
Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP

B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

RT600 Security Architecture

Secure Execution Environment
SEE Components

• Secure Isolation

– Protection from software and remote attacks using Trustzone® for armV8M.

– HW symmetric key isolation

• Secure Boot

– Secure boot firmware in ROM providing immutable root of trust

• Secure Storage

– Physically Unclonable Function (PUF) based key store, On-the-fly-AES decryption
(OTFAD) of off-chip flash for code storage

• Secure Primitives - HW Cryptography Accelerators

– Symmetric cryptography (AES) with 256-bit key strength and SCA resistance

– Asymmetric cryptography acceleration using CASPER co-processor

– TRNG with 256-bit entropy

– Hash engine with SHA-256 and SHA1

• Secure Debug

– Certificate based debug authentication mechanism

• Secure Update

– Supports firmware update capsule with authenticity (RSA signed) and
confidentiality (AES-CTR encrypted) protection

• Secure Identity

– 128-bit Universal Unique Identifier (UUID), 256-bit Compound Device Identifier
(CDI), NXP certified crypto identity

PUBLIC
1

RT600 Security Sub-system

• ROM supporting
– Secure Boot, Debug Authentication, DICE Engine

• TrustZone® for Cortex®-M33
– SAU/IDAU, Secure bus, Secure GPIO

• Cryptography Accelerators
– Hash-Crypt engine: AES and SHA

– CASPER: Asymmetric cryptography accelerator

– Random Number Generator (RNG)

• Secure Storage
– Physically Unclonable Function (PUF)

▪ Device unique root key (256-bit strength)

▪ Can store key sizes 64-bit to 4096-bit

– HW diversified OTP keys

– OTFAD on-the-fly flash encryption/decryption engine

OTP

Key Store

Debug Authentication

ROM Firmware

Secure Boot

RNGOTFADSHA2 AES CASPER

Secure Storage

PUF with Dedicated RAM

TrustZone ® for Cortex ® -

M33

Secure Bus Ctrl Secure GPIO

Cryptography Accelerators

DICE Engine

SAU MPU-S

IDAU

MPU-NS

Secure DMA

PUBLIC
2

Secure Isolation
Protect from software and remote attacks

Challenges

• Protect from software attacks

– Buffer overflow

– Interrupt/starvation

– Malware injection

• Meet minimum latency requirements of

real-time systems while crossing

RT600 solution

• Based on Cortex®-M33 with ARM®’s
Trustzone® technology

• NXP’s light weight device attribution unit to
simplify setup process

• Two factor isolation protection built in AHB
secure bus control with

– Peripheral Protection Checkers

– Memory Protection Checkers

• GPIO Masking/isolation

• Interrupt Masking/isolation

• Master Security Wrapper for other masters

• Secure configuration locking

Trusted
view

Firmware
Secure services

Secure firmware

Data Secure data

Periphe rals

Memor y

CPU resou rces

Non-trusted

Trusted

boundaries

• Meet low-power requirements

Non-trusted
view

PUBLIC
3

Secure Isolation
Secure AHB bus matrix

• Has Security side band signals
– HPRIV, HNONSEC

▪ Pole and anti-pole version of signals used for
tamper detection

• PPC per AHB slave port
– Default security level checking
– Provision to check both security and

privilege levels

• MPCs for memories and bridge ports
– Default security level checking
– Provision to check both security and

privilege levels

• Each master has separate security
wrapper (MSW)

Multilayer AHB Matrix
(implements data gating)

ROM
Memory

Flash
Memory

C
-

A
H

B

DMA0 DMA1
Cortex®-M33

S
-

A
H

B

SRAM
Memory

SRAM
Memory

GPIO

APB
Bridge

IDAU

other
bus

masters
SAU

M
P

C
M

P

C

M
P

C

M
P

C

P
P

C

P
P

C

SCT

FlexComm

FlexComm

Timer

MSW MSW MSW

HPRIV,
HNO SEC

PUBLIC
4

Secure Boot
An anchor for root of trust

PUBLIC
5

Challenges
• IoT service providers need assurance that

the device is running authorized firmware

• Secure/authenticated boot is needed to

anchor the device trust model

• Assurance that the image executed by

device is not tampered

• Initial trusted boot image should be fixed

and immutable

• Support robust anti-rollback mechanisms

RT600 solutions

• RT600 implements authenticated boot in
ROM forming the immutable Root of Trust
(RoT)

– ROM always authenticates the image in
flash before execution, extending the
chain of trust to the application image

– Supports RSA 2048, 3072 or 4096
image signing keys

– Supports certificate chains signed by
RoT Keys

– Supports execution of encrypted images
using the OTFAD engine

6
PUBLIC

Secure Boot Flow

Initialize

hardware OTP

Boot Mode?

USB-HID

Shutdown all

Peripherals and

Jump to User App

Shutdown

unused periphs

Master boot

ISP boot

Quad SPI

SD/MMC

Serial Boot

SPI Slave
Active

perih?

UART

I2C Slave

Command

Handler

Auto

Probe

Device

Type?

MMC BootSD Boot

Load to

RAM

Compute DICE

ID

CRC Check

Recovery Boot

OTFAD

Enabled?

XIP?

Secure

boot?

Recovery

boot_en?

Active

periph?

Authenticate

Pass?

OTFAD

Init

USB-DFU

Boot
UART Boot SPI Slave

Boot

I2C Slave

Boot

Image TZM

type?

