
VSPA-16SP ISA-v2.0 Instruction Set Manual
for LA9310

NXP Semiconductors Document identifier: vspa2_ism_16au_la9310
Reference Manual Rev. 0, 06/2021

Contents
Chapter 1 Preface.. 10

1.1 Introduction..10
1.2 Variants of VSPA...10
1.3 New features in VSPA ISA-v2.0.. 10

1.3.1 Overview... 10
1.3.2 Enhancements in vector data path..10
1.3.3 Enhancements in program control and scalar data path...11
1.3.4 Enhancements in data memory access.. 11

1.4 Using this manual..12
1.5 Conventions...13
1.6 Acronyms and abbreviations... 13

Chapter 2 VSPA Architecture Overview.. 15
2.1 VSPA architecture introduction..15

2.1.1 VCPU introduction...15
2.1.2 IPPU introduction.. 16
2.1.3 DMA controller.. 16
2.1.4 IP registers.. 16
2.1.5 Vector data memory..17
2.1.6 Data Memory Arbitration... 17

Chapter 3 VCPU Architecture... 18
3.1 Control plane... 18

3.1.1 Program memory...19
3.1.2 Program control...20

3.2 Data plane... 21
3.2.1 Data memory ..23
3.2.2 Data memory pointers...24
3.2.3 Vector register array..26
3.2.4 DMEM address space vs. VRA address space.. 29
3.2.5 Vector rotate unit...30
3.2.6 VAU operand source registers.. 30
3.2.7 VAU operand source register muxes.. 30
3.2.8 Vector arithmetic unit.. 31
3.2.9 VAU destination mux...32
3.2.10 Vector sign capture register (H).. 32
3.2.11 Vector NCO...33
3.2.12 Scalar arithmetic & logic unit...33

3.3 Data precision..34
3.3.1 Two's complement conversion..35

3.4 Data types... 36
3.5 VCPU GO events.. 36
3.6 Byte order..37
3.7 IRQ for thread killing..37

Chapter 4 VCPU Instruction Set... 38
4.1 VCPU instruction set overview.. 38
4.2 Instruction set organization..38

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 2 / 536

4.2.1 Instruction families.. 38
4.2.2 Instruction formats...39

4.3 Internal operand generators ... 40
4.4 VCPU instruction set summary..40
4.5 System control registers..88

4.5.1 Control register latency... 92
4.5.2 Vector precision latency.. 93

4.6 VCPU condition codes...93
4.6.1 Multiply condition codes.. 95
4.6.2 Divide condition codes.. 95
4.6.3 Modulus condition codes...95

4.7 Data memory pointer instructions..95
4.8 Data memory load & store instructions..97

4.8.1 DMEM address generation modes (ptr_mode)... 97
4.8.2 Post-modifications of aX registers...97
4.8.3 Special notes...97

4.9 Vector register array instructions...108
4.9.1 RAG instructions... 114

4.10 Rotate register instructions..119
4.10.1 Rotate-register modes...119

4.11 Extrema instructions..138
4.11.1 Extrema configuration... 139
4.11.2 Extrema Functionality..140
4.11.3 Extrema instructions code example.. 141

4.12 Vector AU source register instructions.. 141
4.12.1 VRA data reads...143
4.12.2 Data permutation and/or replication.. 144
4.12.3 VRA data type conversion...145
4.12.4 S0mode options and detailed description... 147
4.12.5 S1mode options and detailed description... 160
4.12.6 S2mode options and detailed description... 169

4.13 AU instructions.. 177
4.13.1 AU latency...179
4.13.2 AU instructions code example...179
4.13.3 Multiply add functionality... 179
4.13.4 Multiply and add with sign conversion...181
4.13.5 Multiply accumulate functionality...181
4.13.6 Multiply add with feedback functionality.. 183
4.13.7 Decimation in time and frequency butterfly functionality... 183

4.14 Special AU instructions..185
4.14.1 SAU input and output vector... 186
4.14.2 SAU latency.. 186
4.14.3 Special AU instructions code example..186
4.14.4 Reciprocal functionality... 187
4.14.5 Reciprocal square root functionality.. 187
4.14.6 Square root functionality... 187
4.14.7 Pre adder functionality.. 188

4.15 Store AU/SAU output instructions... 188
4.15.1 VAU data type conversion...189

4.16 GP instructions.. 194
4.16.1 GP move instructions.. 194
4.16.2 Linear feedback shift register instructions...197
4.16.3 Floating point generation instructions... 197
4.16.4 Arithmetic instructions... 198

4.17 Hardware loop instructions..203

NXP Semiconductors

Contents

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 3 / 536

4.17.1 Hardware loop control mechanism..204
4.17.2 Overwriting a set.loop instruction.. 205
4.17.3 Nested hardware loops... 205
4.17.4 Early termination of a hardware loop.. 206
4.17.5 Hardware loop execution constraints.. 207
4.17.6 Hardware loop legal examples..210
4.17.7 set.loop instruction.. 210

4.18 Control flow instructions.. 210
4.18.1 Jump delay slots... 211
4.18.2 Compare-and-jump example...212
4.18.3 Back-to-back conditional jumps.. 212

4.19 Conditional instructions... 213
4.19.1 Logical test instruction modifiers... 214
4.19.2 Condition code flags..215
4.19.3 Conditional instruction setup time... 218

4.20 Numerically controlled oscillator (NCO) instructions... 219

Chapter 5 IPPU Architecture...222
5.1 IPPU overview...222

5.1.1 IPPU SOC level components.. 222
5.1.2 IPPU features..222

5.2 Inter-vector permutation processing unit... 223
5.2.1 IPPU core..223
5.2.2 IPPU operating states... 224
5.2.3 IPPU memory access considerations... 225
5.2.4 IPPU initialization.. 225

5.3 IPPU interrupts.. 225
5.4 IPPU done to VCPU go event... 225

Chapter 6 IPPU Instruction Set...227
6.1 Size definitions.. 227
6.2 Hardware definitions..227
6.3 IPPU instructions summary... 228
6.4 Load instructions... 230
6.5 Load memory index instructions..234
6.6 Store instructions...235
6.7 Set range instructions..237
6.8 Configure bit-reversal, digit-reversal engine instructions...238
6.9 Move register instruction... 240
6.10 Load input argument instruction.. 241
6.11 Compare instruction.. 242
6.12 Jump instructions...242
6.13 Loop instructions... 243
6.14 Done instruction...244
6.15 Clear register instruction..244
6.16 Set/clear element mask register instructions...244
6.17 Add instructions...245
6.18 Advanced features/usage notes..245

6.18.1 Delay slot considerations.. 245
6.18.2 BR - Bit-reversal..246
6.18.3 Indirect addressing..246
6.18.4 Vectorized indirect addressing.. 247

NXP Semiconductors

Contents

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 4 / 536

Chapter 7 DMA Controller... 248
7.1 Direct memory access unit (DMA)...248

7.1.1 DMA module operation... 248
7.1.2 Issuing DMA commands... 248
7.1.3 DMA channel arbitration..249
7.1.4 DMA deinterleaving engine... 249
7.1.5 Effect of invasive debug on DMA.. 250
7.1.6 DMA use with FIFOs... 250
7.1.7 DMA features not supported... 251
7.1.8 Source/destination memory formatting... 251

Chapter 8 Mailboxes.. 255
8.1 Mailboxes.. 255

Chapter 9 AXI Slave... 256
9.1 AXI slave overview.. 256
9.2 Memory map..256
9.3 Usage example..256
9.4 VSPA AXI slave flag system..256
9.5 Interface limitations..257

Chapter 10 Debug and Trace.. 258
10.1 Debug..258

10.1.1 VSPA debug block diagram.. 259
10.1.2 Debug functional description...259
10.1.3 Debug using the DMA FIFOs.. 264

Chapter 11 Interrupts...265
11.1 Interrupts... 265

Chapter 12 Initialization...266
12.1 Initialization..266

Chapter 13 Forward Error Correction Unit (FECU)....................................... 267
13.1 FECU overview..267
13.2 FECU features...267
13.3 FECU block diagram... 268
13.4 FECU clock generation..268
13.5 FECU low power modes..268
13.6 FECU reset..269
13.7 FECU interrupts and VSPA go.. 269
13.8 Viterbi Decoder overview...269
13.9 Interleaver overview.. 269
13.10 Convolutional Encoder overview... 269
13.11 LDPC Encoder overview... 270
13.12 LDPC Decoder overview... 270
13.13 Scrambler overview...271

NXP Semiconductors

Contents

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 5 / 536

Chapter 14 VSPA IP Registers..272
14.1 Slow read registers..272
14.2 VSPA register descriptions..272

14.2.1 VSPA_CCSR memory map.. 273
14.2.2 VSPA Hardware Version (HWVERSION)... 278
14.2.3 VCPU Software Version (SWVERSION).. 279
14.2.4 VCPU System Control register (CONTROL)...280
14.2.5 VSPA Interrupt Enable register (IRQEN).. 287
14.2.6 VSPA Source 1 Info (STATUS)...290
14.2.7 VCPU to Host flags register a (VCPU_HOST_FLAGS0 - VCPU_HOST_FLAGS1)............. 294
14.2.8 Host to VCPU Flags register a (HOST_VCPU_FLAGS0 - HOST_VCPU_FLAGS1)............295
14.2.9 External Go Enable (EXT_GO_ENA)..296
14.2.10 External Go Status (EXT_GO_STAT)...297
14.2.11 VSPA VCPU Illegal Opcode Address (ILLOP_STATUS)..298
14.2.12 VSPA Parameters 0 (PARAM0)..299
14.2.13 VSPA Parameters 1 (PARAM1)..303
14.2.14 VSPA Parameters 2 (PARAM2)..305
14.2.15 VCPU DMEM Size (VCPU_DMEM_BYTES).. 307
14.2.16 Thread Control and Status (THREAD_CTRL_STAT)... 307
14.2.17 Protection Fault Status (PROT_FAULT_STAT)..309
14.2.18 VCPU Exception Control (EXCEPTION_CTRL)... 311
14.2.19 VCPU Exception Status (EXCEPTION_STAT)...312
14.2.20 AXI Slave flags register a (AXISLV_FLAGS0 - AXISLV_FLAGS1).................................... 314
14.2.21 AXI Slave Go Enable register a (AXISLV_GOEN0 - AXISLV_GOEN1)............................. 314
14.2.22 Platform Input (PLAT_IN_0)..315
14.2.23 Platform Output (PLAT_OUT_0)... 316
14.2.24 Cycle counter MSB register (CYC_COUNTER_MSB)..317
14.2.25 Cycle Counter LSB Register (CYC_COUNTER_LSB)..318
14.2.26 DMEM/PRAM Address (DMA_DMEM_PRAM_ADDR)...319
14.2.27 DMA AXI Address (DMA_AXI_ADDRESS)...320
14.2.28 AXI Byte Count register (DMA_AXI_BYTE_CNT)...321
14.2.29 DMA Transfer Control register (DMA_XFR_CTRL).. 322
14.2.30 DMA Status/Abort Control (DMA_STAT_ABORT)..328
14.2.31 DMA IRQ Status (DMA_IRQ_STAT)...329
14.2.32 DMA Complete Status (DMA_COMP_STAT)... 330
14.2.33 DMA Transfer Error Status (DMA_XFRERR_STAT).. 331
14.2.34 DMA Configuration Error Status (DMA_CFGERR_STAT)..332
14.2.35 DMA Transfer Running Status (DMA_XRUN_STAT)... 333
14.2.36 DMA Go Status (DMA_GO_STAT)... 334
14.2.37 DMA FIFO Availability Status (DMA_FIFO_STAT)... 335
14.2.38 Load Register File Control register (Slow read register) (LD_RF_CONTROL)...................336
14.2.39 Load Register File Real Coefficient Table register (Slow read register)

(LD_RF_TB_REAL_0).. 339
14.2.40 Load Register File Imaginary Coefficient Table register (Slow read register)

(LD_RF_TB_IMAG_0)...343
14.2.41 Load Register File Real Coefficient Table register (Slow read register)

(LD_RF_TB_REAL_1).. 347
14.2.42 Load Register File Imaginary Coefficient Table register (Slow read register)

(LD_RF_TB_IMAG_1)...351
14.2.43 Load Register File Real Coefficient Table register (Slow read register)

(LD_RF_TB_REAL_2).. 354
14.2.44 Load Register File Imaginary Coefficient Table register (Slow read register)

(LD_RF_TB_IMAG_2)...358

NXP Semiconductors

Contents

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 6 / 536

14.2.45 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_3).. 362

14.2.46 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_3)...366

14.2.47 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_4).. 370

14.2.48 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_4)...374

14.2.49 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_5).. 378

14.2.50 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_5)...382

14.2.51 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_6).. 386

14.2.52 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_6)...390

14.2.53 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_7).. 394

14.2.54 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_7)...398

14.2.55 VCPU Go Address (VCPU_GO_ADDR)... 402
14.2.56 VCPU Go Stack (VCPU_GO_STACK)... 403
14.2.57 VCPU Mode 0 (VCPU_MODE0)... 404
14.2.58 VCPU Mode 1 (VCPU_MODE1)... 406
14.2.59 VCPU CREG 0 (VCPU_CREG0).. 407
14.2.60 VCPU CREG 1 (VCPU_CREG1).. 409
14.2.61 Store Unalign Vector Length (ST_UL_VEC_LEN).. 410
14.2.62 General Purpose Input registers [10 registers] (GP_IN0 - GP_IN9)................................... 411
14.2.63 General Purpose Output registers [10 registers] (GP_OUT0 - GP_OUT9)........................ 412
14.2.64 VCPU to DQM Trace Small Outbox register (DQM_SMALL)... 413
14.2.65 VCPU to Debugger 32-bit Outbox register (VCPU_DBG_OUT_32)................................... 414
14.2.66 VCPU to Debugger 64-bit MSB Outbox register (VCPU_DBG_OUT_64_MSB)................ 415
14.2.67 VCPU to Debugger 64-bit LSB Outbox register (VCPU_DBG_OUT_64_LSB).................. 416
14.2.68 Debugger to VCPU 32-bit Inbox register (VCPU_DBG_IN_32)..417
14.2.69 Debugger to VCPU 64-bit MSB Inbox register (VCPU_DBG_IN_64_MSB)....................... 418
14.2.70 Debugger to VCPU 64-bit LSB Inbox register (VCPU_DBG_IN_64_LSB)......................... 419
14.2.71 VCPU to Debugger Mailbox Status register (VCPU_DBG_MBOX_STATUS)....................420
14.2.72 VCPU to host outbox message n MSB register (VCPU_OUT_0_MSB -

VCPU_OUT_1_MSB)..422
14.2.73 VCPU to host outbox message n LSB register (VCPU_OUT_0_LSB -

VCPU_OUT_1_LSB)...423
14.2.74 VCPU from Host Inbox Message n MSB (VCPU_IN_0_MSB - VCPU_IN_1_MSB)........... 424
14.2.75 VCPU from host inbox message n LSB register (VCPU_IN_0_LSB - VCPU_IN_1_LSB)..425
14.2.76 VCPU to Host Mailbox Status register (VCPU_MBOX_STATUS)...................................... 425
14.2.77 Host to VCPU Outbox Message n MSB register (HOST_OUT_0_MSB -

HOST_OUT_1_MSB)..427
14.2.78 Host to VCPU Outbox Message n LSB register (HOST_OUT_0_LSB -

HOST_OUT_1_LSB)...428
14.2.79 Host from VCPU Inbox Message n MSB (HOST_IN_0_MSB - HOST_IN_1_MSB)........... 429
14.2.80 Host from VCPU Inbox Message n LSB Register (HOST_IN_0_LSB - HOST_IN_1_LSB)430
14.2.81 Host Mailbox Status Register (HOST_MBOX_STATUS)..431
14.2.82 IPPU Control register (IPPUCONTROL)...432
14.2.83 IPPU Status register (IPPUSTATUS)..435
14.2.84 IPPU Run Control register (IPPURC)..438
14.2.85 IPPU Arg Base Address register (IPPUARGBASEADDR)... 440

NXP Semiconductors

Contents

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 7 / 536

14.2.86 IPPU Hardware Version (IPPUHWVER)...441
14.2.87 IPPU Software Version (IPPUSWVER).. 442

Chapter 15 Debug registers.. 443
15.1 VSPA_DBG register descriptions..443

15.1.1 VSPA_DBG memory map...443
15.1.2 Global Debug Enable register (GDBEN)...447
15.1.3 Debug Run Control register (RCR)... 448
15.1.4 Debug Run Control Status register (RCSTATUS).. 450
15.1.5 Debug Halt Action Control register (HACR).. 453
15.1.6 Debug Resume Action Control register (RACR)... 455
15.1.7 Debug VSP Architecture Visibility Address Pointer register (RAVAP).................................. 456
15.1.8 Debug VSP Architecture Visibility Fixed Data register (RAVFD).. 464
15.1.9 Debug VSP Architecture Visibility Incrementing Data register (RAVID)............................... 465
15.1.10 Debug Verification register (DVR)...466
15.1.11 Debug Cross Trigger Out a Action Control registers (CTO0ACR - CTO3ACR)..................468
15.1.12 Debug Comparator Control and Status register (DC0CS - DC7CS)...................................469
15.1.13 Debug Comparator a Data register (DC0D - DC7D)...473
15.1.14 Debug Comparator a Arm Action Control registers (C0AACR - C7AACR).........................476
15.1.15 Debug Comparator a Disarm Action Control registers (C0DACR - C7DACR)....................478
15.1.16 Debug Comparator a Trigger Action Control registers (C0TACR - C7TACR).................... 480
15.1.17 Debug to VSP 32-bit Outbox register (OUT_32)...482
15.1.18 Debug to VSP 64-bit MSB Outbox register (OUT_64_MSB).. 482
15.1.19 Debug to VSP 64-bit LSB Outbox register (OUT_64_LSB).. 483
15.1.20 VSP to Debugger 32-bit Inbox register (IN_32).. 484
15.1.21 VSP to Debugger 64-bit MSB Inbox register (IN_64_MSB)..485
15.1.22 VSP to Debugger 64-bit LSB Inbox register (IN_64_LSB)..486
15.1.23 Debugger to VSP Mailbox Status register (MBOX_STATUS).. 487
15.1.24 Debug Parameter 0 Register (PARAM_0).. 489
15.1.25 Peripheral ID4 register (PIDR4).. 490
15.1.26 Peripheral ID5 register (PIDR5).. 491
15.1.27 Peripheral ID6 register (PIDR6).. 492
15.1.28 Peripheral ID7 register (PIDR7).. 493
15.1.29 Peripheral ID0 register (PIDR0).. 494
15.1.30 Peripheral ID1 register (PIDR1).. 495
15.1.31 Peripheral ID2 register (PIDR2).. 496
15.1.32 Peripheral ID3 register (PIDR3).. 497
15.1.33 Component ID0 register (CIDR0)..498
15.1.34 Component ID1 register (CIDR1)..498
15.1.35 Component ID2 register (CIDR2)..499
15.1.36 Component ID3 register (CIDR3)..500

Chapter 16 FECU IP Registers..502
16.1 FECU IP Registers.. 502
16.2 FECU register descriptions..502

16.2.1 FECU memory map.. 502
16.2.2 FECU Configuration register (FECU_CONFIG)..504
16.2.3 FECU Symbol size register (FECU_SIZES)... 505
16.2.4 FECU Number of padding bits register (FECU_NUM_PAD).. 506
16.2.5 FECU Binary Convolutional Code (BCC) puncture mask register

(FECU_BCC_PUNC_MASK).. 507
16.2.6 FECU Binary Convolutional Code (BCC) configuration register (FECU_BCC_CONFIG).... 508
16.2.7 FECU LDPC configuration register (FECU_LDPC_CONFIG).. 509

NXP Semiconductors

Contents

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 8 / 536

16.2.8 FECU LDPC repeat, parity, and shortening sizes register (FECU_LDPC_SIZES)...............510
16.2.9 FECU LDPC blocks with an extra shortening bit register (FECU_LDPC_EXTRA_SHORT) 511
16.2.10 FECU LDPC blocks with an extra puncturing or repetition bit register

(FECU_LDPC_EXTRA_REP)... 512
16.2.11 FECU Bypass register (FECU_BYPASS)... 512
16.2.12 FECU Scrambler / De-scrambler configuration register (FECU_SC_CONFIG)..................513
16.2.13 FECU DMEM Read count register (FECU_DMEM_READ_COUNT)................................. 514
16.2.14 FECU DMEM Source address register (FECU_DMEM_SRC_ADR)..................................515
16.2.15 FECU DMEM Destination address register (FECU_DMEM_DST_ADR)............................516
16.2.16 FECU DMEM 2nd address register (FECU_DMEM_2ND_ADR)..517
16.2.17 FECU DMEM 3rd address register (FECU_DMEM_3RD_ADR).. 518
16.2.18 FECU DMEM 4th address register (FECU_DMEM_4TH_ADR)... 519
16.2.19 FECU DMEM 5th address register (FECU_DMEM_5TH_ADR)... 520
16.2.20 FECU DMEM 6th address register (FECU_DMEM_6TH_ADR)... 520
16.2.21 FECU DMEM 7th address register (FECU_DMEM_7TH_ADR)... 521
16.2.22 FECU DMEM 8th address register (FECU_DMEM_8TH_ADR)... 522
16.2.23 FECU Save and restore configuration register (FECU_SAVE_RESTORE)....................... 523
16.2.24 FECU Control register (FECU_CONTROL).. 524
16.2.25 FECU Status register (FECU_STATUS)...526
16.2.26 FECU DMEM Write count register (FECU_DMEM_WRITE_COUNT)................................527
16.2.27 FECU LDPC encoder block sizes register (FECU_LDPC_ENC_BLOCK)..........................528
16.2.28 FECU LDPC encoder status register (FECU_LDPC_ENC_STATUS)................................529
16.2.29 FECU LDPC decoder block sizes and counts register (FECU_LDPC_DEC_BLOCK)....... 530
16.2.30 FECU LDPC decoder status register (FECU_LDPC_DEC_STATUS)................................531
16.2.31 FECU Hardware parameters / capabilities of FECU (FECU_HW_PARAMS).....................532
16.2.32 FECU Hardware parameters / capabilities of the LDPC encoder and decoder in FECU

(FECU_LDPC_HW_PARAMS)... 533

Appendix A Revision History..535
A.1 Revision History.. 535

NXP Semiconductors

Contents

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 9 / 536

Chapter 1
Preface
1.1 Introduction
The primary purpose of this document is to describe the architecture and functionality of the Vector Signal Processing Acceleration
(VSPA) platform. This manual includes instruction sets for two main functional units of VSPA - VCPU and IPPU as well as VSPA
IP and Debug IP register definitions.

1.2 Variants of VSPA
The VSPA instruction set architecture (ISA) has evolved significantly since it was first developed, and will continue to undergo
further development. This ISM elaborates VSPA ISA v2.0. The significant changes in comparison to VSPA ISA v1.0 are described
in New features in VSPA ISA-v2.0

VSPA can be classified based on the number of arithmetic units (AU). This ISM supports VSPA-16SP for LA9310. LA9310 has
1 instance of VSPA 16AU single precision (SP). This means that, VSPA core for LA9310 supports:

• 16 complex MAC operations per clock cycle / single precision

• Single precision math

1.3 New features in VSPA ISA-v2.0

1.3.1 Overview
This instruction set architecture (ISA-v2.0) extends the former version by supporting features listed below:

• Improved compute efficiency

• Improved compiler efficiency

• Source code backward compatibility with VSPA1 with the help of ‘VSPA1onVSPA2’ compiler switch

— Software written for VSPA1 will compile and run on VSPA2 without any changes

• Significant improvements to the vector data path

— New SAU (square-root, atan, and so on) microinstruction can execute in parallel with existing AU operations (mac,
mad, and so on)

— New pre-add SAU instruction can reduce cycles for FIR filters by half

— New look-up-table (LUT) SAU instruction allows non-linear function evaluation

• Significant improvements to the control plane

— Increase in the VLIW program word from 56 to 64 bits

— Addition of many new instructions with enhanced indirect addressing

— Simplified register model; 3 sets (asX,aX,gX) to 2 sets (aY,gY)

— Half-word (16 bits) address resolution

1.3.2 Enhancements in vector data path
Vector data path enhancements are as follows:

1. New OpVsau microinstruction to enable parallel execution of SAU and AU operations

2. New pre-add SAU instruction to reduce clock cycles in filtering algorithms with coefficient symmetry

3. New vector complex table look-up (LUT) SAU operation to approximate general function evaluation, f(|x|)

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 10 / 536

4. Option to feed SAU operation result directly to AU operation input

• This is useful in a.*f(|x|) operations

5. Introduction of left rotation unit to complement existing right rotations

6. New instructions to broadcast scalar gX registers to VRA

7. Elimination of real/complex mode

• Independent real and complex versions of AU instructions are available

• ‘Hidden’ is still available for backward compatibility

8. Elimination of VRA page registers

• Increased size of page registers

• ‘Hidden’ is still available for backward compatibility

9. New instruction for inter-VRA register moves

10. Extrema search unit support for single precision and return of extrema in gX

1.3.3 Enhancements in program control and scalar data path
Program control and scalar data path enhancements are as follows:

1. Elimination of address storage register set (asX) to simplify programming model and improve coding efficiency

• asX registers have been replaced with 16 additional address registers (a4-a19)

• asX are still supported in tools for backward compatibility

2. Scalar gX registers now available for use as memory pointers

3. Expansion of program counter from 16 to 24 bits

4. Support for conditional relative branching

5. New illegal instruction error event

6. Increased size of loop counter from 10 to 16 bits

7. New loop-break instruction

• Execution proceeds on first instruction outside of loop

8. New complete data type conversion instructions

9. OpA forms of VRA pointer control for improved coding efficiency

10. OpA and OpB moves between VRA pointers and scalar registers

11. Support for 32 bit immediate scalar ALU operations

12. Increased conditional scalar ALU operations

13. New instructions to improve IP register access efficiency

14. Scalar register bit set/clear instructions

15. Improved support for PMEM overlays

1.3.4 Enhancements in data memory access
Data memory access enhancements are listed below:

1. Support for half-word (16bit) addressing reduces data memory consumption

• Existing 32-bit is still supported for backward compatibility

2. Support for partial vector stores

NXP Semiconductors

Preface

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 11 / 536

3. New OpB forms of loads and stores

4. Support for two times larger tightly coupled data memory

5. Improved load/store-multiple memory efficiency

6. Larger immediate value for indirect addressing

7. Support for indirect loads/stores using stack pointer

8. New two times larger indirect access pointer modifier

1.4 Using this manual
The information in this manual is broadly organized as follows:

1. VSPA Overview and Architecture

• Chapter 2: Introduces VSPA architecture with the help of a block diagram and gives a brief overview of each of the
functional units of VSPA.

2. VSPA functional unit - VCPU

• Chapter 3: Primarily describes control plane and data plane in detail. Also, introduces some other features of VCPU
like the VCPU's internal floating point representation, VCPU GO events and byte order.

• Chapter 4: Lists instruction families and formats. Includes an instruction set summary table for all VCPU instructions
with VSPA instruction set mnemonic conventions listed first. The VCPU instruction set summary consists of different
groups of instructions each group consisting of a list of opcodes and operands and the family, number of cycles and
a brief description for them. Quick references to different groups of instructions are given at the beginning of the VCPU
instruction set summary table. The chapter also includes elaborate topics on each of these instruction groups.

3. VSPA functional unit - IPPU

• Chapter 5: Introduces IPPU with a brief overview and lists IPPU features. Also describes IPPU core, operating states,
memory access considerations and initialization.

• Chapter 6: Lists size and hardware definitions for IPPU followed by an IPPU instruction set summary table. The
summary table contains a list of IPPU instructions with number of cycles for each instruction and a quick reference
link to detailed descriptions that follow.

4. VSPA functional unit - DMA controller

• Chapter 7: Includes detailed description of the Direct memory access unit (DMA). Also, lists the features that the DMA
does not support.

5. VSPA functional unit - Mailboxes

• Chapter 8: Includes detailed description of the VSPA mailboxes.

6. VSPA functional unit - AXI Slave

• Chapter 9: Includes detailed description of the AXI Slave.

7. VSPA Debug architecture

• Chapter 10: Introduces VSPA Debug architecture and provides a general overview of the top-level blocks and their
respective functionality.

• Chapter 15: Contains a memory map and register definitions for VSPA debugger registers.

8. VSPA Interrupts

• Chapter 11: Includes detailed description of the VSPA interrupts.

9. VSPA Initialization

• Chapter 12: Describes VSPA Initialization

10. VSPA functional unit - FECU

NXP Semiconductors

Preface

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 12 / 536

• Chapter 13: Introduces Forward error correction unit (FECU) along with its sub-modules.

• Chapter 16:Includes memory map and register definitions for FECU. FECU registers are a part of VSPA memory
map starting at offset address 0x300.

11. VSPA IP registers

• Chapter 14: Contains a VSPA memory map listing the offset addresses, bit widths, access types, and reset values
for all VSPA IP registers. Also, includes detailed register definitions with register diagrams and description for register
bit fields.

1.5 Conventions
The following conventions are used throughout this document.

• All numbers are decimal values unless otherwise specified:

— 0bnnnn denotes a number in binary format.

— 0xnnnn denotes a number in hexadecimal format.

• Bits in registers, instructions, and instruction fields:

— Bits are numbered beginning with 0 for the least significant bit on the right and ending with the most significant bit on
the left.

— A range of bits is specified by 2 numbers separated by a colon ":". For example, y:x denotes bits x through y.

• V[y:x] can have 2 interpretations, depending on the context of V:

— If V is a scalar register or a scalar bus, then V[y:x] denotes the subfield of V, from bit position x through bit position y.
For example, aa registers (a0 through a3) are all scalar registers. a0[4:0] denotes the lower five bits of register a0.

— If V is a vectored register or a vectored bus, then V[y:x] denotes a subvector consisting of the xth element of V
through yth element of V (both elements are inclusive).

• {x, y} denotes the concatenation of 2 values. For example, {010, 111} is the same as 010111.

• xn means x is raised to the nth power.

• For any duplication pattern (y,, x), y corresponds to the most significant bit and x corresponds to the least significant
bit. For example, in the duplication pattern (real, imag, -imag, real) the leftmost real in parenthesis corresponds to the set
of most significant bits.

Naming Conventions:

• Vector register names begin with an upper case letter, for example, S0, S1, S2, and so on. Scalar register names always
begin with a lower case letter.

• For readability, names may be intermingled with the underscore character "_".

1.6 Acronyms and abbreviations

AU Arithmetic unit

CREG System control register

DI Deinterleaving

DMA Direct memory access

FECU Forward error correction unit

FFT Fast Fourier transform

Table continues on the next page...

NXP Semiconductors

Preface

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 13 / 536

Table continued from the previous page...

FSM Finite state machine

GP General purpose

GPIO General purpose input output

HF Half fixed

HP Half precision

IDMEM IPPU data memory

IP Internal peripheral

IPPU Intervector permutation processing unit

IPRAM IPPU program memory

ISM Instruction set manual

LUT Look up table

MAG Memory address generation

NCO Numerically controlled oscillator

PMEM Program memory

RF Register file

RAG Register file address generation

SAU Special arithmetic unit

SOC System on a chip

SP Single precision

SUPV Supervisor

VAU Vector arithmetic unit (composed of arithmetic units (AU) and
special arithmetic units (SAU))

VCPU Vector central processing unit

VDMEM VCPU data memory

VLIW Very long instruction word

VPRAM VCPU program memory

VRA Vector register array

VSP Vector signal processor

VSPA Vector signal processing acceleration

VPRED Vector predication

NXP Semiconductors

Preface

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 14 / 536

Chapter 2
VSPA Architecture Overview
2.1 VSPA architecture introduction
VSPA is a signal processing platform which leverages a Single Instruction Multiple Data (SIMD) data path and VLIW control plane
to provide extremely high compute capability per milli-watt and/or silicon area. The instruction set and scalable data path are
optimized for a broad range of applications. Some of these include low-complexity modems such as Bluetooth or AM/FM car
radio, multi-channel audio, and the antenna signal processing used in highly complex 5G massive-MIMO cellular base stations.
The architecture employs a very simple control plane so it is not optimum for control dominant or packet switching and layer 2
applications. VSPA is typically used in SOC’s with a more traditional general purpose host controller such as an ARM which
provide access to general peripherals. The architecture is also very suitable as a math co-processor for more general compute
platforms.

Vector Data Bus

Scalar Data Bus

I/O Bus

Legend

VCPU Data
Memory

1048576 bytes
IPPU Data
Memory

1048576 bytes

1024 1024

Data Memory Arbitration
1024

1024

Multi-channel
DMA

Controller

AXI

1024 32

32

32

32

GPIO

Run-time
Peripheral

Bus

Internal
Peripheral

(IP)
Registers

IPPU

Program
MemoryVector

Data
Plane

Scalar
Data
Plane

D
eb

ug
 &

Tr
ac

e

Control Plane

Program
Memory

32

ATB

32

64

32

Debug
Peripheral

Bus

VCPU

CTRL/Status

Triggers

Host interrupts

FECU

FECU
Memory

1024

32

128

AXI Slave AXI
128

64

1024

Figure 1. VSPA Architecture

The architecture consists of the following functional units:

2.1.1 VCPU introduction
VCPU stands for Vector Central Processing Unit.

The VSPA architecture consists of control and data planes.

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 15 / 536

• Control plane: The control plane is SIMD and can execute several operations on the data plane in each cycle. It uses a
single issue pipeline and is optimized for efficient data operations. Software threads run to completion and begin with a
'go' or wake-up event initiated by an external event or DMA transfer completion. The 'done' instruction is the last
instruction executed in a thread and puts the machine in a low power state.

• Data plane: All vector data math operations are implemented in software on the VCPU. The VCPU data path is organized
into vector data plane and scalar data plane.

The Intervector Permutation Processing Unit and Vector Central Processing Unit are programmable machines supported by the
tool chain.

Table 1. Vector/Scalar data plane features

Vector data plane Scalar data plane

• 1024-bit vector data bus

• 64 SP RMAC/RMAD operations per clock cycle

• Vector sqrt(|x|), 1/x, 1/sqrt(|x|) operations

• Vector NCO operations

• Vector spreading/scrambling code generator for
WCDMA

• Independent vector compare engine

• Multi-port, 8-line vector register array

• Transparent intra-vector permutations on each VRA port

• 2 vector rotate units

• 256-bit vector sign register

• 32-bit data plane

• Full-featured arithmetic and logic unit

• 12 scalar registers

• Stack pointer

• 20 memory pointer registers with modulo buffer and re-
ordering algorithm support

2.1.2 IPPU introduction
The Intervector Permutation Processing Unit (IPPU) is an independent programmable machine which is responsible for reordering
buffers for efficient utilization of the vector data path on the VCPU. It has independent program and data memories so it can run
in parallel with the VCPU. This allows buffers to be pipelined, allowing vector math of buffer N to be processed on the VCPU
while buffer N+1 is reordered on the IPPU. The IPPU has a limited instruction set optimized for flexible construction of vectors
from scalars of various data types. The IPPU and VCPU data memories are visible to the other core through an arbiter to allow
efficient transfer of buffers.

2.1.3 DMA controller
The Direct Memory Access (DMA) Controller is an independent state machine which is responsible for movement of data buffers
between VSPA core and other cores, on-chip peripherals, memories and any other memory mapped component. It is compliant
with the AMBA AXI3 bus protocol with independent read and write busses and a configurable size depending on the target chips.
The module supports up to 32 independent channels (active simultaneous transfers) serviced in a round-robin manner on a 16-
beat burst interval. Data transfers can target both IPPU and VCPU data memories. Program images can also be loaded using
the DMA. Each DMA channel can be configured to start execution of a software thread when the transfer completes. The thread
can reside on the IPPU or VCPU. The DMA control resides in the IP register map and is visible to both the host (ARM) and VCPU.
The boot-up sequence requires the host to configure one of the DMA channels to download the initial VCPU program image.

2.1.4 IP registers
Control of the IPPU, DMA, GPIO, external go events and other miscellaneous peripherals is configured with a set of memory
mapped 32-bit internal peripheral (IP) bus registers. Both the host and VCPU have access to these registers, although the physical
addresses are different as viewed from each core.

NXP Semiconductors

VSPA Architecture Overview

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 16 / 536

2.1.5 Vector data memory
Data is organized into 1024-bit lines, although the physical structure may consist of multiple parallel instantiations of smaller
memory blocks. Independent tightly coupled data memories exist for both the IPPU and VCPU to allow simultaneous execution
of programs and data memory accesses. Both memories are visible to the DMA, VCPU and IPPU machines through a data arbiter
module.

There is a total of 2097152 bytes of memory, allocated as 1048576 bytes for the VCPU data memory (VDMEM) and 1048576
byes for the IPPU data memory (IDMEM). Accesses from the VCPU or DMA can be made as though the VDMEM and IDMEM
are a contiguous memory. The behavior of accesses to address locations greater than 2097152 are dependent on the chip level
memory integration. Such accesses should be avoided as they may cause the memory to be corrupted.

2.1.6 Data Memory Arbitration
The arbitration interface (DRI) arbitrates between VSPA units attempting to access the vector data memory. It has a fixed priority
arbitration. If two or more units access the same memory in a cycle, the lower priority unit(s) will be stalled by the DRI until the
high priorty access(es) have completed.

Table 2. DRI aribitration priority

priority Unit

Highest DMA

... Axi Slave

... IPPU

... FECU

... VCPU

... VCPU parallel load/store

Lowest Debug

NXP Semiconductors

VSPA Architecture Overview

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 17 / 536

Chapter 3
VCPU Architecture
3.1 Control plane
In a traditional general purpose microprocessor, an instruction is decoded at the decode stage(s). The resulting control signals
that are generated from decoding this instruction are then passed down to subsequent pipe stages. The hardware in the
subsequent pipe stages then uses these control signals to carry out the required function for that instruction. This approach incurs
extra hardware complexities, but usually results in smaller instruction words.

Figure 2 shows how the control signals in a traditional general-purpose microprocessor are generated at the decode stages and
are then passed down to the subsequent pipe stages (Execute 0, Execute 1, Execute 2 and Writeback).

Pipestages
Time

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Fetch

Decode 0

Decode 1

Execute 0

Execute 1

Execute 2

Writeback

i4 i5 i6

i3 i4 i5 i6

i2
(control for i2)

i3
(control for i3)

i4
(control for i4)

i5
(control for i5)

i6
(control for i6)

i1
(control for i1)

i2
(control for i2)

i3
(control for i3)

i4
(control for i4)

i5
(control for i5)

i1
(control for i1)

i2
(control for i2)

i3
(control for i3)

i4
(control for i4)

i1
(control for i1)

i2
(control for i2)

i3
(control for i3)

i1
(control for i1)

i2
(control for i2)

Figure 2. Pipeline Flow for a General Purpose Microprocessor

In a very long instruction word (VLIW) engine, an instruction is decoded at the decode stages. However, the resulting control
signals that are generated for this instruction are used to control all of the functional units in all pipe stages. In a VLIW engine,
the generated control signals generally are not passed down to the subsequent pipe stages.

Figure 3 shows how the control signals are generated at Decode Stage 0 and Decode Stage 1 and are distributed to all pipe
stages from Decode Stage 1.

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 18 / 536

Pipestages
Time

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Fetch

Decode 0

Decode 1

Execute 0

Execute 1

Execute 2

Writeback

i3 i5 i6

i2 i4 i5 i6

i2
(control)

i3
(control)

i4
(control)

i5
(control)

i6
(control)

i1 i2 i3 i4 i5

i1 i2 i3 i4

i1 i2 i3

i1 i2

i7

i7

Figure 3. Pipeline Flow for a VLIW Engine

In general, operations encoded in a VLIW instruction are not limited to operations meant for one specific task. Instead, these
operations specify multiple parallel operations performed at all pipe stages throughout the engine. Specifically, the parallel
operations specified in a single VLIW instruction are used for operations in different pipe stages. For example, in Figure 3, when
instruction i5 reaches Decode-1 stage in cycle 3, it sends its control signals to Fetch, Decode-0, Execute-0, Execute-1, Execute-2
and Writeback in that same clock cycle.

It is the programmer's responsibility to understand all of the concurrent activities that are taking place in the
neighboring pipe stages when an instruction reaches the Decode-1 stage, so that the right control functions can
be specified.

 NOTE

A traditional microprocessor is more "instruction centric" in the sense that an instruction specifies a precise architectural function
that needs to be performed. The architectural state between two instructions (or at the instruction boundary) can be clearly
identified. In such traditional machines, the pipeline operations can be clearly described by an instruction pipeline.

On the other hand, the VSPA Engine is more "data centric" in the sense that the instructions are coded around the data flow.
That is, the instructions are coded to maximize the throughput of data flowing through the pipeline.

The architectural state of a VLIW engine is often ill-defined across instruction boundaries since each instruction in the engine
specifies operations that affect data operations in other pipe stages. In such VLIW engines, the pipeline operations are best
described by two closely connected pipelines: an instruction pipeline and a data pipeline. The two pipelines must work perfectly
in tandem to produce the correct results and to achieve maximum throughput rate.

3.1.1 Program memory
The Program Memory (PMEM) is used to store program codes that are written in VSPA macroinstructions. The PMEM is
composed of Program RAM (PRAM).

See Figure 4.

• The PRAM address spaces contain up to 32768 locations.

• Each location can store one 64-bit macroinstruction.

• PRAM address space starts at address 0

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 19 / 536

63 0
0

32767 (0x7FFF)

Program RAM
(PRAM)

Figure 4. Program memory address space

The actual physical sizes of the PRAM address space are implementation-specific. However, it will be no larger than 32768 lines.

3.1.2 Program control
The Program Control Unit controls all VCPU instruction fetches, control-flow re-directions, and loop execution. The instruction
set supports the following control-flow re-directions:

• Conditional and unconditional jumps

• Conditional and unconditional subroutine calls

• Return from subroutine

There are no sources of interrupts. Software threads begin with a wake-up or 'go' event, and complete with execution of the 'done'
instruction, which puts the VCPU into a low power state.

The done instruction will immediately halt the execution of the VCPU. Software must make sure that all instructions
have been completed before 'done' is executed. Instructions with extra latency, such as load/store, should have
an appropriate number of other instructions before a 'done'.

 NOTE

All jumps take 3 clock cycles to complete. They will execute 2 branch delay slots. That is, the 2 instructions immediately following
the jump instruction will always be executed, even if the jump is taken.

2 adds executed after a jmp
jmp target;
add a2,a3;
add g0,g0,g1;

When the jmp instruction is executed, the following two 'add' instructions will also be executed, even though the jump is taken.

mv and ld executed after rts is taken
rts;
mv a0,0;
ld [a0]+a1;

In this example, the 'mv' and the 'ld' instructions will be executed, even though the rts is taken.

3.1.2.1 Return address stack
The 'jsr' instruction allows a program to conditionally or unconditionally jump to a subroutine. Sometime later, the subroutine will
execute an 'rts' instruction, where program execution returns to the calling function.

The VCPU maintains a 16-deep Return Address Stack (RAS). This allows up to 16 sequential subroutine calls without an 'rts'.
Note, when a jsr instruction is executed, the address 2 words ahead of the jsr instruction is pushed onto the RAS.

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 20 / 536

VCPU RAS pointer is four bit. There is no hardware recovery mechanism for RAS overflows. The maximum
permissible depth for nested subroutine calls is 16. Overflow is not reported, however, the simulator will generate
an error when the RAS overflows. It is the user responsibility to avoid error conditions such as underflow and
overflow.

 CAUTION

3.2 Data plane

Data Memory Arbitration

ro
r_

m
od

e

rot

Rmode llr_mode

S0mode S1mode S2mode

Vmode

Vector
Comparator
cmp(threshold)

cmp_ptr

rS0
incr_rS0

range1_rS0
range2_rS0

rSt
incr_rSt

range1_rSt
range2_rSt

Memory Pointer
Registers (19 bits)

Scalar Registers (32 bits)

g0 g4 g8

Pointer
ALU

Scalar
ALU

g1 g5 g9
g2 g6 g10
g3 g7 g11

creg

Re-order Algorithm
ptr_mode

sp
a0
a1 a3

a2

a4
a5 a13

a12

a6
a7 a15

a14

a8
a9 a17

a16

a10
a11 a19

a18

S0 (2048 bits)

S1 (2048 bits)

S2 (2048 bits)

Type Converter (2048) bits)

Vector Arithmetic
Unit

sign

H32 32 32 2048

2048

32

32

32

384
(12x32)

1024 1024 64

R0
R1
R2
R3
R4
R5
R6
R7

Vector Register Array
(8x1024 bits)

rS1
incr_rS1

range1_rS1
range2_rS1

rS2
incr_rS2

range1_rS2
range2_rS2

rV
incr_rV

range1_rV
range2_rV

ro
l_

m
od

e

20482048

Type
Converter

Type
Converter

Type
Converter

2048

Figure 5. VCPU Scalar & Vector Data Planes

Table 3 shows all major functional units in the VCPU data plane.

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 21 / 536

Table 3. VSPA Functional Units

Unit Descriptions

VRA Vector Register Array The array consists of eight 1024-bit rows or registers.

• The array is addressed as a one-dimensional array in half-word
increments.

• Each register contains 64 half-words.

S0mode
S1mode
S2mode

VAU Operand Source Register
Muxes

Used for intra-vector permutation of data read from the VRA.

Data type conversion is also implemented here.

 NOTE

S0 S1 S2 Source Operand Registers Store source operands for the VAU. Each source operand register is 2048-
bits wide.

Vmode VAU Output Mux Performs various intra-vector permutations on the output results of the VAU
before they are written back to the VRA.

Rmode DMEM Load Mux Performs various intra-vector permutations on the data read from the
DMEM before it is written to the VRA.

llr_mode DMEM Store Mux Performs various data compression operations on data read from the VRA
before it is written to DMEM.

VAU Vector Arithmetic Unit Vector containing 16 individual arithmetic units (AUs).

• Each AU can perform a single complex operation or 4 real
operations.

• Each pair of AUs can also perform a decimation in time (DIT) or a
decimation in frequency (DIF) butterfly operation.

rot Vector Rotate Unit Performs rotate functions on VRA rows:

R0R1-combined, R0-only, R1-only, R2R3-combined, R2-only, or R3-only.

R4R5-combined, R4-only, R5-only, R6R7-combined, R6-only, or R7-only.

NCO Vector Numerically-Controlled
Oscillator

Generates vectors of complex exponential samples for use as twiddle
factors in FFT and mixing operations.

aX, pAU,
ptr_mode

DMEM Pointer Registers,
Pointer AU, & reorder algorithm
(ptr_mode)

Generates word addresses that are used to access DMEM. Supports
various arithmetic operations and useful reorder algorithms.

rS0, rS1, rS2,
rV, rSt

VRA pointers 5 sets of pointers that are used for addressing the contents of the VRA.
There is a dedicated pointer for each port in the VRA:

• S0 read-port

• S1 read-port

• S2 read-port

• DMEM store read-port

Table continues on the next page...

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 22 / 536

Table 3. VSPA Functional Units (continued)

Unit Descriptions

• VAU output write-port

These pointers support auto-increment, auto-decrement, and modulo
operations (for buffer management).

VCMPU Vector Compare Unit Independent engine that performs various vector compare operations. The
results of these compare operations set condition bits used to determine
branch directions.

gX, & sALU General Purpose Scalar
Registers and Arithmetic and
Logic Unit

• Performs general purpose arithmetic, including fixed-point add,
subtract, logical and, logical or, shift left, logical or arithmetic shift
right, and so on.

• Also performs data movements between scalar registers and other
hardware resources (such as IP-registers and pointer registers).

H Vector Sign Register Captures the sign of each AU operation.

• Provides storage for up to 4 VAU operations in a single register.

• Some operations are provided that are useful in peak-clipping
algorithms.

creg Control Register An array of data plane control parameters. The array is addressed in
nibbles.

Type Converter Converts between the various data types used in the VAU and VRA.

VPx Vector predicate registers Four 128-bit registers holding predicate bits (zero or non-zero flags).

VPRED Vector predication unit Provides support for vector predication of real-mode vector instructions.

3.2.1 Data memory
The VCPU Data Memory (DMEM) is used for temporary program variable storage. It is organized into multiple lines where each
line is 1024-bits wide.

Each DMEM address uniquely identifies a single hword in the DMEM. The first DMEM line starts at address 0; the second DMEM
line starts at address 64; the third DMEM line starts at address 128 and so on.

A DMEM line follows the little endian addressing convention, that is, the lowest address unit is the right-most (or the least
significant) hword on the line. Figure 6 shows how data is packed in a DMEM line. Complex samples are composed of real (I)
and imaginary (Q) components, where the real portion is at the lower address unit(s) and the imaginary portion is at the higher
address(es). For half-precision representation, the real part occupies the lower 16 bits and the imaginary part occupies the higher
16 bits.

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 23 / 536

i 1 0

Imaginary (i odd) Real (i even)

DMEM Line

16 bits each

16 bits each (half-precision)

63 62 i+1

Figure 6. Data Packing in a DMEM Line

3.2.2 Data memory pointers
DMEM is addressed by pointer registers. Each pointer is 19-bits, but only 22 bits are used to address DMEM (the most significant
portion indicates the line index and the least significant portion identifies a hword in the line).

The pointer AU is an independent unit, which is useful for modifying pointers in parallel with memory accesses. It performs
operations on pointer registers, denoted as aX registers.

3.2.2.1 Pointer registers
There are 20 aX registers: a0 - a19. The following operations can be performed with the aX registers:

• Address DMEM using the content of an aX register. The aX register is then optionally post-incremented or post-
decremented.

• Load a 19-bit unsigned immediate value from an instruction into an aX register.

• Perform an arithmetic operation on 2 aX registers, and write the result to an aX register.

3.2.2.2 Hardware buffer management
The a0, a1, a2 and a3 registers (of aX registers) also have a modulo mode that is useful for circular buffer management.

The boundaries of a circular buffer are defined by a range_aX register, where:

• The range_a0 register defines the boundaries of the circular buffer associated with a0.

• The range_a1 register defines the boundaries of the circular buffer associated with a1.

• The range_a2 register defines the boundaries of the circular buffer associated with a2.

• The range_a3 register defines the boundaries of the circular buffer associated with a3.

Table 4 shows all the aX registers.

Table 4. Address Registers (aX)

aX Registers Modulo addressing support Modulo buffer registers

a0 Yes range_a0

a1 Yes range_a1

a2 Yes range_a2

a3 Yes range_a3

Table continues on the next page...

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 24 / 536

Table 4. Address Registers (aX) (continued)

aX Registers Modulo addressing support Modulo buffer registers

a4 - a19 No NA

Upon a hardware reset, the range_aX registers are initialized for linear addressing (non-modulo).

3.2.2.3 Pointer reordering algorithms
A pointer address can be modified according to a reorder algorithm specified by the instruction parameter, ptr_mode. Two
algorithms are available:

• Normal Mode (no reorder)

• Bit-Reversal Mode

Figure 7 shows the DMEM address generation flow.

aX

Bit
Reversal

DMEM Address

Normal
Mode

Figure 7. Pointer reordering algorithm block diagram

3.2.2.4 Normal mode
When a DMEM address is generated using Normal mode, the address is pulled directly from an aX register. No additional
computation is performed.

3.2.2.5 Bit-reversal mode
Bit-Reversal mode is used to generate an index into an array of FFT samples.

Before accessing DMEM using Bit-Reversal mode, you must initialize the following:

• set.br, fft_size Initializes the br state machine for pointer aX with a specific fft size.

Table 5 defines the bit reversal algorithm where certain bit positions of the aX register are reversed according to the specific FFT
size.

Table 5. Bit Reversal Mode

FFT Size Bits Reversed in the lower portion of aX register DMEM Address

32 aX[5:1] {aX[18:6], aX[1:5]}

Table continues on the next page...

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 25 / 536

Table 5. Bit Reversal Mode (continued)

FFT Size Bits Reversed in the lower portion of aX register DMEM Address

64 aX[6:1] {aX[18:7], aX[1:6]}

128 aX[7:1] {aX[18:8], aX[1:7]}

256 aX[8:1] {aX[18:9], aX[1:8]}

512 aX[9:1] {aX[18:10], aX[1:9]}

1024 aX[10:1] {aX[18:11], aX[1:10]}

2048 aX[11:1] {aX[18:12], aX[1:11]}

4096 aX[12:1] {aX[18:13], aX[1:12]}

8192 aX[13:1] {aX[18:14], aX[1:13]}

16384 aX[14:1] {aX[18:15], aX[1:14]}

32768 aX[15:1] {aX[18:16], aX[1:15]}

65536 aX[16:1] {aX[18:17], aX[1:16]}

3.2.3 Vector register array
The Vector Register Array(VRA) behaves like a cache between DMEM and the AUs. It consists of 8 registers (R0 - R7), where
each register is 1024 bits wide. The width of these registers matches the width of the DMEM lines. Figure 8 shows how data is
packed into the VRA.

32-bit storage

R0
R1
R2

R6
R7

VRA

013031

Figure 8. Data Packing in the VRA

Similar to a DMEM line, each register in the VRA can contain either 32 words or 64 half-words. Each register in the VRA follows
the little endian addressing convention, that is, the lowest addressable unit is the right-most (or the least significant) half-word in
the register line. Within a 32-bit word, in half-precision representation, the real part occupies the lower 16-bits and the imaginary
part occupies the higher 16-bits. Figure 9 shows how data is packed in a VRA register line.

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 26 / 536

i

Imaginary Real

ith word

A VRA Register

32 bits each

16 bits each (half-precision)

013031

Figure 9. Data packing in a VRA register line

The VRA can store either 8 * 64 = 512 half-words (or 8 * 32 = 256 full-words). Ignoring the VRA register boundaries, the VRA
can be addressed as a 1-D array in half-word increments. The array is accessed using pointers.

3.2.3.1 VRA read/write ports
The VRA ports enable up to 6 reads and 3 writes to occur during each clock cycle. However, not all read and write operations
can access all registers in the VRA. Certain operations have restrictions on which registers they can access. Table 6 shows all
possible read and write operations, and associated access restrictions.

