZdpComplexDescRequest
	ZPS_eAplZdpUserDescRequest
	ZPS_eAplZdpMatchDescRequest
	ZPS_eAplZdpActiveEpRequest
	ZPS_eAplZdpExtendedActiveEpRequest
	ZPS_eAplZdpUserDescSetRequest
	ZPS_eAplZdpSystemServerDiscoveryRequest
	ZPS_eAplZdpDiscoveryCacheRequest
	ZPS_eAplZdpDiscoveryStoreRequest
	ZPS_eAplZdpNodeDescStoreRequest
	ZPS_eAplZdpPowerDescStoreRequest
	ZPS_eAplZdpSimpleDescStoreRequest
	ZPS_eAplZdpActiveEpStoreRequest
	ZPS_eAplZdpFindNodeCacheRequest
	ZPS_eAplZdpRemoveNodeCacheRequest

	8.1.3 Binding Functions
	ZPS_eAplZdpEndDeviceBindRequest
	ZPS_eAplZdpBindUnbindRequest
	ZPS_eAplZdpBindRegisterRequest
	ZPS_eAplZdpReplaceDeviceRequest
	ZPS_eAplZdpStoreBkupBindEntryRequest
	ZPS_eAplZdpRemoveBkupBindEntryRequest
	ZPS_eAplZdpBackupBindTableRequest
	ZPS_eAplZdpRecoverBindTableRequest
	ZPS_eAplZdpBackupSourceBindRequest
	ZPS_eAplZdpRecoverSourceBindRequest

	8.1.4 Network Management Services Functions
	ZPS_eAplZdpMgmtNwkDiscRequest
	ZPS_eAplZdpMgmtLqiRequest
	ZPS_eAplZdpMgmtRtgRequest
	ZPS_eAplZdpMgmtBindRequest
	ZPS_eAplZdpMgmtLeaveRequest
	ZPS_eAplZdpMgmtDirectJoinRequest
	ZPS_eAplZdpMgmtPermitJoiningRequest
	ZPS_eAplZdpMgmtCacheRequest
	ZPS_eAplZdpMgmtNwkUpdateRequest

	8.1.5 Response Data Extraction Function
	ZPS_bAplZdpUnpackResponse

	8.2 ZDP Structures
	8.2.1 Descriptor Structures
	8.2.1.1 ZPS_tsAplZdpNodeDescriptor
	8.2.1.2 ZPS_tsAplZdpNodePowerDescriptor
	8.2.1.3 ZPS_tsAplZdpSimpleDescType

