
MOTOROLA GENERAL BUSINESS INFORMATION

ATM CellSwitch Application Guide

CSTAATMCS-UG/D

Draft

MOTOROLA GENERAL BUSINESS INFORMATION 2 CSTAATMCS-UG /D DRAFT

Copyright © 2002 Motorola, Inc. All rights reserved. No part of this documentation may be reproduced in
any form or by any means or used to make any derivative work (such as translation, transformation, or
adaptation) without written permission from Motorola.

Motorola reserves the right to revise this documentation and to make changes in content from time to time
without obligation on the part of Motorola to provide notification of such revision or change.

Motorola provides this documentation without warranty, term, or condition of any kind, either implied or
expressed, including, but not limited to, the implied warranties, terms or conditions of merchantability,
satisfactory quality, and fitness for a particular purpose. Motorola may make improvements or changes in
the product(s) and/or the program(s) described in this documentation at any time.

C-3e, C-5, C-5e, C-Port, C-Ware, Q-3, and Q-5 are all trademarks of C-Port, a Motorola Company. Motorola
and the stylized Motorola logo are registered in the US Patent & Trademark Office. All other product or
service names are the property of their respective owners.

MOTOROLA GENERAL BUSINESS INFORMATION 3 CSTAATMCS-UG /D DRAFT

TABLE OF CONTENTS
1 Introduction... 5

1.1 Purpose of Document .. 5
1.2 Software Architecture Overview... 5
1.3 Feature Overview... 5
1.4 Applications Component Usage... 6
1.5 Data Flow Overview... 6
1.6 Application Configuration ... 8

2 Related Documents.. 9
3 Detailed Design .. 10

3.1 ATM Processing... 10
3.1.1 ATM Initialization ... 10
3.1.2 ATM Receive Processing .. 10

3.1.2.1 RxBIT.. 10
3.1.2.2 RxSONET... 10
3.1.2.3 RxSync ... 11
3.1.2.4 ATM RxByte ... 11
3.1.2.5 ATM CPRC Receive Thread... 11

3.1.3 ATM Transmit Processing ... 12
3.1.3.1 ATM CPRC Transmit Thread.. 12
3.1.3.2 TxByte .. 12
3.1.3.3 TxSonet .. 13
3.1.3.4 TxBit ... 13

3.1.4 Data Structures ... 13
3.1.4.1 Statistics ... 13
3.1.4.2 SDP Interfaces ... 14

3.2 XPRC Processing .. 15
3.3 C-5e Configuration ... 16

3.3.1 QMU.. 16
3.3.1.1 OC-12/OC-3/FP Queue Usage... 16
3.3.1.2 XPRC Queue Usage... 17

3.3.2 BMU .. 17
3.3.3 TLU.. 17

3.3.3.1 VC Lookup Table.. 17
3.3.3.2 Ring Bus Slot Usage... 18

3.4 Host Processing ... 18
3.4.1 OC-12 Scheduling ... 19
3.4.2 OC-3 Scheduling ... 21
3.4.3 XPRC Scheduling.. 22

4 Other Information ... 23
4.1 Offline Tables... 23
4.2 Issues, Constraints, And Future Enhancements .. 25

4.2.1 Static Scheduling Hierarchy .. 25
4.2.2 Static Routing Table .. 25

4.3 Application Files And Binaries.. 25

Appendix A Acronyms

MOTOROLA GENERAL BUSINESS INFORMATION 4 CSTAATMCS-UG /D DRAFT

TABLE OF FIGURES

Figure 1. Cluster Usage.. 5

Figure 2. Step-By-Step Data Flow.. 7

Figure 3. Statistics .. 14

Figure 4. Extract Space Usage... 14

Figure 5. Merge Space Usage.. 15

Figure 6. IP Domain Descriptor Structure... 16

Figure 7. VC Id Composition .. 18

Figure 8. VC Table Entry Structure... 18

Figure 9. Ring Bus Slot Usage ... 18

Figure 10. OC-12 Port Scheduling.. 20

Figure 11. OC-3 Port Scheduling.. 21

Figure 12. XPRC Queue Scheduling .. 22

Figure 13. VC Lookup Table... 24

Figure 14. Offline Tables Files.. 25

Figure 15. Run Files ... 26

Figure 16. inPatterns Files.. 26

Figure 17. Common Header Files... 26

Figure 18. XPRC Files.. 26

Figure 19. SDP Files .. 27

Figure 20. CPRC Files.. 27

Figure 21. Host Files .. 28

Figure 22. Binary Files.. 28

MOTOROLA GENERAL BUSINESS INFORMATION 5 CSTAATMCS-UG /D DRAFT

1 INTRODUCTION

1.1 Purpose of Document
This document presents the software architecture and design for Motorola�s Asynchronous Transfer Mode
(ATM) Cell Switch reference application targeted for the combined C-5e network processor and Q-5 traffic
management co-processor.

1.2 Software Architecture Overview
The C-5e network processor is divided into four clusters of four channel processors, where each cluster is
typically used to provide a common function across all four processors. For this application only two
clusters are used. The cluster usage is shown in Figure 1.

Cluster
0

Cluster
1

Cluster
2

Cluster
3

ATM OC-12

ATM OC-3

ATM OC-3

ATM OC-3

ATM OC-3

Figure 1. Cluster Usage

1.3 Feature Overview
This application demonstrates the following features

� Support for full-range Virtual Path Identifier(VPI)/Virtual Channel Identifier(VCI) ATM cell switching at
both OC-3 and OC-12 rates

� Recognition of Operations Administration and Maintenance (OAM) and Resource Management (RM)
cells and routing of those cells to the eXecutive Processor Reduced Instruction Set Computer(RISC)
Core(XPRC)

� Cluster aggregation in support of OC-12

� Support for the Combo-2 Physical Interface Module

� Synchronous Optical Network(SONET)/Synchronous Digital Hierarchy(SDH) support

� Support for ATM Constant Bit Rate(CBR) and Variable Bit Rate(VBR) policing

� Support for per customer bandwidth allocation

� Instrumentation for performance analysis

MOTOROLA GENERAL BUSINESS INFORMATION 6 CSTAATMCS-UG /D DRAFT

� Host configuration of the Q-5 traffic management co-processor

In addition to the clusters of channel processors, there is an XPRC and a fabric processor (FP) present on
the network processor. The FP in this reference application is configured for C-5e Back-To-Back mode.

The XPRC processing in this application performs the following functions;

• Initialization and configuration of the network processor

• Print servicing for textual I/O from the channel processors

• SONET Monitor alarm processing for alarms reported from the channel processors

• Dequeue and discard of discard traffic discarded by the Q-5 policing algorithms

• Dequeue and discard of OAM traffic. Eventually this traffic might be routed to a host program.