Table 6. VRA Read and Write operations

Port
connection

Read or Write
port

Register access
restrictions

How Source/Destination
registers are specified

Pointer
register
width

Access
granularity

S0 Read None rS0 9 bits line or half-word

S1 Read None rS1 9 bits line or half-word

S2 Read None rS2 9 bits line or half-word

DMEM Store Read None rSt 3 bits line only

VAU output Write None rV 9 bits line or half-word

DMEM Load Write None Load instruction 'ld Rx'
parameter

NA whole or part of line

rot input Read R0/R1 together or
R2/R3 together (right
rotate)

R4/R5 together or
R6/R7 together (left
rotate)

set.rot,...' instruction NA line or two lines

rot output Write R0/R1 together or
R2/R3 together (right
rotate)

R4/R5 together or
R6/R7 together (left
rotate)

'set.rot,...' instruction NA line or two lines

VCMPU Read None rS2 NA half-word

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 27 / 536

3.2.3.2 VRA operation source and destination
The VRA source or destination register can be specified implicitly or explicitly using pointers, as shown in Table 6. There are 5
ports that utilize a specific pointer for accesses to the VRA: rS0, rS1, rS2, rV, rSt.

3.2.3.3 VRA access granularity
The VRA's read and write ports have different access granularities defined in Table 6. Accordingly, the pointers that are used to
address the VRA also have different widths.

3.2.3.4 VRA pointer control registers
Operation of each VRA pointer is specified with a set of 3 registers: rX.incr, rX.range1, rX.range2. Figure 10 shows all 5 VRA
pointer sets.

rS0.incr

rS0

 rS0.range1 rS0.range2

rS1.incr

rS1

 rS1.range1 rS1.range2

rS2.incr

rS2

 rS2.range1 rS2.range2

rV.incr

rV

 rV.range1 rV.range2

rSt.incr

rSt

 rSt.range1 rSt.range2

Figure 10. VRA pointer register sets

The functionality of the registers is as follows:

• rX.incr - Contains the 9 bit offset of the post increment/decrement for rX. This is a signed integer.

• rX.range1 - Contains the 9 bit beginning and wrap addresses of the 1st modulo buffer in the VRA. If the result of a post
increment/decrement operation is equal to the wrap address, then the pointer is set to the beginning address of the buffer.
Refer RAG pointer update algorithm. The 1st modulo buffer is disabled by setting the rX.range1 register to zero.

• rX.range2 - Contains the 9 bit beginning and wrap addresses of the 2nd modulo buffer in the VRA. If the result of a post
increment/decrement operation is equal to the wrap address, then the pointer is set to the beginning address of the buffer.
Refer RAG pointer update algorithm. The 2nd modulo buffer is disabled by setting the rX.range2 register to zero.The 2nd
modulo buffer can only be enabled if the 1st modulo buffer is also enabled.

Collectively, these pointer register sets allow you to configure a total of 10 circular buffers inside the VRA. Upon reset, the
rX.range1 and rX.range2 registers are set to zero, disabling both circular buffers for each VRA pointer.

The VRA pointer registers can be configured using the following instructions:

• setA.VRAptr rX,...- There is also an OpB version of this instruction. See VCPU instruction set summary

• set.VRAincr rX,...

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 28 / 536

• set.VRAptr,... - Configures the 9-bits of all pointers in 1 instruction(cycle).

• set.VRAincr,... - Configures the 9-bits of all increments in 1 instruction(cycle).

• set.VRArange1 rX,... - Configures the 9-bits of the range registers (start1 and wrap1 addresses) in 1 instruction(cycle).

• set.VRArange2 rX,... - Configures the 9-bits of the range registers (start2 and wrap2 addresses) in 1 instruction(cycle).

The "clr.VRA" instruction can be used to clear the entire set of all VRA pointer registers.

3.2.3.5 VRA data conflicts
There are 4 data input ports on the VRA elements

In order of write priority (highest to lowest):

• Port 0 – Load port, used by OpV ld.<mode> instructions, ldB Rx & mv Rz, Ry.

— ldB Rx may be used in parallel with ld.<mode> Ry provided they write different vector
registers.

— mv Rz, Ry must not be in any cycle between a vector memory load (ld [aX]) and a
subsequent ld.<mode> instruction.

• Port 1 – Write back port, used by write back (wr.<mode>) from AU, mv [rV], gX; fill [rV],
gX; lsb2rf [rV], gX; mv [rV] I;

• Port 2 – Rotate port, used exclusively by VRA rotate instructions

• Port 3 – Zone mask port, used exclusively by clr.VRA gX, gY;

If a conflict occurs within a port, the results are undefined and an error should occur in the assembler. If there is no conflict
between ports no error should occur.

The write back port (1) is the general purpose port for the VRA, any instructions not listed, which modify the VRA, will probably
utilize this port.

3.2.4 DMEM address space vs. VRA address space
The address space for Data Memory (DMEM) and the address space for the Vector Register Array (VRA) represent 2 distinct
data storage spaces. Address 0 for DMEM, for example, is a different storage location than address 0 for the VRA. The 2 address
spaces are distinguished by these facts:

• The DMEM is an external memory which can be shared with other VSPA processing units, such as the IPPU.

• The access granularity for DMEM is a 16-bit half-word. The valid address space for DMEM ranges from 0 through 524287,
where each address in this space points to a unique half-word.

• The access granularity for the VRA can be either a word or a half-word.

• Address generations for DMEM is handled by the MAG, which generates 19-bit addresses to access the DMEM.

• The VRA is an internal register array which can only be accessed by the VCPU.

• Address generations for the VRA is handled by the RAG unit. The RAG generates 9 bits addresses to access the VRA.

— When the VSPA Engine operates on a vector using a "complex" instruction, only the upper 8 bits of the address are
used; the least significant bit of the address is ignored.

— When the VSPA Engine operates on a vector using a "real" instruction, all 9 bits of the address are used.

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 29 / 536

MAG

RAG

DMEM

VRA

19-bit DMEM address

9-bit VRA address

Valid address space: 0-524287

Valid address space: 0-511

Figure 11. Address spaces for DMEM and VRA

3.2.5 Vector rotate unit
The Vector Rotate Unit performs rotate-right and/or rotate-left operations in half-word increments (which are specified by the
rot_mode parameter of the 'set.rot ...' instruction). Rotations of 1, 2, 4, and 8 half-words are available. This is an independent
machine and it operates in parallel with the other components in the vector data plane. The unit supports rotations on the following
VRA registers:

• R1R0 where R0[0] is rotated into R1[63], and R1[0] is shifted right into R0[63]

• R0-only where R1[0] is shifted right into R0[63]

• R1-only where R0[0] is rotated into R1[63]

• R3R2 where R2[0] is rotated into R3[63], and R3[0] is shifted right into R2[63]

• R2-only where R3[0] is shifted right into R2[63]

• R3-only where R2[0] is rotated into R3[63]

• R5R4 where R4[63] is rotated into R5[0], and R5[63] is shifted left into R4[0]

• R4-only where R5[63] is shifted left into R4[0]

• R5-only where R4[63] is rotated into R5[0]

• R7R6 where R6[63] is rotated into R7[0], and R7[63] is shifted left into R6[0]

• R6-only where R7[63] is shifted left into R6[0]

• R7-only where R6[63] is rotated into R5[0]

3.2.6 VAU operand source registers
There are 3 source registers (S0, S1, S2) used as the input to all VAU operations. Each register is 2048-bits wide and contains
64 single precision variables.

3.2.7 VAU operand source register muxes
There are 3 VRA ports allocated to feed the VRA source registers with data each clock cycle. These instructions use the syntax,
'rd S0', 'rd S1', or 'rd S2'.

• A bit is allocated for each port in the instruction word, so that all 3 reads can occur in a given cycle.

• The operation completes in 2 cycles but is pipelined, which enables single-cycle throughput to the Vector AU.

3.2.7.1 Port permutation modes
Data read from the VRA into the VAU operand source registers can be re-arranged, according to a permutation algorithm or
mode. Many permutation modes are available for each port, although each set is not identical. A given port's set of permutation
modes have been determined by benchmarking a large number of signal processing algorithms on the core. More modes are
available on the S1 port, which feeds one leg of the VAU multiplier. In many single input algorithms (such as an FIR filter), this

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 30 / 536

port carries the input sample stream. The other leg of the multiplier is fed by the S0 port from the VRA. It can read the filter
coefficients in an FIR filter. The S2 port feeds the adder in the VAU and has the fewest possible permutation modes.

The intra-vector permutation mode for ports, S0, S1, and S2 is specified by the instruction parameter S0mode, S1mode and
S2mode, respectively, using the following instruction:

• set.Smode ...

This is a sticky operation, which means that once the permutation mode is set, it remains in this state until changed by the next
'set.Smode ...' instruction. See Rotate register instructions for more details.

3.2.7.2 Data type conversion
These data paths from the source register VRA ports are also responsible for data type conversion. VAU operations can be in
single precision. However, the contents of the VRA can be half-fixed (16 bits), half precision floating point (16 bits), single (32
bits). Proper operation in the VAU requires type conversion to occur prior to latching data in the operand source registers. The
precision of the data read from VRA port, S0, S1, and S2 is specified by the instruction parameter, S0prec, S1prec and S2prec,
respectively, using the following instruction:

• set.prec

Data type conversion will occur if there is a mismatch between the VAU precision (specified by AUprec) and the source register
port precision.

This is a sticky operation, which means that once the precision parameter is set, it remains in this state until changed by the next
'set.prec' instruction.

3.2.8 Vector arithmetic unit
The VAU is composed of arithmetic units (AU) and special arithmetic units (SAU). Each AU has a throughput of 1 complex
operation or 4 real operations per clock cycle. It has a pipeline latency of 4 clock cycles for SP operations. One Pair of AUs can
implement a radix-2 butterfly operation. There are 16 AUs that support single precision operations. Each SAU has a throughput
of 1 operation per clock cycle which may be performed in parallel with other AU operations. The composite throughput of the
VAU can be summarized:

• 64 SP real linear operations per clock cycle

• 16 SP complex linear operations per clock cycle

• 32 SP non-linear operations per clock cycle

• 8 SP butterfly operations per clock cycle

The VAU precision is specified by the AUprec parameter using the 'set.prec ...' instruction. The mode is sticky, so the VAU remains
in a set mode until it is changed by another set instruction.

3.2.8.1 Arithmetic unit
The AU implements the linear operations within the VAU which are:

• Multiply-add-real (rmad): V[i][n] = (S0[i][n-4]*S1[i][n-4]) + S2[i][n-4]

• Multiply-add-complex (cmad): V[i][n] = (S0[i][n-4]·S1[i][n-4]) + (S0[i+1][n-4]·S1[i+1][n-4]) + S2[i][n-4]

• Multiply-accumulate-real (rmac): V[i][n] = (S0[i][n-4]*S1[i][n-4]) + V[i][n-1]

• Multiply-accumulate-complex (cmac): V[i][n] = (S0[i][n-4]·S1[i][n-4]) + (S0[i+1][n-4]·S1[i+1][n-4]) + V[i][n-1]

• Multiply-add-feedback (maf): V[i][n] = (V[i][n-4]*S1[i][n-4]) + S2[i][n-4]

• Multiply-add-sign (mads): V[i][n] = (S0[i][n-4]*S1[i][n-4]) + sign((S0[i][n-4]*S1[i][n-4]))*S2[i][n-4]

• Multiply-feedback-accumulate (mafac): V[i][n] = (V[i][n-4]*S1[i][n-4]) + V[i][n-1]

• Pipelined with 4-cycle latency for SP operations

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 31 / 536

'n' is the cycle count and 'i' is the vector element number.

 NOTE

The radix-2 butterfly operations by a pair of AU's include:

• Decimation-in-time Butterfly (cmad)

• Decimation-in-frequency Butterfly (dif.sau)

• SP support only

• Pipelined with 4-cycle latency

The VAU operation results are stored into the register (V), which is hidden in the programming model.

3.2.8.2 Special arithmetic unit
The SAU implements the non-linear operations within the VAU. The results of the SAU operation may then be used as a source
operand for a subsequent AU operation, or they may be written directly back to the VRA.

The non-linear operations supported include:

• Reciprocal (rcp): SAUout = 1/S1

• Reciprocal Square-root (rrt): SAUout = 1/sqrt(S1)

• Square-root (srt): SAUout = sqrt(S1)

• Pre-Add (padd): SAUout = S1+S2

• Pipelined with two cycle latency

The result of the SAU operation may be used as an input to an AU operation by using the suffix '.sau' which is available on several
AU instructions:

The AU operations which support using the SAU result are:

• Multiply-add (rmad.sau/cmad.sau): V = S0*SAUout + S2

• Multiply-accumulate (rmac.sau/cmac.sau): V = S0*SAUout + V

• Multiply-add-sign (mads.sau): V = S0*SAUout + sign(S0*SAUout)*|S2|

• Decimation-in-frequency Butterfly (dif.sau)

The result of the SAU operation may be written back to the VRA by using either of the following instructions:

• wr.fn: Write an entire vector of SAU results to the VRA

• wr.fn1: Write one element SAU result to the VRA

The SAU operation results are stored in an internal register (SAUout), which is hidden in the programming model.

3.2.9 VAU destination mux
The contents of the VAU output register are written back into the VRA through a dedicated port using the pointer, rV.

Data type conversion is controlled using the Vprec parameter of the 'set.prec ...' instruction. This specifies the precision of the
data being written into the VRA. The contents of V are always stored in single precision, depending on the state of AUprec.

Permutation modes are also available in this path and are specified with the Vmode parameter of the write-result instruction,
'wr.Vmode R[rV] ...'. This is a single cycle operation, thus data is written from V into the VRA in one clock cycle. Note, Vmode is
not sticky, and it must be specified in each write-result instruction.

3.2.10 Vector sign capture register (H)
The vector sign register (H) captures the sign of each VAU operation, providing storage for up to four VAU operations in a single
register and enabling continuity of peak detection across multiple blocks. When a peak search is performed, the H register is

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 32 / 536

scanned looking for a 0->1 transition. A “skip offset” value, which must be less than the width of the H register (256 bits), is also
provided to indicate that the next search will resume after skipping ahead "n" samples from the point it finds the 0->1 transition.
In cases where a 0->1 transition is detected at the end of the current block, the skip value may take the pointer to the next peak
search start location to a position that is beyond the current block. In this case a “skip mask” value is captured so that the "skip
ahead" region is marked. When the next block of 256 bits is loaded, the search should start from just a few samples into the
block. This allows for an AND or OR of the “skip mask” to the new register to effectively remove all transitions from the skip region
(OR is used for 0->1, while AND is used for 1->0 transitions).

The vector sign capture register can be reset by the following code sequence:

set.creg 12,0;
set.creg 12,6; // Enable sign capture with auto-increment, initial state = 0

See System control registers, H register control for a full description of the vector sign capture control.

3.2.11 Vector NCO
The Vector NCO is used to generate complex exponential sequences used in mixing algorithms and twiddle factors for DFT and
FFT algorithms. The data is fed directly into the VAU through source operand S1. AUprec must be constrained to be single or
F24. If AUprec=F24, the number of NCO operations per cycle is 32.

There are three modes available (which are specified with the 'set.nco ...' instruction):

• radix2: generates 8 twiddle factors per cycle, which are loaded into S1 for use in VAU butterfly operations.

• singles: generates a single twiddle factor per cycle and replicates it across all elements of S1.

• normal: generates 16 samples of a complex tone each cycle. The vector is generated into S1 in preparation for complex
multiply operations. This mode is typically used for generation of the injection signal in a digital mixing algorithm.

The base frequency of the NCO is specified using the nco_freq register. The phase is accessible via the nco_phase register.

3.2.12 Scalar arithmetic & logic unit
The Scalar ALU performs general purpose scalar arithmetic and logic operations on a set of twelve 32-bit registers; g0, g1, ...,
g11.

A rich set of operations is available and summarized in Table 7. Many of the instructions support conditional execution, optional
sign extension, full-word and half-word immediate forms, among other useful features.

Table 7. Summary of scalar ALU operations

General function Operations

Arithmetic Operations add, subtract, multiply, divide, modulo, absolute-value, base-2 logarithm,find-first-one,
find-first-0-to-1, find-normalize-shift

Logical Operations bit-test, bit-clear, and, or, not, xor, shift-right, shift-left, linear-feedback-shift-register

Data Type Conversions Fixed-point to floating-point & vice-versa

Data Movement • Between 2 scalar registers

• Between a scalar register and an IP register

• Between a scalar register and a pointer storage register

• Between a scalar register and a VRA element.

• Between scalar registers and operand generator registers (such as the NCO)

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 33 / 536

The scalar ALU also serves as a control hub that connects various major functional units within VSPA. It is connected to the IP
registers, VRA, pointer storage registers and some other hardware resources (such as NCO registers, and so on). The scalar
ALU also has direct access to DMEM. Figure 12 shows the connectivity of the Scalar ALU to other components in VSPA.

IP Registers

Vector
Register

ArrayScalar ALU

DMEM

GP Registers

Other hardware resources:
- NCO registers

32

32

32

32

32

Pointer
Registers

Figure 12. Scalar ALU connectivity

3.3 Data precision
This processor supports the following different data precisions:

Single (SP) 32-bit single-precision floating point

Half (HP) 16-bit half-precision floating point

Half-fixed (HF) 16-bit half-precision fixed point

Floating point representation is compliant with IEEE754(truncation) with some notable exceptions: (1) sub-normals are not
supported and (2) NAN and Infinity are not supported (treated as large magnitude numbers).

Throughout this document the terms 'half', "half_float" and 'HP' will always refer to a 16-bit half-precision floating point value.

VSPA uses a signed-magnitude representation for HPfixed numbers as illustrated in Figure 13 below.

15 14

sign fraction

0

Figure 13. VSPA Half-fixed data precision

This format has two fields: a 1-bit sign and an unsigned 15-bit fraction. The sign field encodes the sign of the floating-point number
(0 for positive and 1 for negative). The fraction field is a 15 bit integer in the range [0, 32767] with the most significant bit next to
the sign bit.

The fractional number is given by:

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 34 / 536

For example, 0x4000 represents 0.5, and 0xC000 represents -0.5. Note, this format can only represent numbers with a magnitude
less than one. Therefore, 0x7FFF represents the maximum positive number 0.999969482421875 and 0xFFFF represents the
maximum negative number -0.999969482421875. Both positive and negative zero representations are possible.

One benefit of the signed magnitude representation is the quantization noise observed in many algorithms will not have a DC
bias.

The table below provides the constansts for AU single and AU F24 data precisions.

Table 8. Supported machine dependent constants

AUprec single AUprec F24 Notes

Safe minimum, such that 1/
sfmin does not overflow

sfmin 2^-126=1.18e-38 2^-14=6.10e-5 No sub-normal support

Base of the machine base 2 2 -

eps*base prec 2.38e-7 7.62e-6 eps*2

Rounding rnd 0 0 -

Minimum exponent before
(gradual) underflow

emin -126 -14 -

Underflow threshold -
base**(emin-1)

rmin 2^-126=1.18e-38 2^-14=6.10e-5 No sub-normal support

Largest exponent before
overflow

ema
x

128 16 -

Overflow threshold -
(base**emax)*(1-eps)

rmax 2^128*(1-eps)=3.40e38 2^16*(1-eps)=6.55e4 -

3.3.1 Two's complement conversion
In some cases, data may be loaded from external devices into VSPA as a two's complement value. Unlike VSPA's internal data
precisions, described in section Data precision, this data is asymetric. That is, it can represent a larger negative number than a
positive number. For example the maximum negative number which may be represented in a 16-bit two's complement format is
-32768 (0x8000) but the maximum positive number is 32767 (0x7fff).

VSPA has hardware which can convert this two's complement data into the half-fixed format shown in VSPA Half-fixed data
precision. When doing these conversions the maximum negative 16-bit two's complement number cannot be converted to an
exact value in the half-fixed format and instead must be saturated to the maximum negative value of that format. So the value
-32768 (0x8000) in 16-bit two's complement will be converted to 0xffff in half fixed. This saturation applies to data converted using
the DMA's AXI to DMEM format conversion and to data converted using the VCPU instruction 'ld.2scomp' when it is configured
for 16-bit conversions.

Saturation is not necessary for the 'ld.2scomp' instruction when configured for 8, 10 or 12-bit twos complement
conversions since the maximum negative values in these formats can be exactly represented in the half-fixed
format.

 NOTE

Data converted from half-fixed to 16-bit twos complement using the DMA's DMEM to AXI format conversion does not need to be
saturated since the maximum negative value of half-fixed 0xffff can be exactly represented in the 16-bit twos complement format
as 0x8001 (-32767). However a '-0' (0x8000) in half-fixed will be converted to '0' (0x0000) in 16-bit twos complement.

The representations of different numbers in two formats is shown in the table below as well as the treatment of the special cases.

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 35 / 536

Table 9. Special cases for twos complement conversions

Number1 2's
complement

hex

1's
complement2

hex

Special case

-32768 0x8000 NA 16-bit twos complement value is converted to 0xffff (-32767 1's complement)

-32767 0x8001 0xffff No special conversion

-1 0xffff 0x8001 No special conversion

-0 NA 0x8000 1's complement value is converted to 0x0000 (0 16-bit twos complement)

0 0x0000 0x0000 No special conversion

1 0x0001 0x0001 No special conversion

32767 0x7fff 0x7fff No special conversion

32768 NA NA No special conversion

1. VSPA's half-fixed format is used to represent fractional numbers and not integers as shown in this table.
2. 1's complement is a sign magnitude format similar to VSPA's half-fixed and is used here as it can represent integers.

3.4 Data types
The processor supports multiple data types.

Table 10. Supported Data Types

Data Type Unit Size Description

nibble 4 bits Typically used to represent bit-log-likelihood ratios.

byte 8 bits Typically used to represent bit-log-likelihood ratios.

half-word 16 bits Typically used to represent a half-precision fixed/float point I or Q sample. The data memory
and vector register array addressed in half-word increments.

full-word or word 32 bits Can contain a complex sample in half-precision fixed/float point representation or an I or Q
sample in single-precision floating point format.

double-word or
double

64 bits Can contain a complex sample in single-precision floating point representation.

vector 1024 bits A vector consists of a finite number of scalar elements. An element can be complex or real
and can be represented in any supported precision.

3.5 VCPU GO events
The VCPU can be made to GO by several different events. Each event must be acknowledged (cleared) by the VCPU or it will
cause another Go immediately after the VCPU executes the DONE instruction.

The GO events are as follows:

• host_go: Occurs whenever an IPbus host sets the host go bit in the CONTROL register. The host software has generated
an event that needs servicing by the VCPU. This event is cleared by the VCPU writing a 1 to the host_go bit in the
CONTROL register.

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 36 / 536

• ippu_go: Occurs upon the completion of a 'go requesting' IPPU sequence, that is, the IPPU executed a DONE instruction
and was programmed to generate a GO. This event is cleared by writing a 1 to the ippu_go flag in the CONTROL register.

• dma_go_chan[x]: Occurs upon the completion of a 'go requesting' DMA command, that is, a DMA channel finishes that
was programmed to generate a GO. These events are cleared by writing 1's to the associated flags in the
DMA_GO_STAT register.

• ext_go[x]: Indicates the detection of a rising edge on an ext_VCPU_go input. These events can only occur if armed by the
associated bits in the ext_go_ena register. There are two ways to clear ext_go event:

1. By clearing the corresponding bits in the EXT_GO_STAT register - Writing 1 to the EXT_GO_STAT register bits
clears the ext_go event. The EXT_GO_STAT bit will assert again after next rising edge detected on the External
GO inputs. This is the recommended way to clear a pending go_event.

2. By clearing EXT_GO_ENA register - When EXT_GO_STAT is asserted and the EXT_GO_ENA register is negated,
the ext_go event is negated. Note the ext_go will assert when EXT_GO_ENA register is asserted (written to 1).
Additional ext_go event will not be detected when the EXT_GO_ENA register is cleared. To detect additional
ext_go event, the ext_go event should be cleared by clearing EXT_GO_STAT register. Note that clearing an
EXT_GO_ENA bit does not clear the corresponding EXT_GO_STAT bit.

3.6 Byte order
The VCPU operates in the little endian data format.

3.7 IRQ for thread killing
There is a corresponding IP register enable bit, and a status bit for vcpu_irq input, that reads the direct state of the vcpu_irq input.

When VSPA is in GO state (BUSY=1), an enabled VCPU_IRQ will force an immediate JMP to PC=([VEC_BASE] + 4 full word
instructions). It also forces entry into SUPV mode. No state will be saved.

If VSPA is in DONE state (BUSY=0) when VCPU_IRQ is recognized, VSPA will execute a virtual GO. Rather than starting at
PC=0 it will start at PC=[VEC_BASE]+4. To avoid an immediate virtual GO, the VCPU_IRQ status bit must be cleared before
executing DONE.

NXP Semiconductors

VCPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 37 / 536

Chapter 4
VCPU Instruction Set
4.1 VCPU instruction set overview
VSPA is a VLIW (very long instruction word) processor. On each clock cycle, the core issues an instruction word (referred to here
as a macro-instruction). The macro-instructions contain 1 or more microinstructions that execute in parallel. This section:

• Defines the microinstruction operation code (opcode) mnemonics and their functionality.

• Describes the allowed combinations of microinstructions used to form a macro-instruction.

In this section, the term instruction refers to a microinstruction, unless denoted otherwise.

 NOTE

4.2 Instruction set organization
The VSPA instruction set provides 4 different macro-instruction formats. Each format defines an allowed combination of
microinstruction families suitable for parallel issue to the execution stage in the program pipeline.

See Table 15 for summary of all microinstructions, including opcode mnemonics, arguments, family and functional descriptions.

4.2.1 Instruction families
The microinstructions are organized into families according to functionality, data operands, required number of encode bits, and
by need of parallel execution. Many communications signal processing algorithms have been analyzed to determine the optimum
grouping of microinstructions into families to minimize cycle counts.

Instructions within a family cannot execute in parallel because among other reasons, they typically use a common hardware
component (such as the Vector Arithmetic Unit). The instruction families and their general functionality are summarized in Table
11.

Table 11. Microinstruction families

Family ID General Functionality

OpV OpVr Vector Register Array row store operation

OpVs0 Vector AU S0 load operation

OpVs1 Vector AU S1 load operation

OpVs2 Vector AU S2 load operation

OpVau Vector AU math operations

OpVd Vector AU result store operation

OpVrot Vector Register Array row rotate operation

OpS Scalar Data Operations

OpA Vector Data memory access control

OpB Vector Register Array access control and Do loop

Table continues on the next page...

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 38 / 536

Table 11. Microinstruction families (continued)

Family ID General Functionality

OpC Jumps and general control useful in parallel Vector Data operations

OpD Multiple immediate data operations

OpZ Return from Subroutine and Do Loop Start operations

OpX Used for software breakpoints

OpVp Vector predicate operations

4.2.2 Instruction formats
There are 4 allowed sets of microinstruction families which can execute in parallel. Each set is called a format and given a numeric
identifier (defined in Table 12).

Table 12. Allowed macro-instruction sets

Format Bit Position

63 62 61 60 59 - 43 42 - 31 30 - 24 23 - 2 1 0

Format 4 0 0 0
OpX

OpD
OpZ

Format 3 0 0 1 OpS OpV

Format 2 0 1 0 OpC

Format 1 0 1 1 OpB OpA

Halfword 1 OpX OpS-upper OpS-lower

Note that OpX and OpZ are present in all formats:

• OpX is used for software breakpoints.

• OpZ enables a zero cycle overhead for the return-from-subroutine (RTS) and Do-loop start operations.

The assembler supports the use of generic forms of certain instructions. The assembler should use the instruction based on the
following rules:

• OpS should have priority over OpC and OpD.

• OpA should have priority over OpC.

• OpB should have priority over OpS, unless OpS can be packed with another OpS.

• OpA should have priority over OpS, unless OpS can be packed with another OpS.

Bitfields highlighted in light gray are unused, ignored and should be 0 filled.

 NOTE

An overview of formats:

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 39 / 536

• Format 1 enables a Vector Data operation (OpV) to occur in parallel with memory accesses (OpA) and Vector Register
accesses, among other useful operations (OpB). This is the dominant format used in heavy computational algorithms,
because it best uses the parallel hardware resources in the machine. All 0 in this format acts as nop.

• Format 2 is the next most useful macro-instruction set, and is applicable with vector operations not requiring simultaneous
memory accesses. Many algorithms do not require vector data memory accesses on each clock cycle and can operate on
data in the Vector Register Array for several cycles between memory accesses. All 0 in this format acts as nop.

• Format 3 enables Scalar Data operations (OpS), which are typically in a general purpose RISC machine. Format 3
instruction set allows parallel Vector Data (OpV) operations, but does not allow parallel vector memory accesses (OpA).
The OpS family does include scalar memory and register access operations. The bulk of the algorithm control software
layer is implemented using instruction format 3. The control layer typically occupies a large portion of the program image.
All 0 in this format acts as nop.

• Format 4 includes the OpD family of microinstructions, which require the most encoded bits. All 0 in this format acts as
nop, but sets illegal opcode flag.

• Halfword format enables higher code density by encoding 2 OpS instructions into a single program memory word. In this
format the 2 OpS instructions will execute sequentially, with the instruction in the ‘lower’ half word executing first and the
instruction in the ‘upper’ half word executing next. All 0 in the ‘upper’ half word will be skipped as an execution cycle,
effectively acting as a nop which executes in parallel with the ‘lower’ half word instruction. All 0 in the ‘lower’ half word is
illegal.

Formats 1 and 2 enable efficient implementation of algorithms using Vector Data operations, such as FFT's, DFT's, equalization,
and many other signal processing tasks.

The Vector Data operation (OpV) described in formats 1, 2 and 3 is composed of up to 7 parallel sub-operations (defined in Table
13). These sub-operations specify source, destination, and type of vector arithmetic operation. Note that OpVrot is used for vector
rotations in the Vector Register Array.

Table 13. OpV sub-operations

OpVr OpVs0 OpVs1 OpVs2 OpVau OpVd OpVrot

4.3 Internal operand generators
The ISA supports some internal operand generation that is useful in communications digital signal processing. Refer Vector NCO
for details.

4.4 VCPU instruction set summary
The general form of a VSPA microinstruction is:

OpCode.x.y destination_list,source_list.

The opcode extensions, x and y, specify optional operations for some of the instructions. The complete set of VSPA
microinstructions are summarized in Table 15. Instructions are organized into functional groups. A brief description of each
instruction is shown in the table.

The assembler mnemonic conventions used in the instruction set are summarized in Table 14.

Table 14. VSPA instruction set mnemonic conventions

Convention Meanings

(*) Implicit (optional) argument in a microinstruction. Also used to identify instructions hidden from the
programmer and auto-generated by the build tools.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 40 / 536

Table 14. VSPA instruction set mnemonic conventions (continued)

Convention Meanings

[*] Operation using memory or register array pointers. The result of the operation inside the brackets is an
address used for the memory or register array access in the given instruction.

The order of terms used in the expression is arbitrary.

 NOTE

{ * } Select one of the operands enumerated within { }.

mv Move - Indicates an immediate load or transfer between internal registers.

ld Load - Indicates a read operation from internal data memory.

st Store - Indicates a write operation to internal data memory.

set Used to configure a mode or state in a hardware machine, typically references a write-only register.

rd Read - Indicates a read operation from the Vector Register Array.

wr Write - indicates a write operation to the Vector Register Array.

*.u Update the data memory pointer used for a memory access, which can occur before or after the access,
depending on the instruction syntax.

*.z Indicates the 0 extension of a short immediate operand.

*.s Indicates the sign extension of a short immediate operand.

*.cc Indicates that the instruction execution depends on a logical test specified by "cc". Refer VCPU condition
codes.

*.ucc Indicates that the instruction will always update the VCPU Condition Codes based on the result of the
operation.

*.h Indicates an operation on a half-word element in a vector.

*.w Indicates an operation on a full-word element in a vector.

*.e Indicates an operation on a single element in a vector. The size of the element depends on the precision
mode.

*.laddr Indicates that the immediate offset is specified as number of lines. When extension is not present the
immediate offset is interpreted as number of words.

creg System control register address, where creg ∈ {0, 1, 2, ..., 255}

See Table 21 for a description of the creg registers.

sp Stack pointer

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 41 / 536

Table 14. VSPA instruction set mnemonic conventions (continued)

Convention Meanings

aU, aV, aW, aX,
aY, aZ

Data memory pointers, where aU∈{a0, a1, ..., a19}, aV∈{a0, a1, ..., a19}, aW∈{a0, a1, ..., a19}, aX∈{a0,
a1, ..., a19}, aY∈{a0, a1, ..., a19}, aZ∈{a0, a1, ..., a19}

gX, gY, gZ General purpose scalar register, where gX∈{g0, g1, ..., g11}, gY∈{g0, g1, ..., g11}, gZ∈{g0, g1, ..., g11}

gX-Y Indicates operation on a subset of scalar registers, beginning with gX, gX+1, ..., up to and including gY.

agX, agY, agZ Notation used to represent data memory pointers and general purpose registers together.

H Vector element's signs register

Rx Vector Register Array (VRA) row vector, where Rx∈{R0, R1, ..., R7}

rX VRA pointer, where rX∈{rS0, rS1, rS2, rV, rSt}

r Indicates operation on an entire set of VRA pointers.

R[rX] Indicates a VRA element referenced by a pointer.

Rx[rY] Indicates an element referenced by a pointer within a single row of the array.

R[rX][Y] Indicates element Y in a row referenced by a pointer.

Sx Vector Arithmetic Unit (AU) Source register, where Sx∈{S0, S1, S2}

V Vector AU Output register, which is not directly accessible via the instruction set.

IsX Mnemonic used to represent an X-bit signed two's-complement immediate number in an instruction op-code.

IuX Mnemonic used to represent an X-bit unsigned immediate number in an instruction op-code.

I Mnemonic used to represent signed or unsigned immediate number in an instruction op-code.

llr_mode Bit Log Likelihood Ratio (LLR) compression mode, where llr_mode∈{llr4, llr4half, llr8, llr8half}

fft_size fft_size∈{32,64,128,256,512,1024, 2048, 4096, 8192, 16384, 32768, 65536}

S0mode S0mode∈{S0hlinecplx, S0straight, S0cplx1, S0real1, S0zeros, S0abs, S0hword, S0word, S0i1r1i1r1,
S0i1i1r1r1, S0group2nr, S0group2nc} with creg(15)=0

S0mode∈{S0hlinecplx, S0fft1, S0fft2, S0fft3, S0fft4, S0fft5, S0fftn} with creg(15)=1

S1mode S1mode∈{S1hlinecplx, S1straight, S1cplx1, S1real1, S1real_conj, S1cplx_conj, S1nco, S1qline, S1i2i1r2r1,
S1udfr, S1r2c, S1r2c_conj, S1r2c_im0, S1r2c_re0, S1interp2nr, S1interp2nc}

S2mode S2mode∈{S2hlinecplx, S2straight, S2cplx1, S2real1, S2zeros, S2i1r1i1r1, S2i1i2r1r2} with creg(15)=0

S2mode∈{S2hlinecplx, S2fft1, S2fft2, S2fft3, S2fft4, S2fft5, S2fftn} with creg(15)=1

Rmode Rmode∈{normal, zeros, l2l, h2h, h2l_l2h, l2h_h2l, h2l, l2h, replace_h, replace_l, qam}

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 42 / 536

Table 14. VSPA instruction set mnemonic conventions (continued)

Convention Meanings

Vmode Vmode∈{hlinecplx, even, fftn, fft7, fn, fn1, straight} with creg(15)=0

Vmode∈{hlinecplx, fft1, fft2, fft3, fft4, fft5, fft6} with creg(15)=1

S0prec S0prec∈{half_fixed, half, single}

S1prec S1prec∈{half_fixed, half, single}

S2prec S2prec∈{half_fixed, half, single}

AUprec AUprec∈{single, padd}

Vprec Vprec∈{half_fixed, half, single}

rot_mode ror_mode∈{

R0R1r1, R0R1r2, R0R1r4, R0R1r8, R0R1rND1, R0R1rND2, R0R1rND4,

R0r1, R0r2, R0r4, R0r8, R0rND1, R0rND2, R0rND4,

R1r1, R1r2, R1r4, R1r8, R1rND1, R1rND2, R1rND4,

R2R3r1, R2R3r2, R2R3r4, R2R3r8, R2R3rND1, R2R3rND2, R2R3rND4,

R2r1, R2r2, R2r4, R2r8, R2rND1, R2rND2, R2rND4,

R3r1, R3r2, R3r4, R3r8, R3rND1, R3rND2, R3rND4}

rol_mode∈{

R4R5l1, R4R5l2, R4R5l4, R4R5l8

R4l1, R4l2, R4l4, R4l8

R5l1, R5l2, R5l4, R5l8

R6R7l1, R6R7l2, R6R7l4, R6R7l8

R6l1, R6l2, R6l4, R6l8

R7l1, R7l2, R7l4, R7l8}

nco_reg nco_reg∈{nco_freq, nco_k, nco_phase}

quot Quotient

rem Remainder

Table 15. VCPU instructions summary

OpCode Dest Source Family Cycles Description

VSPA instructions quick reference

Data Memory Pointer instructions

Load (from memory) instructions

Scalar Arithmetic instructions

Logical Operation instructions

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 43 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

Store (to memory) instructions

Vector Register Array (VRA) instructions

Extrema Search Unit instructions

Vector Arithmetic Unit Source Register instructions

Vector Floating Point Arithmetic Unit instructions

Vector Arithmetic Unit Write-Results instructions

Vector Sign Register (H) instructions

Scalar Register-Set (gX) instructions

Loop instructions

Scalar Compare instructions

Control Flow and State instructions

Stack instructions

Internal Peripheral Control instructions

Operand Generator instructions

Miscellaneous instructions

Data Memory Pointer instructions VSPA instructions quick reference

mv aU Iu19 OpC 1 Move an immediate address to aU.

mvB agX agY OpB 1 Move the contents of agY to agX.

mvS agX agY OpS 1

mvS sp aV OpS 1 Move the contents of aV to the stack
pointer.

aU sp Move the stack pointer into aU.

mvB sp agX OpB 1 Move the contents of agX to the stack
pointer.

agX sp Move the stack pointer into agX.

addA aU aV,aW OpA 1 Add aV and aW registers and write the
result to aU.

subA aU aV,aW OpA 1 Subtract aV from aW and write the result
to aU.

add aV aU,Is19 OpC 1 Add a 19-bit signed immediate value to aU
and write the result to aV.

aU sp,Is19 Add a 19-bit signed immediate value to
stack pointer and write the result to aU.

add(.laddr) aU, Is9 OpA 1 Add a 9-bit signed immediate value to aU
and write the result to aU. If .laddr is
included, update is by lines.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 44 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

set.range aY agX,Iu19 OpC 1 Defines the beginning and ending address
for a circular buffer in DMEM accessed by
aY.

• Beginning address is stored in agX.

• Ending address is calculated, agX + I
- 1.

The result is
undefined when
incrementing from
an address within
the circular buffer
such that the
beginning or
ending address is
overshot by a
value greater than
I.

 NOTE

aY agX,gY Alternative form of the previous instruction
where the ending address is calculated =
agX + gY - 1.

The result is
undefined when
incrementing from
an address within
the circular buffer
such that the
beginning or
ending address is
overshot by a
value greater than
I.

 NOTE

set.br agX,fft_size OpA 1 Enable the bit-reversed addressing mode
for agX, and set the size of the FFT in the
address generator.

Load (from memory) instructions VSPA instructions quick reference

ld [agX]+/-agY OpA 3 1 Load a vector from DMEM using a pointer,
then post-increment or post-decrement by
the contents of agY.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 45 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

ld(.br) [agX]+/-agY Load a word from DMEM using a pointer,
then post-increment or post-decrement by
the contents of agY. The address used for
the memory access will be modified
according to a re-order algorithm (bit
reversal).

ldA(.laddr) [agX]+Is9 Load a vector from DMEM using a pointer,
then post-increment or post-decrement by
a signed immediate offset. If .laddr is
included, update is by lines.

ld gZ [agX]+/-agY OpS 4 1 Load a 32-bit scalar from DMEM using a
pointer and store the contents into gZ.
post-increment or post-decrement by the
contents of agY.

ld gZ [agX]+/-
agYx2

Load a scalar from DMEM using a pointer
and store the contents into gZ. post-
increment or post-decrement by 2 times
the contents of agY.

ldS(.laddr) gX [agY]+Is9 Load a 32-bit scalar from DMEM using a
pointer and store the contents into gX.
post-increment by a signed, immediate
offset.

ld gZ [agX+/-agY] Generate an address via a pre-increment
or pre-decrement of agX, then load a 32-
bit scalar from this DMEM address and
store the contents into gZ. The contents of
agX are not modified by this instruction.

ld.u gZ [agX+/-agY] Alternative form of the previous instruction,
where the address used in the memory
access is stored into the pointer agX.

ld gZ [agX+/-
agYx2]

Generate an address via a pre-increment
or pre-decrement of agX by 2 times agY,
then load a 32-bit scalar from this DMEM
address and store the contents into gZ.
The contents of agX are not modified by
this instruction.

ld.u gZ [agX+/-
agYx2]

Alternative form of the previous instruction,
where the address used in the memory
access is stored into the pointer agX.

ldS(.laddr) gX [agY+Is9] Generate an address via a pre-increment
of agY by a signed, immediate number,

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 46 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

then load a 32-bit scalar from this DMEM
address and store the contents into gX.
The contents of agY are not modified by
this instruction.

ldS(.laddr).u gX [agY+Is9] Alternative form of the previous instruction
where the address used in the memory
access is stored back into the pointer agY.

ldh(.s) gZ [agX]+/-agY Load a 16-bit scalar from DMEM using a
pointer and store the contents into gZ. If .s
is included, the 16 bit value is sign
extended into gZ, otherwise the value is
zero extended. post-increment or post-
decrement by the contents of agY.

ldh(.s) gZ [agX+/-agY] Generate an address via a pre-increment
or pre-decrement of agX, then load a 16-
bit scalar from this DMEM address and
store the contents into gZ. If .s is included,
the 16 bit value is sign extended into gZ,
otherwise the value is zero extended. The
contents of agX are not modified by this
instruction.

ldh.u(.s) gZ [agX+/-agY] Alternative form of the previous instruction,
where the address used in the memory
access is stored into the pointer agX.

ldhS(.laddr)(.s) gZ [agX]+Is9 Load a 16-bit scalar from DMEM using a
pointer and store the contents into gZ.
post-increment by a signed, immediate
offset. If .s is included, the 16 bit value is
sign extended into gZ, otherwise the value
is zero extended.

ldhS(.laddr)(.s) gZ [agX+Is9] Generate an address via a pre-increment
of agX by a signed, immediate number,
then load a 16-bit scalar from this DMEM
address and store the contents into gZ. If .s
is included, the 16 bit value is sign
extended into gZ, otherwise the value is
zero extended. The contents of agX are
not modified by this instruction.

ldhS(.laddr).u(.s) gZ [agX+Is9] Alternative form of the previous instruction,
where the address used in the memory
access is stored into the pointer agX.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 47 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

ld gZ I19 Load a 32-bit scalar from DMEM using an
immediate address and store the contents
into gZ.

ldh(.s) gZ I19 Load a 16-bit scalar from DMEM using an
immediate address and store the contents
into gZ. If .s is included, the 16 bit value is
sign extended into gZ, otherwise the value
is zero extended.

ldC [agX]+Is18 OpC 3 Load a vector from DMEM using a pointer,
then post-increment or post-decrement by
a signed immediate offset.

IdC gY [agX]+Is18 OpC 4 Load a 32-bit scalar from DMEM using a
pointer and store the contents into gY.
post-increment by a signed, immediate
offset.

IdC gY [agX+Is18] Generate an address via a pre-increment
of agX by a signed, immediate number,
then load a 32-bit scalar from this DMEM
address and store the contents into gY.
The contents of agX are not modified by
this instruction.

IdC.u gY [agX+Is18] Alternative form of the previous instruction,
where the address used in the memory
access is stored into the pointer agX.

IdC agY [sp+Is18] Generate an address via a pre-increment
of sp by a signed, immediate number, then
load a 32-bit scalar from this DMEM
address and store the contents into agY.
The contents of sp are not modified by this
instruction.

ldC.u agY [sp+Is18] Alternative form of the previous instruction,
where the address used in the memory
access is stored into the stack pointer.

ldhC gY [agX]+Is18 Load a 16-bit scalar from DMEM using a
pointer and store the contents as a zero
extended 32-bit value into gY. post-
increment by a signed, immediate offset.

ldhC gY [agX+Is18] Generate an address via a pre-increment
of agX by a signed, immediate number,
then load a 16-bit scalar from this DMEM
address and store the contents as a zero

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 48 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

extended 32-bit value into gY. The
contents of agX are not modified by this
instruction.

ldhC.u gY [agX+Is18] Alternative form of the previous instruction,
where the address used in the memory
access is stored into the pointer agX.

ldhC.s gY [agX]+Is18 Load a 16-bit scalar from DMEM using a
pointer and store the contents as a sign
extended 32-bit value into gY. post-
increment by a signed, immediate offset.

ldhC.s gY [agX+Is18] Generate an address via a pre-increment
of agX by a signed, immediate number,
then load a 16-bit scalar from this DMEM
address and store the contents as a sign
extended 32-bit value into gY. The
contents of agX are not modified by this
instruction.

ldhC.u.s gY [agX+Is18] Alternative form of the previous instruction,
where the address used in the memory
access is stored into the pointer agX.

ldhC gY [sp]+Is18 Load a 16-bit scalar from DMEM using the
stack pointer and store the contents as a
zero extended 32-bit value into gY. post-
increment by a signed, immediate offset.

ldhC gY [sp+Is18] Generate an address via a pre-increment
of sp by a signed, immediate number, then
load a 16-bit scalar from this DMEM
address and store the contents as a zero
extended 32-bit value into gY. The
contents of sp are not modified by this
instruction.

ldhC.u gY [sp+Is18] Alternative form of the previous instruction,
where the address used in the memory
access is stored into the stack pointer.

ldhC.s gY [sp]+Is18 Load a 16-bit scalar from DMEM using the
stack pointer and store the contents as a
sign extended 32-bit value into gY. post-
increment by a signed, immediate offset.

ldhC.s gY [sp+Is18] Generate an address via a pre-increment
of sp by a signed, immediate number, then

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 49 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

load a 16-bit scalar from this DMEM
address and store the contents as a sign
extended 32-bit value into gY. The
contents of sp are not modified by this
instruction.

ldhC.u.s gY [sp+Is18] Alternative form of the previous instruction,
where the address used in the memory
access is stored into the stack pointer.

Store (to memory) instructions VSPA instructions quick reference

st [agX]+/-agY OpA 1 2 Store a vector from R[rSt] to DMEM using
a pointer, then post-increment or post-
decrement by the contents of agY.

st.llr_mode [agX]+/-agY Store a vector from R[rSt] to DMEM using
a pointer, then post-increment or post-
decrement by the contents of agY. llr mode
is used for bit log-likelihood-ratio (LLR)
type conversion, read a vector from R[rSt],
compress the data by 1/2 or 1/4 by
converting the elements to fixed point, then
quantize each to 4 or 8 bits.

st.br [agX]+/-agY Store a vector from R[rSt] to DMEM using
a pointer, then post-increment or post-
decrement by the contents of agY. In br
mode, the address used will be modified
according to a re-order algorithm (bit
reversal) specified by .br.

st.uline [agX] Store from R[rSt] to DMEM using a pointer.
The number of elements written from VRA
to DMEM must be pre-configured using the
ST_UL_VEC_LEN IP register. The pointer
will be post incremented by the number of
elements stored.

stA(.laddr) [agX]+Is9 Store a vector from R[rSt] to DMEM using
a pointer, then post-increment by a signed,
9-bit immediate offset.

st.w(.br) [agX]+/-agY Store full-word element 0 from R[rSt] to
DMEM using a pointer, then post-
increment or post-decrement by the
contents of agY. The address used can be
optionally modified according to a re-order
algorithm (bit reversal) specified by .br.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 50 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

stA(.laddr).w [agX]+Is9 Store full-word element 0 from R[rSt] to
DMEM using a pointer, then post-
increment by a signed, 9-bit immediate
offset.

st [agX]+/-agY gZ OpS 1 1,2 Store a 32-bit scalar from gZ into DMEM
using a pointer. Post-increment or post-
decrement by the contents of agY.

st [agX]+/-
agYx2

gZ Store a 32-bit scalar from gZ into DMEM
using a pointer. Post-increment or post-
decrement by 2 times the contents of agY.

st [agX+/-agY] gZ Generate an address via a pre-increment
or pre-decrement of agX by agY, then
store a 32-bit scalar from gZ to this address
in DMEM. The contents of agX are not
modified by this instruction.

st.u [agX+/-agY] gZ Alternative form of the previous instruction,
where the address used in the memory
access is stored back into the pointer agX.

st [agX+/-
agYx2]

gZ Generate an address via a pre-increment
or pre-decrement of agX by 2 times agY,
then store a 32-bit scalar from gZ to this
address in DMEM. The contents of agX are
not modified by this instruction.

st.u [agX+/-
agYx2]

gZ Alternative form of the previous instruction,
where the address used in the memory
access is stored back into the pointer agX.

stS(.laddr) [agY]+Is9 gX Store a 32-bit scalar from gX into DMEM
using an pointer. Post-increment by a
signed, immediate offset.

stS(.laddr) [agY+Is9] gX Generate an address via a pre-increment
or pre-decrement of agY with a signed,
immediate number, then store a scalar
from gX to this address in DMEM. The
contents of agY are not modified by this
instruction.

stS(.laddr).u [agY+Is9] gX Alternative form of the previous instruction
where the address used in the memory
access is stored back into the pointer agY.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 51 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

sth [agX]+/-agY gZ Store a 16-bit scalar from gZ into DMEM
using a pointer. Post-increment or post-
decrement by the contents of agY.

sth [agX+/-agY] gZ Generate an address via a pre-increment
or pre-decrement of agX by agY, then
store a 16-bit scalar from gZ to this address
in DMEM. The contents of agX are not
modified by this instruction.

sth.u [agX+/-agY] gZ Alternative form of the previous instruction,
where the address used in the memory
access is stored back into the pointer agX.

sthS(.laddr) [agY]+Is9 gZ Store a 16-bit scalar from gX into DMEM
using a pointer. Post-increment by a
signed, immediate offset.

sthS(.laddr) [agY+Is9] gZ Generate an address via a pre-increment
or pre-decrement of agY with a signed,
immediate number, then store a scalar
from gZ to this address in DMEM. The
contents of agY are not modified by this
instruction.

sthS(.laddr).u [agY+Is9] gZ Alternative form of the previous instruction
where the address used in the memory
access is stored back into the pointer agY.

st [agX]+Is15 Is16,Is16 OpD 1 1,2 Store an immediate complex number into
DMEM using agX. Post increment agX by
Is15.

Format is real,
imaginary.

 NOTE

st I19 gZ OpS 1 2 Store a 32-bit scalar from gZ to an
immediate address in DMEM.

sth I19 gZ Store a 16-bit scalar from gZ to an
immediate address in DMEM.

st Iu19 I32 OpD 1 2 Store an immediate 32-bit number to an
immediate address in DMEM.

sth Iu19 I16 Store an immediate 16-bit number to an
immediate address in DMEM.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 52 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

stC [agX]+Is18 OpC 1 Store a vector from R[rSt] to DMEM using
a pointer, then post-increment by a signed,
18-bit immediate offset.

stC.w [agX]+Is18 Store full-word element 0 from R[rSt] to
DMEM using a pointer, then post-
increment by a signed, 18-bit immediate
offset.

stC [agX]+Is18 gY Store a 32-bit scalar from gY into DMEM
using a pointer. Post-increment by a
signed, immediate offset.

stC [agX+Is18] gY Generate an address via a pre-increment
or pre-decrement of agX with a signed,
immediate number, then store a scalar
from gY to this address in DMEM. The
contents of agX are not modified by this
instruction.

stC.u [agX+Is18] gY Alternative form of the previous instruction
where the address used in the memory
access is stored back into the pointer agX.

stC [sp+Is18] agY Generate an address via a pre-increment
or pre-decrement of the stack pointer with
a signed, immediate number, then store a
scalar 32-bit from gY to this address in
DMEM. The contents of the stack pointer
are not modified by this instruction.

stC.u [sp+Is18] agY Alternative form of the previous instruction
where the address used in the memory
access is stored back into the stack
pointer.

stC [sp]+Is18 agY Store a 32-bit scalar from agY into DMEM
using the stack pointer. Post-increment by
a signed, immediate offset.

sthC [agX]+Is18 gY Store a 16-bit scalar from gY into DMEM
using a pointer. Post-increment by a
signed, immediate offset.

sthC [agX+Is18] gY Generate an address via a pre-increment
or pre-decrement of agX with a signed,
immediate number, then store a 16-bit
scalar from gY to this address in DMEM.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 53 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

The contents of agX are not modified by
this instruction.

sthC.u [agX+Is18] gY Alternative form of the previous instruction
where the address used in the memory
access is stored back into the pointer agX.

sthC [sp]+Is18 gY Store a 16-bit scalar from gY into DMEM
using the stack pointer. Post-increment by
a signed, immediate offset.

sthC [sp+Is18] gY Generate an address via a pre-increment
or pre-decrement of the stack pointer with
a signed, immediate number, then store a
scalar 16-bit from gY to this address in
DMEM. The contents of the stack pointer
are not modified by this instruction.

sthC.u [sp+Is18] gY Alternative form of the previous instruction
where the address used in the memory
access is stored back into the stack
pointer.

sth [agX]+Is9 I16 Store a 16-bit immediate value into DMEM
using a pointer. Post-increment by a
signed, immediate offset.

st.low [agX]+agY Iu8 Store right justified partial vector from
R[rSt] to DMEM using a pointer, then post-
increment by the contents of agY. The
index of the leftmost written element is
given by Iu8.

st.low [agX]-agY Iu8 Store right justified partial vector from
R[rSt] to DMEM using a pointer, then post-
decrement by the contents of agY. The
index of the leftmost written element is
given by Iu8.

st.low [agX]+Is16 Iu8 Store right justified partial vector from
R[rSt] to DMEM using a pointer. Post-
increment by a signed, immediate 16 bit
offset. The index of the leftmost written
element is given by Iu8.

st.low [agX]+agY gZ Store right justified partial vector from
R[rSt] to DMEM using a pointer, then post-
increment by the contents of agY. The

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 54 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

index of the left most written element is
given in gZ.

st.low [agX]-agY gZ Store right justified partial vector from
R[rSt] to DMEM using a pointer, then post-
decrement by the contents of agY. The
index of the left most written element is
given in gZ.

st.low [agX]+Is16 gZ Store right justified partial vector from
R[rSt] to DMEM using a pointer. Post-
increment by a signed, immediate 16 bit
offset.The index of the left most written
element is given in gZ.

st.high [agX]+agY Iu8 Store left justified partial vector from R[rSt]
to DMEM using a pointer, then post-
increment by the contents of agY. The
index of the leftmost written element is
given by Iu8.

st.high [agX]-agY Iu8 Store left justified partial vector from R[rSt]
to DMEM using a pointer, then post-
decrement by the contents of agY.The
index of the leftmost written element is
given by Iu8.

st.high [agX]+Is16 Iu8 Store left justified partial vector from R[rSt]
to DMEM using a pointer. Post-increment
by a signed, immediate 16 bit offset.The
index of the leftmost written element is
given by Iu8.

st.high [agX]+agY gZ Store left justified partial vector from R[rSt]
to DMEM using a pointer, then post-
increment by the contents of agY.The
index of the left most written element is
given in gZ.

st.high [agX]-agY gZ Store left justified partial vector from R[rSt]
to DMEM using a pointer, then post-
decrement by the contents of agY.The
index of the left most written element is
given in gZ.

st.high [agX]+Is16 gZ Store left justified partial vector from R[rSt]
to DMEM using a pointer. Post-increment
by a signed, immediate 16 bit offset.The

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 55 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

index of the left most written element is
given in gZ.

