

User's Manual

EML08QLUM Version 1.1 June 3, 2004

M68EML08QL Emulation Module

Important Notice to Users

While every effort has been made to ensure the accuracy of all information in this document, Motorola assumes no liability to any party for any loss or damage caused by errors or omissions or by statements of any kind in this document, its updates, supplements, or special editions, whether such errors are omissions or statements resulting from negligence, accident, or any other cause. Motorola further assumes no liability arising out of the application or use of any information, product, or system described herein: nor any liability for incidental or consequential damages arising from the use of this document. Motorola disclaims all warranties regarding the information contained herein, whether expressed, implied, or statutory, *including implied warranties of merchantability or fitness for a particular purpose*. Motorola makes no representation that the interconnection of products in the manner described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting or license to make, use or sell equipment constructed in accordance with this description.

Trademarks

This document includes these trademarks:

Motorola and the Motorola logo are registered trademarks of Motorola, Inc.

Windows is a registered trademark of Microsoft Corporation in the U.S. and other countries.

Intel is a registered trademark of Intel Corporation.

Motorola, Inc., is an Equal Opportunity / Affirmative Action Employer.

For an electronic copy of this book, visit Motorola's web site at http://e-www.motorola.com/ © Motorola, Inc., 2003; All Rights Reserved

M68EML08QL Emulation Module - Version 1.1

User's Manual

2 MOTOROLA

User's Manual

User's Manual — M68EML08QL Emulation Module

Table of Contents

M68EML08OL Emulation Module - Version 1.1

M68EML08QL Quick Start Guide 3 - Install the emulation module into your development system 9 4 - Connect the emulation module to your target system 10 7 - Connect MMDS or MMEVS to your computer and apply power 11 **Section 1. General Information** 1.1 1.2 1.2.1 1.2.2 Motorola Modular Evaluation System (MMEVS0508)............... 14 1.3 1.4 1.5 16 Section 2. Preparation and Operation 2.1 2.2 2.3

Table of Contents

2.4	Limitations	. 23
2.5	Running the Automated Board Test	. 25
2.5.1	Set up the hardware	. 25
2.5.2	Install the test software	. 25
2.5.3	Run the test.	. 25
	Section 3. Support Information	
3.1	Introduction	. 27
3.2	Target Connector J1	. 27
3.3	Logic Analyzer Connectors J2 and J13	. 28
3.4	Inverted Clock Connector J11	. 30
3.5	Analog-to-Digital Converter Reference Voltage Connector E3	. 30
3.6	Board Factory Test Connectors J12 and J14	. 31
3.7	Clock oscillator Y2	. 31
3.8	EM Board Socket Connectors P1 and P2	. 31

M68EML08QL Emulation Module - Version 1.1

User's Manual — M68EML08QL Emulation Module

List of Figures

1-1	M68EML08QL Emulator Module	16
1-2	Target Cable Assembly	18
3-1	Target Connector (J1) Pin Assignments	27
3-2	Logic Analyzer Connector J2 Pin Assignments	28
3-3	Logic Analyzer Connector J13 Pin Assignments	29
3-4	Connector J11 Pin Assignments	30
3-5	Connector E3 Pin Assignments	31
3-6	EM Connector P1 Pin Assignments	32
3-7	EM Connector P2 Pin Assignments.	34

List of Figures

M68EML08QL Emulation Module - Version 1.1

User's Manual — M68EML08QL Emulation Module

List of Tables

1-1	Specifications	16
1-2	M68EML08QL Target Cable and Head Assemblies	17
2-1	Configuration Components	20
3-1	Target Connector (J1) Signal Descriptions	28
3-2	Logic Analyzer Connector J2 Signal Descriptions	29
3-3	Logic Analyzer Connector J13 Signal Descriptions	30
3-4	Connector J11 Signal Descriptions	30
3-5	Connector E3 Signal Descriptions	31
3-6	EM Connector P1 Signal Descriptions	33
3-7	EM Connector P2 Signal Descriptions	35

List of Tables

M68EML08QL Emulation Module - Version 1.1

User's Manual — M68EML08QL Emulation Module

M68EML08QL Quick Start Guide

Make sure that power is disconnected from your M68EML08QL Emulator Module and from your target system. Then follow these quick-start steps to make your M68EML08QL ready for use as quickly as possible.

1 - Set Jumpers W3 and W4

Set 6-pin jumper header W3 and W4 to specify the MCU you wish to emulate:

- Jumper W3 specifies the MCU suffix (ex., 2, 3, or 4 for QL2, QL3, or QL4)
- Jumper W4 specifies the MCU family (QL or QT/QY)

2 - Set Jumper W2

Set 6-pin header W2 to specify the clock source for the EM MCU when external clock is enabled (you must switch from internal clock to external clock in your software):

- Jumper between pins 1 and 2 = Replaceable EM 32.768 kHz oscillator
 Y1
- Jumper between pins 3 and 4 = Debugger-controlled PFB oscillator (factory default)
- Jumper between pins 5 and 6 = XTAL, 4.9152 MHz crystal at Y2

3 - Install the emulation module into your development system

To use the M68EML08QL in an MMDS0508 Motorola Modular Development System (MMDS) or MMEVS0508 Motorola Modular Evaluation System (MMEVS):

User's Manual

M68EML08QL Quick Start Guide

- Remove the access panel of the station-module enclosure if using an MMDS
- Insert the M68EML08QL through the access-panel opening
- Fit together M68EML08QL connectors P1 and P2 (on the bottom of the board) to connectors P11 and P12, respectively, of the MMDS or MMEVS control board
- Snap the corners of the M68EML08QL onto the plastic standoffs

4 - Connect the emulation module to your target system

Use a target flex A cable, appropriate target head adapter, and surface mount adapter. Plug the appropriate end of the flex cable into M68EML08QL connector J1.