Preset TZ-M

Secure Entry

Non-Secure Entry

Secure Storage
Asset protection

PUBLIC
7

Challenges
• Provide secure

sensitive data
storage for keys and

– Protect from stealing

– Comply with consumer data protection
standards

• Provision Hardware Unique Keys (HUK)

– Avoid break-one, break-all attacks

• Provide confidentiality of program code

– Protect SW IP

– Protect from cloning

– Protect from tampering

▪ Illegally gaining trust

▪ Changing execution sequence

RT600 solutions

• SRAM based Physically Unclonable Function

(PUF)

– PUF based tamper resistant Key store

– Device naturally has PUF based HUK

– Avoids complicated manufacturing floor

key injection procedures

• OTP master key based key store

– Master key storage is diversified per die

• On The Fly AES Decryption (OTFAD) of off-

chip flash

– Encrypted code storage to protect SW IP

Secure Storage – PUF and OTP Key Store
RT600 tamper resistant key storage

• Provides 256-bit strength HUK
• Supports wrapping of keys

– 64 to 4096 bits keys
– Index 0 keys are accessible by AES and

Prince engines only through HW secret bus
– Index 1 – 14 keys accessible by Crypto library

through register interface
– Index 15 keys accessible only by ROM

• OTP master key based key store
– Master key storage is diversified per die

PUF IP

Key Store

Key Code

Index 0

Key Code
Index 2

Key Code
Index 1

Helper

data/Activation

Code

Key Code
Index 0

AESCrypto

Lib

RT600

Secret HW bus

APB Register I/F

PUBLIC
8

Secure Primitives
Hashing, encryption, decryption and authentication

PUBLIC
9

Challenges
• Should support cryptographic primitives

– Hashing: One-way function to compute
fingerprint of variable size data

– MAC: Message authentication code

▪ Used for message authentication

– Symmetric key block and stream ciphers

▪ Used for protecting sensitive data

▪ Used for secure communication

– Asymmetric key cipher

▪ For Transport Layer Security (TLS) session
establishment

▪ Session key exchange (ECDH, ECDHE)

• Should meet time and power constraints

– Cryptographic operations are usually
computation intensive

RT600 solutions

• HW accelerator for secure hash functions

– Supports SHA1, SHA2-256

– Used for accelerating HMAC-SHA256

• HW accelerator for AES encryption and
decryption

– Supports 128-bit, 192-bit and 256-
bit keys

– Supports ECB, CBC and CTR modes

– Used for accelerating AES-CMAC

• CASPER for big number math accelerations

– Used for accelerating public key
cryptography (RSA, ECC)

10

PUBLIC

Secure Primitives
Hash and symmetric cryptography accelerators

Hash-Crypto Engine

• Supports Hashing algorithms

– SHA1, SHA2-256

– Used for accelerating HMAC-SHA256

• Support acceleration of AES encryption and

decryption

– Supports 128-bit, 192-bit and 256-

bit keys

– Supports ECB, CBC and CTR modes

– Used for accelerating AES-CMAC

• Supports loading of data through register

interface, generic DMA and via built-in DMA

Combined SHA-1

and SHA2-256

engine
Message buffer

Message buffer2

AHB Slave

AHB

Master

Digest/Output ready

AES Engine

Digest/Output

Operation* SW

only*

Hash-

Crypto

Performance

Improvement

Energy eff.

Improvement

SHA1 Hash 652.3us

@54mA

29.8us

@51mA

22x 23x

SHA2-256

Hash

2404us

@54mA

25.6us

@51mA

94x 99x

AES-CBC-

256

Encryption

1990us

@54mA

64.8us

@51mA

31x 33x

AES-CBC-

256

Decryption

2036us

@54mA

64.8us

@51mA

31x 33x

*Operation on 4096 bytes data block. Cortex-M33 running @ 250 MHz from on-chip SRAM.

11
PUBLIC

* Cortex-M33 running @ 250 MHz from on-chip SRAM.

Secure Primitives
Public Key Cryptography Accelerator - CASPER

CASPER features
• Interfaces with Cortex®-M33 on 64-bit co-

processor bus

– Allows to transfer 2 registers and issue a
command in single instruction

• Dedicated 64-bit interface to RAM (2 x 32-bit
interleaved RAMs) in addition to system bus
access

• Multipliers and Brent-Krung style adders for fast
multiplication of 64b x 64b with maximum
efficiency

• State machine to support modular multiply,
Montgomery reduction, add, sub, rsub, double,
compare, compare-early-out, fill, zero, copy, re-
mask-copy, modular add and subtract operations

• Masking for side-channel countermeasure

Operation Curve SW only* CASPER Performance

Improvement

Energy eff.

Improvement

ECDSA

Signing

secp256r1 187.6ms

@78mA

29.4ms

@72mA

6.4x 6.9x

ECDSA

verify

secp256r1 333ms

@78mA

29.7ms

@72mA

11.2x 12x

Key

exchange

ECDHE

secp256r1

333ms

@78mA

45.5ms

@72mA

7.3x 7.9x

Key

exchange

ECDH

secp256r1

176.4ms

@78mA

23.1ms

@72mA

7.6x 8.2x

RSA

Verify

RSA-2048 9.3ms

@65mA

2.1ms

@65mA

4.4x 4.4x

Secure Debug
Debug protection mechanism

PUBLIC
12

Challenges

• Only authorized external entity is allowed

to debug

• Permit access only to allowed assets

• Support Return Material Analysis (RMA)

flow without compromising security

RT600 solution

• Supports RSA-2048/RSA-4096 signed
certificate-based challenge response
authentication to open debug access

• Provides individual debug access control
over partitioned assets

• Provides flexible security policing

– Enforce UUID check

– Certificate revocations

– OEM customizable attribution check
(model number, department ID,
etc.)