Vector Register Array (VRA) instructions VSPA instructions quick reference

ld.normal Rx OpVr 1 Load a vector from memRead bus into Rx.

ld.h2h Rx Load high part of memRead bus into high
part of Rx.

ld.h2l Rx Load high part of memRead bus into low
part of Rx.

ld.h2l_l2h Rx Load high part of memRead bus into low
part of Rx and load low part of memRead
bus into high part of Rx+1. Rx can be R0,
R2, R4 or R6.

ld.l2l Rx Load low part of memRead bus into low
part of Rx.

ld.l2h Rx Load low part of memRead bus into high
part of Rx.

ld.l2h_h2l Rx Load low part of memRead bus into high
part of Rx and load high part of memRead
bus into low part of Rx+1. Rx can be R0,
R2, R4 or R6.

ld.replace_h Rx Replace the most significant word in Rx
with a word on the memRead bus.

ld.replace_l Rx Replace the least significant word in Rx
with a word on the memRead bus.

ld.qam Rx For modulation order M, take a M/32 line
of memRead bus (32M bits), transform it
into a full line, and write it into Rx. The
transformation implements QAM
modulation.

ld.2scomp Rx Load partial line from memRead bus into a
full line with type conversion of 2's
complement value to half fixed value, write
full line data into Rx.

mv.h [rV] Is16 OpD 1 Move a short immediate scalar into R[rV].
Post-increment the rV pointer by a signed
integer value contained in incr_rV.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 56 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

mv.w [rV] Is16,Is16 Move a half-precision complex number
into R[rV]. Post-increment the rV pointer by
a signed integer value contained in
incr_rV.

Format is real,
imaginary.

 NOTE

mvA.VRAptr rX agY OpA 1 Move into a VRA pointer register from a
scalar register

mvB.VRAptr rX agY OpB Move into a VRA pointer register from a
scalar register

mvA.VRAptr agY rX OpA Move into a scalar register from a VRA
pointer register

mvB.VRAptr agY rX OpB Move into a scalar register from a VRA
pointer register

mvA.VRAincr rX agY OpA Move into a VRA increment register from a
scalar register

mvB.VRAincr rX agY OpB Move into a VRA increment register from a
scalar register

mvA.VRAincr agY rX OpA Move into a scalar register from a VRA
increment register

mvB.VRAincr agY rX OpB Move into a scalar register from a VRA
increment register

mvA.VRArange1 rX agY OpA Move into a VRA range register from a
scalar register

mvA.VRArange2 rX agY OpA Move into a VRA range register from a
scalar register

mvB.VRArange1 rX agY OpB Move into a VRA range register from a
scalar register

mvB.VRArange2 rX agY OpB Move into a VRA range register from a
scalar register

mvA.VRArange1 agY rX OpA Move into a scalar register from a VRA
range register

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 57 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

mvA.VRArange2 agY rX OpA Move into a scalar register from a VRA
range register

mvB.VRArange1 agY rX OpB Move into a scalar register from a VRA
range register

mvB.VRArange2 agY rX OpB Move into a scalar register from a VRA
range register

setA.VRAptr rX Iu9 OpA 1 Initialize a Vector Register Array pointer.

setB.VRAptr rX Iu9 OpB 1 Initialize a Vector Register Array pointer.

setA.VRAincr rX Is9 OpA 1 Initialize the post-increment register for rX.

setB.VRAincr rX Is9 OpB 1 Initialize the post-increment register for rX.

set.VRAptr Iu9,Iu9,Iu9,Iu9,Iu3 OpD 1 Initialize all 5 VRA pointers in a single
operation. Order of arguments: rS0, rS1,
rS2, rV, rSt.

set.VRAincr Is9,Is9,Is9,Is9,Is3 Initialize the post-increments for all 5 VRA
pointers in a single operation. Order of
arguments: rS0, rS1, rS2, rV, rSt.

set.VRArange1 rX Iu9, Iu9 OpC 1 Initialize the range registers (start and
wrap addresses) of the 1st buffer for rX.

Format is start,
wrap.

 NOTE

set.VRArange2 rX Iu9, Iu9 Initialize the range registers (start and
wrap addresses) of the 2nd buffer for rX.

Format is start,
wrap.

 NOTE

clr.VRA OpB 1 Clear all the VRA pointers, increments,
and ranges in a single operation.

clr Rx OpVr 1 Clear all the elements of a VRA row vector
in a single operation.

clr.VRA gX,gY OpS 2 Clear a range of elements in the VRA
bounded by gX-gY to gX+gY, inclusive of
the endpoints.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 58 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

fill.w [rV] gX OpB 1 Fill an entire vector with the full-word in gX.

mv.w [rV] gX Move the contents of gX to a full-word
element in R[rV]. Post-increment the rV
pointer by a signed integer value ranging
from contained in incr_rV.

fill.h [rV] gX Fill an entire vector with the least
significant short scalar in gX.

mv.h [rV] gX Move the least significant short scalar in
gX to a half-word element in R[rV]. Post-
increment the rV pointer by a signed
integer value contained in incr_rV.

fill.q [rV] gX:gX+1:gX
+2:gX+3

Fill the entire vector with the contents of gX
through gX+3.

mv.q [rV] gX:gX+1:gX
+2:gX+3

Move the contents of gX through gX+3 into
4 full words in Rx.

fill.d [rV] gX:gX+1 Fill the entire vector with the contents of gX
through gX+1.

mv.d [rV] gX:gX+1 Move the contents of gX through gX+1 into
2 full words in Rx

mv.w gX [rS0] 2 Move a full-word element in the register
array to gX.

mv.h gX [rS0] Move a half-word element in the register
array to gX.

set.rot (lt_mode),
(rt_mode)

0 Configure the vector rotation unit.

lt_mode and
rt_mode are
independent.

 NOTE

mv Rx Ry 2 Move the full vector Ry into Rx.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 59 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

The first cycle of
this instruction
moves Ry onto the
memRead bus.
Thus, it should be
scheduled so as
not to conflict with
any memory read
instructions.
Memory read
instructions
populate the
memRead bus in
the 2nd cycle of
their execution.
This mv
instruction also
shares the same
multiplexer that
selects DMEM
data to be written
from Rz to DMEM.
So, this instruction
should not be
used in the same
cycle as an st
instruction. This
instruction
overwrites data
previously read
from RAM using a
ld instruction, and
cannot occur in
parallel with a st
instruction.

 NOTE

ldB Rx 1 Load Rx from the memory buffer.

Extrema Search Unit instructions VSPA instructions quick reference

set.xtrm {signed, unsigned}, {max,
min}, {even, all}, {value,
index}, N

OpB 1 Configure the extrema search engine. This
includes the number of half-word elements
to search, N, which can be any power of 2
up to one half-line (32) or a multiple of half
lines upto 64x32. The search engine uses
rS2[msb:msb-5] to read vector data from
the VRA. In 'all' mode, N must be greater

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 60 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

than or equal to 2 and in 'even' mode, N
must be greater than or equal to 4.

xtrm aU,gX 2+ceil(M/B
)
+log2[min(
M,B)]

Start an extrema search and place the
index of the extrema into either or both a
memory pointer and scalar register. This is
a multi-cycle instruction that depends on
the number of elements in the search
buffer and 'all' or 'even' mode. In 'all' mode,
M=N and in 'even' mode, M=N>>1. B = 32
for elements in half precision and B = 16
for single precision.

gX

aU

Vector Arithmetic Unit Source Register instructions VSPA instructions quick reference

rd S0 OpVsx 2 Read data from the VRA and load an AU
source register.

S1

S2

set.Smode S0mode OpB 0 Set S0 mode.

S1mode Set S1 mode.

S2mode Set S2 mode.

S0mode,S1mode Set S0 and S1 modes.

S0mode, S2mode Set S0 and S2 modes.

S1mode, S2mode Set S1 and S2 modes.

S0mode, S1mode, S2mode Set S0, S1 and S2 modes.

S0chs, S0mode Negate the output of the S0Mux prior to
loading S0 register while setting S0 mode.

S0chs, S0mode, S1mode Negate the output of the S0Mux prior to
loading S0 register while setting S0 and S1
modes.

S0chs, S0mode, S2mode Negate the output of the S0Mux prior to
loading S0 register while setting S0 and S2
modes.

S0chs, S0mode, S1mode,
S2mode

Negate the output of the S0Mux prior to
loading S0 register while setting S0, S1
and S2 modes.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 61 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

S0conj, S0mode Conjugate the output of the S0Mux prior to
loading S0 register while setting S0 mode.

S0conj, S0mode, S1mode Conjugate the output of the S0Mux prior to
loading S0 register while setting S0 and S1
modes.

S0conj, S0mode, S2mode Conjugate the output of the S0Mux prior to
loading S0 register while setting S0 and S2
modes.

S0conj, S0mode, S1mode,
S2mode

Conjugate the output of the S0Mux prior to
loading S0 register while setting S0, S1
and S2 modes.

S0conj, S0chs, S0mode Conjugate and negate the output of the
S0Mux prior to loading S0 register while
setting S0 mode.

S0conj, S0chs, S0mode,
S1mode

Conjugate and negate the output of the
S0Mux prior to loading S0 register while
setting S0 and S1 modes.

S0conj, S0chs, S0mode,
S2mode

Conjugate and negate the output of the
S0Mux prior to loading S0 register while
setting S0 and S2 modes.

S0conj, S0chs, S0mode,
S1mode, S2mode

Conjugate and negate the output of the
S0Mux prior to loading S0 register while
setting S0, S1 and S2 modes.

set.prec S0prec

S1prec

S2prec

AUprec

Vprec

OpB 1

1

1

3

7

Set the precision state for the vector data
path. This includes S0, S1, and S2 register
writes, AU operations, and AU write-
results operations.

Vector Floating Point Arithmetic Unit instructions VSPA instructions quick reference

rmad OpVau 4(sp)

5(DP)

Multiply and add.

rmad.sau Multiply and add, using SAU result as S1
operand.

rmac Multiply and accumulate.

rmac.sau Multiply and accumulate, using SAU result
as S1 operand.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 62 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

cmad Complex multiply and add.

cmad.sau Complex multiply and add, using SAU
result as S1 operand.

cmac Complex multiply and accumulate.

cmac.sau Complex multiply and accumulate, using
SAU result as S1 operand.

mads Multiply and add with sign conversion.

mads.sau Multiply and add with sign conversion.

mafac Multiply feedback and accumulate.

maf Multiply and add then feedback result to
multiplier.

dif.sau Decimation-in-frequency radix-2
butterfly,using SAU result as S1 operand

clr.au Clear vector accumulators.

rcp OpVsau 2 Vector reciprocal function.

rrt Vector reciprocal square root function.

srt Vector square root function.

nco 2 Iterate Numerically controlled oscillator.

padd 1 Pre-add S1 & S2.

rol OpVrot 1 Perform a left shift or rotate vector
operation.

ror Perform a right shift or rotate vector
operation.

Vector Arithmetic Unit Write-Results instruction VSPA instructions quick reference

wr.even OpVd 1 Write AU output into the VRA. Every other
output shifting is performed at WbMux.

wr.fftn Write AU output into the VRA. Perform shift
function at WbMux for FFT nth stage.

wr.fft1 Write AU output into the VRA. Perform shift
function at WbMux for FFT 1st stage.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 63 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

wr.fft2 Write AU output into the VRA. Perform shift
function at WbMux for FFT 2nd stage.

wr.fft3 Write AU output into the VRA. Perform shift
function at WbMux for FFT 3rd stage.

wr.fft4 Write AU output into the VRA. Perform shift
function at WbMux for FFT 4th stage.

wr.fft5 Write AU output into the VRA. Perform shift
function at WbMux for FFT 5th stage.

wr.fft6 Write AU output into the VRA. Perform shift
function at WbMux for FFT 6th stage.

wr.fft7 Write AU output into the VRA. Perform shift
function at WbMux for FFT 7th stage.

wr.fn Write SAU output into the VRA. No special
shifting function is performed at WbMux.

wr.fn1 Write single SAU output into the VRA.
Output shifting is performed at WbMux.

wr.straight Write AU output into the VRA. No special
shifting function is performed at WbMux.
(Real mode)

wr.hlinecplx Write AU output into the VRA. No special
shifting function is performed at WbMux.
(Complex mode)

Vector Sign Register (H) instructions VSPA instructions quick reference

ff0to1 gZ gX OpS 2 find-first-zero-to-one: Move into gZ the bit
position of the first 0-to-1 transition
(<trans_loc>) in the H register, then skip
ahead gX bit positions (<skip>) and copy
bit from H[<trans_loc>+<skip>-1] into all
bits in H up to this point.

ff1to0 gZ gX find-first-one-to-zero: Move into gZ the bit
position of the first 1-to-0 transition
(<trans_loc>) in the H register, then skip
ahead gX bit positions (<skip>) and copy
bit from H[<trans_loc>+<skip>-1] into all
bits in H up to this point.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 64 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

fa0to1 Iu2 OpB 1 find-all-zero-to-ones: Returns single bit for
each adjacent pair of 0-1 bits in a quadrant
of H register. Quadrant is specified with
immediate constant. Result stored in dH
register which can be accessed with
bin2num instruction.

add(.cc) gZ gX,H OpS 1 If the optional condition test is true, then
sum the 64 least significant bits in the H
register then add to the contents of gX and
store the result in gZ. The H-register creg
must be configured for 'no auto-increment'.
Note, the sign capture operation clears the
unused bits of the H register.

gZ H,gY Alternate form of the above instruction.

gZ H,H Sum the 64 least significant bits in the H
register then add to itself and store the
result in gZ. The H-register creg must be
configured for 'no auto-increment'. Note,
the sign capture operation clears the
unused bits of the H register.

bin2num Rx OpVr 1 Converts each of 256 bits in dH to a
numeric value of 0 or 0.5 (HP-fixed) and
writes result into Rx.

and H OpS 1 Logical AND of H register with mask
generated by the hardware and hidden
from the programmer.

or H Logical OR of H register with mask
generated by the hardware and hidden
from the programmer.

ld H [agX]+/-agY OpS 4 Load a sign vector from DMEM using a
pointer and store the contents into H. Post-
increment or decrement by the contents of
agY.

H [agY]+Is9 Load a sign vector from DMEM using a
pointer and store the contents into H. Post-
increment by a signed, short immediate
offset.

ld H [agX+/-agY] Generate an address via a pre-increment
or pre-decrement of agX then load a sign
vector from this DMEM address and store

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 65 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

the contents into H. The contents of agX
are not modified by this instruction.

ld.u H [agX+/-agY] Alternative form of the previous instruction
where the address used in the memory
access is stored into the pointer agX.

ld H [agY+Is9] Generate an address via a pre-increment
of agY by a signed, immediate number
then load a sign vector from this DMEM
address, and store the contents into H. The
contents of agY are not modified by this
instruction.

ld.u H [agY+Is9] Alternative form of the previous instruction
where the address used in the memory
access is stored back into the pointer agY.

ld H I19 4 Load a sign vector from DMEM using an
immediate address and store the contents
into H.

lsb of I19 is ignored if
legacy_mem_addr=0.

 NOTE

st [agX]+/-agY H OpS 1 Store a sign vector from H into DMEM
using a pointer.

Post-increment or post-decrement by the
contents of agY.

[agY]+Is9 H Store a sign vector from H into DMEM
using a pointer.

Post-increment by a signed, immediate
offset.

st [agX+/-agY] H 1 Generate an address via a pre-increment
or decrement of agX by agY then store a
sign vector from H to this address in
DMEM. The contents of agX are not
modified by this instruction.

st.u [agX+/-agY] H Alternative form of the previous instruction
where the address used in the memory
access is stored back into the pointer agX.

st [agY+Is9] H Generate an address via a pre-increment
or decrement of agY with a signed,

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 66 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

immediate number then store a sign vector
from H to this address in DMEM. The
contents of agY are not modified by this
instruction.

st.u [agY+Is9] H Alternative form of the previous instruction
where the address used in the memory
access is stored back into the pointer agY.

st I19 H 1 Store a sign vector from H to an immediate
address in DMEM.

lsb of I19 is ignored if
legacy_mem_addr=0.

 NOTE

Scalar Arithmetic instructions VSPA instructions quick reference

addS(.ucc)(.cc) gZ gX,gY OpS 1 If the optional condition test is 'true', then
add gX to gY and store the result in gZ.

Use of sp is
allowed. sp can
replace any one or
more of the
gX,gY,or gZ
operands. If the
optional field
(.ucc) is used,
then the
instruction will
update the
condition codes
based on the
result of the
operation. See
Table 72.

 NOTE

addS(.ucc).z (gZ) gZ,Iu16 Add an unsigned short immediate scalar to
gZ and store the result in gZ. If the optional
field (.ucc) is used, then the instruction will
update the condition codes based on the
result of the operation. See Table 72.

Use of sp is
allowed. sp can
replace gZ.

 NOTE

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 67 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

addS(.ucc).s (gZ) gZ,Is16 Sign extend, then add a short immediate
scalar to gZ and store the result in gZ. If the
optional field (.ucc) is used, then the
instruction will update the condition codes
based on the result of the operation. See
Table 72.

Use of sp is
allowed. sp can
replace gZ.

 NOTE

addD(.ucc)(.cc) gX gY,I32 OpD 1 If the optional condition test is true, then
add an immediate scalar to gY and store
the result in gX. If the optional field (.ucc)
is used, then the instruction will update the
condition codes based on the result of the
operation. See Table 72.

Use of sp is
allowed.

 NOTE

subS(.ucc)(.cc) gZ gX,gY OpS 1 If the optional condition test is 'true', then
subtract gY from gX and store the result in
gZ. If the optional field (.ucc) is used, then
the instruction will update the condition
codes based on the result of the operation.
See Table 72.

Use of sp is
allowed. sp can
replace any one or
more of the
gX,gY,or gZ
operands.

 NOTE

subS(.ucc).z (gZ) gZ,Iu16 Subtract an unsigned short immediate
scalar from gZ and store the result in gZ. If
the optional field (.ucc) is used, then the
instruction will update the condition codes
based on the result of the operation. See
Table 72.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 68 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

Use of sp is
allowed. sp can
replace gZ.

 NOTE

subS(.ucc).s (gZ) gZ,Is16 Sign extend, then subtract a short
immediate scalar from gZ and store the
result in gZ. If the optional field (.ucc) is
used, then the instruction will update the
condition codes based on the result of the
operation. See Table 72.

Use of sp is
allowed. sp can
replace gZ.

 NOTE

subD(.ucc)(.cc) gX gY,I32 OpD 1 If the optional condition test is true, then
subtract an immediate scalar from gY and
store the result in gX. If the optional field
(.ucc) is used, then the instruction will
update the condition codes based on the
result of the operation. See Table 72.

Use of sp is
allowed.

 NOTE

rsub.z (gZ) gZ,Iu16 OpS 1 Subtract gZ from an unsigned short
immediate number and store the result in
gZ.

Use of sp is
allowed.

 NOTE

rsub.s (gZ) gZ,Is16 Sign extend a short immediate scalar, then
subtract gZ from it and store the result in
gZ.

mpy(.cc)(.s) gZ gX,gY OpS 4 If the optional condition test is 'true', then
multiply gX and gY and store the signed
result in gZ.

mpyS.z (gZ) gZ,Iu16 Multiply an unsigned short immediate
scalar with gZ and store the result in gZ.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 69 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

mpyS.s (gZ) gZ,Is16 Sign extend a short immediate scalar, then
multiply it with gZ and store the result in gZ.

mpyD(.cc) gX gY,I32 OpD 4 If the optional condition test is true, then
multiply an immediate scalar with gY and
store the result in gX.

div(.cc)(.s) gZ gX,gY OpS 7 If the optional condition test is 'true', then
gZ = floor (gX/gY).

The result gZ is signed.

div.z (gZ) gZ,Iu16 Divide gZ by an unsigned short immediate
scalar and store the unsigned quotient in
gZ.

div.s (gZ) gZ,Is16 Sign extend an immediate scalar, then
divide gZ by it and store the signed
quotient in gZ.

rdiv.z (gZ) gZ,Iu16 Divide an unsigned short immediate scalar
by gZ and store the unsigned quotient in
gZ.

rdiv.s (gZ) gZ,Is16 Sign extend a short immediate scalar, then
divide it by gZ and store the signed
quotient in gZ.

mod(.cc)(.s) gZ gX,gY OpS 7 If the optional condition test is 'true', then
gZ = rem(gX/gY).

The result gZ is signed.

mod.z (gZ) gZ,Iu16 Divide gZ by an unsigned short immediate
scalar and store the unsigned remainder in
gZ.

mod.s (gZ) gZ,Is16 Sign extend a short immediate scalar, then
divide gZ by it and store the signed
remainder in gZ.

rmod.z (gZ) gZ,Iu16 Divide an unsigned short immediate scalar
by gZ, and store the unsigned result in gZ.

rmod.s (gZ) gZ,Is16 Sign extend a short immediate scalar, then
divide it by gZ and store the signed result
in gZ.

abs gZ gX OpS 1 Take the absolute value of gX and store
the result in gZ.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 70 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

log gZ gX OpS 2 Take the base-2 logarithm of a single
precision floating point number in gX and
store the result in gZ.

ff1 gZ gX OpS 1 find-first-one: Move into gZ the bit number
of the most significant bit in gX that is set.

fns gZ gX 1 Move into gZ the number of shifts required
to normalize the unsigned contents of gX.

fix2float gX gY OpB 1 Convert a 16-bit 2’s complement integer in
gY to a 32-bit floating-point scalar in gX.

float2fix gX gY Convert a 32-bit single precision scalar in
gY to a 16-bit 2’s complement integer in
gX.

hfixtofloatsp gX gY Convert a short scalar located in the least
significant portion of gY from 16 bit sign
magnitude fixed-point to single precision
floating-point.

floatsptohfix gX gY Convert a scalar located in gY from single
precision floating-point to 16 bit sign
magnitude fixed-point.

floathptofloatsp gX gY Convert a short scalar located in the least
significant portion of gY from 16 bit
floating-point to single precision floating-
point.

floatsptofloathp gX gY Convert a scalar located in gY from single
precision floating-point to 16 bit floating-
point.

floatx2n (gX) gX,gY OpB 1 Scale a floating point number in gX by 2^n,
where the integer exponent n is stored in
gY.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 71 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

The value in gY is
treated as an 8-bit
signed integer.
For example,
0xFFFF is
interpreted as -1
and 0xFFFE as -2
(NOT positive
values 65535,
65534); likewise,
0xFFFFFF00 and
0xFFFFFF01 will
be interpreted as 0
and 1,
respectively (NOT
-256 and -255).

 NOTE

floatx2n gX gY,I32 OpD 1 Scale a floating point number in gY by 2^n,
using I32 as the exponent and store the
result in gX.

sr.s gX gY,I5 OpS 1 Shift-right the signed contents of gY by an
immediate number of bit positions and
store the result in gX.

Logical Operation instructions VSPA instructions quick reference

btst gY,I5 OpS 1 Test a bit in gY and set the condition code.

bset(.cc) gZ gX,Iu5 OpS 1 If the optional condition test is true, set bit
number Iu5, or with gX put result in gZ.
gX is not changed.

bclr(.cc) gZ gX,gY OpS 1 If the optional condition test is true, then
clear the bits in gX using the mask in gY
and store the result in gZ.

bclr(.cc) gZ gX,Iu5 OpS 1 If the optional condition test is true, clear
bit number Iu5 from gX and write result to
gZ. gX is not changed.

and(.cc) gZ gX,gY OpS 1 If the optional condition test is true, then
perform the logical AND of gX with gY and
store the result in gZ.

Use of sp is
allowed.

 NOTE

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 72 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

andS(.z) (gX) gX,I16 Logical AND of short immediate with gX
and store the result in gX. The most
significant 16 bits of gX are not modified.

Use of sp is
allowed.

 NOTE

andD(.cc) gX gY,I32 OpD 1 If the optional condition test is true, then
perform logical AND of long immediate
with gYand store the result in gX.

Use of sp is
allowed.

 NOTE

or(.cc) gZ gX,gY OpS 1 If the optional condition test is true, then
perform the logical OR of gX with gY and
store the result in gZ.

orS (gX) gX,I16 Logical OR of signed immediate with gX
and store the result in gX. The most
significant 16 bits of gX are not modified.

orD(.cc) gX gY,I32 OpD 1 If the optional condition test is true, then
perform logical OR of long immediate with
gY and store the result in gX.

not(.cc) gZ gX OpS 1 If the optional condition test is true, then
perform the logical NOT of gX and store
the result in gZ.

xor(.cc) gZ gX,gY OpS 1 If the optional condition test is true, then
perform the logical XOR of gX with gY and
store the result in gZ.

xorS gX gX,I16 Logical XOR of signed immediate with gX
and store the result in gX. The most
significant 16 bits of gX are not modified.

xorD(.cc) gX gY,I32 OpD 1 If the optional condition test is true, then
perform logical XOR of long immediate
with gY and store the result in gX.

sr(.cc) gZ gX,gY OpS 1 If the optional condition test is true, then
shift-right the unsigned contents of gX by
the number of bit positions indicated in gY
and store the result in gZ.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 73 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

sr(.cc).s gZ gX,gY If the optional condition test is true, then
shift-right the signed contents of gX by the
number of bit positions indicated in gY and
store the result in gZ.

sr gX gY,I5 Shift-right the unsigned contents of gY by
an immediate number of bit positions and
store the result in gX.

sl(.cc) gZ gX,gY OpS 1 If the optional condition test is true, then
shift-left the contents of gX by the number
of bit positions indicated in gY and store
the result in gZ.

sl gX gY,I5 Shift-left the contents of gY by an
immediate number of bit positions and
store the result in gX.

lfsr (gX) gX,gY OpB 1 Linear feedback shift register operation.
Shift-left the contents of gX by one bit
position, then replace its least significant
bit with the bit-wise XOR of gY.

lfsr gX gY,I32 OpD 1 Linear feedback shift register operation.
Shift-left the contents of gY by one bit
position, then replace its least significant
bit with the bit-wise XOR of I32, store the
result in gX.

lsb2rf [rV] gX OpB 1 Convert the least significant bit of gX to
half-fixed representation (0.0 or 0.5) and
store into R[rV] . Post-increment the rV
pointer by a signed integer value contained
in incr_rV.

lsb2rf.sr [rV] gX Convert the least significant bit of gX to
half-fixed representation (0.0 or 0.5) and
store into R[rV], then perform a logical
shift-right operation on gX.

Scalar Register-Set (gX) instructions VSPA instructions quick reference

mv(.cc) gZ gX OpS 1 If the optional condition test is true, then
move gX to gZ.

mvS.z gZ Iu16 OpS 1 Move an unsigned immediate short scalar
into gZ.

mvS.s gZ Is16 Sign extend an immediate short scalar
then move it into gZ.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 74 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

mvD(.cc) gX I32 OpD 1 If the optional condition test is true, then
move an immediate scalar into gX.

mvh.s(.cc) gZ gX OpS 1 If the optional condition test is true, then
sign extend the least significant 16 bits of
gX and move to gZ.

mv.w [rV] gX OpB 1 Move the contents of gX to a full-word
element in R[rV]. Post-increment the rV
pointer by a signed integer value contained
in incr_rV.

mv.h [rV] gX Move the least significant short scalar in
gX to a half-word element in R[rV]. Post-
increment the rV pointer by a signed
integer value contained in incr_rV.

mv.w gX [rS0] OpB 2 Move a full-word element in the register
array to gX.

mv.h gX [rS0] Move a half-word element in the register
array to gX.

clr.g I12 OpS 1 Clear a set of gX registers indicated by an
immediate mask.

mv(.cc) gZ pc OpS 1 If the optional condition test is true, then
move current pc to gZ.

mv(.cc) gZ quot If the optional condition test is true, then
move the quotient result of the previous
modulo operation to gZ.

mv(.cc) gZ rem If the optional condition test is true, then
move the remainder result of the previous
divide operation to gZ.

Loop instructions VSPA instructions quick reference

set.loop Iu10, Iu16 OpC 2 Set the number of loop iterations and the
size (number of instructions) in a loop with
immediate numbers.

• 1st argument is loop iteration count.

• 2nd argument is size.

setC.loop Iu16 Set the number of iterations using an
immediate number.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 75 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

set.loop agX, Iu10 Set the size of a loop with an immediate
scalar, and set the iteration count with the
contents of agX.

set.loop Iu10 OpB 2 Set the number of iterations using an
immediate number.

set.loop agX Set the number of iterations using the
contents of agX. If agX = 0, the number of
iterations will be 65536.

set.loop agX,Is5 1 Allows an OpB set loop instruction with a 5
bit signed instruction count

loop_begin OpZ 1 Begin loop execution.

loop_stop OpB 1 Early termination of a loop.

loop_end OpZ 1 End loop execution.

Assembler
directive to
indicate end of the
loop.

 NOTE

Scalar Compare instructions VSPA instructions quick reference

cmp aU,Iu19 OpC 2 Compare a data memory pointer with an
immediate number.

The second cycle
in 'cmp' is used to
set up a
conditional
instruction.

 NOTE

cmpD(.cc) gY,I32 OpD 2 If the optional condition test is true, then
compare gY with an immediate scalar.

cmpS.z gZ,Iu16 OpS 2 Compare gZ with a short unsigned
immediate scalar.

cmpS.s gX,Is16 Sign extend an immediate short scalar,
then compare it with gX.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 76 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

cmp(.cc) gX,gY If the optional condition test is true, then
compare 2 scalar registers. Similar to
subtract but without a destination register.

Use of sp is
allowed.

 NOTE

Control Flow and State instructions VSPA instructions quick reference

jmp(.cc) gX OpC 3 If the optional condition test is true, then
jump to the address in gX.

jsr(.cc) gX If the optional condition test is true, then jsr
to the address in gX.

jmp(.cc) Iu25 If the optional condition test is true, then
jump to an immediate address.

jsr(.cc) Iu25 If the optional condition test is true, then jsr
to an immediate address.

jmp(.cc) [pc+Is25] If the optional condition test is true, then
jump to a PC relative (PC+Is25) address.

jsr(.cc) [pc+Is25] If the optional condition test is true, then jsr
to a PC relative (PC+Is25) address.

jmp(.cc) [pc+gX] If the optional condition test is true, then
jump to a PC relative (PC+gX) address.

jsr(.cc) [pc+gX] If the optional condition test is true, then jsr
to a PC relative (PC+gX) address.

loop_break(.cc) Iu25 OpC 3 If the optional condition test is true, then
stop loop execution and jump to an
immediate address.

This must be in
parallel with OpZ
break, which is
added by the
assembler.

 NOTE

swi(.cc) Iu16 OpC 3 If the optional condition test is true, then jsr
to software interrupt handler and enter
supervisor mode.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 77 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

This must be in
parallel with OpZ
break, which is
added by the
assembler.

 NOTE

rts OpZ 3 Return from subroutine.

mv cc Iu4 OpS 1 Move an immediate number into the
condition codes.

set.creg creg Iu4 OpS 1 Initialize the Control register (creg) with an
immediate scalar. Refer Control register
latency to understand exceptions to one
cycle latency.

setB.creg creg Iu4 OpB 1 Alternate (OpB) form of the above
instruction.

swbreak OpX 0 Software breakpoint.

done OpD 1 Enter the low power done state.

Stack instructions VSPA instructions quick reference

mv sp I19 OpS 1 3 Initialize the stack pointer.

mvB sp agX OpB 1 Move contents of agX to the stack pointer.

agX sp Move the stack pointer to agX.

mvS sp aV OpS 1 3 Move contents of aV to the stack pointer.

aU sp Move the stack pointer to aU.

mv(.cc) sp gX OpS 1 3 If the optional condition test is true, then
move contents of gX to the stack pointer.

gZ sp If the optional condition test is true, then
move the stack pointer to gZ.

stS [sp+Is10] gX OpS 1 2,3 Push gX onto the stack at an immediate
offset from the current stack pointer.

The stack pointer
does not change.

 NOTE

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 78 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

stS [sp]+Is10 gX Push gX onto the stack, then post-
increment the stack pointer by an
immediate number.

st [sp+Is10] H 22,3 Push H onto the stack at an immediate
offset from the current stack pointer.

The stack pointer
does not change.

 NOTE

st [sp]+Is10 H Push H onto the stack, then post-
increment the stack pointer by an
immediate number.

ldS gX [sp+Is10] OpS 4 3 Pop gX using an immediate offset from the
current stack pointer.

The stack pointer
is not updated with
the new address.

 NOTE

ldS.u gX [sp+Is10] Pop gX using an immediate offset from the
current stack pointer.

The stack pointer is updated with the new
address.

ld H [sp+Is10] Pop H using an immediate offset from the
current stack pointer.

The stack pointer
is not updated with
the new address.

 NOTE

ld.u H [sp+Is10] Pop H using an immediate offset from the
current stack pointer.

The stack pointer is updated with the new
address.

stm [sp+Is16] agX,agY,...,a
gZ

OpD 1 Store an ordered list of registers on the
stack at an immediate offset from the
current stack pointer.

The stack pointer
does not change.

 NOTE

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 79 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

ldm agX,agY,...,a
gZ

[sp+Is16] 4 3 Load an ordered list of registers from the
stack at an immediate offset from the
current stack pointer.

The stack pointer
does not change.

 NOTE

pushm agX,agY,...,agZ OpS 12,3 Increment the stack pointer to the start of
the next DMEM line (if needed), then push
an ordered list of scalar registers or pointer
registers onto the stack.

The stack pointer is post-modified such
that it points to the start of the next
available (empty) full DMEM line.

popm agX,agY,...,agZ OpS 4 3 Decrement the stack pointer to the start of
the previous DMEM line, then pop an
ordered list of scalar registers or pointer
registers from the stack.

pushm aX,aY,...,aZ OpS 12,3 Increment the stack pointer to the start of
the next DMEM line (if needed), then push
an ordered list of pointer registers onto the
stack.

The stack pointer is post-modified such
that it points to the start of the next
available (empty) full DMEM line.

popm aX,aY,...,aZ OpS 4 3 Decrement the stack pointer to the start of
the previous DMEM line, then pop an
ordered list of pointer registers from the
stack.

push I32 OpD 1 Store an immediate scalar to the stack.

Internal Peripheral Control instructions VSPA instructions quick reference

mvip Iu9 I32 OpD 1 Move an immediate scalar to an IP
register.

• The immediate address of the IP
register specifies the destination.
Note that the immediate address
needs to be in word index format,
while the IP register will be in byte
offset format.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 80 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

mvip Iu9 gX,I32 Move a subset of a scalar register to an IP
register.

• An immediate integer bit mask is
used to specify the source data in
gX.

• The immediate address of the IP
register specifies the destination.
Note that the immediate address
needs to be in word index format,
while the IP register will be in byte
offset format.

mvip gX Iu9,I32 1 or 24 Move an IP register to a scalar register.

• An immediate integer bit mask is
used to specify the source data in the
IP register.

• An immediate address identifies the
IP register source. Note that the
immediate address needs to be in
word index format, while the IP
register will be in byte offset format.

mvip Iu9 gX,gY OpS 1 Move a subset of a scalar register to an IP
register.

• An integer bit mask in gY is used to
specify the source data in gX

• The immediate address of the IP
register specifies the destination.
Note that the immediate address
needs to be in word index format,
while the IP register will be in byte
offset format.

mvip gX Iu9,gY 1 or 24 Move an IP register to a scalar register.

• An integer bit mask in gY is used to
specify the source data in the IP
register.

• An immediate address identifies the IP
register source. Note that the
immediate address needs to be in
word index format, while the IP
register will be in byte offset format.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 81 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

mvip [gZ] gX(,gY) 1 Move into IP register given by index in gZ,
gX is data, optional gY is mask (if not
provided use implicit mask of 0xffffffff).

mvip gX [gZ](,gY) 1 or 24 Move into gX from IP register given by
index in gZ, optional gY is mask (if not
provided use implicit mask of 0xffffffff).

bclrip Iu9 Iu5 1 Clear bit at position Iu5 in IP register

bclrip Iu9 gX 1 Clear bit at position gX[0:5] in IP register

bsetip Iu9 Iu5 1 Set bit at position Iu5 in IP register

bsetip Iu9 gX 1 Set bit at position gX[0:5] in IP register

clrip Iu9 I32 OpD 1 Clear all bits in IP register given by mask

clrip Iu9 gX OpS 1 Clear all bits in IP register given by gX
mask

setip Iu9 I32 OpD 1 Set all bits in IP register given by mask

setip Iu9 gX OpS 1 Set all bits in IP register given by gX
mask

btstip Iu9 Iu5 OpS 1 Test bit at position Iu5 in IP register

This instruction
cannot be used on
a slow IP register.

 NOTE

btstip Iu9 gX 1 Test bit at position gX[0:5] in IP register

This instruction
cannot be used on
a slow IP register.

 NOTE

Operand Generator instructions VSPA instructions quick reference

set.nco {radix2, singles, normal},
Iu10, Is31

OpD 3 Initialization of the vector NCO generator
mode and frequency parameters. Order of
arguments is k, f.

mv nco_k Iu11 OpB 3 Set the vector NCO generator (k-
parameter) to an immediate scalar. Note,
only affects least significant 11 bits of the
half word register.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 82 / 536

Table 15. VCPU instructions summary (continued)

OpCode Dest Source Family Cycles Description

add nco_k Is11 Offset the vector NCO generator (k-
parameter) by a signed immediate scalar.

mv nco_reg gX OpB 3(nco_k),
2(nco_pha
se),
3(nco_freq
)

Move a value from a scalar register gX into
an NCO configuration register.

mv gX nco_reg 1(nco_k),
1(nco_pha
se),
1(nco_freq
)

Move a value from an NCO configuration
register into a scalar register gX.

Miscellaneous instructions VSPA instructions quick reference

nop OpA, OpB,
OpC, OpS,
OpV, OpZ

1 No operation.

1. The address modifier update latency is one cycle.
2. The data stored to memory can be the source of a load instruction in the next cycle. However, there is another cycle

required before the data is visible to the debugger in memory.
3. The stack pointer modification latency is one cycle.
4. Reads of normal IP registers require 1 cycle; reads of slow IP registers require 2 cycles.

Table 16. Macro-instruction format 1 combinations

OpX OpA OpB OpV OpZ

swbreak add(.laddr) aU Is9 See Table 18 See Table 20 loop_begi
n

addA aU aV, aW loop_end

subA aU aV, aW rts

set.br agX fft_size

mvA.VRAptr rX agY

mvA.VRAptr agY rX

mvA.VRAincr rX agY

mvA.VRAincr agY rX

mvA.VRArange1 rX agY

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 83 / 536

Table 16. Macro-instruction format 1 combinations (continued)

OpX OpA OpB OpV OpZ

mvA.VRArange2 rX agY

mvA.VRArange1 agY rX

mvA.VRArange2 agY rX

setA.VRAptr rX Iu9

setA.VRAincr rX Is9

ldA(.laddr) [agX]+Is9

stA(.laddr) [agX]+Is9

stA(.laddr).w [agX]+Is9

ld(.br) [agX]+/-agY

st(.llr_mode) [agX]+/-agY

st.w(.br) [agX]+/-agY

st.uline agX

Table 17. Macro-instruction format 2 combinations

OpX OpC OpV OpZ

swbreak See Table 19 See Table 20 loop_begin

rts

break (MUST be in parallel with OpC loop_break
or swi)

This OpZ instruction is
added by the assembler
and is not specified by the
user.

 NOTE

Table 18. OpB instructions

OpB OpB

set.prec S0prec, S1prec, S2prec,
Auprec, Vprec

fill.h [rV] gX

mv nco_reg gX mv.h gX [rS0]

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 84 / 536

Table 18. OpB instructions (continued)

OpB OpB

mv gX nco_reg floatx2n gX, gY

mv nco_k Iu11 lfsr gX, gY

add nco_k Is11 fix2float gX gY

fa0to1 Iu2 float2fix gX gY

set.xtrm {signed,unsigned},{min,max},
{even,all},{value,index} N

hfixtofloatsp gX gY

xtrm aU, gX floatsptohfix gX gY

xtrm gX floathptofloatsp gX gY

xtrm aU floatsptofloathp gX gY

set.loop Iu10 mvB sp agX

set.loop agX mvB agX sp

loop_stop mvB agX agY

set.rot (lt_mode),
(rt_mode)

clr.VRA

ldB Rx

mv Rx Ry

lsb2rf [rV] gX setB.creg creg Iu4

lsb2rf.sr [rV] gX set.Smode set.Smode ((S0conj,) (S0chs,)
(S0mode,) (S1mode,)
(S2mode))

fill.w [rV] gX setB.VRAincr rX Is9

mv.w [rV] gX setB.VRAptr rX Iu9

setB.loop agX Is5 nop

mvB.VRAptr rX agY mvB.VRArange1 rX agY

mvB.VRAptr agY rX mvB.VRArange2 rX agY

mvB.VRAincr rX agY mvB.VRArange1 agY rX

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 85 / 536

Table 18. OpB instructions (continued)

OpB OpB

mvB.VRAincr agY rX mvB.VRArange2 agY rX

mv.h [rV] gX

fill.q [rV] gX

mv.q [rV] gX

fill.d [rV] gX

mv.d [rV] gX

mv.w gX [rS0]

Table 19. OpC instructions

OpC OpC

set.loop Iu10, Iu16 ldhC.s gY [sp]+Is18

setC.loop Iu16 ldhC gY [sp+Is18]

set.loop agX, Iu10 ldhC.s gY [sp+Is18]

set.VRArange1 rX Iu9, Iu9 ldhC.u gY [sp+Is18]

set.VRArange2 rX Iu9, Iu9 ldhC.u.s gY [sp+Is18]

jsr(.cc) Iu25 stC [agX]+Is18

jmp(.cc) Iu25 stC.w [agX]+Is18

loop_break(.cc) Iu25 stC [agX]+Is18 gY

jsr(.cc) gX stC [agX+Is18] gY

jmp(.cc) gX stC [sp+Is18] agY

jsr(.cc) [pc+Is25] stC [sp]+Is18 agY

jmp(.cc) [pc+Is25] stC.u [agX+Is18] gY

jsr(.cc) [pc+gX] stC.u [sp+Is18] agY

jmp(.cc) [pc+gX] sthC [agX]+Is18 gY

set.range aY agX, Iu19 sthC [agX+Is18] gY

set.range aZ agX, gY sthC.u [agX+Is18] gY

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 86 / 536

Table 19. OpC instructions (continued)

OpC OpC

mv aU Iu19 sthC [sp]+Is18 gY

add aV aU, Is19 sthC [sp+Is18] gY

add aU sp, Is19 sthC.u [sp+Is18] gY

cmp aU, Iu19 sth [agX]+Is9 I16

ldC [agX]+Is18 st.low [agX]+agY Iu8

ldC gY [agX]+Is18 st.low [agX]-agY Iu8

ldC gY [agX+Is18] st.low [agX]+Is16 Iu8

ldC agY [sp+Is18] st.low [agX]+agY gZ

ldC.u gY [agX+Is18] st.low [agX]-agY gZ

ldC.u agY [sp+Is18] st.low [agX]+Is16 gZ

ldhC gY [agX]+Is18 st.high [agX]+agY Iu8

ldhC.s gY [agX]+Is18 st.high [agX]-agY Iu8

ldhC gY [agX+Is18] st.high [agX]+Is16 Iu8

ldhC.s gY [agX+Is18] st.high [agX]+agY gZ

ldhC.u gY [agX+Is18] st.high [agX]-agY gZ

ldhC.u.s gY [agX+Is18] st.high [agX]+Is16 gZ

ldhC gY [sp]+Is18 swi(.cc) Iu16

Table 20. OpV instructions

OpVr OpVsx OpVau OpVd OpVrot

ld.normal Rx rd S0 rmad wr.hlinecplx rol

ld.h2h Rx S1 rmad.sau wr.even ror

ld.h2l Rx S2 cmad wr.straight

ld.h2l_l2h Rx cmad.sau wr.fft1

ld.l2l Rx rmac wr.fft2

ld.l2h Rx rmac.sau wr.fft3

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 87 / 536

Table 20. OpV instructions (continued)

OpVr OpVsx OpVau OpVd OpVrot

ld.l2h_h2l Rx cmac wr.fft4

ld.replace_h Rx cmac.sau wr.fft5

ld.replace_l Rx mads wr.fft6

clr Rx mads.sau wr.fft7

bin2num Rx maf wr.fftn

ld.qam Rx mafac wr.fn

ld.2scomp Rx clr.au wr.fn1

dif.sau

rcp

rrt

srt

atan

nco

padd

4.5 System control registers
The System Control Register (CReg) unit contains multiple addressable fields for setting modes used by various VSPA
instructions.These fields are detailed in Table 21.

Table 21. CREG Fields

index Field Description Width Reset
Value

0 Real/Complex mode (0=real; 1=complex)

This bit will be forced to zero when creg 22 (legacy dmem addressing
mode) bit is cleared; furthermore, after clearing creg 22, if the creg 0 bit
(real/complex) is set, the behavior is undefined (ie, it is not recommended
to set the real/complex bit after creg 22 is cleared).

 NOTE

1 bit 0

1 Reserved 1 bit 0

2 Reserved -- --

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 88 / 536

Table 21. CREG Fields (continued)

index Field Description Width Reset
Value

3 VAU output mode control (0=normal; 1=sign; 2=binary)

Mode 0 - normal: when written back to VRA, it returns normal values in specified precision

Mode 1 - sign: when written back to VRA, negative values return -1 (if half_fixed, 0xffff), non-
negative values return 1 (if half_fixed, 0x7fff)

Mode 2 - binary: when you write back to VRA, negative values return 0, non-negative values
return 1 (if half_fixed, 0x7fff)

2 bits 00

4 Condition Code update switch (0=no update; 1=update)

See Condition code flags for additional details.

1 bit 0

5-9 Reserved -- --

10 CReg read address - most significant nibble 4 bits 0000

11 CReg read address - least significant nibble 4 bits 0000

12 H register control

bit 0: initial state bit (Z bit)

bit 1: sign capture enable bit (0=no capture; 1=capture)

bit 2: auto-increment enable (0=no auto-increment; 1=auto-increment)

See Vector sign capture register (H) for details.

3 bits 000

13 HPfixed scale-by-2 switch

bit 0: Vprec control

bit 1: S1prec control

(0=no scaling; 1=scale-by-2)

S1 (input) is scaled up by 2, V (output) is scaled down by 2

2 bits 00

14 H register sub-address. Read only. -- --

15 FFT permutations mode switch

bit 0: controls Sx-mux mode

bit 1: write enable mask for bit 0 (1=enable)

bit 2: controls V-mux mode

bit 3: write enable mask for bit 2 (1=enable)

To change the state of bit 0 or bit 2 the respective write enable mask bit must be set, this
allows either one or both bits to be changed with one register write.

4 bits 0000

16 Fractional interpolator numerator constant (0 -15). Restriction on numerator: D<N<2D,
where N is the numerator constant and D is the denominator constant.

4 bits 0000

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 89 / 536

Table 21. CREG Fields (continued)

index Field Description Width Reset
Value

17 Fractional interpolator denominator constant (0 -15). Restriction on denominator: N/2<D<N,
where N is the numerator constant and D is the denominator constant.

4 bits 0000

18 Fractional interpolator phase (0 -15). Restriction on phase: if NAU%N == 0, phase=0, else
phase <N, where 'N' is the numerator constant and '%' is the modulus operator

4 bits 0000

19 SP VAU output width switch

(0=Single line; 1=Two lines)

1 bit 0

20 SP VAU output lane switch

This controls which portion of the AU output gets written to VRA line on write back under
circumstances that the output width is larger than a single register line.

Note: only applicable if creg(19)=0

Vprec=SP: 0,2=0: 1023; 1,3=1024: 2047

2 bits 00

21 Reserved 2 bits 00

22 legacy_dmem_addr

0=Turn off the mode; 1=Turn on the mode

Clearing this bit will also have the effect of clearing the real/complex bit
(creg 0).

 NOTE

1 bit 1

23 order_g

This is the exponent of base 2 in determining number of elements (n) in group, see
description of S0group2nr and S0group2nc. Value of order_g is restricted (1<2^order_g<16).

3 bits 000

24 order_i

This is the exponent of base 2 in determining number of elements (n) in group, see
description of S1interp2nr and S1interp2nc. Value of order_i is restricted (1<2^order_i<64).

3 bits 000

25-254 Reserved

255 Used for setting multiple fields in a single instruction based on a 4-bit immediate index value

The following table shows the modification of fields {0, 1, 3, 13, 15, 19} for each index value
of creg index 255. Note that VDPW and AUOM are assigned 0 and 00, respectively, in all
cases.

N/A N/A

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 90 / 536

Table 21. CREG Fields (continued)

index Field Description Width Reset
Value

index 0 1 3 13 13 15 15 19

bit# 0 0 1:0 1 0 2 0 0

CREG
State

RC VDPW AUOM HPFS HPFV FFTV FFTS ALLAU

0 0 0 00 0 0 0 0 0

1 0 0 00 0 0 0 0 1

2 0 0 00 0 1 0 0 0

3 0 0 00 1 0 0 0 0

4 0 0 00 1 1 0 0 0

5 1 0 00 0 0 0 1 0

6 1 0 00 0 0 0 0 1

7 1 0 00 0 0 1 0 0

8 1 0 00 0 0 0 0 0

9 1 0 00 0 0 1 1 0

10 1 0 00 0 1 0 0 0

11 1 0 00 0 1 0 1 0

12 1 0 00 0 1 1 1 0

13 1 0 00 1 0 0 0 0

14 1 0 00 1 0 0 1 0

15 1 0 00 1 0 1 1 0

RC - Real or complex mode

RC will not be set by special update if legacyMemAddr is 0. Setting real/
complex when the creg register 22 is set is allowed but not recommended.

 NOTE

VDPW - Vector data path width (wide/narrow)

AUOM - AU output mode control (normal, sign, bin)

HPFS - Half fixed scale by 2 for S1

HPFV - Half fixed scale by 2 for V

FFTS - FFT mode control bits for S

FFTV - FFT mode control bits for V

ALLAU - All AU write back enable (for single mode)

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 91 / 536

These fields are set (written) using the 'set.creg' instruction and can be read using the opS 'mv' instruction (mv gZ,cc). In order
to read a specific Creg field value, the "read address" fields (10,11) must first be written to the index value of the field to be read,
setting field 10 with the most significant bits (nibble) of the index value and setting field 11 with the least significant bits of the
index value. The data returned and stored in the GP destination register will be in the following format:

{0000000000000000bbbbiiiiiiiiNZVC}

where the upper 16 bits are 0s; bits [15:12] are the value of the referenced field; bits[11:4] are the index value of the field; bits
[3:0] are the Condition Code (cc) bits (N,Z,V,C).

Note that it is not possible to read back multiple fields in a single read operation (that is, setting fields 10,11 to 255
will result in 0 value for bits [15:12] above. If div/mod and mpy instructions perform write-back on the same cycle,
CC bits will be based on mpy result.

 NOTE

4.5.1 Control register latency

This section only applies to legacy_dmem_addressing mode (creg 22 register is set to 1), but is not relevant when
that register is cleared (creg 22 register is cleared), since the instructions now carry the real/complex
information. Furthermore, when legacy_dmem_addressing mode control register (creg 22) is cleared by the
programmer, the real/complex mode control register (creg 0) is automatically cleared by the hardware. It is
recommended that, the programmer flush the AU pipeline before performing this operation in complex mode.

 NOTE

In general, the creg bits have a one-cycle latency before taking affect.

The bits in the following control registers take two cycles before taking effect: 0, 3, 15, 19, 20.

The bits in the following control registers take three cycles before taking effect: 16, 17, 18.

The Au Real/Complex mode control, creg bit 0, is pipelined to affect the Source Register, Arithmetic Unit and the AU writeback
data. This allows the programmer to intermix complex and real operation.

The Au Real/Complex mode affects the Source Register after two cycles.

The Au Real/Complex mode affects the Arithmetic Unit after four cycles.

The Au Real/Complex mode affects the AU writeback data after eight cycles when AUprec is Single Precision.

The Au Real/Complex mode affects the AU writeback data after nine cycles when AUprec is Double Precision due to the extra
cycle needed in the AU for double precision operations.

Control register latency code example

//
// Assume that the Au mode bit is set to real.
// Assume that S0prec,S1prec,S2prec,Vprec = half_fixed and AUprec=single
//
set.creg 0,1; // Set Au mode to Complex mode
set.creg 0,0; // Set Au mode to Real mode
rd S0; rd S1; rd S2; // Complex Load
rd S0; rd S1; rd S2; // Real Load
cmad; // Complex Operation
rmad; // Real Operation
nop;
nop;
wr.hlinecplx; // Complex Writeback
wr.straight; // Real Writeback

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 92 / 536

4.5.2 Vector precision latency
The set.prec instruction is Pipelined to affect the Source Register, Arithmetic Unit and the AU writeback data. This allows the
programmer to intermix different precision operations.

The Vprec affects the Source Register after one cycle.

The Vprec affects the Arithmetic Unit after three cycles.

The Vprec affects the AU writeback data after seven cycles when AUprec is Single Precision.

