

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

Contents
Pre-requisites ... 2

Objectives ... 2

Hardware .. 2

Lab high level description .. 2

Xtensa Audio Framework SDK example walkthrough .. 3

Shell commands ... 3

RPMsg-Lite .. 4

Xtenxa Audio Framework (XAF) ... 5

XAF Terminology ... 5

Audio pipeline ... 5

Audio components .. 6

Audio pipeline applications in XAF demo ... 7

Decoder ... 8

Encoder.. 8

SRC ... 9

PCM gain ... 9

Capturer gain renderer .. 10

File decoder .. 10

Running the XAF example in MCUXpresso ... 11

References ... 14

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

Pre-requisites
• Follow the Getting Started steps found here MIMXRT685-EVK Start Now

• DSP Build environment: Xtensa Xplorer 8.10 + RI-2019.1

• Arm Build environment: MCUXpresso V11.1.1

Objectives
In this lab, you will learn:

• An overview of the Xtensa Audio Framework (XAF) from Cadence and it’s

integration into the NXP RT600 SDK.

Hardware
• Micro USB Cable

• MIMXRT685-EVK Rev E

• Headphones with 3.5 mm audio jack

• Female-to-female jumper wire

Lab high level description
In this lab, we’ll go through the Xtensa Audio Framework (XAF) to understand how to use it

and leverage its components for creating custom audio applications. We’ll use the SDK

example of dsp_xaf_demo and see how the different components are interacting in the audio

pipeline.

https://community.nxp.com/external-link.jspa?url=https%3A%2F%2Fwww.nxp.com%2Fdocument%2Fguide%2Fgetting-started-with-i-mx-rt600-evaluation-kit%3AGS-MIMXRT685-EVK%3F%26tid%3DvanGS-MIMXRT685-EVK

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

Xtensa Audio Framework SDK example walkthrough
In the SDK, there is the dsp_xaf_demo example. This example application demonstrates

audio processing using the DSP core, the Xtensa Audio Framework (XAF) middleware

library, and select Xtensa audio codecs.

When the application is started, a shell interface is displayed on the terminal that executes

from the ARM® application. User can control this with shell commands which are relayed

via RPMsg-Lite IPC to the DSP where they are processed and response is returned.

The ARM M33 core handles the application level user interaction and sending messages to

the DSP to start and send data to the different audio processing applications running in the

DSP. The DSP runs the XAF and runs audio pipeline or audio processing chain.

Figure 1. XAF demo shell console

Shell commands
"help": List all the registered commands
"exit": Exit program
"version": Query DSP for component versions
"aac": Perform AAC decode on DSP
"mp3": Perform MP3 decode on DSP
"opusdec": Perform OPUS decode on DSP
"opusenc": Perform OPUS encode on DSP
"vorbis": Perform VORBIS decode on DSP
"file": Perform audio file decode and playback on DSP
"src": Perform sample rate conversion on DSP
"gain": Perform PCM gain adjustment on DSP
"record_dmic": Record DMIC audio and playback on WM8904 codec

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

RPMsg-Lite

For communication between the cores, the RT600 uses RPMsg-Lite which is a software

layer that uses the Message Unit peripheral (MU). The following figure shows an example of

the messages sent between the CM33 and the DSP for the “version” shell command.

Figure 2. RPMsg for "version" command

Both the CM33 and the DSP have a dedicated task for listening for messages and trigger the

required action based on the command received. In the above example, the shell task in the

CM33 running the “version” command sends the message to the DSP and is blocked until it

receives a response from the DSP. After the response is received, the CM33 displays the

received information in the terminal.

Figure 3. "version" command response

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

Xtenxa Audio Framework (XAF)
Xtensa Audio Framework (XAF) is responsible for creating, configuring, and running the

processing chains through XAF Developer API. Memory management of components, data

movement between components, and scheduling of components is all done by XAF

internally and is completely abstracted from the application.

For detailed documentation on XAF and the XAF developer API, you can refer to Cadence

documentation located in:

"<RT600 SDK>\middleware\dsp\audio_framework\libxa_af_hostless\doc\HiFi-AF-Hostless-

ProgrammersGuide.pdf"

XAF Terminology
The following terms are used within this lab. For a complete list of XAF terminology, refer to

the XAF Programmer’s Guide document.

Audio Device: The software abstraction of a digital signal processor (DSP) core.

Component: A software module that conforms to a specified interface and runs on the

audio device. It would implement some audio processing functionality.

Chain: A graph formed by connecting different components by links.

Framework: A software entity that enables the creation of an audio processing chain. It

manages the transfer of buffers between components as well as the scheduling of different

components in the chain.

Application: A software entity that uses the framework to create a chain. It is the

responsibility of the application to provide input data to the chain and consume the output

data generated by the chain.

Audio pipeline
The audio pipeline or processing chain is made of different components such as: capturer,

renderer, decoder, encoder and pre/post processing components. The following figure

show an example of a typical audio pipeline in an audio application.

Figure 4. Audio pipeline example

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

Audio components
Audio components are the actual data processing modules. XAF interacts with audio

components using Cadence Audio Codec API (DSP Developer API). The following table lists

the components supported by XAF.

Component

type

Component description

Decoder Decodes input compressed data to generate output PCM data.

Encoder Encodes input PCM data to generate output compressed data.

