
1 Overview
This document provides the technical information related to
the i.MX 8 devices:

• Instructions for building from sources or using pre-built
images.

• Copying the images to boot media.
• Hardware/software configurations for programming the

boot media and running the images.

This document describes how to configure a Linux build
machine and provides the steps to download, patch, and build
the software components that create the Android system image
when working with the sources.

For more information about building the Android platform,
see source.android.com/source/building.html.

2 Preparation
The minimum recommended system requirements are as
follows:

• 16 GB RAM
• 300 GB hard disk

NXP Semiconductors Document Number: AUG

User's Guide Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

Android™ User's Guide

Contents

1 Overview................................ 1

2 Preparation............................... 1

3 Building the Android platform for
i.MX.. 2

4 Running the Android Platform with a
Prebuilt Image...8

5 Programming Images.. 9

6 Booting............................... 12

7 Over-The-Air (OTA) Update.............15

8 Customized Configuration............ 19

9 EVS/HVAC Function.................... 33

10 Revision History........................ 38

http://source.android.com/source/building.html

2.1 Setting up your computer
To build the Android source files, use a computer running the Linux OS. The Ubuntu 16.04 64bit version and openjdk-8-jdk
of Ubuntu are the most tested environment for the Android Pie 9.0 build.

After installing the computer running Linux OS, check whether all the necessary packages are installed for an Android build.
See "Setting up your machine" on the Android website source.android.com/source/initializing.html.

In addition to the packages requested on the Android website, the following packages are also needed:

$ sudo apt-get install uuid uuid-dev
$ sudo apt-get install zlib1g-dev liblz-dev
$ sudo apt-get install liblzo2-2 liblzo2-dev
$ sudo apt-get install lzop
$ sudo apt-get install git-core curl
$ sudo apt-get install u-boot-tools
$ sudo apt-get install mtd-utils
$ sudo apt-get install android-tools-fsutils
$ sudo apt-get install openjdk-8-jdk
$ sudo apt-get install device-tree-compiler
$ sudo apt-get install gdisk
$ sudo apt-get install liblz4-tool
$ sudo apt-get install m4
$ sudo apt-get install libz-dev

NOTE
If you have trouble installing the JDK in Ubuntu, see How to install misc JDK in Ubuntu
for Android build.
Configure git before use. Set the name and email as follows:

• git config --global user.name "First Last"
• git config --global user.email "first.last@company.com"

2.2 Unpacking the Android release package
After you set up a computer running Linux OS, unpack the Android release package by using the following commands:

$ cd ~ (or any other directory you like)
$ tar xzvf imx-p9.0.0_2.1.1-auto-ga.tar.gz

3 Building the Android platform for i.MX

3.1 Getting i.MX Android release source code
The i.MX Android release source code consists of three parts:

• NXP i.MX public source code, which is maintained in the CodeAurora Forum repository.
• AOSP Android public source code, which is maintained in android.googlesource.com.
• NXP i.MX Android proprietary source code package, which is maintained in www.NXP.com.

Assume you have i.MX Android proprietary source code package imx-p9.0.0_2.1.1-auto-ga.tar.gz under ~/. directory. To
generate the i.MX Android release source code build environment, execute the following commands:

$ mkdir ~/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ export PATH=${PATH}:~/bin

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

2 NXP Semiconductors

http://source.android.com/source/initializing.html
https://community.nxp.com/docs/DOC-98441
https://community.nxp.com/docs/DOC-98441
https://www.codeaurora.org/projects/i-mx
http://android.googlesource.com
http://www.nxp.com

$ source ~/imx-p9.0.0_2.1.1-auto-ga/imx_android_setup.sh
By default, the imx_android_setup.sh script will create the source code build environemnt
in the folder ~/android_build
${MY_ANDROID} will be refered as the i.MX Android source code root directory in all i.MX
Android release documentation.
$ export MY_ANDROID=~/android_build

3.2 Building Android images
Building the Android image is performed when the source code has been downloaded (Section 3.1 Getting i.MX Android
release source code).

Commands lunch <buildName-buildType> to set up the build configuration and make to start the build process are
executed.

The build configuration command lunch can be issued with an argument <Build name>-<Build type> string, such as lunch
mek_8q_car-userdebug, or can be issued without the argument presenting a menu of selection.

The Build Name is the Android device name found in the directory ${MY_ANDROID}/device/fsl/. The following table lists
the i.MX build names.

Table 1. Build names

Build name Description

mek_8q_car i.MX 8QuadMax MEK Board with EVS function enabled in the Arm Cortex-M4
CPU core

mek_8q_car2 i.MX 8QuadMax MEK Board without EVS function enabled in the Arm Cortex-M4
CPU core

The build type is used to specify what debug options are provided in the final image. The following table lists the build types.

Table 2. Build types

Build type Description

user Production ready image, no debug

userdebug Provides image with root access and debug, similar to "user"

eng Development image with debug tools

Android build steps are as follows:
1. Prepare the build environment for Cortex-M4 image.

Download the GCC tool chain from Arm website, such as "gcc-arm-none-eabi-7-2018-q2-update-linux.tar.bz2".
Extract it to your installation directory, and export the directory as "export ARMGCC_DIR=<install_dir>/gcc-arm-
none-eabi-7-2018-q2-update" and add it to /etc/profile. Upgrade the cmake version to or above 3.13.0.

2. Change to the top level build directory.

$ cd ${MY_ANDROID}
3. Set up the environment for building. This only configures the current terminal.

$ source build/envsetup.sh
4. Execute the Android lunch command. In this example, the setup is for the production image of i.MX 8QuadMax MEK

Board/Platform device with user type.

$ lunch mek_8q_car-userdebug

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 3

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

5. Execute the make command to generate the image.

$ make 2>&1 | tee build-log.txt

When the make command is complete, the build-log.txt file contains the execution output. Check for any errors.

For BUILD_ID & BUILD_NUMBER changing, update build_id.mk in your ${MY_ANDROID} directory. For details, see
the Android™ Frequently Asked Questions (AFAQ).

The following outputs are generated by default in ${MY_ANDROID}/out/target/product/mek_8q:

• root/: root file system (including init, init.rc). Mounted at /.
• system/: Android system binary/libraries. Mounted at /system.
• data/: Android data area. Mounted at /data.
• recovery/: root file system when booting in "recovery" mode. Not used directly.
• dtbo-imx8qm.img: board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX 8QuadMax

MEK.
• dtbo-imx8qm-xen.img: board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX

8QuadMax MEK on Xen.
• vbmeta-imx8qm.img: Android Verify boot metadata image for dtbo-imx8qm.img. It is used to support the LVDS-to-

HDMI display for i.MX 8QuadMax MEK.
• vbmeta-imx8qm-xen.img: Android Verify boot metadata image for dtbo-imx8qm-xen.img. It is used to support the

LVDS-to-HDMI display for i.MX 8QuadMax MEK on Xen.
• ramdisk.img: Ramdisk image generated from "root/". Not directly used.
• system.img: EXT4 image generated from "system/". Can be programmed to "SYSTEM" partition on SD/eMMC card

with "dd".
• partition-table.img: GPT partition table image. Used for 16 GB SD card.
• partition-table-7GB.img: GPT partition table image. Used for 8 GB SD card.
• partition-table-28GB.img: GPT partition table image. Used for 32 GB SD card.
• spl-imx8qm.bin: a composite image includes Seco firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX

8QuadMax MEK.
• spl-imx8qm-xen.bin: SPL for i.MX 8QuadMax MEK on Xen.
• bootloader-imx8qm.img: the next loader image after SPL. It includes the Arm trusted firmware, trusty OS, and U-Boot

proper for i.MX 8QuadMax MEK.
• bootloader-imx8qm-xen.img: the next loader image after SPL. It includes the Arm trusted firmware, trusty OS, and U-

Boot proper for i.MX 8QuadMax MEK on Xen.
• u-boot-imx8qm-mek-uuu.imx: U-Boot image used by UUU for i.MX 8QuadMax MEK. It is not flashed to MMC.
• vendor.img: vendor image, which holds platform binaries. Mounted at /vendor.
• boot.img: a composite image that includes the kernel Image, ramdisk, and boot parameters.
• rpmb_key_test.bin: prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes 0x00.
• testkey_public_rsa4096.bin: prebuilt AVB public key. It is extracted from the default AVB private key.

NOTE
• To build the U-Boot image separately, see Building U-Boot images.
• To build the kernel uImage separately, see Building a kernel image.
• To build boot.img, see Building boot.img.
• To build dtbo.img, see Building dtbo.img.

3.2.1 Configuration examples of building i.MX devices
The following table shows examples of using the lunch command to set up different i.MX devices. After the desired i.MX
device is set up, the make command is used to start the build.

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

4 NXP Semiconductors

https://community.nxp.com/docs/DOC-342877

Table 3. i.MX device lunch examples

Build name Description

i.MX 8QuadMax MEK Board with EVS function enabled in the
Arm Cortex-M4 CPU core

$ lunch mek_8q_car-userdebug

i.MX 8QuadMax MEK Board without EVS function enabled in
the Arm Cortex-M4 CPU core

$ lunch mek_8q_car2-userdebug

3.2.2 Build mode selection
There are three types of build mode to select: eng, user, and userdebug.

NOTE

To pass CTS, select user build mode.

The userdebug build behaves the same as the user build, with the ability to enable additional debugging that normally violates
the security model of the platform. This makes the userdebug build with greater diagnosis capabilities for user test.

The eng build prioritizes engineering productivity for engineers who work on the platform. The eng build turns off various
optimizations used to provide a good user experience. Otherwise, the eng build behaves similar to the user and userdebug
builds, so that device developers can see how the code behaves in those environments.

In a module definition, the module can specify tags with LOCAL_MODULE_TAGS, which can be one or more values of
optional (default), debug, eng.

If a module does not specify a tag (by LOCAL_MODULE_TAGS), its tag defaults to optional. An optional module is
installed only if it is required by product configuration with PRODUCT_PACKAGES.

The main differences among the three modes are listed as follows:
• eng: development configuration with additional debugging tools

• Installs modules tagged with: eng and/or debug.
• Installs modules according to the product definition files, in addition to tagged modules.
• ro.secure=0
• ro.debuggable=1
• ro.kernel.android.checkjni=1
• adb is enabled by default.

• user: limited access; suited for production
• Installs modules tagged with user.
• Installs modules according to the product definition files, in addition to tagged modules.
• ro.secure=1
• ro.debuggable=0
• adb is disabled by default.

• userdebug: like user but with root access and debuggability; preferred for debugging
• Installs modules tagged with debug.
• ro.debuggable=1
• adb is enabled by default.