Vector precision latency code example

//
// Assume that S0prec,S1prec,S2prec,Vprec = half_fixed and AUprec=single
//
 set.prec single, single, single, single, single;
// Sprec = Single Precision affects Src Load
 set.prec half_fixed, half_fixed, half_fixed, single, half_fixed; rd S0; rd S1;
rd S2;
// Sprec = Half Fixed Precision affects Src Load
 rd S0; rd S1; rd S2;
 cmad; // AUprec = Single Precision affects AU unit
 cmad; // AUprec = Single Precision affects AU unit
 nop;
 nop;
 wr.hlinecplx; // Vprec=Single Precision effects AU writeback.
 wr.hlinecplx; // Vprec=Half Fixed Precision effects AU writeback

4.6 VCPU condition codes
The VCPU conditions codes consist of 4 bits (N,Z,V,C) which may be updated by various instructions as shown in Table 22.
These bits represent the following conditions:

N - The result of an operation is negative (that is, the most significant bit (31) is a 1)

Z - The result of an operation is zero

V - A two’s complement overflow has occurred (that is, the sign of the result is not as expected)

C - A carry (or borrow) has occurred from an add (or sub)

Table 22. Instructions affecting the CC bits

Instruction N Z V C Update description

addD(.ucc)(.cc) gX, gY, I32 (sp
allowed)

+ + + + Only updates condition codes if system control register cc_update
OR .ucc bit of instruction is set

subD(.ucc)(.cc) gX, gY, I32 (sp
allowed)

+ + + + Only updates condition codes if system control register cc_update
OR .ucc bit of instruction is set

andD(.cc) gX, gY, I32 (sp allowed) + + - - Only updates condition codes if system control register cc_update is set

orD(.cc) gX, gY, I32 + + - - Only updates condition codes if system control register cc_update is set

cmpD(.cc) gY, I32 + + + + Always updates condition codes

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 93 / 536

Table 22. Instructions affecting the CC bits (continued)

Instruction N Z V C Update description

xorD(.cc) gX, gY, I32 + + - - Only updates condition codes if system control register cc_update is set

mpyD(.cc) gX, gY, I32 + + + + Only updates condition codes if system control register cc_update is set

cmp aU, Iu19 + + + + Always updates condition codes

sr gX, gY, I (logical) 0 + - - Only updates condition codes if system control register cc_update is set

sr.s gX, gY, I (arith) - + - - Only updates condition codes if system control register cc_update is set

sl gX, gY, I + + - - Only updates condition codes if system control register cc_update is set

btst gY, I + + - - Always updates condition codes

andS(.z) gX, I16 (sp allowed) + + - - Only updates condition codes if system control register cc_update is set

orS gX, Is + + - - Only updates condition codes if system control register cc_update is set

xorS gX, Is + + - - Only updates condition codes if system control register cc_update is set

mpy(.cc)(.s) gZ, gX, gY + + + + Only updates condition codes if system control register cc_update is set

div(.cc)(.s) gZ, gX, gY + + + + Only updates condition codes if system control register cc_update is set

mod(.cc)(.s) gZ, gX, gY + + + + Only updates condition codes if system control register cc_update is set

sr(.cc) gZ, gX, gY 0 + - - Only updates condition codes if system control register cc_update is set

sr(.cc).s gZ, gX, gY - + - - Only updates condition codes if system control register cc_update is set

addS(.ucc)(.cc) gZ, gX, gY (sp
allowed)

+ + + + Only updates condition codes if system control register cc_update
OR .ucc bit of instruction is set

subS(.ucc)(.cc) gZ, gX, gY (sp
allowed)

+ + + + Only updates condition codes if system control register cc_update
OR .ucc bit of instruction is set

cmp(.cc) gX, gY (sp allowed) + + + + Always updates condition codes

sl(.cc) gZ, gX, gY + + - - Only updates condition codes if system control register cc_update is set

and(.cc) gZ, gX, gY (sp allowed) + + - - Only updates condition codes if system control register cc_update is set

or(.cc) gZ, gX, gY + + - - Only updates condition codes if system control register cc_update is set

xor(.cc) gZ, gX, gY + + - - Only updates condition codes if system control register cc_update is set

bclr(.cc) gZ, gX, gY + + - - Only updates condition codes if system control register cc_update is set

not(.cc) gZ, gX + + - - Only updates condition codes if system control register cc_update is set

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 94 / 536

Table 22. Instructions affecting the CC bits (continued)

Instruction N Z V C Update description

abs gZ, gX 0 + + + Only updates condition codes if system control register cc_update is set

mv cc, Iu4 + + + + Always updates condition codes

cmpS.s gZ, Is16 + + + + Always updates condition codes

div.s gZ, Is16 + + + + Only updates condition codes if system control register cc_update is set

mod.s gZ, Is16 + + + + Only updates condition codes if system control register cc_update is set

mpyS.s gZ, Is16 + + + + Only updates condition codes if system control register cc_update is set

rdiv.s gZ, Is16 + + + + Only updates condition codes if system control register cc_update is set

rmod.s gZ, Is16 + + + + Only updates condition codes if system control register cc_update is set

rsub.s gZ, Is16 + + + + Only updates condition codes if system control register cc_update is set

addS(.ucc).s gZ, Is16 (sp allowed) + + + + Only updates condition codes if system control register cc_update
OR .ucc bit of instruction is set

subS(.ucc).s gZ, Is16 (sp allowed) + + + + Only updates condition codes if system control register cc_update
OR .ucc bit of instruction is set

‘+’ means that the bit will be updated by the instruction and is dependent on a result, ‘-‘ means that the bit is not
affected by the instruction and ‘0’ means that the bit will always be set to 0 by the instruction. Any instructions not
listed in table Table 22 can never affect the CC bits.

 NOTE

4.6.1 Multiply condition codes
The condition code bits which result from the multiply instruction have slightly different meaning than other operations. The N bit
is derived from bit 63 of the multiply result. The Z bit is only set if all 64 bits of the result are 0. The V bit is set if there is a carry
out of the multiply operation. The C is set in the following cases: an unsigned multiply has any bit set in the upper 32 bits of the
result or a signed multiply has any bit set in the upper 33 bits of the result but the upper 33 bits are not all set.

4.6.2 Divide condition codes
The condition code bits which result from the divide instruction have slightly different meaning than other operations. The N bit
is derived from bit 31 of the quotient. The Z bit is set if the quotient is 0. The V bit is set if the divisor is 0. The C bit is set if
remainder is not 0.

4.6.3 Modulus condition codes
The condition code bits which result from the modulus instruction have slightly different meaning than other operations. The N
bit is derived from bit 31 of the remainder. The Z bit is set if the remainder is 0. The V bit is set if the divisor is 0. The C bit is set
if quotient is not 0.

4.7 Data memory pointer instructions
The MAG instructions manipulate the following MAG-related registers:

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 95 / 536

• aX registers (a0-a19)

• gX registers (g0-g11)

In addition, these instructions also enable or initialize various buffer ranges (min and max registers) supported within the MAG.

Table 23. Set Range Registers

set.range a0

set.range a1

set.range a2

set.range a3

Sets the range (min and max) for a0 buffer, a1 buffer, a2 buffer, a3 buffer.

For the following instructions

• add aX, aY,

• add aX, Is17

• sub aX, aY,

if the destination aX is either a0, a1, a2 or a3 and the result of the add operation lies outside the buffer range of aX, then the
resulting contents of aX will be wrapped.

For example, consider the instruction add a2, a3. If the buffer range a2 is [min, max], then the buffer size of a2 will be given by
size = max - min + 1. Assume that sum = a2 + a3. Then a2 will be updated as follows:

If sum is greater than max, a2 will take the value sum - size. If sum is less than min, a2 will take the value sum + size. If both the
conditions are not true, a2 equals sum.

If a3 is greater than size, then sum - size may still be greater than max and sum + size may still be less than min
which could result in a2 being outside the range.

 NOTE

The wrap operation will only occur if the destination of the add operation is either a2 or a3 and the result of the add operation lies
outside the buffer range of destination register.

Initialize a MAG buffer range by setting its min and max pointers. All legal MAG buffer, <mag_buff> are listed in Table 24.

Table 24. MAG Buffers

<mag_buff> Mag Buffer Descriptions

a0 a0 buffer

a1 a1 buffer

a2 a2 buffer

a3 a3 buffer

This instruction has two formats. The first format uses Iu19 to specify the buffer size. The second format uses the content of a
gX register to specify the buffer size.

The MAG buffer's min pointer is set to the content of the aX register.

The MAG buffer's max pointer is set to either

• aX + Iu19 - 1 (first instruction format), or

• aX + gY - 1 (second instruction format).

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 96 / 536

Both formats of the instructions may be used to disable the range, with min pointer set to 0 and buffer size set to 0. For example,

mv a4, 0;
set.range a2, a4, 0;

disables the range on a2.

4.8 Data memory load & store instructions
The load/store instructions perform load/store operations to or from DMEM.

4.8.1 DMEM address generation modes (ptr_mode)
The address used for DMEM access can be generated using the following mode(s):

• Normal Mode

These addresses are generated using the content of an aX register. See Pointer reordering algorithms for more details.

4.8.2 Post-modifications of aX registers
Upon generating a DMEM address, the content of the aX register is post-modified (post-incremented or post-decremented), using
one of the following modifiers.

• an immediate value specified in the ld or st instruction.

• another aX register, also referred to as a modifying aX register.

Note that, while there will be a latency to the DMEM read buffer (as indicated in Table 15), there will also be a latency of one
cycle to post-increment the aX register.

If an immediate value is used as a post-modifier, a user can specify the increment amount in terms of number of words, or in
terms of number of DMEM lines. For example,

 ld [a2]+32; // post-increment a2 by 32
 ld [a2]-16; // post-decrement a2 by 16
 ld.laddr [a2]+2; // post-increment a2 by 2lines
 ld.laddr [a2]-3; // post-decrement a2 by 3lines

4.8.3 Special notes
Special care are needed when accessing DMEM using certain modes, as described below.

4.8.3.1 Loads
The load instruction (ld) reads a vector from DMEM and holds it in an internal buffer for a subsequent explicit destination ld.Rmode
instruction to write it into a VRA register or if it has an implicit destination a portion of it is autonomously written into a scalar
register.

DMEM data from a ld instruction is loaded into a VRA register no earlier than three cycles after the ld operation by an
ld.Rmode. When the destination is a scalar register, the DMEM data is autonomouly loaded after three cycles, no extra instructions
are needed. All instructions which load from DMEM are shown in Table 25. These instructions all use the same memory pipeline,
including an internal data register, and loads from the memory must consume the data before a subsequent load reaches the
final cycle of the memory pipeline. A 'done' instruction should not be executed until the load instruction is complete, ie within the
3 instructions following the load.

 NOTE

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 97 / 536

Table 25. Summary of load instructions

Load
Instructions

Dest Source Description

Instructions requiring explicit destination load These instructions only load data from memory through the pipeline into
the internal data register, but not into the VRA. They must be followed,
after the appropriate delay, with an OpVr ld instruction to complete the
load of the data into the VRA.

ld(.br) [agX]+/-agY Load a vector from DMEM using a pointer, then post-increment or post-
decrement by the contents of agY. The address used for the memory
access can be optionally modified according to a re-order algorithm (bit
reversal) specified by .br.

ldA(.laddr) [agX]+Is9 Load a vector from DMEM using a pointer, then post-increment or post-
decrement by a signed immediate offset. If .laddr is included, update is
by lines.

Instructions with implicit destination load These instructions will load data from memory through the pipeline
into the internal data register and then into the specified destination
register. No following instruction is required to complete the load.

ld gZ [agX]+/-agY Load a 32-bit scalar from DMEM using a pointer and store the contents
into gZ. post-increment or post-decrement by the contents of agY.

ld gZ [agX]+/-agYx2 Load a scalar from DMEM using a pointer and store the contents into
gZ. post-increment or post-decrement by 2 times the contents of agY.

ldS(.laddr) gX [agY]+Is Load a 32-bit scalar from DMEM using a pointer and store the contents
into gX. post-increment by a signed, immediate offset.

ld gZ [agX+/-agY] Generate an address via a pre-increment or pre-decrement of agX by
agY, then load a 32-bit scalar from this DMEM address and store the
contents into gZ. The contents of agX are not modified by this instruction.

ld.u gZ [agX+/-agY] Alternative form of the previous instruction, where the address used in
the memory access is stored into the pointer agX.

ld gZ [agX+/-agYx2] Generate an address via a pre-increment or pre-decrement of agX by 2
times agY, then load a 32-bit scalar from this DMEM address and store
the contents into gZ. The contents of agX are not modified by this
instruction.

ld.u gZ [agX+/-agYx2] Alternative form of the previous instruction, where the address used in
the memory access is stored into the pointer agX.

ldS(.laddr) gX [agY+Is] Generate an address via a pre-increment of agY by a signed,
immediate number, then load a 32-bit scalar from this DMEM address
and store the contents into gX. The contents of agY are not modified
by this instruction.

ldS(.laddr).u gX [agY+Is] Alternative form of the previous instruction where the address used in
the memory access is stored back into the pointer agY.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 98 / 536

Table 25. Summary of load instructions (continued)

Load
Instructions

Dest Source Description

ldh(.s) gZ [agX]+/-agY Load a 16-bit scalar from DMEM using a pointer and store the contents
into gZ. If .s is included, the 16 bit value is sign extended into gZ,
otherwise the value is zero extended. post-increment or post-decrement
by the contents of agY.

ldh(.s) gZ [agX+/-agY] Generate an address via a pre-increment or pre-decrement of agX, then
load a 16-bit scalar from this DMEM address and store the contents into
gZ. If .s is included, the 16 bit value is sign extended into gZ, otherwise
the value is zero extended. The contents of agX are not modified by this
instruction.

ldh.u(.s) gZ [agX+/-agY] Alternative form of the previous instruction, where the address used in
the memory access is stored into the pointer agX.

ldhS(.laddr)(.s) gZ [agX]+Is Load a 16-bit scalar from DMEM using a pointer and store the contents
into gZ. post-increment by a signed, immediate offset. If .s is included,
the 16 bit value is sign extended into gZ, otherwise the value is zero
extended.

ldhS(.laddr)(.s) gZ [agX+Is] Generate an address via a pre-increment of agX by a signed, immediate
number, then load a 16-bit scalar from this DMEM address and store the
contents into gX. If .s is included, the 16 bit value is sign extended into
gZ, otherwise the value is zero extended. The contents of agY are not
modified by this instruction.

ldhS(.laddr).u(.s
)

gZ [agX+Is] Alternative form of the previous instruction, where the address used in
the memory access is stored into the pointer agX.

ld gZ I Load a 32-bit scalar from DMEM using an immediate address and store
the contents into gZ.

ldh(.s) gZ I Load a 16-bit scalar from DMEM using an immediate address and store
the contents into gZ. If .s is included, the 16 bit value is sign extended
into gZ, otherwise the value is zero extended.

ldC [agX]+Is18 Load a vector from DMEM using a pointer, then post-increment or post-
decrement by a signed immediate offset.

ldC gY [agX]+Is18 Load a 32-bit scalar from DMEM using a pointer and store the
contents into gZ. post-increment by a signed, immediate offset.

ldC gY [agX+Is18] Generate an address via a pre-increment of agX by a signed, immediate
number, then load a 32-bit scalar from this DMEM address and store the
contents into gY. The contents of agX are not modified by this instruction.

ldC.u gY [agX+Is18] Alternative form of the previous instruction, where the address used in
the memory access is stored into the pointer agX.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 99 / 536

Table 25. Summary of load instructions (continued)

Load
Instructions

Dest Source Description

ldC agY [sp+Is18] Generate an address via a pre-increment of sp by a signed, immediate
number, then load a 32-bit scalar from this DMEM address and store the
contents into agY. The contents of sp are not modified by this instruction.

ldC.u agY [sp+Is18] Alternative form of the previous instruction, where the address used in
the memory access is stored into the stack pointer.

ldhC gY [agX]+Is18 Load a 16-bit scalar from DMEM using a pointer and store the contents
as a zero extended 32-bit value into gY. post-increment by a signed,
immediate offset.

ldhC gY [agX+Is18] Generate an address via a pre-increment of agX by a signed, immediate
number, then load a 16-bit scalar from this DMEM address and store the
contents as a zero extended 32-bit value into gY. The contents of agX
are not modified by this instruction.

ldhC.u gY [agX+Is18] Alternative form of the previous instruction, where the address used in
the memory access is stored into the pointer agX.

ldhC.s gY [agX]+Is18 Load a 16-bit scalar from DMEM using a pointer and store the contents
as a sign extended 32-bit value into gY. post-increment by a signed,
immediate offset.

ldhC.s gY [agX+Is18] Generate an address via a pre-increment of agX by a signed, immediate
number, then load a 16-bit scalar from this DMEM address and store the
contents as a sign extended 32-bit value into gY. The contents of agX
are not modified by this instruction.

ldhC.u.s gY [agX+Is18] Alternative form of the previous instruction, where the address used in
the memory access is stored into the pointer agX.

ldhC gY [sp]+Is18 Load a 16-bit scalar from DMEM using the stack pointer and store the
contents as a zero extended 32-bit value into gY. post-increment by a
signed, immediate offset.

ldhC gY [sp+Is18] Generate an address via a pre-increment of sp by a signed, immediate
number, then load a 16-bit scalar from this DMEM address and store the
contents as a zero extended 32-bit value into gY. The contents of sp are
not modified by this instruction.

ldhC.u gY [sp+Is18] Alternative form of the previous instruction, where the address used in
the memory access is stored into the stack pointer.

ldhC.s gY [sp]+Is18 Load a 16-bit scalar from DMEM using the stack pointer and store the
contents as a sign extended 32-bit value into gY. post-increment by a
signed, immediate offset.

ldhC.s gY [sp+Is18] Generate an address via a pre-increment of sp by a signed, immediate
number, then load a 16-bit scalar from this DMEM address and store the

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 100 / 536

Table 25. Summary of load instructions (continued)

Load
Instructions

Dest Source Description

contents as a sign extended 32-bit value into gY. The contents of sp are
not modified by this instruction.

ldhC.u.s gY [sp+Is18] Alternative form of the previous instruction, where the address used in
the memory access is stored into the stack pointer.

ldm aX, aY, ..., aZ,
gX, gY, ..., gZ

[sp+Is16] Decrement the effective address of (sp+Is16) to the start of the 32-
element boundary address in the DMEM line, then load the ordered
list of scalar registers from this effective address.

4.8.3.2 Stores
The store instruction (st) reads a selected VRA or scalar register and stores it to DMEM.

Select a VRA register using rSt.ptr, then post-increment or decrement rSt.ptr by an amount specified by rSt.incr. Select a scalar
register by using a st [], agX instruction. Data from the VRA or scalar register will be written into DMEM two cycles after the
execution of the st instruction. A 'done' instruction should not be executed until the store instruction is complete, that is, in the
first instruction following the store.

The width of the data store to memory for the different st instructions is shown in Table 26.

 NOTE

Table 26. Data write width for st instructions

Store Instruction Address Source Data Source Width of store to VRA

st(.br)(.llr_mode) [agX]+/-agY VRA line

stA(.laddr) [agX]+Is9 VRA line

st.w(.br) [agX]+/-agY VRA 32 bits

stA(.laddr).w [agX]+Is9 VRA 32 bits

st [agX]+/-agY gZ 32 bits

st [agX]+/-agYx2 gZ 32 bits

st [agX+/-agY] gZ 32 bits

st.u [agX+/-agY] gZ 32 bits

st [agX+/-agYx2] gZ 32 bits

st.u [agX+/-agYx2] gZ 32 bits

stS(.laddr) [agY]+Is gX 32 bits

stS(.laddr) [agY+Is] gX 32 bits

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 101 / 536

Table 26. Data write width for st instructions (continued)

Store Instruction Address Source Data Source Width of store to VRA

stS(.laddr).u [agY+Is] gX 32 bits

sth [agX]+/-agY gZ 16 bits

sth [agX+/-agY] gZ 16 bits

sth.u [agX+/-agY] gZ 16 bits

sthS(.laddr) [agY]+Is gZ 16 bits

sthS(.laddr) [agY+Is] gZ 16 bits

sthS(.laddr).u [agY+Is] gZ 16 bits

st [agX]+Is15 Is16,Is16 32 bits

st I gZ 32 bits

sth I gZ 16 bits

st Iu19 I32 32 bits

sth Iu19 I16 16 bits

stC [agX]+Is18 VRA line

stC.w [agX]+Is18 VRA 32 bits

stC [agX]+Is18 gY 32 bits

stC [agX+Is18] gY 32 bits

stC.u [agX+Is18] gY 32 bits

stC [sp+Is18] gY 32 bits

stC.u [sp+Is18] gY 32 bits

sthC [agX]+Is18 gY 16 bits

sthC [agX+Is18] gY 16 bits

sthC.u [agX+Is18] gY 16 bits

sthC [sp]+Is18 gY 16 bits

sthC [sp+Is18] gY 16 bits

sthC.u [sp+Is18] gY 16 bits

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 102 / 536

Table 26. Data write width for st instructions (continued)

Store Instruction Address Source Data Source Width of store to VRA

sth [agX]+Is9 I16 16 bits

st.low [agX]+agY Iu8 partial line

st.low [agX]-agY Iu8 partial line

st.low [agX]+Is16 Iu8 partial line

st.low [agX]+agY gZ partial line

st.low [agX]-agY gZ partial line

st.low [agX]+Is16 gZ partial line

st.high [agX]+agY Iu8 partial line

st.high [agX]-agY Iu8 partial line

st.high [agX]+Is16 Iu8 partial line

st.high [agX]+agY gZ partial line

st.high [agX]-agY gZ partial line

st.high [agX]+Is16 gZ partial line

st.uline agX VRA variable

For a description of the st.llr_mode instructions, see st.llr_mode instruction.

4.8.3.2.1 st.llr_mode instruction
These llr_mode store instructions can also optionally specify the 16-bit precision type (half_fixed or half_float) from which the llr's
are to be compressed. If the type is not specified it will default to 16-bit floating point.

st.llr4 instruction

The "st.llr4" instruction converts VRA data in 16-bit half-fixed format to 4 bit llr.

The "st.llr4half" instruction converts VRA data in 16-bit half-float format to 4 bit llr.

Write to DMEM is aligned to 1/4 line for llr4, but the address pointer does not need to be aligned to the fraction. This means that
in st.llr4half [aX]+aY; aX does not need to be 1/4-line aligned. However, to prevent overwriting on subsequent stores, the
increment value (aY) must be a multiple of the line fraction being written.

The following provides a detailed description of the operations of the st.llr4 [aX]+aY instruction. See also Table 27.

First, define a function called flt2llr4(), as follows:

Function: flt2llr4(x[15:0][,type]) -> y[3:0]
Input: a half-word number and optional type
Output: a signed 4-bit llr symbol

if (type != half_fixed)mant_msb=9
else mant_msb=14
if (x[mant_msb:mant_msb-2] != 111b)

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 103 / 536

temp[2:0] = x[mant_msb:mant_msb-2] + {0, 0, x[mant_msb-3]}; // rounding
else

temp[2:0] = 111b; // saturation

y[3:0] = {x[15], temp[2:0]};

The flt2llr4() function takes a half-word number (x[15:0]) as input and outputs a two's complement 4-bit llr value (y[3:0]). The sign
bit of the input will be used as the sign bit of the output.

The mantissa bits to be used for the compression are determined by the optional type input. If the type is specified as half_fixed,
the mantissa msb (mant_msb) is selected as 14, otherwise it is selected as 9.

If the three most significant bits of the mantissa of the input floating number (x[mant_msb:mant_msb-2]) are all ones, then set
temp[2:0] to all ones (saturation operation). Otherwise, set temp[2:0] to be the sum of x[mant_msb:mant_msb-2] and
x[mant_msb-3] (rounding operation). Lastly, set the ouput y[3:0] = {x[15], temp[2:0]}.

The operations of "st.llr4 [aX]+aY" instruction are described in Table 27.

Table 27. The operations of "st [aXx]+aY, 4" instruction

st llr Instruction Operations Descriptions

st.llr4 [aX]+aY Rx <- VRA[rSt.ptr[2:0]];

temp[255:0] = 0;

i = 0;

foreach real_elem in Rx {

temp[255:0] = temp[255:0] | (flt2llr(real_elem) << (4*i));

i=i+1;

}

memLine[1023:0] = DMem[aX];

j = aX[4:3]; // quarter-line select

memLine[256*(j+1)-1:256*j] = temp[255:0];

DMem[aX] <- memLine[1023:0];

aX <- aX + aY;

rSt.ptr <- rSt.ptr + rSt.incr;

Read a VRA register, selected
using rSt.ptr[2:0], and assign it to
Rx.

For each half-word in Rx, convert
it into a 4-bit number, using the
flt2llr() function. This conversion
process produces a 256-bit data,
or a quarter of a DMEM line.
Assign this quarter line to
temp[255:0].

Overwrite a quarter of DMEM line
located at aX by temp[255:0],
using aX[4:3] as a quarter-line
select within the DMEM line.

Post-increment or decrement aX
by adding or subtracting aY.

Post-increment or decrement
rSt.ptr by adding rSt.incr.

Note: only one-quarter of DMEM
line is written. The rest of DMEM
line remains unchanged.

st.llr8 instruction

The "st.llr8" instruction converts VRA data in 16-bit half-fixed format to 8 bit llr.

The "st.llr8half" instruction converts VRA data in 16-bit half-float format to 8 bit llr.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 104 / 536

Write to DMEM is aligned to 1/2 line for llr8, but the address pointer does not need to be aligned to the fraction. This means that
in st.llr8half [aX]+aY; aX does not need to be 1/2-line aligned. However, to prevent overwriting on subsequent stores, the
increment value (aY) must be a multiple of the line fraction being written.

The following provides a detailed description of the operations of the st.llr8 [aX]+aY instruction. See also Table 28.

First, define a function called flt2llr8(), as follows.

Function: flt2llr8(x[15:0][,type]) -> y[7:0]
Input: a half-word number and optional type
Output: a signed 8-bit llr value

if (type != half_fixed)mant_msb=9
else mant_msb=14
if (x[mant_msb:mant_msb-6] != 1111111b)

temp[6:0] = x[mant_msb:mant_msb-6] + {0, 0, 0, 0, 0, 0, x[mant_msb-7]}; //
rounding

else
temp[6:0] = 1111111b; // saturation

y[7:0] = {x[15], temp[6:0]};

The flt2llr8() function takes a half-word number (x[15:0]) as input and outputs a two's complement 8-bit llr value (y[7:0]). The sign
bit of the input will be used as the sign bit of the output.

The mantissa bits to be used for the compression are determined by the optional type input. If the type is specified as fixed, the
mantissa msb (mant_msb) is selected as 14, otherwise it is selected as 9.

If the seven most significant bits of the mantissa of the input floating number (x[mant_msb:mant_msb-6]) are all ones, then set
temp[6:0] to all ones (saturation operation). Otherwise, set temp[7:0] to be the sum of x[mant_msb:mant_msb-6] and
x[mant_msb-7] (rounding operation). Lastly, set the ouput y[7:0] = {x[15], temp[6:0]}.

The operations of "st.llr4 [aX]+aY" instruction is described in Table 28.

Table 28. The Operations of "st [aX]+aY, 8" Instruction

st.mem llr Instruction Operations Descriptions

st.llr4 [aX]+aY Rx <- VRA[rSt.ptr[2:0]];

temp[511:0] = 0;

i = 0;

foreach real_elem in Rx {

temp[511:0] = temp[511:0] | (flt2llr8(real_elem) << (8*i));

i=i+1;

}

memLine[1023:0] = DMem[aX];

j = aX[1]; // half-line select

memLine[512*(j+1)-1:512*j] = temp[511:0];

DMem[aX] <- memLine[1023:0];

aX <- aX + aY;

rSt.ptr <- rSt.ptr + rSt.incr;

Read a VRA register, selected
using rSt.ptr[2:0], and assign it to
Rx.

For each half-word element in Rx,
convert it into a 8-bit number,
using the flt2llr8() function. This
conversion process produces a
512-bit data, or a half of a DMEM
line. Assign this half line to
temp[511:0].

Overwrite a half of DMEM line
located at aX by temp[511:0],
using aX[1] as a half-line select
within the DMEM line.

Post-increment or decrement aX
by adding or subtracting aY.

Post-increment or decrement
rSt.ptr by adding rSt.incr.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 105 / 536

Table 28. The Operations of "st [aX]+aY, 8" Instruction

st.mem llr Instruction Operations Descriptions

Note: only one-half of DMEM line
is written. The rest of DMEM line
remains unchanged.

4.8.3.2.2 st.uline instruction
This instruction will store a variable number of VRA elements to DMEM based on a value written to the ST_UL_VEC_LEN IP
register. The VRA elements will be stored to DMEM given by the value in destination pointer agX. The MAG pointer may be
truncated based on a configuration parameter and the data rotated into the truncated alignment. See VSPA register descriptions
for the unalign bitfield description of the PARAM0 register and a description of the alignment. The source register Rx is indicated
by the rSt VRA pointer.

See VSPA register descriptions for bit field descriptions of ST_UL_VEC_LEN register.

Store arbitrary length with arbitrary alignment
// on entry assume:
// a0 holds destination pointer
// g0 holds element count (# of 16-bit elements to be stored)
// rSt points to a RAG source register
sr g1, g0, SR_ELEM_TO_LINES; // SR_ELEM_TO_LINES is a constant and a power
of 2
add g1, g1, 2; // +1 in case of fractional lines, and +1 in
case of misalignment
set loop g1, 1; // use a 1-instruction loop
mvip ST_VEC_LEN, g0; // configure size of vector to be stored
using staa instruction
loop_begin; st.uline [a0]; loop_end; // store until finished

4.8.3.2.3 st.low
This instruction will store a partial aligned vector of elements from the lower portion of the vector register into the lower portion
of the DMEM line beginning at 0. The index of the leftmost written element is given by Iu8 or gZ depending on the form of the
instruction used. The address pointer will be post-incremented.

memStore

Rx

063

Iu8

Figure 14. st.low

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 106 / 536

Table 29. Summary of st.low instructions

st.low
Instructions

Dest Source Description

st.low [agX]+/-agY Iu8 Store right justified partial vector from R[rSt] to DMEM using a pointer,
then post-increment/decrement by the contents of agY. The index of the
leftmost written element is given by Iu8.

st.low [agX]+Is16 Iu8 Store right justified partial vector from R[rSt] to DMEM using a pointer,
then post-increment by 16 bit offset. The index of the leftmost written
element is given by Iu8.

st.low [agX]+/-agY gZ Store right justified partial vector from R[rSt] to DMEM using a pointer,
then post-increment/decrement by the contents of agY. The index of the
leftmost written element is given in gZ.

st.low [agX]+Is16 gZ Store right justified partial vector from R[rSt] to DMEM using a pointer,
then post-increment by 16 bit offset. The index of the leftmost written
element is given in gZ.

4.8.3.2.4 st.high
This instruction will store a partial aligned vector of elements from the upper portion of the vector register into the upper portion
of the DMEM line beginning at 63. The index of the rightmost written element is given by Iu8 or gZ depending on the form of the
instruction used. The address pointer will be post-incremented.

memStore

Rx

063

Iu8

Figure 15. st.high

Table 30. Summary of st.high instructions

st.high
Instructions

Dest Source Description

st.high [agX]+/-agY Iu8 Store left justified partial vector from R[rSt] to DMEM using a pointer,
then post-increment/decrement by the contents of agY. The index of the
rightmost written element is given by Iu8.

st.high [agX]+Is16 Iu8 Store left justified partial vector from R[rSt] to DMEM using a pointer,
then post-increment by signed 16 bit offset. The index of the rightmost
written element is given by Iu8.

st.high [agX]+/-agY gZ Store left justified partial vector from R[rSt] to DMEM using a pointer,
then post-increment/decrement by the contents of agY. The index of the
rightmost written element is given in gZ.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 107 / 536

Table 30. Summary of st.high instructions (continued)

st.high
Instructions

Dest Source Description

st.high [agX]+Is16 gZ Store left justified partial vector from R[rSt] to DMEM using a pointer,
then post-increment by signed 16 bit offset. The index of the rightmost
written element is given in gZ.

4.8.3.3 MAG update conflicts
Certain legal instruction combinations may try to write to the same hardware resources (or registers) in the same cycle. For
example, a mv instruction and an add instruction may both try to write to a0 at the same time. In this case, a set of rules is used
to govern which instruction has precedence and write back its result, and which will not. Only the instruction with a higher
precedence will write back its result.

Table 31 lists all instruction combinations that exhibits potential hardware resource conflicts. The Table also shows the instruction
precedence in each of these cases.

Table 31. Instruction Precedent for Parallel Instructions

First Instruction Second Instruction Shared Registers Instruction with Higher
Precedent

mv1 add1 aX mv

sub1 aX

ld1 aX

st1 aX

1. Assuming the two parallel instructions are writing to the same aX register.

when an mv instruction has a resource conflict with another instruction, the former always wins.

Example 1: Upon executing the following code segment, a3 will be set to 0, instead of 1032.

mv a3, 1024;
mv a5, 0;
mv a3, a5; ld [a3]+8; // mv takes precedence: a3 <- 0

4.9 Vector register array instructions
The ld.Rmode Rx instruction loads the contents of the memRead bus into the VRA. A muxing logic block called LdMux performs
various optional shift operations on the memRead bus data before the latter is written into the VRA. These optional shift operations
are also referred to as Rmode.

Table 32. Load VRA Modes

Instructions Brief Descriptions

ld.normal Rx Load memRead bus into Rx1

ld.h2l_l2h Rx Load high part of memRead bus into low part of Rx and load low part of memRead bus into
high part of Rx+1.2

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 108 / 536

Table 32. Load VRA Modes (continued)

Instructions Brief Descriptions

Rx can be R0, R2, R4 or R6.

ld.l2h_h2l Rx Load low part of memRead bus into high part of Rx and load high part of memRead bus into
low part of Rx+1.

Rx can be R0, R2, R4 or R6.

ld.h2l Rx Load high part of memRead bus into low part of Rx.

ld.l2h Rx Load low part of memRead bus into high part of Rx.

ld.replace_h Rx Replace the most significant word in Rx with a word on the memRead bus.

ld.replace_l Rx Replace the least significant word in Rx with a word on the memRead bus.

ld.h2h Rx Load high part of memRead bus into high part of Rx.

ld.l2l Rx Load low part of memRead bus into low part of Rx.

ld.qam Rx For modulation order M, take a M/32 line of memReadbus (32M bits), transform it into a full
line, and write it into Rx. The transformation implements QAM modulation.

ld.2scomp Rx Load partial line from memRead bus into a full line with type conversion of 2's complement
value to half fixed value, write full line data into Rx

1. Rx refers to a VRA register.
2. Rx+1 refers to the next sequential VRA register following Rx. For example, if Rx is R2, then Rx+1 is R3.

Descriptions

• In the following table, aX refers to the content of the aX register that was used to initiate the corresponding ld operation
two or more cycles earlier.

• aX[5:0] refers to the significant lower 6 bits of aX.

• R0[0] refers to the first (or least significant) element of R0.

• memRead[i:j] refers to the subvector of memRead bus that contains jth through ith words (inclusive) of memRead bus,
where i >= j and i, j=0,...63

• Most ld instructions use the lower 6 bits of aX to determine how the shift operation is to be performed by LdMux.

Table 33. VRA ld instructions

ld Instruction Operation Description

ld.normal Rx Rx[63:0] <- memRead[63:0]; where Rx = R0,...,R7 Load memRead bus into Rx.

ld.h2l_l2h Rx Rx[63- aX[5:0] :0] = memRead[63:aX[5:0]], where Rx=R0,R2,R4
or R6.

If (aX[5:0] != 0) {

Rx+1[63 : 64-aX[5:0]] = memRead[aX[5:0]-1 : 0]

}

Load high part of memRead bus
into low part of Rx;

If aX[5:0] is not zero, then load
low part of memRead bus into

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 109 / 536

Table 33. VRA ld instructions (continued)

ld Instruction Operation Description

where Rx+1 denotes the next sequential VRA register after Rx.

memRead

063

063

Rx

aX[5:0]

063

Rx+1

high part of Rx+1; otherwise, Rx
+1 will not be modified.

ld.l2h_h2l Rx If (aX[5:0] != 0) {

Rx[63:64-aX[5:0]] = memRead[aX[5:0]-1:0];

}

where Rx=R0,R2,R4 or R6.

Rx+1[63- aX[5:0] : 0] = memRead[63 : aX[5:0]]; where Rx+1
denotes the next sequential VRA register after Rx.

memRead

063

063

Rx

aX[5:0]

063

Rx+1

If aX[5:0] is not zero, then load
low part of memRead bus into
high part of Rx; otherwise, Rx will
not be modified.

Load high part of memRead bus
into low part of Rx+1.

ld.h2l Rx Rx[63- aX[5:0] : 0] = memRead[63 : aX[5:0]]; where Rx=R0,...,R7.

memRead

063

063

Rx

aX[5:0]

Load high part of memRead bus
into low part of Rx.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 110 / 536

Table 33. VRA ld instructions (continued)

ld Instruction Operation Description

ld.l2h Rx If (aX[5:0] != 0) {

Rx[63 : 64-aX[5:0]] = memRead[aX[5:0]-1 : 0];

}

where Rx=R0,...,R7.

memRead

063

063

Rx

aX[5:0]

If aX[5:0] is not zero, load low part
of memRead bus into high part of
Rx; otherwise Rx will not be
modified.

ld.replace_h Rx Rx = {memRead[aX[5:0]], Rx[62:0]}; where Rx=R0,...,R7.

memRead

063

063

Rx

aX[5:0]

Replace word Rx[63] with a word
on the memRead bus pointed to
by aX[5:0]

ld.replace_l Rx Rx = {Rx[63:1], memRead[aX[5:0]]}; where Rx=R0,...,R7.

memRead

063

063

Rx

aX[5:0]

Replace word Rx[0] with a word
on the memRead bus pointed to
by aX[5:0]

ld.l2l Rx Rx[aX[5:0]-1 : 0] = memRead[aX[5:0]-1 : 0]; where Rx=R0,...,R7. Replace low part of Rx by the low
part of memRead bus.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 111 / 536

Table 33. VRA ld instructions (continued)

ld Instruction Operation Description

memRead

063

063

Rx

aX[5:0]

ld.h2h Rx Rx[63 : aX[5:0]] = memRead[63 : aX[5:0]]; where Rx=R0,...,R7.

memRead

063

063

Rx

aX[5:0]

Replace high part of Rx by the
high part of memRead bus.

ld.qam Rx Modulation order: M (can be 1, 2, 4, 6, 8 or 10)

temp = memRead[aX + (M-1): aX];

for (i=0; i<64; i++) {

j = temp & (2M-1);

temp = temp >> M;

Rx[2*i + 0] = real (qam(j));

Rx[2*i + 1] = imag (qam(j));

}

memRead

063

015

Rx

qam()
mapping

aX[5:0]
temp

2M real half-words

Extract 2M half-words (or M full-
words) from memRead bus,
starting from the word pointed to
by aX. Assign this 32M-bit data to
temp.

For each M bits in temp, starting
from the least significant bits,
convert it into a 32-bit complex
element (half fixed) using the
corresponding modulation
mapping functions, and write the
resulting word into Rx starting
from element 0.

The modulation order is
configured by programming the
LD_RF_CONTROL register. The
modulation mapping functions
are constructed by programming
the IP registers
LD_RF_TB_REAL_0 and
LD_RF_TB_IMG_0 if modulation
mode <= 0100. If modulation
mode == 0110 or 1000,
LD_RF_TB_REAL_0 to
LD_RF_TB_REAL_7, and
LD_RF_TB_IMAG_0 to

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 112 / 536

Table 33. VRA ld instructions (continued)

ld Instruction Operation Description

LD_RF_TB_IMAG_7 are all
used. If modulation mode ==
1010, LD_RF_TB_REAL_0,
LD_RF_TB_REAL_1,
LD_RF_TB_IMAG_0 and
LD_RF_TB_IMAG_1 are used.

The modulation values are
mapped into the IP registers
according to the modulation
index (i), with index i=0
occupying bits 1:0, i=1 in bits 3:2,
and so on. According to the
following formula: value for index
(i) is stored in bits (2i+1):(2i).

ld.2scomp Rx Size S (can be 8, 10, 12, 16)

temp = memRead[aX + ((S*2)-1): aX];

for (i=0; i<64; i++) {

temp = temp >> S*2;

Rx[2*i + 0] = {temp[S*2*i],|temp[(S*2*i)-1:0]|,0};

Rx[2*i + 1] = {temp[S*((i*2)+1)],|temp[(S*((i*2)+1))-1:0]|,0};

}

Extract 2S half-words (or S full
words) from memRead bus,
starting from the word pointed to
by aX. Assign this 16S bit data to
temp. If required, bit reverse each
S bits in temp and assign to
temp2 else assign temp to
temp2.

For each S bits in temp2, starting
from the least significant bits,
convert it into a 16-bit element
(half fixed) using the
corresponding two’s complement
type conversion functions, and
write the resulting element into
Rx starting from element 0.

The 2's complement value will be
left justified into the half fixed
value such that the negative
value with the largest absolute
value will produce a negative
half-scale (0xc000) result. For
S=16, 2's complement 0x8000
will saturate to 0xffff."

ld Rx example code

ld.normal R2;

ld.h2l_l2h R4;

ld.l2h_h2l R4;

ld.h2l R3;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 113 / 536

ld.l2h R7;

ld.replace_h R6;

ld.replace_l R3;

ld.l2l R5;

ld.h2h R3;

clr R4;

ld.qam R2;

Special Notes

• Since a memory load takes three cycles, an ld.Rmode instruction must be executed at least three cycles after the
correcponding ld instruction. For example,

mv a3, 0;

ld.laddr [a3]+1; // load memory line from address 0

ld.laddr [a3]+1; // load memory line from address 32

ld.laddr [a3]+1; // load memory line from address 64

ld.laddr [a3]+1; ld.normal R6; // load memory line from address 96; load data

// from address 0 into R6

ld.normal R5; // load data from address 32 into R5

ld.normal R4; // load data from address 64 into R4

ld.normal R7; // load data from address 96 into R7

• The memRead bus will retain its data indefinitely until the next load from memory operation overwrites its contents.
Consequently,

— A ld.Rmode instruction can be executed more than two cycles after a corresponding load from memory instruction, if
there is no intervening load from memory instruction.

— In addition, multiple ld.Rmode can be executed with a single load from memory instruction. In this case, the same
data will be loaded into the VRA multiple times.

4.9.1 RAG instructions
The RAG instructions manipulate the RAG registers, which include the following five RAG register sets:

• rS0

• rS1

• rS2

• rV

• rSt

Each of the above RAG register sets has six registers: ptr, incr, start1, wrap1, start2 and wrap2.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 114 / 536

A register within a RAG register set is denoted by <RAGset>.<register>. For example, the ptr register of rS0 is denoted by rS0.ptr.

Table 34. RAG Instructions

Instruction Description

setA.VRAptr rX, Iu9 Set the 9 bits in ptr register of a RAG register set.

setB.VRAptr rX, Iu9 Set the 9 bits in ptr register of a RAG register set.

setA.VRAincr rX, Iu9 Set the 9 bits in incr register of a RAG register set.

setB.VRAincr rX, Iu9 Set the 9 bits in incr register of a RAG register set.

set.VRAptr Iu9, Iu9, Iu9, Iu9, Iu3 Set the 9 bits in ptr register of rS0, rS1, rS2 and rV RAG register sets and set the 3
bits in ptr register of rSt RAG register set.

set.VRAincr Is9, Is9, Is9, Is9, Is3 Set the 9 bits in incr register of rS0, rS1, rS2 and rV RAG register sets and set the
3 bits in incr register of rSt RAG register set.

set.VRArange1 rX, Iu9, Iu9 Specifies the range of the first buffer (start1 and wrap1 registers) for a RAG register
set.

set.VRArange2 rX, Iu9, Iu9 Specifies the range of the second buffer (start2 and wrap2 registers) for a RAG
register set.

mvA.VRAptr rX, agY Move into a VRA pointer register from a scalar register

mvB.VRAptr rX, agY Move into a VRA pointer register from a scalar register

mvA.VRAptr agY, rX Move into a scalar register from a VRA pointer register

mvB.VRAptr agY, rX Move into a scalar register from a VRA pointer register

mvA.VRAincr rX, agY Move into a VRA increment register from a scalar register

mvB.VRAincr rX, agY Move into a VRA increment register from a scalar register

mvA.VRAincr agY, rX Move into a scalar register from a VRA increment register

mvB.VRAincr agY, rX Move into a scalar register from a VRA increment register

mvA.VRArange1 rX, agY Move into a VRA range register from a scalar register

mvA.VRArange2 rX, agY Move into a VRA range register from a scalar register

mvB.VRArange1 rX, agY Move into a VRA range register from a scalar register

mvB.VRArange2 rX, agY Move into a VRA range register from a scalar register

mvA.VRArange1 agY, rX Move into a scalar register from a VRA range register

mvA.VRArange2 agY, rX Move into a scalar register from a VRA range register

mvB.VRArange1 agY, rX Move into a scalar register from a VRA range register

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 115 / 536

Table 34. RAG Instructions (continued)

Instruction Description

mvB.VRArange2 agY, rX Move into a scalar register from a VRA range register

clr.VRA Clear all RAG registers (ptr, incr, start1, wrap1, start2, wrap2) for all RAG register
sets.

• When reading or writing a single element to a VRA register (such as storing SAU output to R7), the lower bits

of RAG.ptr register are used to specify which element is being accessed.

— In real mode, a half-word element is selected by ptr[4:0].

— In complex mode, a full-word element is selected by ptr[4:1], with ptr[0] being ignored.

 NOTE

4.9.1.1 RAG circular buffers configurations
RAG.ptr is updated each time the corresponding VRA port is accessed. For example, rS0.ptr is updated each time Source
Operand Register S0 is loaded.

RAG.ptr is updated based on the following register contents (see VRA pointer control registers for more details):

• the magnitude and sign of RAG.incr register,

• the setting of the first circular buffer, RAG.start1 and RAG.wrap1, and

• the setting of the second circular buffer, RAG.start2 and RAG.wrap2.

The first circular buffer is disabled if and only if both RAG.start1 and RAG.wrap1 are set to zero. Likewise, the second circular
buffer is disabled if and only if both RAG.start2 and RAG.wrap2 are set to zero.

For each RAG register set, the following buffer configurations are supported:

• both buffers are enabled,

• both buffers are disabled, and

• the first buffer is enabled, but the second buffer is disabled.

If the second circular buffer is enabled, but the first circular buffer is disabled, the hardware will behave as if both
buffers are disabled. Programmers should avoid using this buffer configuration.

 NOTE

4.9.1.2 RAG pointer update algorithm
The following shows the RAG.ptr update algorithm.

update_rag_ptr:
 nxt_ptr = ptr + incr;

 if (both buffers are enabled) {
if (ptr == wrap1)

nxt_ptr = start2;
else if (ptr == wrap2)

nxt_ptr = start1;
}

 } else if (first buffer is enabled) {
if (ptr == wrap1)

nxt_ptr = start1;
}

 }

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 116 / 536

 ptr = nxt_ptr;

In the above RAG.ptr update algorithm, if only the first buffer is enabled, ptr will wrap to wrap1 if incr is negative and ptr hits start1.
Conversely, ptr will wrap to start1 if incr is positive and ptr hits wrap1.

If both buffers are enabled and incr is negative, ptr will wrap to wrap2 if it hits start1 or to wrap1 if it hits start2. Conversely, if both
buffers are enabled and incr is positive, ptr will wrap to start2 if it hits wrap1 or to start1 if it hits wrap2. In these cases, the ptr will
go back and forth between the two buffers.

The RAG register modulus operation is not a true modulus operation. For it to wrap around correctly, the result of
<RAGset>.ptr + <RAGset>.incr must be exactly equal to <RAGset>.wrap1 or <RAGset>.wrap2. See the following
example.

 CAUTION

The following code examples exhibit incorrect behaviors.

 set.VRArange1 rS0, 0, 3; // rS0.start1 = 0, rS0.wrap1 = 3
 set.VRAincr rS0, 2; // rS0.incr = 2

In the example above, rS0.ptr increments as follows: 0, 2, 4, and so on. Since rS0.ptr was never equal to 3, it will never wrap
back to 0.

 set.VRArange1 rS0, 0, 4; // rS0.start1 = 0, rS0.wrap1 = 4
 set.VRAincr rS0, 2; // rS0.incr = 2

In the example above, rS0.ptr increments as follows: 0, 2, 4, and so on. Whenever rS0.ptr equals 4, it will wrap back to 0. Thus
rS0.ptr will be updated as follows: 0, 2, 4, 0, 2, 4, 0, 2, 4, and so on.

4.9.1.3 Syntax for RAG pointer value
RAG pointer values are used in the following RAG instructions:

• setA.VRAptr rX, Iu9

• setB.VRAptr rX, Iu9

• set.VRAptr Iu9, Iu9, Iu9, Iu9, Iu3

• set.VRArange1 rX, Iu9, Iu9

• set.VRArange2 rX, Iu9, Iu9

• mv.VRArange1 rX, agY - rSxwrap1=agY[24:16], rSxstart1=agY[8:0]

• mv.VRArange2 rX, agY - rSxwrap2=agY[24:16], rSxstart2=agY[8:0]

• mv.VRArange1 agY, rX - agY[24:16]=rSxwrap1, agY[8:0]=rSxstart1

• mv.VRArange2 agY, rX - agY[24:16]=rSxwrap2, agY[8:0]=rSxstart2

• mv.VRAincr rX, agY - rSxincr=agY[8:0]

• mv.VRAincr agY, rX - agY[8:0]=rSxincr

• mv.VRAptr rX, agY - rSxptr=agY[8:0]

• mv.VRAptr agY, rX - agY[8:0]=rSxptr

The VRA has eight registers, each with 64 half-word elements. It can be thought of as a linear array indexed from element 0
through element 511, where element 0 refers to R0 element 0, and 511 refers to R7 element 63.

A half-word element in the VRA can be specified using an integer value ranging from 0 through 63.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 117 / 536

R0
R1
R2

R6
R7

VRA

016263

Figure 16. Data Packing in the VRA (half-word)

i

Imaginary Real

A VRA Register

016263

Figure 17. Data packing in a VRA register line (half-word)

4.9.1.4 Syntax for RAG increment value
RAG increment values are used in the following RAG instructions:

• set.VRAincr rX, Is9

• set.VRAincr Is9, Is9, Is9, Is9, Is3

• mvA.VRAincr rX, agY

• mvB.VRAincr rX, agY

• mvA.VRAincr agY, rX

• mvB.VRAincr agY, rX

A RAG increment value can be specified by using a signed integer value ranging from -256 to 255

4.9.1.5 RAG destination conflicts
Certain legal instruction combinations may try to write to the same hardware resources (or registers) in the same cycle. For
example, a setA.VRAptr instruction and an rd instruction may both try to write to rS0 at the same time. In this case, a set of rules
is used to govern which instruction has precedence. Only the instruction with a higher precedence will write back its result.

Table 35 lists all instruction combinations that exhibits potential hardware resource conflicts. The table also shows the instruction
precedence in each of these cases.

Table 35. Instruction Precedent for Parallel Instructions

First Instruction Second Instruction Shared Registers Higher Precedent

any of:

• setA.VRAptr rX, Iu9

• setB.VRAptr rX, Iu9

rd S0 rS0 setA/setB

rd S1 rS1

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 118 / 536

Table 35. Instruction Precedent for Parallel Instructions (continued)

First Instruction Second Instruction Shared Registers Higher Precedent

• mv.[h,w] gX, [rS0]

• mv.[h,w,q] [rV], gX

• fill.[h,w,q] [rV], gX

rd S2 rS2

wr rV

st rSt

When a setA/setB instruction has a resource conflict with another instruction, the former always win.

4.10 Rotate register instructions
The rotate register (rot) instructions perform shift or rotate operations, either right, left or both, on the vector registers. The rotate
right instructions operate on R0, R1, R2 or R3 or by chaining both R0 and R1 or both R2 and R3 based on the setting of the
rotate right mode register (ror_mode_reg). The rotate left instructions operate on R4, R5, R6 or R7 or by chaining both R4 and
R5 or both R6 and R7 based on the setting of the rotate left mode register (rol_mode_reg). These latter registers dictate how the
shift or rotate operations are to be performed.

The ror_mode_reg/rol_mode_reg can be set prior to a shift or rotate operation or it can also be set during the same cycle where
the shift/rotate operation is to be performed.

Once set, the rotate mode registers will retain its setting until the next set.rot instruction that explicitly sets or updates that register.

Table 36 shows all rot instructions. In this table, rot_mode denotes a supported rot mode. See Rotate-register modes for all
supported rot_mode.

Table 36. Rrot Instructions

Rrot Instructions Instruction

Format

Descriptions

set.rot (ror_mode),(rol_mode) OpB Set ror_mode_reg with ror_mode. Set rol_mode_reg with
rol_mode.

4.10.1 Rotate-register modes
Following sections show all supported <ror_mode> and all supported <rol_mode>.

Four VRA registers are involved in the right rotate/shift operations: R0, R1, R2 and R3. Specifically, R0 and R1 can be chained
together to perform rotate/shift operations. Likewise, R2 and R3 can be chained together to perform rotate/shift operations. There
are 3 special rotation modes for each register or register combination which are used to rotate data which has been up-sampled.

The ror_mode format is a combination of the VRA register or combination of registers, along with the direction and amount of
shift or rotation. For example, ror_mode R0r2 is a combination of the following:

• "R0", which indicates the shift is to occur on the R0 VRA register and

• "r2", in which "r" indicates that the shift is a right shift and "2" indicates a shift of 2 real elements (half words).

The special rotation mode mentioned above has a slightly different format which is similar to the example R0r2 used above except
that the "r2" portion of the ror_mode that represents the direction and amount of shift is substituted with "rND2", which means it
shifts right by 2 real elements according to the fractional sample rate N/D.

• "r" indicates the shift is a right shift,

• "N" is the numerator of the fractional sample rate,

• "D" is the denominator of the fractional sample rate, and

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 119 / 536

• "2" indicates a shift of 2 real elements (half words).

The fractional sample rate is derived from values programmed into CREG fields 16, 17 and 18.

Four VRA registers are involved in the left rotate/shift operations: R4, R5, R6 and R7. Specifically, R4 and R5 can be chained
together to perform rotate/shift operations. Likewise, R6 and R7 can be chained together to perform rotate/shift operations.

The rol_mode format is a combination of the VRA register or combination of registers, along with the direction and amount of
shift or rotation. For example, rol_mode R4l2 is a combination of the following:

• "R4", which indicates the shift is to occur on the R4 VRA register and

• "l2", in which "l" indicates that the shift is a left shift and "2" indicates a shift of 2 real elements (half words).

4.10.1.1 Right rotate/shift on R0 and R1
In R0R1r1, R0R1r2, R0R1r4, R0R1r8, R0R1rND1, R0R1rND2 and R0R1rND4 modes, R0 and R1 are stitched together and form
a circular chain. For each of R0R1r1, R0R1r2, R0R1r4 and R0R1r8 modes, the chain is then rotated right by 1, 2, 4 or 8 real
elements, respectively. The R0R1rND1, R0R1rND2 and R0R1rND4 modes are special modes to rotate data for up-sampling by
2. For each of R0R1rND1, R0R1rND2 and R0R1rND4 modes, the chain is then rotated right by 1, 2 or 4 real elements,
respectively, according to fractional sample rate N/D.