Mixer Combines input PCM data from multiple ports to generate one output

PCM data.

Pre-

processing

Pre-processes input PCM data to generate output PCM data.

Post-

processing

Post-processes input PCM data to generate output PCM data.

Renderer Plays input PCM data to a speaker/headphone.

Capturer Captures output PCM data from a microphone.

MIMO Multi-Input Multi-Output (MIMO) component process input PCM data

to generate output PCM data.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

Audio pipeline applications in XAF demo
The dsp_xaf_demo example creates different audio pipelines for each command in the shell

console. The following figure shows the files in the HiFi4 project where each pipeline

creation can be found. These files make use of the XAF API for the component creation and

processing.

Figure 5. Files implementing audio pipeline applications

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

Decoder
The commands “aac”, “mp3”, “opusdec” and “vorbis” create a similar audio pipeline each.

They take a compressed input file for decoding and use the Renderer component to output

I2S data to the external codec for playback or alternatively it can save the decoded PCM

output directly. The audio pipeline for these commands is shown below.

Figure 6. Audio pipeline for decoder commands in XAF demo.

Figure 7. RPMsg for decoder commands in XAF demo.

Encoder
The command “opusenc” takes an uncompressed input PCM file, encodes it and saves the

compressed output. The audio pipeline for this command is shown below.

Figure 8. Audio pipeline for encoder commands in XAF demo.

Figure 9. RPMsg for encoder commands in XAF demo.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

SRC
The command “src” takes an uncompressed input PCM file uses the Sample Rate Converter

component and saves the output PCM data. The audio pipeline for this command is shown

below.

Figure 10. Audio pipeline for “src” command in XAF demo.

Figure 11. RPMsg for “src” command in XAF demo.

PCM gain
The command “gain” takes an uncompressed input PCM file uses the PCM Gain component

and saves the output PCM data. The audio pipeline for this command is shown below.

Figure 12. Audio pipeline for “gain” command in XAF demo.

Figure 13. RPMsg for “gain” command in XAF demo.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

Capturer gain renderer
The command “record_dmic” uses the Capturer component to use the DMIC for audio input.

It then uses the PCM Gain component and use the Renderer component to output I2S data to

the external codec for playback. Note that this command doesn’t return the shell console,

the DSP enters an infinite loop executing the audio pipeline. The audio pipeline for this

command is shown below.

Figure 14. Audio pipeline for “record_dmic” command in XAF demo.

Figure 15. RPMsg for “record_dmic” command in XAF demo.

File decoder
The command “file” takes .mp3, .aac and .ogg files from the mounted SD card filesystem. It

then decodes them and use the Renderer component to output I2S data to the external codec

for playback. The DSP in this application needs to continuously request data from the CM33

for continuous playback. The DSP creates two tasks for this, one for managing the audio

buffer and request the CM33 for more data when a specific threshold is reached, and the

other task is for processing the audio pipeline and checking for status and feeding data

when needed. The audio pipeline for this command is shown below.

Figure 16. Audio pipeline for “file” command in XAF demo.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

Figure 17. RPMsg for “file” command in XAF demo.

Running the XAF example in MCUXpresso
1. Open MCUXpresso IDE v11.1.1.

2. Select the existing workspace or create a new one.

3. Click on Import SDK example(s)… in the Quickstart Panel.

4. In SDK Import Wizard select evkmimxrt685 and click Next.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

5. In SDK Import Wizard select the “dsp_xaf_demo_cm33” example and click Finish.

6. The project “evkmimxrt685_dsp_xaf_demo_cm33” will appear in the Project

Explorer window.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

7. Open the project properties and change the symbol DSP_IMAGE_COPY_TO_RAM

from 0 to 1 and click on Apply and close.

With this change, the ARM build will use the prebuilt HiFi4 binaries and will load the

image into RAM and will initialize the HiFi4 to run from the RAM image. For loading

and debugging the HiFi4 image separately please refer to the “<RT600

SDK>\Getting Started with Xplorer for EVK-MIMXRT685.pdf” document.

8. Select your project and click on Build and wait for the build to finish.

9. Select your project and click on Debug to start the debug session.

10. Select the on-board debug probe and click OK.

11. The debug session will start. Click on the Resume button to start the application.

12. The XAF shell console will appear on the serial terminal and the user can interact

with the different commands.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC

www.nxp.com

References
 “<RT600 SDK>\Getting Started with Xplorer for EVK-MIMXRT685.pdf”

 "<RT600 SDK>\middleware\dsp\audio_framework\libxa_af_hostless\doc\HiFi-AF-

Hostless-ProgrammersGuide.pdf"

Arm is a trademark or registered trademark of Arm Limited (or its subsidiaries) in the US and/or
elsewhere. The related technology may be protected by any or all of patents, copyrights, designs
and trade secrets. All rights reserved.

	Pre-requisites
	Objectives
	Hardware
	Lab high level description
	Xtensa Audio Framework SDK example walkthrough
	Shell commands
	RPMsg-Lite
	Xtenxa Audio Framework (XAF)
	XAF Terminology
	Audio pipeline
	Audio components
	Audio pipeline applications in XAF demo
	Decoder
	Encoder
	SRC
	PCM gain
	Capturer gain renderer
	File decoder

	Running the XAF example in MCUXpresso
	References

