
VoATM-VoIP Interworking on C-5.
Architecture & Design Document

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

Version 1.0

Motorola India Electronics Pvt. Ltd .
“The Senate”

No. 33A, Ulsoor Road
Bangalore - 560042

INDIA

© 2001 Motorola Inc.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

Revision History

Date Revision Description Author
18 September 2001 0.1 Reviewed RTP/UDP Chapter added. Vineet

04 October 2001 0.2 Chapter 1 Document Introduction, and
Chapter 2 System Description and
Architecture added.

Vineet

09 October 2001 0.3 Chapter 3 Existing ATM Layer and its
Adaptation,
Chapter 4 Existing AAL2 CPS Layer and
its Adaptation,
Chapter 5 Existing Ethernet and IP Layer
and its Adaptation and
Chapter 9 C-5 Executive Processor,
Resources and Timers
Added.

Murali

10 October 2001 0.4 To incorporate AAL2 adaptation Review
Comments

Murali

11 October 2001 0.5 AAL2 SSCS Rx functionality and AAL2 to
RTP Mapping module design chapter
added.

Vineet

15 October 2001 0.6 AAL2 SSCS Rx functionality and AAL2 to
RTP Mapping module design chapter
modified after review.

Vineet

15 October 2001 0.7 ATM adaptation chapter added after review. Murali
17 October 2001 0.8 1. Changes made in XP and resources

chapter after review.
2. SONET message descriptor is added to

the ATM chapter.
3. Table id field removed from the AAL2

Rx CP init descriptor from XP, in
AAL2 chapter.

Murali

18 October 2001 0.9 AAL2 SSCS Tx functionality and RTP to
AAL2 Mapping module design chapter
added.

1. Existing Ethernet and IP Layer and its
Adaptation chapter modified after
review comments.

2. XP init descriptors for IP and AAL2 to
RTP mapping CP are modified.

Vineet

Murali

19 October 2001 1.0 1. AAL2 SSCS Tx functionality and RTP
to AAL2 Mapping module design
chapter modified after review.

2. System Description and Architecture
chapter modified for review comments.

3. AAL2 SSCS Rx functionality and
AAL2 to RTP Mapping module design
chapter re-organized for heading
numbers, and one testing of G.729B
frame added.

4. UDP/RTP chapter re-organized for its
font size, and its existing figure is
removed.

5. callPresentFlag added in the HTK
table for RTP to AAL2 mapping
module.

6. Feature Requirements Trace Matrix
cross checked and added.

7. This Version is baselined.

Vineet

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

Table of Contents

1. INTRODUCTION..5

1.1 SCOPE..5

1.2 READER LEVEL ..5

1.3 COMPANION DOCUMENTATION ...5

1.4 NAMING CONVENTION ...5

1.5 REFERENCES & STANDARDS ...5

1.6 ACRONYMS ..5

2. SYSTEM DESCRIPTION & ARCHITECTURE ...7

2.1 OVERVIEW OF THE SYSTEM...7
2.1.1 AAL2 Common Part and Service Specific Sub layers:.. 7
2.1.2 Real Time Transport Protocol: ... 10

2.2 MEDIA TRANSLATION CONCEPT ..11

2.3 SCOPE OF THE REFERENCE APPLICATION..11

2.4 C-5 CP CLUSTER INFORMATION ...12

2.5 CP: FUNCTIONALITY DECOMPOSITION ..13
2.5.1 ATM Receiver and Transmitter: .. 13
2.5.2 AAL2 CPS Receiver and Transmitter:.. 14
2.5.3 IP and Ethernet:... 14
2.5.4 AAL2 to RTP Mapping Module (Map-1): .. 14
2.5.5 RTP to AAL2 Mapping Module (Map-2): .. 18
2.5.6 RTP/ UDP Formatter/De-formatter module:... 20

2.6 XP: FUNCTIONALITY ..22

3. EXISTING ATM LAYER AND ITS ADAPTATION...24

3.1 OVERVIEW ...24

3.2 INTERFACES ...24

3.3 CHANGES REQUIRED ..24

3.4 DATA STRUCTURES ..24

4. EXISTING AAL2 CPS LAYER AND ITS ADAPTATION..26

4.1 OVERVIEW ...26

4.2 INTERFACES ...26

4.3 CHANGES REQUIRED ..26

4.4 DATA STRUCTURES ..28

5. EXISTING ETHERNET AND IP LAYER AND ITS ADAPTATION.......................................30

5.1 OVERVIEW ...30

5.2 INTERFACES ...30

5.3 CHANGES REQUIRED ..30

5.4 DATA STRUCTURES ..32

6. RTP AND UDP...33

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

6.1 DETAILS ..33

7. AAL2 SSCS RX FUNCTIONALITY AND AAL2 TO RTP MAPPING.....................................37

7.1 DETAILS ..37
7.1.1 Aal2ToRtpMap Init Context: ... 37
7.1.2 Aal2ToRtpMap Handler: ... 37
7.1.3 Aal2ToRtpMap TxByte Processor: .. 39
7.1.4 Aal2ToRtpMap RxByte Processor: .. 40
7.1.5 Aal2ToRtpMap Forwarder:.. 40

8. AAL2 SSCS TX FUNCTIONALITY AND RTP TO AAL2 MAPPING.....................................47

8.1 DETAILS ..47
8.1.1 RtpToAal2Map Init Context: ... 47
8.1.2 RtpToAal2Map Handler: ... 47
8.1.3 RtpToAal2Map TxByte Processor: .. 51
8.1.4 RtpToAal2Map RxByte Processor: .. 52
8.1.5 RtpToAal2Map Forwarder:.. 52

9. C-5 EXECUTIVE PROCESSOR AND RESOURCES ...54

9.1 REQUIREMENTS & OVERVIEW ..54

9.2 INTERFACES ...56

9.3 DATA STRUCTURES ..56

10. FEATURE REQUIREMENTS TRACE MATRIX ..61

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

1. Introduction

This document is architecture and design document for the VoATM to VoIP Interworking Gateway
reference application, which will be running on the Motorola C-Port’s C-5 network processor.

1.1 Scope
This is the only single reference design document for the application, which will be used for the
development purpose.

1.2 Reader Level
Readers of this document, who are the developers of the application, must be familiar with the relevant
domain, standards, and the scope of the application.

1.3 Companion Documentation
Companion document for this design document is Feature Requirements and Architectural
Specifications (FRAS) for the application, which outlines the functional specifications and broad
requirements of the system.

1.4 Naming Convention
VoATM-VoIP Interworking Function (IWF), Media Gateway, and Gateway terms refer to the same
system, unless specified otherwise.

1.5 References & Standards

• ITU-T I.361 B-ISDN ATM Layer specification.
• ITU-T I.363.2 B-ISDN ATM adaptation Layer specification: Type 2 AAL.
• ITU-T I.366.2 (11/2000) AAL Type-2 service specific convergence sub layer for narrow-band

services.
• RFC 1889, RTP: A Transport Protocol for Real Time Applications.
• RFC 1890, RTP Profile for Audio and Video Conferences with Minimal Control.
• RFC 768, User Data gram Protocol.
• RFC 792, Internet Control Message Protocol.
• C-PORT, C-5 DCP Architecture Guide.
• af-vtoa-0113.000, ATM Forum - ATM Trunking using AAL2 for Narrowband services.
• af-vmoa-0145.000, ATM Forum - Voice and Multimedia Over ATM -Loop Emulation

Service Using AAL2.
• VoATM-VoIP Interworking on C-5; Feature Requirements & Architectural Specifications.
• draft-ietf-avt-profile-new-11.txt. (RTP Profile for Audio and Video Conferences with Minimal

Control), Expires: January 2002.
• draft-ietf-avt-rtp-cn-03.txt. (RTP Payload for Comfort Noise), July 2001.

1.6 Acronyms
AAL2 ATM Adaptation Layer 2
ADPCM Adaptive Pulse Code Modulation
ATM Asynchronous Transfer Mode
BMU C-5 Buffer Management Unit
CDS C-Port Development System
CID Channel Id (AAL2 header field).
CP C-5 Channel Processor

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

CPCI Compact PCI.
CPS Common Part Sub layer
CS-ACELP Conjugate Structure – Algebraic Code Excited Linear Prediction
DSL Digital Subscriber Line
DSP Digital Signal Processing
DTMF Dual Tone Multi Frequency
IAD Integrated Access Device
ITU International Telecommunication Union
Map-1 AAL2 to RTP Mapping Module in this document
Map-2 RTP to AAL2 Mapping Module in this document
MF Multi frequency
OC-3c Optical Carrier Level-3, 155Mbps
PCM Pulse Code Modulation
PCMA PCM-A Law
PCMU PCM-µ Law
PVC Permanent Virtual Circuits (ATM)
QMU C-5 Queue Management Unit
RFC Request For Comments.
RTCP Real time Transport Control Protocol
RTP Real time Transport Protocol
SDP Session Description Protocol
SID Silence Insertion Descriptor (I.366.2)
SONET Synchronous Optical Network
SSCS Service Specific Convergence Sub layer
TLU C-5 Table Lookup Unit
UDP User Data gram Protocol
UUI User-User Indication
VAD Voice Activity Detection
VC Virtual Circuit
VCI Virtual Channel Identifier
VoATM Voice over ATM.
VoIP Voice over IP.
VPI Virtual Path Identifier
XP C-5 Executive Processor

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

2. System Description & Architecture

2.1 Overview of the System
VoATM-VoIP Media Gateway is mechanism to provide call interworking between the subscribers who
are connected to ATM and IP networks. ATM Adaptation Layer number 2 (AAL2) is selected for
transport on the ATM network, while Real Time Transport Protocol (RTP) is the transport protocol on
the IP network.

 Figure 1 VoATM-VoIP Media Gateway

2.1.1 AAL2 Common Part and Service Specific Sub layers:

AAL2 CPS provides multiplexing of different users on to a single ATM connection. The packets
from these users are multiplexed into the payload of ATM cell stream at the sending side and de-
multiplexed at the receiving side. CPS packet has a header of 3 octets and a payload of variable
length up to a maximum value of 64 octets (default maximum length is 45). The header consists of
the following four fields:

Channel Identifier (CID, 8 bits): Identifies the AAL2 channel (CPS user). AAL2 channel is bi-
directional (i.e. same CID is used for both directions). The value “0” is not used and values “1” to
“7” are reserved.
Length Indicator (LI, 6 bits): Indicates the length of the CPS packet payload. Default maximum
length is 45 octets and can be set to 64.

User-to-User Indication (UUI, 5 bits): It is used to convey specific information transparently
between the CPS users (i.e., between SSCS entities or between Layer Management), and to
distinguish between the SSCS entities and Layer Management users of the CPS. The 5-bit UUI field
provides for 32 codepoints, “0” ... “31”. Codepoints “0” ... “27” are available for SSCS entities,

IP
Network

Media Path

Signaling Path

IP Telephony Users

VoATM-VoIP
Media Gateway

SoftSwitch

Ethernet
ATM

Network

ATM/AAL2
Termination

ATM/AAL2
PVC

IAD

Narrowband Subscribers

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

codepoints “28”… 30” are reserved for future standardization, and code point “31” is reserved for
OAM.

Header Error Control (HEC, 5 bits): Detects bit errors in the header by a 5 bit CRC.

Packing/Multiplexing and Unpacking/De-multiplexing of CPS packets are done using Start Field
(STF) as shown in figure 8. The STF consists of - 6 bit Offset Field (OSF), 1 bit Sequence Number
(SN) and a Parity bit (P). The OSF points to the start of the first CPS packet (or to start of PAD
field in the absence of any CPS packet start) in CPS PDU. The value 47 indicates there is no start
(i.e. whole CPS PDU is part of a CPS packet). Values greater than 47 are not allowed. The SN is
used to detect the lost ATM cell and the parity bit is used to detect errors in the STF.

ATM
Header

ATM
Header

Application layer

Service Specific
Sublayer

SSCS (Service
Specific Convergence

Sublayer - I.366.2)

ATM layer

Common Part
Sublayer (CPS)
- I.363.2

AAL-2
layer

STF

SAP

SAP

CID LI UUI HEC CID LI UUI HEC

User packet

STF

ATM Cell

CPS packet Fragment 1 CPS packet Fragment 2

CPS packet

ATM SDU

User packet

User packet User packet

CPS PDU CPS PDU

CPS packet

CPS packet

Header Header

ATM SDU

SSSAR (Service Specific
Segmentation And Reassembly

sublayer - I.366.1)

1 to 65586 octets

User 1 User 2 User 3 User n

CID x CID z CID y

 Figure 2 ATM/AAL2 Protocol structure

AAL2 SSCS: is used to carry the information content of one narrow band call over each AAL2
connection. As specified in the I.366.2, UUI codepoints from “0”… ”15” is used for formatting the
audio packets.

 Figure 3 Receiver/Transmitter Connected to the AAL2 termination

AAL2
Connection

AAL2
Transmitter

SSCS-1

AAL2
Receiver
SSCS-1

AAL2
Receiver
SSCS-2

AAL2
Transmitter

SSCS-2

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

I.366.2, Annexure P also specifies the predefined encoding format profiles, which are identified using a
unique identifier.

Identifier Description of Profile
0 Not used

1 PCM-64

2 PCM-64 and silence

3 ADPCM and silence
4 G.728 with higher efficiency

5 G.728 with lower delay

6 G.729 with higher efficiency and G.726 for
voice band data

7 G.729 with lower delay

8 G.729 with lower delay and G.726-32 for voice
band data at lower rates

9 G.729 with lower delay and G.726-40 for voice
band data at higher rates

10 G.729 with full variable bit rates
11 AMR

12 G.723

13 PCM 64 kbits/s and ADPCM 32 kbits/s

14-255 Reserved for future ITU-T assignment

The above-mentioned identifiers will be referred to as profile identifier in the document. By making
reference to the profile identifiers transmitter and the receiver can agree on one of the major operating
parameters of the SSCS. According to I.366.2, an encoding profile is categorized within an AAL2
packet with the following characteristics:

(i) Profile entry index.
(ii) UUI code point range (0-15 for audio encoding).
(iii) Packet length in octets.
(iv) Description of the algorithm.
(v) Number of SDUs in the packet (M).
(vi) Packet time in ms.
(vii) Sequence number interval in ms.

Example #1: generic PCM (G.711 64Kbps) formatting for AAL2 SSCS (predefined profile identifier #
1) can be described using the above parameters as follows:

Profile
entry
index

UUI
codepoint

range

Packet
length
(octets)

Description of
algorithm M

Packet
time
(ms)

Sequence
number interval

(ms)

0 0-15 40 PCM, G.711-64,
generic

1 5 5

Example #2: G.723.1 formatting for AAL2 SSCS (profile identifier # 12) can be described using the
above parameters as follows:

Profile
entry
index

UUI
codepoint

range

Packet
length
(octets)

Description of
algorithm M

Packet
time
(ms)

Sequence
number interval

(ms)

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

0 0-15 24 G.723.1-6.4 1 30 5

1 0-15 20 G.723.1-5.3 1 30 5
2 0-15 4 G.723.1 SID 1 30 5

Packet length in octets is encoding specific. For example G.711 PCM coder generates one octet every
125 us, so 40 such octets are packed in one AAL2 packet to represent 5 ms of encoded audio data.