There are two methods for the build of Android image.

Method 1: Set the environment first and then issue the make command:

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 5

$ cd ${MY_ANDROID}
$ source build/envsetup.sh #set env
$ make -j4 PRODUCT-XXX userdebug 2>&1 | tee build-log.txt #XXX depends on different board,
see table below

Table 4. Android system image production build method 1

i.MX development tool Description Image build command

Evaluation Kit i.MX 8QuadMax MEK with EVS
function enabled in the Cortex-M4
CPU core

$ make -j4 PRODUCT-mek_8q_car-userdebug

Evaluation Kit i.MX 8QuadMax MEK without EVS
function enabled in the Cortex-M4
CPU core

$ make -j4 PRODUCT-mek_8q_car2-userdebug

Method 2: Set the environment and then use lunch command to configure argument. See table below. An example for the
i.MX 8QuadMax MEK with the EVS function enabled in the Cortex-M4 CPU core is as follows:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ make -j4

Table 5. Android system image production build method 2

i.MX development tool Description Lunch configuration

Evaluation Kit i.MX 8QuadMax MEK with EVS function
enabled in the Cortex-M4 CPU core

mek_8q_car-userdebug

Evaluation Kit i.MX 8QuadMax MEK without EVS
function enabled in the Cortex-M4 CPU
core

mek_8q_car2-userdebug

To create Android over-the-air, OTA, and package, the following make target is specified:

$ make otapackage -j4

For more Android platform building information, see source.android.com/source/building.html.

3.3 Building U-Boot images
Use the following command to generate u-boot.imx under the Android OS environment:

U-Boot image for 8QuadMax MEK board with EVS function enabled in the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ make bootloader -j4

3.4 Building a kernel image
Kernel image is automatically built when building the Android root file system.

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

6 NXP Semiconductors

http://source.android.com/source/building.html

The following are the default Android build commands to build the kernel image:

$ cd ${MY_ANDROID}/vendor/nxp-opensource/kernel_imx
$ echo $ARCH && echo $CROSS_COMPILE

Make sure that you have those two environment variables set. If the two variables are not set, set them as follows:

$ export ARCH=arm64
$ export CROSS_COMPILE=${MY_ANDROID}/prebuilts/gcc/linux-x86/aarch64/aarch64-linux-
android-4.9/bin/aarch64-linux-android-

Generate ".config" according to the default configuration file under arch/arm64/configs/android_car_defconfig.

To build the kernel Image for i.MX 8QuadMax with EVS function enabled in the Arm Cortex-M4 CPU core, use the
following commands:

$ make android_car_defconfig
$ make KCFLAGS=-mno-android

Generate ".config" according to the default configuration file under arch/arm64/configs/android_car2_defconfig.

To build the kernel image for i.MX 8QuadMax without EVS function enabled in the Arm Cortex-M4 CPU core:

$ make android_car2_defconfig
$ make KCFLAGS=-mno-android

With a successful build in either of the above case, the generated kernel images are: ${MY_ANDROID}/out/target/product/
mek_8q/obj/KERNEL_OBJ/arch/arm64/boot/Image.

3.5 Building boot.img
Use this command to generate boot.img under Android environment:

Boot image for i.MX 8QuadMax MEK board with EVS function enabled in the Arm Cortex-M4 CPU
core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ make bootimage -j4

3.6 Building dtbo.img
Dtbo image holds the device tree binary of the board.

To generate dtbo.img under the Android environment, use the following commands:

dtbo image for i.MX 8QuadMax MEK board with EVS function enabled in the Arm Cortex-M4 CPU
core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ make dtboimage -j4

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 7

4 Running the Android Platform with a Prebuilt Image
To test the Android platform before building any code, use the prebuilt images from the following packages and go to
"Programming Images" and "Booting".

Table 6. Image packages

Image package Description

android_p9.0.0_2.1.1-auto-
ga_image_8qmek.tar.gz

Prebuilt-image for i.MX 8QuadMax MEK board with EVS function enabled in
the Arm Cortex-M4 CPU core, which includes NXP extended features.

android_p9.0.0_2.1.1-auto-
ga_image_8qmek2.tar.gz

Prebuilt-image files for i.MX 8QuadMax MEK board without EVS function
enabled in the Arm Cortex-M4 CPU core, which includes NXP extended
features.

The following tables list the detailed contents of android_p9.0.0_2.1.1-auto-ga_image_8qmek.tar.gz image package. Images
are almost the same for i.MX 8QuadMax MEK with/without EVS function enabled in the Arm Cortex-M4 CPU core, except
that there is no Xen suppport for android_p9.0.0_2.1.1-auto-ga_image_8qmek2.tar.gz.

The table below shows the prebuilt images to support the system boot from eMMC on i.MX 8QuadMax MEK boards.

Table 7. Images for i.MX 8QuadMax MEK

i.MX 8QuadMax MEK image Description

/spl-imx8qm.bin The secondary program loader (SPL) for i.MX 8QuadMax
MEK board.

/spl-imx8qm-xen.bin The secondary program loader (SPL) for i.MX 8QuadMax
MEK board on Xen.

/bootloader-imx8qm.img The next loader image after SPL for the i.MX 8QuadMax MEK
board.

/bootloader-imx8qm-xen.img The next loader image after SPL for the i.MX 8QuadMax MEK
board on Xen.

/u-boot-imx8qm-mek-uuu.imx Bootloader used by UUU for i.MX 8QuadMax MEK board. It is
not flashed to MMC.

/boot.img Boot image to support LVDS-to-HDMI display.

/partition-table.img GPT table image for 16 GB boot storage

/partition-table-7GB.img GPT table image for 8 GB boot storage

/partition-table-28GB.img GPT table image for 32 GB boot storage

/vbmeta-imx8qm.img Android Verify Boot metadata image for i.MX 8QuadMax MEK
board to support LVDS-to-HDMI display

/vbmeta-imx8qm-xen.img Android Verify Boot metadata image for i.MX 8QuadMax MEK
board to support LVDS-to-HDMI display on Xen

/system.img System Boot image

/vendor.img Vendor image

/dtbo-imx8qm.img Device tree image for i.MX 8QuadMax

/dtbo-imx8qm-xen.img Device tree image for i.MX 8QuadMax on Xen

/rpmb_key_test.bin Prebuilt test RPMB key. It can be used to set the RPMB key
as fixed 32 bytes 0x00.

Table continues on the next page...

Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

8 NXP Semiconductors

Table 7. Images for i.MX 8QuadMax MEK (continued)

/testkey_public_rsa4096.bin Prebuilt AVB public key. It is extracted from the default AVB
private key.

NOTE
boot.img is an Android image that stores kernel Image and ramdisk together. It also
stores other information such as the kernel boot command line, machine name. This
information can be configured in android.mk. It can avoid touching the boot loader code
to change any default boot arguments.

5 Programming Images
The images from the prebuilt release package or created from source code contain the U-Boot boot loader, system image, gpt
image, vendor image, and vbmeta image. At a minium, the storage devices on the development system (eMMC) must be
programmed with the U-Boot boot loader. The i.MX 8 series boot process determines what storage device to access based on
the switch settings. When the boot loader is loaded and begins execution, the U-Boot environment space is then read to
determine how to proceed with the boot process. For U-Boot environment settings, see Section Booting.

The following download methods can be used to write the Android System Image:

• UUU to download all images to the eMMC storage.
• fastboot_imx_flashall script to download all images to the eMMC storage.

5.1 System on eMMC
The images needed to create an Android system on eMMC can either be obtained from the release package or be built from
source.

The images needed to create an Android system on eMMC are listed below:

• Secondary program loader image: spl.bin
• Android bootloader image: bootloader.img
• GPT table image: partition-table.img
• Android dtbo image: dtbo.img
• Android boot image: boot.img
• Android system image: system.img
• Android vendor image: vendor.img
• Android Verify boot metadata image: vbmeta.img

5.1.1 Storage partitions
The layout of the eMMC card for Android system is shown below:

• [Partition type/index] which is defined in the GPT.
• [Start Offset] shows where partition is started, unit in MB.

The system partition is used to put the built-out Android system image. The userdata parition is used to put the unpacked
codes/data of the applications, system configuration database, etc. In normal boot mode, the root file system is mounted from
the system partition. In recovery mode, the root file system is mounted from the boot partition.

Programming Images

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 9

Table 8. Storage partitions

Partition type/index Name Start offset Size File system Content

N/A bootloader0 0 KB (i.MX
8QuadMax)

4 MB N/A spl.bin

1 bootloader_a 8 MB 4 MB N/A bootloader.img

2 bootloader_b Follow
bootloader_a

4 MB N/A bootloader.img

3 dtbo_a Follow
bootloader_b

4 MB N/A dtbo.img

4 dtbo_b Follow dtbo_a 4 MB N/A dtbo.img

5 boot_a Follow dtbo_b 48 MB boot.img format, a
kernel + recovery
ramdisk

boot.img

6 boot_b Follow boot_a 48 MB boot.img format, a
kernel + recovery
ramdisk

boot.img

7 system_a Follow boot_b 1536 MB EXT4. Mount as /
system

Android system files under /
system/dir

8 system_b Follow
system_a

1536 MB EXT4. Mount as /
system

Android system files under /
system/dir

9 misc Follow
system_b

4 MB N/A For recovery storage
bootloader message, reserve

10 metadata Follow
metafooter

2 MB N/A For system slide show

11 presistdata Follow
metadata

1 MB N/A Option to operate unlock
\unlock

12 vendor_a Follow
persistdata

256 MB EXT4. Mount at /
vendor

vendor.img

13 vendor_b Follow
vendor_a

256 MB EXT4. Mount at /
vendor

vendor.img

14 userdata Follow
vendor_b

Remained
space

EXT4. Mount at /data Application data storage for
system application, and for
internal media partition,
in /mnt/sdcard/ dir.

15 fbmisc Follow
userdata

1 MB N/A For storing the state of lock
\unlock

16 vbmeta_a Follow fbmisc 1 MB N/A For storing the verify boot's
metadata

17 vbmeta_b Follow
vbmeta_a

1 MB N/A For storing the verify boot's
metadata

To create these partitions, use UUU described in the Android™ Quick Start Guide (AQSUG).

5.1.2 Downloading images with UUU
UUU can be used to download all the images into the target device. It is a quick and easy tool for downloading images. See
Android™ Quick Start Guide (AQSUG) for a detailed description of UUU.

Programming Images

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

10 NXP Semiconductors

5.1.3 Downloading images with fastboot_imx_flashall script
UUU can be used to flash the Android system image into the board, but it needs to make the board enter serial down mode
firstly, and make the board enter boot mode once flashing is finished.