1.4 Applications Component Usage
This application relies on the following applications components;

� Phy � Common bit level microcode

� SonetQ � Q-5 version of Common SONET Monitor processing

� TableUtils � Common offline table restoration processing

� CommSvc � Common Host coordination processing

� Fabrics � Common microcode for the various fabric modes

� Performance � Common defines for instrumenting for performance analysis

See the documentation in apps\components\<componentName>\doc directory for the documentation on the
applications components that this application uses. One exception to this is the sonetQ component, please
see the documentation in the sonet applications component since the processing is identical and sonetQ
has only minor modifications to accommodate the use of the Q-5 instead of the Queue Management Unit
(QMU) for enqueuing and dequeuing.

1.5 Data Flow Overview
There is a single main data flow through this application, ATM cell switching. The processing involved does
not really differ much based on the ingress or egress port being either OC-3 or OC-12. A step-by-step
breakdown of the data flow is shown in Figure 2. The processing is essentially the same when one of the
ports involved is the FP. Each of the descriptor formats is fully defined in the Buffer Management Unit
(BMU) section later in the document. Full details on lookup keys and response data are provided in the
Table Lookup Unit (TLU) section later in the document.

MOTOROLA GENERAL BUSINESS INFORMATION 7 CSTAATMCS-UG /D DRAFT

CP Cluster 0

C-5e

Sp
ar

e
C

PR
C

Sp
a r

e
C

PR
C

Sp
ar

e
C

P R
C

Sp
ar

e
C

PR
C

XP

Host

CP Cluster 1 CP Cluster 2

OC-12

O
C

-1
2

C
PR

C
O

C
-1

2
C

PR
C

O
C

-1
2

C
PR

C
O

C
- 1

2
C

PR
C

CP Cluster 3

4xOC-3

BMU

SDRAM

TLU

SRAM

QMU

Q-5

O
C

-3
 C

PR
C

O
C

-3
 C

PR
C

O
C

-3
 C

PR
C

O
C

-3
 C

PR
C

2
34

5

8

9

1

6 7

Sp
ar

e
C

PR
C

S p
ar

e
C

PR
C

Sp
ar

e
C

PR
C

Sp
a r

e
C

P R
C

10

Figure 2. Step-By-Step Data Flow

1. ATM Cell is received at the OC-12 Port

2. Serial Data Processor (SDP) launches Lookup based VPI/VCI and ingress Port.

3. SDP/Channel Processor RISC Core (CPRC) Direct Memory Access�s (DMAs) cell payload to BMU
Buffer Memory

4. CPRC receives and processes lookup results from TLU

5. CPRC enqueues cell descriptor to QMU specifying a Traffic Queue (TQ) Id

6. QMU forwards descriptor to Q-5

7. Descriptor makes it�s way through the scheduling process and is returned to the QMU to fulfill
available Virtual Output Port (VOP) credit

8. CPRC dequeues the descriptor from the QMU specifying a VOP Id

9. SDP/CPRC DMAs cell payload from BMU Buffer Memory

10. SDP transmits ATM cell out one of the OC-3 ports providing a new cell header.

MOTOROLA GENERAL BUSINESS INFORMATION 8 CSTAATMCS-UG /D DRAFT

1.6 Application Configuration
There are a number of �magic numbers� for the application, such as the CPRC servicing each OC-3 port,
the first TQ associated with a given port, the table Id for the Virtual Channel (VC) lookup table, etc. For the
most part these numbers have been isolated to a single header file, appConfig.h. Changing any one of
these values may not be as simple as changing it in this one file, although in some cases it is, but by
isolating them here they are more easily changed, better defined, and also then appear mnemonically in the
code which aids in code readability.

MOTOROLA GENERAL BUSINESS INFORMATION 9 CSTAATMCS-UG /D DRAFT

2 RELATED DOCUMENTS

� AF-TM-0121.000 Version 4.1, Traffic Management Specification, ATM Forum

� CSTCPHYC-UG, PHY Configuration Component Guide

� CSTCSMC-UG, SONET Monitoring Component Guide

� CSTCTLUC-UG, TLU Configuration Component Guide

� CSTCFPC-UG/D, Fabric Processor Configuration Component Guide

� C5EC3EARCH-RM/D, C-5e/C-3e Network Processor Architecture Guide

� Q-5 Traffic Management Coprocessor, FPGA Revision, Architecture Guide

� C-Ware Q-5 TMC API User Guide

� CSTOBSC-UG/D, Build System Conventions

MOTOROLA GENERAL BUSINESS INFORMATION 10 CSTAATMCS-UG /D DRAFT

3 DETAILED DESIGN

3.1 ATM Processing
The OC-12 port is served by an entire cluster of CPRCs. Each OC-3 is served by a single CPRC. With the
exception of some token passing in the aggregated case of the OC-12 the processing is the same for both
the OC-3 and OC-12. The processing for both will be described below, where they differ will be pointed out.

3.1.1 ATM Initialization

The DCPmain program, which serves as the entry point for ATM processing, is fairly simple. It initializes the
various C-Ware Programming Interface (CPI) services which receive and transmit processing will rely on
(kernel, buffer, pdu, table, and traffic management services), the VOP to be used by this CPRC�s receive
and transmit processing , establishes the buffer pool this CPRC will allocate from and initializes the pool,
and registers a handler for QMU interrupts. For OC-3 it also disables token passing since the CPRCs
operate independently. Both also set the aggregation mode appropriately for traffic management, 4 way
aggregation for OC-12 and 1 way for OC-3. Processing then zeros out the statistics buffer and calls
common ATM initialization processing.

ATM initialization processing simply allocates buffers to preload the two scopes for both the receive
processing and the transmit processing.

The initialization processing then initializes the launch pad for the SDP lookups, creates the receive and
transmit threads, and calls SONET initialization routines. For details on SONET Monitor processing, please
see the component documentation for the shared SONET Monitor applications component. Once
initialization completes, the main program calls ksContextExit releasing control to the receive and transmit
threads.

3.1.2 ATM Receive Processing

The OC-12 and OC-3 processing share common microcode for most SDP components. All of the details
provided regarding RxBit, RxSONET, RxSync, RxByte apply to both domains.

3.1.2.1 RxBIT

The RxBit processing concerns itself mainly with SONET framing and is responsible for monitoring Out-Of-
Frame conditions and maintaining the current Loss-Of-Frame status. It plays no real role in the processing
of individual cells. OC-3 and OC-12 have different microcode for this component but the differences are all
associated with the fact that OC-3 is a 1 bit wide physical interface and OC-12 is a byte wide physical
interface. The OC-3 processing therefore must run the bits from the physical interface through the shift
registers in order to convert them into byte wide chunks for processing. Other than that, the processing is
essentially the same.

3.1.2.2 RxSONET

The RxSonet block is a configurable, non-programmable, unit which processes the SONET framing and
handles processing for all of the overhead bytes. It also plays no role in the processing of individual cells,
beyond extracting them as a data stream from the SONET frames. It does however form the basis for our
SONET monitoring implementation. For full details on our SONET monitoring processing, please see the

MOTOROLA GENERAL BUSINESS INFORMATION 11 CSTAATMCS-UG /D DRAFT

documentation for that component in the apps/components/sonet/doc directory of your C-Ware Software
Toolset (CST) installation.