In R0r1, R0r2, R0r4 and R0r8 modes, R0 is shifted right by 1, 2, 4 or 8 real elements, respectively. The lower elements of R1 are
shifted into the higher elements of R0. The R0rND1, R0rND2 and R0rND4 modes are special modes to rotate data for up-sampling
by 2. In R0rND1, R0rND2 and R0rND4 modes, R0 is shifted right by 1, 2 or 4 real elements, respectively, according to fractional
sample rate N/D. The lower elements of R1 are shifted into the higher elements of R0.

In R1r1, R1r2, R1r4 and R1r8 modes, R1 is shifted right by 1, 2, 4 or 8 real elements, respectively. The lower elements of R0 are
shifted into the higher elements of R1. The R1rND1, R1rND2 and R1rND4 modes are special modes to rotate data for up-sampling
by 2. In R1rND1, R1rND2 and R1rND4 modes, R1 is shifted right by 1, 2 or 4 real elements, respectively, according to fractional
sample rate N/D. The lower elements of R0 are shifted into the higher elements of R1.

4.10.1.2 Right rotate/shift on R2 and R3
Rotate/shift operations performed on R2 and R3 are similar to those for R0 and R1. See descriptions in the preceding section,
but with R0 replaced by R2, and R1 replaced by R3.

Descriptions

• Table 37 shows all possible <ror_mode> for R0 and R1, along with a description for each of these modes.

• Table 38 shows all possible <ror_mode> for R2 and R3, along with a description for each of these modes.

• Note that Table 37 and Table 38 are identical, except that the former describes rot modes that are performed on R0 and
R1, while the latter describes rot modes that are performed on R2 and R3 - they are mirror of each other.

• R0, R1, R2 and R3 are assumed to be vectored buses, each containing 64 elements. Each element is 16 bits wide.

• In these Tables, "mse" denotes the index of the most significant element, which is mse=63.

• The amount of rotation for each element of the register in the fractional rotate or shift modes (R0R1rND1, R1rND2, and so
on) is calculated using a fractional sample rate, N/D, derived from values programmed in the system control register
(CREG) fields 16, 17 and 18, where N=value of field 16 and D=value of field 17.

Table 37. All Supported <ror_mode> - For R0 and R1

rot_mode Descriptions

R0R1r1 Rotate right R0/R1 by 1 real elements.

{ R1[mse:0], R0[mse:0] } = { R0[0], R1[mse:0], R0[mse:1] }

R0R1r2 Rotate right R0/R1 by 2 real elements.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 120 / 536

Table 37. All Supported <ror_mode> - For R0 and R1 (continued)

rot_mode Descriptions

{ R1[mse:0], R0[mse:0] } = { R0[1:0], R1[mse:0], R0[mse:2] }

R0R1r4 Rotate right R0/R1 by 4 real elements.

{ R1[mse:0], R0[mse:0] } = { R0[3:0], R1[mse:0], R0[mse:4] }

R0R1r8 Rotate right R0/R1 by 8 real elements.

{ R1[mse:0], R0[mse:0] } = { R0[7:0], R1[mse:0], R0[mse:8] }

R0R1rND1 Fractional rotate right R0/R1 by 1 real elements1.

R0R1rND2 Fractional rotate right R0/R1 by 2 real elements1.

R0R1rND4 Fractional rotate right R0/R1 by 4 real elements1.

R0r1 Shift right R0 by 1 real elements.

R0[mse:0] = { R1[0], R0[mse:1] }

R0r2 Shift right R0 by 2 real elements.

R0[mse:0] = { R1[1:0], R0[mse:2] }

R0r4 Shift right R0 by 4 real elements.

R0[mse:0] = { R1[3:0], R0[mse:4] }

R0r8 Shift right R0 by 8 real elements.

R0[mse:0] = { R1[7:0], R0[mse:8] }

R0rND1 Fractional shift right R0 by 1 real elements1.

R0rND2 Fractional shift right R0 by 2 real elements1.

R0rND4 Fractional shift right R0 by 4 real elements1.

R1r1 Shift right R1 by 1 real elements.

R1[mse:0] = { R0[0], R1[mse:1] }

R1r2 Shift right R1 by 2 real elements.

R1[mse:0] = { R0[1:0], R1[mse:2] }

R1r4 Shift right R1 by 4 real elements.

R1[mse:0] = { R0[3:0], R1[mse:4] }

R1r8 Shift right R1 by 8 real elements.

R1[mse:0] = { R0[7:0], R1[mse:8] }

R1rND1 Fractional shift right R1 by 1 real elements1.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 121 / 536

Table 37. All Supported <ror_mode> - For R0 and R1 (continued)

rot_mode Descriptions

R1rND2 Fractional shift right R1 by 2 real elements1.

R1rND4 Fractional shift right R1 by 4 real elements1.

1. The amount of rotation for each element of the register is calculated using a fractional sample rate, N/D, derived from
values programmed in system control registers 16, 17 and 18, where N=value of field 16 and D=value of field 17.

Table 38. All Supported <ror_mode> - For R2 and R3

rot_mode Descriptions

R2R3r1 Rotate right R2/R3 by 1 real elements.

{ R3[mse:0], R2[mse:0] } = { R2[0], R3[mse:0], R2[mse:1] }

R2R3r2 Rotate right R2/R3 by 2 real elements.

{ R3[mse:0], R2[mse:0] } = { R2[1:0], R3[mse:0], R2[mse:2] }

R2R3r4 Rotate right R2/R3 by 4 real elements.

{ R3[mse:0], R2[mse:0] } = { R2[3:0], R3[mse:0], R2[mse:4] }

R2R3r8 Rotate right R2/R3 by 8 real elements.

{ R3[mse:0], R2[mse:0] } = { R2[7:0], R3[mse:0], R2[mse:8] }

R2R3rND1 Fractional rotate right R2/R3 by 1 real elements1.

R2R3rND2 Fractional rotate right R2/R3 by 2 real elements1.

R2R3rND4 Fractional rotate right R2/R3 by 4 real elements1.

R2r1 Shift right R2 by 1 real elements.

R2[mse:0] = { R3[0], R2[mse:1] }

R2r2 Shift right R2 by 2 real elements.

R2[mse:0] = { R3[1:0], R2[mse:2] }

R2r4 Shift right R2 by 4 real elements.

R2[mse:0] = { R3[3:0], R2[mse:4] }

R2r8 Shift right R2 by 8 real elements.

R2[mse:0] = { R3[7:0], R2[mse:8] }

R2rND1 Fractional shift right R2 by 1 real elements1.

R2rND2 Fractional shift right R2 by 2 real elements1.

R2rND4 Fractional shift right R2 by 4 real elements1.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 122 / 536

Table 38. All Supported <ror_mode> - For R2 and R3 (continued)

rot_mode Descriptions

R3r1 Shift right R3 by 1 real elements.

R3[mse:0] = { R2[0], R3[mse:1] }

R3r2 Shift right R3 by 2 real elements.

R3[mse:0] = { R2[1:0], R3[mse:2] }

R3r4 Shift right R3 by 4 real elements.

R3[mse:0] = { R2[3:0], R3[mse:4] }

R3r8 Shift right R3 by 8 real elements.

R3[mse:0] = { R2[7:0], R3[mse:8] }

R3rND1 Fractional shift right R3 by 1 real elements1.

R3rND2 Fractional shift right R3 by 2 real elements1.

R3rND4 Fractional shift right R3 by 4 real elements1.

1. The amount of rotation for each element of the register is calculated using a fractional sample rate, N/D, derived from
values programmed in system control registers 16, 17 and 18, where N=value of field 16 and D=value of field 17.

4.10.1.3 Left rotate/shift on R4 and R5
Table 39 shows all possible <rol_mode> for R4 and R5, along with a description for each of these modes.

Table 39. All Supported <rol_mode> - For R4 and R5

rot_mode Descriptions

R4R5l1 Rotate left R4/R5 by 1 real elements.

{ R5[mse:0], R4[mse:0] } = { R5[mse-1:0], R4[mse:0], R5[mse] }

R4R5l2 Rotate left R4/R5 by 2 real elements.

{ R5[mse:0], R4[mse:0] } = { R5[mse-2:0], R4[mse:0], R5[mse:mse-1] }

R4R5l4 Rotate left R4/R5 by 4 real elements.

{ R5[mse:0], R4[mse:0] } = { R5[mse-4:0], R4[mse:0], R5[mse:mse-3] }

R4R5l8 Rotate left R4/R5 by 8 real elements.

{ R5[mse:0], R4[mse:0] } = { R5[mse-8:0], R4[mse:0], R5[mse:mse-7] }

R4l1 Rotate left R4 by 1 real elements.

R4[mse:0] = { R4[mse-1:0], R5[mse] }

R4l2 Rotate left R4 by 2 real elements.

R4[mse:0] = { R4[mse-2:0], R5[mse:mse-1] }

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 123 / 536

Table 39. All Supported <rol_mode> - For R4 and R5 (continued)

rot_mode Descriptions

R4l4 Rotate left R4 by 4 real elements.

R4[mse:0] = { R4[mse-4:0], R5[mse:mse-3] }

R4l8 Rotate left R4 by 8 real elements.

R4[mse:0] = { R4[mse-8:0], R5[mse:mse-7] }

R5l1 Rotate left R5 by 1 real elements.

R5[mse:0] = { R5[mse:1], R4[mse] }

R5l2 Rotate left R5 by 2 real elements.

R5[mse:0] = { R5[mse:2], R4[mse:mse-1] }

R5l4 Rotate left R5 by 4 real elements.

R5[mse:0] = { R5[mse:4], R4[mse:mse-3] }

R5l8 Rotate left R5 by 8 real elements.

R5[mse:0] = { R5[mse:8], R4[mse:mse-7] }

4.10.1.4 Left rotate/shift on R6 and R7
Table 40 shows all possible <rol_mode> for R6 and R7, along with a description for each of these modes.

Table 40. All Supported <rol_mode> - For R6 and R7

rot_mode Descriptions

R6R7l1 Rotate left R6/R7 by 1 real elements.

{ R7[mse:0], R6[mse:0] } = { R7[mse-1:0], R6[mse:0], R7[mse] }

R6R7l2 Rotate left R6/R7 by 2 real elements.

{ R7[mse:0], R6[mse:0] } = { R7[mse-2:0], R6[mse:0], R7[mse:mse-1] }

R6R7l4 Rotate left R6/R7 by 4 real elements.

{ R7[mse:0], R6[mse:0] } = { R7[mse-4:0], R6[mse:0], R7[mse:mse-3] }

R6R7l8 Rotate left R6/R7 by 8 real elements.

{ R7[mse:0], R6[mse:0] } = { R7[mse-8:0], R6[mse:0], R7[mse:mse-7] }

R6l1 Rotate left R6 by 1 real elements.

R6[mse:0] = { R6[mse-1:0], R7[mse] }

R6l2 Rotate left R6 by 2 real elements.

R6[mse:0] = { R6[mse-2:0], R7[mse:mse-1] }

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 124 / 536

Table 40. All Supported <rol_mode> - For R6 and R7 (continued)

rot_mode Descriptions

R6l4 Rotate left R6 by 4 real elements.

R6[mse:0] = { R6[mse-4:0], R7[mse:mse-3] }

R6l8 Rotate left R6 by 8 real elements.

R6[mse:0] = { R6[mse-8:0], R7[mse:mse-7] }

R7l1 Rotate left R7 by 1 real elements.

R7[mse:0] = { R7[mse:1], R6[mse] }

R7l2 Rotate left R7 by 2 real elements.

R7[mse:0] = { R7[mse:2], R6[mse:mse-1] }

R7l4 Rotate left R7 by 4 real elements.

R7[mse:0] = { R7[mse:4], R6[mse:mse-3] }

R7l8 Rotate left R7 by 8 real elements.

R7[mse:0] = { R7[mse:8], R6[mse:mse-7] }

4.10.1.5 Rotate-register modes examples
Following figure shows examples of rotate right by real elements:

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 125 / 536

15

31

14

30

0

16

1

17

MSE(most significant element) LSE

R0

R1

16

0

15

31

1

17

2

18

MSE(most significant element) LSE

R0

R1

17

1

16

0

2

18

3

19

R0

R1

19

3

18

2

4

20

5

21

R0

R1

23

7

22

6

8

24

9

25

R0

R1

16

17

15

16

1

2

2

3

R0

R0

before "Rrot"

after "Rrot"

after "Rrot"

after "Rrot"

after "Rrot"

R0R1r1

R0R1r2

R0R1r4

R0R1r8

31 30

1 0

5 4 3

23

19 18

22

R0r1

R0r2

R0r4

R0r8

after "Rrot"

after "Rrot"

after "Rrot"

after "Rrot"

MSE(most significant element) LSE

17 16

1921 20

5

9

4

8

R0

R0

2 1 0

161718

Figure 18. Rotate right by real elements examples

The following example is given as sample code for function that filters the complex, 16-bit fixed-point data, previously re-sampled
by 3/2 (that is interpolated by 3 and then decimated by 2) with a filter described by real, 16-bit fixed-point coefficients, to create
the complex, 16-bit fixed-point filtered data.

.global _firFilterUp3Dn2

.type _firFilterUp3Dn2, @function

.section .text
_firFilterUp3Dn2:
set.creg 16, 3; // Interpolate by 3.
set.creg 17, 2; // Decimate by 2.
 // a0: pt to output
 // a2: pt to filter taps
 // a3: pt to input data
 // g0: data block loop
 // g1: taps loop
 mv a4, a2;

ld.laddr [a3]+1;

clr.VRA ;
ld.laddr [a3]+0;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 126 / 536

set.creg 18, 0;
ld.normal R0; // Initial phase 0.

set.loop g0, L01, L02;
ld.normal R1;

set.VRAincr rS1,NUM_AU*2;
ld.laddr [a2]+1; // s1: half dmem line of
taps

setA.VRApg rS1, 0, 1;
set.prec half_fixed, half_fixed, half_fixed, single, half_fixed;

ld.laddr [a2]+1;
set.Smode S0straight, S1r2c, S2zeros;

set.VRArange1 rS1, NUM_AU*4*2, NUM_AU*4*2+NUM_AU*2;
ld.normal R2;
L01:set.Rrot R0R1rND2;
ld.laddr [a2]+1;
rot;
rd S2;
rd S1;
rd S0;
loop_begin;

ld.laddr [a2]+1;
ld.normal R2;
rot;
rd S1;
rd S0;
// as4: number of filter taps per phase /2 - 3

set.loop g1, 2;
rot;
rd S1;
rd S0;
rmad;

ld.normal R2;
rot;
rd S1;
rd S0;
rmac;

ld.laddr [a2]+1;
rot;
rd S1;
rd S0;
rmac;
loop_begin;

ld.normal R2;
rot;
rd S1;
rd S0;
rmac;
loop_end;

ld.laddr [a3]+1;
rot;
rd S1;
rd S0;
rmac;

ld.laddr [a3]+0;
ld.normal R2;
rd S1;
rd S0;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 127 / 536

rmac;

set.creg 18,
2;
rmac;

ld.laddr [a2]+1;
ld.normal R0;
rmac;

set.loop g1, 2;
ld.normal R1;

ld.laddr [a2]+1;
rot;
rd S2;
rd S1;
rd S0;

setB.VRAptr rSt, 4;
ld.normal R2;
rot;
rd S1;
rd S0;

ld.laddr [a2]+1;
rot;
rd S1;
rd S0;
rmad;
wr.straight;

st.laddr [a0]+1;
ld.normal R2;
rot;
rd S1;
rd S0;
rmac;

ld.laddr [a2]+1;
rot;
rd S1;
rd S0;
rmac;
loop_begin;

ld.normal R2;
rot;
rd S1;
rd S0;
rmac;
loop_end;

ld.laddr [a3]+1;
rot;
rd S1;
rd S0;
rmac;

ld.laddr [a3]+0;
ld.normal R2;
rd S1;
rd S0;
rmac;

set.creg 18,
1;
rmac;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 128 / 536

ld.laddr [a2]+1;
ld.normal R0;
rmac;

set.loop g1, 2;
ld.normal R1;

ld.laddr [a2]+1;
rot;
rd S2;
rd S1;
rd S0;

st.laddr [a0]+1;
ld.normal R2;
rot;
rd S1;
rd S0;
rmac;

ld.laddr [a2]+1;
rot;
rd S1;
rd S0;
rmac;
loop_begin;

ld.normal R2;
rot;
rd S1;
rd S0;
rmac;
loop_end;

ld.laddr [a3]+1;
rot;
rd S1;
rd S0;
rmac;

ld.laddr [a3]+0;
rd S1;
rd S0;
rmac;

mvB a2,
a4;
rmac; // reset a2 to the top of taps

ld.laddr [a2]+1;
ld.normal R0;
rmac; // ld taps from the beginning

set.creg 18, 0;
ld.normal R1;

nop;

ld.normal R2;

ld.laddr [a2]+1;
wr.straight;
L02: st.laddr
[a0]+1;
loop_end;
rts;
nop;
nop;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 129 / 536

.size _firFilterUp3Dn2, .-_firFilterUp3Dn2
//end

The following example is given as a function that filters the complex, 16-bit fixed-point data, previously resampled by 8/5
(interpolated by 8 then decimated by 5) with a filter described by real, 16-bit fixed-point coefficients, to create the complex, 16-
bit fixed-point filtered data. The number of filter coefficients per phase >= 8 and has to be even taps.

 #include "frcUp8Dn5_constants.h"

.global _frcFilterUp8Dn5

.type _frcFilterUp8Dn5, @function

.section .text
_frcFilterUp8Dn5:
// --
// Initialize VSP to operate in real arithmetic mode, using the // full data path and normal
AU output:
// --
 set.creg 13, 0;
// Disable 2x scaling on fixed-point.
// --
// Set the fractional interpolation rotation mode parameters:
// Interpolation = 8, Decimation = 5, Phase = 0.
// --
 set.creg 16, 8; // Interpolate by 8.
 set.creg 17, 5; // Decimate by 5.
 set.creg 18, 0; // Initial phase 0.
// --
// Set the input and output precision mode to 16-bit fixed-point
// (only AU computations done in 32-bit floating-point):
// ---
 set.prec half_fixed, half_fixed, half_fixed, single, half_fixed;
// --
// Reset VRA pointers, increments and modulos:
// --
 clr.VRA ;
// ---
// Initialize VRA pages and pointers:
// rS0 = R0[0] = input : page 0, offset 0.
// rS1 = R2[0] = coeffs : page 1, offset 0.
// rS2 = don't care : page 0, offset 0.
// rVd = R3[0] = output : page 1, offset NUM_AU * 4 (256 for 64-AU).
// rSt = R3[0] = output : 3.
// ---
 set.VRAptr 0, 64*2, 0, 64*3, 3;
// ---
// Initialize VRA pointer increments:
// rS1 += NUM_AU*2 (128 for 64-AU) to go from 1/2-vector to 1/2-vector.
// Limit rS1 to R2lo and R2hi.
// ---
 set.VRAincr 0, +16*2, 0, 0, 0;
 set.VRArange1 rS1, 16*4*2, 16*4*2+16*2;
// ---
// Set VRA source modes:
// Load S0 with a vector of 16-bit fixed-point complex numbers.
// Load S1 with 1/2-vector of 16-bit fixed-point real numbers and expand
// them to complex.
// Load S2 with zeroes.
// ---
 set.Smode S0straight, S1r2c, S2zeros;
// --
// Set filter coefficients pointer range:
// --
 mv a4, _frcUp8Dn5_filterCoeff;
 set.range a2, a4, FRCUP8DN5_COEFSIZE;
// --

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 130 / 536

// Move output size to general purpose registers
// to later set loop iteration count:
// --
 mv a5, FRCUP8DN5_VCPU_LOOPITER; // a5: Number of output vectors.
 mv a6, FRCUP8DN5_TAPITER; // a6: Iteration count for #Taps
// --
// Initialize memory address registers,
// start loading input data from memory,
// set rotation mode to fractional interpolation mode:
// --
 ld [a1]+FRCUP8DN5_HISTPTROFF;
mvB a3, as1;

 // dummy load to adjust pointer to history samples
ld [a3]+FRCUP8DN5_HISTPTROFF;
 // dummy load to input pointer, to perform l2h_h2l operation
ld [a1]-FRCUP8DN5_HISTPTROFF;
mvB a0, as0;
// Start fetching data for output vector phase 0.
 ld.laddr [a3]+1;
mvB a2, a4;
 ld.laddr [a3]-1;
set.Rrot R0R1rND2;
// Fractional interpolation rotation for 16-bit complex data.
//---
// Load coefficients from memory and load register file:
// --
ld.laddr [a2]+1;
ld.h2l R0;
// Start loading register file with data phase 0.

set.loop a5, L01, L02;
ld.l2h_h2l R0;
ld.laddr [a2]+1;
ld.l2h R1;
ld.normal R2;
L01: ld.laddr [a2]+1;
rd S0;
rd S1;
rd S2;
rot;
loop_begin;

set.loop a6, 2;
ld.normal R2;
rd S0;
rd S1;
rot;
ld.laddr [a2]+1;
rd S0;
rd S1;
rmad;
rot;
ld.normal R2;
rd S0;
rd S1;
rmac;
rot;
loop_begin;
ld.laddr [a2]+1;
rd S0;
rd S1;
rmac;
rot;
loop_end;

ld.laddr [a3]+1;
ld.normal R2;
rd S0;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 131 / 536

rd S1;
rmac;
rot;

ld.laddr [a3]+1;
rd S0;
rd S1;
rmac;
rot;

ld.laddr [a3]-1;
ld.normal R2;
rd S0;
rd S1;
rmac;

ld.h2l R0;
rmac;
ld.laddr [a2]+1;
ld.l2h_h2l R0;
rmac;

ld.l2h R1;

ld.laddr [a2]+1;
rd S0;
rd S1;
rd S2;
rot;

set.loop a6;
ld.normal R2;
rd S0;
rd S1;
rot;

ld.laddr [a2]+1;
rd S0;
rd S1;
rmad;
rot;
wr.straight; //Write Phase 0 output

ld.normal R2;
rd S0;
rd S1;
rmac;
rot;
loop_begin;
ld.laddr [a2]+1;
rd S0;
rd S1;
rmac;
rot;
loop_end;
 ld.laddr [a3]+1;
ld.normal R2;
rd S0;
rd S1;
rmac;
rot;
ld.laddr [a3]+1;
rd S0;
rd S1;
rmac;
rot;
ld.laddr [a3]-1;
ld.normal R2;
rd S0;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 132 / 536

rd S1;
rmac;
st.laddr [a0]+1;
ld.h2l R0;
rmac;
//Store Phase 0 output
 ld.laddr [a2]+1;
ld.l2h_h2l R0;
rmac;

ld.l2h R1;
ld.laddr [a2]+1;
rd S0;
rd S1;
rd S2;
rot;

set.loop a6;
ld.normal R2;
rd S0;
rd S1;
rot;
ld.laddr [a2]+1;
rd S0;
rd S1;
rmad;
rot;
wr.straight; //Write Phase 1 output

ld.normal R2;
rd S0;
rd S1;
rmac;
rot;
loop_begin;
ld.laddr [a2]+1;
rd S0;
rd S1;
rmac;
rot;
loop_end;
ld.laddr [a3]+1;
ld.normal R2;
rd S0;
rd S1;
rmac;
rot;
ld.laddr [a3]+1;
rd S0;
rd S1;
rmac;
rot;
ld.laddr [a3]-1;
ld.normal R2;
rd S0;
rd S1;
rmac;
st.laddr [a0]+1;
ld.h2l R0;
rmac;
//Store Phase 1 output
ld.laddr [a2]+1;
ld.l2h_h2l R0;
rmac;

ld.l2h R1;
ld.laddr [a2]+1;
rd S0;
rd S1;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 133 / 536

rd S2;
rot;

set.loop a6;
ld.normal R2;
rd S0;
rd S1;
rot;
ld.laddr [a2]+1;
rd S0;
rd S1;
rmad;
rot;
wr.straight; //Write Phase 2 output

ld.normal R2;
rd S0;
rd S1;
rmac;
rot;
loop_begin;
ld.laddr [a2]+1;
rd S0;
rd S1;
rmac;
rot;
loop_end;

ld.laddr [a3]+1;
ld.normal R2;
rd S0;
rd S1;
rmac;
rot;
ld.laddr [a3]+1;
rd S0;
rd S1;
rmac;
rot;
ld.laddr [a3]-1;
ld.normal R2;
rd S0;
rd S1;
rmac;
st.laddr [a0]+1;
ld.h2l R0;
rmac;
//Store Phase 2 output
ld.laddr [a2]+1;
ld.l2h_h2l R0;
rmac;

ld.l2h R1;

ld.laddr [a2]+1;
rd S0;
rd S1;
rd S2;
rot;

set.loop a6;
ld.normal R2;
rd S0;
rd S1;
rot;

ld.laddr [a2]+1;
rd S0;
rd S1;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 134 / 536

rmad;
rot;
wr.straight; //Write Phase 3 output

ld.normal R2;
rd S0;
rd S1;
rmac;
rot;
loop_begin;

ld.laddr [a2]+1;
rd S0;
rd S1;
rmac;
rot;
loop_end;
ld.laddr [a3]+1;
ld.normal R2;
rd S0;
rd S1;
rmac;
rot;

ld.laddr [a3]+1;
rd S0;
rd S1;
rmac;
rot;

ld.laddr [a3]-1;
ld.normal R2;
rd S0;
rd S1;
rmac;

st.laddr [a0]+1;
ld.h2l R0;
rmac;
//Store Phase 3 output
ld.laddr [a2]+1;
ld.l2h_h2l R0;
rmac;

ld.l2h R1;

ld.laddr [a2]+1;
rd S0;
rd S1;
rd S2;
rot;

set.loop a6;
ld.normal R2;
rd S0;
rd S1;
rot;
ld.laddr [a2]+1;
rd S0;
rd S1;
rmad;
rot;
wr.straight; //Write Phase 4 output

ld.normal R2;
rd S0;
rd S1;
rmac;
rot;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 135 / 536

loop_begin;

ld.laddr [a2]+1;
rd S0;
rd S1;
rmac;
rot;
loop_end;

ld.laddr [a3]+1;
ld.normal R2;
rd S0;
rd S1;
rmac;
rot;

ld.laddr [a3]+1;
rd S0;
rd S1;
rmac;
rot;

ld.laddr [a3]-1;
ld.normal R2;
rd S0;
rd S1;
rmac;

st.laddr [a0]+1;
ld.h2l R0;
rmac;
//Store Phase 4 output
 ld.laddr [a2]+1;
ld.l2h_h2l R0;
rmac;

ld.l2h R1;

ld.laddr [a2]+1;
rd S0;
rd S1;
rd S2;
rot;

set.loop a6;
ld.normal R2;
rd S0;
rd S1;
rot;

ld.laddr [a2]+1;
rd S0;
rd S1;
rmad;
rot;
wr.straight; //Write Phase 5 output

ld.normal R2;
rd S0;
rd S1;
rmac;
rot;
loop_begin;

ld.laddr [a2]+1;
rd S0;
rd S1;
rmac;
rot;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 136 / 536

loop_end;
ld.laddr [a3]+1;
ld.normal R2;
rd S0;
rd S1;
rmac;
rot;

ld.laddr [a3]+1;
rd S0;
rd S1;
rmac;
rot;
ld.laddr [a3]-1;
ld.normal R2;
rd S0;
rd S1;
rmac;
st.laddr [a0]+1;
mvB a7, a3;
ld.h2l R0;
rmac; //Store Phase 5 output
ld.laddr [a2]+1;
ld.l2h_h2l R0;
rmac;

ld.l2h R1;
ld.laddr [a2]+1;
rd S0;
rd S1;
rd S2;
rot;

set.loop a6;
ld.normal R2;
rd S0;
rd S1;
rot;
ld.laddr [a2]+1;
rd S0;
rd S1;
rmad;
rot;
wr.straight; //Write Phase 6 output

ld.normal R2;
rd S0;
rd S1;
rmac;
rot;
loop_begin;
ld.laddr [a2]+1;
rd S0;
rd S1;
rmac;
rot;
loop_end;
ld.laddr [a3]+1;
ld.normal R2;
rd S0;
rd S1;
rmac;
rot;

ld.laddr [a3]+1;
rd S0;
rd S1;
rmac;
rot;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 137 / 536

ld.laddr [a3]-1;
ld.normal R2;
rd S0;
rd S1;
rmac;

st.laddr [a0]+1;
ld.h2l R0;
rmac; //Store Phase 6 output

ld.laddr [a2]+1;
ld.l2h_h2l R0;
rmac;

ld.l2h R1;

nop;

nop;
wr.straight; //Write Phase 7 output
L02: st.laddr [a0]+1;
mvB a1, a7;
loop_end; //Store Phase 7 output

ld.laddr [a1]+0;
mvB a1, a2; //Grab history samples to update the history buffer

mv a6, 0;
rts;
set.range a2, a6, 0;

ld.normal R3;

st.laddr [a1]+0; //Updating the history buffer
.size _frcFilterUp8Dn5, .-_frcFilterUp8Dn5

4.11 Extrema instructions
The extrema instructions configure and run the extrema search engine. The extrema search engine finds an extremum point,
maximum or minimum, in N half-word elements. The extrema engine can return either the resulting element index or the element
value depending on the result mode (index,value). If the result mode is index, element index is returned into a general purpose
register, an address register or both. If the result mode is value, the value will be returned into a general purpose register and
the index will be returned into an address register.

The data flow is illustrated in Figure 19.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 138 / 536

VRA
(8 vectors)

VRA Mux

Extrema Engine

General
Purpose
Registers

Address
Registers

rS2

Figure 19. Extrema Engine Data Path

Table 41. Extrema Instructions

Functionality Instruction Examples Family

Configure Extrema Engine set.xtrm {signed,unsigned}, {max,min}, {even,all}, {value,index}, N OpB

Run Extrema Engine xtrm aX, gY OpB

xtrm aX

xtrm gY

4.11.1 Extrema configuration
The extrema engine can be configured in many different modes using the set.xtrm instruction. The engine will use the last
configuration set by the user before running the xtrm instruction. If the set.xtrm instruction is called while the extrema engine is
running, none of the configuration is modified. The engine uses the S2 precision settings.

4.11.1.1 Extrema
The extrema engine can be configured with four different extrema: signed max, signed min, unsigned max and unsigned min.
The signed max will return the value closest to positive infinity. The signed min will return the value closest to negative infinity.
The unsigned max will return the value farthest from zero. The unsigned min will return the value closest to zero.

4.11.1.2 Extrema modes
The extrema engine can be configured in two different modes: all and even. The all mode will find an extremum within all N
elements. The even mode will find an extremum within the even elements of N elements. The resulting index in even mode
represents the Xth even index in N elements. For example, if the resulting index in even mode is 8, it is actually the 16th element
in N elements.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 139 / 536

4.11.1.3 Extrema element count
The extrema engine element count, N, is the number of half-words that will be processed by the engine during a search. N can
be any power of 2 up to one half line (32) or a multiple of half lines up to 2048. When in even mode, the minimum N is 4. The
extrema engine compares up to B elements at one time. The value of B is 32 for elements in half precision and 16 for single
precision. If N is greater than B, the extrema engine will update rS2 in order to compare the next B elements. To do so, the rS2
must be configured to increment to the next B elements to compare.

For example:

• To search for a signed max within 512 half precision elements, the following configuration can be used:

set.prec half, half, half, single, single; set.vraptr rS2, 0;
set.xtrm signed, max, all, value, 512; set.vraincr rS2, 32;

• To search for a signed max within 512 single precision elements, the following configuration can be used:

set.prec single, single, single, single, single; set.vraptr rS2, 0;
set.xtrm signed, max, all, value, 2*512; set.vraincr rS2, 2*16;

4.11.1.4 Extrema result mode
The extrema engine has two different result modes: index and value. The index mode will return the index of the extreme value
into a general purpose register, an address pointer or both. The value mode will return the extreme value into a general purpose
register, the index of the extreme value into an address pointer or both.

4.11.1.5 Extrema latency
The xtrm instruction is multi cycle and it depends on the number of elements N and the all/even set by the most recently executed
set.xtrm instruction. The latency of xtrm in given by the formula:

2+ceil(M/B)+log2[min(M,B)]

Where M=N in ‘all’ mode and M=N>>1 in ‘even’ mode; B = 32 for elements in half precision and B = 16 for single precision.

A 'done' instruction should not be executed until the xtrm instruction is complete.

 NOTE

4.11.2 Extrema Functionality
The extrema engine returns the index or the value of an extremum within a given range of N elements in the VRA. The engine
uses the S2 precision settings and searches for extrema in groups of B elements (B = 32 in half precision, B=16 in single
precision). The engine uses rS2 as the pointer to the elements to search within the VRA. The result can be written into a general
purpose register, address register, or both.

4.11.2.1 RAG configuration
The extrema engine uses rS2 as the pointer into the VRA for the elements to compare. The rS2 pointer must be configured on
a B element boundary where B = 32 for elements in half precision and B = 16 for single precision. When N is larger than B, the
engine will update rS2 N/B -1 times to search all N elements. The rS2 increment register must be configured properly to increment
to the next B elements in the VRA. If rS2 is not on a B-element boundary, the engine will use the elements starting at the closest
B-element boundary. The rS2 pointer & increment registers and the S2 register cannot be used by any other instruction for ceil(N/
B) cycles following the issue of the "xtrm" instruction.

4.11.2.2 Latency
The set.xtrm instruction has a 1 cycle latency. The xtrm instruction has variable latency depending on N number of elements to
search. See Extrema latency for latency calculation.

After the xtrm latency, the index of the extrema value will reside in the desired general purpose or address register.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 140 / 536

The next set.xtrm or xtrm instruction can occur during the last cycle of latency of the xtrm instruction. This is possible because
the extrema engine is writing the result to the output register.

4.11.2.3 Multiple extrema
If multiple extrema exist in N elements, the extrema engine will return one of the extrema indexes. Depending on N and the
location of the multiple extrema, the very first extremum is not guaranteed to be the returned extremum index.

4.11.3 Extrema instructions code example

set.prec single, single, single, single, single; set.vraptr rS2, 0;
set.xtrm signed, max, all, value, 512*2; set.vraincr rS2, NAU*2;

ld.laddr [g0]+1;
 ld.laddr [g0]+1;
 ld.laddr [g0]+1;
 ld.laddr [g0]+1; ld R0; xtrm a10, g10; // xtrm operand:
 ld.laddr [g0]+1; ld R1; // R0
 ld.laddr [g0]+1; ld R2; // R0
 ld.laddr [g0]+1; ld R3; // R1
 ld.laddr [g0]+1; ld R4; // R1

` ld R5; // R2
ld R6; // R2
ld R7; // R3

 nop; // R3
 nop; // R4
 nop; // R4
 nop; // R5
 nop; // R5
 ld.laddr [g0]+1; // R6
 ld.laddr [g0]+1; // R6
 ld.laddr [g0]+1; // R7
 ld.laddr [g0]+1; ld R0; // R7
 ld.laddr [g0]+1; ld R1; // R0
 ld.laddr [g0]+1; ld R2; // R0
 ld.laddr [g0]+1; ld R3; // R1
 ld.laddr [g0]+1; ld R4; // R1

ld R5; // R2
ld R6; // R2
ld R7; // R3

 nop; // R3
 nop; // R4
 nop; // R4
 nop; // R5
 nop; // R5
 nop; // R6
 nop; // R6
 nop; // R7
 nop; // R7
 nop;
 nop;
 nop;
 nop;
 nop;

4.12 Vector AU source register instructions
The Vector AU source register instructions perform the following operations:

• read data from the VRA; up to one vector each clock cycle per destination source register,

• data permutation and/or replication for maximum utilization of the VAU,

• optional data type conversion (that is: half-fixed to single) and

• update the S0, S1 and S2 VAU source registers.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 141 / 536

The data permutation and/or replication are controlled by S0mode, S1mode and S2mode for each of the three VAU source
register data paths, respectively. Data type conversion is controlled using S0prec, S1prec and S2prec. The data flow is illustrated
in Figure 20.

Vector Arithmetic
Unit

S0 S1 S2

S0Mux S1Mux S2Mux

VRA
(8 vectors)

S1mode
S1prec

S0mode
S0prec

S2mode
S2prec

Type
Converter

Type
Converter

Type
Converter

Figure 20. VRA to Source Register Data Path

One VRA pointer is allocated to each source register port to indicate which data to extract. The pointer is post-modified upon
execution of the read operation. Instruction syntax and functionality is summarized in Table 42

Table 42. Source Operand Load Instructions

Functionality Instruction Examples Family Update VRA
Pointer

Data permutation and/or
replication

set.Smode S0mode; OpB No

set.Smode S1mode;

set.Smode S2mode;

set.Smode S0mode, S1mode;

set.Smode S0mode, S2mode;

set.Smode S1mode, S2mode;

set.Smode S0mode, S1mode, S2mode;

set.Smode S0chs, S0mode;

set.Smode S0chs, S0mode, S1mode;

set.Smode S0chs, S0mode, S2mode;

set.Smode S0chs, S0mode, S1mode, S2mode;

set.Smode S0conj, S0mode;

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 142 / 536

Table 42. Source Operand Load Instructions (continued)

Functionality Instruction Examples Family Update VRA
Pointer

set.Smode S0conj, S0mode, S1mode;

set.Smode S0conj, S0mode, S2mode;

set.Smode S0conj, S0mode, S1mode, S2mode;

set.Smode S0conj, S0chs, S0mode;

set.Smode S0conj, S0chs, S0mode, S1mode;

set.Smode S0conj, S0chs, S0mode, S2mode;

set.Smode S0conj, S0chs, S0mode, S1mode, S2mode;

Data type conversion set.prec S0prec,S1prec,S2prec,AUprec,Vprec OpB No

VRA data read rd S0; OpVs0 rS0

rd S1; OpVs1 rS1

rd S2; OpVs2 rS2

rd S0; rd S1; rd S2; OpVs0 + OpVs1 +
OpVs2

rS0, rS1 & rS2

Combination of data
permutation and/or
replication and VRA data
read1

set.Smode S0<S0mode>; rd S0; OpB + OpVs rS0

set.Smode S1<S1mode>; rd S1; OpB + OpVs rS1

set.Smode S2<S2mode>; rd S2; OpB + OpVs rS2

1. These instructions are of type Format-1 macro-instruction.

4.12.1 VRA data reads
Data is read from the VRA using the 'rd ...' instruction. Each source register port is assigned its own microinstruction family.
Therefore, any single, pair, or all three paths can read data in a given cycle.

4.12.1.1 Pipeline delay
The 'rd' instructions have a two cycle pipeline delay so the destination VAU source register (S0, S1, or S2) cannot be used in the
next cycle. However, the delay is pipelined so its possible to feed the source registers with new data every cycle. Consider the
following example:

rd S0; rd S1; rd S2; // 1st read

rd S0; rd S1; rd S2; // 2nd read

rmac/cmac; // uses data from 1st read

rmac/cmac; // uses data from 2nd read

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 143 / 536

4.12.1.2 VRA pointers
Each VAU source register port in the VRA is assigned a pointer; rS0, rS1, and rS2 for S0, S1, and S2, respectively. The pointer
contains the beginning address of a vector or element in the VRA which will be accessed with the next 'rd' instruction. The pointer
is always post-modified according to the pointer mode after executing the read operation.

The RAG pointer Registers are 11 bits. The entire RAG address or only a portion of this is used depending on the number of
AU's. For a 16AU design 9 bits are used. The most significant 3 bits of the VRA pointer identify the R register. The remaining bits
indicate the column or element offset within the R register.

In the following, we will take rS0 as an example. Similar rules apply to rS1 and rS2.

• rS0[8:6], or the upper 3 bits of rS0, specify the VRA register to read from;

• rS0[5:0], or the lower bits of rS0, specify the element offset within the VRA register.

When loading the entire line from VRA, only the upper 3 bits of the rag register are used. The lower bits are ignored.

When loading a 16 bit data element from VRA, the lower bits are used, as follows.

• When accessing an element in real mode, all lower bits of rS0 (or rS0[5:0]) will be used.

• When accessing an element in complex mode, only rS0[5:1] will be used. The rS0[0] will be ignored.

When loading a 32 bit data element from VRA, the lower bits are used, as follows.

• When accessing an element in real mode, only rS0[5:1] will be used. The rS0[0] will be ignored.

• When accessing an element in complex mode, only rS0[5:2] will be used. The rS0[1:0] will be ignored.

When loading a 64bit data element from VRA, the lower bits are used, as follows.

• When accessing an element in real mode, only rS0[5:2] will be used. The rS0[1:0] will be ignored.

• When accessing an element in complex mode, only rS0[5:3] will be used. The rS0[2:0] will be ignored.

4.12.1.3 RAG pointer registers updates
The RAG pointer is updated each time the corresponding source mux is loaded. That is, RAG pointer is updated each time when
a "Load Source Only" or "Load Source and Set Source Loading Mode" instruction is executed (see Table 42).

For example, rS2 is updated whenever one of the following two instructions is executed.

• rd S2;

• rd S2; set.Smode S2<s2mode>;

set.Smode S2<s2mode>, on the other hand, will not cause rS2 to be updated.

It is assumed that the user programmed the RAG pointer updates correctly for each Sxprec type.

If the Sxprec type is half fixed or half float, the RAG pointer should update by 1 in real mode and by 2 in complex mode.

If the Sxprec type is single precision, the RAG pointer should update by 2 in real mode and by 4 in complex mode.

See also RAG instructions for more details on RAG pointers update algorithm.

4.12.2 Data permutation and/or replication
Data permutation and/or replication is controlled using the set.Smode instruction. The S0 path allows for optional conjugation
and/or sign inversion (change-sign). The ISA supports configuration of any individual source register path, any two, or all three
in a single OpB microinstruction. These operations do not affect the VRA pointers or the source registers.

There are three groups of Source Operand Load Instructions detailed in Table 42:

• set source loading modes,

• load source only, and

• load source and set source loading modes

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 144 / 536

The first group of instructions are opB instructions. These instructions can also be combined in one instruction set.Smode
S0<s0mode>, S1<S1mode>, S2<s2mode>;

The second group of instructions are opVs instructions.

The third group of instructions are a combination of opB and opVs instructions. This group of instructions, set.Smode
S0<s0mode>; rd S0;, updates the source mode registers, the source registers and the corresponding RAG pointer.

The notations <s0mode>, <S1mode> and <s2mode> used in Table 42 denote the muxing modes for S0Mux, S1Mux and S2Mux,
respectively. These source muxing modes are stored in s0_mode_reg, s1_mode_reg and s2_mode_reg, respectively.

Once s0_mode_reg is set using the set.Smode S0<s0mode> instruction, it will remain unchanged until the next set.Smode
S0<s0mode> instruction is executed. The same can be said about the behaviors of <S1mode> and <s2mode>.

If an instruction updates only S0 but not s0_mode_reg, then the old muxing mode for S0Mux set by the previous update to
s0_mode_reg will be used. That is, once s0_mode_reg is set by an instruction, it will retain its value until the next instruction that
explicitly updates the register is executed. The same can be said about s1_mode_reg and s2_mode_reg.

For example, in the following code sequence, the first instruction sets s1_mode_reg to normal mode and then loads S1 using
normal mode. The second instruction loads S1 using normal mode, as well.

 rd S1; set.Smode S1hlinecplx;
 rd S1;

4.12.3 VRA data type conversion
The data read from the VRA can be type converted before being loaded into the source register. The S0prec, S1prec and S2prec
determine the data type stored in the VRA. The AUprec determines the final data type stored in the source register.

The diagrams that follow show bit width sizes. Each size represents the number of bits that are used before type conversion and
the resulting number of bits after type conversion. For example, in a half fixed to single precision conversion 1024 bits are used
before conversion and the conversion results in 2048 bits. The size after source muxing is not shown here because the source
muxing operation can change the size of the data, and it's final size is dependent on Smode.

The valid Sxprec to AUprec conversions are shown in the following figures:

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 145 / 536

Vector Register Array

Line Select
Muxing

Type Conversion

Source
Muxing

Source Register

1024 Bits

2048 Bits

2048 Bits

rSx[8:6]

Sxprec

sx_mode_reg

AUprec

Pipeline Stage

1024 Bits

Figure 21. Half Fixed to Single Precision Source Load

Vector Register Array

Line Select
Muxing

Type Conversion

Source
Muxing

Source Register

1024 Bits

2048 Bits

2048 Bits

rSx[8:6]

Sxprec

sx_mode_reg

AUprec

Pipeline Stage

1024 Bits

Figure 22. Half Precision to Single Precision Source Load

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 146 / 536

Vector Register Array

Line Select
Muxing

Type Conversion

Source
Muxing

Source Register

1024 Bits

1024 Bits

2048 Bits

rSx[8:6]

Sxprec

sx_mode_reg

AUprec

Pipeline Stage

1024 Bits

Figure 23. Single Precision to Single Precision Source Load

4.12.4 S0mode options and detailed description
Table 43 below shows all possible <s0mode> along with brief descriptions of these modes.

Rx denotes the VRA register where the data is read from, which is the register pointed to by rS0.

The output of the type converter contains 64 word elements. In some cases not all elements are valid out of the type converter.
In those cases, the unused elements will have undefined values.

Sx (S0 for S0mode) is assumed to be a vectored bus containing 64 word elements.

In these instructions, conj (conjugate) and sign (change-sign) are optional operations. If specified, they conjugate and/or negate
the output data of S0Mux, just before they are loaded into S0. See Table 43 for more details.

Table 43. All Supported S0mode

s0mode Restrictions Descriptions1

S0hlinecplx Complex data

creg(15[0])=x,
creg(19)=x

Load S0 with output of the type converter, in preparation for complex multiplication
(cmad or cmac).

Each complex element is duplicated with the following pattern (real,imag,-imag,real).

Update rS0.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 147 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

2047 1024 1023 0

rSx[3]

1023 63 0

Complex
Duplication

Sx

2047 127 0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S0straight Real data

creg(15[0])=0,
creg(19)=x

Load S0 with output of the type converter.

Update rS0 value.

2047 0

02047

2048

Sx

S0hword Real data

creg(15[0])=0,
creg(19)=x

Load a real element from output of the type converter, using rS0 as offset.

Duplicate this element into all elements of S0.

Update rS0.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 148 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

2047 0

rSx[4:0]

31 0

Duplication

Sx

2047 31 0

* Note: If Sxprec is single, the rag bits used are rSx[5:2].

S0group2nr Real data

creg(15[0])=0,
creg(23),
creg(19)=x

S0group2nr

Load a group of real elements from output of the type converter, using rS0 as offset.

Duplicate this group into all elements of S0:

for (i = 0; i < 4*NAU/n; i++) {

for (j = 0; j < n; j++) {

S0[n*i+j] = r[j+rS0];

}

}

Number of elements (n) in group is determined by 2^order_g

Value of order_g is restricted such that:

1<2^order_g<NAU*4

Update rS0.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 149 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

2047 0

rSx[4:0]

((2^order_g)x32)-1 0

Duplication

Sx

2047 ((2^order_g)x32)-1 0

S0word Complex data

creg(15[0])=0,
creg(19)=x

Load a complex element from output of the type converter, using rS0 as offset, in
preparation for complex multiplication (cmad or cmac).

Each complex element is duplicated with the following pattern (real,imag,-imag,real)
into all elements of S0.

Update rS0.

2047 0

rSx[5:1]

63 0

Complex
Duplication

Sx

2047 63 0

* Note: If Sxprec is single, the rag bits used are rSx[5:2].

S0group2nc Complex data

creg(15[0])=0,
creg(23),
creg(19)=x

Load a group of complex elements from output of the type converter, using rS0 as
offset.

Duplicate this group into all elements of S0:

for (i = 0; i < NAU/n; i++){

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 150 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

for (j = 0; j < n; j++) {

S0[4*n*i+4*j] = r[2*(j+rS0)];

S0[4*n*i+4*j+1] = -r[2*(j+rS0)+1];

S0[4*n*i+4*j+2] = r[2*(j+rS0)+1];

S0[4*n*i+4*j+3] = r[2*(j+rS0)];

}

}

Number of elements (n) in group is determined by 2^order_g

Value of order_g is restricted such that:

1<2^order_g<NAU

Update rS0.

2047 0

rSx[5:1]

((2^order_g)x64)-1 0

Complex
Duplication

Sx

2047 ((2^order_g)x64)-1 0

S0zeros Real and

Complex data

creg(15[0])=0,
creg(19)=x

Load all elements of S0 with floating-point constant "0".

Update rS0.

31 0

Duplication

Sx

2047 31 0

S0real1 Real data Load all elements of S0 with floating-point constant "1".

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 151 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

creg(15[0])=0,
creg(19)=x

Update rS0.

31 0

Duplication

Sx

2047 31 0

S0cplx1 Complex data

creg(15[0])=0,
creg(19)=x

Load all complex elements of S0, in preparation for complex multiplication (cmad or
cmac) with floating-point constant {0+1j, 1 + j0}.

Update rS0.

Ones Duplication

Sx

2047 127 0

S0i1r1i1r1 Real and

Complex data

creg(15[0])=0,
creg(19)=x

Load a complex element from output of the type converter, using rS0.

The complex element is duplicated into 4 real elements in the following format (imag,
real, imag, real) and replicated into all elements of S0.

Update rS0.

2047 0

rSx[5:1]

63 0

Coef Duplication

Sx

2047 127 0

* Note: If Sxprec is single, the rag bits used are rSx[5:2].

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 152 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

S0i1i1r1r1 Real and

Complex data

creg(15[0])=0,
creg(19)=x

Load a complex element from output of the type converter, using rS0.

The complex element is duplicated into 4 real elements in the following format (imag,
imag, real, real) and replicated into all elements of S0.

Update rS0.

2047 0

rSx[5:1]

63 0

Coef Duplication

Sx

2047 127 0

* Note: If Sxprec is single, the rag bits used are rSx[5:2].

S0fftn; Complex data
only,

S0prec=half_fixed
/half/single,

AUprec=single,
F24.

Using rS0, select 1 complex element from output of the type converter.

Replicate these elements into S0, in preparation for the DIT or DIF butterfly operation.

Each FFT complex element is duplicated with the following pattern (real,imag,-real,-
imag,-imag,real,imag,-real).

FFT re-orders the complex elements as follows:

for(j=0; j<8; j++){

// first half output

mx_fft[127+j*128 : j*128] =

mx_fft_orig[127+j*256 : j*256];

// second half output

mx_fft[1024+127+j*128 : 1024+j*128]=

mx_fft_orig[127+j*256+128 : j*256+128];

}

Update rS0.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 153 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

2047 0

rSx[5:4]

512
63 0

FFT
Duplication

Sx

2047 255 0

FFTN Selection

FFT Re-Order

512

2047 1024 0

255:128

Type converter output

Quarter select
mux

* Note: If Sxprec is single, the quarter select mux only selects from the lower two
quarters for FFT duplication.

S0fft4; Complex data
only,

S0prec=half_fixed
/half/single,

AUprec=F24.

Using rS0, select 8 complex elements from the output of the type converter.

Replicate these elements into S0, in preparation for the DIT or DIF butterfly operations

Each FFT complex element is duplicated with the following pattern (real,imag,-real,-
imag,-imag,real,imag,-real).

FFT re-orders the complex elements as follows:

for(j=0; j<8; j++){

// first half output

mx_fft[127+j*128 : j*128] =

mx_fft_orig[127+j*256 : j*256];

// second half output

mx_fft[1024+127+j*128 :1024+j*128]=

mx_fft_orig[127+j*256+128 : j*256+128];

}

Update rS0.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 154 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

2047 0

rSx[5]

512
63 0

FFT
Duplication

Sx

2047 255 0

FFT Selection

FFT Re-Order

1024

2047 1024 0

255:128 127:0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S0fft3; Complex data
only,

S0prec=half_fixed
/half/single,

AUprec=single,
F24.

Using rS0, select 4 complex elements from the output of the type converter.

Replicate these elements into S0, in preparation for the DIT or DIF butterfly operations

Each FFT complex element is duplicated with the following pattern (real,imag,-real,-
imag,-imag,real,imag,-real).

FFT re-orders the complex elements as follows:

for(j=0; j<8; j++){

// first half output

mx_fft[127+j*128 : j*128] =

mx_fft_orig[127+j*256 : j*256];

// second half output

mx_fft[1024+127+j*128 :1024+j*128]=

mx_fft_orig[127+j*256+128 : j*256+128];

}

Update rS0.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 155 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

2047 0

rSx[5]

512
63 0

FFT
Duplication

Sx

2047 255 0

FFT Selection

FFT Re-Order

1024

2047 1024 0

255:128 127:0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S0fft2; Complex data
only,

S0prec=half_fixed
/half/single,

AUprec=single,
F24.

Using rS0, select 2 complex elements from the output of the type converter.

Replicate these elements into S0, in preparation for the DIT or DIF butterfly operation.

Each FFT complex element is duplicated with the following pattern (real,imag,-real,-
imag,-imag,real,imag,-real).

FFT re-orders the complex elements as follows:

for(j=0; j<8; j++){

// first half output

mx_fft[127+j*128 : j*128] =

mx_fft_orig[127+j*256 : j*256];

// second half output

mx_fft[1024+127+j*128 :1024+j*128]=

mx_fft_orig[127+j*256+128 : j*256+128];

}

Update rS0.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 156 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

2047 0

rSx[5]

512
63 0

FFT
Duplication

Sx

2047 255 0

FFT Selection

FFT Re-Order

1024

2047 1024 0

255:128 127:0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S0fft1; Complex data
only,

S0prec=half_fixed
/half/single,

AUprec=single,
F24.

Using rS0, select 1 complex elements from the output of the type converter.

Replicate these elements into S0, in preparation for the DIT or DIF butterfly operation.

Each FFT complex element is duplicated with the following pattern (real,imag,-real,-
imag,-imag,real,imag,-real).

FFT re-orders the complex elements as follows:

for(j=0; j<8; j++){

// first half output

mx_fft[127+j*128 : j*128] =

mx_fft_orig[127+j*256 : j*256];

// second half output

mx_fft[1024+127+j*128 :1024+j*128]=

mx_fft_orig[127+j*256+128 : j*256+128];

}

Update rS0.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 157 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

2047 0

rSx[5]

512
63 0

FFT
Duplication

Sx

2047 255 0

FFT Selection

FFT Re-Order

1024

2047 1024 0

255:128 127:0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S0abs Real and

Complex data

creg(15[0])=0,
creg(19)=x

Load S0 with absolute value of each element.

Update rS0.