- If the M68EML08QL is in an MMDS station module, run the flex cable through the slit in the station-module enclosure, then replace the access panel.
- Plug the other end of the flex cable into the target head. Solder the appropriate surface mount adapter to your target if necessary. Then plug the target head into the surface mount adapter on your target system.

5 - Install the development software

Refer to your development software installation or user guide.

6 - Copy personality files to your computer

The factory ships M68EML08QL MCU personality files on the documentation CD-ROM.

• If you're using the CodeWarrior IDE, find the installation directory and copy the personality files named 00C33Vxx.mem, 00C34Vxx.mem, 00C71Vxx.mem, 00C72Vxx.mem, and 00C73Vxx.mem from the documentation CD-ROM to the ...\prog\reg subdirectory of the CodeWarrior IDE main directory.

M68EML08QL Emulation Module - Version 1.1

• If you're using the P&E debugger, copy these files to the installation directory that contains MMDS08.EXE or MMEVS08.EXE and rename them from 00C33Vxx.mem, 00C34Vxx.mem, 00C71Vxx.mem, 00C72Vxx.mem, and 00C73Vxx.mem to 00433Vxx.mem, 00434Vxx.mem, 00471Vxx.mem, 00472Vxx.mem, and 00473Vxx.mem respectively.

7 - Connect MMDS or MMEVS to your computer and apply power

When you make sure that the serial cable connections between your development system and your computer are sound, you are ready to apply power and use your M68EML08QL.

This completes the quick start for your M68EML08QL.

M68EML08QL Quick Start Guide

User's Manual — M68EML08QL Emulation Module

Section 1. General Information

1.1 Introduction

This user's manual explains connection and configuration of the Motorola M68EML08QL Emulator Module. The M68EML08QL makes possible emulation and debugging of target systems based on MC68HC908QL2, MC68HC908QL3, MC68HC908QL4, MC68HC908QT1/QY1, MC68HC908QT2/QY2, or MC68HC908QT4/QY4 microcontroller units (MCU).

The M68EML08QL can be part of two development systems. This section describes those systems and explains the layout of the M68EML08QL.

1.2 Development Systems

Your M68EML08QL can be part of two Motorola HC08 processor family development systems: the MMDS0508 Motorola Modular Development System (MMDS) or the MMEVS0508 Evaluation System (MMEVS). Refer to the specific development system user's manual for more information.

1.2.1 Motorola Modular Development System (MMDS0508)

The MMDS is an emulator system that provides a bus state analyzer and real-time memory windows for designing and debugging a target system. A complete MMDS consists of:

- a Station Module the metal MMDS enclosure, containing the platform board and the internal power supply. Most system cables connect to the MMDS station module.
- an Emulator Module (EM) such as the M68EML08QL, a separately- purchased printed circuit board that enables system functionality for a specific set of MCUs. The EM fits into the station module through a removable panel in the enclosure top. The EM has connectors for a target cable and for cables to a logic analyzer. The cable runs to an optional target system through an aperture in the station-module enclosure, to connect directly to the emulator module.

User's Manual

General Information

- Two logic clip cable assemblies twisted-pair cables that connect the station module to your target system, a test fixture, an oscillator, or any other circuitry useful for evaluation or analysis. One end of each cable assembly has a molded connector, which fits into station-module pod A or pod B. Leads at the other end of each cable terminate in female probe tips. Ball clips come with the cable assemblies and may be attached to the female probe tips.
- a 9-lead RS-232 Serial Cable the cable that connects the MMDS to the host computer RS-232 port.
- System Software development software, on CD-ROM.
- **MMDS0508 Documentation** an MMDS operations manual (MMDS0508OM/D) and the appropriate EM user's manual.

You select the MMDS baud rate: 1200, 2400, 4800, 9600, 19200, 38400, 57600, or 115200.

Substituting a different EM enables your MMDS to emulate target systems based on different MCUs or MCU families. (Your Motorola representative can explain all the EMs available.)

1.2.2 Motorola Modular Evaluation System (MMEVS0508)

An MMEVS is an economical tool for designing, debugging, and evaluating target systems. A complete MMEVS consists of:

- a Platform Board (PFB) the bottom board, which supports the emulator module. The platform board has connectors for power and the the terminal or host computer.
- an Emulator Module (EM) such as the M68EML08QL, a separately purchased printed circuit board that enables system functionality for a specific set of MCUs. The EM fits onto the PFB. The EM has connectors for the target cable and for cables to a logic analyzer.
- a 9-to-25-pin Adapter a molded assembly that lets you connect the 9-pin cable to a 25-pin serial port.
- a 9-lead RS-232 Serial Cable the cable that connects the station module to the host computer RS-232 port.
- System Software development software, supplied on CD-ROM.