• Security policy fixed at manufacturing

Secure Debug
RT600 Debug Domains – SoC Credential Constraints

CPU0 : Cortex®-M33 with security extensions

– NIDEN - Non-secure non-invasive
debug

– DBGEN - Non-secure invasive
debug

– SPNIDEN - Secure non-invasive
debug

– SPIDEN - Secure invasive debug

CPU1: HiFi DSPAP

TAPEN - TAP (Test Access Point) controller

HW Credential Constraints

• Fields in OTP provide
control of the sub-
domains

– Disable permanently

– Enable after debug
authentication

– Enable permanently

• Other controls

– Enforce UUID
checking

– Revoke debug keys

Configuration Control

SW Credential Constraints

ISPEN - ISP boot command

FAEN - Field Return Analysis mode

command

MEEN- Flash mass erase command

RT600

DAP
SWJ-

DP

Cortex-M33

AP

DSP

AP

Debug Mailbox

ISP-AP

JTAG

SWCLK

SWDIO

SWO

JTAG_TCK,

JTAGTMS,

JTAG_TDI,

JTAG_TDO

TAP

ETM

Trace

TRACECLK

TRACEDATA[0-3]

PUBLIC
13

Secure Update
RT600 firmware update

PUBLIC
14

Challenges

• New firmware should be authenticated
before committing to memory

– Same Root of Trust used for
authenticated boot should be used

• Firmware should be encrypted to maintain
confidentiality during transit

– Make distribution of FW simpler

– Pre-shared symmetric keys should
be protected from leakage

• Multiple components are updated at the
same time (Update capsules)

RT600 solution

• Provides receive-sb-file, In System
Programming (ISP) command over serial
interfaces

– Supports ISP over UART, USB, SPI-
Slave interfaces

• Provides ROM API for In Application
Programming

– Supports packet based API to allow
Over-The-Air (OTA) update

• Provides authenticity (RSA signed) and
confidentiality (AES-CTR encrypted) of
firmware update capsule

• Provides command based update capsule

Section tag

HMAC table

SB commands

Erase 0x1000-0x1D70

Load 0xD70 bytes to 0x1000

0xD70 bytes of data

Erase 0x1F00-0x8200

Load 0x6300 bytes to

0x1F00

0x6300 bytes of data

…

Secure Update - Command Section
Multiple commands to update parts of the application code*

Command

section
(AES-CTR encrypted +

HMAC)

Secure Image Header

PUBLIC
15

Secure Identity
Device Identity rooted in hardware

PUBLIC
16

Challenges

• Should be statistically unique

• Should be cryptographically strong

• Should be identity rooted in hardware

RT500 solution

• Provides Electronic Chip Identifier (ECID)

• Provides Universally Unique Identifier

(UUID) as per IETF’s RFC4122 version 5

specification

• Provides Compound Device Identifier

(CDI) as per Trusted Computing Group’s

(TCG), Device Identifier Composition

Engine (DICE) specification

RT600 Lifecycle States

Development

• All debug ports are enabled
• ROM enables debug access

only after part config and
secure boot routines return

• Plain CRC images are used
during development

• Customer could program
development keys

Tier1 Deployment

• Debug ports are closed as per
customer configuration
• Enabled after debug

authentication

• Disable permanently
• Enable non-secure debug

interfaces
• Only signed images are

allowed if secure boot is
enabled

• Customer keys are
programmed

• FW update Key

• OTFAD Keys

• UDS key

• ROTKH
• Secure Firmware is

programmed

• Secondary boot loader

Tier2 Deployment

• Non-secure debug interfaces
can be closed further
• Enable after debug

authentication

• Disable permanently
• Non-secure firmware is

programmed through
mechanisms exposed by Tier1
customer API

• Separate Prince region
(independent key and IV)
could be used for storing NS
firmware

Customer Return (FA mode)

• Keys and firmware are
destroyed

• Customer uses debug
authentication mechanism to
set FA_MODE field in CFPA

• Customer ships the de-
soldered part to NXP

PUBLIC • Secure firmware

17

Production and Deployment of Secure Image

Command

file

(bd file)

Key file

(sbkek)

IAR

eil

GCC

BIN file

SREC file

SOURCE

Master Boot

CRC

signed

signed + encrypted

CRC

signed

ISP

SB2 file

CMD +

DATA

Write-memory

blhost

Receive-sb-file

Elftosb-gui

Master boot

image

elftosb

L
o

a
d

to
R

A
M

X
IP

SB2 image

O
T

F
A

D

Json image

configuration

file

Certificates

PUBLIC
18

TrustZone®-M

Sub-system

PUBLIC
19

Secure Bus Controller

Device Attribution Unit (IDAU)

TrustZone® for Armv8M

• CPU states
– Secure privilege, secure non-privilege, privilege

(handler), non-privilege (thread)