	8.2.2 ZDP Request Structures
	8.2.2.1 ZPS_tsAplZdpNwkAddrReq
	8.2.2.2 ZPS_tsAplZdpIEEEAddrReq
	8.2.2.3 ZPS_tsAplZdpDeviceAnnceReq
	8.2.2.4 ZPS_tsAplZdpNodeDescReq
	8.2.2.5 ZPS_tsAplZdpPowerDescReq
	8.2.2.6 ZPS_tsAplZdpSimpleDescReq
	8.2.2.7 ZPS_tsAplZdpExtendedSimpleDescReq
	8.2.2.8 ZPS_tsAplZdpComplexDescReq
	8.2.2.9 ZPS_tsAplZdpUserDescReq
	8.2.2.10 ZPS_tsAplZdpMatchDescReq
	8.2.2.11 ZPS_tsAplZdpActiveEpReq
	8.2.2.12 ZPS_tsAplZdpExtendedActiveEpReq
	8.2.2.13 ZPS_tsAplZdpUserDescSet
	8.2.2.14 ZPS_tsAplZdpSystemServerDiscoveryReq
	8.2.2.15 ZPS_tsAplZdpDiscoveryCacheReq
	8.2.2.16 ZPS_tsAplZdpDiscoveryStoreReq
	8.2.2.17 ZPS_tsAplZdpNodeDescStoreReq
	8.2.2.18 ZPS_tsAplZdpPowerDescStoreReq
	8.2.2.19 ZPS_tsAplZdpSimpleDescStoreReq
	8.2.2.20 ZPS_tsAplZdpActiveEpStoreReq
	8.2.2.21 ZPS_tsAplZdpFindNodeCacheReq
	8.2.2.22 ZPS_tsAplZdpRemoveNodeCacheReq
	8.2.2.23 ZPS_tsAplZdpEndDeviceBindReq
	8.2.2.24 ZPS_tsAplZdpBindUnbindReq
	8.2.2.25 ZPS_tsAplZdpBindRegisterReq
	8.2.2.26 ZPS_tsAplZdpReplaceDeviceReq
	8.2.2.27 ZPS_tsAplZdpStoreBkupBindEntryReq
	8.2.2.28 ZPS_tsAplZdpRemoveBkupBindEntryReq
	8.2.2.29 ZPS_tsAplZdpBackupBindTableReq
	8.2.2.30 ZPS_tsAplZdpRecoverBindTableReq
	8.2.2.31 ZPS_tsAplZdpBackupSourceBindReq
	8.2.2.32 ZPS_tsAplZdpRecoverSourceBindReq
	8.2.2.33 ZPS_tsAplZdpMgmtNwkDiscReq
	8.2.2.34 ZPS_tsAplZdpMgmtLqiReq
	8.2.2.35 ZPS_tsAplZdpMgmtRtgReq
	8.2.2.36 ZPS_tsAplZdpMgmtBindReq
	8.2.2.37 ZPS_tsAplZdpMgmtLeaveReq
	8.2.2.38 ZPS_tsAplZdpMgmtDirectJoinReq
	8.2.2.39 ZPS_tsAplZdpMgmtPermitJoiningReq
	8.2.2.40 ZPS_tsAplZdpMgmtCacheReq
	8.2.2.41 ZPS_tsAplZdpMgmtNwkUpdateReq

	8.2.3 ZDP Response Structures
	8.2.3.1 ZPS_tsAplZdpNwkAddrRsp
	8.2.3.2 ZPS_tsAplZdpIeeeAddrRsp
	8.2.3.3 ZPS_tsAplZdpNodeDescRsp
	8.2.3.4 ZPS_tsAplZdpPowerDescRsp
	8.2.3.5 ZPS_tsAplZdpSimpleDescRsp
	8.2.3.6 ZPS_tsAplZdpExtendedSimpleDescRsp
	8.2.3.7 ZPS_tsAplZdpComplexDescRsp
	8.2.3.8 ZPS_tsAplZdpUserDescRsp
	8.2.3.9 ZPS_tsAplZdpMatchDescRsp
	8.2.3.10 ZPS_tsAplZdpActiveEpRsp
	8.2.3.11 ZPS_tsAplZdpExtendedActiveEpRsp
	8.2.3.12 ZPS_tsAplZdpUserDescConf
	8.2.3.13 ZPS_tsAplZdpSystemServerDiscoveryRsp
	8.2.3.14 ZPS_tsAplZdpDiscoveryCacheRsp
	8.2.3.15 ZPS_tsAplZdpDiscoveryStoreRsp
	8.2.3.16 ZPS_tsAplZdpNodeDescStoreRsp
	8.2.3.17 ZPS_tsAplZdpPowerDescStoreRsp
	8.2.3.18 ZPS_tsAplZdpSimpleDescStoreRsp
	8.2.3.19 ZPS_tsAplZdpActiveEpStoreRsp
	8.2.3.20 ZPS_tsAplZdpFindNodeCacheRsp
	8.2.3.21 ZPS_tsAplZdpRemoveNodeCacheRsp
	8.2.3.22 ZPS_tsAplZdpEndDeviceBindRsp
	8.2.3.23 ZPS_tsAplZdpBindRsp
	8.2.3.24 ZPS_tsAplZdpUnbindRsp
	8.2.3.25 ZPS_tsAplZdpBindRegisterRsp
	8.2.3.26 ZPS_tsAplZdpReplaceDeviceRsp
	8.2.3.27 ZPS_tsAplZdpStoreBkupBindEntryRsp
	8.2.3.28 ZPS_tsAplZdpRemoveBkupBindEntryRsp
	8.2.3.29 ZPS_tsAplZdpBackupBindTableRsp
	8.2.3.30 ZPS_tsAplZdpRecoverBindTableRsp
	8.2.3.31 ZPS_tsAplZdpBackupSourceBindRsp
	8.2.3.32 ZPS_tsAplZdpRecoverSourceBindRsp
	8.2.3.33 ZPS_tsAplZdpMgmtNwkDiscRsp
	8.2.3.34 ZPS_tsAplZdpMgmtLqiRsp
	8.2.3.35 ZPS_tsAplZdpMgmtRtgRsp
	8.2.3.36 ZPS_tsAplZdpMgmtBindRsp
	8.2.3.37 ZPS_tsAplZdpMgmtLeaveRsp
	8.2.3.38 ZPS_tsAplZdpMgmtDirectJoinRsp
	8.2.3.39 ZPS_tsAplZdpMgmtPermitJoiningRsp
	8.2.3.40 ZPS_tsAplZdpMgmtCacheRsp
	8.2.3.41 ZPS_tsAplZdpMgmtNwkUpdateNotify