M68EML08QL Emulation Module - Version 1.1

• **MMEVS0508 Documentation** — an MMEVS operations manual (MMEVSOM/D) and the appropriate EM user's manual.

An MMEVS features automatic baud rate selection: 2400, 4800, 9600, 19200, 38400, or 57600.

Substituting a different EM enables your MMEVS to emulate target systems based on different MCUs or MCU families. (Your Motorola representative can explain all the EMs available.).

1.3 System Requirements

An IBM PC or compatible running Windows® 98, Windows 2000, or Windows NT® (version 4.0) with at least 32MB of RAM and an RS-232 serial port.

1.4 EM Layout

Figure 1-1 shows the layout of the M68EML08QL. Jumper header W1 specifies the operating voltage. Jumper header W2 specifies the clock signal source. Jumper headers W3 and W4 specifies the MCU to be emulated.

Target interface connector J1 connects the M68EML08QL to a target system, via the included target cable assembly. If you use your M68EML08QL as part of an MMDS, run the target cable assembly through the slit in the station module enclosure.

Connectors J2 and J13 connect to an external logic analyzer. Connector J11 is the source for an inverted clock signal. DIN connectors P1 and P2, on the bottom of the board connect the M68EML08QL to the platform board. The emulation MCU is at location U5. Connector E3 provides the A/D reference voltages. Connectors J12 and J14 are for EM board design and factory use only.

General Information

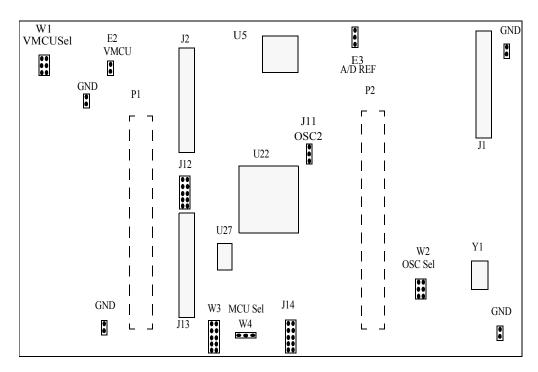


Figure 1-1 M68EML08QL Emulator Module

1.5 Specifications

Table 1-1 lists M68EML08QL specifications

Table 1-1 Specifications

Characteristic	Specifications		
Maximum Clock speed	32-MHz at 5V (8-MHz bus), 16-MHz at 3V (4-MHz bus)		
Temperature operating storage	-10° to +50° C -40° to +85° C		
MCU Extension I/O	HCMOS Compatible at Vmcu (5V or 3V)		
Relative humidity	0 to 90% (noncondensing)		
Power requirements	5VDC supplied from the MMDS or MMEVS		
Dimensions	5.5 X 8.0 X 0.75 inches (139.7 x 203.2 x 19.1 mm)		

M68EML08QL Emulation Module - Version 1.1

1.6 Target Cable Assemblies

To connect your M68EML08QL to a target system, you need a target cable and a target head adapter and footprint for the package you are using. See Figure 1-2.

The cable assembly consists of: a flex cable, a target head adapter, a male-to-male socket-saver and depending on your package, a surface mount adapter. One end of the target cable plugs onto M68EML08QL connector J1. The other end of the flex cable plugs onto the target head adapter, which plugs onto a DIP MCU socket or a surface mount adapter. You should solder the surface mount adapter directly onto the target-system board in place of the MCU. The socket-saver goes between the target head adapter and MCU socket or surface mount adapter. If you use it, it will reduce wear on the target head adapter. After many insertions, you can replace the socket-saver without replacing the entire target head adapter.

Table 1-2 lists target cable and head part numbers appropriate for the M68EML08QL.

Table 1-2 M68EML08QL Target Cable and Head Assemblies

MCU Package	Flex Cable Part Number	Target Head Adapter Part Number	Surface Mount Adapter Part Number	Socket-Saver Part Number
8-pin PDIP (QT) M68CBL05A M68TA08QTP8		M68TA08QTP8	User-Supplied Thru-Hole DIP Socket	Samtec APA-308-G-A1
8-pin SOIC (QT)	M68CBL05A	M68TA08QTP8	M68DIP8SOIC	Samtec APA-308-G-A1
8-pin DFN (QT)	M68CBL05A	M68TA08QTDFN8	M68DIP8DFN	Samtec APA-308-G-A1
16-pin PDIP (QY)	M68CBL05A	M68TA08QYP16	User-Supplied Thru-Hole DIP Socket	Samtec APA-316-G-A1
16-pin SOIC (QY)	M68CBL05A	M68TA08QYP16	M68DIP16SOIC	Samtec APA-316-G-A1
16-pin TSSOP (QY)	M68CBL05A	M68TA08QYT16	M68DIP16TSSOP	Samtec APA-316-G-A1
16-pin PDIP (QL)	M68CBL05A	M68TA08QLP16	User-Supplied Thru-Hole DIP Socket	Samtec APA-316-G-A1
16-pin SOIC (QL)	M68CBL05A	M68TA08QLP16	M68DIP16SOIC	Samtec APA-316-G-A1
16-pin TSSOP (QL)	M68CBL05A	M68TA08QLDT16	M68DIP16TSSOP	Samtec APA-316-G-A1