There is another tool of fastboot_imx_flashall script, which uses fastboot to flash the Android System Image into board. It
requires the target board be able to enter fastboot mode and the device is unlocked. There is no need to change the boot mode
with this fastboot_imx_flashall script.

The table below lists the fastboot_imx_flashall scripts.

Table 9. fastboot_imx_flashall script

Name Host system to execute the script

fastboot_imx_flashall.sh Linux OS

fastboot_imx_flashall.bat Windows OS

With the help of fasboot_imx_flashall scripts, you do not need to use fastboot to flash Android images one by one manually.
These scripts will automatically flash all images with only one line of command.

Fastboot can be built with Android build system. Based on Section 3, which describes how to build Android images, perform
the following steps to build fastboot:

 $ cd ${MY_ANDROID}
 $ make -j4 fastboot

After the build process finishes building fastboot, the directory to find the fastboot is as follows:
• Linux version binary file: ${MY_ANDROID}/host/linux-x86/bin/
• Windows version binary file: ${MY_ANDROID}/host/windows-x86/bin/

The way to use these scripts is follows:
• Linux shell script usage: sudo fastboot_imx_flashall.sh <option>
• Windows batch script usage: fastboot_imx_flashall.bat <option>

Options:
 -h Displays this help message
 -f soc_name Flashes the Android image file with soc_name
 -a Only flashes the image to slot_a
 -b Only flashes the image to slot_b
 -c card_size Optional setting: 7 / 14 / 28
 If it is not set, use partition-table.img (default).
 If it is set to 7, use partition-table-7GB.img for 8 GB SD card.
 If it is set to 14, use partition-table-14GB.img for 16 GB SD card.
 If it is set to 28, use partition-table-28GB.img for 32 GB SD card.
 Make sure that the corresponding file exists on your platform.
 -m Flashes the Cortex-M4 image.
 -d dev Flash dtbo, vbmeta, and recovery image file with dev.
 If it is not set, use default dtbo, vbmeta, and recovery image.
 -e Erases user data after all image files are flashed.
 -l Locks the device after all image files are flashed.
 -D directory Directory of images.
 If this script is execute in the directory of the images, it does not
need to use this option.
 -s ser_num Serial number of the board.
 If only one board connected to computer, it does not need to use this
option

Programming Images

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 11

NOTE
• -f option is mandatory. SoC name can be imx8qm.
• Boot the device to U-Boot fastboot mode, and then execute these scripts. The

device should be unlocked first.

Example:

sudo ./fastboot_imx_flashall.sh -f imx8qm -a -e -D /imx_pi9.0/mek_8q_car/

Option explanations:
• -f imx8qm: Flashes images for i.MX 8QuadMax MEK Board.
• -a: Only flashes slot a.
• -e: Erases user data after all image files are flashed.
• -D /imx_pi9.0/mek_8q_car/: Images to be flashed are in the directory of /imx_pi9.0/mek_8q_car/.

6 Booting
This chapter describes booting from MMC.

6.1 Booting from eMMC

6.1.1 Booting from eMMC on the i.MX 8QuadMax MEK board
The following tables list the boot switch settings to control the boot storage.

Table 10. Boot switch settings for i.MX 8QuadMax

i.MX 8QuadMax boot switch download Mode (UUU mode) eMMC boot

SW2 Boot_Mode (1-6 bit) 001000 000100

Boot from eMMC

Change the board Boot_Mode switch to 000100 (1-6 bit) for i.MX 8QuadMax.

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs environment in U-
Boot.

To clear the bootargs environment set and saved previously, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv #Save the environments

NOTE

bootargs is an optional setting for boota. The boot.img includes a default bootargs, which
will be used if there is no bootargs defined in U-Boot.

Booting

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

12 NXP Semiconductors

6.2 Boot-up configurations
This section describes some common boot-up configurations, such as U-Boot environments, kernel command line, and DM-
verity configuartions.

6.2.1 U-Boot environment
• bootcmd: the first variable to run after U-Boot boot.
• bootargs: the kernel command line, which the bootloader passes to the kernel. As described in Kernel command line

(bootargs), bootargs environment is optional for boota. The default bootargs is stored in boot.img. If the bootargs
environment is not manually set in U-Boot, the default bootargs in boot.img is used.

To use the default environment in boot.img after manually setting bootargs in U-Boot, use the following command:

> setenv bootargs

If the environment variable append_bootargs is set, the value of append_bootargs is appended to bootargs
automatically.

• boota:

boota command parses the boot.img header to get the Image and ramdisk. It also passes the bootargs as needed (it only
passes bootargs in boot.img when it cannot find "bootargs" variable in your U-Boot environment). To boot the system,
use the following command:

> boota

To boot into recovery mode, execute the following command:

> boota recovery

If you have read the boot.img into memory, use this command to boot:

> boota 0xXXXXXXXX

6.2.2 Kernel command line (bootargs)
Depending on the different booting/usage scenarios, you may need different kernel boot parameters set for bootargs.

Table 11. Kernel boot parameters

Kernel parameter Description Typical value Used when

console Where to output
kernel log by
printk.

console=ttymxc0 i.MX 8QuadMax MEK uses console=ttyLP0

init Tells kernel where
the init file is
located.

init=/init All use cases. "init" in the Android platform
is located in "/" instead of in "/sbin".

androidboot.console The Android shell
console. It should
be the same as
console=.

androidboot.console=ttymxc0 To use the default shell job control, such as
Ctrl+C to terminate a running process, set
this for the kernel.

Table continues on the next page...

Booting

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 13

Table 11. Kernel boot parameters (continued)

Kernel parameter Description Typical value Used when

cma CMA memory size
for GPU/VPU
physical memory
allocation.

cma=800M@0x960M-0xe00M The CMA memory is allocated in the range
from 0x96000000 to 0xDF000000. The
CMA size can be configured to other value,
but cannot exceed 1184 MB, because the
Cortex-M4 core will also allocate memory
from CMA and Cortex-M4 cannot use the
memory larger than 0xDFFFFFFFF.

androidboot.selinux Argument to
disable selinux
check and enable
serial input when
connecting a host
computer to the
target board’s
USB UART port.
For details about
selinux, see
Security-
Enhanced Linux in
Android.

androidboot.selinux=permissiv
e

Android Pie 9.0 CTS requirement: serial
input should be disabled by default.

Setting this argument enables console
serial input, which will violate the CTS
requirement.

Setting this argument will also bypass all
the selinux rules defined in Android system.
It is recommended to set this argument for
internal developer.

androidboot.fbTileSupport It is used to
enable
framebuffer super
tile output.

androidboot.fbTileSupport=ena
ble

-

firmware_class.path It is used to set
the Wi-Fi firmware
path.

firmware_class.path=/vendor/
firmware

-

androidboot.wificountrycod
e=CN

It is used to set
Wi-Fi country
code. Different
countries use
different Wi-Fi
channels.

androidboot.wificountrycode=C
N

-

androidboot.xen_boot It is used to
configure which
environment
automotive works
at, normal
environment or
Xen environment.

Normal environment:
androidboot.xen_boot=default

Xen environment:
androidboot.xen_boot=xen

-

transparent_hugepage It is used to
change the sysfs
boot time defaults
of Transparent
Hugepage
support.

transparent_hugepage=never/
always/madvise

-

galcore.contiguousSize It is used to
configure the GPU
reserved memory.

galcore.contiguousSize=33554
432

It is 128 MB by default. i.MX 8QuadMax
automatically configures it to 32 MB to
shorten the GPU driver initialization time.

Booting

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

14 NXP Semiconductors

http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/

6.2.3 DM-verity configuration
DM-verity (device-mapper-verity) provides transparent integrity checking of block devices. It can prevent device from
running unauthorized images. This feature is enabled by default. Replacing one or more partitions (boot, vendor, system,
vbmeta) will make the board unbootable. Disabling DM-verity provides convience for developers, but the device is
unprotected.

To disable DM-verity, perform the following steps:
1. Unlock the device.

a. Boot up the device.
b. Choose Settings -> Developer Options -> OEM Unlocking to enable OEM unlocking.
c. Execute the following command on the target side to make the board enter fastboot mode:

reboot bootloader
d. Unlock the device. Execute the following command on the host side:

fastboot oem unlock
e. Wait until the unlock process is complete.

2. Disable DM-verity.
a. Boot up the device.
b. Disable the DM-verity feature. Execute the following command on the host side:

adb root
adb disable-verity
adb reboot

7 Over-The-Air (OTA) Update
This section provides an example for the i.MX 8QuadMax MEK Board with EVS function enabled in the Arm Cortex-M4
CPU core to build and implement OTA update.

For other platforms, use "lunch " to set up the build configuration. For detailed build configuration, see Section 3.2 "Building
Android images".

7.1 Building OTA update packages

7.1.1 Building target files
You can use the following commands to generate target files under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ make target-files-package -j4

After building is complete, you can find the target files in the following path:

${MY_ANDROID}/out/target/product/mek_8q_car/obj/PACKAGING/target_files_intermediates/
mek_8q_car-target_files-${date}.zip

Over-The-Air (OTA) Update

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 15

7.1.2 Building a full update package
A full update is one where the entire final state of the device (dtbo, system, boot, and vendor partitions) is contained in the
package.

You can use the following commands to build a full update package under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ make otapackage -j4

After building is complete, you can find the OTA packages in the following path:

${MY_ANDROID}/out/target/proudct/mek_8q_car/mek_8q_car-ota-${date}.zip

mek_8q_car-ota-${date}.zip includes payload.bin and payload_properties.txt. The two files are used for full
update.

NOTE
• ${date} is the BUILD_NUMBER in build_id.mk.

7.1.3 Building an incremental update package
An incremental update contains a set of binary patches to be applied to the data that is already on the device. This can result
in considerably smaller update packages:

• Files that have not changed do not need to be included.
• Files that have changed are often very similar to their previous versions, so the package only needs to contain encoding

of the differences between the two files. You can install the incremental update package only on a device that has the
old or source build used when constructing the package.

Before building an incremental update package, see Section 7.1.1 to build two target files:
• PREVIOUS-target_files.zip: one old package that has already been applied on the device.
• NEW-target_files.zip: the latest package that is waiting to be applied on the device.

Then use the following commands to generate the incremental update package under the Android environment:

$ cd ${MY_ANDROID}
$./build/tools/releasetools/ota_from_target_files -i PREVIOUS-target_files.zip NEW-
target_files.zip incremental_ota_update.zip

${MY_ANDROID}/incremental_ota_update.zip includes payload.bin and payload_properties.txt. The two
files are used for incremental update.