Sequence number interval specifies the minimum unit of UUI sequence value. For all the encoding
types, except AMR it is 5 ms. For example, consecutive G.711 AAL2 packets will be having UUI
codepoints like 0, 1, 2 … .15, because their packet time and sequence number intervals are same. But,
consecutive G.723.1 AAL2 packets will be having UUI codepoints like 0, 6, 12, 2, 8 etc (modulo 16),
because one G723.1 AAL2 packet is of 30 ms, which in turn embeds 6 sequence number intervals in
one AAL2 packet.

Service data units (SDUs) for audio are defined in relation to the profile of encoding formats adopted
on a given AAL type 2 connection. One SDU, depending upon the encoding type may contain one or
more EDUs.

Audio Packet = M * SDU, SDU = N1 * EDU, SDU time = N2 * Sequence Number Interval.
There is no direct relationship between the EDU and the sequence number interval.
N1 and N2 are encoding specific constants defined in I.366.2 in the corresponding annexure.

2.1.2 Real Time Transport Protocol:
RTP packet along with header and its payload comes within a UDP datagram. The different fields of
the RTP header are shown in the figure below:

 Figure 4 RTP Header & Payload as UDP Payload

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P|X| CC |M| PT | sequence number |
 +-+
 | timestamp |
 +-+
 | synchronization source (SSRC) identifier |
 +=+
 | contributing source (CSRC) identifiers |
 | |
 +-+

 Figure 5 RTP Header (RFC 1889)

• RTP version 2 (V=2) will be used, as defined in RFC 1889.

• Padding bit (P) indicates padding added to the payload.

• Extension bit (X) indicates whether header extension is used or not.

• CSRC Count (CC) contains the contributing source count. This field is used while
conferencing etc. to tell the number of contributors.

IP Header UDP Header RTP Header RTP Payload

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

• Marker bit (M) will be normally set to 0, after silence, when audio packets start coming it
will be 1, indicating starting of the media.

• Payload type (PT) will identify the encoding type carried by the RTP packet.

• Sequence number is used to sequence the media packets in the order of generation.

• Time stamp will be generated starting from any random value. In this context, for all the
calls it will be generated starting from 0, and will incremented by 8 samples /ms * RTP
packet time for the following encoding types: G.711, G.723.1, G.726, G.728, and G.729.
For example: for 30 ms RTP packet, RTP time stamp will be increased with a value of
240 (8*30) every RTP packet time. (RFC 1890)

• SSRC identifier is a the synchronization source identifier and contains a 32 bit random
value.

• CSRC identifier list represents contributing sources to the media session. Maximum 15
sources can be identified.

2.2 Media translation concept

 Figure 6 Media Translation between AAL2 and RTP

VPI and VCI values in the ATM header, and the CID value in the AAL2 header uniquely identifies a
narrowband subscriber connected to a ATM/AAL2 termination. On the other side, IP address in the IP
header, and UDP port number in the UDP header uniquely identifies a RTP session on a IP telephony
user terminal. These pairs are matched to identify the end users.

RTP header contains the payload type field, which identifies which encoding type data is being carried
by RTP session, on the AAL2 side, UUI codepoints range and packet length defines the payload type.

RTP header contains the time stamp field which tells the RTP packet size ,on the other side, sequence
number interval, as described in the above sections, and UUI range tells the AAL2 packet time.

2.3 Scope of the reference application
The reference application will support the following:

• One OC-3c interface, and two fast Ethernet (100Mbps) interfaces.
• Maximum of 1K AAL2 PVCs terminations.

ATM Cell Header AAL2 Packet Header Voice Payload Padding

IP Header UDP Header RTP Header Voice Payload

VPI, VCI, and CID to
IP address and port

number

UUI and packet size to
sequence number and

time stamp

LI and UUI to Payload
Type

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

• Maximum of 8K unique conversations. Maximum of 8K/3 conversations per 1K/3 PVCs.
• Audio services only.
• Support for the following encoding types: G.711, G.723.1, G.726, G.728, and G.729, which

corresponds to the profile identifiers range 1 to 13, as in Annexure P of I.366.2.
• Only one audio session per call, unicast towards IP side, addressing one audio endpoint on

ATM/AAL2 termination and vice-versa.
• Symmetric encoding types on the both the endpoints.
• Only data plane will be supported, that is conversion of AAL2 media format to RTP media

format and vice-versa.
• Maximum receive capability of the gateways would be 30 ms of RTP packet for all the

encoding types.

The reference application will not support the following:

• Support for frame mode data, circuit mode data, fax, CAS, dialed digit service etc.
• Handling of out of sequence IP packets. This issue will be addressed using Q-5 queue

processor.
• AAL2 and IP telephony call and control signaling plane.
• Asymmetric encoding types on the both the endpoints using dynamic codec negotiation.
• Support for the following encoding types: G.722, G.727, and AMR.
• Handling of non AAL2 ATM cells. These cells will be dropped by the gateway.

The following assumptions are made:

• IP telephony users and AAL2 endpoint audio devices are capable for discontinuous
transmission (DTX) and, VAD (Voice Activity Detection) and CNG (Comfort Noise
Generation) algorithms are implemented for all the supported encoding types.

• Signaling specific information, which is required to control the data plane, is provided through
TLU tables or through user configuration from XP/host.

• Gateway will not be able to find out the MAC destination address dynamically, because ARP
is not be fully implemented. So, the requirements for its deployment would be:

o In the field, both of the Ethernet ports of the gateway will be connected to the same
and only one next hop router. MAC address of this router will be configured in the
gateway before boot up.

o For the system test lab setup, IP call generator, and the gateway will be on the same
router’s zone. So that the router cannot send ICMP re-direct message to gateway to
find out the IP call generator.

2.4 C-5 CP Cluster Information
CP cluster information for the VoATM-VoIP gateway implementation on C-5 is shown in the figure
below. The details of this cluster are written in the following table. The ordering of p, q, r, and s are
physical board dependent, e.g. which physical ports are connected to which CPs:

Cluster # CPs allocated to this cluster
Cluster-p CP-p0: For ATM receiver and transmitter.

CP-p1, p2, and p3: For AAL2 CPS transmitter.
Cluster-q CP-q0, and q1: AAL2 CPS receiver.

CP- q2, and q3: RTP to AAL2 direction Mapping module (Map-
2).

Cluster-r CP-r0: RTP to AAL2 direction mapping module (Map-2).
CP-r1, r2, and r3: AAL2 to RTP direction mapping module

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

(Map-1).
Cluster-s CP-s0, and s1: RTP/UDP formatter/de-formatter.

CP-s2, and s3: IP and Ethernet receiver and transmitter.

 Figure 7 VoATM-VoIP Gateway CP Cluster Information

 Figure 8 VoATM-VoIP Gateway CP Cluster Arrangement on C-5

2.5 CP: Functionality Decomposition

2.5.1 ATM Receiver and Transmitter:
For details, please refer to the ATM switch reference library documentation. Interface adaptation
relevant to this application is described in the following chapters.

OC- 3c

CP-s1
RTP/UDP

CP-s3
IP/ETH

CP-s2
IP/ETH

Fast ETH Fast ETH

CP-s0
RTP/UDP

CP-q0
AAL2

Rx

CP-q1
AAL2

Rx

CP-q2
Map-2

CP-p0

ATM Tx ATM Rx

CP-p1
AAL2

Tx

CP-q3
Map-2

CP-r0
Map-2

CP-r1
Map-1

CP-r2
Map-1

CP-r3
Map-1

CP-p2
AAL2

Tx

CP-p3
AAL2

Tx

Cluster -p

Cluster -q

Cluster -r

Cluster -s

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

2.5.2 AAL2 CPS Receiver and Transmitter:
For details, please refer to the ATM/AAL2 switch reference library documentation. Interface
adaptation relevant to this application is described in the following chapters.

2.5.3 IP and Ethernet:
For details, please refer to the Ethernet switch and IP forwarding reference library documentation.
Interface adaptation and other changes relevant to this application are described in the following
chapters.

2.5.4 AAL2 to RTP Mapping Module (Map-1):

 Figure 9 AAL2 to RTP Mapping Module Functionality

Aal2ToRtpMap
Handler

Aal2ToRtpMap
Forwarder

Aal2ToRtpMap
TxByte

Aal2ToRtpMap
RxByte

Aal2ToRtpMap
Init

Merge
Space

Config
Reg

Extract
Space

CPS Descriptor Queue RTP/UDP Descriptor Queue

RTP assembly
timer expiry

event

Control Blocks

• Initialization
• Creates handler and forwarder

contexts.
• Timer ISR also runs in this context.

• Polls for the AAL2 CPS descriptor.
• Launches a table lookup get the RTP packet

assembly parameters.
• Identifies need of re-circulation, generic

SID, G.729B frame presence, wrong UUI,
and change in the encoding type for a call.

• Fills merge space for re-circulation, and
prepares control block for the forwarder.

• Initiate PDU transfer to TxByte of AAL2
payload.

Count the number of bytes received
from the TxByte and writes count
to the extract space and payload to
DMEM.

Sequence the re-circulated (if required) and
new payload bytes, Terminates the stream
with Merge-9.

• Polls for the control blocks from handler,
and timer expiry event for the RTP
assembly for all the present calls.

• Prepares the RTP/UDP descriptor and en-
queues it to the RTP/UDP module CP as
described in the below mentioned
conditions in the details.

Context Switching

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

AAL2 To RTP direction mapping module is used to map the AAL2 incoming audio packets to RTP
audio packets for its destination side of IP telephony users. There are three such channel processors for
this mapping module, each of which processes 1K/3 VC connections for 8K/3 conversations. To
conserve the IP bandwidth, assembly of the AAL2 packet will be done, which will be monitored by the
RTP assembly timer. Each CP consists of the following contexts:

Aal2ToRtpMap Init Context:

• Initializes CP.
• Creates the other two Handler and Forwarder contexts.
• Timer Interrupt Service Routine (ISR) also runs in this context. This timer is used to

monitor the assembly of RTP packets using one or more AAL2 packets.
• QMU interrupt handler also runs in this context.
• Configure the Tx and Rx Byte processor in re-circulation operating mode.

Aal2ToRtpMap Handler Context:

• Handler Context polls for the AAL2 CPS descriptor en-queued by the AAL2 Rx module.
• En-queues OAM-Alarm and CID 1… 7 AAL2 packets to XP.
• Drops AAL2 packets other than audio packets (UUI 0...15).
• Based on VcIndex and CID, this context will launch a lookup to get the RTP parameters

like:

o RTP Time Stamp.
o RTP Sequence Number.
o Last Payload Type.
o Expected AAL2 UUI value.
o Buffer Handle of the previously stored AAL2 payload.
o Number of bytes stored.
o Count of AAL2 packet required filling a RTP packet.
o IP address of the IP telephony user.
o UDP port number being used by that IP telephony user.
o Destination RTP/UDP queue id.
o RTP SSRC identifier used for this call.
o Call Id for this call session.

• The following things will be identified based on the CPS descriptor and lookup results:

o Is there any change in the encoding type from the previous one?
o Is this AAL2 packet a generic SID, or a G.729 SID frame?
o Has AAL2 packet a wrong UUI number then the expected one? (AAL2 packets

will not come out of sequence, but there could be a packet loss.)
o Count of previously stored bytes was not a multiple of 16, so to append the new

payload; re-circulation of the previous payload will be required?

• Based on the above decisions a control block will be prepared to co-ordinate the
Forwarder’s activity. These control blocks will be two in numbers, and will be protected
by Handler/Forwarder read/write control lock.

• During assembly of the RTP payload, if re-circulation of the previous payload is required,
the previous payload bytes will be copied to DMEM from SDRAM, and then will be filled
in the merge space for TxByte processor to sequence them.

Aal2ToRtpMap TxByte Processor:

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

After owning the merge space, TxByte processor will first read the re-circulated bytes from the merge
space (if any) then it will transmit them to RxByte processor, and then it will transmit the new AAL2
packet payload bytes. In the last byte of the payload, it will set the Merge-9 bit to indicate the end of
frame.

Aal2ToRtpMap RxByte Processor:

If RxByte processor receives a valid data from the TxByte processor, it transfers those bytes to DMEM
location set by the Forwarder context and write the number of bytes in the extract space, identifying the
end of frame bit setting (Data-9).

Aal2ToRtpMap Forwarder Context:

 There will be a RTP assembly timer for each call of N ms, to monitor the assembly. If x is the AAL2
packet time for that encoding. It means, after getting an AAL2 packet, it waits to get (N-x)/x more
packets to come in an ideal case. AAL2 packets will not be fragmented to fill the RTP packet. For
example, if RTP packet time is 30ms, and AAL2 packet is 20ms, One RTP packet will contain only
one AAL2 packet, next AAL2 packet will not be fragmented to fill the RTP packet gap. Assembly is
also subject to the IP telephony user’s receiving capability. By default, one AAL2 packet will be
converted to one RTP packet, and RTP assembly timer will not be started for any of the calls.

Forwarder polls on the two events:

(i) Availability of the control block prepared by the Handler.
(ii) RTP assembly timer expiry event for a particular call session.

When a control block prepared by the Handler becomes available to Forwarder, it will transfer the
payload bytes received from the RxByte processor to the SDRAM location based on the following
factors:

• If current AAL2 packet is a generic SID, or a G.729 SID frame?
• If encoding type has been changed, from the last type?
• Is there any discrepancy in the expected AAL2 UUI?
• If payload bytes are being re-circulated via Tx and RxByte processors?

Control block is processed in the following manner:

(1) If received AAL2 packet is a generic SID, then:

o If there is payload accumulated in the buffer, prepare a descriptor and post it to
the RTP/UDP module CP. Then en-queue a SID descriptor also with a time
stamp based on the number of octets packed in the last RTP packet. New time
stamp value for the next RTP packet will be adjusted based on the number of
AAL2 packets this RTP packet contained + 5 ms for this generic SID.

o If there is no previous payload, en-queue SID descriptor only. Increase the next
RTP time stamp to 5 ms for this generic SID.

(2) If encoding type of the call has been changed from the previous one:

o If there is payload accumulated in the buffer, prepare a descriptor and post it to
the RTP/UDP module CP. New buffer will be allocated to store the new payload.
Time stamp will be adjusted according to the last RTP packet content. Timer
will be restarted, based on the assembly requirement. New encoding type will be
updated in the table also.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

o If there is no previous payload accumulated, a fresh buffer will be allocated and
the AAL2 payload will be stored there. Timer will be restarted, based on the
assembly requirement.