User's Manual

General Information

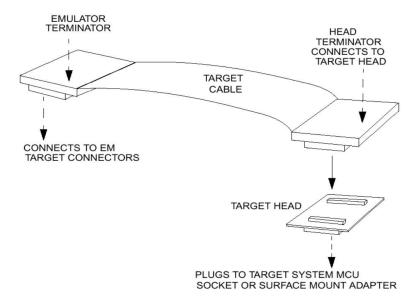


Figure 1-2 Target Cable Assembly

User's Manual — M68EML08QL Emulation Module

Section 2. Preparation and Operation

2.1 Introduction

This section explains M68EML08QL preparation: how to set board jumpers and how to make system connections.

Note that you can reconfigure an M68EML08QL already installed in an MMDS0508 station module enclosure. To do so, switch off station-module power and target power, remove the panel, then follow the guidance of this section. Similarly, you can reconfigure an M68EML08QL already installed on the MMEVS platform board, provided that you disconnect platform-board power and target power.

CAUTION: ESD Protection

Motorola development systems include open-construction printed circuit boards that contain static-sensitive components. These boards are subject to damage from electrostatic discharge (ESD). To prevent such damage, you must use static-safe work surfaces and grounding straps, as defined in ANSI/EOS/ESD S6.1 and ANSI/EOS/ESD S4.1. All handling of these boards must be in accordance with ANSI/EAI 625.

Preparation and Operation

2.2 Configuring Board Components

Table 2-1 is a summary of configuration settings.

Table 2-1 Configuration Components

Component	Position	Effect
Voltage Select Header, W1 Note: The tracking function is enabled out of the factory. This header is not populated on factory boards. You must remove resistor R2 and solder a 2x3 header onto the board if you wish to use forced 3V or 5V operation. (Use only one jumper in this header.)	W1 1 000 2 5 6	TRCK: Specifies that the voltage track the target voltage (2.7V to 5.5V). Note: This is the factory setting. You must remove resistor R2 to turn off this setting.
	W1 1 2 5 6	5V: Specifies 5.0-volt operating power.
	W1 1	3V: Specifies 3.0-volt operating power.
Oscillator Select Header, W3 (Use only one jumper in this header.)	W2 1	PFB: Specifies the oscillator clock signal from the platform board (PFB). Factory setting
	W2 1 2 5 6	EM: Specifies the clock signal from the 32.768-kilohertz oscillator on the EM board at Y1 (EM).

M68EML08QL Emulation Module - Version 1.1

Table 2-1 Configuration Components (Continued)

Component	Position	Effect			
	W2 1	XTAL: Specifies the clock signal from a 4.9152-megahertz crystal installed at Y2 (XTAL).			
MCU Family Select		QL: Specifies emulation of a QL family MCU			
Header, W4	W4 3 1	Factory setting			
	W4 3 1	QTQY: Specifies emulation of a QT or QY family MCU.			
MCU Suffix Select Header, W3	W3	4: Specifies an MCU suffix of 4 (ex., QL4, QT4, or QY4).			
Settings other than those described here are not currently supported. (Use only one jumper in this header.)	1 2 2 9 10 10 16	Factory setting			
	9 9 15 15	1: Specifies an MCU suffix of 1 (ex., QT1 or QY1).			
	9 0 10 16	2: Specifies an MCU suffix of 2 (ex., QL2, QT2 or QY2).			

Preparation and Operation

Table 2-1 Configuration Components (Continued)

Component Position		Effect
		3: Specifies an MCU suffix of 3 (ex., QL3).
	W3 1 2 9 10 16	

2.3 Remaining System Installation

When you have configured jumper headers, you are ready to complete M68EML08QL installation:

- To install the M68EML08QL in an MMDS0508 station module, remove the panel from the station module top. Fit together EM connectors P1 and P2 (on the bottom of the board) and platform-board connectors P11 and P12, respectively. Snap the corners of the EM onto the plastic standoffs. Connect the target cable, if appropriate, then replace the panel.
- If your M68EML08QL already is installed in the station module, reconnect the target cable (if necessary). Replace the panel.
- To install the M68EML08QL on an MMEVS platform board, fit together EM connectors P1 and P2 (on the bottom of the board) and platform-board connectors P11 and P12, respectively. Snap the corners of the EM onto the plastic standoffs.
- If you will use the P&E development software, copy personality files 00C33Vxx.mem, 00C34Vxx.mem, 00C71Vxx.mem, 00C72Vxx.mem, and 00C73Vxx.mem from the documentation CD-ROM to the installation directory that contains file MMDS08.EXE or MMEVS08.EXE. Then rename these files to 00433Vxx.mem, 00434Vxx.mem, 00471Vxx.mem, 00472Vxx.mem, and 00473Vxx.mem respectively.

M68EML08QL Emulation Module - Version 1.1

• If you will use the CodeWarrior IDE development software, copy personality files 00C33Vxx.mem, 00C34Vxx.mem, 00C71Vxx.mem, 00C72Vxx.mem, and 00C73Vxx.mem from the documentation CD-ROM to the . . . \prog\mem subdirectory of the CodeWarrior IDE installation directory.