• Memory attribution
– Secure, non-Secure (NS), non-secure callable (NSC)

– Defined by SAU (programmable), IDAU (fixed by
NXP) and SCS (fixed by ARM®)

• Isolation mechanism
– Secure bus control

▪ PPC (Peripheral Protection Checker), MPC (Memory
Protection Checker), MSW (Master Security Wrapper)

– Debug isolation

▪ DBGEN, NIDEN, SPIDEN, SPNIDEN

Non-secure

handler

mode

Non-secure

thread

mode

Armv8-M

Secure

handler

mode

Secure

thread

mode

Handler

mode

Thread

mode

Armv7-M

PUBLIC
20

Security Defined by Address

• All address are either secure or non-
secure

• Security Attribution Unit (SAU)
– SAU inside ARMv8M is similar to MPU

– By default, all memories are secure

– RT600 supports 8 SAU regions to define

• NXP’s device attribution unit

– Connects through Implementation
Defined Attribution Unit (IDAU) interface

• Independent memory protection unit
(MPU) per security state
– Secure OS can be completely decoupled from

Security

Attribution

Unit (SAU)

Device

Attribution

Unit

Secure

MPU

Non-Secure

MPU

Security

Attribution

Request from CPU

Request to System Bus

HPRIV
(Privilege Level)

HNONSEC

(Security Level)

IDAU

Interface

Address

PUBLIC
21

Attribution

Secure Isolation
Memory attribution

• NXP’s light weight device attribution

unit
– Address range 0x0000_0000 to

0x1FFF_FFFF is Non-Secure

– Address range 0x2000_0000 to

0xFFFF_FFFF
▪ If Address Bit_28 = 0 Non-Secure
▪ If Address Bit_28 = 1 Secure

– All peripherals and memories are

aliased at two locations

• RT600 supports 8 SAU regions

0x1000_0000
56MB

2

2

56MB

0x3000_0000
256MB

256MB

0x5000_0000
256MB

256MBSecure

Non Secure

Secure

Non Secure

Non Secure

0x7000_0000

0x9000_0000

0x2000_0000

0x4000_0000

0x6000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x0000_0000

256MB

256MB

256MB

256MB

256MB

256MB

256MB

256MB

0xB000_0000

0xD000_0000

Program

Data

Peripherals

Ext memory (unused)
Secure

Non Secure

Secure

Non Secure

0xFFFF_FFFF

6MB

256MBSecure

Non Secure 25

Secure

Non Secure

Secure

Non Secure

0xF000_0000 PPB

PUBLIC
22

Security Attribution Logic

• If either IDAU or SAU marks a

region then secure

• NSC area can be defined in NS

regions of IDAU

SAU

Secure

IDAU

Secure

End result

Secure

NS Secure Secure

Secure
NS Secure

NS NS NS

NSC Secure

NS

Secure

PUBLIC
23

NSC NSC

USER PROJECT

Non-secure state

SECURE PROJECT

Secure state

Developing Code for Secure IoT Applications
Composing a system from secure and non-secure projects

• Partition project – place

minimal security-related

code in secure project

• Non-secure project cannot

access secure resources

• Secure project can access

everything

• Secure and

non-secure projects may

implement independent

time scheduling
Secure boot and

bootloader

Firmware update

Crypto library

User application

RTOS
Start

Function calls

Communications

stack Function calls

Crypto keys,

certificates

PUBLIC
24

Secure Isolation
Secure AHB bus matrix

• Has security side band signals
– HPRIV, HNONSEC

▪ Pole and anti-pole version of signals used for
tamper detection

• PPC per AHB slave port
– Default security level checking
– Provision to check both security and

privilege levels

• MPCs for memories and bridge ports
– Default security level checking
– Provision to check both security and

privilege levels

• Each master has separate security
wrapper (MSW)

Multilayer AHB Matrix
(implements data gating)

ROM
Memory

Flash
Memory

C
-

A
H

B

DMA0 DMA1
Cortex®-M33

S
-

A
H

B

SRAM
Memory

SRAM
Memory

GPIO

APB
Bridge

IDAU

Other
Bus

Masters
SAU

M
P

C
M

P

C

M
P

C

M
P

C

P
P

C

P
P

C

SCT

FlexComm

FlexComm

Timer

MSW MSW MSW

HPRIV,
HNO SEC

PUBLIC
25

Peripheral Protection Checker (PPC)

• Used with AHB peripherals

• One PPC per AHB slave port

• All rules are set in secure bus control register bank

• User must have the highest level of Secure
Privileged to set rules

• By default only the security level is checked
– Privilege level is ignored

• Provision for tiered checking
– Data accesses typically allow higher tier to access lower tier

data/peripheral

– Instruction fetches are checked more strictly – access must be at
exact same privilege level as the master

– There is a programmable option to treat all accesses in the system
as instruction

00

Tier level expressed in binary

01

01

10

11

11

PUBLIC
26

Memory Protection Checkers (MPC)
• Used with on-chip Flash, on-chip SRAM and external memory

devices

• Memory blocks have one checker setting per “sector”

– Typically, the memory instance is divided into 32 sectors

– For example, a 128 kB memory would have a granularity of 4 kB per sector

• All rules are set in secure control register bank

• User must have the highest level of Secure Privileged to set

rules

• By default, only security level is checked

– Privilege level is ignored

• Provision for tiered checking

– Data accesses typically allow higher tier to access lower tier data/peripheral

– Instruction fetches are checked more strictly – access must be at exact same
privilege level as the master