(3) If AAL2 packet arrives with a wrong sequence number (AAL2 packets will not come out
of sequence, but there could be a packet loss):

o If there is payload accumulated in the buffer, prepare a descriptor and post it to
the RTP/UDP module CP. New time stamp value for the next RTP packet will
be adjusted based on the number of AAL2 packets this RTP packet contained +
adjustment for the missed sequence numbers. This AAL2 payload will be stored
in the new buffer.

o If there is no previous payload, time stamp will be adjusted for the missed
packets, and this AAL2 packet will be stored in the newly allocated buffer.

(4) If payload bytes are being re-circulated via Tx and RxByte processors, the new payload
will be stored in the SDRAM location.

(5) It will be ensured that G.729 SID frame is being transmitted as an independent RTP
packet or, is packed as a last frame in RTP packet after voice frames.

In all of the above cases, new table parameter values will be updated after each processing.

If there is an event of assembly timer expiry:

• If RTP assembly is over within this much time, i.e. accumulated data represents N ms of a
RTP packet, prepare a descriptor and en-queue it to the RTP CP.

• If all the AAL2 packets do not arrive in N ms, which are required to fill an N ms RTP
packet, a descriptor will be queued for the existing payload.

o Time stamp will be adjusted for only accumulated AAL2 packets.

o If required AAL2 packets which did not come earlier, arrive in sequence now,
will be given to RTP/UDP module immediately without assembling them into a
larger RTP packet. If they don’t arrive in a sequence, they will be assembled
again from fresh and adjusting the time stamp value for the missed packets.

After the arrival of each AAL2 packet the count of AAL2 packets required will be decreased by one in
the table, which will help to know the count of more AAL2 packets required at any moment.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

2.5.5 RTP to AAL2 Mapping Module (Map-2):

 Figure 10 RTP to AAL2 Mapping Module Functionality

The following RTP parameter values will be used for the different encoding types, as mentioned in the
table:

Sl.
No.

Encoding
Type

Rates
Supported
(Kbps)

Registered RTP
Payload Types
(PT)

Dynamically used
Payload Type
(PT) values
@

Remarks

1. G.711 64 0 or 8 # PT=0 is for PCMU, 8
is for PCMA.

2. G.723.1 5.3, 6.4 4 # Payload itself
indicates the rate.

3a. G.726 40 * 96
3b. G.726 32 2 #
3c. G.726 24 * 97
3d. G.726 16 * 98
4a. G.728 16 15 #
4b. G.728 12.8 * 99
4c. G.728 9.6 * 100
5a. G.729A, AB 8 18 # G.729 B frames are

SID frames, when
intermixed with voice
frames, shares the

RtpToAal2Map
Handler

RtpToAal2Map
Forwarder

RtpToAal2Map
TxByte

RtpToAal2Map
RxByte

RtpToAal2Map
Init

Merge
Space

Config
Reg

Extract
Space

RTP/UDP Descriptor Queue

AAL2 Tx Descriptor Queue

Control Blocks

Context Switching

• Initialization
• Creates handler and forwarder contexts.

Prepares proper information to make AAL2
packets from incoming RTP packets by:

- Identifying silence in between RTP packets.
- Maintaining expected time stamp, next
AAL2 UUI, need of the re-circulation of
previous RTP packet etc.
- Discarding late coming RTP packets and
accommodating early packets.

Sequence the re-circulated (if required)
and new payload bytes, Terminates the
stream with Merge-9.

Count the number of bytes received from
the TxByte and writes count to the extract
space and payload to DMEM

• Preparation of AAL2 packets from
the control block and RxByte Input,
and forwarding them to AAL2 CPS
transmitter.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

5b. G.729D, DB 6.4 * 101
5c. G.729E, EB 11.8 (Forward

and Backward
Adaptive Mode)

* 102

6. Generic SID
(RTP
payload for
comfort
noise)

N.A. 13 # Will be used by
G.711, G.726 and
G.728 encoding
types.

*: Not assigned by RTP, @: Used by the gateway, #: Not required, N.A.: Not Applicable

In the RTP to AAL2 mapping module, small size RTP packets will be accumulated, and big size RTP
packet will be fragmented to make right size AAL2 packets, depending upon the encoding type
selected.

RtpToAal2Map Init Context:

• Initializes CP.
• Creates the other two Handler and Forwarder contexts.
• Configure the Tx and Rx Byte processor in re-circulation operating mode.
• QMU interrupt handler is also registered in this context.

RtpToAal2Map Handler Context:

• Handler Context polls for the RTP descriptor en-queued by the RTP/UDP module. The parameters
in the descriptor are:

o VPI
o VCI
o CID
o VC Index
o Call Present Flag
o Expected RTP Time Stamp value
o Expected RTP Sequence Number of the RTP packet
o Next UUI value for the AAL2 packet
o Buffer handle for the fragmented RTP payload (fragmented for AAL2 packets)
o Previous count of bytes stored in the fragmented RTP payload buffer
o Last payload type
o Buffer Handle of the new RTP packet (header + payload)
o Count of bytes in the new RTP packet (header + payload)

• Based on the following factors it drops the RTP packet, and frees its buffer handle:

1. RtpVersion is not equal to 2. No support for the old RTP versions.

2. RTP Padding Bit is set to 1. No padded RTP payload is expected.

3. RTP Header Extension Bit is set to 1. Header extension is not expected.

4. If RTP CSRC count is not equal to 0. This application does not expect
contributing sources other than the source itself.

5. If RtpPayloadType is not supported based on the profile identifier currently
selected, based on the I.366.2, Annexure P.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

6. If RTP Payload Type, and RTP Packet Bytes Count represent a RTP packet
containing more than 30 ms worth of audio data (gateway’s maximum receive
capability).

7. RTP Sequence Number is less than the expected RTP Sequence Number; it
means it is a late arrived packet.

• Now, handler computes the following values:

1. Length of the RTP payload
2. Value of the next AAL2 UUI, based on the RTP time stamp, and sequence

number.
3. Size of each AAL2 packet going to be formed using this RTP payload.
4. Presence of any SID in the payload.
5. Number of SIDs.
6. Location of SID in the payload.
7. Number of complete and partial AAL2 packets that can be formed using this

RTP payload.
8. If previous accumulation of the AAL2 packet could not be completed, whether it

can be completed now. Any need of re-circulation to complete the accumulation
of the AAL2 packet?

9. Next expected RTP time stamp and sequence number.

• Based on the above decisions a control block will be prepared to co-ordinate the Forwarder’s
activity. These control blocks will be two in numbers, and will be protected by Handler/Forwarder
read/write control lock. Handler also fills the merge space accordingly.

RtpToAal2Map TxByte Processor:

TxByte processor sequence the AAL2 payload bytes after reading the merge space entries, and delimits
the boundaries of AAL2 packet setting Merge-9 bit, and transfers the stream to RxByte processor.

RtpToAal2Map RxByte Processor:

RxByte processor stores the AAL2 payload delimited by the TxByte processor to SDRAM location,
which is set by the forwarder, and writes the number of bytes in each AAL2 packet in extract space.

RtpToAal2Map Forwarder Context:

It polls for the availability of control block prepared by the handler context. Allocates the SDRAM
buffers to store the AAL2 payload transferred by the RxByte processor, and en-queues the completed
AAL2 packet descriptors to AAL2 CPS transmitter for multiplexing into the ATM cells. It also updates
the table entries to process the next RTP packet.

2.5.6 RTP/ UDP Formatter/De-formatter module:

RTP/UDP Init Context:

• Initializes CP.
• Creates the other two Handler and Forwarder contexts.
• Configure the Tx and Rx Byte processor in re-circulation operating mode.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

 Figure 11 RTP/UDP Formatter/De-formatter Module Functionality

RTP/UDP Handler Context:

RTP/UDP handler context will be receiving the input from two directions; one is from the IP side and
another is from the AAL2 to RTP mapping module side. Based on the direction it will set the merge
space and start transfer the payload from SDRAM to TxByte processor. It also prepares control block
for the forwarder to convey the operating direction.

RTP/UDP TxByte Processor:

After owning the merge space, it will check the receiving direction set in the merge space. If the
direction is towards IP side, then it will calculate IP header check sum and will sequence the IP, UDP
and RTP header and RTP payload bytes for RxByte processor.

Otherwise, if the direction is from the IP side, it will only transfer the IP payload (UDP datagram) to
RxByte processor.

• It will poll on the two queues,
one from the IP direction, and
another from the AAL2-RTP
mapping module direction.

• Based on the direction it will set
the merge space and PDU
services to transfer the payload
bytes to TxByte processor

• It will calculate the IP
header checksum for the
AAL2-RTP direction
working.

• Sequencing the headers
and payload and passing
it to the RxByte processor

• For RTP-AAL2 direction
will launch a lookup to
get the AAL2 subscriber
data.

• Stores the IP or RTP
payload to SDRAM
based on the direction.

• Writes extract space for
destination descriptor
values.

• Will allocate buffer handle for RTP payload or
IP payload based on the control block values.

• Wait for the result of the lookup to get the
AAL2 subscriber data (RTP-AAL2 direction).

• En-queues appropriate descriptor to the
destination queue based on the direction.

Merge
Space

Config
Reg

Extract
Space

RTP/UDP
Handler

IP Descriptor Input Queue

AAL2 to RTP Direction
Input Queue

RTP/UDP
Forwarder

IP Descriptor Output Queue

RTP to AAL2 Direction
Output Queue

RTP/UDP
TxByte

RTP/UDP
RxByte

RTP/UDP Init

Control Blocks

Context Switching

• Initialization
• Creates handler and forwarder contexts.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

In both the cases, it will also convey the direction to the RxByte processor.
RTP/UDP RxByte Processor:

After receiving the input from the TxByte processor, it will check the direction as received from the
TxByte processor. If it is from the IP side, it will launch a lookup using IP source address and UDP
source port number to get the AAL2 subscriber parameters. It also stores the IP payload (UDP
datagram), or RTP payload after removing the header to the SDRAM location as directed by the
Forwarder, based on the direction.

RTP/UDP Forwarder Context:

Forwarder only polls for the availability of control block prepared by the Handler. After receiving it, it
allocates SDRAM buffer to store the IP or RTP payload coming through RxByte processor. If the
operating direction is from the IP side, it also waits for the look up result, launched by the RxByte
processor to get the AAL2 subscriber parameters. After getting the RTP payload, and forming its
descriptor it en-queues it to the RTP to AAL2 mapping module CP, or after getting the IP payload as
formed by the RxByte processor, and forming the IP descriptor, it en-queues it to the IP module.

2.6 XP: Functionality

1. Initialization of system services
• Kernel Services
• Buffer Services
• Queue Services
• Table Services

2. Queue Creation & Configuration

(1) The following queues will be maintained for the XP:

• Timer_CU start request message queue
• SONET monitoring queue
• ICMP message queue from IP.
• Reserved CIDs (1...7), and AAL2 Alarms Message queue

(2) The following queues will be maintained for the ATM CP (total 16 queues):

• Base queue: for outgoing ATM cell descriptors.

(3) The following queues will be maintained for the AAL2 Rx CP (total 16 queues):

• Base queue: Incoming ATM cell descriptors from ATM.

(4) The following queues will be maintained for the AAL2 Tx CP (total 16 queues):

• Base queue: CPS packet descriptors from RTP-AAL2 map module.
• Base queue+1: Timer_CU expiry message queue from XP.

(5) The following queues will be maintained for the RTP/UDP CP (total 16 queues):

• Base queue: To receive RTP descriptors from AAL2-RTP map module.
• Base queue+1: To receive IP descriptors from IP CP.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

(6) The following queues will be maintained for the AAL2 to RTP Map CP (total 16 queues):

• Base queue: To receive CPS packet descriptors from AAL2 Rx.

(7) The following queues will be maintained for the RTP to AAL2 Map CP (total 16 queues):

• Base queue: To receive RTP packet descriptors from RTP/UDP.

(8) The following queues will be maintained for the IP/Ethernet CP (total 16 queues):

• Base queue: To receive IP packet descriptors from UDP/RTP.

3. Buffer Pool Creation & Configuration

4. Tables Set-up

• Existing HTK table in the existing AAL2 Switch Application for the ATM module, which
hashes on combination of (CpId, VPI, VCI). This table is indexed by CpId (4 bits), Partial VPI
(12 bits), and Partial VCI (16 bits). The Hash Trie Key Table values shall be modified to have
values of VcIndices from 0 to 1023for 1K VCs. ATM QoS parameters will be removed from
this table.

• New HTK table for the module that maps from AAL2 to RTP, which hashes on the
combination of (VcIndex, and CID). This table will be indexed by the CID (8bits), and
VcIndex (16 bits).

• New HTK table for module that maps from RTP to AAL2, which hashes on the combination
of the (IP Address, and UDP Port Number). Thus this table will be indexed by the UDP port
number (16 bits), and IP Address (32 bits).

• Simple table indexed by call id (2 bytes) to receive VcIndex and CID. The RTP assembly
timer processing will use it.

5. CP configuration and initialization
• SDP configuration of ATM CPs for OC-3c interface.
• SDP configuration of AAL2 Rx & Tx CPs for re-circulation.
• Package Loading.
• Initialization descriptor building with respective configuration parameters (Buffer Pool Ids,

Table Ids, etc.) for CPs and passing them to CPs.
• Monitoring the input messages from different queues.

6. Timer_CU monitoring

For AAL2 CPS transmitter XP also manages Timer_CU, as it was used for the AAL2 switch
application.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

3. Existing ATM Layer and its Adaptation

3.1 Overview
The existing ATM Layer comprises of ATM Rx and ATM Tx functionality residing in a single CP.
The SDPs used are RxBit, RxSync, RxByte and TxByte and TxBit processors. The RxByte Processor
launches a lookup with Port Number, VPI and VCI combination as the key on the Hash-Tri Key Table
and the CPRC module processes the response and sends it to the appropriate destination CP. Resource
Management and OAM cells are sent to the XP ATM Control Queue. The CPRC ATM Tx module
keeps on polling for cell descriptors from ATM QOS CP and on receipt of outgoing cell descriptor,
prepares the merge space and uses PDU services for transmitting the cell payload from SDRAM to
TxByte Processor. The existing AAL2 Switch application uses the ATM QOS Module and takes care
of the following classes of traffic, Constant Bit Rate, real-time Variable Bit Rate, non real-time
Variable Bit Rate, and Unspecified Bit Rate.

3.2 Interfaces
The following interfaces exist for ATM CP:
• Interface with AAL2 CPS Rx CP, based on the ATM Cell descriptor.
• ATM QOS CP Interface, based on the ATM Cell descriptor.
• XP Interface, based on the init descriptor.

3.3 Changes Required

• The ATM QOS Component is not going to be used. Hence, in this application, AAL2 CPS Tx CP
will interface with ATM CP, based on the ATM Cell descriptor.