Additionally, if you will use CodeWarrior IDE development software, you will need to copy the M68EML08QL register files MCU0C33.reg, MCU0C34.reg, MCU0C71.reg, MCU0C72.reg, and MCU0C73.reg from the documentation CD-ROM to the . . . \prog\reg subdirectory of the CodeWarrior IDE installation directory. The CodeWarrior IDE uses these files to implement optional functionality such as letting you view or modify register contents by name rather than by address. A register file is an ASCII text file, which you may customize. (The CodeWarrior IDE user's manual explains how to create and use such files.)

At this point, you are ready to make any remaining cable connections and apply power. For instructions, consult the MMDS or MMEVS operations manual.

2.4 Limitations

Limitations listed here apply to using your M68EML08QL versus using the actual MCU in your target system:

Limitation 1 - PORT A Data Register (PORTA): If you set PORT A Data Direction register bit 6, then PORT A Data register (DDRA) bit 6, indicating and auto-wakeup interrupt, will not read correctly. You should always clear DDRA bit 6..

Limitation 2 - Data Direction Register A (DDRA): It is possible to set bit 2 of DDRA as an output. This will cause PORT A bit 2 not to read as an input, but as what you set in the data register. You should always clear DDRA bit 2.

Limitation 3 - PORT A and B Input Pullup Enable Register (PTAPUE and PTBPUE): All bits of PTAPUE are write-only and their values are 0 when read. Bits 6 and 7 of PTBPUE are write only and their values are 0 when read. You should not use read-modify-write operations on these registers (such as BCLR or BSET instructions).

Limitation 4 - Configuration Register 2 (CONFIG2): Out of reset, bit 0 will always read 1. Once you modify this register it will read correctly. All other bits read and write as expected. All bit functionality is as expected.

User's Manual

Preparation and Operation

Limitation 5 - Oscillator Status and Trim Registers (OSCSTAT and OSCTRIM): This oscillator only matches the alpha version of silicon. You must use the BFS bit to select one of two internal clock frequencies.

Out of reset OSCSTAT will read 0x20 instead of 0x00 at address 0x36. Bit 0 (EGCST) will not reflect the status of the external clock at address 0x36. At address 0x36, bits 0 thru 2 will not always read back what was written. When emulating a QL family MCU, this register will also exist and be fully functional in all respects for reading and writing at address 0x51, but will have the above limitations at location 0x36. If using it at address 0x36, you should not use read-modify-write operations (such as BSET or BCLR instructions).

The OSCTRIM register will always read 0x00 at address 0x38 but can be written. When emulating a QL family MCU, this register will also exist and be fully functional in all respects for reading and writing at address 0x52, but will have the above limitations at location 0x38. If using it at address 0x38, you should not use read-modify-write operations (such as BSET or BCLR instructions).

Limitation 6 - ADC Input Clock Register (ADICLK): When emulating a QT or QY family MCU, out of reset the emulator will use a 10-bit A/D instead of 8-bit as expected in those parts. You must explicitly change to 8-bit mode to correctly emulate those MCUs. See the QL chip data book for more details on how to change from 10-bit to 8-bit mode. The A/D pins match the final version of silicon as opposed to the alpha version.

Limitation 7 - Crystals: You should not change the value of crystal Y2. You may change the oscillator at Y1 to any value within the range specified for the external clock in the data book.

Limitation 8 - TCLK: The TCLK timer clock function on PTA2 is not functional on the emulator. When this function is enabled, the pin on the emulator has no function.

Limitation 9 - Factory Trimming: There is a factory trim value located at address 0xFFC0 when you first power on the emulator. You may overwrite this value as if it were flash. After a normal reset it will maintain the value you have set. This value can be copied to the trim register and used if you are operating at 5V and you are using the 3.2-megahertz (BFS low) internal bus frequency option. Other modes of operation will require other unprovided trim values to have a trimmed internal clock frequency.

Limitation 10 - Keyboard Polarity Register (KBIPR): The keyboard polarity register is located at address \$08.

2.5 Running the Automated Board Test

This section explains how to test the EML08QL emulation module using test software located on the included documentation CD-ROM. This test allow you to verify the proper operation of your board.

2.5.1 Set up the hardware

Follow the setup steps outlined in the Quickstart section of this user's manual. You must have the CodeWarrior IDE for HC08V3.0 or later installed on your computer to run this test. Do not connect the emulator board to your target system during this test.

2.5.2 Install the test software

The factory ships the EML08QL with the test software. Double-click the file EML08QL Test.exe on the included documentation CD-ROM to run the setup program and follow the installation instructions. You must install this softare in the default location.

2.5.3 Run the test

Run the test by choosing Programs -> EML08QL -> EML08QL in the Windows Start Menu. Then follow the steps below:

- Click on the *Setup* button and verify that your hardware is connected as shown in the diagram. Click *Hide* to close the diagram.
- Click on the *Initial/Final Jumper Configuration* button and verify that the jumper setting on your board match the diagram. Verify that you have the factory installed 32.768kHz oscillator in location Y2. Click *Hide* to close the diagram.
- Apply power to the emulator.
- Click on the *Test* button.
- Click *OK* when you are ready to run the test.
- Move the jumpers as directed during the test.
- When the test is complete, you can verify that each item tested passed by checking that its box is green. The message window also displays the results of each test.