7.2 Implementing OTA update

7.2.1 Using update_engine_client to update the Android platform
update_engine_client is a pre-built tool to support A/B (seamless) system updates. It supports updating system from a remote
server or board's storage.

To update the system from a remote server, perform the following steps:

1. Copy ota_update.zip or incremental_ota_update.zip (generated on 7.1.2 and 7.1.3) to the HTTP server (for
example, 192.168.1.1:/var/www/).

Over-The-Air (OTA) Update

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

16 NXP Semiconductors

2. Unzip the packages to get payload.bin and payload_properties.txt.
3. Cat the content of payload_properties.txt like this:

• FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
• FILE_SIZE=379074366
• METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
• METADATA_SIZE=46866

4. Input the following command on the board's console to update:

update_engine_client --payload=http://192.168.1.1:10888/payload.bin --update --
headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ
METADATA_SIZE=46866"

5. The system will update in the background. After it finishes, it will show "Update successfully applied, waiting to
reboot" in the logcat.

To update the system from board's storage, perform the following steps:
1. Unzip ota_update.zip or incremental_ota_update.zip (Generated on 7.1.2 and 7.1.3) to get payload.bin and

payload_properties.txt.
2. Push payload.bin to board's /sdcard dir: adb push payload.bin /sdcard/.
3. Cat the content of payload_properties.txt like this:

• FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
• FILE_SIZE=379074366
• METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
• METADATA_SIZE=46866

4. Input the following command in board's console to update:

update_engine_client --payload=file:///sdcard/payload.bin --update --
headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ
METADATA_SIZE=46866"

5. The system will update in the background. After it finishes, it shows "Update successfully applied, waiting to reboot"
in the logcat.

NOTE

Make sure that the -- header equals to the exact content of payload_properties.txt. No
more "space" or "return" character.

7.2.2 Using a customized application to update the Android platform
There is a reference OTA application under ${MY_ANDROID}/vendor/nxp-opensource/fsl_imx_demo/FSLOta, which
can do the OTA operations:

1. Get payload_properties.txt and payload.bin from a specific address.
2. Use the update_engine service to update the Android platform.

Perform the following steps to use this application:
1. Set up the HTTP server (eg., lighttpd, apache).

You need one HTTP server to hold OTA packages.
• For full OTA update, execute the following commands:

cp ${MY_ANDROID}/out/target/product/mek_8q/system/build.prop ${server_ota_folder}
cp ${MY_ANDROID}/out/target/product/mek_8q/mek_8q_car-ota-${date}.zip $
{server_ota_folder}
cd ${server_ota_folder}
unzip mek_8q_car-ota-${date}.zip

• For incremental OTA update, execute the following commands:

Over-The-Air (OTA) Update

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 17

cp ${old_build.prop} ${server_ota_folder}/old_build.prop
cp ${MY_ANDROID}/out/target/product/mek_8q/system/build.prop ${server_ota_folder}/
build_diff.prop
mkdir ${server_ota_folder}/diff_ota
cp ${MY_ANDROID}/incremental_ota_update.zip ${server_ota_folder}/diff_ota
cd ${server_ota_folder}/diff_ota
unzip incremental_ota_update.zip
mv payload.bin payload_diff.bin
mv payload_properties.txt payload_properties_diff.txt
mv payload_diff.bin payload_properties_diff.txt ${server_ota_folder}
cd ${server_ota_folder}
echo -n "base." >> build_diff.prop
grep "ro.build.date.utc" old_build.prop >> build_diff.prop

For example, the server_ota_folder content is as follows. Make sure you have at least the following 6 files in $
{server_ota_folder}; otherwise, the OTA application will abort.

build@server:/var/www/mek_8q_car_pie_9$ ls
build.prop build_diff.prop payload.bin payload_diff.bin payload_properties.txt
payload_properties_diff.txt

NOTE
• server_ota_folder: ${http_root}/mek_8q_car_${ota_folder_suffix}_$

{version}.
• ${old_build.prop} is the old image's build.prop.
• mek_8q_car-ota-${date}.zip and incremental_ota_update.zip are built from

Section 7.1.2 "Building a full update package" and Section 7.1.3 "Building an
incremental update package".

• ${ota_folder_suffix} is stored at board's /vendor/etc/ota.conf.
• ${version} can be obtained by the following command on the board's

console: $getprop ro.build.version.release.
• These file and folder names should align with this example, or modify the

OTA application source code correspondingly.

2. Configure the OTA server IP address and HTTP port number.
The OTA configuration file (/vendor/etc/ota.conf) content is like this:

server=192.168.1.100
port=10888
ota_folder_suffix=pie

Modify it to fit the environment.

3. Open the OTA application and click the Update button.
The reference application is a dialogue box activity, and can be enabled through the Settings -> About tablet ->
Additional system Update menu. There are two buttons on the dialogue box:

• Upgrade: Performs full OTA.
• Diff Upgrade: Performs incremental OTA.

Click one button to update the Android platform. After update is complete, click the Reboot button on the dialogue
box.

NOTE
• This application uses the "ro.build.date.utc=1528987645" property to decide

whether it can perform full OTA or incremental OTA.
• local utc = $getprop ro.build.date.utc.
• remote utc = cat ${server_ota_folder}/build.prop | grep "ro.build.date.utc".
• remote diff utc = cat ${server_ota_folder}/build_diff.prop | grep

"ro.build.date.utc".
• remote diff base utc = cat ${server_ota_folder}/build_diff.prop | grep

"base.ro.build.date.utc" (base.ro.build.date.utc should be added manually,
which is the "ro.build.date.utc" value in PREVIOUS-target_files.zip's system/
build.prop).

Over-The-Air (OTA) Update

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

18 NXP Semiconductors

• Full OTA condition:
• local utc < remote utc

• Incremental OTA condition:
• local utc = remote diff base utc
• local utc < remote diff utc

NOTE
The OTA package includes dtbo image, which stores the board's DTB. There may be
many DTS for one board. For example, in ${MY_ANDROID}/device/fsl/imx8q/
mek_8q/BoardConfig.m, for the condition of EVS function enabled in the Cortex-M4
CPU core, related DTB file names can be found in the following code:

TARGET_BOARD_DTS_CONFIG := imx8qm:fsl-imx8qm-mek-car.dtb
TARGET_BOARD_DTS_CONFIG += imx8qm-xen:fsl-imx8qm-mek-domu-car.dtb
TARGET_BOARD_DTS_CONFIG += imx8qxp:fsl-imx8qxp-mek-car.dtb

There is one variable to specify which dtbo image is stored in the OTA package:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/mek_8q/dtbo-
imx8qm.img

Therefore, the default OTA package can only be applied to the i.MX 8QuadMax MEK
board.

The OTA package includes bootloader image, which is specified by the following
variable in ${MY_ANDROID}/device/fsl/imx8q/mek_8q/BoardConfig.mk:

BOARD_OTA_BOOTLOADERIMAGE := out/target/product/mek_8q/bootloader-
imx8qm.img

For detailed information about A/B OTA updates, see https://source.android.com/
devices/tech/ota/ab/.

8 Customized Configuration

8.1 How to change the boot command line in boot.img
When boot.img is used, the default kernel boot command line is stored inside this image. It packages together during Android
build.

You can change this by changing BOARD_KERNEL_CMDLINE's definition in the ${MY_ANDROID}/device/fsl/
imx8q/mek_8q/BoardConfig.mk file.

8.2 How to configure the logical display density
The Android UI framework defines a set of standard logical densities to help application developers target application
resources.

Device implementations must report one of the following logical Android framework densities:
• 120 dpi, known as 'ldpi'
• 160 dpi, known as 'mdpi'
• 213 dpi, known as 'tvdpi'
• 240 dpi, known as 'hdpi'

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 19

https://source.android.com/devices/tech/ota/ab/
https://source.android.com/devices/tech/ota/ab/

• 320 dpi, known as 'xhdpi'
• 480 dpi, known as 'xxhdpi'

Device implementations should define the standard Android framework density that is numerically closest to the physical
density of the screen, unless that logical density pushes the reported screen size to be lower than the minimum supported.

To configure the logical display density for framework, you must define the following line in ${MY_ANDROID}/
device/fsl/imx8q/mek_8q/init_car.rc:

setprop ro.sf.lcd_density <density>

8.3 How to use an application and add it into the launcher
Only some applications that are contained in car_facet_package_filters can be displayed in the launcher. To start a certain
application, use adb install and adb shell am start to start the related application:

 > adb install xxxx.apk
 > adb shell am start xxxx(package of apk, e.g: com.android.cts.verifier)

For example, play video with CactusPlayer.apk:

 > adb install CactusPlayer.apk
 > adb shell am start -n com.freescale.cactusplayer/com.freescale.cactusplayer.VideoPlayer -
d xxx.mp4

To display an application in the launcher, add the application package name (e.g.,
com.freescale.cactusplayer&com.android.cts.verifier) into car_facet_package_filters. ${MY_ANDROID}/packages/
services/Car/car_product/overlay/frameworks/base/packages/SystemUI/res/values/arrays_car.xml:

diff --git a/car_product/overlay/frameworks/base/packages/SystemUI/res/values/arrays_car.xml
b/car_product/overlay/frameworks/base/packages/SystemUI/res/values/arrays_car.xml
index 94a6d45..8d7c71d 100644
--- a/car_product/overlay/frameworks/base/packages/SystemUI/res/values/arrays_car.xml
+++ b/car_product/overlay/frameworks/base/packages/SystemUI/res/values/arrays_car.xml
@@ -57,6 +57,6 @@
 <item>com.android.car.dialer</item>
 <item>com.android.car.overview</item>
 <item></item>
-
<item>com.android.car.hvac;com.android.settings;com.android.car.settings;com.android.vending;
com.google.android.car.bugreport;...;com.google.android.projection.sink</item>
+
<item>com.android.car.hvac;com.android.settings;com.android.car.settings;com.android.vending;
com.google.android.car.bugreport;...;com.google.android.projection.sink;com.freescale.cactusp
layer;com.android.cts.verifier</item>
 </array>
 </resources>

8.4 Trusty OS build and configuration

8.4.1 How to fetch and build the Trusty OS
i.MX Android Automotive Pie uses the Trusty OS firmware as TEE that supports security features. Users can modify the
Trusty OS code to support different configurations and features.

In this release, the i.MX Trusty OS is based on AOSP Trusty OS. NXP adds the i.MX 8QuadMax support on it.