• The ATM Rx, ATM Tx Code shall be shared along with Aal2 Tx Code in same cluster.

• As number of queues allotted to each CP had changed from 4 to 16, hash defines for
ATM_CONTROL_PLANE_QUEUE and ATM_SONET_MONITOR_QUEUE should be changed
from 262 and 261 to 322 and 321 respectively.

3.4 Data Structures
typedef struct {
 BsBufHandle Bh; /* Buffer Handle */
 int16u length; /* used by AAL5 payload type */
 int16u VcIndex; /* used for mCast but supplied for all */
 CellHeader CellHeader; /* txVpi on ucast cell, indicates rxVpi when encodedPti > 0 */
 /* txVci on ucast cell, indicates rxVci when encodedPti > 0 */
 int8u payloadType; /* encoded information about cell type */
 Boolean crc10Err; /* if nonzero, indicates CRC-10 error on cell (ignore if not OAM
) */
 int16 MulticastFlag; /* Pt-MPt indicator */
} CellDescriptor;

The above cell descrpitor data structure will be used from ATM Rx to AAL2 CPS Rx, and AAL2 CPS
Tx to ATM Tx direction.

The SONET message descriptor en-queued to the XP by the ATM CP is as follows:

Typedef struct {
 PsSonetEvent newEvents;
 PsSonetDefect newStates;
 int8u c2PathSignalLabel;

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

 int8u traceErrorState; /* J0, bit 1, J1 bit 0 */
 int8u portId;
 int8u rdiPathType;
 int8u S1;
} SonetMsg;

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

4. Existing AAL2 CPS Layer and its Adaptation

4.1 Overview
The existing AAL2 CPS Rx and AAL2 CPS Tx modules have been written for AAL2 CID switching.
In the existing AAL2 Switch application, there are three AAL2 Rx CPs (each AAL2 Rx CP Supporting
512 VcIndices) and three AAL2 Tx CPs (each AAL2 Tx CP Supporting 512 VcIndices) connected to
each ATM CP. In the AAL2 Switch application, there are two ATM CPs as the application switches
between two OC-3c ports. So, there are total 6 AAL2 CPS Rx CPs, and total 6 AAL2 Tx CPs.

4.2 Interfaces
The following interfaces exist for AAL2 CPS Rx:

(1) Interface with ATM CP, based on the ATM Cell descriptor.
(2) AAL2 CPS Tx CP Interface, based on the AAL2 CPS packet descriptor.
(3) XP Interface, based on the init descriptor.

The following interfaces exist for AAL2 CPS Tx:
(1) Interface with AAL2 CPS Rx, based on the AAL2 CPS packet descriptor.
(2) XP Interface, based on the init descriptor.
(3) ATM QoS CP Interface, based on the ATM Cell descriptor.
(4) Timer_CU related interfaces with XP:

• Interface from AAL2 Tx CP to XP for timer start request.
• Interface from XP to AAL2 Tx CP for timer expiry notification.

4.3 Changes Required

• In this application, AAL2 Rx CP will en-queue the CPS packet descriptor to AAL2 to RTP
mapping module CP, not to the AAL2 CPS Tx CP.

• AAL2 CPS Tx CP will receive AAL2 CPS packet descriptor from RTP to AAL2 mapping module
CP, not from AAL2 CPS Rx CP.

• AAL2 CPS Tx CP will en-queue the ATM cell descriptor to ATM CP, because there is no ATM
QoS CP in this application.

• Present implementation of CU Timer interface between XP and AAL2 Tx assumes each AAL2 Tx
CP supports 512 Timers, but in this application, as each AAL2 Tx CP supports 1K/3 VcIndices,
XP should ensure that if VcIndex is from 0 to 340, it sends the timer expiry descriptor to first Aal2
Tx CP, if VcIndex is from 341 to 681, it sends the timer expiry descriptor to the second Aal2 Tx
CP and if VcIndex is from 682 to 1023, it sends the timer expiry descriptor to the third Aal2 Tx
CP. These first, second and third AAL2 Tx CPs are based on the cluster, which they share.

• The AAL2 CID Switching related table lookup and the related table response processing code in
AAL2 Rx module has to be removed.

• The Aal2 Rx Module has to find out the Map Queue Id, where it has to enqueue AAL2 CPS
descriptor, based on the VcIndex. It compares the VcIndex with VcIndexLimit (from Init
descriptor received from XP) and based on that it en-queues it to the corresponding Map Queue Id.

DestId1and DestId2 are queue ids received through the init descriptor from XP. These are queue
ids, where AAL2 Rx has to en-queue CPS packet descriptor.

If (received VcIndex < VcIndexLimit)
{
 QsMessageSend (DestId1, &mapDescMsg);

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

}
else
{
 QsMessageSend (DestId2, &mapDescMsg);
}

The VcIndex range corresponding to each CP is as shown in the figure below, cluster information
and corresponding CP numbers are subject to change, based on the physical interface modules:

 Figure 12 Interfaces for AAL2 CPS and ATM CPs.

• The SDP code in the existing AAL2 Switch application has SDPmain, which calls AAL2 Rx SDP
or AAL2 Tx SDP Code based on CPId. This has to be removed and descriptor file shall be
modified as below:

CP4-7 shared {
 CODE = $(ATMAAL2TXRCFILE);
 SDP4 = $(ATMSDPFILE);
 SDP5-7 = $(AAL2TXSDPFILE);
}
CP8-11 shared {
 CODE = $(AAL2RXMAPRCFILE);
 SDP8-9 = $(AAL2RXSDPFILE);
 SDP10-11 = $(RTPTOAAL2MAPSDPFILE);
}

The above packaging information may be changed, if cluster changes.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

• The number of Aal2 Rx CPs is two, while the number of Aal2 Tx CPs are three. Hence, this has to
be taken into account, during consideration of the Timers (for AAL2 Tx CP) and VcIndex table in
DMEM, that is, for Aal2 Rx CP, the number of VcIndices supported is 512 per CP. As, the number
of Aal2 Tx CPs is three, the number of VcIndices supported is 1024/3 = 342 per CP. The mask to
get the proper DMEM index in AAL2 Tx CP should be calculated like this:

 Aal2TxDmemTableIndex = VcIndex – aal2TxNumber * 341;
 Where VcIndex can have values from 0 to 1023 and
 Aal2TxNumber is a parameter sent to AAL2 Tx CP from the XP and can have values 0, 1 or
2.

• The Aal2 Rx Module functionality of checking for reserved CIDs from 1 to 7 and enqueueing it to
XP Queue should be taken care in AAL2 to RTP mapping module.

• The Aal2 Rx Module functionality of checking for UUIs from 16 to 30 and discarding should be
taken care in AAL2 to RTP mapping module.

• The Aal2 Rx Module functionality of checking for UUI of value 31 and enqueueing it to XP
Queue should be taken care in AAL2 to RTP mapping module.

4.4 Data Structures

Init Descriptor en-queued to the AAL2 Rx module by XP shall be modified as below:
Typedef struct
{
 BsPoolId poolId;
 QsQueueId destId1;
 QsQueueId destId2;
 Int16u VcIndexLimit;
} Aal2RxCpInitDesc;

Init Descriptor Enqueued to the AAL2 Tx module by XP shall be modified as below:
Typedef struct
{
 BsPoolId poolId;
 QsQueueId destId;
 Int8u Aal2TxNumber;
} Aal2TxCpInitDesc;

The CPS Descriptor enqueued by AAL2 Rx CP to AAL2 to RTP Mapping module and also by RTP to
AAL2 Mapping Module to AAL2 Tx CP is as below:

Typedef struct cpsDescriptor
{
 BsBufHandle cpsPckPayload; /* Pointer to payload of the CPS Packet */
 Int16u egressVcIndex; /* Egress VC index */
 Int8u cid; /* Channel ID */
 Int16u li: 6; /* Length Indicator */
 Int16u uui: 5; /* User-to-User Indication */
 Int16u pad: 5; /* Header Error Control */
 Int32u atmEgressKey; /* ATM Egress VPI <20:31>, VCI <4:19> and Port # <0:3> */
} Aal2CpsDesc;

The Timeout descriptor enqueued by XP to AAL2 Tx is as follows:
Typedef struct _TimeoutDesc

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

{
 Int8u seqNo;
 Int16u vcIndex;
} TimeoutDesc;

The Start Timer Descriptor structures used by AAL2 Tx CP to enqueue Timer Start command to XP is
as follows :

Typedef struct _TimerStartData
{
 Int8u seqNo;
 Int8u cpId;
 Int16u vcIndex;
} TimerStartData;

Typedef union _XpInQueueData
{
 TimerStartData timerStartCommand;
} XpInQueueData;

Typedef struct _XpInQueueDesc
{
 Int32u command;
 XpInQueueData data;
} XpInQueueDesc;

The above C language constructs may not follow C-Port coding guideline and naming conventions, but
it will be properly taken care of in the new development.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

5. Existing Ethernet and IP Layer and its Adaptation

5.1 Overview
 In the existing IP forwarding and Ethernet switching code, the IP SDP RxByte extracts the MAC DA
value from received MAC frame, and finds out whether the received MAC frame is for MAC switching
or IP forwarding. If it is meant for IP forwarding, the IP SDP RxByte, then parses the IP Header and
does a table lookup based on the Destination IP Address. The IP RC module processes this table
response and processes ICMP messages. On the transmit side, the TxByte assumes that the IP header
has already checksum calculated and just decrements the TTL field in the IP header, and re-computes
the delta checksum and TxByte transmits the MAC frame.

5.2 Interfaces
The following interfaces exist for IP CP:

• Interface with Packet over SONET (POS) and Gigabit Ethernet CPs, based on the IP
descriptor.

• XP Interface, based on the init descriptor.

5.3 Changes Required

• In this application, IP CP will en-queue the IP descriptor to RTP/UDP CP. In the existing
Ethernet switching application, IP Descriptors were en-queued to the POS and the gigabit
Ethernet CPs.

• In this application, IP CP will receive IP descriptor from RTP/UDP CP. In the existing
Ethernet switching application, IP Descriptors were en-queued by the POS and the gigabit
Ethernet CPs.

• The table for MAC DA, IP SA and IP DA lookup will be removed and the corresponding code
in CPRC module will be commented out. The destination queue Id, where the received IP
Descriptor shall be en-queued, is received from the table lookup in the existing application. In
the gateway application, the IP Descriptors shall be en-queued to the RTP/UDP CP queue ID,
which is received from the init descriptor from XP.

• The IP Code shall en-queue an IP Descriptor to RTP/UDP CP, only if the Protocol ID is UDP.
ICMP messages should be en-queued to XP. All other protocols IP packets will be dropped,
and the buffers corresponding to them will be freed.

• The IP Header bytes shall not be sent to SDRAM and they shall be written only to extract
space. In the existing Ethernet application, they are sent to SDRAM and stored along with IP
Payload.

• The Buffer en-queued to IP Tx Module must have IP header checksum calculated, which will
be done by the RTP/UDP CP. Also, the buffer shall comprise of other IP Header values and
the IP Payload.

• Processing for ICMP message with type = 3(Destination Unreachable) and code =3(Port
Unreachable) shall be taken care as follows: If this message arrives, then this has to be sent to
XP, and XP should go ahead and reset the columns related to those call Ids. For all other
ICMP messages, the buffer shall be freed by XP. Before en-queuing the ICMP descriptor to
the XP, IP CP shall read the IP Payload into the DMEM, extract the UDP Port number
information, prepare the ICMP message descriptor with IP and UDP information and then it
will be en-queued to XP. This mechanism will be used to identify the call closure from the IP
end point in the absence of call signaling.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

• Both the Ethernet Ports will be connected to the same next hop router as shown in the figure
below. So, MAC destination address for the outgoing Ethernet frames will be hard coded in
the frame header. The reason for doing this is that full ARP support is not available in the
existing IP/Ethernet code, so gateway cannot find the next frame destination address
dynamically. But it will be supporting the ARP requests with proper ARP responses as the
ports’ MAC addresses, which it is receiving from XP in the init descriptor.

• The delta checksum calculation code in existing IP TxByte Processor shall be commented out,
as this is not required in the gateway application.

ARP Modifications:

1. On receipt of Ethernet MAC frame with type value equal to 0x806, it shall be checked
whether the ARP op-code is ARP Request. If the IP Address of the gateway is the same
as the one in ARP request message, an ARP Reply message shall be composed with the
MAC address having the gateway’s corresponding Ethernet port’s MAC address.

2. For all the Ethernet frames sent out of Ethernet ports shall have destination MAC address
hard coded to the Next Hop Router’s MAC address. In the existing Ethernet
implementation, the destination MAC address is assigned from the IP Descriptor values
en-queued to the IP Tx CP. Next hop router’s MAC address will be provided by the XP in
init descriptor.

In the field deployment scenario, the VoATM-VOIP gateway shall have only one IP router connecting
it to the IP Network.

 Figure 13 Field Deployment Scenario

 In the system test lab, it should be ensured that the gateway application and the VOIP call generator
are connected to the same router as shown below, because it will not support ICMP re-direct message
to update the ARP cache table.

Ethernet

ATM Network

AAL2/ATM
over OC-3c

IP Network

VoATM-VoIP
Gateway Running in a

CDS

AAL2/ATM

over OC-3c
Ethernet Ethernet

Narrowband
Audio Calls
Generator

VoIP Call
Generator

Connecting
Router

VoATM-VoIP
Gateway Running in a

CDS

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

 Figure 14 System Test Lab setup

5.4 Data Structures
The IP Descriptor en-queued to RTP/UDP CP has an additional field of source IP Address. The
RTP/UDP CP for en-queuing to the IP CP uses this descriptor.

/* IP Descriptor */
Typedef struct {
 BsBufHandle bufHandle;
 Int16u length;
 Int16u VNID_client; /* 12 bit VNID + 4 bits for clientId. */
 Int32u sourceAddr; /* source address of the IP telephony user*/
 Int32u appData1;
 Int16u appData2;
 Int16u appData3;
} IpDescriptor;

The ICMP Descriptor en-queued to the XP by the IP CP is as follows:

/* ICMP Descriptor */
typedef struct {
 BsBufHandle bufHandle;
 Int16u length;
 Int16u VNID_client;
 Int32u appData1; /* IP Address */
 Int16u appData2; /* UDP Port Number */
 Int16u appData3; /* ICMP Type and ICMP Code */
} IcmpDescriptor;

The Init Descriptor sent to the IP CP by the XP is as follows:

Typedef struct
{
 BsPoolId PoolId;
 QsQueueId rtpUdpQueueId;
 QsQueueId icmpXpQueueId; /* The queue Id of XP to which ICMP messages shall be sent to */
 Int32u macInternalAddressHi4;
 Int16u macInternalAddressLo2;
 Int32u macDestAddressHi4; /* MAC Address for the next-hop router, */
 Int16u macDestAddressLo2; /* which will be hard-coded for both of the Ethernet ports */
 Int8u fabricEnabled;
 Int8u fabricId;
} IpCpInitDesc;

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

6. RTP and UDP

Please refer to the figure RTP/UDP Formatter/De-formatter Module Functionality in the system
description and architecture chapter.