User's Manual

Preparation and Operation

• You may now either run the test again or exit this program by clicking on the *Exit* button.

User's Manual — M68EML08QL Emulation Module

Section 3. Support Information

3.1 Introduction

This section consists of connector pin assignments, connector signal descriptions, and other information that may be useful in your development activities.

3.2 Target Connector J1

Connector J1 is the M68EML08QL target connector. Figure 3-1 and Table 3-1 give the pin assignments and signal descriptions for connector J1.

		J2		
EVDD	1	• •	2	PTB0
PTB1	3	• •	4	PTB2
PTB3	5	• •	6	PTB7
G	7	• •	8	PTB6
	9	• •	10	PTA0
G G G G G	11	• •	12	G
G	13	• •	14	PTA1
G	15	• •	16	G
G	17	• •	18	PTA4
G	19	• •	20	G
G	21	• •	22	PTA5
G	23	• •	24	G
PTB4	25	• •	26	PTA2
PTB5	27	• •	28	PTA3
G	29	• •	30	G
G	31	• •	32	Ğ
G G	33	• •	34	G G
G	35	• •	36	G
G G	37	• •	38	Ğ
G	39	• •	40	G

Figure 3-1 Target Connector (J1) Pin Assignments

User's Manual

Table 3-1 Target Connector (J1) Signal Descriptions

Pin	Label	Signal
1	EVDD	EXTERNAL VOLTAGE DETECT — Input signal that detects target-system
		power-up.
7, 9, 11, 12, 13, 15, 16, 17, 19,	G	GROUND
20, 21, 23, 24, 29 — 40		
2 — 6, 8, 25, 27	PB0 — PB7	PORT B (lines 0—7) — General-purpose I/O lines controlled by software via data direction and data registers.
10, 14, 18, 22, 26, 28	PA0 — PA5 (not in exact order)	PORT A (lines 0—5) — General-purpose I/O lines controlled by software via data direction and data registers.

3.3 Logic Analyzer Connectors J2 and J13

Connectors J2 and J13 are the M68EML08QL logic analyzer connectors. Figure 3-2 and Table 3-2 give pin assignments and signal descriptions for connector J2, which has pod 1 signals. Figure 3-3 and Table 3-3 give pin assignments and signal descriptions for connector J13, which has pod 2 signals.

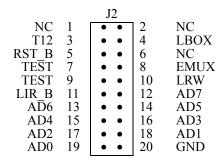


Figure 3-2 Logic Analyzer Connector J2 Pin Assignments

M68EML08QL Emulation Module - Version 1.1

Table 3-2 Logic Analyzer Connector J2 Signal Descriptions

Pin	Label	Signal
1, 2, 6	NC	No connection
3	T12	SYSTEM BUS CLOCK — Clock that matches the internal emulation MCU bus clock
4	LBOX	LAST BUS CYCLE — Output signal that the emulator asserts to indicate that the target system MCU is in the last bus cycle of an instruction.
5	RST_B	COP RESET — Active-low output signal indicating (1) the target driving its reset pin, or (2) the platform board driving a reset to the emulator module.
7, 9	TEST	Test pins are used only during system development and factory test.
8	EMUX	EMLMUX - Muxed versions of R/W, LIR, and LAST.
10	LRW	LATCHED READ/WRITE — Output signal from the target MCU. If high, the target MCU is reading. If low, the target MCU is writing.
11	LIR_B	LOAD INSTRUCTION REGISTER — Active-low output signal indicating that the target MCU is fetching an instruction.
12 — 19	AD7 — AD0	PFB DATA BUS (lines 7—0) — Outputs the data lines going to the platform board.
20	GND	GROUND

		J13		
NC	1	• •	2	NC
ECLK	3	• •	4	A15
A14	5	• •	6	A13
A12	7	• •	8	A11
A10	9	• •	10	A9
A8	11	• •	12	A7
A6	13	• •	14	A5
A4	15	• •	16	A3
A2	17	• •	18	A 1
A0	19	• •	20	GND

Figure 3-3 Logic Analyzer Connector J13 Pin Assignments

Table 3-3 Logic Analyzer Connector J13 Signal Descriptions

Pin	Label	Signal
1, 2	NC	No connection
3	ECLK	EM CLOCK — Output clock signal for the emulator module.
4 — 19	A15 — A0	LATCHED ADDRESS BUS (lines 15—0) — Output showing the address of the current bus cycle.
20	GND	GROUND

3.4 Inverted Clock Connector J11

Connector J11 is the source for an inverted clock signal. Figure 3-4 and Table 3-4 give the pin assignments and signal descriptions for this connector. You can connect this signal to your target system if you will use the OSC2 signal.

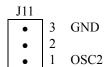


Figure 3-4 Connector J11 Pin Assignments

Table 3-4 Connector J11 Signal Descriptions

Pin	Label	Signal
3	GND	Ground
2		No connection
1	OSC2	OSC2 OUTPUT — Inversion of the clock signal that jumper header W2 specifies if you select the external clock. Inversion of the ICR clock if you select the internal clock (default). This signal behaves like the OSC2 pin function, meaning you must set the OSC2EN bit in the PTAPUE register and not have selected external clock in the CONFIG2 for the clock to be available on this header.