2047 0

2048

2047 0

Absolute Value

Sx

<s0mode>, sign; Real and Complex
data

Perform sign-bit inversion on all the data elements.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 158 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

2047 0

2048

2048

2047 0

Source Muxing

Change Sign

Sx

<s0mode>,
S0conj;

Real and Complex
data

Perform conjugate on all the complex data elements; that is, invert the sign bit of all
imaginary elements.

2047 0

2048

2048

2047 0

Source Muxing

Conjugate

Sx

<s0mode>,
S0conj, sign;

Real and Complex
data

Perform both conjugate and sign inversion; that is, inverting the sign bit of all real
elements.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 159 / 536

Table 43. All Supported S0mode (continued)

s0mode Restrictions Descriptions1

2047 0

2048

2048

2047 0

Source Muxing

Conjugate and Change Sign

Sx

1. abs, conj and sign operations are performed on the output of S0Mux. The results of these operations are then loaded into
S0.

4.12.5 S1mode options and detailed description
Table 44 below shows all possible <S1mode> along with brief descriptions of these modes.

Rx denotes the VRA register where the data is read from, which is the register pointed to by rS1.

The output of the type converter contains 64 word elements. In some cases not all elements are valid out of the type converter.
In those cases, the unused elements will have undefined values.

Sx (S1 for S1mode) is assumed to be a vectored bus containing 64 word elements.

Table 44. All Supported S1mode

S1mode Restrictions Descriptions

S1hlinecplx Complex data Load S1 with output of the type converter, in preparation for complex multiplication
(cmad or cmac).

Each complex element is duplicated with the following pattern (imag,real,imag,real).

Update rS1.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 160 / 536

Table 44. All Supported S1mode (continued)

S1mode Restrictions Descriptions

2047 1024 1023 0

rSx[3]

1023 63 0

Complex
Duplication

Sx

2047 127 0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S1straight Real data Load S1 with output of the type converter.

Update rS1.

2047 0

02047

2048

Sx

S1real1 Real data Load all elements of S1 with floating-point constant "1".

Update rS1.

This S1 mode will only produce floating point values and so may
NOT be used in conjuction with AUprec padd or paddF24, which
require values in half fixed format.

 NOTE

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 161 / 536

Table 44. All Supported S1mode (continued)

S1mode Restrictions Descriptions

31 0

Duplication

Sx

2047 31 0

S1cplx1 Complex data Load all complex elements of S1, in preparation for complex multiplication (cmad or
cmac) with floating-point constant {1 + j0, 1 + j0}.

Update rS1.

This S1 mode will only produce floating point values and so may
NOT be used in conjuction with AUprec padd or paddF24, which
require values in half fixed format.

 NOTE

Ones Duplication

Sx

2047 127 0

S1real_conj Real data Same as "straight" with post-conjugate operation; that is, invert the sign bit of the odd
elements.

2047 0

2048

2047 0

Conjugate

Sx

S1cplx_conj Complex data Same as "hlinecplx" with post-conjugate operation; that is, invert the sign bit of the
imaginary elements.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 162 / 536

Table 44. All Supported S1mode (continued)

S1mode Restrictions Descriptions

2047 10241023 0

rSx[3]

1023 63 0

Complex
Duplication

2047 127 0

Conjugate

S1r2c Real and

Complex data

Load S1 real-to-complex with output of the type converter. Each complex element is
replicated as follows (imag,imag,real,real) into S1.

Update rS1.

2047 1024 1023 0

rSx[3]

1023 63 0

Complex
Duplication

Sx

2047 127 0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S1r2c_conj Real and Same as "r2c" with post-conjugate operation; that is, invert the sign bit of the imaginary
elements.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 163 / 536

Table 44. All Supported S1mode (continued)

S1mode Restrictions Descriptions

Complex data
2047 10241023 0

rSx[5]

1023 63 0

Complex
Duplication

Sx

2047 127 0

2047 0

Conjugate

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S1r2c_im0 Real and

Complex data

Load S1 real-to-complex with output of the type converter. Each complex element is
replicated as follows (0,imag,0,real} into S1.

Update rS1.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 164 / 536

Table 44. All Supported S1mode (continued)

S1mode Restrictions Descriptions

2047 1024 1023 0

rSx[3]

1023 63 0

Complex
Duplication

Sx

2047 127 0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S1r2c_re0 Real and

Complex data

Load S1 real-to-complex with output of the type converter. Each complex element is
replicated as follows (imag,0,real,0} into S1.

Update rS1.

2047 1024 1023 0

rSx[3]

1023 63 0

Complex
Duplication

Sx

2047 127 0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S1i2i1r2r1 Real data Same as S1hlinecplx

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 165 / 536

Table 44. All Supported S1mode (continued)

S1mode Restrictions Descriptions

Complex data The i2i1r2r1 mode is for up-down filter with complex inputs

Load S1 with output of the type converter, swapping the 2nd and 3rd elements of each
group of 4 elements.

Update rS1.

i2i1r2r1 Swap

2047 1023 0

010232047

2048

S1udfR Real data Same as "r2c" mode.

This mode is only supported for backward compatibility, that is when
set.creg is set to 1.

 NOTE

Complex data The udfR mode is for up-down filter with real inputs

Same as "straight" mode.

S1interp2nr Real data

creg(24), creg(16),
creg(17), creg(18),
creg(19)=0

Load real elements from the output of the type converter, using rS1 as offset.

Duplicate elements into S1:

for (i = 0; i < 4*NAU/n; i++) {

for (j = 0; j < n; j++) {

S1[n*i+j] = r[i+rS1];

}

}

Number of elements (n) in group is determined by 2^order_i

Value of order_i is restricted such that:

1 < 2^order_i <= NAU*4

Update rS1.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 166 / 536

Table 44. All Supported S1mode (continued)

S1mode Restrictions Descriptions

2047 0

rSx[4:0]

((2^order_g)x32)-1 0

Duplication

Sx

2047 ((2^order_g)x32)-1 0

S1interp2nc Complex data

creg(24), creg(16),
creg(17), creg(18),
creg(19)=0

Load complex elements from the output of the type converter, using rS1 as offset.

Duplicate elements into S1:

for (i = 0; i < NAU/n; i++) {

for (j = 0; j < n; j++) {

S1[4*n*i+4*j] = r[2*(i+rS1)];

S1[4*n*i+4*j+1] = r[2*(i+rS1)+1];

S1[4*n*i+4*j+2] = r[2*(i+rS1)];

S1[4*n*i+4*j+3] = r[2*(i+rS1)+1];

}

}

Number of elements (n) in group is determined by 2^order_i

Value of order_i is restricted such that:

1 < 2^order_i <= NAU

Update rS1.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 167 / 536

Table 44. All Supported S1mode (continued)

S1mode Restrictions Descriptions

2047 0

rSx[5:1]

((2^order_g)x64)-1 0

Complex
Duplication

Sx

2047 ((2^order_g)x64)-1 0

S1nco Complex data
Only

creg(25)=0,
creg(19)=0

Load S1 with complex tone samples being generated by nco module.

Update rS1.

The Vector NCO is only capable of producing single-precision
twiddle factors. If S1nco, then the programmer must constrain
AUprec to be single.

 NOTE

When nco_mode=singles, take first complex element and duplicate with the following
pattern (imag,real,imag,real).

1023 63 0

Complex
Duplication

2047 127 0

NCO Data

When nco_mode=radix2, take first half of complex elements and duplicate with the
following pattern (imag,real,imag,real). Take the output and copy to the upper half of
S1.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 168 / 536

Table 44. All Supported S1mode (continued)

S1mode Restrictions Descriptions

1023 63 0

Complex
Duplication

2047 127 0

NCO Data

When nco_mode=normal, duplicate each complex element with the following pattern
(imag,real,imag,real).

1023 63 0

Complex
Duplication

2047 127 0

NCO Data

4.12.6 S2mode options and detailed description
Table 45 below shows all possible <s2mode> along with brief descriptions of these modes.

Rx denotes the VRA register where the data is read from, which is the register pointed to by rS2.

The output of the type converter contains 64 word elements. In some cases not all elements are valid out of the type converter.
In those cases, the unused elements will have undefined values.

Sx (S2 for S2mode) is assumed to be a vectored bus containing 64 word elements.

Table 45. All Supported S2mode

S2mode Restrictions Descriptions

S2hlinecplx Complex data

creg(15[0])=x,
creg(19)=x

Load S2 with output of the type converter, in preparation for complex multiplication
(cmad or cmac).

Each complex element is duplicated with the following pattern (0,imag,0,real).

Update rS2.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 169 / 536

Table 45. All Supported S2mode (continued)

S2mode Restrictions Descriptions

2047 1024 1023 0

rSx[3]

1023 63 0

Complex
Duplication

Sx

2047 127 0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S2straight Real data Load S2 with output of the type converter.

Update rS2.

2047 0

02047

2048

Sx

S2zeros Real and

Complex data

Load all elements of S2 with floating-point constant "0".

Update rS2.

31 0

Duplication

Sx

2047 31 0

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 170 / 536

Table 45. All Supported S2mode (continued)

S2mode Restrictions Descriptions

S2real1 Real data Load all elements of S2 with floating-point constant "1".

Update rS2.

This S2 mode will only produce floating point values and so may
NOT be used in conjuction with AUprec padd or paddF24, which
require values in half fixed format.

 NOTE

31 0

Duplication

Sx

2047 31 0

S2cplx1 Complex data Load all complex elements of S2, in preparation for complex multiplication (cmad or
cmac) with floating-point constant {0+0j,1+0j}.

Update rS2.

This S2 mode will only produce floating point values and so may
NOT be used in conjuction with AUprec padd or paddF24, which
require values in half fixed format.

 NOTE

Ones Duplication

Sx

2047 127 0

S2i1r1i1r1 Real and

Complex data

Load a complex element from the output of the type converter, using rS2.

The complex element is expanded into 4 real elements in the following format (imag,
real, imag, real) and replicated into all elements of S2.

Update rS2.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 171 / 536

Table 45. All Supported S2mode (continued)

S2mode Restrictions Descriptions

2047 0

rSx[5:1]

63 0

Coef Duplication

Sx

2047 127 0

* Note: If Sxprec is single, the rag bits used are rSx[5:2].

S2i1i2r1r2 Real and

Complex data

Load complex elements from the output of the type converter, using rS2.

The complex elements are re-ordered in the following format (imag1, imag2, real1,
real2) and loaded into S2.

2047 0

Sx

2047 127 0

127

0313263649596127

r1r2 i1i2

128

0313263649596127128

2047

2047

2047

i2i1 r1 r2

S2fftn; Complex data
only,

S2prec=half_fixed
/half/single,

AUprec=single,
F24.

Using rS2, select 2 complex elements from the output of the type converter.

Replicate these elements into S2, in preparation for the DIT or DIF butterfly operation.

Each FFT complex element is duplicated with the following pattern (real,imag,0,imag,-
imag,real,0,real).

FFT re-orders the complex elements as follows:

for(j=0; j<8; j++){

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 172 / 536

Table 45. All Supported S2mode (continued)

S2mode Restrictions Descriptions

creg(15[0])=1,
creg(19)=0

// first half output

mx_fft[127+j*128 : j*128] =

mx_fft_orig[127+j*256 : j*256];

// second half output

mx_fft[1024+127+j*128 : 1024+j*128]=

mx_fft_orig[127+j*256+128 : j*256+128];

}

Update rS2.

2047 0

rSx[5:4]

512
63 0

FFT
Duplication

Sx

2047 255 0

FFTN Selection

FFT Re-Order

512

2047 1024 0

255:128

Type converter output

Quarter select
mux

* Note: If Sxprec is single, the quarter select mux only selects from the lower two
quarters for FFT duplication.

S2fft4; Complex data
only,

S2prec=half_fixed
/half/single,

AUprec=F24.

creg(15[0])=1,
creg(19)=0

Using rS2, select 8 complex elements from the output of the type converter.

Replicate these elements into S2, in preparation for the DIT or DIF butterfly operations

Each FFT complex element is duplicated with the following pattern (real,imag,0,imag,-
imag,real,0,real).

FFT re-orders the complex elements as follows:

for(j=0; j<8; j++){

// first half output

mx_fft[127+j*128 : j*128] =

mx_fft_orig[127+j*256 : j*256];

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 173 / 536

Table 45. All Supported S2mode (continued)

S2mode Restrictions Descriptions

// second half output

mx_fft[1024+127+j*128 : 1024+j*128]=

mx_fft_orig[127+j*256+128 : j*256+128];

}

Update rS2.

2047 0

rSx[5]

512
63 0

FFT
Duplication

Sx

2047 255 0

FFT Selection

FFT Re-Order

1024

2047 1024 0

255:128 127:0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S2fft3; Complex data
only,

S2prec=half_fixed
/half/single,

AUprec=single,
F24.

creg(15[0])=1,
creg(19)=0

Using rS2, select 4 complex elements from the output of the type converter.

Replicate these elements into S2, in preparation for the DIT or DIF butterfly operations

Each FFT complex element is duplicated with the following pattern (real,imag,0,imag,-
imag,real,0,real).

FFT re-orders the complex elements as follows:

for(j=0; j<8; j++){

// first half output

mx_fft[127+j*128 : j*128] =

mx_fft_orig[127+j*256 : j*256];

// second half output

mx_fft[1024+127+j*128 : 1024+j*128]=

mx_fft_orig[127+j*256+128 : j*256+128];

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 174 / 536

Table 45. All Supported S2mode (continued)

S2mode Restrictions Descriptions

}

Update rS2.

2047 0

rSx[5]

512
63 0

FFT
Duplication

Sx

2047 255 0

FFT Selection

FFT Re-Order

1024

2047 1024 0

255:128 127:0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S2fft2; Complex data
only,

S2prec=half_fixed
/half/single,

AUprec=single,
F24.

creg(15[0])=1,
creg(19)=0

Using rS2, select 2complex elements from the output of the type converter.

Replicate these elements into S2, in preparation for the DIT or DIF butterfly operations

Each FFT complex element is duplicated with the following pattern (real,imag,0,imag,-
imag,real,0,real).

FFT re-orders the complex elements as follows:

for(j=0; j<8; j++){

// first half output

mx_fft[127+j*128 : j*128] =

mx_fft_orig[127+j*256 : j*256];

// second half output

mx_fft[1024+127+j*128 : 1024+j*128]=

mx_fft_orig[127+j*256+128 : j*256+128];

}

Update rS2.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 175 / 536

Table 45. All Supported S2mode (continued)

S2mode Restrictions Descriptions

2047 0

rSx[5]

512
63 0

FFT
Duplication

Sx

2047 255 0

FFT Selection

FFT Re-Order

1024

2047 1024 0

255:128 127:0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

S2fft1; Complex data
only,

S2prec=half_fixed
/half/single,

AUprec=single,
F24.

creg(15[0])=1,
creg(19)=0

Using rS2, select 1 complex elements from the output of the type converter.

Replicate these elements into S2, in preparation for the DIT or DIF butterfly operations

Each FFT complex element is duplicated with the following pattern (real,imag,0,imag,-
imag,real,0,real).

FFT re-orders the complex elements as follows:

for(j=0; j<8; j++){

// first half output

mx_fft[127+j*128 : j*128] =

mx_fft_orig[127+j*256 : j*256];

// second half output

mx_fft[1024+127+j*128 : 1024+j*128]=

mx_fft_orig[127+j*256+128 : j*256+128];

}

Update rS2.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 176 / 536

Table 45. All Supported S2mode (continued)

S2mode Restrictions Descriptions

2047 0

rSx[5]

512
63 0

FFT
Duplication

Sx

2047 255 0

FFT Selection

FFT Re-Order

1024

2047 1024 0

255:128 127:0

Type converter output

Half select
mux

* Note: If Sxprec is single, the half select mux is not present. Only the lower half of the
bus is used for duplication.

4.13 AU instructions
This group of instructions specify AU arithmetic operations.

• rmad - multiply add

• rmad.sau - multiply and add, using SAU result as S1 operand

• cmad - complex multiply add and decimation-in-time butterfly

• cmad.sau - complex multiply add and decimation-in-time butterfly that uses output of previous SAU operation instead of s1
register contents

• rmac - multiply accumulate

• rmac.sau - multiply and accumulate, using SAU result as S1 operand

• cmac - complex multiply accumulate

• cmac.sau - complex multiply accumulate that uses output of previous SAU operation instead of S1 register contents

• mads - special mad intended for AU-assisted data conversion between float and fixed point

• mads.sau - multiply and add with sign conversion.

• maf - multiply add with feedback to multiplier

• mafac - multiply-feedback-accumulate

• dif.sau - decimation-in-frequency radix-2 butterfly,using SAU result as S1 operand

• clr.au - clear vector accumulator

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 177 / 536

Table 46. AU Instructions1,2

Mnemonic Function Performed in Real Mode Function Performed in Complex Mode

rmad V[i][n] = (S0[i][n-4]*S1[i][n-4]) + S2[i][n-4]3

for i=0,1,..,63

Undefined

rmad.sau V[i][n] = (S0[i][n-4]*SAUout[i][n-4]) + S2[i][n-4]

for i=0,1,..,63

Undefined

cmad Undefined V[i][n] = (S0[i][n-4]*S1[i][n-4]) + (S0[i+1][n-4]*S1[i+1]
[n-4]) + S2[i][n-4]

for i=0,2,4,6,...,62

cmad.sau Undefined V[i][n] = (S0[i][n-4]*SAUout[i][n-4]) + (S0[i+1]
[n-4]*SAUout[i+1][n-4]) + S2[i][n-4]

for i=0,2,4,6,...,62

rmac V[i][n] = (S0[i][n-4]*S1[i][n-4]) + V[i][n-1]

for i=0,1,..,63

Undefined

rmac.sau V[i][n] = (S0[i][n-4]*SAUout[i][n-4]) + V[i][n-1]

for i=0,1,..,63

Undefined

cmac Undefined V[i][n] = (S0[i][n-4]*S1[i][n-4]) + (S0[i+1][n-4]*S1[i+1]
[n-4]) + V[i][n-1]

for i=0,2,4,6,...,62

cmac.sau Undefined V[i][n] = (S0[i][n-4]*SAUout[i][n-4]) + (S0[i+1]
[n-4]*SAUout[i+1][n-4]) + V[i][n-1]

for i=0,2,4,6,...,62

mads V[i][n] = (S0[i][n-4]*S1[i][n-4]) + sign4((S0[i][n-4]*S1[i]
[n-4])) · S2[i][n-4]

for i=0,1,..,63

Undefined

mads.sau V[i][n] = (S0[i][n-4]*SAUout[i][n-4]) + sign((S0[i]
[n-4]*SAUout[i][n-4])) · S2[i][n-4]

for i=0,1,..,63

Undefined

maf V[i][n] = (V[i][n-4]*S1[i][n-4]) + S2[i][n-4]

for i=0,1,..,63

Undefined

mafac V[i][n] = (V[i][n-4]*S1[i][n-4]) + V[i][n-1]

for i=0,1,..,63

Undefined

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 178 / 536

Table 46. AU Instructions1,2 (continued)

Mnemonic Function Performed in Real Mode Function Performed in Complex Mode

dif.sau Undefined V[i][n]=(S0[i][n-4]*SAUout[i][n-4]) + (S0[i+1]
[n-4]*SAUout[i+1][n-4]) + (SAUout[i+2][n-4]*S2[i+2]
[n-4]) + (SAUout[i+3][n-4]*S2[i+3][n-4]);

V[i+2][n]=S0[i+2][n-4] + S2[i+2][n-4];

for i=0,4,..,60

clr.au Clear Vector Accumulator

V[i] = 0

for i=0,1,..,63

Clear Vector Accumulator

V[i] = 0

for i=0,1,..,63

1. s0[n], s1[n], s2[n] and V are vectored-buses. Each of these buses contains 64 real elements in SP mode.
2. s0[i][n] denotes the ith element of the s0[n] bus, V[i][n] denotes the ith element of the V[n] bus, and so on. 'n' denotes the

cycle count.
3. This table provides information for single precision.
4. sign() function returns 1 or -1 based on the sign bit of the input.

4.13.1 AU latency
When AUprec is set to single precision the latency is four.

For example, a rmad/cmad instruction with AUprec set to single precision will take four cycles in total. After four cycles, the auOut
bus will contain the results of the mad instruction and can be written back to the VRA. So loading the source operand registers
(S0, S1 and S2) through writing the AU results back to VRA will take seven cycles; two for the source operand load, four for the
AU instruction execution and one for the VRA writeback.

4.13.2 AU instructions code example

set.prec half_fixed, half_fixed, half_fixed, single, half_fixed;
set.Smode S0hlinecplx, S1hlinecplx, S2hlinecplx; rd S0; rd S1; rd S2;
nop;
cmad;
nop;
nop;
nop;
wr.hlinecplx;

4.13.3 Multiply add functionality

Table 47. MAD Descriptions

Instructions Real/

Complex
Modes

AUprec Operations Descriptions

rmad Real Single for (i=0; i<64; i++) {

V[i][n] = (S0[i][n-4]*S1[i][n-4]) + S2[i][n-4]

}

Perform 64 parallel multiply-add
operations on S0/S1/S2
elements.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 179 / 536

Table 47. MAD Descriptions (continued)

Instructions Real/

Complex
Modes

AUprec Operations Descriptions

cmad Complex Single for (i=0; i<64; i +=2) {

V[i][n] = (S0[i][n-4]*S1[i][n-4]) + (S0[i+1]
[n-4]*S1[i+1][n-4]) + S2[i][n-4]

}

This can perform 16 complex
multiply-add operations, where
V[0] represent the real outputs
and V[2] represent the
imaginary outputs.

s1[0] s0[0] s2[0]

X

+

V

V[0]

s1[1] s0[1] s2[1]

X

+

V

V[1]

s1[2] s0[2] s2[2]

X

+

V

V[2]

s1[63] s0[63] s2[63]

X

+

V

V[63]

Figure 24. Real mad Operation (Single Precision)

s1[0] s0[0] s2[0]

X

+

V

V[0]

+

s1[1] s0[1]

X

s1[2] s0[2] s2[2]

X

+

V

V[2]

+

s1[3] s0[3]

X

s1[62] s0[62] s2[62]

X

+

V

V[62]

+

s1[63] s0[63]

X

Figure 25. Complex mad Operation (Single Precision)

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 180 / 536

4.13.4 Multiply and add with sign conversion

Table 48. MADS Description

Instructions Real/

Complex
Modes

AUprec Operations Descriptions

mads Real Only Single for (i=0; i<64; i++) {

V[i][n] = (S0[i][n-4]*S1[i][n-4]) + sign((S0[i]
[n-4]*S1[i][n-4]))*S2[i][n-4]

}

where sign() function returns 1 or -1 based on the
sign bit of the input.

Perform 64 parallel multiply-add
operations on S0/S1/S2
elements, where the sign of the
adder operand (from S2) is
inverted if the product of s0 and
s1 is negative.

This instruction is useful in using
the AU to perform float-to-fixed
or fixed-to-float conversion

s1[0] s0[0] s2[0]

X

+

V

V[0]

inv signsign

s1[1] s0[1] s2[1]

X

+

V

V[1]

inv signsign

s1[2] s0[2] s2[2]

X

+

V

V[2]

inv signsign

s1[63] s0[63] s2[63]

X

+

V

V[63]

inv signsign

Figure 26. mads Operation in Real Mode (Single Precision)

4.13.5 Multiply accumulate functionality

Table 49. MAC Descriptions

Instructions Real/

Complex
Modes

AUprec Operations Descriptions

rmac Real Single for (i=0; i<64; i++) {

V[i][n] = (S0[i][n-4]*S1[i][n-4]) + V[i][n-1]

}

Perform 64 parallel multiply-
accumulate operations on
S0/S1 elements.

cmac Complex Single for (i=0; i<64; i +=2) {

V[i][n] = (S0[i][n-4]*S1[i][n-4]) + (S0[i+1]
[n-4]*S1[i+1][n-4]) + V[i][n-1]

}

This can perform 16 complex
multiply-accumulate
operations, where V[0]
represent the real accumulators
and V[2] represent the
imaginary accumulators.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 181 / 536

s1[0] s0[0]

X

+

V

V[0]

s1[1] s0[1]

X

+

V

V[1]

s1[2] s0[2]

X

+

V

V[2]

s1[63] s0[63]

X

+

V

V[63]

Figure 27. Real mac Operation (Single Precision)

s1[0] s0[0]

X

+

V

V[0]

+

s1[1] s0[1]

X

s1[2] s0[2]

X

+

V

V[2]

+

s1[3] s0[3]

X

s1[62] s0[62]

X

+

V

V[62]

+

s1[63] s0[63]

X

Figure 28. Complex mac Operation (Single Precision)

RMAC code example

// a0 = output pointer; a1 = input pointer for a; a2 = input pointer for b; a3
= input pointer for c
// performs a + b*c
set.creg 19, 1; // set VAU output width to 2 lines
clr.VRA; // reset VRA pointers
set.VRAptr 64*2, 64*4, 0, 64*6, 6; // Set VRA pointers to rS0 = R2[0]; rS1
= R4[0]; rS2 = R0[0]; rV = R6[0]; rSt = R6
ld.laddr [a1]+1; // Load "a" first 32 elements

ld.laddr [a1]+1; // Load "a" second 32 elements
ld.laddr [a2]+1; // Load "b" first 32 elements
ld.laddr [a2]+1;
ld.normal R0; // Load "b" second 32 elements
ld.laddr [a3]+1;
ld.normal R1; // Load "c" first 32 elements
ld.laddr [a3]+1;
ld.normal R2; // Load "c" second 32 elements

ld.normal R3;

ld.normal R4;
ld.normal R5;
set.Smode S0straight, S1straight, S2straight;
rd s0; rd S1; rd s2;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 182 / 536

// set Smodes to load "direct"
nop;
rmad;
nop;
nop;
nop;
wr.straight; // writes output to R6-R7
setB.VRAptr rSt, 7;
st.laddr [a0]+1; // store output first 32 elements
st.laddr [a0]+1; // store output second 32 elements

4.13.6 Multiply add with feedback functionality

Table 50. MAF Descriptions

Instructions Real/

Complex
Modes

AUprec Operations Descriptions

maf Real Single for (i=0; i<64; i++) {

V[i][n] = (V[i][n-4]*S1[i][n-4]) + S2[i][n-4]

}

Perform 64 parallel multiply-
accumlate with feedback
operations with S1 and S2
elements.

s1[0] s2[0]

X

+

V

V[0]

s1[1] s2[1]

X

+

V

V[1]

s1[2] s2[2]

X

+

V

V[2]

s1[63] s2[63]

X

+

V

V[63]

Figure 29. maf Operation (Single Precision)

4.13.7 Decimation in time and frequency butterfly functionality

Table 51. Decimation Descriptions

Instructions Real/

Complex
Modes

AUprec Operations Descriptions

cmad Complex
Only

Single Pre-
cision Only

for (i=0; i<64; i +=2) { Perform 32 parallel multiply-
add-add operations on
S0/S1/S2 elements.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 183 / 536

Table 51. Decimation Descriptions (continued)

Instructions Real/

Complex
Modes

AUprec Operations Descriptions

V[i][n] = (S0[i][n-4]*S1[i][n-4]) + (S0[i+1]
[n-4]*S1[i+1][n-4]) + S2[i][n-4]

}

With S0 and S2 in a FFT mode,
S1 in NC0 mode and with NCO
in nco_mode=radix2, this can
perform 16 complex DIT
butterfly operations, where V[0]
represent the real outputs and
V[2] represent the imaginary
outputs.

dif.sau Complex
Only

Single Pre-
cision Only

for (i=0; i<64; i +=4) {

V[i][n]=(S0[i][n-4]*SAUout[i][n-4]) + (S0[i+1]
[n-4]*SAUout[i+1][n-4]) + (SAUout[i+2][n-4]*S2[i
+2][n-4]) + (SAUout[i+3][n-4]*S2[i+3][n-4]);

V[i+2][n]=S0[i+2][n-4] + S2[i+2][n-4];

}

Perform 32 parallel FFT-specific
operations on S0/S1/S2
elements.

With S0 and S2 in a FFT mode,
S1 in NC0 mode and with NCO
in nco_mode=radix2, this can
perform 16 complex DIF
butterfly operations, where V[0]
represent the real outputs and
V[4] represent the imaginary
outputs.

s1[0] s0[0] s2[0]

X

+

V

V[0]

+

s1[1] s0[1]

X

s1[2] s0[2] s2[2]

X

+

V

V[2]

+

s1[3] s0[3]

X

s1[62] s0[62] s2[62]

X

+

V

V[62]

+

s1[63] s0[63]

X

Figure 30. cmad Operation (Single Precision)

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 184 / 536

sauout[0]
s0[0]

X

+

V

V[0]

+

sauout[1]
s0[1]

X

s2[3]
sauout[3]

X

+

V

V[2]

+

s2[2]
sauout[2]

X

s0[2]
sauout[60]

s0[60]

X

+

V

V[60]

+

sauout[61]
s0[61]

X

s2[63]
sauout[63]

X

+

V

V[62]

+

s2[62]
sauout[62]

X

s0[62]

Figure 31. dif Operation (Single Precision)

4.14 Special AU instructions
This group of instructions specifies special AU arithmetic operations.

The SAU instructions calculate non-linear functions. The input is either 32-bit floating point data or 16-bit fixed point data. The
output is either one data point (for real calculation) or two data points (for complex calculations). The SAU output is always in
single precision format. The 16-bit half fixed input data is between -1 and 1 in sign-magnitude format. 32-bit floating point data
is in single precision format. Certain functions ignore the input data sign. Built-in lookup tables (LUTs) are used to look up data
points that are then used in the SAU interpolator logic to calculate one or two result data points. The result is provided as the
SAU output data. The LUT instruction is a part of the SAU functionality.

• rcp - reciprocal on 32 elements

• rrt - reciprocal square root on 32 elements

• srt - square root on 32 elements

• nco - generates complex exponential sequences

• padd - adds 2 vectors of half-fixed numbers as loaded from the VRA into s2 and s1

Table 52. SAU Instructions

Mnemonic Function Performed

rcp V[i*2] = 1/s1[i*2]

SAUout[i*2] = 1/s1[i*2]

SAUout[i*2+1] = 1/s1[i*2]

for i=0,1,..,31

input: single precision

output: single precision

rrt V[i*2] = 1/√|s1[i*2]|

SAUout[i*2] = 1/√|s1[i*2]|

SAUout[i*2+1] = 1/√|s1[i*2]|

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 185 / 536

Table 52. SAU Instructions (continued)

Mnemonic Function Performed

for i=0,1,..,31

input: single precision

output: single precision

srt V[i*2] = √|s1[i*2]|

SAUout[i*2] = √|s1[i*2]|

SAUout[i*2+1] = √|s1[i*2]|

for i=0,1,..,31

input: single precision

output: single precision

nco See Numerically controlled oscillator (NCO) instructions

padd V[i]=s2[i]+s1[i]

SAUout[i] = s2[i]+s1[i]

for i=0,1,...,63

input: half-fixed precision

output: single or F24 precision

4.14.1 SAU input and output vector
The SAU uses the same input and output buses as the AU.

4.14.2 SAU latency
After the number of cycles defined by the latency of an SAU instruction, the SAU output will exist on the even indices of the AU
output bus and can be written into the VRA. For example, for two cycle latency, from the source register load, through the SAU
execution and into the VRA, will take 5 cycles; 2 for the source register load, 2 for the sau instruction, 1 for the SAU writeback.

There must be a minimum of one instruction between a "rd S1" operation and a SAU instruction. See Special AU instructions
code example.

4.14.3 Special AU instructions code example

set.prec half_fixed, half_fixed, half_fixed, single, half_fixed;
set.Smode S1r2c; rd S1;
nop; // a minimum of one instruction needed between rd S1 and rcp/rrt/srt operations
rcp;
nop;
wr.fn;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 186 / 536

4.14.4 Reciprocal functionality

Table 53. Reciprocal Descriptions

Instruction Real/Complex
Mode

AUprec Operation Description

rcp Real or Complex Single for (i=0; i<64; i+=2)

V[i] = 1/s1[i];

Calculate the reciprocal of all real
elements of s1.

The result of rcp
is an
approximation

 NOTE

4.14.5 Reciprocal square root functionality

Table 54. Reciprocal Square Root Descriptions

Instruction Real/Complex
Mode

AUprec Operation Description

rrt Real or Complex Single for (i=0; i<64; i+=2)

V[i] = 1/√|s1[i]|;

Calculate the reciprocal square
root of all real elements of s1.

The result of rrt
is an
approximation.

 NOTE

4.14.6 Square root functionality

Table 55. Square Root Descriptions

Instruction Real/Complex
Mode

AUprec Operation Description

srt Real or Complex Single for (i=0; i<64; i+=2)

V[i]= √|s1[i]|;

Calculate the square root of all real
elements of s1.

The result of srt
is an
approximation.

 NOTE

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 187 / 536

4.14.7 Pre adder functionality

Table 56. Pre adder Descriptions

Instruction Real/Complex
Mode

AUprec Operation Description

padd Real or Complex padd for (i=0; i<64; i+=1)

{

V[i]=s2[i]+s1[i]

}

Adds 2 vectors of half-fixed
numbers as loaded from the VRA
into s2 and s1. Under “padd” mode
of AU precision no type conversion
happens on the source register
load and the inputs are always
treated as half-fixed numbers. The
output vector from the pre-adder is
available at the SAU output either
for use by any of rmac.sau/
cmac.sau/rmad.sau/cmad.sau
instruction or for writing to VRA. If
written back to the VRA only half of
the output vector (every alternate
output sample) is written back.

padd Real or Complex Single/Double Not applicable -

4.15 Store AU/SAU output instructions
The wr instruction stores the AU or SAU output into a VRA register.

As part of the VRA writeback operation, a muxing logic block called WbMux performs a variety of shifting functions on the
AU/SAU results before writing them back into the VRA.

Table 57 shows all wr instructions and their supported muxing modes for WbMux. These modes dictate which shifting functions
are to be performed by the WbMux prior to writing back to VRA.

Table 57. Store AU and Store SAU Instructions

Instruction Description

wr.even; Write AU output into VRA. Every other output shifting is performed at WbMux.

wr.fftn; Write AU output into VRA. Perform shift function at WbMux for FFT nth stage.

wr.fft5; Write AU output into VRA. Perform shift function at WbMux for FFT 5th stage.

wr.fft4; Write AU output into VRA. Perform shift function at WbMux for FFT 4th stage.

wr.fft3; Write AU output into VRA. Perform shift function at WbMux for FFT 3rd stage.

wr.fft2; Write AU output into VRA. Perform shift function at WbMux for FFT 2nd stage.

wr.fft1; Write AU output into VRA. Perform shift function at WbMux for FFT 1st stage.

wr.fn; Write SAU output into VRA. No special shifting function is performed at WbMux.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 188 / 536

Table 57. Store AU and Store SAU Instructions (continued)

wr.fn1; Write single SAU output into VRA. Output shifting is performed at WbMux.

wr.straight; Write AU output into the VRA. No special shifting function is performed at WbMux.

wr.hlinecplx; Write AU output into the VRA. No special shifting function is performed at WbMux.

4.15.1 VAU data type conversion
The data from the Vector Arithmetic Unit can be type converted before being stored into the VRA. The AUprec determines the
data type of the Vector Arithmetic Unit. The Vprec determines the final data type stored in the VRA.

The diagrams that follow show bit width sizes. Each size represents the number of bits that are used before type conversion and
the resulting number of bits after type conversion. For example, in a single precision to half fixed conversion 2048 bits are used
before conversion and the conversion results in 1024 bits.

The valid AUprec to Vprec type conversions are shown in the following figures:

Vector Arithmetic Unit

Writeback
Muxing

Type Conversion

Line Select
Muxing

Vector Register Array

2048 Bits

2048 Bits

1024 Bits

1024 Bits

wb_mode

Vprec

rV[8:6]

AUprec

Figure 32. Single Precision to Half Fixed VRA store

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 189 / 536

Vector Arithmetic Unit

Writeback
Muxing

Type Conversion

Line Select
Muxing

Vector Register Array

2048 Bits

2048 Bits

1024 Bits

1024 Bits

wb_mode

Vprec

rV[8:6]

AUprec

Figure 33. Single Precision to Half Precision VRA store

Vector Arithmetic Unit

Writeback
Muxing

Type Conversion

Line Select
Muxing

Vector Register Array

2048 Bits

1024 Bits

1024 Bits

1024 Bits

wb_mode

Vprec

rV[8:6]

AUprec

Figure 34. Single Precision to Single Precision VRA store

Descriptions

• In the following table, Rx denotes the VRA register to which the data is written.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 190 / 536

• To select a VRA register, the VRA array is indexed by the upper three bits of the rV register.

• V, Rx, are assumed to be vectored buses. Each vectored bus contains 64 elements if AUprec is single precision.

• Qx represents a quarter of the elements in the register. For example, Q2 is the third quarter of elements in the register.

• All the Rx values come from before the type conversion. Refer to VAU data type conversion for how the mux results end
up in V after type conversion. The calculations shown are assuming type conversion to half-fixed/half. Also, refer creg
19/20 in Table 21

Table 58. All Supported Vmode, Write-back Modes

Instruction Restrictions Operation Description

wr.fn; Real &

Complex data

creg(15[2])=0, creg(25),
creg(21), creg(19)

Rx = VRA [rV[8:6]];

for (i=0,j=0;j < 64;j =+2,i++) {

Rx [i] = V [j];

}

update_rag(rV);

Store the vector output of the SAU
into the VRA. Only the even
elements of V are used.

Update rV.

wr.fn1; Real &

Complex data

creg(15[2])=0, creg(25),
creg(21), creg(19)

Rx [rV[5:0]] = V [0];

update_rag(rV);

Store the first SAU output into a line
of register a VRA register pointed
to by rV.

Update rV.

wr.even; Real data

creg(15[2])=0, creg(19)

Rx = VRA [rV[8:6]];

for (i=0,j=0;j < 64;j +=2,i++) {

Rx [i] = V [j];

}

update_rag(rV);

Store the output of AU complex
operation into the vector register
array. Only the even elements of V
are used.

Update rV.

Note that, wr.even only works for
half_fixed or half_float precisions.

wr.fftn; Complex data only,

Vprec=half-fixed/half/
single

creg(15[2])=0, creg(19)

Rx = VRA [rV[8:6] & 0x6];

Rx+1 = VRA [rV[8:6] & 0x6 + 1];

switch (rV[5:4]) {

// store to Q0 of Rx, Rx+1

0: i_list = {0,...,15};

// store to Q1 of Rx, Rx+1

1: i_list = {16,...,31};

// store to Q2 of Rx, Rx+1

2: i_list = {32,...,47};

// store to Q3 of Rx, Rx+1

3: i_list = {48,...,63};

j_list = {2,6,...,58,62};

foreach (i, j) in (i_list , j_list) {

Store the output of AU fft operation
into vector register array.

This mode is intended for DIF FFT
stage 8 and for DIT FFT stage N-7.

Only supports an even register as
the starting register. That is, Rx =
R0, R2, R4, or R6

Rx is the output for the top leg of
butterfly, while Rx+1 is the output
of the bottom one.

Update rV.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 191 / 536

Table 58. All Supported Vmode, Write-back Modes (continued)

Instruction Restrictions Operation Description

Rx [i] = V [j];

Rx+1[i] = V [j - 2];

}

update_rag(rV);

wr.fft5; Complex data only,

Vprec=half-fixed/half

creg(15[2])=1, creg(19)

Rx = VRA [rV[8:6]];

if (rV[5]== 0)

i_list = {0-31}

else

i_list = {32-63}

j_list = {2,6,...,58,62};

foreach (i, j) in (i_list , j_list) {

Rx [i] = V [j];

Rx [i + 32] = V [j - 2];

}

update_rag(rV);

Store the output of AU fft operation
into the vector register array.

This mode is intended for DIF FFT
stage 5 and for DIT FFT stage N-4.

Update rV.

wr.fft4; Complex data only,

Vprec=half-fixed/half/
single

creg(15[2])=1, creg(19)

Rx = VRA [rV[8:6]];

if (rV[5]== 0)

i_list = {0-15,..., 16-31}

else

i_list = {32-47,..., 48-63}

j_list = {2,6,...,58,62};

foreach (i, j) in (i_list , j_list) {

Rx [i] = V [j];

Rx [i + 16] = V [j - 2];

}

update_rag(rV);

Store the output of AU fft operation
into the vector register array.

This mode is intended for DIF FFT
stage 4 and for DIT FFT stage N-3.

Update rV.

wr.fft3; Complex data only,

Vprec=half-fixed/half/
single

creg(15[2])=1, creg(19)

Rx = VRA [rV[8:6]];

if (rV[5]== 0)

i_list = {0-7,..., 24-31}

else

i_list = {32-39,..., 56-63}

j_list = {2,6,...,58,62};

foreach (i, j) in (i_list , j_list) {

Store the output of AU fft operation
into the vector register array.

This mode is intended for DIF FFT
stage 3 and for DIT FFT stage N-2.

Update rV.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 192 / 536

Table 58. All Supported Vmode, Write-back Modes (continued)

Instruction Restrictions Operation Description

Rx [i] = V [j];

Rx [i + 8] = V [j - 2];

}

update_rag(rV);

wr.fft2; Complex data only,

Vprec=half-fixed/half/
single

creg(15[2])=1, creg(19)

Rx = VRA [rV[8:6]];

if (rV[5]== 0)

i_list = {0-3,..., 28-31}

else

i_list = {32-35,..., 60-63}

j_list = {2,6,...,58,62};

foreach (i, j) in (i_list , j_list) {

Rx [i] = V [j];

Rx [i + 4] = V [j - 2];

}

update_rag(rV);

Store the output of AU fft operation
into the vector register array.

This mode is intended for DIF FFT
stage 2 and for DIT FFT stage N-1.

Update rV.

wr.fft1; Complex data only,

Vprec=half-fixed/half/
single

creg(15[2])=1, creg(19)

Rx = VRA [rV[8:6]];

if (rV[5]== 0)

i_list = {0-1,..., 30-31}

else

i_list = {32-33,..., 62-63}

j_list = {2,6,...,58,62};

foreach (i, j) in (i_list , j_list) {

Rx [i] = V [j];

Rx [i + 2] = V [j - 2];

}

update_rag(rV);

Store the output of AU fft operation
into the vector register array.

This mode is intended for DIF FFT
stage 1 and for DIT FFT stage N.

Update rV.

wr.straight Real data

creg(15[2])=0, creg(19)

Rx = VRA [rV[10:8]];

for (i=0;i<64; i++) {

Rx [i] = V [i];

}

update_rag(rV);

Store the output of AU real
operation into the vector register
array.

Update rV.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 193 / 536

Table 58. All Supported Vmode, Write-back Modes (continued)

Instruction Restrictions Operation Description

wr.hlinecplx Complex data

creg(15[2])=x, creg(19)

Rx = VRA [rV[10:8]];

for (i=0,j=0;j <64;j =+2,i++) {

Rx [i] = V [j];

}

update_rag(rV);

Store the output of AU complex
operation into vector register array.
Only the even elements of V are
used.

Update rV.

The wr.fft<x> mirrors the behavior of the corresponding S2fft<x> and S0fft<x> modes. That is, for FFT butterfly
inputs chosen from columns of VRA based on S2 and S0 pointers, the outputs are written to the same columns,
with a possible quarter or half VRA register shift, (upper butterfly output to S2 columns, lower butterfly output to
S0 columns) as the input S0/S2 modes.

 NOTE

4.16 GP instructions
The General Purpose Arithmetic Unit (GP Unit) performs some commonly used arithmetic, logical and data format conversion
operations on twelve General Purpose Registers (GP Registers): g0-g11. These GP registers are each 32 bit wide.

4.16.1 GP move instructions
The gp move instructions allows data movement between GP registers and various hardware resources within VSPA:

• some VRA elements,

• hardware registers.

• VSPA scalar registers,

• IP registers,

4.16.1.1 Move vector register array instructions
Table 59 describes the syntax and operations of instructions which move data between the GP registers and the vector register
array (VRA). These are all OpC family instructions.

Table 59. GP Move VRA Instructions

Move Data Between Instruction Syntax Operation Description

A GP register and a
VRA element

mv.h gX, [rS0]; gX[15:0] <- [rS0]

update_rag(rS0);

Move a 16-bit real element from
VRA, pointed to by rS0, to gX.

rS0 is then updated.

mv.w gX, [rS0]; gX[15:0] <- [rS0]

gX[31:16] <- [rS0+1]

update_rag(rS0);

Move a 32-bit complex element from
VRA, pointed to by rS0, to gX.

rS0 is then updated.

mv.h [rV], gX; [rV] <- gX[15:0];

update_rag(rV);

Move the lower 16 bits of gX to an
element in Rx, pointed to by rV.

rV is then updated.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 194 / 536

Table 59. GP Move VRA Instructions (continued)

Move Data Between Instruction Syntax Operation Description

mv.w [rV], gX; [rV] <- gX[15:0];

[rV+1] <- gX[31:16];

update_rag(rV);

Move the 32 bit contents of gX to an
element in Rx, pointed to by rV.

rV is then updated.

See VRA pointer control registers for information on RAG ptr updates.

4.16.1.2 Move hardware register instructions
Table 60 shows a list of supported hardware registers. Among these hardware registers, some are read-only, some are write-
only and some are both readable and writeable. These are all OpC family instructions.

If a hardware register is readable, a mv from the hardware register to a GP register can be performed.

If a hardware register is writeable, a mv from a GP register to the hardware register can be performed.

Table 60. Hardware Registers Accessible by mv Instruction

Hardware Register

<hw_reg>

Description Related
Blocks

No of
Bits

Readable Writeable Related
Instructions

nco_k NCO accumulator NCO 16 Yes Yes mv nco_k, gX

mv gX, nco_k

nco_phase NCO phase register 16 Yes Yes mv nco_phase, gX

mv gX, nco_phase

nco_freq NCO freq register 32 No Yes mv nco_freq, gX

4.16.1.3 Move scalar registers
Table 61 shows the instructions which move data between the various VSPA scalar registers. These registers include GP
registers, address (and address storage registers), stack pointer, condition code bits and some special internal holding registers.

Table 61. Scalar registers accessible by mv instruction

Move Data
Between

Family Instruction Syntax Operation Description

Address/GP and
address/GP

OpB mvB agX agY agX<-agY Move agY into agX

OpS mvS agX agY agX<-agY Move agY into agX

Address/GP and
stack pointer

OpS mvS agX, sp agX<-sp Move stack pointer into agX

mvS sp, agX sp<-agX Move agX into stack pointer

OpB mvB agX, sp agX<-sp Move stack pointer into agX

mvB sp, agX sp<-agX Move agX into stack pointer

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 195 / 536

Table 61. Scalar registers accessible by mv instruction (continued)

Move Data
Between

Family Instruction Syntax Operation Description

GP register and GP
register

OpS mv(.cc) gY gX gY<-gX Move gX into gY

GP register and
stack pointer

OpS mv(.cc) gY sp gY[31:17] <- 0 gY[16:0] <- sp Move stack pointer into the
lower 17 bits of gY and zeros
into the upper 15 bits of gY

mv(.cc) sp gX sp <- gX[16:0] Move the lower 17 bits of gX
into stack pointer

GP register and
condition code bits

OpS mv gY cc gY[31:16]<-0

gY[15:4]<-creg gY[3:0] <- CC

Move CC bits into the lower 4
bits of gY. The upper 28 bits of
gY will be loaded with other
system control register data.
See System control registers
for information on which bits will
be loaded into the GP
destination register.

mv cc gX cc <- gX[3:0] Move the lower 4 bits of gX into
CC bits

Internal register to
GP register

OpS mv.cc gY, quot gY<-internal(quotient value) Move signed/unsigned integer
quotient result from prior "quot"
or "rem" instruction.1

mv.cc gY, rem gY<-internal(remainder value) Move signed/unsigned integer
remainder result from prior
"quot" or "rem" instruction.1

mv.cc gY, pc gY<-PC Move current program counter
into GP destination register.

1. Signed/unsigned quotient and remainder values are held in internal (hidden) registers until completion of next "quot" or
"rem" instruction.

4.16.1.4 Move IP instruction
Table 62 shows a list of instructions which move data between the GP registers and the memory mapped IP registers.

Table 62. mvip instructions

Move Data
Between

Family Instruction Syntax Operations Descriptions

GP registers and
memory mapped IP
registers

opD mvip Iu9 Iu32 ip[Iu9]<-Iu32 Move the 32 bit immediate data into IP register
Iu9

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 196 / 536

Table 62. mvip instructions (continued)

Move Data
Between

Family Instruction Syntax Operations Descriptions

mvip Iu9 gX, Iu32 ip[Iu9]<-(gX&Iu32)|
(ip[Iu9]&~Iu32)

Move gX register data into IP register Iu9. Only
gX bits with the corresponding bits in lu32 set to
one are written to the corresponding IP[Iu9] bits.
IP[Iu9] bits with the corresponding bits in lu32
cleared (zero) are not written and keep previous
value.

mvip gX Iu9, Iu32 gX<-(ip[Iu9]&Iu32) Move IP register Iu9 data anded with Iu32 into gX
register

4.16.2 Linear feedback shift register instructions

Table 63. lfsr instructions

Instruction
Syntax

Operation Description

lfsr gX, gY gX = (gX[30:0] << 1) | (gY[0] ^ gY[1] ^ gY [2] ^... ^ gY[31]); Shift gX left by one bit, then replace bit 0
of gX with the result of the following
operation:

gY[0] ^ gY[1] ^ gY[2] ^...^
gY[31]

lfsr gX, Iu32 gX = (gX[30:0] << 1) | (Iu32[0] ̂ Iu32[1] ̂ Iu32 [2] ̂ ... ̂ Iu32[31]); Using the 32-bit immediate data for the
exclusive or (XOR) operation, shift gX left
by one bit, then replace bit 0 of gX with
the result of the following operation:

Iu32[0] ^ Iu32[1] ^ Iu32[2]
^ ...^ Iu32[31]

4.16.3 Floating point generation instructions

Table 64. lsb2rf instructions

Instruction Syntax Operation

lsb2rf [rV], gX if (gX[0] == 0)

[rV] = 0;

else

[rV] = 0.5;

Update rV.

lsb2rf.sr [rV], gX if (gX[0] == 0)

[rV] = 0;

else

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 197 / 536

Table 64. lsb2rf instructions (continued)

Instruction Syntax Operation

[rV] = 0.5;

Update rV.

gX = gX >> 1;

The lsb2rf instruction converts to half-fixed format, so it writes a half-fixed 0 or a half-fixed 0.5 (0x4000) into a real element in Rx
using rV as the element pointer, depending on the LSB of gX (or gX[0]).

If gX[0] is 0, a zero will be written into Rx[rV]. Otherwise, a half-fixed 0.5 (0x4000) will be written into Rx[rV]. The rV is then updated
(see VRA pointer control registers for more details on rV updates).

The lsb2rf.sr instruction performs the same operations as the lsb2rf instruction, as well as a one-bit logical right-shift on gX.

4.16.4 Arithmetic instructions

Table 65. Arithmetic Instructions

Opera-
tion

Family CC1 Syntax Operation Description

add opD creg addD(.ucc)(.cc)
gX,gY,I32

gX<-gY+Iu32 If the optional condition test is 'true', then add
an immediate scalar to gY and store the
result in gX. If .ucc bit of instruction is set,
update condition codes accordingly.

add opS creg addS(.ucc).z
gZ,Iu16

gZ<-gZ+{16'h000,Iu16} Add Zero extended 16 bit integer to gZ and
store result back into gZ. If .ucc bit of
instruction is set, update condition codes
accordingly.

addS(.ucc).s
gZ,Is16

gZ<-gZ+{{16{Is[15]}},Is16} Add Sign extended 16 bit integer to gZ and
store result back into gZ. If .ucc bit of
instruction is set, update condition codes
accordingly.

addS(.ucc)(.cc)
gZ gX,gY

gZ<-gX+gY If the optional condition test is 'true', then add
contents of gX with the contents of gY and
store result in gZ if optional condition is 'true'.
If .ucc bit of instruction is set, update
condition codes accordingly.

cmp opD always cmpD(.cc) gX,I32 gX-I32 If the optional condition test is 'true', then
subtract 32 bit integer from gX and update
condition codes accordingly.

cmp opC always cmp aX,Iu19 aX-Iu19 Subtract 19 bit integer from aX memory
pointer and update condition codes
accordingly.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 198 / 536

Table 65. Arithmetic Instructions (continued)

Opera-
tion

Family CC1 Syntax Operation Description

cmp opS always cmpS.z gZ,Iu16 gZ-{16'h0000,Iu16} Subtract Zero extended 16 bit integer from
gZ and update condition codes accordingly.

cmpS.s gZ,Is16 gZ-{{16{ls[15]}},Is16} Subtract 16 bit sign-extended integer from
gZ and update condition codes accordingly.

cmp(.cc) gX, gY gX-gY If the optional condition test is 'true', then
subtract contents of gY from contents of gX
and update condition codes accordingly.

sub opD creg subD(.ucc)(.cc)
gX,gY,I32

gX<-gY-Iu32 If the optional condition test is 'true', then
subtract 32 bit integer from gY and store
result back into gX. If .ucc bit of instruction is
set, update condition codes accordingly.

sub opS creg subS(.ucc).z
gZ,Iu16

gZ<-gZ-{16'h0000,Iu16} Subtract Zero extended 16 bit integer from
gZ and store result back into gZ. If .ucc bit of
instruction is set, update condition codes
accordingly.

subS(.ucc).s
gZ,Is16

gZ<-gZ-{{16{Is[15]}},Is16} Subtract Sign extended 16 bit integer from
gZ and store result back into gZ. If .ucc bit of
instruction is set, update condition codes
accordingly.

subS(.ucc)(.cc)
gZ gX,gY

gZ<-gX-gY If the optional condition test is 'true', then
subtract contents of gY from contents of gX
and store result into gZ if optional condition
is 'true'. If .ucc bit of instruction is set, update
condition codes accordingly.

rsub opS creg rsub.z gZ,Iu16 gZ<-{16'h0000,Iu16}-gZ Subtract gX from Zero extended 16 bit
integer and store result back into gZ.

rsub.s gZ,Is16 gZ<-{{16{Is[15]}},Is16}

-gZ

Subtract gZ from Sign extended 16 bit
integer and store result back into gZ.

mpy2 opS creg mpy(.cc)(.s) gZ
gX, gY

gZ<-gX*gY If the optional condition test is 'true', then
multiply contents of gX with contents of gY
and store the signed result into gZ, if optional
condition is 'true'.

mpyS.z gX,Iu16 gZ<-gZ*{16'h0000,Iu16} Multiply contents of gZ with Zero extended
16 bit integer and store result back into gZ.

mpyS.s gX,Is16 gZ<-gZ*{{16{Is[15]}},Is16} Multiply contents of gZ with Sign extended
16 bit integer and store result back into gZ.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 199 / 536

Table 65. Arithmetic Instructions (continued)

Opera-
tion

Family CC1 Syntax Operation Description

mpy opD creg mpyD(.cc)
gX,gY,I32

gX<-gY*I32 If the optional condition test is 'true', then
multiply an immediate scalar with gY and
store the result in gX.

div3,2 opS creg div(.cc)(.s) gZ gX,
gY

gZ<-gX/gY

internal<-gX%gY

If the optional condition test is 'true', then
divide contents of gX with contents of gY and
store the signed truncated integer quotient
into gZ, if optional condition is 'true'. In
addition, the signed remainder (modulus
operation) is available in an internal register.

div.z gZ, Iu16 gZ<-gZ/{16'h0000,Iu16}

internal<-gZ%16'h0000,Iu16

Divide contents of gZ with Zero extended 16
bit integer and store unsigned truncated
integer quotient back into gZ. In addition, the
unsigned remainder (modulus operation) is
available in an internal register.

div.s gZ, Is16 gZ<-gZ/{{16{Is[15]}},Is16}

internal<-gZ%
{{16{Is[15]}},Is16}

Divide contents of gZ with Sign extended 16
bit integer and store truncated integer
quotient back into gZ. In addition, the signed
remainder (modulus operation) is available
in an internal register.

rdiv3,2 opS creg rdiv.z gZ, Iu16 gZ<-{16'h0000,Iu16}/gZ

internal<-
{16'h0000,Iu16}%gZ

Divide Zero extended 16 bit integer with
contents of gZ and store unsigned truncated
integer quotient back into gZ.In addition, the
unsigned remainder (modulus operation) is
available in an internal register.

rdiv.s gZ, Is16 gZ<-{{16{Is[15]}},Is16}/gZ

internal<-
{{16{Is[15]}},Is16}%gZ

Divide Sign extended 16 bit integer with
contents of gZ and store signed truncated
integer quotient back into gZ. In addition, the
signed remainder (modulus operation) is
available in an internal register.

mod3,2 opS creg mod(.cc)(.s) gZ
gX, gY

gZ<-gX%gY

internal<-gX/gY

If the optional condition test is 'true', then
divide contents of gX with contents of gY and
store the signed integer remainder into gZ, if
optional condition is 'true'. In addition, the
signed quotient (divide operation) is
available in an internal register.

mod.z gZ, Iu16 gZ<-gZ%{16'h0000,Iu16}

internal<-gZ/{16'h0000,Iu16}

Divide contents of gZ with Zero extended 16
bit integer and store the unsigned integer
remainder back into gZ. In addition, the
unsigned quotient (divide operation) is
available in an internal register.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 200 / 536

Table 65. Arithmetic Instructions (continued)

Opera-
tion

Family CC1 Syntax Operation Description

mod.s gZ, Is16 gZ<-gZ%{{16{Is[15]}},Is16}

internal<-gZ/
{{16{Is[15]}},Is16}

Divide contents of gZ with Sign extended 16
bit integer and store signed integer
remainder back into gZ. In addition, the
signed quotient (divide operation) is
available in an internal register.

rmod3,2 opS creg rmod.z gZ, Iu16 gZ<-{16'h0000,Iu16}%gZ

internal<-{16'h0000,Iu16}/gZ

Divide Zero extended 16 bit integer with
contents of gZ and store unsigned integer
remainder back into gZ. In addition, the
unsigned quotient (divide operation) is
available in an internal register.

rmod.s gZ, Is16 gZ<-{{16{Is[15]}},Is16}%gZ

internal<-
{{16{Is[15]}},Is16}/gZ

Divide Sign extended 16 bit integer with
contents of gZ and store signed integer
remainder back into gZ. In addition, the
signed quotient (divide operation) is
available in an internal register.

abs opS creg abs gZ, gX gZ<-(gX[31]) ?