6.1 Details
RTP/UDP Channel processor will be working in a dual mode. They will receive the incoming IP data
grams from the IP module, as well as the RTP descriptor with RTP payload from the AAL2 to RTP
direction mapping module.

There would be two CPRC threads working in this module. One is named as RTP/UDP Handler, which
will handle the incoming data either from the IP side or from the AAL2 to RTP mapping module side.
The second thread named as RTP/UDP Forwarder that will take care of the forwarding responsibility. It
will forward the received data from the IP side to RTP to AAL2 mapping module, and the data
received from the AAL2 to RTP mapping module to the IP side. The TxByte and RxByte processors
will perform the intermediate sequencing of the payload and header bytes, which includes insertion and
deletion of the required fields.

The direction will be controlled using the operating direction parameter, which will be decided on the
basis of the input on the RTP/UDP handler side.

The detailed functioning of the RTP/UDP module is described below:

(1) RTP/UDP handler will be polling on two queues.

(i) IP descriptor queue.
(ii) RTP descriptor queue.

The first queue is to receive the descriptor en-queued by the IP module, while the second one is to
receive the descriptor en-queued by the AAL2-RTP Mapping module.

(2) The parameters in the IP descriptor are:

o IP Address of the IP telephony user.
o Buffer handle of the UDP datagram (IP payload).
o Others?

(3) The parameters in the RTP descriptor are:

o IP Address of the IP telephony user
o UDP Port Number of the IP telephony user.
o Buffer handle of the RTP payload.
o The following RTP header values:

o P: Padding bit (1 bit)
o X: Extension bit (1 bit)
o CC: CSRC Count (4 bits)
o M: Marker bit (1 bit)
o PT: Payload Type (7 bits)
o SN: Sequence Number (16 bits)
o TS: Time Stamp (32 bits)
o SSRC List (32 bits)
o CSRC List (15*32 bits) (May not be required, won’t fit in the merge space with

other parameters)

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

The following values will be constants, which are required to prepare an Ethernet frame from a
RTP packet:

o IP Address of the Gateway port.
o UDP Port number used by the gateway (a dummy one).
o Mac SA of the Gateway port.
o Mac DA of the next hop router (for simulator testing: a dummy one).
o Other IP/Ethernet header values.

(4) If RTP/UDP module has received something on the IP descriptor queue:

o Descriptor will be de-queued from the queue.
o Operating direction will be set to IP_TO_ATM.
o In the merge space following values will be written:

(i) Operating direction.
(ii) IP Address of the IP telephony user.

o Buffer handle of the UDP datagram will be set to transfer the datagram to the TxByte
processor.

(5) If RTP/UDP module has received something on the RTP descriptor queue:

o Descriptor will be de-queued from the queue.
o Operating direction will be set to ATM_TO_IP.
o In the merge space following values will be written:

(i) Operating direction.
(ii) Relevant RTP descriptor values to make an IP datagram.

(Please note that RTP descriptor contains other parameters also
other than RTP header parameter)

o Buffer handle of the RTP Payload will be set to transfer the datagram to the TxByte processor.

(6) After owning the scope, TxByte processor will examine the operating direction set in the
merge space by Handler thread.

If the direction is IP_TO_ATM:

(i) Operating direction will be passed to the RxByte processor.
(ii) IP Address of the IP telephony user will be passed to the

RxByte processor.
(iii) Above fields will be followed by the UDP data gram.

If the direction is ATM_TO_IP:

(i) Operating direction will be passed to the RxByte processor.
(ii) The TxByte will compute the IP header checksum. IP header

parameters, followed by UDP header, followed by RTP
header, followed by the RTP payload will be sequenced by the
TxByte processor and would be passed to the RxByte
processor. TxByte will read the required constants to make and
sequence the proper header values.

(UDP checksum from the pseudo header as per RFC 768 will
not be calculated, as it is an optional field. It will be always set

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

to 0 while transmitting. On the other direction, while receiving,
this field will be ignored).

(7) After checking the input validity as valid, RxByte processor will examine the operating
direction received as a first byte from TxByte processor to interpret the followed sequence of
bytes.

If the direction is IP_TO_ATM:

(i) After operating direction, the next byte would be the IP
address followed by the UDP data gram.

(ii) RxByte would launch a lookup using IP address and UDP
source port number to get the values for the ATM-AAL2
subscriber parameters.

(iii) RxByte will extract out the RTP header values from the
incoming stream and it will write it to the extract space along
with the operating direction. The values written in the extract
space will be used to prepare a descriptor for the RTP-AAL2
mapping module.

(iv) RxByte processor will also write the RTP payload (after
chopping off the different headers) to the SDRAM as dictated
by the RTP/UDP Forwarder module.

If the direction is ATM_ TO_IP:

(i) After operating direction, the next byte would be the IP header
followed by the UDP data gram.

(ii) RxByte would extract out the IP header fields. It would write
those fields, with the operating direction, in to the extract
space and would transfer the UDP datagram to the SDRAM as
set by the RTP/UDP Forwarder module. The values written in
the extract space will be used to prepare a descriptor for the IP
module.

(8) After owning the extract space, RTP/UDP forwarder module, will check the operating
direction as written by the RxByte processor in the extract space.

If the direction is IP_TO_ATM:

(i) It will wait for the lookup response to come. The RxByte
processor had launched this TLU lookup earlier.

(ii) After getting the ATM-AAL2 subscriber parameters via
lookup results it will en-queue a descriptor to the RTP-AAL2
mapping module. Lookup result will also contain the
destination queue id of one of the CPs, working as mapping
modules, where this descriptor will be en-queued by this
forwarder.

(iii) The above said descriptor will also contain the buffer handle of
the RTP payload, which was filled by the RxByte processor.

If the direction is ATM_TO_IP:

(iv) It will make a descriptor for the IP module and will en-queue it
to that module. This descriptor will also contain the buffer
handle for the IP payload (UDP data gram), filled by the
RxByte processor. There could be a load balancing policy

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

involved, which will arbitrate the distribution between two
output IP CPs.

(9) The co-ordination between RTP/UDP Handler and Forwarder threads:

o The co-ordination will be based on a control block concept. There will be two control blocks
available for co-ordination.

o When handler will be preparing merge space entries, it will also prepare a control block for
the Forwarder.

o Using this control block, Forwarder will be allocating a SDRAM buffer handle for the RxByte
to transfer the payload.

o This control block may contain parameters like operating direction, semaphore control field
for the Handler/Forwarder read/write control etc.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

7. AAL2 SSCS Rx Functionality and AAL2 to RTP Mapping

AAL2 SSCS Rx functionality in this interworking application provides identification of the audio
AAL2 packets. UUI range 0 to 15 is identified as audio AAL2 packets in I.366.2. These AAL2 packets
will be processed in this mapping module. AAL2 packets having a UUI value 31 will be en-queued to
XP, because they are OAM packets. Other UUI AAL2 packets are discarded and would not be
processed further.

7.1 Details
Please refer to the Map-1 functionality figure shown in the System Description & Architecture chapter.
The following description and pseudo code do not strictly follow any design methodology, coding and
naming convention, code optimization and any programming language constructs; the only objective is
to elaborate the design with suitable explanation and details.

Encoding profile identifier representing the profile-identifier as per I.366.2, Annexure P will be known
as global parameter, which are configurable and given by the XP.

7.1.1 Aal2ToRtpMap Init Context:
It does the initialization work, receives initialization descriptor from the XP, and sets the global
variables. It also configures Tx and Rx Byte processors to work in byte re-circulating mode. QMU
interrupt handler, and RTP assembly timer ISR will also be registered in this context.

7.1.2 Aal2ToRtpMap Handler:

2. Polls for the CPS packet descriptor from AAL2 Common Part Sub-layer receiver (AAL2 CPS Rx).
When becomes available, de-queues it from the queue and reads the following fields from the
descriptor:

• Aal2Cid
• Aal2Li
• Aal2Uui
• Aal2PayloadBufHandle
• VcIndex

3. AAL2 CPS packets for Aal2Cid values 1… 7, will be en-queued to XP. These CIDs are used for
AAL2 signaling.

4. If the Aal2Uui is 31, it means it is an OAM AAL2 packet; it will be en-queued to XP, with VC
Index, and other CPS header values. Otherwise only 0… 15 UUI values will be processed, other
CPS packets will not be processed, and AAL2 CPS payload buffer handles will be freed for them.

5. Forms a key using Aal2Cid and VcIndex for TLU table lookup and launches a lookup. After
launching a lookup, based on the EncodingProfileIdentifier, and the Aal2Li, it identifies the type of
encoding that is NewEncodingType. Then till it gets the lookup result, switches the context to
Aal2ToRtpMap Forwarder. If NewEncodingType is not valid, AAL2 CPS packet will be dropped,
and its buffer handle will be freed.

6. If table lookup result fails, no further processing will be performed, it indicates that received
AAL2 CPS packet has to be dropped, because no corresponding could be found in the table. In this
case, AAL2 CPS payload buffer handle will be freed. In case of successful lookup response, the
following parameters are expected from the lookup result:

• PresentRtpTimeStamp
• PresentRtpSeqNumber

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

• OldEncodingType
• ExpectedAal2UuiValue
• RtpPayloadBufHandle
• RtpPayloadBytesCount
• CountAal2PacketsNeeded
• IP Address of the IP Telephony user.
• UDP port number of the IP Telephony user.
• Destination RTP/UDP Queue Id.
• SSRC Identifier.
• CallId.

6. The following things will be identified from the lookup result and CPS packet descriptor:

• NewEncodingType is not same as OldEncodingType?
• Is NewEncodingType a generic SID?
• Aal2Uui is not same as ExpectedAal2UuiValue?
• RtpPayloadBytesCount is not an exact multiple of 16, i.e. re-circulation required, in case

when encoding type has not changed from the last encoding type, ExpectedAal2UuiValue
is same as Aal2Uui, CountAal2PacketsNeeded! =0, and assembly timer is not expired for
this call?

7. If required, a static variable will be maintained to keep track of the current scope. After each
AAL2 CPS packet processing in handler, this will be incremented in a module-2 fashion. This is
not mandatory, because CPI library internally takes care of this.

8. Co-ordination between handler and forwarder contexts will be maintained using a control block,
Aal2ToRtpControlBlock. These blocks will be two in numbers and will be used in a circular
fashion. Next block availability will be checked, if next control block is ready to be written after
forwarder processing of it, that is whether ForwarderProcDoneLock variable in the block has
become TRUE.

 Figure 15 Aal2ToRtpMap Control Blocks

The following fields will be written in the Aal2ToRtpControlBlock, which are received from the table
lookup and CPS descriptor:

• PresentRtpTimeStamp
• PresentRtpSeqNumber
• OldEncodingType
• NewEncodingType
• RtpPayloadBufHandle
• RtpPayloadBytesCount
• GenericSidPresentFlag
• G.729SidFramePresentFlag

Control Block-0
With Forwarder-
Read/Handler-

Write Protection

Control Block-1
With Forwarder-
Read/Handler-

Write Protection

Forwarder Reads
Handler Writes

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

• MissedAal2Uui = ExpectedAal2UuiValue - Aal2Uui
• Aal2Cid
• VcIndex
• ForwarderProcDoneLock
• IP Address of the IP Telephony user.
• UDP port number of the IP Telephony user.
• Destination RTP/UDP Queue Id.
• SSRC Identifier.
• CallId.

If re-circulation is required, RtpPayloadBytesCount variable will be decremented by the number of
bytes being re-circulated, because these bytes will be stored again, and this field in the table will be
updated again.

After filling the control block, it opens the protection lock, ForwarderProcDoneLock = FALSE, so that
Forwarder can read this block. (Forwarder makes it TRUE, after processing it)

9. Owner ship of the merge space will be checked for the current scope, if it is available, and if re-
circulation is required, handler copies the no-aligned previous payload bytes to DMEM from
RtpPayloadBufHandle, where AAL2 packets are being assembled to make a bigger RTP packet
and then, fills them into the merge space in the following way:

CountOfRe-circulatedBytes Byte-1 Byte-2 Byte-3
Byte-4 Byte-5 Byte-6 Byte-7
Byte-8 Byte-9 Byte-10 Byte-11

Byte-12 Byte-13 Byte-14 Byte-15
CountOfNewAal2PayloadBytes

 Figure 16 Aal2ToRtpMap Merge Space Registers

If there are no re-circulated bytes then the corresponding count field of the merge space will be set to 0,
and Byte-1 to Byte-15 merge space register locations will be ignored. So, maximum usage of the merge
space is 17 bytes out of 64 bytes.

If merge space is not available for the present scope, handler keeps on switching the context for
Forwarder, till it gets one.

7. After filling the merge space and control blocks, handler transfers the new AAL2 payload stored at
Aal2PayloadBufHandle to TxByte processor using PDU services CPI API, and gives the merge
space ownership to TxByte processor for sequencing.

8. Above processing cycle finishes the Aal2ToRtpMap Handler processing of one AAL2 CPS packet
received from AAL2 CPS Rx.

7.1.3 Aal2ToRtpMap TxByte Processor:

1. It polls for the merge space availability, which will be made available by the CP RISC core
(handler context).

2. After owning the merge space, TxByte processor checks for the CountOfRe-circulatedBytes field
in the merge space, if 0, then it reads the CountOfNewPayloadBytes field from the merge space,
and transfers those bytes to RxByte processor and puts the Merge-9 bit in the last byte to indicate
the end of the stream.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

3. If CountOfRe-circulatedBytes is not 0, then it transfers the re-circulated bytes from the merge
space registers to RxByte processor, the it reads the CountOfNewPayloadBytes field from the
merge space, transfers the new payload bytes to RxByte processor, and puts Merge-9 bit in the last
byte to indicate the end of the stream.

4. After this much processing it gives the merge space ownership to CP RISC core (handler context),
and polls for the next availability of merge space as it was doing in the beginning.

7.1.4 Aal2ToRtpMap RxByte Processor:

1. It polls for the extract space availability, which will be made available by the CP RISC core
(forwarder context). After owning the extract space it loads the location address of the
CountIncomingBytes variable of the extract space in the control register. After this, it checks the
incoming stream availability in Large FIFO from TxByte processor.

2. When there is some bytes in the Large FIFO, it transfers those bytes to SDRAM location, which is
already set by the forwarder context, and writes the count of the received bytes (identifying Data-9
bit) in the extract space location of CountIncomingBytes using control register. In the last it gives
the ownership of the extract space to CP RISC core, and polls again for its ownership.

7.1.5 Aal2ToRtpMap Forwarder:

1. If required, a static variable will be maintained to keep track of the current scope. This will be
incremented in a module-2 fashion. This is not mandatory, because CPI library internally takes
care of this.