3.1.2.3 RxSync

The RxSync processing provides cell delineation for the ATM interface. Accordingly, the processing for this
component is organized around a 3-state state machine with states of Hunt, Pre-Sync, and Sync. Cells are
only forwarded to the RxByte processing when the state machine is in the Sync state. While in the Sync
state, this processing performs the Header Error Control (HEC) check for every cell and detects idle and
unassigned cells based on VPI/VCI. For a non-idle, non-unassigned cell with a good HEC, this processing
will also perform a Cyclical Redundancy Check (CRC) 10 check. No payload is forwarded for
unassigned/idle cells or cells which fail the HEC check, merely the cell header and a HEC indication. The
HEC byte is replaced with a status code used to convey this information. When the cell payload is
forwarded, the payload is followed by a status byte indicating the success or failure of the CRC 10 check.
The CRC 10 status is only of use when the cell ends up being an OAM cell. OC-3 and OC-12 use common
microcode for this component.

3.1.2.4 ATM RxByte

The RxByte processing starts with waiting for the token. For OC-3, this is always a non-wait condition. For
OC-12, for any given cell, only one of the four aggregated RxBytes will own the token and therefore, only
that one will process the cell. The rest simply discard the bytes associated with the cell before checking
again for token ownership.

Cell processing then starts with waiting for extract scope ownership. A congestion drop count is initialized to
zero and scope ownership is checked. If the SDP does not own the extract scope, it must drop the
incoming cell and continue to wait, keeping count of how many cells are dropped while waiting. Once the
SDP owns the scope, the congestion count is written into the scope for use by the CPRC for maintaining
statistics and header processing begins.

Header processing strips the cell header from the data stream, copies it to extract space, and forms a table
lookup key from the VPI/VCI fields along with the CPRC Id taken from RxByte Control space. The
processing then screens the VPI/VCI/Payload Type Indication (PTI) fields to detect OAM/RM cells and
writes the results to extract space. The HEC byte is then checked. As noted above, the HEC is actually
checked by the RxSync processing and the HEC byte is then re-used to indicate either a good HEC, a failed
HEC, or an idle cell. If the cell is an idle cell, processing waits for the Merge9 indication from RxSync and
restarts header processing with the next cell. If the cell has a failed HEC, this is indicated in extract space.
Processing then passes the token, indicates header processing is complete, waits for the Merge9 indication
from RxSync, switches scope, and returns to the start of processing waiting for the token again.

If the cell is a non-idle, good HEC cell, processing passes the token, indicates header processing is
complete, and launches the lookup on the key constructed earlier. The cell payload is then streamed to the
buffer via the DMA. The final byte after the cell payload is a CRC 10 status from RxSync. This byte is
written to extract space, a done flag is then set and scope is switched. Processing then returns to the start,
waiting for the token again.

3.1.2.5 ATM CPRC Receive Thread

The CPRC receive thread consists of a large While(1) loop which repeats the following steps endlessly.
The processing begins with waiting for a header processing complete indication from the RxByte
component. Processing then gets a handle to the extract space and update the statistic for cells dropped

MOTOROLA GENERAL BUSINESS INFORMATION 12 CSTAATMCS-UG /D DRAFT

due to congestion. Cell processing then begins by checking the header status for the cell. If the cell failed
the HEC check, the processing increments a statistic, waits for the cell payload to complete being written to
the buffer, and simply sets up for receiving the next cell before switching scope and returning to waiting for
header complete again. In the case of OC-12, the processing must also wait to get the enqueue token and
pass it on before switching scope.

For a non-errored cell, processing now begins waiting for the results of the lookup launched by the RxByte
component. If the lookup fails, the processing is identical to an errored header except a different statistic is
incremented. For a successful lookup the processing then checks the valid connection bit. This is a bit in
the table entry which allows the VC to be disabled but still leave the route in the table. If the VC has been
disabled, the processing is identical to a lookup miss. If the VC is enabled, the processing begins building
the descriptor for forwarding the cell. The processing then checks to see whether the cell is an OAM/RM
cell or a normal user cell. For an OAM/RM cell, the descriptor is forwarded to the XPRC with the ingress
cell header and the results of the CRC 10 check. For a non-OAM/RM cell, the route is then checked to see
if it is out the fabric. If the route is out the fabric, the destination queue is set accordingly and the VC Index
field is set to indicate the destination queue from the route. If the route is a non-fabric route, the destination
queue is set to the destination queue from the route.

The forwarding logic from here on is the same for all three cases, the lookup is released, a buffer is
allocated for the next cell to be received in this scope, and the processing begins waiting for the cell payload
to complete reception. Once the payload is complete, for OC-12, the processing must wait to receive the
enqueue token. The scope is then prepared for the next cell reception and the scope is released. The
packet length is written to the descriptor and the enqueue is then performed. OC-12 then passes the token
to the next processor and receive processing is complete.

3.1.3 ATM Transmit Processing

The OC-12 and OC-3 processing share common microcode for most SDP components. All of the details
provided regarding TxByte, TxSONET, and TxBit apply to both domains.

3.1.3.1 ATM CPRC Transmit Thread

The CPRC transmit processing is another endless loop. For OC-12 this starts with waiting for the dequeue
token. Once the CPRC owns the dequeue token it begins waiting for a packet to dequeue. For OC-3 the
loop starts with waiting for a packet to dequeue. For OC-12, once the dequeue is complete, the dequeue
token is passed to the next CPRC. Processing then begins waiting for a merge scope from the SDP. Once
the merge scope is available it is filled out with the egress cell header and the transmit type. There are two
transmit categories, switched cell and a variety of OAM/RM cell types. Transmit statistics are then updated
and the last buffer transmitted by this scope is freed. This buffer is then recorded to be freed later.
Processing then sets up the DMA action for transmission and releases the merge scope to the SDP.

3.1.3.2 TxByte

TxByte initialization establishes the Creg address to enable checking for merge scope ownership, asserts
the TxBit signal, and turns off scrambling so that the cell header will be transmitted unscrambled. TxByte
processing starts with waiting for a merge scope from the CPRC. Once the merge scope is available
processing then sets up to read transmit type from merge space and waits for data valid to be indicated.
The processing then reads the transmit type, sets up to read the cell header from merge space, initialized
the HEC engine, and branches based on the value of transmit type. The two paths are switched cell and
OAM/RM cell.

MOTOROLA GENERAL BUSINESS INFORMATION 13 CSTAATMCS-UG /D DRAFT

The switched cell path transmits the cell header calculating HEC as it goes, transmits the calculated HEC
value, turns on scrambling, and then transmits 47 bytes of payload from the buffer. The final byte of
payload is then transmitted with Merge9 asserted. The scope is then released, scrambling is turned off, and
processing returns to waiting for the next scope.

The OAM/RM cell path transmits the cell header calculating HEC as it goes, transmits the calculated HEC
value, turns on scrambling, initializes the CRC 10 engine, and then transmits 46 bytes of payload from the
buffer calculating CRC 10 as it goes. 6 bits from the 47th byte of payload is then transmitted with 2 bits from
the calculated CRC 10. The final 8 bits of the CRC 10 is then transmitted with Merge9 asserted. The scope
is then released, scrambling is turned off, and processing returns to waiting for the next scope.