~gX[31:0] +'h1 :

gX

Take the absolute value of gX and store
result in gZ.

ff1 opS never ff1 gZ, gX if (gX[31]) gZ<-31 else if
(gX[30]) gZ<-30 else if
(gX[29]) gZ<-29 . . . else if
(gX[1]) gZ<-1 else if (gX[0])
gZ<-0

else gZ<- -1

Determine the most significant '1' in the
value of gX and return the bit index in gZ. If
no bits in gX are set -1 (32'hFFFFFFFF) is
placed in gZ.

fns opS never fns gZ, gX if (gX[31]) gZ<-0 else if
(gX[30]) gZ<-1 else if (gX[29])
gZ<-2 . . . else if (gX[1])
gZ<-30 else if (gX[0]) gZ<-31

else gZ<- -1

Determine the number of shifts required to
normalize the value stored in gX and store
that value into gZ. "Normalize" in this case
refers to shifting the value in gX until the most
significant '1' is in bit position 31. If no bits in
gX are set, -1 (32'hFFFFFFFF) is placed in
gZ.

1. Indicates under what condition the instruction updates the Condition Code bits. Always, never, or CREG (only when
System Control Register 4 is set to a 1).

2. A 'done' instruction should not be executed until the div/mod/mpy/mac instruction is complete.
3. Signed/Unsigned quotient ("quot" instruction)/remainder ("rem" instruction) result held until completion of next quot/rem

instruction. Refer to Scalar registers accessible by mv instruction

4.16.4.1 Log base 2 instruction
Assembler Syntax

log gY, gX;

Description

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 201 / 536

The input of the function is assumed to be in single precision floating point format. The function returns an output that is formatted
as a 32 bit fixed point number with structure as shown below:

s iiiiiiiiiiiiiiii.fffffffffffffff
1 16 integer bits 15 fractional bits

4.16.4.2 Fixed to single precision float instruction
Assembler Syntax

fix2float gX, gY;

Description

Convert the 16-bit fractional value stored in the lower half of gY to a 32-bit single precision floating point value and store in gX.
The short scalar is in 2’s complement, assumed to be in the following format:

s.fffffffffffffff
1 15 fractional bits

4.16.4.3 Single precision float to fixed-point instruction
Assembler Syntax

float2fix gX, gY;

Description

Convert the 32-bit single precision floating-point value stored in gY to a 32-bit fixed-point value and store it in gX. The fixed-point
value stored in gX will be in the following format:

s iiiiiiiiiiiiiiii.fffffffffffffff
1 16 integer bits 15 fractional bits

's' indicates a sign bit. The fixed point is in 2's complement.

 NOTE

4.16.4.4 Half fixed to single precision float instruction
Assembler Syntax

hfixtofloatsp gX, gY;

Description

Convert the 16-bit half fixed value in VSPA format stored in the lower half of gY to a 32-bit single precision float value and store
in gX. See Data precision for a description VSPA’s half fixed format.

4.16.4.5 Single precision float to half fixed instruction
Assembler Syntax

floatsptohfix gX, gY;

Description

Convert the 32-bit single precision floating point value stored in gY to a 16-bit half fixed value in VSPA format and store in gX.
See section 3.3 “Data precision” for a description VSPA’s half fixed format.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 202 / 536

4.16.4.6 Half precision float to single precision float instruction
Assembler Syntax

floathptofloatsp gX, gY;

Description

Convert the 16-bit half precision floating point value stored in the lower half of gY to a 32-bit single precision value and store in
gX. The 16-bit floating point representation is compliant with IEEE754. See Data precision.

4.16.4.7 Single precision float to half precision float instruction
Assembler Syntax

floatsptofloathp gX, gY;

Description

Convert the 32-bit single precision floating point value stored in gY to a 16-bit half precision float value and store in gX. The 16-
bit floating point representation is compliant with IEEE754. See Data precision.

4.16.4.8 Scale single precision float instruction
Assembler Syntax

floatx2n gX, gY;
floatx2n gX, Is8;

Description

The first form of the instruction scales the 32-bit single precision floating-point value stored in gX by 2n, where the integer value
n is stored in gY. The second form performs the same operation, except the integer value n is supplied as a short signed immediate
value.

4.17 Hardware loop instructions
This group of instructions control all loop executions. The hardware supports up to 8 levels of nested loops. The following table
lists all hardware loop instructions.

Table 66. Loop Instructions

Instruction Description

set.loop Set iteration count and loop size.

loop_begin Marks the beginning of a loop. Start the loop executions using the loop size and iteration count
setup earlier.

loop_end Marks the end of a loop. This instruction has no effect on the macro-instruction word, but must be
present to indicate the last instruction executed as part of the loop.

loop_stop Set the current loop count to zero, effectively terminating the current loop execution.

loop_break Stop loop execution and jump to an immediate address.

A set.loop instruction sets the loop size and iteration count of a loop. The loop size is the number of macro-instructions between
the loop_begin and the loop_end, inclusive. See set.loop instruction. This instruction has a two cycle latency, there must be at
least one instruction between set.loop and a subsequent loop_begin. Any set.loop which occurs before the loop_begin, will be
taken as a new set.loop for the next loop_begin encountered, even if it does not have the required setup time.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 203 / 536

A loop_begin instruction marks the beginning of a loop. The loop execution begins with the macro-instruction marked with
loop_begin, using the loop count and iteration count information set up earlier by a set.loop instruction.

A loop_end instruction marks the end of a loop. The loop execution ends with the macro-instruction marked with loop_end, using
the loop count and iteration count information set up earlier by a set.loop instruction.

The execution body of a loop includes all instruction between, and inclusive of, the loop_begin and loop_end statements of a
loop, plus instructions contained in any subroutine called from the loop. The instruction containing the loop_end statement for
the loop, plus the two preceding instructions, must be executed consecutively, with no change of flow, for the loop values to be
removed from the hardware loop stack and the loop to be terminated correctly.

A loop_stop instruction sets the current loop count to zero terminating the current loop execution. A loop_stop instruction cannot
be placed in the last three instructions of a loop and it must be within the execution body of the loop. A loop_stop instruction is
typically used in conjunction with a conditional jmp instruction to execute the loop_stop instruction.

A loop_begin or loop_end instruction may be used in parallel with any other instruction, except done or set.loop instruction.

A loop_break instruction stops the current loop execution and jumps to an immediate address to continue instruction execution.

4.17.1 Hardware loop control mechanism
Programmers may take advantage of the assembler's capability to generate hardware loops. In the following example, Lstart and
Lend are assembly labels:

 set.loop iter_count, Lstart, Lend;

The Lstart label must reference the first macro-instruction of the loop, which must also contain the loop_begin instruction. The
Lend label must reference the last instruction of the loop, which must also contain the loop_end instruction.

Examples:

 Lstart: label for the beginning of the loop
 Lend: label for the end of the loop

4.17.1.1 General hardware loop format example

 set.loop iter_count, Lstart, Lend; // The result of 'Lend - Lstart' must be greater
// than or equal to zero, otherwise the assembler
// flags an error

 nop; // Minimum 1 intervening instruction
Lstart:
 loop_begin; insn1; // Parallel instructions are allowed with 'loop_begin'
 insn2;
 insn3;
 ...
 ...
 insn(n-3);
 insn(n-2);
 insn(n-1);
Lend:
 loop_end; insnn; // Last instruction of the loop
 insn(n+1); // Not part of the loop body

4.17.1.2 Two instruction hardware loop format example

 set.loop iter_count, Lstart, Lend; // Result of 'Lend-Lstart' must be greater
// than or equal to zero, otherwise the assembler
// flags an error

 nop; // Minimum 1 intervening instruction
Lstart:
 loop_begin; insn1; // Parallel instructions are allowed with 'loop_begin'
Lend:

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 204 / 536

 loop_end; insn2;
 insn3; // Not part of the loop body

4.17.1.3 One instruction hardware loop format example

 set.loop iter_count, Lstart, Lend; // Result of 'Lend-Lstart' must be greater
// than or equal to zero, otherwise the assembler
// flags an error

 nop; // Minimum 1 intervening instruction
Lstart:
Lend:
 loop_begin; insn1; loop_end; // Parallel instructions are allowed with 'loop_begin'
 insn2; // Not part of the loop body

4.17.2 Overwriting a set.loop instruction
A set.loop instruction can be overwritten by another set.loop instruction.

If a set.loop instruction is followed by another set.loop instruction without an intervening loop_begin instruction, the second
set.loop instruction will overwrite the first set.loop instruction. That is, the loop information provided by the first set.loop instruction
will be overwritten and lost.

In the example below, a second set.loop instruction overwrites the first set.loop instruction.

 set.loop 4, 2; // Set up a loop with 2 instructions and 4 iterations
 cmp g0, 0;
 nop;
 jmp.eq cont;
 mv a0, 0;
 mv a2, 1024;
 set.loop 3; // Overwrite previous set.loop with iter=3.

// inst=2 remain unchanged from previous set loop.
 ld [a2]+32;
 ld [a2]+32;
 ld [a2]+32; loop_begin; // First instruction of the loop. iter is now 3.
 ld [a2]+32; ld.normal R0; Rrot;
 ld.normal R0; rot; loop_end;
 ld.normal R0; rot;
cont:

The set.loop instruction may not be pipelined. In the example below, the second set.loop instruction is not legally placed.

 set.loop 5,1; //set.loop for first loop
 nop; //'op' is any instruction
 set.loop 7,1; //set.loop for second loop is not legal
 ld a2+32; loop_begin; loop_end; //first loop: execute 5 times
 ld a2+32; loop_begin; loop_end; //second loop: execute 7 times

4.17.3 Nested hardware loops
Hardware loops can be nested within each other. VSPA supports up to 8 level of loop nesting.

If another set.loop and loop_begin instruction pair is encountered within a loop body, the outer level loop information (including
instruction count and iteration count) are automatically pushed and saved onto a hardware stack, and the loop information
(including instruction count and iteration count) specified by the new set.loop instruction will be used.

When an inner hardware loop exits from its execution, the loop information at the top of the hardware stack will be popped to
retrieve the next outer loop execution, and so on.

Typically, a set.loop instruction is paired with a loop_begin instruction, with the loop_begin typically following the set.loop
instruction, separated by at least one instruction.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 205 / 536

Example:

 set.loop 4, 9; // Outer loop: 9 inst
 ld [a2]+32;
 ld [a2]+32; loop_begin; // Start of outer loop
 ld [a2]+32; ld.normal R0;
 st [a3]+32; ld.normal R2;
 set.loop 10, 3; ld.normal R3; // Inner loop: 3 inst
 st [a3]+32; ld.normal R4;
 st [a3]+32; ld.normal R5; loop_begin; // Start of inner loop
 st [a3]+32; ld.normal R6;
 st [a3]+32; ld.normal R7; loop_end; // End of inner loop
 st [a3]+32; ld.normal R0; loop_end; // End of outer loop

4.17.4 Early termination of a hardware loop
A loop may be terminated early using a loop_stop instruction. This is usually done in conjunction with a conditional jmp instruction
which will execute the loop_stop instruction or skip around it based on the early termination criteria.

A loop_stop instruction may also be executed in a sub-routine called from within the loop body, either by a conditional jsr to the
sub-routine or by conditionally skipping the loop_stop instruction within the sub-routine.

The last three instructions of the loop body must execute in consecutive order with no change of flow for the loop to be stopped
correctly.

Example: In-line loop_stop instruction

 set.loop 4,LBEG,LEND;
 cmp g0,0;
 nop;
LBEG:
 jmp.ne NO_OUT; loop_begin; // Skip the loop_stop instruction, unless g0 == 0
 sub g0,1;
 cmp g0,0;
 loop_stop; // This instruction is skipped unless g0 is equal to 0
NO_OUT:
 nop;
 nop;
LEND:
 nop; loop_end;
 nop;

Example: The loop_stop instruction may be executed in a sub-routine called from the loop

 set.loop 4,LBEG,LEND;
 cmp g0,0;
 nop;
LBEG:
 jsr.eq OUT; loop_begin; // jsr to the loop_stop routine if g0 is equal to 0
 sub g0,1;
 cmp g0,0;
 nop; // OUT subroutine returns here to execute the end of the loop
 nop;
LEND:
 nop; loop_end;
 ...
OUT:
 loop_stop; rts; // End of OUT
 nop;
 nop;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 206 / 536

4.17.5 Hardware loop execution constraints
The following is a list of hardware loop execution constraints. If these execution constraints are not met, then the hardware loop
execution will be non-deterministic. Therefore it is crucial that the programmers strictly follow these constraints. Some of these
constraints have already been described in the preceding sections.

1. A loop_begin or an rts instruction cannot be placed in a delay slot of a prior jmp, jsr or rts instruction. See also Jump
delay slots.

// The following code is illegal.
jsr.gt cont;
nop;
rts; // Illegal: rts is inside a delay-slot of a prior jsr

2. A loop_begin instruction cannot immediately follow a set.loop instruction. The two instructions must be separated by at
least one other instruction.

// The following code is illegal.
set.loop 6, 5;
loop_begin; // Illegal: loop_begin immediately follows set loop

// There is no inst separating the two.

3. A loop_begin instruction cannot be followed by another loop_begin instruction without an intervening set.loop
instruction.

// The following code is illegal.
loop_begin;
setB.VRAptr rS0 0.0;
add a2, a1;
loop_begin; // Illegal: Two loop_begin without an intervening set loop

4. Two nested loops cannot end with the same last instruction. That is, the last instruction of an inner loop cannot also be
the last instruction of an outer loop.

// The following code is illegal.
set.loop 6, Lstart1, Lend2;
nop;

 Lstart1:
loop_begin; // start of outer loop
set.loop 6, Lstart2, Lend1;
nop;

 Lstart2:
loop_begin; // start of inner loop

 Lend1:
nop; loop_end; loop_end; // end of inner and outer loops

// Illegal: inner and outer loops end with same inst

5. Each rts instruction inside a loop must have a calling jsr inside the loop.

// The following code is illegal.
set.loop 6, Lstart2, Lend2;
nop;

 Lstart2:
loop_begin; // start of loop
rts; // Illegal: rts inside a loop
nop;

 Lend2:
nop; loop_end; // end of loop

// The following code is legal:
set.loop 6, Lstart2, Lend2;
nop;

 Lstart2:
loop_begin; // start of loop
jsr function;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 207 / 536

nop;
nop;
jmp skipFunction;
nop;
nop;

 function:
nop; // nop for illustration purposes only
<function body>
rts; // legal: rts inside a loop
nop; // nop for illustration purposes only
nop; // nop for illustration purposes only

 skipFunction:
nop;
nop;
nop;

 Lend2:
nop; loop_end; // end of loop

6. A jmp or jsr instruction can be placed inside a loop, if it is not placed in the last three instructions of the loop. That is, the
loop_end must not be in the delay slots of the jmp or jsr instruction.

// The following code is illegal.
set.loop 6, Lstart3, Lend3;
nop;

 Lstart3:
cmp g2, g3; loop_begin; // start of loop
nop;
nop;
jmp.eq equal; // Illegal: jmp is placed at second to last inst of loop

 Lend3:
nop; loop_end; // end of loop
nop;

 equal:

7. A 1 or 2 instruction must not be placed within the last 3 instructions of an outer loop. That is, the loop_end instruction for
the outer loop cannot be in the 'delay' slots of the loop_end for the 1 or 2 instruction loop.

// The following code is illegal.
set.loop 6, Lstart3a, Lend3a;
nop;

 Lstart3a:
cmp g2, g3; loop_begin; // start of loop
nop;
set.loop 8, 1; // Setup 1 istruction loop
nop;
nop; loop_begin; loop_end; // Illegal: 1 instruction loop is placed at second to

last inst of loop
 Lend3a:

nop; loop_end; // end of loop
nop;

// The following code is illegal.
set.loop 6, Lstart3b, Lend3b;
nop;

 Lstart3b:
cmp g2, g3; loop_begin; // start of loop
nop;
set.loop 8, 2; // Setup 2 istruction loop
nop;
nop; loop_begin;
nop; loop_end; // Illegal: 2 instruction loop is placed at second to last inst

of loop
 Lend3b:

nop; loop_end; // end of loop
nop;

8. If a jsr instruction is placed inside a loop, the target of the jsr must not be the instruction immediately following the loop.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 208 / 536

// The following code is illegal.
set.loop 6, Lstart4, Lend4;
nop;

 Lstart4:
cmp g2, g3; loop_begin; // start of loop
nop;
jsr.eq equal;
nop;
nop;

 Lend4:
nop; loop_end; // end of loop

 equal: // Illegal: target of jmp is at the inst immediately
// following the loop

9. If a jmp instruction is placed inside a loop, the target of the jmp can be inside or outside the loop. If the target lies
outside the loop, then it must not be the instruction immediately following the loop. If a jmp is taken to a target outside of
a loop, then a subsequent jmp must be taken to return to the loop body.

// The following code is illegal.
set.loop 6, Lstart4, Lend4;
nop;

 Lstart4:
cmp g2, g3; loop_begin; // start of loop
nop;
jmp.eq equal;
nop;
nop;

 Lend4:
nop; loop_end; // end of loop

 equal: // Illegal: Target of jmp is at the inst immediately
// following the loop

nop;

10. All loops must end with a loop_end instruction.

// The following code is illegal.
set.loop 6, Lstart5, Lend5;
nop;

 Lstart5:
cmp g2, g3; loop_begin; // start of loop
nop;
jmp.eq equal;
nop;
nop;

 Lend5:
nop; // Illegal: No loop_end instruction

11. A loop_stop instruction cannot be placed in the last three instructions of a loop. After execution of the loop_stop
instruction, the last three instructions (inclusive of loop_end) must execute in consecutive cycles with no change of
flow.

// The following code is illegal.
set.loop 6, Lstart6, Lend6;
nop;

 Lstart6:
cmp g2, g3; loop_begin; // start of loop
nop;
add g0, 1;
loop_stop; // Illegal: loop_stop in last 3 instructions
nop;

 Lend6:
nop; loop_end; // end of loop

// The last 3 instructions of a loop must execute in consecutive cycles after
// loop_stop instruction.
set.loop 4,Lstart7,Lend7;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 209 / 536

cmp g0,0;
nop;

 Lstart7:
jsr.eq OUT; loop_begin; // jsr to loop_stop routine if g0 is equal to 0
sub g0,1;
cmp g0,0; // Illegal: out of order execution of last 3 instructions

// after loop_stop
nop; // OUT subroutine returns here to execute the end of the loop

 Lend7:
nop; loop_end;
...

 OUT:
loop_stop; rts; // End of OUT
nop;
nop;

4.17.6 Hardware loop legal examples

 // The following code is legal.
 set.loop 6, LstartOk, LendOk;
 nop;
LstartOk:
 cmp g2, g3; loop_begin; // start of loop
 nop;
 jsr.eq equal; // jsr not in last 3 cycles
 nop;
 nop;
LendOk:
 nop; loop_end; // end of loop
 nop;
equal: rts;
 nop;
 nop;

4.17.7 set.loop instruction
The set.loop instruction has four formats.

• In the first format, the instruction sets the current iter_count to Iu10 and the current loop_size to Iu19.

• In the second format, the instruction sets the current iter_count using the content of an agX register and the current
loop_size to Iu19.

• In the third format, the instruction sets the current iter_count to Iu10.

• In the fourth format, the instruction sets the current iter_count using the content of an agX register.

The valid range of agX values is 0 through 65535, values from 1 to 65536 provide a loop count of 1 through 65535. An agX value
of 0 will produce a loop count of 65536.

For loops with known iteration counts at compile time and with iteration counts 1024 or less, the first or third formats can be used.
Otherwise, the second or fourth instruction formats can be used.

Instruction Formats

 set.loop Iu10,Iu19; // OpC
 set.loop agX,Iu19; // OpC
 set.loop Iu10; // OpB
 set.loop agX; // OpB
 setC.loop Iu16; // OpC

4.18 Control flow instructions
This group of instructions can be used to conditionally or unconditionally redirect the control flow of a program. There are three
instructions in this group:

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 210 / 536

• jmp - conditional or unconditional jump with no return.

• jsr - jump to a subroutine, with return address pushed onto a 16-deep Return Address Stack (RAS). The return address
of the jsr instruction is the program memory address of the jsr instruction plus 3.

• rts - return from subroutine. It pops the return address from the RAS and performs a jump to that program memory
address.

The syntax of these instructions can be summarized in the following Table.

Table 67. Control Flow Instructions

Instructions1,2 Descriptions

jmp <target>; Unconditional jump to <target>

jmp.cc <target>; Conditional jump to <target>

jsr <target>; Unconditional jump to subroutine at <target>

jsr.cc <target>; Conditional jump to subroutine at <target>

rts; Return from subroutine

1. cc denotes the condition upon which the jmp or jsr is based. See "Logical test instruction modifiers" table for all possible
cc.

2. <target> can be any gX or a 16-bit immediate value.

The cc denotes the optional logical test condition which the jmp (or jsr) is based on. The leftmost columns of Table 70 below
shows all possible conditions. The table also shows the values of the condition flags for the jump to occur. A jmp (or jsr) instruction
without the cc specified is equivalent to a jmp.al (or jsr.al).

4.18.1 Jump delay slots
The two instructions immediately following a jmp (or jsr) instruction will always be executed, even though the jmp (or jsr) may
be taken. Likewise, two instructions immediately following a rts instruction will always be executed, even though the rts is taken.

The two instructions that follow the jmp, jsr or rts instructions are called Jump Delay Slots. Programmers should always try to
fill the jump delay slots with some useful instructions, whenever possible.

The rts instruction cannot be used with Format-3 macro-instructions where two half-word instructions are packed into a single
macro-instruction.

VSPA has a typical three stage pipeline that is used by all instructions. It is a non-flushing pipeline, so two instructions are in the
fetch and decode stages while a third is in the execute stage. If an instruction that causes a change of flow is executed, the
following two instructions that have been pulled into the pipeline will also be executed - they will not be flushed.

Put another way, the two instructions that follow a jmp, jsr, or rts instruction will also be executed, immediately following the
execution of the jmp/jsr/rts.

A loop_begin or rts cannot be placed in the jump delay slot of a prior jmp, jsr or rts instruction.

 CAUTION

4.18.1.1 Register setup times
The jmp(.cc) gX and jsr(.cc) gX instructions determine the target address from the value that is in the gX register. The gX value
must be valid in the cycle before the instruction is executed. This restriction exists whether the instruction is to be conditionally
executed.

The gX register must be valid in the cycle before execution, but need not be valid in the following cycle, that is, only one cycle of
validity is required.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 211 / 536

4.18.2 Compare-and-jump example
The following shows an example of compare-and-jump.

mv.w g1, [rS0]; // move element from vector register array to g1.
cmp g1, 0; // compare g1 with 0.
nop; // jmp needs 1 cycle of setup after cmp
jmp.eq target; // jump to target if g1 is equal to 0.
mv a0, 32; // first delay slot (always executed)
mv a4, 1024; // second delay slot (always executed)

4.18.3 Back-to-back conditional jumps
In general, VSPA ISA does not allow back-to-back jumps. Specifically, a jmp or jsr should not be placed in the delay slots of
another prior jmp or jsr. That is, two jmp/jsr should be placed at least three instructions apart.

However, there is an exception to this restriction. The VSPA ISA allows back-to-back conditional jumps, provided that the following
two rules are met.

1. Two or three jmp/jsr are placed in close proximity (less than three instructions from each other); they are all
conditional.

2. At run-time, in any given three-instruction window, at most one jmp/jsr is actually taken.

The code in Example 1 is illegal since there are two jmp/jsr in close proximity (less than three instructions apart), and they are
not all conditional.

Example 1:
 jsr.eq A;
 nop;
 jmp B; // unconditional violates rule 1

The code in Example 2 is legal since of the three conditional jsr, only one will be taken. This is guaranteed by the fact that the
first jsr is based on a less-than condition, the second is based on an equal condition, and the third is based on a greater-than
condition - only one of these three conditions can occur. That is, within that three-instruction window, only one of the three jsr
can be taken.

Example 2:
 jsr.lt LT_CASE;
 jsr.eq EQ_CASE;
 jsr.gt GT_CASE;
 nop;
 nop;

The code in Example 3 is illegal since more than one jmp can possibly be taken, depending on the run-time value of g0.

Example 3:
 cmp g0, 4;
 nop;
 jmp.le LE_CASE;
 jmp.eq EQ_CASE; // violates rule 2

If g0 is equal to 4 prior to executing this code, the hardware behavior will be non-deterministic.

If a user chooses to use back-to-back conditional jumps, it is the user's responsibility to guarantee that only one
of these conditional jumps, inside any three-instruction window, is taken at run-time.

 WARNING

The following are some use cases of back-to-back conditional jumps.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 212 / 536

Example 1: Jump Table - only one jump is taken based on the value of an
IP register field, TX_MODE.

 mvip g0, TX_MODE, TX_MODE_MASK;
 sr g0, g0, TX_MODE_BIT;
 cmp g0, 1;
 cmp g0, 2;
 jmp.eq CASE_1; // ipReg=1
 jmp.eq CASE_2; // ipReg=2
 cmp g0, 3;
 cmp g0, 4;
 jmp.eq CASE_3; // ipReg=3
 jmp.eq CASE_4; // ipReg=4

Example 2: Traverse a large Jmp Table via binary search.
 mvip g0, TX_MODE, TX_MODE_MASK;
 sr g0,g0, TX_MODE_BIT;
 cmp g0, midPoint;
 nop;
 jmp.lt LT_MIDPOINT;
 jmp.eq EQ_MIDPOINT;
 jmp.gt GT_MIDPOINT;
 :
 :
 LT_MIDPOINT:
 cmp g0, quarterPoint;
 nop;
 jmp.lt LT_QTRPOINT;
 jmp.eq EQ_QTRPOINT;
 jmp.gt GT_QTRPOINT;
 :

Example 3: Here is an example of a "switch-case" construct using back to
back conditional instructions

 cmp g0, 1;
 cmp g0, 2;
 jmp.eq CASE1;
 cmp g0, 3;
 jmp.eq CASE2;
 cmp g0, 4;
 jmp.eq CASE3;
 nop;
 jmp.eq CASE4;
 jmp.ne DEFAULT;
 nop;
 nop;

4.19 Conditional instructions
The instructions shown in Table 68 and Table 69 may be executed conditionally. The cc value in these tables represents a logical
test instruction modifier which can be appended to these instructions to restrict execution based upon a certain condition. See
Table 70 for a list of all available logical test instruction modifiers.

All of these instructions require a one-cycle setup time of the condition code bits. See Conditional instruction setup time for a
detailed explanation of the one-cycle setup time requirement.

Table 68. Conditional Scalar Instructions

Instruction Type Description

mpy(.cc)(.s) gZ gX,gY opS Multiply

div(.cc)(.s) gZ gX,gY opS Divide

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 213 / 536

Table 68. Conditional Scalar Instructions (continued)

Instruction Type Description

mod(.cc)(.s) gZ gX,gY opS Modulus

sr(.cc)(.s) gZ gX,gY opS Shift Right

add(.cc) gZ gX,gY opS Add

sub(.cc) gZ gX,gY opS Subtract

cmp(.cc) gX,gY opS Compare

sl(.cc) gZ gX,gY opS Shift Left

and(.cc) gZ gX,gY opS And

or(.cc) gZ gX,gY opS Inclusive Or

xor(.cc) gZ gX,gY opS Exclusive Or

bclr(.cc) gZ gX,gY opS Bit Clear

mv(.cc) gY gX opS Move

not(.cc) gY gX opS Not

Table 69. Conditional Jump Instructions

Instruction1 Description

jmp(.cc) <target> Conditional jump to <target>

jsr(.cc) <target> Conditional jump to subroutine at <target>

1. <target> can be any gX or a 16-bit immediate value.

4.19.1 Logical test instruction modifiers
Certain instructions can be appended with an optional logical test instruction modifier, which results in execution of the instruction
being dependent upon the evaluation of the condition code flags. See Table 71 for a description of the condition code flags. The
table below lists the possible logical test instruction modifiers and their corresponding condition code flags values.

Table 70. Logical test instruction modifiers

Logical Test Modifiers Descriptions Operation
Type

Condition Code Flags1

N Z V C au_ap au_an

al Always Simple x x x x x x

au_an2 AU all negative AU OP x x x x x 1

au_ap2 AU all positive AU OP x x x x 1 x

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 214 / 536

Table 70. Logical test instruction modifiers (continued)

au_nan2 AU not all negative AU OP x x x x x 0

au_nap2 AU not all positive AU OP x x x x 0 x

cc Carry Clear Simple x x x 0 x x

cs Carry Set Simple x x x 1 x x

eq Equal Zero Simple x 1 x x x x

ge Greater or Equal

not (N xor V)

Signed - x - x x x

gt Greater

not ((N xor V) or Z)

Signed - - - x x x

hi Higher not (Z or C) Unsigned x - x -

hs Higher or Same Unsigned x x x 0 x x

le Less Than or Equal

((N xor V) or Z)

Signed - - - x x x

lo Lower Unsigned x x x 1 x x

ls Lower or Same

(Z or C)

Unsigned x - x - x x

lt Less Than

(N xor V)

Signed - x - x x x

mi Minus Simple 1 x x x x x

ne Not Equal Simple x 0 x x x x

nv Never Simple x x x x x x

pl Plus Simple 0 x x x x x

vc Overflow Clear Simple x x 0 x x x

vs Overflow Set Simple x x 1 x x x

1. "x" denotes don't care; "1" denotes the flag is set; "0" denotes the flag is clear; "-" denotes multiple bits are evaluated for
the logical condition shown in description.

2. Logical test instruction modifiers of operation type AU OP do not apply to conditional instructions shown in "Conditional
Scalar Instruction" table.

4.19.2 Condition code flags
VSPA maintains six condition code flags in the CREG unit: N (negative), Z (zero), V(overflow), C(carry), au_ap (AU all positive)
and au_an (AU all negative). Table 71 describes how these condition flags are being set. Four of these condition codes (N,Z,V,C)

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 215 / 536

are set by scalar operations and the remaining two (au_ap, au_an) are set by vector operations. By default the scalar condition
codes are modified by cmp, btst and mv cc instructions only, but the VSPA core can be configured to modify them on a wide
range of scalar instructions by setting system control register 4 (condition code update switch) to a 1. See Table 73 for a list of
instructions which can update the scalar condition codes when this register is set.

Table 71. VSPA Condition Flags

Condition Flag Descriptions Compare Operation
Triggered by1

N This flag is set when the result of the operation carried out by a scalar
instruction is Negative.

cmp/btst instruction

Z This flag is set when the result of the operation carried out by a scalar
instruction is equal to Zero.

cmp/btst instruction

V This flag us set when the result of the operation carried out by a scalar
instruction has a 2's complement overflow, that is, result sign mis-
match.

cmp/btst instruction

C This flag is set when the result of the operation carried out by a scalar
instruction has a carry (borrow).

cmp/btst instruction

au_ap For real number computations, this flag is set when all AU outputs are
positive. In complex mode, this flag is set when all real elements (all
even elements) are positive.

Any AU operation

au_an For real number computations, this flag is set when all AU outputs are
negative. In complex mode, this flag is set when all real elements (all
even elements) are negative.

Any AU operation

au_az For real number computations, this flag is set when all AU outputs have
an unbiased exponent value of zero. For complex number calculations,
this flag is set when all real elements (all even elements) have an
unbiased exponent value of zero.

Any AU operation

1. See "Instructions which always modify Condition Codes" table for a list of instructions which always set the condition
codes.

Note:

• Upon executing a scalar instruction, the condition codes, N, Z, V and C, will be updated based on the result of the
comparison. Once updated, these condition code flags will remain unchanged until the next cmp instruction is executed.

• Upon each AU operation, the condition flags, au_an, au_ap and au_az, will be updated based on the AU results. Once
updated, these condition code flags will remain unchanged until the next AU operation is performed.

• To affect a conditional jump based on a scalar instruction, the conditional jump must be placed at least two cycles away
from the scalar instruction.

• To affect a conditional jump based on an AU operation, the conditional jump must be placed at least six cycles away from
the AU instruction. If there are more AU operations after that AU operation of interest, then the conditional jump instruction
must be placed exactly six cycles after that AU operation.

The instructions in Table 72 will modify the condition code bits regardless of the state of system control register 4.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 216 / 536

Table 72. Instructions which always modify condition code flags

Instruction Type Description

cmp gX,I opD Compare 32 bit immediate

btst gX,I opS bit test

cmp(.cc) gX,gY opS Compare registers

mv(.cc) cc gX opS Move gX into cc

cmp(.s) gX,Is opS Compare 16 bit immediate

mv cc Is opS Move 4 bit immediate value into cc

addS.ucc opS If the optional field .ucc is used, then the instruction will update the
condition codes based on the result of the operation.

addD.ucc opD

subS.ucc opS

subD.ucc opD

The instructions in Table 73 will modify the condition code bits only if system control register 4 is set to a 1.

Table 73. Instructions which optionally modify condition code flags

Instruction Type Description

add gX,I opD Add 32 bit immediate

sub gX,I opD Subtract 32 bit immediate

andl gX,I opD And 32 bit immediate

orl gX,I opD Inclusive Or 32 bit immediate

xorl gX,I opD Exclusive Or 32 bit immediate

sr(.s) gY gX,I opS Shift right by immediate

sl gY gX,I opS Shift left by immediate

and gX,Is opS And 16 bit immediate

or gX,Is opS Inclusive Or 16 bit immediate

xor gX,Is opS Exclusive Or 16 bit immediate

mpy(.cc)(.s) gZ gX,gY opS Multiply registers

mac(.cc) gZ,gX,gY opS Multiply and accumulate (integer values)

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 217 / 536

Table 73. Instructions which optionally modify condition code flags (continued)

Instruction Type Description

div(.cc)(.s) gZ gX,gY opS Divide registers

mod(.cc)(.s) gZ gX,gY opS Modulus registers

sr(.cc)(.s) gZ gX,gY opS Shift Right by register

add(.cc) gZ gX,gY opS Add registers1

sub(.cc) gZ gX,gY opS Subtract Registers1

sl(.cc) gZ gX,gY opS Shift left register

and(.cc) gZ gX,gY opS And registers1

or(.cc) gZ gX,gY opS Inclusive or registers

xor(.cc) gZ gX,gY opS Exclusive or registers

bclr(.cc) gZ gX,gY opS Bit clear

not(.cc) gY gX opS not register

abs gY gX opS Absolute value

div(.s) gX,Is opS Divide by 16 bit immediate

mod(.s) gX,Is opS Modulus by 16 bit immediate

mpy(.s) gX,Is opS Multiply by 16 bit immediate

add(.s) gX,Is opS Add 16 bit immediate1

sub(.s) gX,Is opS Subtract 16 bit immediate1

rdiv(.s) gX,Is opS Divide into 16 bit immediate

rmod(.s) gX,Is opS Modulus into 16 bit immediate

rsub(.s) gX,Is opS Subtract (reverse) 16 bit immediate1

1. Condition codes not updated if destination is stack pointer (sp).

4.19.3 Conditional instruction setup time
Some instructions may or may not be executed depending on the result of a condition code bit or bits. These conditional
instructions require the condition codes they depend on to be valid one cycle before the execution phase of the conditional
instruction. When any of the instructions shown in Table 74 are used with a logical test instruction modifier (for example, '.eq',
'.ne', '.cs', and so on), they require a setup time of the CC bits with respect to the execution of the instruction. See Compare-and-
jump example for an example of the setup requirements of a conditional instruction relative to a compare instruction which is
updating the CC bits.

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 218 / 536

Table 74. Conditional instructions setup time

Instruction Setup1 Description

jsr/jmp(.cc) I 1 Jump to immediate address

jsr/jmp(.cc) gX 1 Jump to address in gX

mpy(.cc)(.s) gZ gX,gY 1 Multiply

div(.cc)(.s) gZ gX,gY 1 Divide

mod(.cc)(.s) gZ gX,gY 1 Modulus

sr(.cc)(.s) gZ gX,gY 1 Shift Right

add(.cc) gZ gX,gY 1 Add

sub(.cc) gZ gX,gY 1 Subtract

cmp(.cc) gX,gY 1 Compare

sl(.cc) gZ gX,gY 1 Shift Left

and(.cc) gZ gX,gY 1 And

or(.cc) gZ gX,gY 1 Inclusive Or

xor(.cc) gZ gX,gY 1 Exclusive Or

bclr(.cc) gZ gX,gY 1 Bit Clear

mv(.cc) gY gX 1 Move

not(.cc) gY gX 1 Not

1. Can also be considered the number of intervening instructions between cmp and conditional instruction: cmp; nop; //
intervening instruction to allow proper CC setup <instr>.cc

The condition(s) must be valid in the cycle before execution, but need not be valid in the following cycle, that is, only one cycle
of validity is required.

Note that the condition codes can be used as data by the mv instruction.The setup time for CCs applies only to their use as
conditions, not as data. So, when used as data, the CCs are available for use in the cycle immediately following their update,
just like gX or agX.

4.20 Numerically controlled oscillator (NCO) instructions
The NCO can be configured for generation of complex exponential sequences for efficient use in Fourier transforms and mixing
operations. The vector sequence is generated according to the following expression (which uses the variables k, f and i to refer
to nco_k, nco_freq and nco_phase, respectively)

exp {j2πkf (i + nv + [0, 1, 2, ..., v - 1]) / 232} where, n = 0, 1, 2, ...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 219 / 536

and produces v complex single precision scalars the mux path described in S1mode options and detailed description. The
generator is a function of the parameters described inTable 75.

Table 75. NCO parameters

Parameter Description

nco_k Base frequency multiplier represented as an unsigned 16-bit integer, which is typically used for scaling the base
frequency for twiddle factors in Fourier transforms.

nco_freq Base frequency represented as a signed 32-bit integer represented in one's complement form.

nco_phase Initial phase represented as a signed 32-bit integer represented in one's complement form.

n Discrete time index which advances by one upon each rd S1 instruction with S1mode=S1nco.

v Vector size. Three values are supported: v=1 for complex scalar vector operations, v=8 for Fourier transform
butterfly twiddle factors, v=16 for general complex mixing operations.

The current state of the phase accumulator, nco_phase + n * v, is accessible and useful for initializing, saving and restoring the
NCO phase in mixer applications. Instructions for controlling the NCO are summarized in Table 76.

Table 76. NCO parameter control instructions

Mnemonic Family Description

set.nco {radix2, singles, normal},
Iu16, Is32

OpD Configures all parameters in a single instruction. The frequency multiplier
and base are specified as immediate scalars. The vector size is specified
using a keyword: radix2(v=8), singles(v=1), and normal(v=16). This
instruction automatically clears the phase accumulator.

Order of arguments is nco_k, nco_freq.

With this instruction, the LSB of the base frequency
parameter is always set to be 0. Further, only the least
significant 10 bits of the frequency multiplier are set. The
base frequency needs to be specified as f << 2.

 NOTE

The AU precision (set.prec) must be set prior to the
set.nco instruction. Changing the AU precision after the
set.nco instruction may result in unexpected nco results.

 NOTE

mv nco_k, Iu11 OpB Sets the least significant 11 bits of the NCO base frequency multiplier. This
instruction automatically clears the phase accumulator.

mv nco_k, gX OpB Configure the nco base frequency multiplier using a general purpose
register. This instruction automatically clears the phase accumulator.

add nco_k, Is11 OpB Modify the nco base frequency multiplier by adding or subtracting an
immediate scalar. This is useful when switching between FFT/DFT stages.
This instruction automatically clears the phase accumulator.

Table continues on the next page...

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 220 / 536

Table 76. NCO parameter control instructions (continued)

Mnemonic Family Description

mv nco_freq, gX OpB Configure the nco base frequency using a general purpose register.

mv nco_phase, gX OpB Swap the contents of a general purpose register and the phase accumulator.

• gX is modifed by this instruction.

• The value loaded into the gX register is a "look-
ahead" value of nco_phase. That is, the current
value of nco_phase is incremented by 64 in normal
mode, incremented by 32 in radix2 mode, and
incremented by 1 in singles mode. The same
incremented value is also the value read by the
debugger when reading the nco_phase register.

 NOTE

mv gX, nco_phase OpB Move the contents of the phase accumulator to a general purpose register.

The value loaded into the gX register is a "look-ahead"
value of nco_phase. That is, the current value of
nco_phase is incremented by 64 in normal mode,
incremented by 32 in radix2 mode, and incremented by
1 in singles mode. The same incremented value is also
the value read by the debugger when reading the
nco_phase register. Note that the value read may not
be accurate if the nco_phase update is ongoing.

 NOTE

Following is an example of how NCO is programmed:

 set.prec half_fixed, half_fixed, single, single, half_fixed;
 set.creg 255, 8;
 set.nco normal, 0x1,0;
 mv g1, 536870912;
 mv nco_freq, g1;
 mv g0, 0;
 mv nco_phase, g0;
 nop;
 rd S0; rd S1; rd S2; set.Smode S0real1,S1nco,S2zeros;
 nop;
 mad;
 nop;
 nop;
 nop;
 wr.straight;

NXP Semiconductors

VCPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 221 / 536

Chapter 5
IPPU Architecture
5.1 IPPU overview
This chapter describes the operation and register programming of the Inter-vector Permutation Processing Unit (IPPU). The IPPU
is a programmable coprocessor used in SOCs as an accelerator for data reordering in memory for use by the VCPU.

5.1.1 IPPU SOC level components
The IPPU (SOC level) components:

• IPPU core: The IPPU fetches instructions from the IPPU program memory (IPPU PRAM), and uses arbitrated single-port
data memories (IPPU DMEM and VCPU DMEM) for storage during computation.

• IPPU Program memory (IPPU PRAM): IPPU instructions are stored in the IPPU PRAM. The IPPU PRAM is 32-bit wide
memory. It is dynamically loaded via the DMA when the IPPU is in the idle state. This memory is used for the IPPU code.

• IPPU data memory (IPPU DMEM) and VCPU data memory (VCPU DMEM): Working data memory. It is a single-port
arbitrated RAM organized into lines of 1024 bits, with each line containing 64 real or 32 complex samples. The IPPU,
VCPU, and the DMA can access both the IPPU DMEM and the VCPU DMEM. Arbitration scheme provides the DMA the
highest priority, the IPPU the mid level priority, and VCPU the lowest priority.

— Addresses are in 32-bit or 16-bit word units.

— DMEM reads are always a single complete line.

— The smallest element VCPU can write is a 16-bit half-word. Write accesses can be a full line, a half-word, or multiple
half-words.

— The IPPU always reads a full 1024-bit line from the DMEM, and is capable of writing the full 1024-bit line or writing a
single or multiple 16-bit half-word in a single write operation.

• Internal peripheral bus (IP Bus) registers: Control and status registers for the hardware components in the IPPU module,
which are visible to VCPU and the host software.

5.1.2 IPPU features
The IPPU module has the following features:

• Bit reverse, digit reverse, bit reverse and digit reverse address mapping.

• De-interleaved and indirect mapping.

• FFT size 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 and 16384 bit reversal modes.

• Up to 10-digit 2, 3, or 5 radix factors.

• Hardware-supported program control for:

— 2 levels of nested loops.

— 2-deep Return Address stack for subroutine calls. IPPU RS pointer is one bit. Overflow is not reported and it is the
user responsibility to avoid error conditions such as underflow and overflow.

— Conditional and unconditional jump, jsr (jump to Subroutine), and rts (return from subroutine).

— Real-Time, Programmer provided start address.

• Low power when not running - no state change of registers minimizes dynamic power, and automatic clock gating when in
idle state.

• Simple register mapped control and status from/to VCPU or host software driver.

• Limited debug support and internal register visibility.

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 222 / 536

5.2 Inter-vector permutation processing unit

5.2.1 IPPU core
The IPPU core fetches, decodes and executes instructions that reorganize data in memory for further processing by the vector
digital signal processor. See IPPU Core Block Diagram.

Every clock cycle the core fetches and decodes a 32-bit instruction word. Each bit-field of the instruction controls a logical unit
in the core's data path (such as the Memory Address Generator Unit). The vector data follows a path from DMEM into a Register
File (RF), Data is reordered in the Register File, and out to DMEM. The IPPU organizes the samples for efficient use by the
VCPU.

IPPU Engine

IP
bus

registers

IPPU
program

RAM

Control
registers

Program
control

Instruction
decoder

Memory address
generation

Register
file

address
generation

Register
file

Data
RAM

interface

IPPU
data
RAM

VCPU
data
RAM

Figure 35. IPPU Core Block Diagram

Table 77. IPPU Core Components

Component Description

Control register unit Specifies and holds IPPU core's configuration.

Program control unit Manages the program counter and generates addresses and control for IPPU
PRAM. It also controls subroutines, jumps and hardware loops.

Instruction decoder unit Fetches instructions from IPPU PRAM and decodes it into one or more micro-
instructions (which control other units in the core data path).

Memory address generation (MAG) unit Manages address generation for the DMEMs.

• Flexible post modification modes including; auto-increment, auto-
decrement, indexing by a constant, and absolute loading.

Register file address generation (RAG) unit Manages address generation for the Register File Unit.

Register file (RF) The register file consists of 4 1024-bit registers: r0, r1, r2 and r3.

Table continues on the next page...

NXP Semiconductors

IPPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 223 / 536

Table 77. IPPU Core Components (continued)

Component Description

• Each register can contain either 64 real half-precision elements or 32
complex half-precision elements.

• Each register in RF is 1024 bits wide.

• r1/r0 concatenate to present a virtual 2048 bit register.

Data RAM interface Generates the control, address, and data signals to/from the IPPU DMEM and
the VCPU DMEM. Handles the stall signals from these memories.

5.2.2 IPPU operating states
The IPPU has 3 states of operation: Running, Idle and Suspended:

• Idle State:

After Reset. the IPPU enters the Idle (low-power) state. When in the Idle state, once the IPPU CONTROL register is written, the
IPPU enters the Running state (note that the IPPU can start immediately, of wait for even to trigger its start. Refer to the IPPU
CONTROL register for more details), loads the Start Address, and starts fetching and executing instructions from the program
memory (IPPU PRAM) starting at the provided "start Address". The IPPU asserts the ippu_busy bit and clears the ippu_done
and ippu_aborted bits in the in the IPPU STATUS register. Refer to Running State below for a description how the IPPU transition
from Running state to Idle State

• Running State:

Refer to the Idle State above for a description how the IPPU enters the Running state. The IPPU exits the Running state and
enters the Idle state when it encounters one of the following conditions:

1. Normal termination - Execution of the Done instruction, or

2. Abort Termination - Receiving the Abort command via the ippu_abort signal. The IPPU immediately stops execution of
new instructions, sets the Aborted status bit in the IPPU STATUS register, and enters the Idle state.

• Suspended State:

When the IPPU is in the Running State and the ippu_suspend signal is asserted as result of setting the ippu_suspend bit in the
IPPU Run Control Register, the IPPU enters the Suspended state. The IPPU suspends instruction fetch and execution. Instruction
fetch and execution will resume when the ippu_suspend bit is cleared. The ippu_suspend acts as stop/continue control for the
IPPU. The ippu_abort signal will cause the core to move to the Idle state.

IPPU state transitions are shown in Figure 36.

IDLE RUNNING SUSPENDED

reset start_type ippu_suspend

done

ippu_abort

~ippu_suspend

ippu_suspend

ippu_abort

Figure 36. IPPU Operating State Diagram

NXP Semiconductors

IPPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 224 / 536

The IPPU starts after reset in the Idle state. The IPPU consumes very low current in this state. Internal IPPU registers are gated
OFF and no internal state change may occur.

IPPU transition from Idle state to Running state is controlled by the start_type field the IPPU CONTROL register, and thus
essentially by VCPU or host software. The IPPU will remain in Idle state until the start_type field in the IPPU CONTROL register
is written.

In Running state the IPPU is fetching and executing code. The IPPU software controls the transition back to Idle state by executing
a special "done" instruction. The IPPU transition from Running state to Idle state is also controlled by setting the ippu_abort bit
the IPPU CONTROL register. The ippu_abort bit is self-clearing, so the host does not need to clear it once a one was written to
it.

If the IPPU is in the Running state, and the ippu_suspend bit in the IPPU CONTROL register is set to one by VCPU or host
software, the IPPU immediately transition into the Suspended state. In the Suspended state the IPPU does not fetch instructions,
suspends code execution, and does not initiate DMEM transactions. DMEM transactions that are in progress will be completed.
To exit the suspended state, VCPU or host software must clear the ippu_suspend bit in the IPPU CONTROL register.

The IPPU reports its state to the host and VCPU software via the status bits: ippu_busy, ippu_suspended, ippu_aborted,
ippu_done, and ippu_error in the IPPU STATUS registers.

5.2.3 IPPU memory access considerations
When accessing the VCPU Data RAM or the IPPU Data RAM, the DMA has highest priority, followed by the AXI slave, IPPU,
FECU, and the VCPU which has the lowest priority. When more than one unit is assessing the same DMEM simultaneously, the
lower priority unit/(s) is/are stalled. While these stalls should not affect the VCPU or the IPPU performance significantly, they
should be taken into account when calculating the overall system performance.

The DMA has the highest priority. The DMA uses a DMEM buffer to hold an entire DMEM line's worth of data. It will take multiple
clock cycles to transfer this data to the AXI bus, thus providing the lower priority units an opportunity to transfer data without
starving extended period of time.

The IPPU does not support stalls on program memory (IPPU PRAM) accesses. The DMA should never access the IPPU PRAM
when the IPPU is in the running state. The DMA may access the IPPU PRAM only when the IPPU is in the idle state.

5.2.4 IPPU initialization
The IPPU core fetches instructions from the IPPU PRAM, a RAM memory. Before the IPPU core can begin execution, application-
specific software programs must be copied from external system memory to the IPPU program RAM via the DMA.

After an asynchronous reset assertion and negation, the IPPU enters the Idle state, waiting for the start_type in the IPPU
CONTROL register to be written. The DMA is used by the host processor to load the image of IPPU PRAM. The host software
must set up and enable the DMA to load the IPPU PRAM, and then poll for the transfer to complete. After IPPU PRAM is loaded,
the host or the VCPU Software can write the start_type field in the IPPU CONTROL registers to transition the IPPU into the
running state, where the IPPU starts fetching and executing instructions from the IPPU PRAM.

It is possible for either the host or the VCPU software to be the manager of the IPPU PRAM image loads.

The IPPU must be in the idle state before a new IPPU PRAM image is loaded or the IPPU PRAM is accessed by the DMA.

5.3 IPPU interrupts
The IPPU module does not generate interrupts directly. The IPPU generates active high done flag that may be used to generate
interrupts. An IPPU-done interrupt will be generated whenever the IPPU executes a DONE instruction, and the irqen_ippu_done
bit in the VSPA IRQEN register is set. The host should clear the interrupt by writing a "1" to the irq_pend_ippu_done bit in the
VSPA STATUS register, or by clearing the irqen_ippu_done bit in the VSPA IRQEN register.