– There is a programmable option to treat all accesses in the system as
Instruction

00

Tier level expressed in binary

01

01

10

11

11

PUBLIC
27

Secure Peripherals

PUBLIC
28

• Secure DMA

– Two DMA controllers are provided to configure one as secure and another as non-

secure

– One of the DMA controller has only 8 channels; Recommended to use as secure DMA

• Secure GPIO

– Functionally works same as standard GPIO controller

– Only available for Port0 pins

– All 32 Port0 pins have Secure GPIO as selectable pin-mux function

Secure Storage

PUBLIC
29

Secure Storage
Asset protection

PUBLIC
30

Challenges
• Provide secure

sensitive data
storage for keys and

– Protect from stealing

– Comply with consumer data protection
standards

• Provision Hardware Unique Keys (HUK)

– Avoid break-one, break-all attacks

• Provide confidentiality of program code

– Protect SW IP

– Protect from cloning

– Protect from tampering

▪ Illegally gaining trust

▪ Changing execution sequence

RT600 Solutions

• SRAM based Physically Unclonable Function
(PUF)

– PUF based tamper resistant key store

– Device naturally has PUF based HUK

– Avoids complicated manufacturing floor
key injection procedures

• On The Fly AES Decryption (OTFAD) of off-
chip flash

• AES Encryption/Decryption engine

– ICB mode with masking for side-channel
countermeasure to store confidential
data

Secure Storage - HUK
Physically Unclonable Function (PUF) on RT600 provides HUK

• Hardware Unique
Key (HUK)
provides RoT for
confidentiality

– One key to many

• Device unique
and unclonable
fingerprint

• Leverages
entropy of mfg.
process

• No key material
programmed

Process variation

Naturally occurring

variations in the attributes of

transistors when chips are

fabricated (length, width,

thickness)

SRAM PUF Key

The silicon fingerprint is turned into

a secret key that builds the

foundation of a security subsystem

4

1

The start-up values create a

random and repeatable

pattern that is unique to

each chip

3Silicon Fingerprint

SRAM Start-up Values

Each time an SRAM block

powers on the cells come up as

either a 1 or a 0

2

PUBLIC
31

Secure Storage – PUF Key Store
RT600 tamper resistant key storage

• Provides 256-bit strength HUK

• Supports wrapping of keys
– 64 to 4096 bits keys

– Index 0 keys are accessible by AES and

Prince engines only through HW secret bus

– Index 1 – 14 keys accessible by Crypto

library through register interface

– Index 15 keys accessible only by ROM

PUF IP

Key Store

Key Code

Index 0

Key Code
Index 2

Key Code
Index 1

Helper

Data/Activatio

n Code

Key Code
Index 0

AESCrypto

Lib

RT600

Secret HW bus

APB Register I/F

PUBLIC
32

Secure Storage – Encrypted Flash
On The Fly AES Decryption(OFTAD) of encrypted flash

• AES-128 in Counter mode (AES-CTR)

– 128-bit Nonce_n value combines a

counter and system address

• Heavily pipelined, 3 rounds per cycle, so

• OTFAD pre-processes two 128-bit
encrypted counters for each 64-bit

the encryption speed (4 cycles total)

matches the fastest data arrival rate

• The key stream is computed prior to data

arrival, providing zero cycles of

incremental latency

WRAP4 (256-bit read) transfer in response

to an instruction cache miss line fill

32 KB cache
RAM

Cache
Controller

OTFAD
FlexSPI

Controller

System Bus

PUBLIC
33

Secure Boot ROM

PUBLIC
34

Secure Boot
An anchor for root of trust

PUBLIC
35

Challenges
• IoT service providers need assurance that

the device is running authorized firmware

• Secure/authenticated boot is needed to

anchor the device trust model

• Assurance that the image executed by

device is not tampered

• Initial trusted boot image should be fixed

and immutable

• Support robust anti-rollback mechanisms

RT600 solutions

• RT600 implements authenticated boot in
ROM forming the immutable Root of Trust
(RoT)

– ROM always authenticates the image in
flash before execution, extending the
chain of trust to the application image

– Supports RSA 2048, 3072 or 4096
image signing keys

– Supports certificate chains signed by
RoT Keys

– Supports encrypted images using the
OTFAD engine

Secure Boot
RT600 ROM provides Immutable RoT

• ROM on every boot
– Validates RoT keys
▪ Supports up to 4 revocable RoT keys
▪ OEM programs the hash of these keys at

manufacturing in OTP to tie the chain of trust
between device and OEM

– Validates Image signing keys
▪ Uses X509 v3 certificate chain
▪ Supports up to 16 revocations of image key

certificates for secure anti-rollback mechanism

– Authenticates image using validated image
keys

– Used with OTFAD encrypted flash to
achieve confidentiality

Signed image

0x28 Header Offset

RSASSA-PKCS1-v1_5
Signature

RSA2K

Image_Key Private

RoT Key Certificate

RoT Key0 Hash (SHA2)

Data (TrustZone Conf.)