3.1.3.3 TxSonet

The TxSonet block is a configurable, non-programmable, unit which provides the SONET framing and
handles insertion for all of the overhead bytes. It plays no role in the processing of individual cells beyond
framing them as a data stream into SONET frames.

3.1.3.4 TxBit

The TxBit processing basically just streams bytes while monitoring for an out-of-frame condition signaled by
RxBit. The out-of-frame condition causes TxBit to signal the TxSONET block when it needs to re-establish
frame boundaries. In the case of OC-3, where the physical interface is only 1 bit wide, the processing must
use the shift registers to transmit the bytes out one bit at a time.

3.1.4 Data Structures

There are two categories of data structures that should be noted, statistics and SDP interfaces. In all cases,
the data structures used are identical for OC-3 and OC-12 and the material that follows applies to both.

3.1.4.1 Statistics

Each CPRC maintains a number of statistics in a statistics structure. To get the cumulative statistics for the
OC-12 port, it is necessary to add up the individual statistics for each of the CPRCs servicing that port. The
statistics structure is a collection of 9 counters. Each counter is a full 32 bit unsigned value and is initialized
to zero as part of the CPRC initialization processing. The following table provides the field name for each of
the statistics, in the order in which they appear in the structure, and a short description of what each counter
is tracking.

Field Name Short Description

rxGoodCells Counts the number of user data cells received and forwarded

rxOamCells Counts the number of OAM/RM cells received and forwarded

rxCongestDrops Counts the number of cells dropped by the SDP because the CPRC was not
ready to receive the next cell

rxHecErrored Counts the number of cells received that were not forwarded due to HEC
errors

rxInvalidVc Counts the number of cells received that were not forwarded due to either a

MOTOROLA GENERAL BUSINESS INFORMATION 14 CSTAATMCS-UG /D DRAFT

lookup failure or a disable route in the table

enqueueFail Count the number of enqueue failure interrupts for descriptors with associated
buffers (cells)

otherEnqueueFail Count the number of enqueue failure interrupts for descriptors with no
associated buffer (SONET reports)

rsvd1 Unused

txCells Counts the number of user data cells transmitted

txOamCells Counts the number of OAM/RM cells transmitted

rsvd2 Unused

rsvd3 Unused
Figure 3. Statistics

3.1.4.2 SDP Interfaces

There are three main data interfaces between the SDP and the CPRC, extract data which is passed from
RxByte to the CPRC, merge data which is passed from the CPRC to TxByte, and the control data spaces
which are typically used to communicate initialization information to the SDP components.

There are two copies of both the extract data and the merge data which allows the CPRCs and SDPs to be
pipelined so that one copy can be being used by the CPRC while the other is being used by the SDP.
These copies are typically referred to as scopes and the SDP can only see one copy at a time. Switching
scope changes which copy the SDP sees. Each merge space and extract space has 64 bytes although
applications often don�t use the full space available. The tables below show the usage of the extract space
and merge space for this application.

(12 bits) VPI (4 high order bits of GFC
if UNI)

(16 bits) VCI (4 bits)
PTI/CLP

int8u pduHdrStatus int8u congestionDrops int8u crc10Indicator int8u encodedPTI

int8u camValue (24 bits) Unused

(13 words) Unused
Figure 4. Extract Space Usage

The extract space is used mainly to communicate error/non-error status of the cell and the type of cell.
There are only two cell types recognized by this application, User Data and OAM/RM. The cell type is
conveyed by the encodedPTI field. The extract space also contains the ingress cell headers minus the HEC
byte. The VPI/VCI is actually stored as a single 28 bit field and is only shown as individual fields in the table
above for clarity regarding how the actual data is stored in memory.

(12 bits) VPI (4 high order bits of GFC
if UNI)

(16 bits) VCI (4 bits)
PTI/CLP

int8u txType (24 bits) Unused

MOTOROLA GENERAL BUSINESS INFORMATION 15 CSTAATMCS-UG /D DRAFT

(14 words) Unused
Figure 5. Merge Space Usage

The merge space is used to communicate two things, the egress cell header and the type of cell to be
transmitted. There are only two cell types recognized by this application, User Data and OAM/RM. The cell
type is conveyed by the txType field. The VPI/VCI is actually stored as a single 28 bit field and is only shown
as individual fields in the table above for clarity regarding how the actual data is stored in memory.

Control space, as mentioned above is present in varying amounts for each of the SDP components. Not all
of them are used. In this application, only the control spaces for RxSync and RxByte are used to
communicate initialization information to the SDP. The second byte of control space for RxBit is used as a
means of communicating to the XPRC that the CPRC has finished initialization. The first two bytes of
RxSync control space are used by the CPRC to provide the delta and alpha count values which drive the
cell delineation processing. The third byte holds the current state of the cell delineation state machine. The
first byte of RxByte control space holds the CPRC Id and table Id to be used in launching VC lookups. The
CPRC Id is in the high order nibble and the table id is in the low order nibble. All other control space is
unused.

3.2 XPRC Processing
The XPRC processing performs the chip configuration and initialization chip and then enters an endless
loop for ongoing runtime support. The initialization begins by initializing only kernel services. Initialization
then begins waiting for the host processor to indicate that it has completed configuration of the Q-5.
Currently, this function is implemented by the commSvc applications component and relies on key variables
being the first declarations on the stack for the runtime XPRC main program. This approach is expected to
change in future releases when the new C-Ware Development System (CDS) driver is integrated with the
Traffic Management Application Programming Interface (API).

Table, buffer, fabric, and traffic management services are then initialized. Processing then looks for addition
arguments from the host, or the command line in simulation, to establish the fabric id for this processor. If
the additional arguments are not provided, the fabric will not be enabled and the application will run with
only the front ports. The serial bus is then configured for connection to the Field Programmable Gate Array
(FPGA) on the Physical Interface Module (PIM) and the PIM is then taken out of loopback. The TLU VC
Table is then loaded with the routes from the offline table building and the queues for the QMU and buffer
pools for the BMU are configured and allocated. For full details on queue and buffer pool allocations and
use please see the sections of the document for the QMU and BMU. For full details on the tables, their keys,
and their contents please see the section of the document for the TLU. The fabric port is then configured for
back-to-back operation.

Individual channel processor configuration then begins. From the point of view of port configuration there is
little difference between an OC-12 port and an OC-3 port. Each channel processor is configured for SONET
support and scrambling support. The transmit large First-In-First-Out (FIFO) watermark is established and
auto-insertion of idle cells is enabled in the TxSONET block for when there is no traffic to place in the
SONET frame. In addition, for OC-12, automatic token passing is enabled for the transmit SDP. The
control spaces for the RxSync and RxByte components are also initialized at this point.