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

20 NXP Semiconductors

To fetch and build the target Trusty OS binary, use the following commands:

 $repo init -u https://source.codeaurora.org/external/imx/imx-manifest.git -b imx-android-
pie -m imx-trusty-p9.0.0_2.1.1-auto-ga.xml
 $repo sync
 $source trusty/vendor/google/aosp/scripts/envsetup.sh
 $make imx8qm #for i.MX 8QuadMax
 $cp ${TRUSTY_REPO_ROOT}/build-imx8qm/lk.bin ${MY_ANDROID}/vendor/nxp/fsl-proprietary/
uboot-firmware/imx8q/tee-imx8qm.bin

Then build the images and flash the u-boot-imx8qm.imx file to the target device.

NOTE
• ${TRUSTY_REPO_ROOT} is the root directory of the Trusty OS repository.
• ${MY_ANDROID} is the root directory of the Android Automotive Pie repository.

8.4.2 How to initialize the secure storage for the Trusty OS
Security storage is based on RPMB on the eMMC chip. By default, the RPMB key is not initialized by images.

You can use both the specified RPMB key or random RPMB key. The RPMB key cannot be changed once it is set.
• To set a specified RPMB key, perform the following operations:

Make your board enter fastboot mode. Execute the commands on the host side:

fastboot stage <path-to-your-rpmb-key>
fastboot oem set-rpmb-key

After the board is reboot, the RPMB service in Trusty OS is initialized successfully.

NOTE
• The RPMB key should start with magic "RPMB" and be followed with 32

bytes hexadecimal key.
• A prebuilt rpmb_key_test.bin with the fixed key of 32 bytes hexadecimal

0x00 is provided. It is generated with the following shell commands:

touch rpmb_key.bin
echo -n "RPMB" > rpmb_key.bin
echo -n -e
'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00' >> rpmb_key.bin

The '\xHH' means 8-bit character whose value is the hexadecimal value 'HH'.
You can replace above "00" with the key you want to set.

• To set a random RPMB key, perform the following operations:
Make your board enter fastboot mode. Execute the commands on the host side:

fastboot oem set-rpmb-random-key

After the board is reboot, the RPMB service in Trusty OS is initialized successfully.

NOTE

The random key is generated on the device and is invisible to anyone. The device
may no longer boot up if the RPMB key message is destroyed.

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 21

8.5 Rearview camera on the i.MX device
Exterior View System (EVS) is supported in the i.MX Android auto package. This feature supports fastboot camera that
starts camera within 1 second when the board is powered on. Arm Cortex-M4 takes over the control of the camera/display
before Android OS boot is complete.

The following figure is the sequence chart of EVS.

Figure 1. Sequence chart of EVS

8.5.1 How to demo the rearview camera
To demo the rearview camera, perform the following steps:

1. Connect the camera as quick start.
2. Open the Cortex-M4 console.

• Cortex-M4 console on the i.MX 8QuadMax MEK board: RS232 port on the base board.
3. Input 'gear 2' on the Cortex-M4 console when the board is powered on, rearview camera appears on the screen.

Input 'gear 4' when you see the following log printed on the Android console. Android UI appears on the screen.

4. Press 'gear 2' on the Cortex-M4 console after the Android system boot is complete. The rearview camera appears on the
screen.

Press 'gear 4' on the Cortex-M4 console. Android UI appears on the screen.

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

22 NXP Semiconductors

NOTE
• When you press 'gear 2' on the Cortex-M4 console, the Cortex-M4 core gets the

reverse signal.
• When you press 'gear 4' on the Cortex-M4 console, the Cortex-M4 core gets the

drive signal.

8.5.2 How to customize the rearview camera
The Cortex-M4 core runs in DDR on the i.MX board. It provides the following functions:

• Takes over control of the camera/display before Android OS is ready.
• Gets the vehicle event and passes this event to the Cortex-A core.

To customize the bootanimation and add the CAN bus event, see the details from the Cortex-M4 source code: $
{MY_ANDROID}/vendor/nxp/mcu-sdk-auto.

To update the Cortex-M4 image, perform the following steps:
1. Prepare the Cortex-M4 image build environment:

export ARMGCC_DIR=<path_to_GNUARM_GCC_installation_dir>

Make sure the cmake version is equal to or later than 3.13.0. If not, update the cmake version as follows:

wget https://github.com/Kitware/CMake/releases/download/v3.13.2/cmake-3.13.2.tar.gz
tar -xzvf cmake-3.13.2.tar.gz; cd cmake-3.13.2;
sudo ./bootstrap
sudo make
sudo make install

2. Run the command:

make bootloader -j4

To customize EVS in Android OS, use the following commands:

 EVS hal: ${MY_ANDROID}/vendor/nxp-opensource/imx/evs
 EVS service: ${MY_ANDROID}/vendor/nxp-opensource/imx/virtual_can
 EVS kernel driver: ${MY_ANDROID}/vendor/nxp-opensource/kernel_imx/drivers/mxc/can_rpmsg
 EVS application: ${MY_ANDROID}/packages/services/Car/evs/app/

8.5.3 Communication protocol between Cortex-A core and Cortex-M4
core

These protocol includes the communication commands between Cortex-A core to Cortex-M4 core and related response
packet.

Table 12. SRTM AUTO Control Category Command Table (Cortex-A to Cortex-M4)

Categor
y

Version Type Command Data Function

0x08 0x0100 REQUEST REGISTER Data[0-3]: clientIdData[4]:
reservedData[5]:
partitionData[6-15]:
reserved

Register RPMSG client. clientId indicates
different client. partition indicates the
Android Xen partition. Partition:0xFF: This
parameter is invalid.

Table continues on the next page...

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 23

Table 12. SRTM AUTO Control Category Command Table (Cortex-A to Cortex-M4)
(continued)

Categor
y

Version Type Command Data Function

0x08 0x0100 REQUEST UNREGISTER Data[0-3]: clientIdData[4]:
reservedData[5]:
causeOfData[6-15]:
reserved

Unregister RPMSG client. Cortex-M4 and
remote processor cannot communicate
again. "causeOf" parameter can indicate
the reason of unregister. causeOf:0x00:
AP will power off.

0x08 0x0100 REQUEST CONTROL Data[0-3]: clientIdData[4]:
reservedData[5-6]:
controlCodeData[7-10]:
timeoutData[11-15]:
controlParamData[15]:ind
ex

Send control command to Cortex-M4 to
request Cortex-M4 to do some actions. It
needs to complete and give a response to
Android in “timeout” ms. Reserved for
future. Example:controlCode: 0x0000: air
conditioner temperaturecontrolParam:
4bytes(float): temperatureIndex: left or
right.

0x08 0x0100 REQUEST PWR_REPORT Data[0-3]: clientIdData[4]:
reservedData[5-6]:
androidPwrStateData[7-1
0]:
time_postponeData[11-15
]: reserved

Report Android power
stateandroidPwrState:0x0000:
BOOT_COMPLETE0x0001:
DEEP_SLEEP_ENTRY0x0002:
DEEP_SLEEP_EXIT0x0003:
SHUTDOWN_POSTPONE0x0004:
SHUTDOWN_START0x0005:
DISPLAY_OFF0x0006: DISPLAY_ON.

0x08 0x0100 REQUEST GET_INFO Data[0-3]: clientIdData[4]:
reservedData[5-6]:
infoIndexData[7-15]:
reserved

Get information from Cortex-M4 side.
Android platform and Cortex-M4 should
have the same information table. The
information includes sensor data, fuel data,
battery data, etc. infoIndex:0x0001: vehicle
unique ID.

0x08 0x0100 RESPONS
E

BOOT_REASO
N

Data[0-3]: clientIdData[4]:
retCodeData[5-15]:
reserved

Response to Cortex-M4's boot reason
request (USER_POWER_ON,
DOOR_OPEN, DOOR_UNLOCK,
REMOTE_START, TIMER).

0x08 0x0100 RESPONS
E

PWR_CTRL Data[0-3]: clientIdData[4]:
retCodeData[5-6]:
androidPwrStateData[7-1
5]: reserved

Response current power state of Android
platform.

0x08 0x0100 RESPONS
E

VSTATE Data[0-3]: clientIdData[4]:
retCodeData[5-6]:
unitTypeData[7-15]:
reserved

Response to the control command from
Cortex-M4 side, and “state” indicates the
current IVI state.

Table 13. SRTM AUTO Control Category Command Table (Cortex-M4 to Cortex-A)

Categor
y

Version Type Comman
d

Data Function

0x08 0x0100 RESPON
SE

REGISTE
R

Data[0-3]: clientIdData[4]:
retCodeData[5-6]:
mcuOperateModeData[7-15]:
reserved

Response of RPMSG client register
(success, failed). mcuOperateMode
indicates Cortex-M4 operation.
statemcuOperateMode:SHARED_RESOUR

Table continues on the next page...

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

24 NXP Semiconductors

Table 13. SRTM AUTO Control Category Command Table (Cortex-M4 to Cortex-A)
(continued)

Categor
y

Version Type Comman
d

Data Function

CE_FREE:
0x0000SHARED_RESOURCE_OCCUPIED:
0x0001

0x08 0x0100 RESPON
SE

UNREGIS
TER

Data[0-3]: clientIdData[4]:
retCodeData[5-15]: reserved

Response of RPMSG client unregister.

0x08 0x0100 RESPON
SE

CONTRO
L

Data[0-3]: clientIdData[4]:
retCodeData[5-6]:
actionStateData[7-15]: reserved

Response the result of the control request.
MCU will do some actions to complete
Android’s request. actionState is not used
currently.

0x08 0x0100 RESPON
SE

PWR_RE
PORT

Data[0-3]: clientIdData[4]:
retCodeData[5-15]: reserved

Response to Android power state report.

0x08 0x0100 RESPON
SE

GET_INF
O

Data[0-3]: clientIdData[4]:
retCodeData[5-6]:
infoIndexData[7-14]:
dataData[15]: reserved

Response the GET_INFO request. infoIndex
should be the same as the request index.
The length of infoData should be specific
according to infoIndex. These information
includes sensor data, fuel data, and battery
data. It is a response packet to Android's
request.

0x08 0x0100 REQUES
T

BOOT_R
EASON

Data[0-3]: clientIdData[4]:
reservedData[5]:
bootReasonData[6-15]: reserved

Notify Android platform that why VMCU boot
the Cortex-A core (Android). It will be sent
after the MCU send the normal drive
command to android.bootReason:0x00:
USER_POWER_ON0x01:
DOOR_OPEN0x02: DOOR_UNLOCK0x03:
REMOTE_START.