3.5 Analog-to-Digital Converter Reference Voltage Connector E3

Connector E3 is the source for the filtered A/D reference voltages. Figure 3-5 and Table 3-5 give the pin assignments and signal descriptions for this connector. The factory test uses this connection.

M68EML08QL Emulation Module - Version 1.1

Figure 3-5 Connector E3 Pin Assignments

Table 3-5 Connector E3 Signal Descriptions

Pin	Label	Signal
3	L	LOW REFERENCE VOLTAGE
2	A/D REF	No connection (label only)
1	Н	HIGH REFERENCE VOLTAGE

3.6 Board Factory Test Connectors J12 and J14

These connectors are used in the factory and during product development. They may not be populated.

3.7 Clock oscillator Y2

When you select the EM option on jumper W3 (jumper on pins 1-2), the clock signal generated by Y2 is supplied to the external inputs of the MCU. You can replace Y2 with another compatible clock oscillator to provide a different clock frequency (see the schematic on the user documentation CD-ROM, page 6).

3.8 EM Board Socket Connectors P1 and P2

Connectors P1 and P2 connect the M68EML08QL to the platform board. Figure 3-6 and Table 3-6 give pin assignments and signal descriptions for connector P1. Figure 3-7 and Table 3-7 give pin assignments and signal descriptions for connector P2.

					P1			
Α			В			C		
•	A1	LA[14]	•	B1	PFB AD[7]	•	C1	GND
•	A2	LA[13]	•	B2	PFB_AD[6]	•	C2	GND
•	A3	LA[12]	•	В3	PFB AD[5]	•	C3	GND
•	A4	LA[11]	•	B4	PFB_AD[4]	•	C4	GND
•	A5	LA[10]	•	B5	PFB_AD[3]	•	C5	GND
•	A6	LA[9]	•	B6	PFB_AD[2]	•	C6	GND
•	A7	LA[8]	•	B7	PFB_AD[1]	•	C7	GND
•	A8	LA[7]	•	B8	PFB_AD[0]	•	C8	GND
•	A9	LA[6]	•	B9	LIR_B	•	C9	GND
•	A10	LA[5]	•	B10	LRW	•	C10	GND
•	A11	LA[4]	•	B11	SCLK	•	C11	GND
•	A12	LA[3]	•	B12	T12CLK	•	C12	GND
•	A13	LA[2]	•	B13	NC	•	C13	GND
•	A14	LA[1]	•	B14	NC	•	C14	GND
•	A15	LA[0]	•	B15	NC	•	C15	GND
•	A16	LA[15]	•	B16	NC	•	C16	GND
•	A17	NC	•	B17	INTERNAL_B	•	C17	GND
•	A18	NC	•	B18	NC	•	C18	GND
•	A19	PFB_IRQ_B	•	B19	SWITCH_B	•	C19	GND
•	A20	CHRGPMP	•	B20	NC	•	C20	GND
•	A21	NC	•	B21	NC	•	C21	GND
•	A22	NC	•	B22	NC	•	C22	GND
•	A23	PFB_OSC	•	B23	NC	•	C23	GND
•	A24	NC	•	B24	LBOX	•	C24	GND
•	A25	NC	•	B25	BREAK_B	•	C25	GND
•	A26	NC	•	B26	NC	•	C26	GND
•	A27	NC	•	B27	NC	•	C27	GND
•	A28	NC	•	B28	NC	•	C28	GND
•	A29	NC	•	B29	NC	•	C29	GND
•	A30	NC	•	B30	NC	•	C30	GND
•	A31	PFB_VCC	•	B31	PFB_VCC	•	C31	GND
•	A32	GND	•	B32	GND	•	C32	GND

Figure 3-6 EM Connector P1 Pin Assignments

M68EML08QL Emulation Module - Version 1.1

Table 3-6 EM Connector P1 Signal Descriptions

Pin	Mnemonic	Signal
A1 — A16	LA[15] — LA[0]	LATCHED ADDRESS BUS (lines 15—0) — Output lines for addressing
	(not in exact	external devices.
117 110 121 122	order)	
A17, A18, A21, A22, A24 — A30	NC	No connection
A19	PFB_IRQ_B	PFB INTERRUPT — Active-low signal that requests an interrupt of the platform board.
A20	CHRGPMP	CHARGE PUMP — 12-volt signal (from the platform board).
A23	PFB_OSC	PFB OSCILLATOR — Oscillator clock signal from the platform board.
A31	PFB_VCC	PFB POWER — Operating voltage signal from the platform board.
A32	GND	GROUND
B1 — B8	PFB_AD[7] — PFB_AD[0]	PFB ADDRESS (lines 7—0) — Address of the current bus cycle.
В9	LIR_B	LOAD INSTRUCTION REGISTER — Active-low signal that the target MCU is fetching an instruction.
B10	LRW	LATCHED READ/WRITE — Input signal from the target MCU. If high, the target MCU is reading. If low, the target MCU is writing.
B11	SCLK	SERIAL CLOCK — Output clock signal to the platform board.
B12	T12CLK	T12 CLOCK — Matches the internal bus clock of the emulation MCU.
B13 — B16, B18, B20 — B23, B26 — B30	NC	No connection
B17	INTERNAL_B	INTERNAL RESOURCE — Active-low input signal indicating (1) that the current address is a target-MCU internal resource, or (2) that the EM board recreated the current address.
B19	SWITCH_B	SWITCH CONTROL — Active-low input signal that controls switches into the foreground map.
B24	LBOX	LAST BUS CYCLE — Input signal that the emulator asserts to indicate that the target system MCU is in the last bus cycle of an instruction.
B25	BREAK_B	BREAK REQUEST — Active-low output signal that requests a switch to background logic.
B31	PFB_VCC	PFB POWER — Operating voltage signal from the platform board.
B32	GND	GROUND
C1 — C32	GND	GROUND