As final initialization steps, the channel processors are loaded with their code, SONET monitor processing
on the XPRC is initialized, the CPRCs are started, and the XPRC begins waiting for each CPRC to complete
initialization. For full details on SONET monitor processing, please see the applications component
documentation for the SONET monitor component. Once a CPRC completes its initialization the XPRC

MOTOROLA GENERAL BUSINESS INFORMATION 16 CSTAATMCS-UG /D DRAFT

enables that CPRC�s SDP components. Once all CPRC�s have completed initialization, the XPRC enables
the fabric and begins the runtime support section of its processing.

Kernel services is set up to support a timer event in support of SONET monitor processing and processing
enters an endless loop for ongoing runtime support.

The runtime support for this application consists of five functions, print service to print text I/O messages
from the channel processors, processing of SONET monitor messages from the channel processors,
soaking on and off of SONET monitor alarms, dequeuing and discarding of traffic discarded by the Q-5�s
active queue management, and dequeuing and discarding of OAM/RM traffic.

3.3 C-5e Configuration
The following sections provide details on configuration and use of the non-programmable components of the
C-5e.

3.3.1 QMU

NOTE: Descriptors for this application are currently configured to be 32 bytes due to a limitation on the part
of the Q-5 FPGA. The descriptors only actually use 16 bytes and can be reduced to that size once the Q-5
supports it. The descriptor size is defined in appConfig.h and the descriptor record structure, with the extra
unused fields, is defined in atmIf.h.

QMU configuration for this application must be kept in careful alignment with the Q-5 configuration for the
application. Each queue allocated and configured on the QMU essentially equates to a VOP configured on
the Q-5. The first 8 CPRCs are unused and have no queues allocated to them. The OC-12 port is served
by the next 4 CPRCs and the 4 OC-3 ports are served by the last 4 CPRCs. The OC-12 port is allocated a
single queue. Each OC-3 port is allocated a single queue. The fabric port is allocated 7 queues. The
XPRC is allocated three queues.

3.3.1.1 OC-12/OC-3/FP Queue Usage

The OC-12 port, each OC-3 port, and the FP port only use the queues to receive traffic for transmission by
the transmit processing. All descriptors dequeued from these queues are assumed to use the Cell
Descriptor format which is depicted in Figure 6.

BsBufHandle Bh

Int16u pad1 int8u payloadType int8u crc10Err

CellHeader CellHdr

int32u VcIndex

Unused

Unused

Unused

Unused
Figure 6. IP Domain Descriptor Structure

MOTOROLA GENERAL BUSINESS INFORMATION 17 CSTAATMCS-UG /D DRAFT

The usage of some of the fields is dependent on the forwarding destination. The bufHandle always provides
a handle to the buffer containing the packet to be transmitted. The payloadType field defines whether the
transmit processing is to use the switched cell processing or the OAM/RM cell processing in the TxByte
component. The VcIndex field is only used when the cell is destined for transmission over the fabric and
provides the queue id to be used for enqueuing when received by the destination fabric. The CellHdr field
holds the egress cell header from the table route for cells to be transmitted. When the cell is an OAM/RM
cell being forwarded to the XPRC, the CellHdr field holds the ingress cell header. The crc10Err field only
has meaning when the cell is an OAM/RM cell being forwarded to the XPRC and contains the result of the
CRC 10 check performed by the SDP.

3.3.1.2 XPRC Queue Usage

The XPRC has three queues, one for SONET monitor traffic, one for discard processing, and one for
OAM/RM cells. Please see the SONET monitor documentation for details regarding it�s queue usage. The
discard processing is only concerned with getting a handle to the buffer so that the buffer can be freed.
Currently, the OAM/RM cell processing is identical to the discard processing and simply discards the
associated buffer. If OAM/RM processing were to be implemented on the host, the XPRC could then
forward these cells to the host for further processing.

3.3.2 BMU

The initialization phase of the XPRC processing allocates a buffer pool for use by each CPRC, including
those not currently activated by this application. This makes it simple for the CPRC processing to determine
the pool to be used since the pool Id will match the CPRC Id. The CPRC then initializes the pool for it�s use
as part of the channel processor initialization processing.

The XPRC does not currently allocate any buffers as part of its processing and therefore does not allocate
any buffer pools for it�s own use. Four buffer pools are allocated for use by the FP.

The number of buffers needed in each pool and the buffer size are things which can be very application
dependent. The number of buffers and the buffer size are defined in appConfig.h to make easy to modify
when converting the reference application to a specific customer application.

The buffer pools are currently configured the same for both the OC-12 and OC-3 ports. Each pool is
allocated a buffer pool with 128 buffers where each buffer is 64 bytes in size. For the FP, each pool is
allocated with 256 buffers of size 64 bytes.

3.3.3 TLU

The current application has only one tables, the VC lookup table. The table is created by the offline
processing and restored by the XPRC initialization processing. The offline table building is coded such that
the table id/algorithm id used for the VC lookup table is always 0.

The following section details the key and entry contents for the VC lookup table and the request/response
slot usage for the channel processors for launching TLU commands and receiving TLU responses.

3.3.3.1 VC Lookup Table

The VC lookup table provides exact match behavior on the VC ID which is formed from the VPI/VCI from the
cell header and the ingress port id. The key field for the VC table is 32 bits. The detail composition of the
key is detailed below in Figure 7.

MOTOROLA GENERAL BUSINESS INFORMATION 18 CSTAATMCS-UG /D DRAFT

(12 bits) VPI (16 bits) VCI (4 bits)
Port Id

Figure 7. VC Id Composition

The routes in this table supply TQ ids that can enqueue to either the OC-12, OC-3, or FP transmit
processing. The table entry structure always provides a flags field, a VC Index, a TQ id, and an egress cell
header. The flags field provides for up to 8 bit flags. Currently only two are used, one to allow disabling of
the route without deleting it from the table and a second to indicate that the route is to be directed out the
fabric port. When the flags indicate that the route is for traffic going out the fabric port, the table entry also
provides a fabric queue id to be used for enqueuing to the fabric. The table also contains a number of fields
which are not used by the processing but aid in making the table readable. Specifically, the table contains a
field identifying the VC as CBR, VBR-Real-Time (RT), VBR-Non-Real-Time (NRT), or Unspecified Bit Rate
(UBR), and individual fields for the egress VPI/VCI. The structure of the table entry is detailed in Figure 8
below where each row represents 32 bits.

int8u Flags int8u TrafficClass int16u VcIndex

Int32u QueueId

Int16u Vpi int16u Vci

Int32u atmEgressKey

int32u fabricQueueId

int32u pad1
Figure 8. VC Table Entry Structure

The queueId field provides the TQ id to be used for enqueuing to the Q-5 for local routes and the TQ id to
be used for enqueuing by the receiving fabric for remote routes. The VCIndex field provides an integer
unique identifier for each VC in the table. The atmEgressKey provides the egress VPI and VCI already
formatted as a cell header whereas the Vpi and Vci fields provide the egress VPI/VCI as individual fields.
3.3.3.2 Ring Bus Slot Usage
Each channel processor has four request slots and eight response slots available for sending commands to
the TLU and receiving responses. Each slot is supports data of 8 bytes in size. The SDP only has access
to the first two request slots and none of the response slots (which means all TLU responses must be
processed by channel processors).
The slot usage for launching lookups in the SDP and receiving the results of those lookups at the channel
processor is the same for both the OC-3 and OC-12 ports. The slot usage for all VC lookups are shown
below in Figure 9.