0x08 0x0100 REQUES
T

PWR_CT
RL

Data[0-3]: clientIdData[4]:
reservedData[5-6]:
powerStateReqData[7-8]:
additionParamData[9-15]:
reserved

Request Android platform to enter specific
power state (ON_DISP_OFF, ON_FULL,
SHUTDOWN_PREPARE) powerStateReq:
0x0000: ON_DISP_OFF0x0001:
ON_FULL0x0002: SHUTDOWN_PREPARE.

0x08 0x0100 REQUES
T

VSTATE Data[0-3]: clientIdData[4]:
reservedData[5-6]:
unitTypeData[7-10]:
stateValueData[11-15]: reserved

Request Vehicle state to Android platform
(Door open/close/lock/unlock, Fan on/off/
speed/recycle/direction, AC on/off/
temperature, heater on/off/power, defrost
on/off/front/back) (mute/unmute, volume
adjust, rear view camera on/off, lights on/off
…) unitType indicates the type of each unit
of vehicle, such as door, fan, air condition,
etc. stateValue indicates the unit state
parameter.

8.6 Boot time tuning

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 25

8.6.1 Boot time overview
In this document, the boot time is the duration from the time the hardware is started from cold boot to that the Android
Automotive Launcher UI is showed on the display screen when the hardware is not in the first time boot from factory.
Because the very first successfully boot sets up the accelerating software executing environment, it costs a longer time to
boot.

NXP makes the boot time shorter in U-Boot, Linux kernel, and Android framework. To improve the debug efficiency, some
debug purpose modules and interfaces are kept in the release. Before the product is ready to ship, these modules and
interfaces can be configured to save the boot time and make the boot time performance best in the final product.

8.6.2 What NXP did to tune the boot time
To make Android Automotive boot faster, lots of changes were made on different modules to achieve better performance.
The following changes impact the boot time:

• Removed the debug command from U-Boot and Linux kernel to save its initialization time and image size.
• Removed the unused driver from U-Boot and Linux kernel.
• Make some drivers as the kernel module and load them when Android boot is completed. For example, the connectivity

devices and camera driver are initialized after the Android Automotive Launcher UI is showed on the display. This
makes the Android Automotive Launcher UI shown earlier.

• Removed the unused device from the Android Framework, such as Ethernet and Sensors.
• Refined the Android Verify Boot procedure.
• Optimized the Android Framework to make service executed on different CPUs.
• Delayed Zygote32 to when UI shown.
• Removed some unused service in Android Framework.

All the changes above do not impact any of the functions and the performance except the boot time.

8.6.3 How to shorten the boot time
For debug and development purpose, the U-Boot boot delay and Linux kernel dmesg are enable by default. The Linux kernel
dmesg is printed by UART. In field measurement, the Linux kernel dmesg costs about 1.15 seconds during the boot process
because UART is the slow device. Therefore, before the final product, remove the U-Boot delay and Linux kernel dmesg by
the following operations:

• Set CONFIG_BOOTDELAY=-2 in the U-Boot defconfig file, imx8qm_mek_androidauto_trusty_defconfig for
i.MX 8QuadMax MEK in ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/configs.

• Modify the Linux bootargs in build system. See Section 8.1. Appending loglevel=0 to it will prevent the dmesg to be
printed to console during the boot.

• By default, the images are built by userdebug build. When it is changed to user build, about 0.5 seconds boot time is
saved.

NOTE

When setting loglevel=0, the debug message is not displayed directly to the console.
To check it, however, you can use the $dmesg command in the shell to output it.

8.6.4 How to build system.img with squashfs files system type
The default file system of system.img is ext4. After the system.img file system type is changed to squashfs, the system.img
size can be reduced to about 50%. Thus, it can shorten the automotive boot time. To change the default file system type to
squashfs, perform the following steps:

1. Add the following Linux kernel macro in ${MY_ANDROID}/vendor/nxp-opensource/kernel_imx/arch/arm64/configs/
android_car_config:

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

26 NXP Semiconductors

• CONFIG_SQUASHFS=y
• CONFIG_SQUASHFS_LZ4=y
• CONFIG_SQUASHFS_XATTR=y
• CONFIG_SQUASHFS_DECOMP_MULTI=y

2. Add the following configurationsg in ${MY_ANDROID}/device/fsl/imx8q/mek_8q/BoardConfig.mk:

BOARD_SYSTEMIMAGE_FILE_SYSTEM_TYPE := squashfs

Rebuild the whole images for the mek_8q board. It can shorten the automotive boot time for the i.MX 8QuadMax MEK
Board.

8.6.5 How to measure the boot time
Per the definition of the boot time described in Section 8.6.1, users need to measure the boot time duration from power-on to
when the display shows the desktop.

Pay attention to the following:
• Keep the device in lock state by $fastboot oem lock.
• Make sure that the device is powered down safely. $setprop sys.powerctl shutdown makes the device powered

down safely. Or the fsck scans the storage during the booting time and it costs 1 to 2 seconds.
• Make sure the action of Section 8.6.3 has been done.

In this release, according to the measurement above, the boot time performance is obtained as in the following table.

Table 14. Boot time performance

Platform mek_8q_car Build mek_8q_car2 Build

i.MX 8QuadMax MEK 10.1s 10.57s

8.7 How to enable USB 2.0 in U-Boot for i.MX 8QuadMax
There are both USB 2.0 and USB 3.0 ports on i.MX 8QuadMax MEK board. Because U-Boot can support only one USB
gadget driver, the USB 3.0 port is enabled by default. To use the USB 2.0 port, modify the configurations to enable it and
disable the USB 3.0 gadget driver.

For i.MX 8QuadMax, make the following changes under ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx:

diff --git a/configs/imx8qm_mek_androidauto_trusty_defconfig b/configs/
imx8qm_mek_androidauto_trusty_defconfig
index 955023c..4a4307b 100644
--- a/configs/imx8qm_mek_androidauto_trusty_defconfig
+++ b/configs/imx8qm_mek_androidauto_trusty_defconfig
@@ -29,14 +29,12 @@ CONFIG_CMD_USB=y
 CONFIG_USB=y

 CONFIG_USB_GADGET=y
-#CONFIG_CI_UDC=y
+CONFIG_CI_UDC=y
 CONFIG_USB_GADGET_DOWNLOAD=y
 CONFIG_USB_GADGET_MANUFACTURER="FSL"
 CONFIG_USB_GADGET_VENDOR_NUM=0x18d1
 CONFIG_USB_GADGET_PRODUCT_NUM=0x0d02

-CONFIG_USB_CDNS3=y
-CONFIG_USB_CDNS3_GADGET=y
 CONFIG_USB_GADGET_DUALSPEED=y

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 27

 CONFIG_DM_GPIO=y
diff --git a/include/configs/imx8qm_mek_android_auto.h b/include/configs/
imx8qm_mek_android_auto.h
index 6aa19e7..a292dba 100644
--- a/include/configs/imx8qm_mek_android_auto.h
+++ b/include/configs/imx8qm_mek_android_auto.h
@@ -50,7 +50,7 @@
 #define CONFIG_FASTBOOT_FLASH

 #define CONFIG_FSL_FASTBOOT
-#define CONFIG_FASTBOOT_USB_DEV 1
+#define CONFIG_FASTBOOT_USB_DEV 0
 #define CONFIG_ANDROID_RECOVERY
diff --git a/arch/arm/dts/fsl-imx8qm-mek-auto.dts b/arch/arm/dts/fsl-imx8qm-mek-auto.dts
index 011dd49..9327981 100644
--- a/arch/arm/dts/fsl-imx8qm-mek-auto.dts
+++ b/arch/arm/dts/fsl-imx8qm-mek-auto.dts
@@ -43,10 +43,6 @@
 status = "disabled";
 };

-&usbotg1 {
 - status = "disabled";
 -};
-
 &usb2 {
 status = "disabled";
 };

To enable USB 2.0 for U-Boot used by UUU, for c language header files, apply the same changes above. For defconfig files,
apply the changes above on imx8qm_mek_android_uuu_defconfig. The defconfig files are specific for U-Boot used by UUU.

8.8 AVB key provision
The AVB key consists of a pair of public and private keys. The private key is used by the host to sign the vbmeta image. The
public key is used by AVB to authenticate the vbmeta image. The relationships between the private key, the public key, and
the vbmeta is as follows.

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

28 NXP Semiconductors

Figure 2. Relationship between AVB key and vbmeta

8.8.1 How to specify the AVB key
The OpenSSL provides some commands to generate the private key. For example, you can use the following commands to
generate the RSA-4096 private key test_rsa4096_private.pem:

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out
test_rsa4096_private.pem

The public key can be extracted from the private key. The avbtool in ${MY_ANDROID}/external/avb supports such
commands. You can get the public key test_rsa4096_public.bin with the following commands:

avbtool extract_public_key --key test_rsa4096_private.pem --output test_rsa4096_public.bin

By default, the Android build system uses the algorithm SHA256_RSA4096 with the private key from ${MY_ANDROID}/
external/avb/test/data/testkey_rsa4096.pem. This can be overridden by setting the BOARD_AVB_ALGORITHM and
BOARD_AVB_KEY_PATH to use different algorithm and private key:

 BOARD_AVB_ALGORITHM := <algorithm-type>
 BOARD_AVB_KEY_PATH := <key-path>

Algorithm SHA256_RSA4096 is recommended for i.MX 8QuadMax whose Cryptographic Acceleration and Assurance
Module (CAAM) can help accelerate the hash calculation.

You can specify the private key for i.MX 8QuadMax with the following changes under ${MY_ANDROID}/device/fsl:

diff --git a/imx8q/mek_8q/BoardConfig.mk b/imx8q/mek_8q/BoardConfig.mk
index 8e367bb..e1385f9 100644
--- a/imx8q/mek_8q/BoardConfig.mk
+++ b/imx8q/mek_8q/BoardConfig.mk
@@ -207,7 +207,7 @@ BOARD_AVB_ENABLE := true
 ifeq ($(PRODUCT_IMX_CAR),true)
 BOARD_AVB_ALGORITHM := SHA256_RSA4096
 # The testkey_rsa4096.pem is copied from external/avb/test/data/testkey_rsa4096.pem
-BOARD_AVB_KEY_PATH := device/fsl/common/security/testkey_rsa4096.pem

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 29

+BOARD_AVB_KEY_PATH := ${your-key-directory}/test_rsa4096_private.pem
 endif
 TARGET_USES_MKE2FS := true

The Android build system signes the vbmeta image with the private key above and stores one copy of the public key in the
signed vbmeta image. During AVB verification, U-Boot validates the public key first and then uses the public key to
authenticate the signed vbmeta image.

8.8.2 How to set the vbmeta public key
The public key should be stored in Trusty OS backed RPMB for Android Auto. Perform the following steps to set the public
key.