Certificate Block Header

0x24 Image Type: SPT

0x20 Image Length

0x34 Load Addr

RoT Key1 Hash (SHA2)
RoT Key2 Hash (SHA2)
RoT Key3 Hash (SHA2)

Plain Image

Image Key Certificate

PUBLIC
36

37

PUBLIC

• ROM authenticates the image first

• Replaces the first 64 bytes with encrypted data

present in certificate block and decrypts the image

in place

• Used to achieve authenticity and confidentiality of

code in serial boot scenarios
Encrypted Image

RSASSA-PKCS1-v1_5
Signature

RSA2K

Image_Key Private

X.509 Certificate

RoT Key0 Hash (SHA2)

Data (TrustZone Conf.)

Certificate Block Header

0x20 Image Length

0x24 Image Type: ES

0x28 Header Offset

0x34 Load Addr

RoT Key1 Hash (SHA2)

RoT Key2 Hash (SHA2)

RoT Key3 Hash (SHA2)

Enc. Image (First 0x40)
IV

HMAC of Header +
Stored Key
(Optional)

Secure Boot
Load to RAM encrypted image

Encrypted Signed

Write to 32

byte RKTH in

OTP

38
PUBLIC

Secure Boot Images

Plain Image
Signed Image

Encrypted Image

* Used during development

0x28 Header Offset

RSASSA-PKCS1-v1_5
Signature

RSA2
K

Image_Key Private

RoT Key Certificate

RoT Key0 Hash (SHA2)

Data (TrustZone Conf.)

Certificate Block Header

0x24 Image Type: SPT

0x20 Image Length

0x34 Load Addr

RoT Key1 Hash (SHA2)
RoT Key2 Hash (SHA2)
RoT Key3 Hash (SHA2)

Plain Image

Image Key Certificate

PUBLIC

Encrypted Image

RSASSA-PKCS1-v1_5
Signature

RSA2K

Image_Key Private

X.509 Certificate

RoT Key0 Hash (SHA2)

Data (TrustZone Conf.)

Certificate Block Header

0x20 Image Length

0x24 Image Type: ES

0x28 Header Offset

0x34 Load Addr

RoT Key1 Hash (SHA2)

RoT Key2 Hash (SHA2)

RoT Key3 Hash (SHA2)

Enc. Image (First 0x40)
IV

HMAC of Header +
Stored Key
(Optional)

0x28 CRC32

Data (TrustZone Conf.)

0x24 Image Type: Unsigned Plain CRC

0x20 Image Length

0x34 Load Addr

Plain Image

39
PUBLIC

FlexSPI Flash Layout

Key Blob

Key Blob 0

Key Blob 1

Key Blob 2

Key Blob 3

0x0820_0000
Remap to

0x0800_0000

0x08000000

0x080F0000

0x082F0000

Remapped Memory

▪ Types of framing packets include:

• ACK

• NAK

• AckAbort

• Command

• Data

• Ping

• PingResponse

– Command packets

• Holds the command and parameters to be
executed by the bootloader

– Data packets

• Contents of a data packet is simply the data itself

Command and

Data Processor

• Command phase state machine

• Command handlers

PUBLIC
40

Command processor overview

– All data sent between host and target is packetized

– Types of packets include framing, command, and data

– Framing packets

▪ Used for flow control and error detection (via CRC-16)
on serial interfaces without built-in packetization and flow
control

In System Programing (ISP)

ISP Commands

PUBLIC
41

Name Description

FlashEraseAll Erase the entire flash array

FlashEraseRegion Erase a range of sectors of flash

ReadMemory Get data from memory

ReadMemoryResponse Send the contents of memory

WriteMemory Write data to memory

FillMemory Fill memory with a pattern

GetProperty Get the current value of a property

GetPropertyResponse Send the requested property value

ReceiveSBFile Receive and process an SB-format programming image

Execute Invoke a function that never returns control to the bootloader

Call Invoke a function that is expected to return

Reset Reset the chip

SetProperty Attempt to modify a writable property; Used for setting nHostIRQ pin

FlashEraseAllUnsecure Erase the entire flash array, including protected sectors

FlashProgramOnce Program OTP fuses

FlashReadOnce Read OTP fuse values

ConfigureMemory Configure QuadSPI NOR flash devices

KeyProvision PUF key provision commands – enroll, set key, set user key, read key store

Secure Update
RT600 firmware update

PUBLIC
42

Challenges

• New firmware should be authenticated
before committing to memory

– Same Root of Trust used for
authenticated boot should be used

• Firmware should be encrypted to maintain
confidentiality during transit

– Make distribution of FW simpler

– Pre-shared symmetric keys should
be protected from leakage

• Multiple components are updated at the
same time (update capsules)

RT600 Solution

• Provides receive-sb-file, In System
Programming (ISP) command over serial
interfaces

– Supports ISP over UART, USB, SPI-
Slave interfaces

• Provides ROM API for In Application
Programming

– Supports packet based API to allow
Over-The-Air (OTA) update

• Provides authenticity (RSA signed) and
confidentiality (AES-CTR encrypted) of
firmware update capsule

• Provides command based update capsule

Secure Update
RT600 firmware update image – SB2.1 format *

• Supports AES-CTR encrypted and RSA
signed firmware update capsules

– Separate 256 bit AES data encryption key
(DEK) and 256-bit HMAC keys per file

– DEK and HMAC keys are wrapped in key
blob per RFC3394 using a pre-shared key
encryption key (SBKEK)
▪ SBKEK is stored in PUF key store

• Supports RSA 2048, 3072 or 4096
authentication of header, key blobs,
certificate block and HMAC table