Lookup Request Slot(s) Response Slot(s)

VC Lookup 0 0
Figure 9. Ring Bus Slot Usage

3.4 Host Processing
Host processing for this application is only concerned with initialization phase configuration of the Q-5. The
configuration of the Q-5 can be broken up into three categories, configuration for scheduling of traffic
destined for the OC-12 port, configuration for scheduling of traffic destined for the OC-3 ports, and

MOTOROLA GENERAL BUSINESS INFORMATION 19 CSTAATMCS-UG /D DRAFT

configuration for passing traffic to the XPRC in support of the SONET monitor and OAM/RM processing.
The configuration for traffic headed to the FP is a mirror of the combination of the OC-12 and OC-3
configurations (i.e., three FP VOPs mirror the three OC-12 scheduling trees and 4 FP VOPs mirror the four
OC-3 scheduling trees). The configuration for each category is discussed further in the following sections.

There is currently no support in the application for dynamic reconfiguration of the scheduling. All Q-5
configuration happens at initialization time prior to allowing the XPRC runtime processing to complete it�s
initialization processing.

3.4.1 OC-12 Scheduling

Figure 10 below shows the scheduling trees used to schedule the traffic destined for transmission by the
OC-12 port.

Half of the customers on an L1 are configured with CBR/UBR and the other half are configured with
VBR/UBR. This is done as every other customer. There is no hardware driven reason for the ratio nor the
order in which they are alternated. Since it is the policing which determines the nature of the VC in this
case, and each TQ can be individually policed, there is nothing which prevents a CBR/VBR configuration
either although that is not done in the reference application.

The rates used to police the CBR and VBR VCs and the rates used to shape traffic for each customer vary
across the L1 scheduler but are identical for each of the three L1s. This is also not required but is done to
simplify the programming for the reference application. In general, the rates decrease moving from the
leftmost leg of the L1 (leg 0) to the rightmost leg (leg 1023).

MOTOROLA GENERAL BUSINESS INFORMATION 20 CSTAATMCS-UG /D DRAFT

SP

NWC
WFQ

WC
WFQ

SQ

TQ

SQ

TQ
CBR UBR

Each CBR/VBR connection will be policed to limit it to the contracted rate.
UBR is allowed to then consume the rest of that customer�s contracted rate.

SP

SQ

TQ

SQ

TQ
VBRUBR

1024
Customers...

Each L1 input
leg is limited to
a customer�s
total rate.

SP

NWC
WFQ

SQ

TQ

SQ

TQ
CBR UBR

SP

SQ

TQ

SQ

TQ
VBRUBR

1024
Customers... SP

NWC
WFQ

SQ

TQ

SQ

TQ
CBR UBR

SP

SQ

TQ

SQ

TQ
VBR UBR

1024
Customers...

Figure 10. OC-12 Port Scheduling

The OC-12 customer rates, in bytes per second, used for shaping are 10 MB, 1 MB, 100 KB, 64 KB, and 56
KB. The rates, in bytes per second, used for policing CBR traffic for OC-12 are 10 MB, 5 MB, 1 MB, 256
KB, 128 KB, 100 KB, 75 KB, 64 KB, 56 KB, 32 KB, and 16 KB. The rates, in bytes per second, used for
policing VBR traffic for OC-12 are (PCR/SCR) 10 MB/1 MB, 1 MB/256 KB, 100 KB/50 KB, 100 KB/10 KB, 64
KB/16 KB, 64 KB/8 KB, 32 KB/4 KB, 16 KB/8 KB, and 16 KB/4 KB. Most details for the scheduling trees
can be found in tmcParams.h with the rest of the details being in tmcConfig.h and tmcConfig.c. Specifically,
the customer rates for shaping are controlled by the oc12L1SchedulerParams structure and the policing
rates are controlled by the oc12Customers structure, where both structures are in tmcParams.h

MOTOROLA GENERAL BUSINESS INFORMATION 21 CSTAATMCS-UG /D DRAFT

3.4.2 OC-3 Scheduling

Figure 11 below shows the scheduling tree used to schedule the traffic destined for transmission by an OC-
3 port. Each port uses one of these trees to independently schedule that port. The OC-3 port scheduling
follows the same conventions mentioned for OC-12, every other customer is either CBR/UBR or VBR/UBR
and rates decrease from left to right on the L1 scheduler.

SP

NWC
WFQ

WC
WFQ

SQ

TQ

SQ

TQ
CBR UBR

Each CBR/VBR connection will be policed to limit it to the contracted rate.
UBR is allowed to then consume the rest of that customer�s contracted rate.

SP

SQ

TQ

SQ

TQ
VBR UBR

1024
Customers...

Each L1 input
leg is limited to
a customer�s
total rate.

Figure 11. OC-3 Port Scheduling

MOTOROLA GENERAL BUSINESS INFORMATION 22 CSTAATMCS-UG /D DRAFT

The OC-3 customer rates, in bytes per second, used for shaping are 100 KB, 64 KB, and 56 KB. The rates,
in bytes per second, used for policing CBR traffic for OC-3 are 100 KB, 75 KB, 64 KB, 56 KB, 32 KB, 16 KB,
and 16 KBits. The rates, in bytes per second, used for policing VBR traffic for OC-12 are (PCR/SCR) 100
KB/50 KB, 100 KB/10 KB, 64 KB/16 KB, 64 KB/8 KB, 32 KB/4 KB, 16 KB/8 KB, and 16 KB/4 KB. Most
details for the scheduling trees can be found in tmcParams.h with the rest of the details being in tmcConfig.h
and tmcConfig.c. Specifically, the customer rates for shaping are controlled by the oc3L1SchedulerParams
structure and the policing rates are controlled by the oc3Customers structure, where both structures are in
tmcParams.h.

3.4.3 XPRC Scheduling

It is somewhat of a misnomer to refer to the following as scheduling. It is in fact simply a pass through with
one TQ contributing solely to the output of one VOP with no shaping or policing occurring. The same
scheduling approach is used by both SONET Monitoring and OAM/RM cell forwarding. The SONET queue
is used by SONET monitoring processing on the CPRCs to communicate SONET defect information to the
SONET monitoring processing on the XPRC. The OAM/RM queue is used by the CPRCs to forward all
received OAM/RM cells to the XPRC. The scheduling tree is depicted below in Figure 12.

RR

RR

RR

SQ

TQ

Figure 12. XPRC Queue Scheduling

MOTOROLA GENERAL BUSINESS INFORMATION 23 CSTAATMCS-UG /D DRAFT

4 OTHER INFORMATION

4.1 Offline Tables
In order to support testing in a simulation environment, and to ease testing on hardware with test equipment,
this application is built with a number of static routing addresses already entered into it�s routing table. This
is accomplished by using tables constructed offline by code which interacts with a TLU model to generate
the raw data which would represent these routes in the TLU memory. This raw data is then compiled into
the application as data and written to the TLU as part of application initialization.