Make your board enter fastboot mode, and enter the following commands on the host side:

 fastboot stage ${your-key-directory}/test_rsa4096_public.bin
 fastboot oem set-public-key

The public key test_rsa4096_public.bin should be extracted from the specified private key. If no private key is specified, set
the public key as prebuilt testkey_public_rsa4096.bin, which is extracted from the default private key testkey_rsa4096.pem.

8.9 Key attestation
The keystore key attestation aims to provide a way to strongly determine if an asymmetric key pair is hardware-backed, what
the properties of the key are, and what constraints are applied to its usage.

Google provides the attestation "keybox", which contains private keys (RSA and ECDSA) and the corresponding certificate
chains to partners from the Android Partner Front End (APFE). After retrieving the "keybox" from Google, you need to parse
the "keybox" and provision the keys and certificates to secure storage. Both keys and certificates should be Distinguished
Encoding Rules (DER) encoded.

Fastboot commands are provided to provision the attestation keys and certificates. Make sure the secure storage is properly
initialized for Trusty OS:

• Set RSA private key:

fastboot stage <path-to-rsa-private-key>
fastboot oem set-rsa-atte-key

• Set ECDSA private key:

fastboot stage <path-to-ecdsa-private-key>
fastboot oem set-ec-atte-key

• Append RSA certificate chain:

fastboot stage <path-to-rsa-atte-cert>
fastboot oem append-rsa-atte-cert

NOTE

This command may need to be executed multiple times to append the whole
certificate chain.

• Append ECDSA certificate chain:

fastboot stage <path-to-ecdsa-cert>
fastboot oem append-ec-atte-cert

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

30 NXP Semiconductors

NOTE

This command may need to be executed multiple times to append the whole
certificate chain.

After provisioning all the keys and certificates, the keystore attestation feature should work properly.

8.10 How to prolong eMMC's lifespan
For Android Automotive device, internal storage uses an Embedded MultiMediaCard (eMMC) with thousands of erase/write
cycles. If the eMMC fails, the system can become unusable. As vehicles have long lifespans (typically over 10 years). The
eMMC must be extremely reliable.

This section provides some methods to help prolong eMMC's lifespan.

8.10.1 Enabling adoptable storage
Adoptable storage can make external storage (such as SD cards) to work as internal storage, which can be used to install
applications and store application data.

When the external storage media is used, it is formatted and encrypted to only work with a single Android device at one time.
Because the media is strongly tied to the Android device that uses it, it can safely store both applications and private data for
all users.

To enable adoptable storage, perform the following steps:
1. Enable SDHC node in i.MX 8QuadMax DTS (vendor/nxp-opensource/kernel_imx).

diff --git a/arch/arm64/boot/dts/freescale/fsl-imx8qm-mek-car.dts b/arch/arm64/boot/dts/
freescale/fsl-imx8qm-mek-car.dts
index fad12072611d..2a261b911acc 100644
--- a/arch/arm64/boot/dts/freescale/fsl-imx8qm-mek-car.dts
+++ b/arch/arm64/boot/dts/freescale/fsl-imx8qm-mek-car.dts
@@ -175,7 +175,7 @@
 };

 &usdhc2 {
- status = "disabled";
+ status = "okay";
 };

 &amix {
2. Add the SDHC node in fstab (device/fsl).

diff --git a/imx8q/mek_8q/fstab.freescale.car b/imx8q/mek_8q/fstab.freescale.car
index 9f4442d0..3be100ae 100644
--- a/imx8q/mek_8q/fstab.freescale.car
+++ b/imx8q/mek_8q/fstab.freescale.car
@@ -5,6 +5,7 @@

 /devices/platform/passthrough/5b0d0000.usb/ci_hdrc.0/* auto auto defaults
voldmanaged=usb:auto
 /devices/platform/5b0d0000.usb/ci_hdrc.0/* auto auto defaults voldmanaged=usb:auto
+/devices/platform/5b020000.usdhc/mmc_host* auto auto defaults
voldmanaged=sdcard:auto,encryptable=userdata
 /dev/block/by-name/system / ext4
ro,barrier=1
wait,slotselect
 /dev/block/by-name/userdata /data ext4
nosuid,nodev,nodiratime,noatime,nomblk_io_submit,noauto_da_alloc,errors=panic

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 31

latemount,wait,formattable,fileencryption=software
 /dev/block/by-name/misc /misc emmc
defaults
defaults

3. Use Settings->Storage to configure an SD card as adoptable storage.

8.10.2 Limiting third-party application
To protect the internal storage of Android Automotive system, users can configure whether the third-party applications can
be installed on the internal storage (applications can write only to the partition on which they were installed). For example, to
configure it on the mek_8q board, add the following configuration in the resource overlay (device/fsl/imx8q/mek_8q/
overlay_car/frameworks/base/core/res/res/values/config.xml):

<bool name="config_allow3rdPartyAppOnInternal">false</bool>

After making this configuration, any third-party applications cannot be installed on the internal storage. To install
applications, enable the adoptable storage, and use the following command to specify the application installed on external
storage:

adb install --install-location 2 app.apk

8.11 Cluster display in i.MX device
Cluster display is supported is in i.MX Android Auto package. With this feature, two displays connected to the board can
display different content.

To demostrate cluster display, connect two i.MX mini SAS cables with LVDS-to-HDMI adapters to the "LVDS0" and
"LVDS1" ports of the board.

After the system boots into Android launcher, different content is displayed on the two displays connected to the board.

The following two commands can be executed on the board console to simulate key input to select the menu on the cluster
display:

 dumpsys activity service android.car.cluster.sample/.SampleClusterServiceImpl injectKey
22
 dumpsys activity service android.car.cluster.sample/.SampleClusterServiceImpl injectKey
21

8.12 How to change SCFW
SCFW is a binary stored in ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware, built into bootloader.
To change SCFW, you need SCFW porting kit and specified board configuration file. SCFW porting kit contains prebuilt
binaries and libraries.

Specified board configuration file is stored in SCFW porting kit, for example: imx-scfw-porting-kit/src/
scfw_export_mx8qm_b0/platform/board/mx8qm_mek/board.c.

There is another board configuration file stored in ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-
firmware/imx8q_car/board-imx8qm.c.

You can copy board.c from vendor/nxp/fsl-proprietary to the SCFW porting kit. Modify it and then build the
SCFW.

The following are steps to build Android Auto SCFW:

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

32 NXP Semiconductors

1. Download the GCC tool from: https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads/6-2017-q2-
update.

2. Unzip the GCC tool to /opt/scfw_gcc.
3. Export TOOLS="/opt/scfw-gcc".
4. Download SCFW porting kit to ${MY_ANDROID} as imx-scfw-porting-kit.bin. You can download the

corresponding version SCFW from here: L4.14.98_2.0.1_SCFWKIT-1.2.1.
5. Unzip the porting kit and SCFW for i.MX 8QuadMax.

./imx-scfw-porting-kit.bin
cd imx-scfw-porting-kit/src
tar xf scfw_export_mx8qm_b0.tar.gz

6. Copy THE board configuration file from ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/
imx8q_car/board-imx8q.c to porting kit.

cp ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/board-imx8qm.c
scfw_export_mx8qm_b0/platform/board/mx8qm_mek/board.c

7. Build SCFW.

cd ${MY_ANDROID}/imx-scfw-porting-kit/src/scfw_export_mx8qm_b0
make clean
make qm R=B0 B=mek

8. Copy the SCFW binary to the uboot-firmware folder.

cp build_mx8qm_b0/scfw_tcm.bin ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/
imx8q_car/mx8qm-scfw-tcm.bin

9. Build the bootloader.

cd ${MY_ANDROID}
make bootloader

9 EVS/HVAC Function

9.1 EVS/HVAC functions for car image

9.1.1 HVAC
The following table lists the HVAC test items.

Table 15. HVAC test items

AP-> Cortex-M4 Cortex-M4 -> AP (input on Cortex-
M4 console)

comment

AC ON Cortex-M4 console has the following
print when ac on:

Android control: AC_ON, ON/OFF

=>report ac_on 0/2

AC in panel will be closed/open.

-

Fan direction Android control: FAN_DIRECTION,
0x2

Typical value:

0x2 (to face)

N Fan direction Control from
Cotex-M4 core is not
supported by the default
HVAC Android application.

Table continues on the next page...

EVS/HVAC Function

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 33

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads/6-2017-q2-update
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads/6-2017-q2-update
https://www.nxp.com/webapp/Download?colCode=L4.14.98_2.0.1_SCFWKIT-1.2.1&appType=license

Table 15. HVAC test items (continued)

AP-> Cortex-M4 Cortex-M4 -> AP (input on Cortex-
M4 console)

comment

0x4 (to floor)

0x06 (to face & floor)

0x0a (to floor & defrost)

Pi 9.0:

typical value:

0x2 (to face)

0x4 (to floor)

0x06 (to face & floor)

0x0c (to floor & defrost)

Fan speed Android control: FAN_SPEED, 0x6

Typical value: 0x00(off)/
0x02/0x04/0x06/0x08/0x0a/
0x0c(MAX)

=>report fan_speed
2/4/6/8/10/12

It sets the fan speed.

-

HVAC power on Cortex-M4 console has the following
print when HVAC is on:

Android control: HVAC_POWER_ON,
on/off

N HVAC power-on control
from Cotex-M4 core is not
supported by the default
HVAC Android application.

AUTO ON Cortex-M4 console has the following
print when HVAC is auto:

Android control: AUTO_ON, ON/OFF

=>report auto_on 0/2

AUTO in panel will be closed/open

-

Defrost Left one:

Android control: DEFROST, index=1,
on/off

Right one:

Android control: DEFROST, index=2,
on/off

Left one:

=>report defrost 0/2 1

defrost in panel will be closed/open.

Right one:

=>report defrost 0/2 2

defrost in panel will be closed/open

-

Temperature Left temp +-:

Or 8.1:

Android control: AC_TEMP, index=1,
temp=16.16

Pi 9.0:

Android control: AC_TEMP,
index=49, temp=16.16

Right temp +-:

Or 8.1:

Android control: AC_TEMP, index=4,
temp=21.21

Pi9.0:

=>report ac_temp 23.45 1/4

Sends 23.45 Centigrade value to
Android side. The left/right HVAC
temperature bar will change to 74.

You can calculate the
Fahrenheit value as follows:

Fahrenheit = 32 + 1.8 *
Centigrade

Fahrenheit: the number
shown in HVAC

Centigrade: printed on the
Cortex-M4 console

Table continues on the next page...