– HMAC table linking extends the chain of trust
– HMAC authentication on file segments

improves performance and eliminates huge
RAM requirement

RFC3394 Key Blob

(DEK and MAC Key)

RSASSA-PKCS1-

v1_5 Signature

RSA2K

Image_Key
Private

RoT Key Certificate

RoT Key Hash Table

Certificate Block Header

HMAC-SHA256 of

MAC Table

Header

SB2.1 Image

Image Key Certificate

HMAC Table
Segment 0 HMAC

Segment n HMAC

Section Header

Segment 1

Segment n

AES-CTR(DEK, section)

PUBLIC

* Firmware update ROM API using SB2.1 is available inA14R3OM revision

Section Tag

HMAC Table

SB Commands

Erase 0x1000-0x1D70

Load 0xD70 Bytes to 0x1000

0xD70 Bytes of Data

Erase 0x1F00-0x8200

Load 0x6300 Bytes to

0x1F00

0x6300 Bytes of Data

…

Secure Update - Command Section
Multiple Commands to update parts of the application code *

Command

Section
(AES-CTR Encrypted +

HMAC)

Secure Image Header

PUBLIC
44

Name Description

LOAD_CMD Load command to write data to on-chip RAM, on-chip flash and off-chip flash

ERASE_CMD Erase a range of sectors of flash

PROG_CMD
Write to the program-once persistent bits; Used for programming OTP and Protected

flash Regions (PFR)

FILL_CMD Fill memory with a pattern

RESET_CMD Reset the chip

MEM_ENABLE_CMD Enable (configure) the external memory such as external QuadSPI NOR flash devices

JUMP_CMD
Execute image loaded in RAM; If secure boot is enabled expects a signed image in

RAM

FW_VER_CHK Checks firmware version. Used for implementing anti-rollback FW update files

PUBLIC
45

Secure Update
Supported SB commands

Start

Search for First Bootable Section

Verify Computed Hash of Header =

Certificate Hash Using Image Signing Key

(ISK)

Receive and Store Cypher Blocks in Temp Storage until

Header, Header Hash, and Key Blob available

Abort
N

N

Y

N

Y

Decrypt Section Data Block UsingAES-

CTR and DEK

Verify Computed Hash of Section Data

Block n = Hash in HMAC Table

Process the Boot Command

Is this the last Block?

Y

PUBLIC Terminate
46

Unwrap the Key Blob and Store the DEK and the MAC Keys

Verify HMAC Table

Secure Update
SB load operation – execution flow

Secure Debug

PUBLIC
47

Secure Debug
Debug protection mechanism

PUBLIC
48

Challenges

• Only authorized external entity is allowed

to debug

• Permit access only to allowed assets

• Support Return Material Analysis (RMA)

flow without compromising security

RT600 solution

• Supports RSA-2048/RSA-4096 signed
certificate based challenge response
authentication to open debug access

• Provides individual debug access control
over partitioned assets

• Provides flexible security policing

– Enforce UUID check

– Certificate revocations

– OEM customizable attribution check
(model number, department ID,
etc.)

• Security policy fixed at manufacturing

Secure Debug
RT600 debug domains – SoC credential constraints

CPU0 : Cortex®-M33 with security extensions

– NIDEN - Non-secure non-invasive
debug.

– DBGEN - Non-secure invasive
debug

– SPNIDEN - Secure non-invasive
debug

– SPIDEN - Secure invasive debug

CPU1: HiFi DSPAP

TAPEN - TAP (Test Access Point) controller

HW Credential Constraints

• Fields in OTP provide
control of the sub-
domains

– Disable permanently

– Enable after debug
authentication

– Enable permanently

• Other controls

– Enforce UUID
checking

– Revoke debug keys

Configuration Control

SW Credential Constraints

ISPEN - ISP boot command

FAEN - Field Return Analysis mode

command

MEEN- Flash mass erase command

RT600

DAP SWJ-

DP

Cortex®-M33 AP

DSP AP

Debug Mailbox

ISP-AP

JTAG

SWCLK

SWDIO

SWO

JTAG_TCK,

JTAGTMS,

JTAG_TDI,

JTAG_TDO

TAP

ETM

Trace

TRACECLK

TRACEDATA[0-3]

PUBLIC
49

Secure Debug
Debug authentication flow

DebugAuthentication Challenge (DAC)

Debug Authentication Response (DAR)

• Find Matching DC

• Sign Challenge Vector

• Create DAR

• Create DAC based on DCFG

• Generate 16 bytes of Random Challenge

Vector

• Validate DC

• Validate DAR Challenge Data

• Opens debug access per credential

SYS_RESET_REQ

Start Debug Mailbox Exchange1

2

3 DebugAuthentication Start (DBG_AUTH_START)

4

5

PUBLIC
50

Secure Debug
Debug authentication for RMA use case

OEM
ROTKH

TK
2

Ro
TK
1 Ro

Ro
TK
0

End

Customer

Field Technician

1

2

3

4

5

ROTK0Pub

DCKPub

DCKPrv

ROTK0Prv

DCKPub

2

1. OEM generates RoT key pairs and programs

the device before shipping
SHA256 hash of RoT public key hashes

2. Field technician generates his own key pair and

provides public key to OEM for authorization

3. OEM attests the field technician’s public key In

the debug credential certificate, he assigns the

access rights.