	8.3 Broadcast Addresses

	9. Event and Status Codes
	9.1 Events
	9.2 Return/Status Codes
	9.2.1 ZDP Codes
	9.2.2 APS Codes
	9.2.3 NWK Codes
	9.2.4 MAC Codes
	9.2.5 Extended Error Codes

	10. ZigBee Network Parameters
	10.1 Basic Parameters
	10.2 Profile Definition Parameters
	10.3 Cluster Definition Parameters
	10.4 Co-ordinator Parameters
	10.5 Router Parameters
	10.6 End Device Parameters
	10.7 Advanced Device Parameters
	10.7.1 Endpoint Parameters
	10.7.2 Bound Addressing Table
	10.7.3 PDU Manager
	10.7.4 Group Addressing Table
	10.7.5 RF Channels
	10.7.6 Node Descriptor
	10.7.7 Node Power Descriptor
	10.7.8 Key Descriptor Table
	10.7.9 Trust Centre
	10.7.10 ZDO Configuration

	Part III: Configuration Information
	11. Network and OS Configuration
	11.1 Configuration Principles
	11.2 Configuring ZigBee Network Parameters

	12. ZPS Configuration Editor
	12.1 Getting Started
	12.2 Using the ZPS Configuration Editor
	12.2.1 Creating a New ZPS Configuration
	12.2.2 Adding Device Types
	12.2.3 Setting Co-ordinator Properties
	12.2.4 Setting Advanced Device Parameters

	Part IV: Appendices
	A. Handling Stack Events
	B. Application Design Notes
	B.1 Fragmented Data Transfers
	B.1.1 Enabling/Disabling Fragmentation
	B.1.2 Configuring Acknowledgements
	B.1.3 Acknowledgement Timeout

	B.2 Sending Data to Sleeping End Devices
	B.2.1 Acknowledged Data Transmission to Sleeping End Device
	B.2.2 Fragmented Data Transmission to Sleeping End Device

	B.3 Clearing Stack Context Data Before a Rejoin
	B.4 Beacon Filtering Guidelines
	B.5 Table Configuration Guidelines
	B.5.1 Neighbour Table
	B.5.2 Address Map Table
	B.5.3 MAC Address Table
	B.5.4 Routing Table
	B.5.5 Broadcast Transaction Table
	B.5.6 Route Discovery Table
	B.5.7 Discovery Table
	B.5.8 Route Record Table

	B.6 Received Message Queues
	B.7 Filtering Packets on LQI Value/Link Cost
	B.7.1 Link Cost
	B.7.2 Packet Filtering in Operation
	B.7.3 Packet Filtering Configuration

	B.8 Disabling Orphan Notifications to the Trust Centre
	B.9 Forcing Broadcast Retries
	B.10 Noise Threshold for Forming a Network

	C. Glossary