EVS/HVAC Function

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

34 NXP Semiconductors

Table 15. HVAC test items (continued)

AP-> Cortex-M4 Cortex-M4 -> AP (input on Cortex-
M4 console)

comment

Android control: AC_TEMP,
index=68, temp=18.18

RECIRC Cortex-M4 console has the following
print when recirc is ON:

Android control: RECIRC_ON, off/on

=>report recirc_on 0/2

RECIRC in panel will be closed/open

-

9.1.2 Multi-camera EVS
Some theory you need to know:

• Camera connection as follows:

IN0-> reverse; IN1-> front;
IN2-> right; IN3-> left

• The application has the following logic when handling the vehicle information.

If (gear state == reverse)
 Show reverse camera
Else if (turn signal == right)
 Show right camera
Else if(turn signal == left)
 Show left camera
Else if(gear state == park)
 Show overall camera.
Else
 No camera info shown

• Cortex-M4 commands explanation as follows:

turn 0/1/2 means none/left/right
gear 1/2/4 means park/reverse/drive

Test steps are as follows. Design your test case following Theory 2.
1. Input 'su && start evs_app' on the AP console to start evs_app. You can also start the rearview camera on the Cortex-

M4 side (gear 2). The display should be the reverse camera shown.
2. Input 'gear 1' on the Cortex-M4 console. It shows the overall camera on the display as follows.

Figure 3. Overall camera on the display
3. Input 'turn 1' on the Cortex-M4 console. It has the left camera shown on the display.
4. Input 'turn 2' on the Cortex-M4 console. It has the right camera shown on the display.

EVS/HVAC Function

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 35

5. Input 'turn 0' on the Cortex-M4 console The overall camera is shown.
6. Stop evs through 'stop evs_app' on the AP console.

NOTE

Enter "gear 2" at anytime in the boot process to test the rear view camera.

9.2 EVS/HVAC functions for car2 image

9.2.1 HVAC
The following table lists the HVAC test items.

Table 16. HVAC test items

AP-> dummy vehicle driver Cortex-M4 -> dummy vehicle
driver

Comment

AC ON AP Console has the following print
when AC is OFF/ON:

Set fan AC on with value 0/2

echo 0/2 > sys/devices/
platform/vehicle-dummy/
ac_on

AC in panel will be closed/open.

-

Fan direction Set fan direction with value 8.

Or 8.1:

Typical value:

0x2 (to face)

0x4 (to floor)

0x06 (to face & floor)

0x0a (to floor & defrost)

Pi9.0:

Typical value:

0x2 (to face)

0x4 (to floor)

0x06 (to face & floor)

0x0c (to floor & defrost)

N Fan direction Control from
Cotex-M4 core is not
supported by the default
HVAC Android application.

Fan speed Set fan speed with value 8.

Typical value:

0x00(off)/0x02/0x04/0x06/0x08/0x0a/
0x0c(MAX)

echo 2/4/6/8/10/12 > sys/
devices/platform/vehicle-
dummy/fan_speed

It sets the fan speed.

-

HVAC power on HVAC on:

Android control: HVAC_POWER_ON,
ON/OFF

N HVAC power-on control
from Cotex-M4 core is not
supported by the default
HVAC Android application.

AUTO ON Set Auto ON with value 0/2

Set Auto OFF/ON

echo 0/2 > sys/devices/
platform/vehicle-dummy/
auto_on

-

Table continues on the next page...

EVS/HVAC Function

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

36 NXP Semiconductors

Table 16. HVAC test items (continued)

AP-> dummy vehicle driver Cortex-M4 -> dummy vehicle
driver

Comment

AUTO in panel will be closed/open.

Defrost Left one:

Set defroster index 1 with value 0/2

Right one:

Set defroster index 2 with value 0/2

Left one:

echo 0/2 > sys/devices/
platform/vehicle-dummy/
defrost_right

defrost in panel will be closed/open.

Right one:

echo 0/2 > sys/devices/
platform/vehicle-dummy/
defrost_right

defrost in panel will be closed/open.

-

Temperature left temp +-:

or 8.1:

Set temp index 1 with value
1097859072

Pi 9.0:

Set temp index 49 with value
1097859072

Right temp +-:

Or 8.1:

Set temp index 4 with value
1100422258

Pi 9.0:

Set temp index 68 with value
1100422258

echo 1095528903 > sys/
devices/platform/vehicle-
dummy/temp_left

The left HVAC temperature bar will
change to 55.

You can calculate the
Fahrenheit temperature
value as follows:

Fahrenheit = 32 + 1.8 *
Centigrade

Fahrenheit: the number
shown in HVAC

Centigrade: 1095528903 is
the float of Centigrade.

You can use the following
tool to convert: http://www.
23bei.com/tool-23.html#

RECIRC recirc on:

Set recirc ON with value 0/2

echo 0/2 > sys/devices/
platform/vehicle-dummy/
recirc_on

RECIRC in panel will be closed/open.

-

9.2.2 Multi-camera EVS
Some theory you need to know:

• Camera connection as follows:

IN0-> reverse; IN1-> front;
IN2-> right; IN3-> left

• The application has the following logic when handling the vehicle information.

If (gear state == reverse)
 Show reverse camera
Else if (turn signal == right)
 Show right camera
Else if(turn signal == left)

EVS/HVAC Function

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

NXP Semiconductors 37

http://www.23bei.com/tool-23.html
http://www.23bei.com/tool-23.html

 Show left camera
Else if(gear state == park)
 Show overall camera.
Else
 No camera info shown

• Cortex-M4 commands explanation as follows:

sys/devices/platform/vehicle-dummy/gear value 0/1/2 means none/left/right
sys/devices/platform/vehicle-dummy/gear value 1/2/4 means park/reverse/drive

Test steps are as follows. Design your test case following Theory 2.
1. Input 'su && start evs_app' on the AP console to start evs_app. You can also start the rearview camera (echo 2 > sys/

devices/platform/vehicle-dummy/gear) on the AP console. The display should be the reverse camera shown.
2. Input 'echo 1 > sys/devices/platform/vehicle-dummy/gear' on the Cortex-M4 console. It shows the overall camera on

the display as follows.

Figure 4. Overall camera on the display
3. Input 'echo 1 > sys/devices/platform/vehicle-dummy/turn' on the Cortex-M4 console. It has the left camera shown on

the display.
4. Input 'echo 2 > sys/devices/platform/vehicle-dummy/turn' on the Cortex-M4 console. It has the right camera shown on

the display.
5. Input 'echo 0 > sys/devices/platform/vehicle-dummy/turn' on the Cortex-M4 console The overall camera is shown.
6. Stop evs through 'stop evs_app' on the AP console.

10 Revision History
Table 17. Revision history

Revision number Date Substantive changes

O8.1.0_1.1.0_AUTO-EAR 02/2018 Initial release

O8.1.0_1.1.0_AUTO-beta 05/2018 i.MX 8QuadXPlus/8QuadMax Beta release

P9.0.0_1.0.2-AUTO-alpha 11/2018 i.MX 8QuadXPlus/8QuadMax Automotive Alpha release

P9.0.0_1.0.2-AUTO-beta 01/2019 i.MX 8QuadXPlus/8QuadMax Automotive Beta release

P9.0.0_2.1.0-AUTO-ga 04/2019 i.MX 8QuadXPlus/8QuadMax Automotive GA release

P9.0.0_2.1.1-AUTO-ga 06/2019 i.MX 8QuadMax Automotive GA release

P9.0.0_2.1.1-AUTO-ga 08/2019 Updated the location of the SCFW porting kit.

Revision History

Android™ User's Guide, Rev. P9.0.0_2.1.1-AUTO-ga, 08/2019

38 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use

NXP products. There are no express or implied copyright licenses granted hereunder to design or

fabricate any integrated circuits based on the information in this document. NXP reserves the right to

make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any

particular purpose, nor does NXP assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets

and/or specifications can and do vary in different applications, and actual performance may vary over

time. All operating parameters, including “typicals,” must be validated for each customer application

by customerʼs technical experts. NXP does not convey any license under its patent rights nor the

rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified

vulnerabilities. Customers are responsible for the design and operation of their applications and

products to reduce the effect of these vulnerabilities on customer's applications and products, and

NXP accepts no liability for any vulnerability that is discovered. Customers should implement

appropriate design and operating safeguards to minimize the risks associated with their applications

and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,

the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS

are trademarks of NXP B.V. All other product or service names are the property of their respective

owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,

CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,

RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of

patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

© 2019 NXP B.V.

Document Number AUG
Revision P9.0.0_2.1.1-AUTO-ga, 08/2019

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Overview
	Preparation
	Setting up your computer
	Unpacking the Android release package

	Building the Android platform for i.MX
	Getting i.MX Android release source code
	Building Android images
	Configuration examples of building i.MX devices
	Build mode selection

	Building U-Boot images
	Building a kernel image
	Building boot.img
	Building dtbo.img

	Running the Android Platform with a Prebuilt Image
	Programming Images
	System on eMMC
	Storage partitions
	Downloading images with UUU
	Downloading images with fastboot_imx_flashall script

	Booting
	Booting from eMMC
	Booting from eMMC on the i.MX 8QuadMax MEK board

	Boot-up configurations
	U-Boot environment
	Kernel command line (bootargs)
	DM-verity configuration

	Over-The-Air (OTA) Update
	Building OTA update packages
	Building target files
	Building a full update package
	Building an incremental update package

	Implementing OTA update
	Using update_engine_client to update the Android platform
	Using a customized application to update the Android platform

	Customized Configuration
	How to change the boot command line in boot.img
	How to configure the logical display density
	How to use an application and add it into the launcher
	Trusty OS build and configuration
	How to fetch and build the Trusty OS
	How to initialize the secure storage for the Trusty OS

	Rearview camera on the i.MX device
	How to demo the rearview camera
	How to customize the rearview camera
	Communication protocol between Cortex-A core and Cortex-M4 core

	Boot time tuning
	Boot time overview
	What NXP did to tune the boot time
	How to shorten the boot time
	How to build system.img with squashfs files system type
	How to measure the boot time

	How to enable USB 2.0 in U-Boot for i.MX 8QuadMax
	AVB key provision
	How to specify the AVB key
	How to set the vbmeta public key

	Key attestation
	How to prolong eMMC's lifespan
	Enabling adoptable storage
	Limiting third-party application

	Cluster display in i.MX device
	How to change SCFW

	EVS/HVAC Function
	EVS/HVAC functions for car image
	HVAC
	Multi-camera EVS

	EVS/HVAC functions for car2 image
	HVAC
	Multi-camera EVS

	Revision History