To simplify testing, VPI/VCI values have been assigned in blocks for a given route and type (i.e., CBR VCs
into the OC-12 port and out the first OC-3 port will all have the same VPI and incrementing VCI values.
Defines have been created in appConfig.h marking rate change boundaries in the TQ number space to aid
in creating routes for the different rate classes. The table below summarizes the routes in the offline table.

Description Ingress
VPI

Ingress
VCI

Egress
VPI

Egress
VCI

VBR VCs In OC-12 Port Out OC-3 Port 0 32 32 � 47 64 64 � 79

CBR VCs In OC-12 Port Out OC-3 Port 0 64 64 � 79 96 96 - 111

UBR VCs For VBR Customers In OC-12 Port Out OC-3
Port 0

80 32 � 47 112 64 � 79

UBR VCs For CBR Customers In OC-12 Port Out OC-3
Port 0

80 64 � 79 112 96 � 111

VBR VCs In OC-12 Port Out OC-3 Port 1 33 32 � 47 65 64 � 79

CBR VCs In OC-12 Port Out OC-3 Port 1 65 64 � 79 97 96 - 111

UBR VCs For VBR Customers In OC-12 Port Out OC-3
Port 1

81 32 � 47 113 64 � 79

UBR VCs For CBR Customers In OC-12 Port Out OC-3
Port 1

81 64 � 79 113 96 � 111

VBR VCs In OC-12 Port Out OC-3 Port 2 34 32 � 47 66 64 � 79

CBR VCs In OC-12 Port Out OC-3 Port 2 66 64 � 79 98 96 - 111

UBR VCs For VBR Customers In OC-12 Port Out OC-3
Port 2

82 32 � 47 114 64 � 79

UBR VCs For CBR Customers In OC-12 Port Out OC-3
Port 2

82 64 � 79 114 96 � 111

VBR VCs In OC-12 Port Out OC-3 Port 3 35 32 � 47 67 64 � 79

CBR VCs In OC-12 Port Out OC-3 Port 3 67 64 � 79 99 96 - 111

MOTOROLA GENERAL BUSINESS INFORMATION 24 CSTAATMCS-UG /D DRAFT

Description Ingress
VPI

Ingress
VCI

Egress
VPI

Egress
VCI

UBR VCs For VBR Customers In OC-12 Port Out OC-3
Port 3

83 32 � 47 115 64 � 79

UBR VCs For CBR Customers In OC-12 Port Out OC-3
Port 3

83 64 � 79 115 96 � 111

VBR VCs in OC-3 Port 0 Out OC-12 Port 32 32 � 41 64 64 � 73

CBR VCs in OC-3 Port 0 Out OC-12 Port 64 64 � 78 96 96 � 110

UBR VCs For VBR Customers In OC-3 Port 0 Out OC-12
Port

80 32 � 41 112 64 � 73

UBR VCs for CBR Customers In OC-3 Port 0 Out OC-12
Port

80 64 � 78 112 96 � 110

VBR VCs in OC-3 Port 1 Out OC-12 Port 33 32 � 41 65 64 � 73

CBR VCs in OC-3 Port 1 Out OC-12 Port 65 64 � 78 97 96 � 110

UBR VCs For VBR Customers In OC-3 Port 1 Out OC-12
Port

81 32 � 41 113 64 � 73

UBR VCs for CBR Customers In OC-3 Port 1 Out OC-12
Port

81 64 � 78 113 96 � 110

VBR VCs in OC-3 Port 2 Out OC-12 Port 34 32 � 41 66 64 � 73

CBR VCs in OC-3 Port 2 Out OC-12 Port 66 64 � 78 98 96 � 110

UBR VCs For VBR Customers In OC-3 Port 2 Out OC-12
Port

82 32 � 41 114 64 � 73

UBR VCs for CBR Customers In OC-3 Port 2 Out OC-12
Port

82 64 � 78 114 96 � 110

VBR VCs in OC-3 Port 3 Out OC-12 Port 35 34 � 41 67 66 � 73

CBR VCs in OC-3 Port 3 Out OC-12 Port 67 66 � 78 99 98 � 110

UBR VCs For VBR Customers In OC-3 Port 3 Out OC-12
Port

83 34 � 41 115 66 � 73

UBR VCs for CBR Customers In OC-3 Port 3 Out OC-12
Port

83 66 � 78 115 98 � 110

CBR VCs In OC-12 Port Out Fabric Port 96 96 � 103 160 160 - 167
Figure 13. VC Lookup Table

MOTOROLA GENERAL BUSINESS INFORMATION 25 CSTAATMCS-UG /D DRAFT

It should be noted that these routes were not selected to be representative of real world routing tables but
simply to ease testing of the application. Routes are not provided for all potential traffic paths for this
application. For instance, there are no routes which go in one OC-3 port and out another OC-3 port
although that is a legitimate path for traffic in this application. This is mostly due to the fact that the offline
table is compiled into the application as a data structure which limits how large it can be. It should also be
noted that since the application runs only in simulation currently, prohibiting long, lengthy testing and making
complicated traffic testing difficult, not all routes in the table have been tested. In particular, the fabric routes
have not been exercised.

4.2 Issues, Constraints, And Future Enhancements

4.2.1 Static Scheduling Hierarchy

The current implementation establishes the complete scheduling hierarchy at initialization and no changes
are supported during runtime. Eventually, the Q-5 will support dynamically re-configuration and the Host
portion of this application should be enhanced to support a user interface allowing re-configuration
commands to be issued.

4.2.2 Static Routing Table

Similar to the scheduling hierarchy, the routes in the VC table are currently created offline and the table is
static for the duration of the run. As noted in the TLU section, this also limits the number of routes in the
table due to DMEM constraints. The host portion of this application should be enhanced to populate the
table rather than using offline tables and should populate the table with routes that would allow accessing of
all paths through the scheduling trees and all valid data paths through the application.

4.3 Application Files And Binaries
The following section described the files provided as part of this reference application and some of the
binaries produced as a result of building it. For details on how to build the application, please see the
README file and the Build System Conventions document.

Filename Short Description

tables.h Prototypes for functions in tables.c

tables.c Data and routines for creating and entering routes in
offline tables

offline.c Main program for offline table building

Makefile Makefile for building offline tables
Figure 14. Offline Tables Files

The above files are located in apps/atmCellSwitchQ/offline.

Filename Short Description

Tlu.State Offline table artifact for simulation

config Simulation configuration file

MOTOROLA GENERAL BUSINESS INFORMATION 26 CSTAATMCS-UG /D DRAFT

atmCellSwitchQQ.dsc Package description file for packaging binaries

Makefile Makefile for building application binaries

sim.in Input command file for simulation runs

acceptAtmCellSwitchQ.expected Expected file for application�s automated accept test

run.sh Script file for automating accept test
Figure 15. Run Files

The above files are located in apps/atmCellSwitchQ/run.