2. Forwarder polls on the two events:

(1) Availability of the next control block as prepared by the handler as
ForwarderProcDoneLock = FALSE.

(2) 5 ms timer expiry event. There will be a global variable (TimerTableProcessed) for
this, which will be set by the ISR. Whenever timer ISR will be invoked as a 5 ms
time expiry, this variable will be set to FALSE. After Forwarder recognizes this
event and completes it’s processing over the table, it will set it to TRUE.

3. If the control block is ready to be read, the processing will be done as follows after reading its
contents:

/* When incoming AAL2 packet is a generic SID */
If ((GenericSidPresentFlag == TRUE)
{

First of all, stop the timer running for this call, using CallId as an index to the timer array.

/* If something is stored already, first send it as a RTP packet, because SID will be transmitted
separately */
If (RtpPayloadBufHandle! = NULL)
{

/* Prepare the following RTP descriptor for the existing payload */

/* Variables for RTP are updated based on the received control block contents */
/* In the beginning PresentRtpTimeStamp and sequence number will be having some
random value */
RtpTimeStamp = PresentRtpTimeStamp;

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

RtpSeqNumber = PresentRtpSeqNumber;
RtpPayloadType = OldEncodingType;
RtpBufHandle = RtpPayloadBufHandle;
RtpPayloadBytes = RtpPayloadBytesCount;
IpDestAddr = IP Address of the IP Telephony user.
UdpDestPort = UDP port number of the IP Telephony user.
SsrcIdentifier = SSRC Identifier.
MarkerBit = 0;
En-queue this descriptor to the RTP/UDP CP using destination RTP/UDP Queue Id;

/* Update the parameters for the next RTP packet to be sent, which would be SID, in
this case */
PresentRtpTimeStamp += Adjusted time for the stored RTP payload;
PresentRtpSeqNumber += 1;
/* Other variables does not need any update, will be updated below */

}

/* Adjust the time stamp for the missed AAL2 packets, if any, otherwise MissedAal2Uui will
be 0. MissedAal2Uui will be non-0, only if there are dropped AAL2 packets */

/* AAL2_PACKET_SEQ_NUM_INTERVAL will be 5*8 =40. Unit of the time stamp is
always samples in the RTP packet time as per RFC 1890 */

PresentRtpTimeStamp += AAL2_PACKET_SEQ_NUM_INTERVAL * MissedAal2Uui;

/* Prepare RTP descriptor for this SID */
RtpTimeStamp = PresentRtpTimeStamp;
RtpSeqNumber = PresentRtpSeqNumber;
RtpPayloadType = GENERIC_SID;
RtpBufHandle = Allocate a new buffer to store SID byte;
RtpPayloadBytes = 1;
IpDestAddr = IP Address of the IP Telephony user.
UdpDestPort = UDP port number of the IP Telephony user.
SsrcIdentifier = SSRC Identifier.
MarkerBit = (MissedAal2Uui == 0)? 0:1;

Transfer Payload from RxByte processor to DMEM and then to SDRAM location.

En-queue this descriptor to the RTP/UDP CP using destination RTP/UDP Queue Id;

/* Update the parameters for the next RTP packet to be sent next time */
PresentRtpTimeStamp += Packet time of generic SID;
PresentRtpSeqNumber += 1;
RtpPayloadBufHandle = NOT_ALLOCATED;
RtpPayloadBytesCount = 0;
OldEncodingType value will be not be changed;

/* No more AAL2 packets are expected for the RTP assembly. It has to start from the fresh */
CountAal2PacketsNeeded = 0;

}

/* When the encoding type has been changed from the last type */
Else {
If ((OldEncodingType! = NewEncodingType)
{

First of all, stop the timer running for this call, using CallId as an index to the timer array.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

/* If something is stored already, first send it as a RTP packet */
If (RtpPayloadBufHandle! = NOT_ALLOCATED)
{

/* Prepare the following RTP descriptor for the existing payload */

RtpTimeStamp = PresentRtpTimeStamp;
RtpSeqNumber = PresentRtpSeqNumber;
RtpPayloadType = OldEncodingType;
RtpBufHandle = RtpPayloadBufHandle;
RtpPayloadBytes = RtpPayloadBytesCount;
IpDestAddr = IP Address of the IP Telephony user.
UdpDestPort = UDP port number of the IP Telephony user.
SsrcIdentifier = SSRC Identifier.
MarkerBit = 0;

En-queue this descriptor to the RTP/UDP CP using destination RTP/UDP Queue Id;

/* Update the parameters for the next RTP packet to be sent */
PresentRtpTimeStamp += Adjusted time for this RTP packet;
PresentRtpSeqNumber += 1;

}
/* If RtpPayloadBufHandle is NOT_ALLOCATED, no previous accumulation */
Else {

/* Adjust the time stamp for the missed AAL2 packets, if any, otherwise MissedAal2Uui will
be 0. MissedAal2Uui will be non-0, only if there are dropped AAL2 packets */

PresentRtpTimeStamp += AAL2_PACKET_SEQ_NUM_INTERVAL * MissedAal2Uui;

If (This AAL2 packet does not need any accumulation i.e. can be sent as a RTP packet,
because otherwise would need fragmentation of AAL2 packets to make a large RTP packet, | |
G.729SidFramePresentFlag == TRUE)
{

/* Prepare RTP descriptor for this AAL2 packet */
RtpTimeStamp = PresentRtpTimeStamp;
RtpSeqNumber = PresentRtpSeqNumber;
RtpPayloadType = NewEncodingType;
RtpBufHandle = Allocate a new buffer to store incoming payload stream;
RtpPayloadBytes = Read it from extract space.
IpDestAddr = IP Address of the IP Telephony user.
UdpDestPort = UDP port number of the IP Telephony user.
SsrcIdentifier = SSRC Identifier.
MarkerBit = (MissedAal2Uui == 0)? 0:1;

Transfer Payload from RxByte processor to DMEM, and then to SDRAM location.
En-queue this descriptor to the RTP/UDP CP using destination RTP/UDP Queue Id;

/* Update the parameters for the next RTP packet to be sent */
PresentRtpTimeStamp += Adjusted time for this RTP packet;
PresentRtpSeqNumber += 1;
OldEncodingType = NewEncodingType;
RtpPayloadBufHandle = NOT_ALLOCATED;
RtpPayloadBytesCount = 0;
CountAal2PacketsNeeded = 0;

}
/* AAL2 packets can be accumulated to make a bigger RTP packet */

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

Else
{

/* Time stamp and sequence numbers are already updated */
OldEncodingType = NewEncodingType;

/* Accumulate this AAL2 packet to the new location */
RtpPayloadBufHandle = Allocate a new buffer to store incoming payload stream;
Transfer Payload from RxByte processor to DMEM and then SDRAM location.
RtpPayloadBytesCount = Update based on the extract space entry;
CountAal2PacketsNeeded = Update based on the encoding type and received AAL2
packet size;

Reload the timer count, e.g. if 5 more, 5 ms AAL2 packets are expected, then timer
count should be loaded as 5, representing 25 ms, assuming timer granularity as 5 ms.
One AAL2 packet is already stored, so target is to store 30 ms worth of RTP data.

}}
}

/* New encoding type is same as the old one */
Else
{

/* Adjust the time stamp for the missed AAL2 packets, if any, otherwise MissedAal2Uui will
be 0. MissedAal2Uui will be non-0, only if there are dropped AAL2 packets */

PresentRtpTimeStamp += AAL2_PACKET_SEQ_NUM_INTERVAL * MissedAal2Uui;

/* There is already an allocated buffer for accumulation */
If (RtpPayloadBufHandle! = NOT_ALLOCATED)
{

/* If there are no missed AAL2 packets in between */
If (MissedAal2Uui == 0)
{

Transfer Payload from RxByte processor to this RtpPayloadBufHandle.
RtpPayloadBytesCount += Update based extract space entry;
Decrease CountAal2PacketsNeeded based on the packet time;

}

/* Descriptor can be en-queued to RTP/UDP in the following cases: accumulation is
over (early then expected AAL2 packets), or there are few missed AAL2 packets in
between, or there are no missed AAL2 packets, but this is a G.729B frame. */

If ((CountAal2PacketsNeeded == 0) || (MissedAal2Uui! =0) || ((MissedAal2Uui ==
0) && (G.729SidFramePresentFlag == TRUE)))
{

First of all, stop the timer running for this call, using CallId as an index to
the timer array.

RtpTimeStamp = PresentRtpTimeStamp;
RtpSeqNumber = PresentRtpSeqNumber;
RtpPayloadType = OldEncodingType;
RtpBufHandle = RtpPayloadBufHandle;
RtpPayloadBytes = RtpPayloadBytesCount;
IpDestAddr = IP Address of the IP Telephony user.
UdpDestPort = UDP port number of the IP Telephony user.
SsrcIdentifier = SSRC Identifier.
MarkerBit = (MissedAal2Uui == 0)? 0:1;

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

En-queue this descriptor to the RTP/UDP CP using destination RTP/UDP
Queue Id;

/* Update the parameters for the next RTP packet to be sent */
/* Old encoding type will remain same; that is why this piece is being
executed */
PresentRtpTimeStamp += Adjusted time for this RTP packet;
PresentRtpSeqNumber += 1;
RtpPayloadBufHandle = NOT_ALLOCATED;
RtpPayloadBytesCount = 0;
CountAal2PacketsNeeded = 0;

}
}
/* If there is no previous allocation for accumulation*/
Else
{

If (This AAL2 packet does not need any accumulation i.e. can be sent as a RTP
packet, because otherwise would need fragmentation to make a large RTP packet | |
G.729SidFramePresentFlag == TRUE | | CountAal2PacketsNeeded! = 0)
{

First of all, stop the timer running for this call, using CallId as an index to
the timer array.

/* Prepare RTP descriptor for this AAL2 packet */
/* If there are missed AAL2 packets, time stamp is already adjusted above
in the beginning */
RtpTimeStamp = PresentRtpTimeStamp;
RtpSeqNumber = PresentRtpSeqNumber;
RtpPayloadType = NewEncodingType;
RtpBufHandle = Allocate a new buffer to store incoming payload stream;
RtpPayloadBytes = Read it from the extract space;
IpDestAddr = IP Address of the IP Telephony user.
UdpDestPort = UDP port number of the IP Telephony user.
SsrcIdentifier = SSRC Identifier.
MarkerBit = (MissedAal2Uui == 0)? 0:1;

Transfer Payload from RxByte processor to DMEM and then to SDRAM
location.
En-queue this descriptor to the RTP/UDP CP using destination RTP/UDP
Queue Id;

/* Update the parameters for the next RTP packet to be sent */
/* Old encoding type will remain same; that is why this piece is being
executed */
PresentRtpTimeStamp += Adjusted time for this RTP packet;
PresentRtpSeqNumber += 1;
RtpPayloadBufHandle = NOT_ALLOCATED;
RtpPayloadBytesCount = 0;
If (CountAal2PacketsNeeded)
{

CountAal2PacketsNeeded = CountAal2PacketsNeeded - 1;
}

}

/* Allocate new SDRAM buffer and start accumulation */
Else
{

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

/* Accumulate this AAL2 packet to the new location */
RtpPayloadBufHandle = Allocate a new buffer to store incoming payload
stream;
Transfer Payload from RxByte processor to DMEM and then to SDRAM
location.
RtpPayloadBytesCount = Read it from the extract space;
CountAal2PacketsNeeded = Update based on the encoding type and
received AAL2 packet time;

Reload the timer count, e.g. if 5 more, 5 ms AAL2 packets are expected,
then timer count should be loaded as 5, representing 25 ms, assuming timer
granularity as 5 ms. One AAL2 packet is already stored, so target is to store
30 ms worth of RTP data.

}
}

}}

ExpectedAal2UuiValue = Update based on the received UUI and encoding type;
Update the following values in TLU table, for the next AAL2 packet processing:

• PresentRtpTimeStamp
• PresentRtpSeqNumber
• OldEncodingType
• ExpectedAal2UuiValue
• RtpPayloadBufHandle
• RtpPayloadBytesCount
• CountAal2PacketsNeeded

After this control block processing, forwarder frees the control block by setting
ForwarderProcDoneLock = TRUE.

4. Timer Expiry handling mechanism in forwarder:

Timer
Started
(1 bit)

Timer Load Count, N
(Representing N*5 ms)

(7 bits)

 Figure 17 Timer Table Entry

The above figure represents the timer table (stored in DMEM) for all the calls per AAL2 To RTP
Mapping Module CP. This is an array of bytes, indexed on the CallIds. MSB represents if timer is
started for that call, if set to 1, and call is using the timer mechanism for AAL2 packets assembly for
RTP packets. Seven LSBs represent the timer load count, as depicted in the figure. Load value
multiplied by 5 represents the time count in milliseconds, because granularity of the timer is 5 ms.

For timer ISR, DCP register will be filled by a value, which represent number of clock cycles
equivalent to 5 ms, using ksTimerSet () API. When this count will become 0, ISR will be invoked. On
invocation, five milliseconds timer ISR will traverse the timer table to see if timers are started for
which of the CallIds. If this one bit field is set, it means timer is started for this particular CallId. Then
for this entry if timer load count is not 0, it will decrease it by 1, then it will set the
TimerTableProcessed variable to FALSE, after traversing the whole table.

Aal2ToRtpMap Forwarder will be also polling on the variable TimerTableProcessed. If it is set to
FALSE by the ISR, it will scan the timer table in the following way:

Static int16u CallId = CallIdLowerLimit;

If (TimerTableProcessed == FALSE)

Index on
CallId

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

{
While (TimerTable [CallId]! = 0x80)
{

FunctionIncrementCallId (CallId);
If (TimerTableProcessed == TRUE)
{

Break;
}

}

/* Call is present with timer is expired */
If (TimerTableProcessed == FALSE)
{

• Launch a lookup using CallId to find out the VcIndex and CID
for this call. Using VcIndex and CID find out the other
parameters from the table, which is being used for the RTP
packet assembly.

• Prepare a RTP descriptor and en-queue it to the RTP/UDP CP.
• Update the entries of the RTP table.
• Stop the timer for this call.
• FunctionIncrementCallId (CallId)

}
}
FunctionIncrementCallId (CallId)
{

If (++CallId > CallIdUpperLimit)
{

CallId = CallIdLowerLimit;
TimerTableProcessed = TRUE;

}
}

This completes the processing of the Forwarder context.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

8. AAL2 SSCS Tx Functionality and RTP to AAL2 Mapping

AAL2 SSCS Tx functionality in this interworking application provides encapsulation of the audio
AAL2 packets. This application does not directly do any encoding of the digitized audio samples using
any encoding algorithm, but it re-encapsulates the audio data coming from the IP endpoint using RTP
as a transport mechanism, to AAL2 CPS packet format as defined in I366.2. Only audio RTP packets
will be mapped to equivalent AAL2 packets, which use a UUI range of 0… 15.