	P2							
A			В			C		
•	A1	GND	•	B1	GND	•	C1	GND
•	A2	GND	•	B2	VCC	•	C2	VCC
•	A3	GND	•	B3	PTC[0]	•	C3	PTA[0]
•	A4	GND	•	B4	PTC[1]	•	C4	PTA[1]
•	A5	GND	•	B5	PTC[2]	•	C5	PTA[2]
•	A6	GND	•	B6	PTC[3]	•	C6	PTA[3]
•	A7	GND	•	B7	PTC[4]	•	C7	PTA[4]
•	A8	GND	•	B8	NC	•	C8	PTA[5]
•	A9	GND	•	B9	NC	•	C9	PTA[6]
•	A10	GND	•	B10	NC	•	C10	NC
•	A11	GND	•	B11	LOCKOUT_B	•	C11	PTB[7]
•	A12	GND	•	B12	T_RESET_5V_B	•	C12	PTB[6]
•	A13	GND	•	B13	NC	•	C13	PTB[5]
•	A14	GND	•	B14	PORTS_B	•	C14	PTB[4]
•	A15	GND	•	B15	NC	•	C15	PTB[3]
•	A16	GND	•	B16	PFB_RST_B	•	C16	PTB[2]
•	A17	GND	•	B17	COP_RST_B	•	C17	PTB[1]
•	A18	GND	•	B18	NC	•	C18	PTB[0]
•	A19	GND	•	B19	NC	•	C19	ID9
•	A20	GND	•	B20	NC	•	C20	ID8
•	A21	GND	•	B21	NC	•	C21	ID7
•	A22	GND	•	B22	NC	•	C22	ID6
•	A23	GND	•	B23	NC	•	C23	NC
•	A24	GND	•	B24	NC	•	C24	NC
•	A25	GND	•	B25	NC	•	C25	ID3
•	A26	GND	•	B26	NC	•	C26	ID2
•	A27	GND	•	B27	NC	•	C27	MCU_ID1
•	A28	GND	•	B28	VPRU	•	C28	MCU_ID0
•	A29	GND	•	B29	NC	•	C29	NC
•	A30	GND	•	B30	EVDD	•	C30	DAVINCI
•	A31	GND	•	B31	PFB_VCC	•	C31	PFB_VCC
•	A32	GND	•	B32	GND	•	C32	GND

Figure 3-7 EM Connector P2 Pin Assignments

M68EML08QL Emulation Module - Version 1.1

Table 3-7 EM Connector P2 Signal Descriptions

Pin	Mnemonic	Signal				
A1 — A32	GND	GROUND				
B1, B32	GND	GROUND				
B2	VCC	POWER — Operating voltage.				
B3 — B7	PTC[0] — PTC[4]	PORT C (lines 0—4) — General-purpose I/O lines controlled by software via data direction and data registers.				
B8 — B10, B13, B15, B18 — B27, 29	NC	No connection				
B11	LOCKOUT_B	Used by the platform board to block the IRQ_B signal during reset recovery.				
B12	T_RESET_5V_B	Target reset used to sense and drive resets to and from the target.				
B14	PORTS_B	Indicates a port-related register access, which is routed to the PRU on the platform board.				
B16	PFB_RST_B	PFB RESET — Active-low signal that requests a reset of the platform board.				
B17	COP_RST_B	COP RESET — Active-low signal that resets the EM board.				
B28	VPRU	Emulation MCU voltage used by the port replacement unit on the platform board.				
B31	PFB_VCC	PFB POWER — Operating voltage signal from the platform board.				
C1, C32	GND	GROUND				
C2	VCC	POWER — Operating voltage.				
C3 — C9	PTA[0] — PTA[7]	PORT A (lines 0—7) — General-purpose I/O lines controlled by software via data direction and data registers.				
C10, C23, C24, C29	NC	No connection				
C11 — C18	PTB[7] — PTB[0]	PORT B (lines 0—7) — General-purpose I/O lines controlled by software via data direction and data registers.				
C19 — C22, C25 — C28	ID9 — ID6, ID3, ID2, MCU_ID1, MCU_ID0	MCU identification signals used by the platform board to detect which EM board is inserted.				
C30	DAVINCI	Used to indicate HC05 or HC08 EM boards.				
C31	PFB_VCC	PFB POWER — Operating voltage signal from the platform board.				

M68EML08QL Emulation Module - Version 1.1

HOW TO REACH US:

World Wide Web Address

Motorola: http://e-www.motorola.com

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003