Filename Short Description

Makefile Makefile for building input patterns for simulation
Figure 16. inPatterns Files

The above file is located in apps/atmCellSwitchQ/run/inPatterns.

Filename Short Description

rcSdpAtmApiIf.h Data structures for merge space, extract space, and
control space usage by the application

atmVcTable.h Data structures for keys and data entries for the VC
Lookup Table

atm.h Data structures for cell header and statistics

atmIf.h Data structure for descriptors passed through the
queues in this application

appConfig.h Defines used to customize the application

tmHostTestCommDefs.h Defines used for current approach for XP and Host
communications (expected to change in the future).

Figure 17. Common Header Files

The above files are located in apps/atmCellSwitchQ/chip/np/inc.

Filename Short Description

tle_writes.h Offline table artifact for restoring tables

tle_restore.h Offline table artifact for restoring tables

xpMain.c Source code for all XPRC processing

Makefile.in Makefile support file for building XPRC binaries
Figure 18. XPRC Files

The above header files are located in apps/atmCellSwitchQ/chip/np/xprc/inc. The above source files are
located in apps/atmCellSwitchQ/chip/np/xprc/src.

MOTOROLA GENERAL BUSINESS INFORMATION 27 CSTAATMCS-UG /D DRAFT

Filename Short Description

atmTxByte.c Microcode for transmitting switched cells and
OAM/RM cells

atmRxSync.c Microcode for cell delineation state machine for
extracting cells from the data stream

atmRxByte.c Microcode for receiving cells

Makefile.in Makefile support file for building SDP binaries
Figure 19. SDP Files

The above source files are located in apps/atmCellSwitchQ/chip/np/sdp/src.

Filename Short Description

atmCp.h Prototypes for ATM source code routines

atmOc3CpMain.c CPRC main program for OC-3 Port CPRCs

atmOc3RxCp.c Receive processing for OC-3 Port CPRCs

atmOc3TxCp.c Transmit Processing for OC-3 Port CPRCs

atmOc12CpMain.c CPRC main program for OC-12 Port CPRCs

atmOc12RxCp.c Receive processing for OC-12 Port CPRCs

atmOc12TxCp.c Transmit Processing for OC-12 Port CPRCs

atmInitCp.c Common ATM Initialization processing

Makefile.in Makefile support file for building CPRC binaries
Figure 20. CPRC Files

The above header files are located in apps/atmCellSwitchQ/chip/np/cprc/inc. The above source files are
located in apps/atmCellSwitchQ/chip/np/cprc/src.

Filename Short Description

tmcParams.h Defines and pre-initialized structures for configuring
the Q-5 for this application

tmcConfig.h Variables and defines for holding ids of objects
created in configuring the Q-5

tmHostMain.cpp Main program for host processing to configure the
Q-5

tmcConfig.c Processing which configures the Q-5 for this
application

MOTOROLA GENERAL BUSINESS INFORMATION 28 CSTAATMCS-UG /D DRAFT

Makefile.in Makefile support file for building Host binaries
Figure 21. Host Files

The above header files are located in apps/atmCellSwitchQ/host/np/inc. The above source files are located
in apps/atmCellSwitchQ/host/np/src.

Filename Short Description

atmCellSwitchQ.pkg The final packaged image for the C-5e load

atmCellSwitchQQXp.dcp The binary for the XPRC

atmCellSwitchQOc12Cp.dcp The OC-12 Port binary for the CPRC

atmCellSwitchQOc3Cp.dcp The OC-3 Port binary for the CPRC

oc12Ucode.sdp The OC-12 Port binary for the SDP

oc3Ucode.sdp The OC-3 Port binary for the SDP

fpCportFdpQ5.sdp The binary for the FP

tmHost The Host binary for the application
Figure 22. Binary Files

The above files are created as a result of building the image. The XPRC, CPRC, and SDP binaries for the
C-5 are all found in the same variant directory under apps/atmCellSwitchQ/run/bin and the host binary is
found in a separate variant directory under the same place. The FP binary is found in the variant directory
under apps/components/fabrics/bin. For the conventions determining the name(s) of the variant directories
based on the build environment at the time of the build, please see the Build Systems Conventions
document.

Appendix A
Acronyms

A-1

API Application Programming Interface
ATM Asynchronous Transfer Mode
BMU Buffer Management Unit
CBR Constant Bit Rate
CDS C-Ware Development System
CLP Cell Loss Priority
CPI C-Ware Programming Interface
CPRC Channel Processor RISC Core
CRC Cyclic Redundancy Check
CST C-Ware Software Toolset
DMA Direct Memory Access
FIFO First-In First-Out
FP Fabric Processor
FPGA Field Programmable Gate Array
GFC Generic Flow Control
HEC Header Error Control
KB KiloByte
MB MegaByte
NRT Non-Real-Time
NWC WFQ Non-Work Conserving Weighted Fair Queuing
OAM Operations And Maintenance
PCR Peak Cell Rate
PIM Physical Interface Module
PTI Payload Type Indication
QMU Queue Management Unit
RISC Reduced Instruction Set Computer
RM Resource Management
RR Round Robin
RT Real-Time
SCR Sustainable Cell Rate
SDH Synchronous Digital Hierarchy
SDP Serial Data Processor
SONET Synchronous Optical Network
SP Strict Priority
SQ Scheduler Queue
TLU Table Lookup Unit
TQ Traffic Queue
UBR Unspecified Bit Rate
UNI User Network Interface

MOTOROLA GENERAL BUSINESS INFORMATION A-2 CALQ5ATMCS-UG/D DRAFT

VBR Variable Bit Rate
VC Virtual Channel
VCI Virtual Channel Identifier
VOP Virtual Output Port
VPI Virtual Path Identifier
WC WFQ Work Conserving Weighted Fair Queuing
XPRC eXecutive Processor RISC Core

	T
	Introduction
	Purpose of Document
	Software Architecture Overview
	Feature Overview
	Applications Component Usage
	Data Flow Overview
	Application Configuration

	Related Documents
	Detailed Design
	ATM Processing
	ATM Initialization
	ATM Receive Processing
	RxBIT
	RxSONET
	RxSync
	ATM RxByte
	ATM CPRC Receive Thread

	ATM Transmit Processing
	ATM CPRC Transmit Thread
	TxByte
	TxSonet
	TxBit

	Data Structures
	Statistics
	SDP Interfaces

	XPRC Processing
	C-5e Configuration
	QMU
	OC-12/OC-3/FP Queue Usage
	XPRC Queue Usage

	BMU
	TLU
	VC Lookup Table
	Ring Bus Slot Usage

	Host Processing
	OC-12 Scheduling
	OC-3 Scheduling
	XPRC Scheduling

	Other Information
	Offline Tables
	Issues, Constraints, And Future Enhancements
	Static Scheduling Hierarchy
	Static Routing Table

	Application Files And Binaries