8.1 Details

Please refer to the Map-2 functionality diagram shown in the System Description & Architecture
chapter. The following description does not strictly follow any design methodology, naming
convention, and optimization; the only objective is to elaborate the design with suitable explanation
and details.

Encoding profile identifier representing the profile-identifier as per I.366.2, Annexure P will be known
as global parameter, which is configurable and given by the XP to this module in the initialization
descriptor.

8.1.1 RtpToAal2Map Init Context:
It does the initialization work, receives initialization descriptor from the XP, and sets the global
variables. It also configures Tx and Rx Byte processors to work in byte re-circulating mode. QMU
interrupt handler will also be registered in this context.

8.1.2 RtpToAal2Map Handler:

1. Polls for the RTP packet descriptor from the RTP/UDP module. If not available, it switches the
context for the Forwarder context. When becomes available, it de-queues it from the queue and
reads the following fields from the descriptor:

• VPI (2 bytes)
• VCI (2 bytes)
• CID (1 byte)
• VcIndex (2 bytes)
• CallPresentFlag (1 bytes)
• ExpectedRtpTimeStamp (4 bytes)
• ExpectedRtpSequenceNumber (2 bytes)
• NextAal2UuiValue (1 byte)
• FragAal2BufHandle (4 bytes)
• FragAal2BytesCount (1 byte)
• LastRtpPayloadType (1 byte)
• RtpBufHandle (4 bytes)
• RtpPacketBytesCount (2 bytes)

2. If all the cases mentioned below, CallPresentFlag will be checked while checking
ExpectedRtpTimeStamp, and ExpectedRtpSequenceNumber fields. If it is set to FALSE, these
fields will be ignored.

3. First 16 bytes of the RTP packet contents (12 bytes of the fixed RTP header, excluding the CSRC
identifiers list) will be copied to the DMEM from SDRAM, and the following RTP header values
will be read:

• RtpVersion (2 bits)

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

• RtpPaddingBit (1 bit)
• RtpHdrExtBit (1 bit)
• RtpCCount (4 bit)
• RtpMarkerBit (1 bit)
• RtpPayloadType (7 bits)
• RtpSequenceNumber (2 bytes)
• RtpTimeStamp (4 bytes)
• RtpSsrcId (4 bytes)

4. In the following cases, this RTP packet will be dropped, its buffer handle will be freed, and no
further processing will be done:

1. RtpVersion is not equal to 2. No support for the old RTP versions.

2. RtpPaddingBit is set to 1. No padded RTP payload is expected.

3. RtpHdrExtBit is set to 1. Header extension is not expected.

4. If RtpCCount is not equal to 0. This application does not expect contributing
sources other than the source itself.

5. If RtpPayloadType is not supported based on the profile identifier currently
selected, based on the I.366.2, Annexure P.

6. If RtpPayloadType, and RtpPacketBytesCount represent a RTP packet
containing more than 30 ms worth of audio data (gateway’s maximum receive
capability).

7. RtpSequenceNumber is less than the ExpectedRtpSequenceNumber, it means
it is a late arrived packet.

5. Based on the above parameters the following values will be calculated:

(i) Length of the RTP payload.

• From RtpPacketBytesCount, the length of the RTP header will be subtracted, to
get the RtpPayloadLength.

(ii) Value of the UUI (NextAal2UuiValue) for the next AAL2 packet.

• If RtpSequenceNumber is same as the ExpectedRtpSequenceNumber, and
RtpTimeStamp is same as the ExpectedRtpTimeStamp, the next value of UUI will
be NextAal2UuiValue, as received from the RTP/UDP descriptor.

• If RtpSequenceNumber is less than the ExpectedRtpSequenceNumber; this RTP
packet is already dropped, as described above, so this condition will not be tested
here.

• If RtpSequenceNumber is greater than the ExpectedRtpSequenceNumber, then
NextAal2UuiValue will be incremented to represent the silence for the missed RTP
packets. Time difference between ExpectedRtpTimeStamp, and RtpTimeStamp
will be calculated, and if it is not 5 ms, or not an exact multiple of 5 ms, it will be
converted to represent the next multiple of 5 ms. For each 5 ms;
NextAal2UuiValue will be incremented by 1.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

• If RtpSequenceNumber is same as the ExpectedRtpSequenceNumber, but
RtpTimeStamp is not same as the ExpectedRtpTimeStamp, the value of
NextAal2UuiValue will be calculated as described above after getting the time
difference in a multiple of 5 ms.

(iii) Size of the AAL2 CPS packets payload, which are going to be formed using this RTP
packet (SizeAal2PacketPayload).

• Based on the selected profile identifier and RtpPayloadType,
SizeAal2PacketPayload will be identified, as described in Annexure P, I.366.2. If
SizeAal2PacketPayload is greater than the RtpPayloadLength, then
SizeAal2PacketPayload will be set to the RtpPayloadLength.

(iv) SID presence in the RTP payload.

• Presence of Generic, or G.723.1, or G.729 based SIDs in the RTP payload will be
identified based on the following table:

If RTP Payload Type = And, if RTP
Packet Time (ms)

=

And, if RTP
Payload Bytes

Count =

Then, Number
of SIDs =

4 (G.723.1) 30 4 1
13 (Generic) 5/10/15/20/25/30 1/2/3/4/5/6 1/2/3/4/5/6

18 (G.729AB) 10/20/30 2/12/22 1
101 (G.729DB) 10/20/30 2/10/18 1

102 (G.729EB, Forward) 10/20/30 2/17/32 1

(v) Number of SIDs present in the RTP payload (CountOfSids).

• Based on the above table, in all other cases CountOfSids will be 0.

(vi) Location of SID present in the RTP payload (LocationOfSid).

• This represents starting from which byte SID starts in the RTP payload.
LocationOfSid = 0, will represent that this RTP packet contains SID only.
Otherwise, it will be set appropriately, e.g. in 20 ms G.729AB RTP packet,
LocationOfSid will be equal to 10. That is 11th and 12th bytes represent G.729B
(SID) frame.

(vii) Number of complete and partial AAL2 packets (CountAal2Packets,
CountPartialAal2Packets), which can be formed using this arrived RTP packet.

• Based on the selected profile identifier, RtpPayloadLength (to identify SIDs), and
RtpPayloadType; CountAal2Packets, and CountPartialAal2Packets will be
calculated. Maximum value of CountPartialAal2Packets will be 1. If any SID is
present, CountPartialAal2Packets will be equal to 0.

(viii) Processing of FragAal2BufHandle.

• If FragAal2BufHandle is equal to NOT_ALLOCATED, nothing will be done.
Otherwise the following cases are possible:

• If RtpSequenceNumber is same as the ExpectedRtpSequenceNumber, and
RtpTimeStamp is same as the ExpectedRtpTimeStamp, and

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

FragAal2BytesCount is not an exact multiple of 16, re-circulation of the non-
aligned bytes from FragAal2BufHandle will be required (CountRecircBytes).

• If RtpSequenceNumber is not same as the ExpectedRtpSequenceNumber, or
RtpTimeStamp is not same as the ExpectedRtpTimeStamp,
FragAal2BufHandle will be freed, because accumulation of this fragmented
AAL2 packet cannot be completed.

• If RtpPayloadType is not same as the LastRtpPayloadType, then also
FragAal2BufHandle will be freed, because accumulation of this fragmented
AAL2 packet cannot be completed using this RTP packet.

• If CountOfSids is not 0, i.e. any SID is present, then also FragAal2BufHandle
will be freed.

(ix) ExpectedRtpSequenceNumber will be calculated using the RtpSequenceNumber of the
RTP packet which is being processed, and ExpectedRtpTimeStamp will be calculated
using the RtpPayloadType, RtpPayloadLength, and not processed RTP packets sequence
numbers (if any, because of loss or out of sequence drop). Wrapping around of time
stamp and sequence numbers data types will properly taken care of.

6. Owner ship of the merge space will be checked for the current scope, if it is available, Handler will
fill the merge space in the following way, otherwise context will be switched for the Forwarder
context:

RtpPayloadType CountAal2Packets SizeAal2PacketPayload CountOfSids
LocationOfSid RtpPayloadLength CountRecircBytes Byte-1

Byte-2 Byte-3 Byte-4 Byte-5
Byte-6 Byte-7 Byte-8 Byte-9

Byte-10 Byte-11 Byte-12 Byte-13
Byte-14 Byte-15

 Figure 18 RtpToAal2Map Merge Space Registers

7. Co-ordination between the RtpToAal2 Handler and Forwarder contexts will be maintained using a
control block, RtpToAal2ControlBlock. These blocks will be two in numbers and will be used in a
circular fashion. Next block availability will be checked, if next control block is ready to be
written after Forwarder processing of it, that is whether ForwarderProcDoneLock variable in the
block has become TRUE.

 Figure 19 RtpToAal2Map Control Blocks

If next control block is ready to be written by the handler the following values will be written:

 i. CountAal2Packets

Control Block-0 With
Forwarder-

Read/Handler-Write
Protection

Forwarder Reads
Handler Writes

Control Block-1 With
Forwarder-

Read/Handler-Write
Protection

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

 ii. CountPartialAal2Packets
 iii. NextAal2UuiValue
 iv. VPI
 v. VCI
 vi. CID
 vii. VcIndex
 viii. CallPresentFlag
 ix. RtpPayloadType
 x. FragAal2BufHandle
 xi. FragAal2BytesCount
 xii. ExpectedRtpTimeStamp
 xiii. ExpectedRtpSequenceNumber

After writing the control block, handler sets the ForwarderProcDoneLock to FALSE, which means that
it is ready to be read by the Forwarder.

8. After filling the merge space and control blocks, handler transfers the new RTP data stored at
RtpBufHandle to TxByte processor using PDU services CPI functions, and gives the merge space
ownership to TxByte processor for sequencing.

9. Above processing cycle finishes the RtpToAal2Map Handler processing of one RTP packet
received from RTP/UDP CP.

8.1.3 RtpToAal2Map TxByte Processor:

1. It polls for the merge space availability, which will be made available by the CP RISC core
(handler context).

2. The first 12 bytes of the fixed RTP header will be discarded in the TxByte processor, which are
stored at RtpBufHandle, because the Handler has already processed them.

3. After owning the merge space, TxByte processor checks for the CountOfSids field in the merge
space. If it is 0, then it checks for the CountRecircBytes value, if 0, then it reads the RTP payload
bytes from the SDRAM, and sets the Merge-9 bit in the last byte of each set of
SizeAal2PacketPayload number of bytes, representing different AAL2 packets payloads.

4. If CountRecircBytes is not equal to 0, then it transmits re-circulated bytes first, from the merge
space, then transmits RTP payload bytes from the SDRAM, and sets the Merge-9 bit accordingly.

5. If CountAal2Packets is 0, then it sets the Merge-9 bit in the last byte of RtpPayloadLength.

6. If CountOfSids is not equal to 0, and LocationOfSid is equal to 0, it means, there are SID bytes
only. It sets the Merge-9 bit in the each last SID byte, identifying RtpPayloadType.

7. If CountOfSids and LocationOfSid are not equal to 0, then it sets the Merge-9 bit using
SizeAal2PacketPayload, and LocationOfSid values.

8. This entire sequenced stream, in all of the above cases, will be transferred to RxByte processor.

9. After this much processing it gives the merge space ownership to CP RISC core (handler context),
and polls for the next availability of merge space as it was doing in the beginning.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

8.1.4 RtpToAal2Map RxByte Processor:

1. It polls for the extract space availability, which will be made available by the CP RISC core
(forwarder context). After owning the extract space it loads the location address of the
Aal2PayloadLength variable of the extract space in the control register. After this, it checks the
incoming stream availability in Large FIFO from TxByte processor.

2. When there is some bytes in the Large FIFO, it transfers those bytes to SDRAM location, which is
already set by the forwarder context, and writes the count of the received bytes (identifying Data-9
bit) in the extract space location of Aal2PayloadLength using control register. In the last, it gives
the ownership of the extract space to CP RISC core, and polls again for its ownership.

8.1.5 RtpToAal2Map Forwarder:

1. Forwarder polls on the availability of the next control block as prepared by the handler as
ForwarderProcDoneLock = FALSE.

2. When control block becomes available, it read the following variables from the control block:

 i. CountAal2Packets
 ii. CountPartialAal2Packets
 iii. NextAal2UuiValue
 iv. VPI
 v. VCI
 vi. CID
 vii. VcIndex
 viii. CallPresentFlag
 ix. RtpPayloadType
 x. FragAal2BufHandle
 xi. FragAal2BytesCount
 xii. ExpectedRtpTimeStamp
 xiii. ExpectedRtpSequenceNumber

3. If value of FragAal2BufHandle set in the control block is NOT_ALLOCATED, it allocates fresh
SDRAM buffer for each of the CountAal2Packets, where RxByte transfers the AAL2 packet
payload. Then it en-queues the CPS packet descriptor to its destination AAL2 CPS Tx CP’s queue.
This queue id is received from the XP in init descriptor. It decides the UUI value for the AAL2
packets using NextAal2UuiValue, and RtpPayloadType. (LI+1) header value it reads from the
extract space for each of the AAL2 packet.

4. If value of FragAal2BufHandle set in the control block is not NOT_ALLOCATED, it means no
previous bytes are being re-circulated. Otherwise, it sets the FragAal2BufHandle SDRAM location
for RxByte writing. Now it updates the FragAal2BytesCount value from the extract space value. If
this value is completely representing the one AAL2 packet for RtpPayloadType, it en-queues it to
AAL2 CPS Tx. UUI value for this AAL2 packet will be NextAal2UuiValue.

5. If CountPartialAal2Packets, is 1, then it allocates SDRAM buffer for it, RxByte transfers the
AAL2 packet payload to this location, which is not complete so far. Forwarder sets this SDRAM
location to FragAal2BufHandle, and FragAal2BytesCount equal to the Aal2PayloadLength,
written in the extract space.

6. Forwarder calculates the NextAal2UuiValue, based on the last UUI value used in the last AAL2
packet formed by the Forwarder, except partial AAL2 packet stored in the SDRAM location.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

7. The following values will be updated in the table by the forwarder, after processing one control
block:

 i. NextAal2UuiValue
 ii. FragAal2BufHandle
 iii. FragAal2BytesCount
 iv. LastRtpPayloadType = RtpPayloadType
 v. ExpectedRtpTimeStamp
 vi. ExpectedRtpSequenceNumber
 vii. CallPresentFlag = 1 (TRUE)

8. After processing this control block, it will be freed for Handler writing, by setting the
ForwarderProcDoneLock to TRUE.

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

9. C-5 Executive Processor and Resources

9.1 Requirements & Overview

XPRC is used for boot and initialization of the C5 chip. The XP application is split into two phases.
The first phase performs service initialization, configures system resources and loads the channel
processors. The second phase builds the tables, starts the channel processors and sends the initialization
descriptors required for each of these channel processors and starts the SDPs before entering the into
the infinite loop to monitor the different events from different CPs.