4. End customer having issues with a locked

product takes it to field technician.

5. Field technician uses his credentials to

authenticate with device and un-locks the

product for debugging.5

PUBLIC
51

Secure Identity
Device Identity rooted in hardware

PUBLIC
52

Challenges

• Should be statistically unique

• Should be cryptographically strong

• Should be identity rooted in hardware

RT500 solution

• Provides Electronic Chip Identifier (ECID)

• Provides Universally Unique Identifier

(UUID) as per IETF’s RFC4122 version 5

specification

• Provides Compound Device Identifier

(CDI) as per Trusted Computing Group’s

(TCG), Device Identifier Composition

Engine (DICE) specification

DICE

PUBLIC
53

DICE Implementation

PUBLIC
54

• DICE computes Compound Device Identifier (CDI) after authentication
of user image and before transferring the control to user image –
secure image only

• Composite Device Identifier (CDI)
– CDI = HMAC(UDSKey, SHA2(SBL_IMG));

▪ SBL_IMG = L0_IMG without L0_Signature

▪ CDI allows a host to verify the trustworthiness of an embedded device

• Unique device Secret (UDS) options
– PUF based UDS

▪ UDS is index 15 key retrieved using key code from key store (generated during
provisioning/manufacturing)

▪ After CDI calculation ROM disables decoding of index 15 keys in PUF

• CDI is saved in DICE_CDI registers in SYSCON block

– Used by customers who implement mutable secondary boot loader (SBL) on top of NXP’s ROM
features

▪ This require extending the chain of trust to customer bootloader

– DICE specified by Trusted Computing Group

▪ Provides a way to identify mutable code running on the device, essential for strong Device Identity.

▪ Strong device identity and the DICE approach to protecting secrets and keys, provides the foundation
for Attestation and Data Protection

▪ DICE works by breaking up boot into layers and creating secrets unique to each layer and
configuration based on a Unique Device Secret (UDS)

• UDS is destroyed/hidden by ROM before program control reaches to SBL

▪ If different code or configuration is booted, at any point in the chain, the secrets will be different

▪ If a vulnerability exists and a secret is disclosed, patching the code automatically creates a new
secret, effectively re-keying the device

DICE – Device Identifier Composition Engine

PUBLIC

* Graphics from Microsoft RIoT Specification 55

DICE – Device Identifier Composition Engine

PUBLIC
56

• Layer 0 will rarely change

• Layer1 can change

• First Mutable Code (Layer 0)

– Should be kept very small and simple

• Device Identity Key Pair (DeviceID)

– Device identity is an asymmetric key pair, typically ECC

– Key pairs are related to the cryptographic identity of the device’s
First Mutable Code, Layer 0

– First derived at manufacture and public portion is extracted

– Private portion never leaves the device

– Retention of UDS or CDI at manufacture is not recommended

• DeviceID is protected long term identifier for a device

• Alias Key – Derived from combination of unique device identity (HW)
and identity of Device Firmware (SW)

• The certificates are designed to be used in TLS sessions supporting
TLS client-authentication

• An example of the FSD for Layer 1 would be the device firmware
image itself

RT500 Off-chip Flash

DICE - Device Certificate Creation

RT600

ROM SBL

DICE

PUF

CDI

K
e

y

g
e

n

Dev Public

Dev Private

OEM Private
OEM Public

ROM authenticates and boot SBL

• SBL generates device key pair using

Dev Certificate

SHA256(SBL)

CSR

Dev Certificate

1

•1 DICE engine in ROM generates
Composite Device Identifier (CDI)
from UDS stored in PUF and hash
digest of SBL

– UDS is will be hidden/destroyed by ROM
after this step

2•

2

3
CDI as seed

3

4

5

6

4• During provisioning SBL exports
CSR

HSM signs the CSR using OEM Private

key to generate Device certificate

Signed device certificate is
transferred back to device and
stored in on-chip flash

5•

6•

PUBLIC
57

PUBLIC IoT Device

DICE – Device Cloud Connect Key Generation

RT600

ROM

SBL

Application

DICE

UDS

in

PUF

CDI K
e

y

g
e

n

Owner

Data

K
e

y

g
e

n

Dev Public

Dev Private

AppKey Private

• CDI provided by ROM could be
mixed with application firmware
descriptors t generate AppKey
pair

• DeviceKey is used to attest
AppKey and Firmware Manifest

• Application establishes TLS
session with cloud server using
AppKey and FW attestation to
prove credibility with the server

• Change in application code or
config data will re-key the
AppKey

S
ig

n

SHA256(SBL)

FWD: version, SHA256(FW + config. data)

FWD

58

Dev Certificate

Con Cert

FW Attestation

PUBLIC
59

TP-Basic Enablement

• NXP provides Blhost and elftosb(PC utilities) and on-chip Boot ROM
enables provisioning of
– OEM Personalization

▪ Secure boot configuration data

• OEM root keys hash

• Boot media configuration

▪ Secure debug configuration

– Symmetric keys

▪ ROM using PUF supports Device unique keys generation and wrapping

▪ OEM pre-shared key has to be passed to ROM over ISP interface in plain text format

• OEM Application keys, data and device identity certificate
– OEM has to write provisioning FW executed on chip to program custom data and keys

– ROM API are provided to program OTP

Arm®, Cortex® and TrustZone® are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or

elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