The sequence of operations is as follows:

• Initialization of system services (Kernel, Table, Buffer and Queue Services)
• QMU Configuration – Each CP is allotted 16 queues each.

CP Description
Base Q ATM cell descriptors from AAL2 TX CP
Base Q + 1
…

ATM CP

Base Q + 15
Base Q ATM cell descriptors from ATM CP
Base Q + 1
…

AAL2 Rx CP

Base Q + 15
Base Q CPS packet descriptors from RTP to AAL2 Map CP
Base Q + 1 CU timer expiry messages from XP
…

AAL2 Tx CP

Base Q + 15
Base Q IP Descriptors from IP/Ethernet CP
Base Q + 1 RTP/UDP Descriptors from AAL2 to RTP map module
…

RTP/UDP CP

Base Q + 15
Base Q CPS Packet Descriptors from AAL2 RX CP
Base Q + 1
…

Aal2 to RTP Map
CP

Base Q + 15
Base Q RTP Descriptors from RTP/UDP CP
Base Q + 1
…

RTP to Aal2 Map
CP

Base Q + 15
Base Q IP Descriptors from RTP/UDP CP
Base Q + 1
…

IP CP

Base Q + 15
Base Q CU Timer Start Request messages from AAL2 TX CP
Base Q + 1 SONET monitoring messages from ATM CP

XP

Base Q + 2 OAM/Control messages from ATM CP

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

Base Q + 3 Reserved CIDs (1 to 7) and Alarms messages Queue
from AAL2 to RTP Map CP

Base Q + 4 ICMP messages from IP CP
… .
Base Q + 15

• BMU Configuration

The following table describes the buffer pools that need to be created.

Numb
er of
pool
instan
ces

Attached
to CP

Contents of the
buffer pool

Number
of
buffers
per pool

Size of
buffer

Total
buffer
requireme
nt

Total bytes

1 ATM CP Incoming ATM SDUs 4096 64 1*4096*64 262144
2 AAL2 Rx CP CPS SDUs 4096 64 2*4096*64 524288
3 AAL2 Tx CP Outgoing ATM SDUs 2048 64 3*2048*64 393216
3 AAL2-RTP

Mapping CP
RTP Payload 4096 256 3*4096*256 3145728

3 RTP-AAL2
Mapping CP

CPS SDUs 4096 64 3*4096*64 786432

2 RTP/UDP CP IP PDUs and RTP
PDUs

16384 512 2*16384*512 16777216

2 IP CP IP SDUs 8192 2048 2*8192*2048 33554432

Total SDRAM requirements = 55443456 bytes = 52.875 MB

• Table Creation

The following tables need to be created:
o Existing HTK table in existing Aal2Switch App in the ATM module, which is indexed by
 12 bits 16 bits 4 bits

VPI VCI CpId

The Hash Trie Key Table values shall be modified to support 1K VcIndices. QOS related
columns are removed from the table.

Number of entries in Key Table = 1K
Number of Entries in Trie table = 0.5 K
Number of Entries in Hash Table = 2 * 1K

o New HTK table for module that maps from AAL2 to RTP, which is indexed by

 8 bits 16 bits 8 bits
PAD VcIndex CID

Number of entries in Key Table = 8K
Number of Entries in Trie table = 4K
Number of Entries in Hash Table = 2 * 8K

o New HTK table for module that maps from RTP to AAL2, which is indexed by

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

32 bits 16 bits
IP Address UDP Port No

Number of entries in Key Table = 8K
Number of Entries in Trie table = 4K
Number of Entries in Hash Table = 2 * 8K

o New Simple table for timer support of AAL2 to RTP Map Module, which is indexed by

 16 bits
CallId

 Number of entries in Simple Table = 8K
• Configuration of SDPs

1. The SDP (TxByte, TxBit, RxSync, RxBit and RxByte Processor) associated with ATM CP
should be configured for OC-3c configuration

2. The SDP (TxByte Processor and RxByte Processor) associated with AAL2 Rx, AAL2 Tx
should be configured in Byte-wise recirculation mode.

3. The SDP (TxByte, TxBit, RxBit and RxByte Processor) associated with IP CP should be
configured for 100 Mbps Fast Ethernet configurations.

• Load the CPs and Start the CPs
• En-queue the Init Descriptors to each of the CPs
• Start the SDPs after starting the CPs
• In a while loop {

o Process CU Timer start descriptors for AAL2 Tx CPs
o Sonet related Processing
o ATM Cells with Payload Type Indicator value equal to non-zero related processing
o CPS Packets with Reserved CIDs(CIDs from 1 to 7) and UUI value = 31 for OAM alarms

processing
o IP related Control Information Processing

§ Only ICMP messages of type =3 and code =3 shall be processed. The IP Address
and UDP Port number are used as a key to launch a table lookup to reset RTP
Timestamp, RTP Sequence number values and after ICMP Payload Buffer shall
be freed. This mechanism will be used to identify the call closure from the IP
end-point.

}

9.2 Interfaces
The following interfaces exist for XP:

• Interface with all CPs, based on the init descriptor.
• CU Timer start command Interface with AAL2 TX CP, based on the timer start descriptor.
• Sonet Messages from CP, based on Sonet Message Descriptor
• Control and OAM cells from ATM CP,
• Control CPS packet Descriptors (CPS Packets with CIDs from 1 to 7 or UUI = 31)from

AAL2 to RTP Map CP,
• ICMP messages from IP CP
• CU Timer expiry message interface to the AAL2 Tx CP.

9.3 Data Structures
The Init Descriptor sent to the AAL2 Rx module by the XP is as follows:

Typedef struct

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

{
 BsPoolId poolId;
 QsQueueId destId1; /* Destination Ids of AAL2 to RTP MAP CPs */
 QsQueueId destId2;
 Int16u VcIndexLimit; /* Used to identify the MAP-1 CP uniquely */
} Aal2RxCpInitDesc;

The Init Descriptor En-queued to the AAL2 TX module by XP shall be modified as below:

Typedef struct
{
 BsPoolId poolId;
 QsQueueId destId; /* Queue ID of the ATM CP */
 Int8u Aal2TxNumber; /* To calculate index on DMEM Table */
} Aal2TxCpInitDesc;

The Init Descriptor sent to the AAL2 to the RTP Map module by the XP is as follows:

Typedef struct
{
 BsPoolId poolId;
 TsTableId htkTableId; /* For RTP context */
 TsTableId simpleTableId; /* For assembly timer */
 QsQueueId aal2CpsControlQId; /* For Alarm and CID 1… 7 AAL2 packets */
 Int8u encodingProfileIdSelected; /* Encoding Profile ID Selected as per I.366.2 Annex P */
} Map1CpInitDesc;

The Init Descriptor sent to the RTP to the AAL2 Map module by the XP is as follows:

Typedef struct
{
 BsPoolId poolId;
 QsQueueId aal2TxQueueId;
} Map2CpInitDesc;

The Init Descriptor sent to the RTP/UDP CP by the XP is as follows:

Typedef struct
{
 TsTableId tableId;
 BsPoolId PoolId;
 QsQueueId ipQueueId;
 Int32u ethernetPortIpAddress;
 Int16u udpSourcePortNo;
} RtpUdpCpInitDesc;

The Init Descriptor sent to the IP CP by the XP is as follows:

Typedef struct
{
 BsPoolId PoolId;
 QsQueueId rtpUdpQueueId;
 QsQueueId icmpXpQueueId; /* The queue Id of XP to which ICMP messages shall be sent to */
 Int32u macInternalAddressHi4;
 Int16u macInternalAddressLo2;
 Int32u macDestAddressHi4; /* MAC Address for the next-hop router, */
 Int16u macDestAddressLo2; /* which will be hard-coded for both of the Ethernet ports */

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

 Int8u fabricEnabled;
 Int8u fabricId;
} IpCpInitDesc;

The Init Descriptor sent to the ATM CP by the XP is as follows:

typedef struct {
 TsTableId tableId;
 BsPoolId poolId;
} AtmAal2CpInitDesc;

The table entry for the HTK table used by ATM module is as follows:

Typedef struct {
 Int8u Flags;
 Int8u pad1;
 Int16u VcIndex;
 Int16u QueueId;
 Int16u pad2;
 Int16u Vpi;
 Int16u Vci;
 Int32u atmEgressKey; /* Contains the VPI, VCI and port# */
} VcUnicastIngress;

The table entry for the HTK table used by module that maps from AAL2 to RTP is as follows :

Typedef struct {
Int8u oldEncodingType; /* RTP Payload Type */
Int8u expectedAal2UuiValue; /* Expected Aal2 UUI or Sequence Number */
Int16u presentRtpSeqNumber; /* RTP Sequence Number */
Int32u presentRtpTimeStamp; /* RTP TimeStamp */
BsBufHandle rtpPayloadBufHandle; /* Buffer Handle of the assembly buffer */
Int16u rtpPayloadBytesCount; /* Offset in the Buffer */
Int8u countAal2PacketsNeeded; /* Count of AAL2 packet needed in the RTP packet */
Int32u ipAddress; /* IP Address */
Int16u udpPortNo; /* UDP Port No */
QsQueueId rtpUdpQueue; /* Destination RTP/UDP Cp Queue ID*/
Int32u rtpSsrc; /* RTP SSRC */
Int16u callId; /* CALL ID */
Int8u receiversCapability; /* Receiver’s Capability of supporting whether 5msec or 10 msec or
20msec or 30 msec RTP Payload*/
} Aal2ToRtpMapTableEntry;

The table entry for the HTK table used by module that maps from RTP to AAL2 is as follows :

Typedef struct {
Int16u vpi; /* Destination Vpi */
Int16u vci; /* Destination Vci */
Int8u cid; /* Destination Channel Id */
Int16u vcIndex; /* Destination VcIndex */
Int8u portNo; /* Port Number */
Int16u callId; /* Call ID */
Int32u expectedRtpTimeStamp; /* Expected RTP TimeStamp */
Int16u expectedRtpSequenceNumber; /* Expected RTP Sequence Number */
Int8u nextAal2UuiValue; /* Next Aal2 UUI Value */
Int8u last RtpPayloadType; /* Last RTP Payload Type */
BsBufHandle fragAal2BufHandle; /* Buffer handle for the fragmented RTP payload */

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

Int8u fragAal2Count; /* Previous count of bytes stored in fragmented RTP payload buffer */
QsQueueId rtpToAal2MapQueue; /* Destination RTP to AAL2 Map CP Queue*/
Int8u callPresentFlag; /* Will be reset to 0, by XP using ICMP message processing, will be set to 1 by

Map-2 */
} RtpToAal2MapTableEntry;
The table entry for Simple table for timer support of AAL2 to RTP Map Module is as follows:

Typedef struct {
Int16u VcIndex; /* Destination VcIndex */
Int8u cid; /* Destination Channel Id */
} Aal2ToRtpTimerTableEntry;

The SONET message descriptor en-queued to the XP by the ATM CP is as follows:

Typedef struct {
 PsSonetEvent newEvents;
 PsSonetDefect newStates;
 int8u c2PathSignalLabel;
 int8u traceErrorState; /* J0, bit 1, J1 bit 0 */
 int8u portId;
 int8u rdiPathType;
 int8u S1;
} SonetMsg;

The ICMP Descriptor enqueued to the XP, if type = 3 and code = 3 is as follows:

/* ICMP Descriptor */
typedef struct {
 BsBufHandle bufHandle;
 Int16u length;
 Int16u VNID_client;
 Int32u appData1; /* IP Address */
 Int16u appData2; /* UDP Port Number */
 Int16u appData3; /* ICMP Type and ICMP Code */
} IcmpDescriptor;

The Timeout descriptor en-queued by XP to AAL2 Tx is as follows:
Typedef struct _TimeoutDesc
{
 Int8u seqNo;
 Int16u vcIndex;
} TimeoutDesc;

The Start Timer Descriptor structures used by AAL2 Tx CP to en-queue Timer Start command to XP is
as follows :

Typedef struct _TimerStartData
{
 Int8u seqNo;
 Int8u cpId;
 Int16u vcIndex;
} TimerStartData;

Typedef union _XpInQueueData
{
 TimerStartData timerStartCommand;
} XpInQueueData;

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

Typedef struct _XpInQueueDesc
{
 Int32u command;
 XpInQueueData data;
} XpInQueueDesc;

VoATM-VoIP Interworking on C-5.
Architecture & Design Document

10. Feature Requirements Trace Matrix

Sl. No. FRAS
Requirement-Id

Design Section Remarks

1. R-4.1.1 NA CDS platform will be used.
2. R-4.2.1 NA Proper C-5 board will be used.
3. R-4.2.2 NA Proper AAL2/ATM PVC

terminations will be configured.
4. R-4.3.1 NA These standards were referred for the

design.
5. R-4.4.1 Sections: 2.5.4, 2.5.5.

Chapters: 7, and 8.
6. R-4.4.2 Sections: 2.5.4, 2.5.5.

Chapters: 7, and 8.
7. R-4.4.3 Sections: 2.5.4, 2.5.5.

Chapters: 7, and 8.
8. R-4.4.6 Sections: 2.5.4, 2.5.5.

Chapters: 7, and 8.
9. R-4.4.9 Chapter: 7, Section: 7.1.2

Chapter: 9, Section: 9.1
10. R-4.5.1 Chapters: 7, and 8.
11. R-4.5.2 Chapters: 7, 8, and 9.
12. R-4.6.1 Chapter: 8, Section: 8.1.2
13. R-4.6.2 Chapter: 8, Section: 8.1.2
14. R-4.6.3 Chapter: 8, Section: 8.1.2
15. R-4.6.4 Chapter: 8, Section: 8.1.2
16. R-4.6.5 Chapter: 7, Section: 7.1.5
17. R-4.6.6 Sections: 2.5.4, 2.5.5.

 Chapters: 7, and 8
18. R-4.6.7 Chapter: 7, Section: 7.1.5
19. R-4.6.8 Chapter: 7, Section: 7.1.5
20. R-4.6.9 Chapter: 7, Section: 7.1.5
21. R-4.6.10 Chapter: 8, Section: 8.1.2
22. R-4.6.11 Chapter: 8, Section: 8.1.2
23. R-4.8.1 Chapter: 7, Section: 7.1.2

Chapter: 6, Section 7
24. R-4.8.2 Chapter: 7, Section: 7.1.2
25. R-4.8.3 Chapter: 7, Section: 7.1.5
26. R-4.9.1 Chapter: 8, Section: 8.1.2, and

8.1.5
27. R-4.9.2 Chapter: 8, Section: 8.1.2, and

8.1.5
28. R-4.10.1 Chapter: 7, Section: 7.1.2

Chapter: 8, Section: 8.1.2
29. R-4.10.2 Chapter: 7, Section: 7.1.5

Chapter: 8, Section: 8.1.2