5.4 IPPU done to VCPU go event
When executing the done instruction, the IPPU generates a VPCU go flag that may be used to wake up the VCPU. A VCPU go
event is generated whenever the IPPU executes a done instruction and the vcpu_go_en bit in the IPPUCONTROL register is

NXP Semiconductors

IPPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 225 / 536

set. This will set the ippu_go status in the VCPU System Control (CONTROL) register and eventually may cause the VCPU to
go. The VCPU should clear the ippu_go status in the VCPU System Control (CONTROL) register by writing a "1" to it.

NXP Semiconductors

IPPU Architecture

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 226 / 536

Chapter 6
IPPU Instruction Set
6.1 Size definitions
Table 78 defines sizes corresponding to different hardware components in bits. Some sizes are symbolic throughout to
accommodate variable VSPA line widths (for different AU counts).

Table 78. Size definitions

Size Definition

A 18 bits Addressing space for VCPU and IPPU DMEM

N_AU 16 number of AUs

N_elem N_AU*2 number of 32 bit-elements per memory line

N_bits_line N_elem*32 Number of bits per memory line

W ceil(log2(N_elem*2)) bits

X ceil(log2(N_elem)) bits

Y ceil(log2(N_elem*32)) bits

Z ceil(log2(N_elem*2*2)) bits

Ze ceil(log2(N_elem*8*2)) bits

6.2 Hardware definitions

Table 79. Hardware definitions

What Name Size Description

DMEM address
pointers

a0, a1 A • Contains DMEM addresses offset from the start of the
DMEM type (bank) (per 32-bit or 16-bit element)
based on the state of the ippu_legacy_mem_addr
field in IPPUCONTROL register

• Fetches either (i) a 32-bit DMEM element, or (ii) a
DMEM line consisting of N_elem 32-bit elements

• These are general memory access pointers. The
address contained in a0, a1 can point to either the
VCPU's or IPPU's DMEM space. The appropriate
DMEM type is specified by the ld.type and st.type
operator fields.

• Supports modulo range

Table continues on the next page...

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 227 / 536

Table 79. Hardware definitions (continued)

What Name Size Description

Offset registers m0, m1 A • Used to specify offsets to post increment/decrement
the pointers a0/a1 in load/store instructions

General
registers

as0, as1, as2, as3 A • General purpose storage registers.

• Elements can be moved to/from these registers
DMEM address registers, offset registers.

Data Register
file

r0, r1 N_bits_line • Storage for elements fetched from memory.

• r1 and r0 form a continuous buffer of N_bits_line*2
and addressable in the same way. However, full or
partial DMEM lines can be written only to either r0 or
r1, but not across both r0 and r1.

Compare
Register file

elem_mask N_bits_line • Storage for bit mask fetched from memory

Memory Index
registers

mem_index0,
mem_index1

A • Used for indirect addressing. mem_index0
corresponds to a0, and, mem_index1 corresponds to
a1.

• These registers are not accessible to the user.

Data Register
file pointers

r_rd_ptr, r_wr_ptr Ze • Read and write pointer to a 4-bit element within the
data register file.

• Read and write pointers are used by st.type and
ld.type commands, respectively.

Memory
element
pointers

mem_elem_rd_ptr,
mem_elem_wr_ptr

3 bits • Pointer to a 4-bit element within a 32-bit element
addressed by a0, a1.

Compare
Register file
pointers

elem_mask_ptr Y • Pointer to a bit within the compare register file.

Vectorized
Index pointer

vindx_ptr W • Pointer into vectorized index register.

• Used for vectorized index addressing (see Vectorized
indirect addressing for details).

6.3 IPPU instructions summary
Table 80. IPPU instructions summary

Instruction Cycles Description

ld.type [aX]+/-mX, elem_offset, ld_mode, wr_offset,
latch_mode

4 Load instructions

Table continues on the next page...

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 228 / 536

Table 80. IPPU instructions summary (continued)

Instruction Cycles Description

ld.type [aX]+/-Is8, elem_offset, wr_offset, latch_mode

ld.type [aX]+/-Is5, elem_offset,ld_mode, wr_offset,
latch_mode

ld.mask.type [aX]+/-mX

ld.mask.type [aX]+/-Is9

ld.index.type [aX]+/-mX 3 Load memory index instructions

ld.index.type [aX]+/-Is9

st.type [aX]+/-mX, elem_offset, st_mode, rd_offset,
write_mode

2 Store instructions

st.type [aX]+/-Is8, elem_offset, rd_offset, write_mode

st.type [aX]+/-Is5, elem_offset, st_mode, rd_offset,
write_mode

set.range aY, asA, asB 1 Set range instructions

set.range aY, asA, Iu18

set.br aX, br_mode 2 Configure bit-reversal/digit-
reversal engine instructions

set.dr.radix digit_index, radix, Iu11

set.dr.config digit_index, Iu3, Iu11

mv ippu_reg, ippu_reg 1 Move register instruction

mv ippu_reg, Iu18

ld asX, Iu6 5 Load input argument instruction

cmp.bit IsY 1 Compare instruction

jmp Iu16 3 Jump instructions

jsr Iu16

jsr.z Iu16

jsr.nz Iu16

jmp.z Iu16

jmp.nz Iu16

rts

rts.z

rts.nz

Table continues on the next page...

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 229 / 536

Table 80. IPPU instructions summary (continued)

Instruction Cycles Description

set.loop Iu1, Iu8 2 Loop instructions

Must have a
one-cycle delay
between writing
any value into
the asX register
(because of a
load or a move
instruction) and
using it as an
iteration count
source.

 NOTE set.loop Iu1, asX

loop_begin Iu1 1

loop_end Iu1

done 1 Done instruction

clr Rx 1 Clear register instruction

set.mask IuY 1 Set/clear element mask register
instructions

set.mask.all

clr.mask IuY 1

clr.mask.all

add aX, Is8 1 Add instructions

add aX, mY

add.cb aX, Is8

add.cb aX, mY

6.4 Load instructions
IPPU instructions summary

Syntax:

ld.type [aX]+/-mX, elem_offset, ld_mode, wr_offset, latch_mode
ld.type [aX]+/-Is8, elem_offset, wr_offset, latch_mode
ld.type [aX]+/-Is5, elem_offset, ld_mode, wr_offset, latch_mode
ld.mask.type [aX]+/-mX
ld.mask.type [aX]+/-Is9

Description:

Load instruction fetches N_elem 32-bit elements from DMEM using the address and the address mapping specified. The contents
are then latched, either entirely or partially, in continuous units of 32-bit elements onto a data register file line, or as 4, 8, 16, or
32-bit elements onto 4, 8, 16, or 32-element locations on the data register file.

• A 32-bit DMEM element is identified by the access pointer aX.

• A 4, 8 or 16-bit element within a 32-bit DMEM element is identified by the value contained in mem_elem_rd_ptr.

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 230 / 536

• A destination data register or a 4, 8, 16 or 32-bit element location within the data register file is identified by the value
contained in r_wr_ptr.

When the load instruction with the Is8 offset field is used, the ld_mode cannot be specified in the instruction. In this case, the
ld_mode will be provided by the last instruction that did use a ld_mode.

ld.mask.type instruction latches the entire contents of the DMEM line to the elem_mask register.

In indirect ld_mode, the DMEM address that was loaded into the mem_index0 or mem_index1 register replaces the a0 or a1
register, respectively, as the DMEM word address pointer. In indirect ld_mode, the mX and elem_offset fields are ignored.

The type field specifies whether the IPPU accesses the IPPU's DMEM or the VCPU's DMEM. The address pointer is the offset
from the start of the DMEM type (bank).

Table 81. Load instruction arguments

Argument Description

type Indicates which DMEM to access.

ippu

vcpu

aX Pointer to DMEM word location (X = 0, 1).

0 a0

1 a1

+/- 0 inc (add)

1 dec (subtract)

mX Offset register specifying post-fetch (increment or decrement) offset for the DMEM access
pointer aX (ignored in indirect mode) (X = 0, 1).

0 m0

1 m1

Is8 Signed 8-bit immediate field indicating a post-fetch (increment or decrement) offset for the
DMEM access pointer aX (ignored in Indirect addressing). The architecture guarantees a
wrap low. That is, when the DMEM access pointer aX would appear to go negative after
increment or decrement, it actually goes to a high address (for example, 0 - 1 = 3ffff).

This field CANNOT be used in conjunction with the ld_mode field.

 NOTE

Is5 Signed 5-bit immediate field indicating a post-fetch (increment or decrement) offset for the
DMEM access pointer aX (ignored in indirect mode).

This field CAN be used in conjunction with the ld_mode field.

 NOTE

Is9 Signed 9-bit immediate field indicating a post-fetch (increment or decrement) offset for the
Compare Register file pointer (elem_mask_ptr).

elem_offset Signed 3-bit immediate field indicating post-latch update (increment or decrement) for
mem_elem_rd_ptr.

Table continues on the next page...

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 231 / 536

Table 81. Load instruction arguments (continued)

Argument Description

ld_mode Loading mode specifying that the address generation that can take following values:

000 normal: linear address mapping

001 br: bit-reversed address mapping

010 dr: digit-reversed address mapping

011 br_dr: digit and bit reversed mapping

100 vindirect: vectorized indirect mapping (see Vectorized indirect addressing for details)

101 ind: indirect mapping (see Indirect addressing for details)

• In ld_mode == ind (indirect mode), the index pointed to by the previously instructed
ld.index.type instruction (corresponding to the specified aX) is used as the DMEM
address to load from.

110 ri: (relative indirect), relative indirect mapping

• In ld_mode == ri (relative indirect mode), the index pointed to by the previously
instructed ld.index.type instruction is added to the pointer aX to generate a memory
address used as the DMEM address to load from.

111 Reserved

wr_offset Signed 9-bit immediate field indicating a post-latch update (increment or decrement) for the
data register write pointer r_wr_ptr.

latch_mode 0000 normal: Normal Mode. Latches the entire content of the read bus onto the destination
register specified. With 2 AU configuration, the least significant 2 bits of the DMEM address
(read) pointer are ignored; with 4 AU configuration, the least significant 3 bits of the DMEM
address (read) pointer are ignored; With 8 AU configuration, the least significant 4 bits of the
DMEM address (read) pointer are ignored; with 16 AU configuration, the least significant 5
bits of the DMEM address (read) pointer are ignored; with 32 AU configuration, the least
significant 6 bits of the DMEM address (read) pointer are ignored; and with 64 AU
configuration, the least significant 7 bits of the DMEM address (read) pointer are ignored.

0001 e256: 256-bit Element Mode. Latches 256 bits (starting at the address pointed to by the
DMEM address pointer) onto a 256-bit element location within the data register file.

• The destination location is specified by the r_wr_ptr. The least significant 6 bits of the
write pointer are ignored.

• The least significant 3 bits of the DMEM address (read) pointer are ignored.

This mode is inapplicable to VSPA versions with 2 AUs or less. This mode
should not be used in such configurations.

 NOTE

0010 e128: 128-bit Element Mode. Latches 128 bits (starting at the address pointed to by the
DMEM address pointer) onto a 128-bit element location within the data register file.

• The destination location is specified by the r_wr_ptr. The least significant 5 bits of the
write pointer are ignored.

• The least significant 2 bits of the DMEM address (read) pointer are ignored.

Table continues on the next page...

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 232 / 536

Table 81. Load instruction arguments (continued)

Argument Description

0011 e64: 64-bit Element Mode. Latches 64 bits (starting at the address pointed to by the
DMEM address pointer) onto a 64-bit element location within the data register file.

• The destination location is specified by the r_wr_ptr. The least significant 4 bits of the
write pointer are ignored.

• The least significant 1 bit of the DMEM address (read) pointer is ignored.

0100 e32: 32-bit Element Mode. Latches a 32-bit element (pointed to by the DMEM address
pointer) onto a 32-bit element location within the data register file.

• The destination location is specified by the r_wr_ptr. The least significant 3 bits of the
pointer are ignored.

0101 e16: 16-bit Element Mode. Latches a 16-bit element (within the 32-bit element pointed
to by the DMEM address pointer) onto a 16-bit element location within the data register file.

• The 16-bit source element is specified by the most significant bit of mem_elem_rd_ptr.

• The destination location is specified by the r_wr_ptr. The least significant 2 bits of the
pointer are ignored.

0110 e8: 8-bit Element Mode. Latches an 8-bit element (within the 32-bit element pointed to
by the DMEM address pointer) onto a 8-bit element location within the data register file.

• The 8-bit source element is specified by the most significant 2 bits of
mem_elem_rd_ptr.

• The destination location is specified by the r_wr_ptr. The least significant 1 bit of the
pointer is ignored.

0111 e4: 4-bit Element Mode. Latches a 4-bit element (within the 32-bit element pointed to
by the DMEM address pointer) onto a 4-bit element location within the data register file.

• The 4-bit source element is specified by mem_elem_rd_ptr.

• The destination location is specified by the r_wr_ptr.

1000 L2H: Low To Hign Mode. Latches the least significant K 32-bit elements of the read bus
(where K = count given by the least significant X bits of the DMEM address pointer) onto the
most significant K 32-bit locations of the specified data register.

X= 2 with 2 AU configuration, or, 3 with 4 AU configuration, or 4 with 8 AU
configuration, or 5 with 16 AU configuration, or 6 with 32 AU configuration,
or 7 with 64 AU configuration.

 NOTE

1001 H2L: Low To Low Mode. Latches the most significant n_elem-K 32-bit elements of the
read bus (where K = count given by the least significant X bits of the DMEM address pointer)
onto the least significant n_elem-K 32-bit locations of the specified data register.

Table continues on the next page...

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 233 / 536

Table 81. Load instruction arguments (continued)

Argument Description

X= 2 with 2 AU configuration, or, 3 with 4 AU configuration, or 4 with 8 AU
configuration, or 5 with 16 AU configuration, or 6 with 32 AU configuration,
or 7 with 64 AU configuration.

 NOTE

1010 L2L: Low To Low Mode. Latches the least significant K 32-bit elements of the read bus
(where K = count given by the least significant X bits of the DMEM address pointer) onto the
least significant K 32-bit locations of the specified data register.

X= 2 with 2 AU configuration, or, 3 with 4 AU configuration, or 4 with 8 AU
configuration, or 5 with 16 AU configuration, or 6 with 32 AU configuration,
or 7 with 64 AU configuration.

 NOTE

1011 H2H: High To Hign Mode. Latches the most significant n_elem-K 32-bit elements of the
read bus (where K = count given by the least significant X bits of the DMEM address pointer)
onto the most significant n_elem-K 32-bit locations of the specified data register.

X= 2 with 2 AU configuration, or, 3 with 4 AU configuration, or 4 with 8 AU
configuration, or 5 with 16 AU configuration, or 6 with 32 AU configuration,
or 7 with 64 AU configuration.

 NOTE

1110 - 1111 Reserved

6.5 Load memory index instructions
IPPU instructions summary

Syntax:

ld.index.type [aX]+/-mX
ld.index.type [aX]+/-Is9

Description:

Load memory index instruction fetches a 32-bit element from DMEM specified by a0 or a1 as specified in the operand and writes
the least significant A bits of this element to mem_index0 or mem_index1 register respectively.

The type field specifies whether the IPPU accesses the IPPU's DMEM or the VCPU's DMEM. The address pointer is the offset
from the start of the DMEM type (bank).

Table 82. Load memory index instruction arguments

Argument Description

type Indicates which DMEM to access.

ippu

vcpu

Table continues on the next page...

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 234 / 536

Table 82. Load memory index instruction arguments (continued)

Argument Description

aX Pointer to DMEM location (X = 0, 1).

0 a0

1 a1

When pointer aX==a0 load into register mem_index0

When pointer aX==a1 load into register mem_index1

Note: The index register loaded X is the same X as the aX used in this instruction.

+/- 0 inc (add)

1 dec (subtract)

mX Offset register specifying a post-fetch (increment or decrement) offset for the DMEM access
pointer aX.

0 m0

1 m1

Is9 Signed 9-bit immediate field indicating a post-fetch (increment or decrement) offset for the
DMEM access pointer aX.

6.6 Store instructions
IPPU instructions summary

Syntax:

st.type [aX]+/-mX, elem_offset, st_mode, rd_offset, write_mode
st.type [aX]+/-Is8, elem_offset, rd_offset, write_mode
st.type [aX]+/-Is5, elem_offset, st_mode, rd_offset, write_mode

Description:

The Store instruction stores a 16, or 32-bit element from a data register file to a 16, or 32-bit element, or from an entire data
register file line to an entire DMEM line.

• The source element/line location is identified by r_rd_ptr.

• The destination line or 32-bit element location in DMEM is identified by aX.

• The 16-bit element within the 32 bit destination location is specified by mem_elem_wr_ptr.

When the instruction with the Is8 field is used, the st_mode cannot be specified in the Store instruction. In this case, st_mode
used in the last executed st.mem instruction is used.

• In indirect mode, the DMEM address contained in mem_index0 (or mem_index1) is used as the DMEM pointer to write to
or from, based on whether a0 or a1 is used in the aN field, respectively. The fields mX, elem_offset are ignored.

The <mem_type> field specifies whether the IPPU accesses the IPPU DMEM or the VCPU's DMEM. The address pointer is the
offset from the start of the DMEM type (bank).

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 235 / 536

Table 83. Store instruction arguments

Argument Description

type Indicates which DMEM to access:

{ippu,vcpu}

aX Pointer to DMEM word location (X = 0, 1).

0 a0

1 a1

+/- 0 inc (add)

1 dec (subtract)

mX A post-fetch (increment or decrement) offset specified in offset registers for the DMEM pointer
(X = 0, 1) (ignored in indirect mode).

0 m0

1 m1

Is8 Signed 8-bit immediate field, indicating a post-write (increment or decrement) offset for the
DMEM access pointer aN (ignored in indirect mode).

This field CANNOT be used in conjunction with the st_mode field.

Is5 Signed 5-bit immediate field, indicating a post-write (increment or decrement) offset for the
DMEM access pointer aN (ignored in indirect mode).

This field CAN be used in conjunction with the st_mode field.

elem_offset Signed 3-bit immediate field, indicating post-latch update (increment or decrement) for
mem_elem_wr_ptr.

st_mode Storing mode that can take following values:

000 normal: linear address mapping

001 br: bit-reversed address mapping

010 dr: digit-reversed address mapping

011 br_dr: digit and bit reversed mapping

101 indirect: indirect mapping (see Indirect addressing for details)

• In st_mode == indirect mode, the index pointed to by the previously instructed ld.type
indexX instruction (corresponding to the aX specified), is used as the DMEM address
to store to. N

110 rind: relative indirect mapping

• In st_mode == relative indirect mode, the index pointed to by the previously instructed
ld.index.type instruction is added to the pointer aX to generate a memory address used
as the DMEM address to load from.

100, 111 Reserved

Table continues on the next page...

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 236 / 536

Table 83. Store instruction arguments (continued)

Argument Description

rd_offset Signed 9-bit immediate field, indicating post-store update (increment or decrement) for the
data register read pointer r_rd_ptr.

write_mode 000 normal: Writes entire data register file line (specified by the MS bit of r_rd_ptr) to the
DMEM address (specified by aX).

001 e32: Writes the 32-bit element (specified by r_rd_ptr) to the 32-bit DMEM location
(specified by aX).

• The least significant 3 bits of r_rd_ptr are ignored.

010 e16: Writes the 16-bit element (specified by r_rd_ptr) to a 16-bit element location (within
the 32-bit DMEM location specified by aX).

• The least significant 2 bits of r_rd_ptr are ignored.

• The destination 16-bit element within the 32-bit DMEM location is specified by the MS
bit of mem_elem_wr_ptr.

011, 100, 101, 111: Reserved

6.7 Set range instructions
IPPU instructions summary

Syntax:

set.range aY, asA, asB
set.range aY, asA, Iu19

Description:

The set range instruction sets the circular buffer boundaries for the DMEM address pointer aY.

The start address of the circular buffer is specified via the general register asA.

asB and Iu19 indicate the number of 16-bit elements in the buffer. That is, asB and Iu19 are the circular buffer size in 16-bit
element.

The end address of the circular buffer can be (indirectly) calculated either:

• indirectly via the general register asB indicating the number of 16-bit elements in the buffer (in this case, the circular buffer
end address is "asA + asB -1", "asB = num elements" and "asB > 0"), or

• indirectly via the immediate value Iu19 indicating the number of 16-bit elements in the buffer (in this case, the circular buffer
end address is "asA + Iu19 - 1", "Iu19 = num elements" and "Iu19 >= 1").

The circular buffer will be disabled when:

• asA=0 and asB=0 for set.range aY, asA, asB

• asA=0 and Iu19=0 for set.range aY, asA, Iu19

 NOTE

Addresses are to 16-bit elements and size is number of 16-bit elements.

 NOTE

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 237 / 536

Table 84. Set Range instruction arguments

Argument Description

aY Specifies the pointer to which the set range instruction applies (Y = 0, 1).

0 a0

1 a1

asA A general register (as0, as1, as2 or as3) which specifies the start address of the circular
buffer.

00 as0

01 as1

10 as2

11 as3

asB A general register (as0, as1, as2 or as3) which specifies the size of the circular buffer (number
of 16-bit elements).

00 as0

01 as1

10 as2

11 as3

Iu19 A 19-bit unsigned immediate value which specifies the size of the circular buffer in number
of 16-bit elements.

6.8 Configure bit-reversal, digit-reversal engine instructions
IPPU instructions summary

Syntax:

set.br aX, br_mode
set.dr.radix digit_index, radix, Iu11
set.dr.config digit_index, Iu3, Iu11

Description:

These instructions configure the bit-reversal, digit-reversal and bit-digit-reversal engines for the DMEM address pointers.

set.br, set.dr.radix and set.dr.config are actual hardware instructions.

Table 85. Configure bit-reversal, digit-reversal engine instructions

Instruction Description

Hardware instructions set.br Configures the BR engine for use in either br or brdr mode.

set.dr.radix Configures the radix and address increment for each prime digit
corresponding to the prime factors of the DFT size.

set.dr.config Configures the initial values of DR address generator counter for each prime
digit corresponding to the prime factors of the DFT size.

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 238 / 536

Table 86. Configure bit-reversal, digit-reversal engine instruction arguments

Argument Description

aX X = 0, 1.

0 a0

1 a1

br_mode Bit-reversal mode.

0000 fft32

0001 fft64

0010 fft128

0011 fft256

0100 fft512

0101 fft1024

0110 fft2048

0111 fft4096

1000 fft8192

1001 fft16384

1010 - 1111 Reserved

digit_index One of { 1..10 } and identifies one of the 10 digits used for DR.

radix 3-bit immediate value indicating the radix (this version supports 2, 3 and 5).

000 Reset radix registers when Iu11 also is zero.

001 Not valid

010 2 prime radix factor

011 3 prime radix factor

100 Not valid

101 5 prime radix factor

110 Not valid

111 Not valid

Iu3 3-bit immediate value indicating the counter values for address generation.

Iu11 set.dr.radix digit_index, radix, Iu11 : 11-bit unsigned immediate value indicating the address
increment. Value of zero together with radix=0 resets the radix registers.

set.dr.config digit_index, Iu3, Iu11 : 11-bit unsigned immediate value indicating the address.

num2 Number of prime factor 2 in DFT size.

num3 Number of prime factor 3 in DFT size.

Table continues on the next page...

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 239 / 536

Table 86. Configure bit-reversal, digit-reversal engine instruction arguments (continued)

Argument Description

num5 Number of prime factor 5 in DFT size.

dr_offset Index of elements to be accessed first in the digit-reversed array.

In the case where radix and Iu11 address increment are both zero, the radix registers are reset and equivalent to the following
instructions:

• set.dr.radix 1, 0, 0;

• set.dr.radix 2, 0, 0;

• set.dr.radix 3, 0, 0;

• set.dr.radix 4, 0, 0;

• set.dr.radix 5, 0, 0;

• set.dr.radix 6, 0, 0;

• set.dr.radix 7, 0, 0;

• set.dr.radix 8, 0, 0;

• set.dr.radix 9, 0, 0;

• set.dr.radix 10, 0, 0;

6.9 Move register instruction
IPPU instructions summary

Syntax:

mv ippu_regA, ippu_regB

mv ippu_regA, Iu18

Description:

The Move Register instruction moves the value of one register to another. It can also set the value of DMEM address pointers,
offset registers and pointers to the specified 18-bit-wide immediate value field.

If the destination register width is less than the source register, then only the relevant least significant bits of immediate field are
used. If the destination register width is greater than the source register, then it is padded with zeros.

Table 87. Move Register instruction arguments

Argument Description

ippu_regA Move destination register

One of:

• aX (X = 0, 1)

• mX (X = 0, 1)

• asX (X = 0, 1, 2, 3)

• vindx_ptr

• r_rd_ptr

Table continues on the next page...

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 240 / 536

Table 87. Move Register instruction arguments (continued)

Argument Description

• r_wr_ptr

• elem_mask_ptr

• mem_elem_rd_ptr

• mem_elem_wr_ptr

ippu_regB Move source register

One of:

• aX (X = 0, 1)

• mX (X = 0, 1)

• asX (X = 0, 1, 2, 3)

• vindx_ptr

• r_rd_ptr

• r_wr_ptr

• elem_mask_ptr

• mem_elem_rd_ptr

• mem_elem_wr_ptr

Iu18 18-bit immediate value

6.10 Load input argument instruction
IPPU instructions summary

Syntax:

ld asX, Iu6

Description:

The load input argument instruction writes the least significant A bits of a 32-bit element within a pre-defined sector in IPPU
DMEM space onto the register specified. The address offset of the 32-bit element within the pre-defined memory space is specified
as an input argument.

The starting address of the sector is defined by the content of the IP register IPPUARGBASEADDR. For example, if
IPPUARGBASEADDR contains 0x0001 and if the instruction ld as0, 3 is executed, then the 32-bit element in IPPU_DMEM[1 +
3] is read and the least significant 18 bits are written to as0.

Table 88. Load input argument instruction arguments

Argument Description

asX Destination register (X = 0, 1, 2, 3).

Iu6 Unsigned 6-bit immediate field indicating the address offset in 32-bit (4-bytes) units (with
respect to the base of the assigned IPPU DMEM sector) from where to populate the
destination register.

Addressing is on a 32-bit element boundary.

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 241 / 536

6.11 Compare instruction
IPPU instructions summary

Syntax:

cmp.bit IsY

Description:

The Compare instruction compares a bit in the compare register (with the location specified by elem_mask_ptr) and sets the
ZERO flag accordingly. The elem_mask_ptr is post-updated, based on the immediate offset specified by IsY.

Table 89. Compare instruction arguments

Argument Description

IsY Signed Y-bit immediate post (incremental or decremental) offset for the elem_mask_ptr.

6.12 Jump instructions
IPPU instructions summary

Syntax:

jmp Iu16
jsr Iu16
jsr.z Iu16
jsr.nz Iu16
jmp.z Iu16
jmp.nz Iu16
rts
rts.z
rts.nz

Description:

The Jump instruction executes unconditional and conditional jumps to the destination label specified.

Table 90. Jump engine instructions

Instruction Description

jmp

jsr

rts

Unconditional jump

jmp.z

jsr.z

rts.z

Jump is taken if ZERO flag is set.

jmp.nz

jsr.nz

rts.nz

Jump is taken if ZERO flag is not set.

jsr After taking the jump, it will return when it encounters the "rts" instruction.

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 242 / 536

Each of these Jump instructions has a 2-cycle pipeline delay. Therfore, the 2 instructions immediately following any of these
instructions WILL be executed BEFORE the jump is taken, for unconditional jumps or rts, and regardless of the outcome, for
conditional jumps or rts.

Restrictions:

See Section Delay slot considerations for important usage restrictions.

Table 91. Jump instruction arguments

Argument Description

Iu16 Destination program label to jump to.

6.13 Loop instructions
IPPU instructions summary

Syntax:

set.loop Iu1, Iu8
set.loop Iu1, asX
loop_begin Iu1
loop_end Iu1

Description:

The loop instruction sets, starts and ends a do-loop. The loop is executed as many times as specified by either the lower 8 bits
of a general purpose register or an immediate 8-bit field in the set.loop instruction. Two-level loop nesting is allowed.

There is a slight difference how the loop iteration count is applied when used by either the immediate field or the asX register.
When applying the iteration count via immediate field, the loop count is exactly what is programmed, with valid range 1-256.
When applying the iteration count via asX register, the loop count is one more than the value in the asX register (bits 0-7). That
is, for asX[7:0] values 0-255, the actual loop count will be 1-256, respectively.

The following is a list of rules to follow when using the loop instructions:

• Back-to-back single instruction loops are not permitted. There must be at least one other instruction in between two single
instruction loops. Loops that are greater than one instruction can be back to back.

• A single instruction loop cannot immediately follow a loop_begin instruction of the same or different index.

• A single instruction loop cannot be the first instruction of a code section.

• A loop_end instruction cannot be specified in an instruction which immediately follows another instruction that specifies a
loop_end instruction. There has to be at least one other instruction in between.

• Every loop_begin instruction must have a corresponding set.loop instruction specified somewhere BEFORE the loop_begin
instruction is executed. It is possible to have multiple loop_begin/loop_end pairs reference a common loop index (and count)
following a single set.loop instruction with the same index.

• Every loop_begin instruction must have a corresponding loop_end instruction specified somewhere in the same instruction
or AFTER the loop_begin is executed.

• Loops of different indices can be nested. In other words, a loop_begin AND a loop_end can be inside the body of a loop_begin/
loop_end pair of a different index. However, a loop_begin/loop_end pair cannot straddle a loop_begin without a loop_end or
a loop_end without a loop_begin.

• There must be a one-cycle delay between writing to an asX register and using it as iteration count source.

• There must be atleast five instructions between 'ld.arg into asX' and using asX in a 'set.loop asX' instruction.

• A jmp/jsr/rts instruction cannot be specified in an instruction which also contains a loop_end instruction.

• Neither a loop_begin nor a loop_end instruction can be specified in the delay slots of a jmp/jsr/rts instruction.

• A loop_end instruction cannot be the target of a jmp/jsr/rts instruction.

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 243 / 536

Table 92. Loop instruction arguments

Argument Description

Iu1 A 1-bit immediate value which specifies which level of loop is being configured (0, 1).

Iu8 An 8-bit immediate value which specifies the loop count. The count is a sticky parameter which
is preserved for each loop index independently of the number of loop_begin/loop_end pairs
referencing this index.

asX General register, where X = 0, 1, 2, 3. Note that only the lower 8-bit of of the asX register are
used to configure the loop.

6.14 Done instruction
IPPU instructions summary

Syntax:

done

Description:

The Done instruction ends the current execution session and sets the "ippu_done" flag.

6.15 Clear register instruction
IPPU instructions summary

Syntax:

clr r0;
clr r1;
clr r2;
clr r3;
clr r0,r1;
clr r0,r1,r2,r3;
clr <r0>|<,r1>|<,r2>|<,r3>;

Description:

The Clear Register instruction clears any of r0, r1,r2, r3 or all registers and sets them to all zeros. See Set/clear element mask
register instructions for a separate clear mask all instruction.

Table 93. Clear Register instruction arguments

Argument Description

Rx r0, r1, r2, r3

6.16 Set/clear element mask register instructions
IPPU instructions summary

Syntax:

set.mask IuY
set.mask all
clr.mask IuY
clr.mask all

Description:

The set/clear mask instructions set one bit or all bits of the elem_mask register as follows:

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 244 / 536

• set.mask instruction sets the bit at the specified bit index IuY to 1 in the elem_mask register.

• set.mask.all instruction sets all of the bits in the elem_mask register to 1.

• clr.mask instruction clears (sets to 0) the bit at the specified bit index IuY in the elem_mask register.

• clr.mask.all instruction clears (sets to 0) all the bits in the elem_mask register.

Table 94. Set/clear element mask register instruction arguments

Argument Description

IuY Y-bit immediate field specifying which bit to set in the elem_mask register.

6.17 Add instructions
IPPU instructions summary

Syntax:

add aX, Is8

add aX, mY

add.cb aX, Is8

add.cb aX, mY

Description:

The ‘add’ instruction adds a value specified in Is8 or mY to address pointer aX (a0 or a1).

The ‘add.cb’ instruction adds a value specified in Is8 or mY to address pointer aX (a0 or a1), and then adjust the result to reside
inside the circular buffer range as defined for this address pointer.

Table 95. Add instruction arguments

Argument Description

aX Pointer to DMEM location (X = 0, 1)

0 - a0

1 - a1

Is8 8-bit signed immediate value which specifies the amount to add to address pointer aY (a0 or
a1)

mY Offset register specify the increment or decrement offset for the DMEM access pointer aY (Y
= 0, 1)

0 - m0

1 - m1

6.18 Advanced features/usage notes

6.18.1 Delay slot considerations
The delay slots of the loop, jmp/jsr/rts instructions place certain restrictions on the usage of loops and jumps:

• jmp/jsr/rts instruction cannot be specified in an instruction containing a loop_end.

• rts cannot be specified in the delay slots of any jmp/jsr instruction.

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 245 / 536

• jmp/jsr can be placed in the delay slots of other jmp/jsr instructions. However, caution is advised with such usage
because all delay slots of each jmp encountered will have to be accounted for while tracking program behavior.

6.18.2 BR - Bit-reversal
The bit-reversal feature allows data to be read from Data Memory or written to Data Memory in a bit-reversed order. The bit
reversal engine in the IPPU can be used to reorder bit-reversed outputs of the DIF-FFT to linear form, or used to reorder the
linear inputs of the DIT-FFT to bit-reversed form.

• Radix-2 FFTs using decimation-in-frequency (DIF) methods take inputs in linear order, and generate outputs in bit-
reversed order.

• Radix-2 FFTs using decimation-in-time (DIT) method take inputs in bit- reversed order, and generate outputs in linear
order.

To operate the bit reversal engine, the following steps must be followed:

• Only a0 and a1 can be used as pointers for the DMEM ld operation.

• Define the range of the input/output data in DMEM for reading/writing bit-reversed data- this can be achieved by defining
the set.range instruction on the respective DMEM read/write pointer.

• Configure the bit-reversal mode- this can be achieved with the set.br instruction.

• Use the ld.type or st.type instruction in br mode to read/write data. Enable the bit-reversal addressing mode is done
with the set.br instruction. The Bit-Reversal (br) mode is sticky.

6.18.3 Indirect addressing
In the indirect addressing mode of operation, DMEM addresses to required elements are stored within contiguous locations in
DMEM.

In the indirect addressing mode (ld_mode=indirect), the following instructions are used in conjuction with the ld.index.type
instruction.

ld.type [aX]+/-mX, elem_offset, ld_mode, wr_offset, latch_mode
ld.type [aX]+/-Is5, elem_offset, ld_mode, wr_offset, latch_mode

The ld.index.type instruction fetches a DMEM element from memory pointed by aX and writes the least significant 18 bits to the
mem_indexX register.

When ld.type [aX] or st.type [aX] instructions are set to indirect mode (ld_mode=indirect or st_mode=indirect, respectively), the
instructions use the address contained in mem_indexX to fetch/write based on the aX used.

For example, let

VCPU.DMEM[0] = 56
VCPU.DMEM[1] = 92

where 56 and 92 refer to DMEM addresses in the VCPU/IPPU space. Let us assume that they refer to the IPPU DMEM space,
and let

IPPU.DMEM[56] = 3.3 + i*4.4
IPPU.DMEM[92] = 2.2 + i*5.5

Consider the following instructions:

mv a0, 0;
ld.index.vcpu [a0] + 1; // STATE: mem_index = UNKNOWN
ld.index.vcpu [a0] + 0; // STATE: mem_index = UNKNOWN
nop; // STATE: mem_index = UNKNOWN
ld.ippu [a0] + 0, 0, indirect, +8, e32; // STATE: mem_index = 56
ld.ippu [a0] + 0, 0, indirect, +8, e32; // STATE: mem_index = 92
nop;
nop; // STATE: r0[31:00] = 3.3 + i*4.4

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 246 / 536

nop; // STATE: r0[63:32] = 2.2 + i*5.5

The indirect mode for store instruction will operate using the same logic as above.

6.18.4 Vectorized indirect addressing
In the vectorized indirect addressing mode of operation, DMEM addresses are generated by extracting the 16-bit "index" from
register R1 and adding it to address register a0 or a1.

The vector indirect addressing in the IPPU can be used to reorder de-interleaved outputs.

In the vectorized indirect addressing mode ld.type [aX]+/ld_mode=vindirect+/latch_mode DMEM address is calculated as
follows:

DRAM_address = aX + (R1[vindx_ptr] >> e_adj)
Where: R1[vindx_ptr] is 16-bit R1[(vindx_ptr+1)*16 : vindx_ptr*16],
e_adj = 0: if latch_mode=e32; 1: if latch_mode=e16; 2: if latch_mode =e8; 3: if
latch_mode=e4; and 0: otherwise.
se_ptr = R1[vindx_ptr] & se_mask; Where se_mask=0x0: if latch_mode=e32; 0x1: if
latch_mode=e16; 0x3: if latch_mode =e8, and 0x7: if latch_mode=e4.

The ld.type [aX]+/ld_mode=vindirect+/latch_mode instruction fetches a 32-bit element from DMEM memory pointed to by
DRAM_address and writes sub_element (e32, e16, e8, or e4) as pointed to by se_ptr into R0[r_wr_ptr].

The vindirect mode can be used in load instructions only. It is not valid in store instructions.

Any ld.type [aX] instruction that results in R1 as the destination will clear the vindx_ptr register.

Any ld.type [aX]+/ld_mode=vindirect instruction will auto-increment the vindx_ptr register.

Example code using the vindirect addressing mode for deinterleaving:

mv r_wr_ptr, (N_AU * 8); //point r_wr_ptr to R1
mv a0, as1; //set a0 to lookup table address
ld.ippu [a0]+4, 0, normal, 0, normal; //load a line of lookup table
nop; //pipeline wait
set.loop 0, 8;
mv r_wr_ptr, 0; //point r_wr_ptr to LSB of R0

//in loop: read next 8-bit element and store in R0
ld.ippu [a1]+0, 0, vindirect, 2, e8; loop_begin 0; loop_end 0;
nop; //pipeline wait
nop; //pipeline wait
mv r_wr_ptr, (N_AU * 8); //point r_wr_ptr to R1 for next iteration

NXP Semiconductors

IPPU Instruction Set

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 247 / 536

Chapter 7
DMA Controller
7.1 Direct memory access unit (DMA)
The VSPA DMA is capable of transferring data between the VSPA memories and the VSPA AXI bus interface. It moves data
between VCPU DMEM, RF transceivers, and SRAM (used to hold data for symbol processing). It is also intended to load VCPU's
program RAM (PRAM) and the IPPU's program RAM (IPPU PRAM).

7.1.1 DMA module operation
The VSPA DMA is an autonomous unit within VSPA, and is controlled by an array of VSPA IP registers; it can therefore be
controlled by the VCPU and/or any another IP bus master with access to the VSPA IP bus slave port.

The DMA controls an AXI bus master interface, and has priority access to and control over the VCPU's DMEM. So, when a DMA
operation is triggered, the DMA will steal necessary cycles from the VCPU when it needs access to DMEM. DMA accesses to
VCPU PRAM are allowed while the VCPU is in operation. The DMA will steal the necessary VCPU cycles to write to the VCPU
PRAM. Aside from the delay due to the stolen VCPU cycles, the VCPU's operation is unaffected. The IPPU PRAM can only be
written by the DMA when the IPPU is not accessing its PRAM - it must be idled if its PRAM contents are to be replaced.

The DMA has 16 channels, and each channel is driven by a 2-entry FIFO. Each FIFO entry holds all the information required for
a DMA transfer, including starting addresses, selected VSPA memories, byte count, and transfer mode. There are a set of global
status registers indicating whether each channel's transfers are active, have completed, or had any type of error.

There is a common status/abort control register that, when read, shows that channels that have pending activity, and when written
to a "1" will abort all pending activity for the selected channels. A single write to this common control register can deactivate any
desired number of channels.

The DMA has 4 independent data movement engines, one that writes to the AXI bus, and 3 that read from the AXI bus. All of the
engines operate concurrently, and the write engine is independent from the read engines. There are separate arbiters for the
write engine and the read engines.

The DMA uses several sets of internal registers (buffers) to improve the timing and efficiency of operations. The DMA has 2
DMEM buffers, each equal in width to a DMEM line. There are AXI bus width data buffers that are coupled to the AXI rdata and
wdata buses. There are also PRAM and IPPU PRAM buffers for writing AXI data into PRAM and IPPU PRAM.

The DMA uses the ACTIVE_THREAD_ID to generate the awthread and arthread outputs. These outputs reflect the state of the
ACTIVE_THREAD_ID at the time the DMA channel was programmed. DMA transactions are marked as SUPV, and have
unrestricted DMEM write permissions. If the host programs a DMA transaction, the DMA will mark it as SUPV with thread ID=0.
This should grant host programmed transactions full access to any memory locations, but will identify them as thread ID=0.

7.1.2 Issuing DMA commands
An entity desiring a DMA operation programs the command/control registers. Note that this is a command based interface, with
a four register set (DMA_DMEM_PRAM_ADDR, DMA_AXI_ADDR, DMA_AXI_BYTE_CNT, and DMA_XFR_CTRL) that acts as
the command buffer. The interface must be programmed by writing last to the DMA_XFR_CTRL register, which transfers the
four-register wide command into the channel's control FIFO (assuming it's not already full).

Note that the VCPU can write any combination of bits via its register write mask; it is not required to write all bits. In fact, it can
do a write that will update no bits if the register write mask is set to 0. So, since the DMA command interface acts as a command
buffer, the VCPU can issue a DMA command that exactly duplicates the last DMA command issued by the VCPU merely by
writing to the DMA_XFR_CTRL register with a write mask of 0. This of course assumes the other three registers of the command
buffer interface have not been written by the VCPU since the last command was launched.

The host processor can program the DMA in the same fashion as the VCPU, using registers at the same addresses. However,
a separate command buffer is implemented for the host, so that the host and the VCPU do not interfere with each other when
programming the DMA. Unless the host and VCPU are sharing control over the same DMA channels, there is no need for a
software semaphore to control access to the DMA command interfaces. The host interface is not readable and does not provide

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 248 / 536

bit write capabilities, so whenever the host writes to the command registers, all bits must be written. So, a host routine that
programs the DMA registers should not be interruptible by another host or host routine that can program the DMA registers.

7.1.3 DMA channel arbitration
The DMA has 4 independent data movement engines, one that writes to AXI slaves and 3 more that read from AXI slaves. The
write engine has its own arbiter, and the 3 read engines share an arbiter. All engines can operate concurrently. The arbiters are
round robin, and arbitration occurs at the completion of each AXI burst. Channel 0 is special in that it is exempt from round robin
arbitration - it always wins arbitration. This makes it a good choice for priority reads and writes to AXI memory for purposes such
as look-ups of data stored in large tables.

If multiple channels are configured to read from AXI and channel 0 is configured as one of these channels, the
usual round robin arbitration is disrupted and the next 2 highest priority channels will always win arbitration on the
remaining read engines. As any channel completes, the next highest channel will become one of the always
winning channels. When channel 0 completes the usual round robin arbitration will resume beginning with the
channels currently running.

 NOTE

Channels requiring external trigger will not participate in arbitration whenever their triggers are seen as negated.

 NOTE

The DMA has higher priority to access DMEM than the VCPU or the IPPU, so while the DMA is accessing the DMEM, the VCPU
and IPPU may be stalled if they are also trying to access DMEM during the same cycle. This should not affect the VCPU too
significantly, because the DMA has DMEM buffers that it uses to hold an entire DMEM line's worth of data. It will take multiple
clock cycles to transfer enough data to the AXI bus, to equal the amount contained in the DMEM line buffer.

7.1.4 DMA deinterleaving engine
The VSPA DMA has a special deinterleaving (DI) engine, which may be used for storing LLRs or other interleaved data from
DMEM to AXI memory, while simultaneously deinterleaving the data at a nibble (4-bit mode), byte level (8-bit mode), 16-bit mode
or 32-bit mode.

The DMA has only one DI engine, so it can only allow one command involving DI in the DMA command buffer at a time. So once
a DI command has been issued to the DMA, additional DI commands will be refused until the original command has fully
completed. This is necessary to guarantee that the DI engine's resources will remain coherent.

7.1.4.1 DI table structures in DMEM
The DMA DI engine expects the data that is to be deinterleaved and written into AXI to be held in two tables in the DMEM. The
first table, called the address table, contains the AXI destination addresses for the data to be written to AXI. The second table,
called the data table, contains the data that is to be written to the AXI addresses in the address table.

The address table consists of 32-bit addresses. The data table consists of either 4, 8, 16, or 32 bit data values. The values in the
data table are understood by the DMA to be 4, 8, 16, or 32 bit according to the DI_mode bits specified when the DI command is
issued - this is done via the DI mode selection bits in the DMA_XFR_CTRL register.

The starting DMEM address of the address table must be aligned to a 32-bit boundary in DMEM. There are no restrictions on
the starting DMEM address of the data table.

7.1.4.2 DI modes
The 8-bit DI mode expects the addresses in the AXI address table to be a series of AXI byte addresses (each 32-bits in size),
and for the data in the data table to be a series of 8-bit data values.

There are two 4-bit DI modes. The address table used by the 4-bit DI modes still consists of 32-bit addresses, but they are nibble
addresses as opposed to the byte addresses used by the 8-bit DI mode. Each 4-bit DI mode can store 4-bit data of one half of
the AXI address space. One mode can store data into the lower 2 GB of the 4 GB AXI address space; the other mode can store
data into the upper 2 GB of the 4 GB AXI address space. In order to use the 4-bit DI mode the byte address must be left shifted

NXP Semiconductors

DMA Controller

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 249 / 536

by 1 bit to create the nibble addresses. If the MSB of the byte address is 0, then di_mode 010b is used. If the MSB of the byte
address is 1, then di_mode 011b is used.

For example:

1. Software needs to write to address 0x8000_0000 in 4-bit De-interleaving mode. User needs to select
the 011b - 4-bit de-interleave, AXI address MSB=1, as the MSB of the address is 1. Now in this case,
the AXI address that needs to be filled in the DI AXI address table will be 0x80000000<<1 instead of
only 0x8000_0000. The left shift will result in 0x0000_0000.

2. Software needs to write to address 0x3443_0000 in 4-bit De-interleaving mode. User needs to select
the 010b - 4-bit de-interleave, AXI address MSB=0, as the MSB of the address is 0. Now in this case,
the AXI address that needs to be filled in the DI AXI address table will be 0x34430000<<1 instead of
only 0x3443_0000. The left shift will result in 0x6886_0000.

The 16 bit mode writes 16-bit data. The data table must be 16-bit aligned in DMEM, and all the addresses in the address table
must be 16-bit aligned AXI addresses.

The 32-bit mode writes 32-bit data. The data table must be 32-bit aligned in DMEM, and all the addresses in the address table
must be 32-bit aligned AXI addresses.

7.1.4.3 DI engine arbitration
The DI engine requests accesses that are arbitrated against the other channels in the same fashion as non-DI arbitration. If
channel 0 is used for DI, these accesses will have highest priority until all are completed. If any channel other than 0 is selected
for DI writes, standard round robin rules apply. This arbitration policy governs AXI accesses, but not DMEM accesses. The DI
state machine has highest priority when reading the address and data table entries from DMEM. Since there are separate DMEM
line buffers for DI addresses and DI data, DI DMEM accesses are infrequent.

7.1.4.4 DI special notes
A channel programmed for DI storage cannot be aborted - the abort command will be ignored. External trigger of a DI operation
is illegal.

7.1.5 Effect of invasive debug on DMA
During debug, if the debugger requests the VSPA to halt, the DMA will also halt at the next AXI burst boundary. Single steps of
the VCPU do not affect the DMA. The DMA will remain halted until a resume is executed.

7.1.6 DMA use with FIFOs
There is a special characteristic of the DMA that can allow the user to control the burst beat count when transferring data to or
from a FIFO.

Ordinarily the DMA will perform 16-beat burst transfers whenever possible in order to achieve the maximum possible DMEM and
AXI bus utilization efficiency. The AXI protocol requires that a burst must never cross a 4K byte address boundary. So, the only
time the DMA will use a burst size of less than 16 beats is when it would cause a 4K boundary crossing, or when there is less
data to be transferred in order to complete the programmed command.

The DMA calculates and obeys a "virtual" 4K boundary restriction even when it is transferring to a fixed address, that is, a FIFO.
So, if the FIFO is decoded into a full 4K byte region where any access to the region is considered a FIFO access, this feature
can be used to control the burst size. To use a 16 beat burst, the DMA should be programmed in fixed burst mode, with the
starting address of the FIFO set to the lowest numerical address that will access the FIFO. To use a 1 beat burst, the DMA should
be programmed in fixed burst mode, with the starting address of the FIFO set to the highest AXI bus width aligned numerical
address that will access the FIFO. Consider the examples below:

FIFO address decode range 0x10000 - 0x10FFF (4K byte address space) AXI data bus width of 128 bits (16 bytes)

1-beat burst - set DMA AXI address to 0x10FF0 (0x11000 - 1 beat x 16bytes)

NXP Semiconductors

DMA Controller

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 250 / 536

2-beat burst - set DMA AXI address to 0x10FE0 (0x11000 - 2 beats x 16bytes)

3-beat burst - set DMA AXI address to 0x10FD0 (0x11000 - 3 beats x 16bytes)

.......

......

......

14-beat burst - set DMA AXI address to 0x10F20 (0x11000 - 14 beats x 16bytes)

15-beat burst - set DMA AXI address to 0x10F10 (0x11000 - 15 beats x 16bytes)

16-beat burst - set DMA AXI address to 0x11F00 (0x10000 would also work)

7.1.7 DMA features not supported
The following DMA features are not supported:

• Bit/byte reordering.

• Endian conversion: little endian operation only

• PRAM accesses that start with an AXI address that is misaligned to the larger of a 64 bit boundary or the AXI data bus
width

• IPPU PRAM accesses that start with an AXI address that is misaligned to the larger of a 32 bit boundary or the AXI data
bus width

• VPRAM, and IPRAM share a write buffer. So if more than one DMA command targets these resources, the results will be
non-deterministic. It's up to the programmer to make sure that no more than one active DMA command at a time targets
any of these resources. For example, channel 2 cannot be programmed to load VPRAM if channel 1 is programmed to
load IPRAM at the same time. Also, more than one channel cannot target IPRAM at the same time. The same is true of
VPRAM.

• Other transfers that start at a DMEM or AXI address that is not aligned to the AXI bus width

• Hardware semaphores for reserving channels for different masters or threads; however the DMA does maintain separate
control registers (at the same address) for the host and for the VCPU. So both the VCPU and the host can program DMA
channels at the same time, but they should each stick to an agreed upon group of channels that are reserved for them
only

• Accesses smaller than 8 bits. AXI bus protocol does not directly support 4 bit reads or writes; minimum granularity is 8
bits. If LLRs are defined to be 4 bits, then this will always require transferring an even number of 4-bit LLRs. LLR
(deinterleaving) support is chip specific. So it only applies if DMA_LLR_ENG=1.

• AXI reads smaller than the width of the AXI data bus. Assuming the data bus to be 128 bits, AXI reads will appear to be a
minimum of 128 bits (1 beat of 128 bits). FIFOs of 16 bits or less may get "double-popped" by bus width conversion IP.
Writes are supported by byte strobes, and so may not have quite the same issues, assuming that the FIFO qualifies writes
with strobes

7.1.8 Source/destination memory formatting
System memory to VCPU program RAM:

NXP Semiconductors

DMA Controller

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 251 / 536

VCPUInstr[0][31:0]

VCPUInstr[0][63:32]

VCPUInstr[1][31:0]

VCPUInstr[1][63:32]

VCPUInstr[32767][31:0]

VCPUInstr[32767][63:32]

VCPU instructions must be
"loosely" packed into system
memory (external to VCPU),
one instruction every 64 bits.

0000

0004

0008

000C

4FFF8

4FFFC

31 0

Figure 37. VCPU instruction (Rinstr) format in system memory

VCPUInstr[0][63:0]

VCPUInstr[1][63:0]

VCPUInstr[n-1][63:0]

VCPU instructions that are
fetched from system memory
are packed into VCPU's
program RAM (from the
perspective of the VCPU
program counter). Increment
is by 2 due to half-word
instructions.

0000

0002

VCPUInstr[n][63:0]

FFFC

FFFE

Figure 38. VCPU instruction (Rinstr) format in program RAM

System memory to IPPU program RAM (IPPU PRAM):

IPPUInstr[0][31:0]

IPPUInstr[1][31:0]

IPPUInstr[n-1][31:0]

IPPU instructions must be
"firmly" packed into system
memory (external to IPPU).

0000

0002

IPPUInstr[n][31:0]

7FF8

7FFC

31 0

Figure 39. IPPU instruction (Rinstr) format in system memory

IPPUInstr[0][31:0]

IPPUInstr[1][31:0]

IPPUInstr[65534][31:0]

IPPU instructions that are
fetched from system memory
are packed into IPPU's
program RAM (from the
perspective of the IPPU
program counter).

0000

0001

IPPUInstr[65535][31:0]

FFFE

FFFF

Figure 40. IPPU instruction (RUinstr) format in program IPPU PRAM

NXP Semiconductors

DMA Controller

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 252 / 536

System memory to/from VCPU data memory (DMEM):

The internal DMEM can be loaded with data from external system memory, or the internal DMEM can be "dumped" to external
system memory, under software control.

Data is packed into external system memory as shown in the following figure. Internal DMEM is 1024 bits wide, and 32-bit data
that is copied from external system memory is packed into internal DMEM (see Figure 43, Figure 44). Using the VSPA DMA, it
is the programmer's choice whether data is converted from 16-bit 2's complement to 16-bit fractional sign magnitude when it is
transferred from external system memory to internal DMEM.

I[1][15:0]0004

000C

31 0

3FFC

3FF8

Q[1][15:0]

I[0][15:0]0000 Q[0][15:0]

I[2][15:0]0008 Q[2][15:0]

I[3][15:0]Q[3][15:0]

I[4094][15:0]Q[4094][15:0]

I[4095][15:0]Q[4095][15:0]

Figure 41. Complex Data Format in System Memory

R[2][15:0]0004

000C

31 0

3FFC

3FF8

R[3][15:0]

R[0][15:0]0000 R[1][15:0]

R[4][15:0]0008 R[5][15:0]

R[6][15:0]R[7][15:0]

R[8188][15:0]R[8189][15:0]

R[8190][15:0]R[8191][15:0]

Figure 42. Real data format in system memory

32-bit
storage
elements

DMEM
0
32
64

8160

31 1 0

Figure 43. Data format in internal DMEM

Data that is "dumped" from internal DMEM to external system memory is packed into external system memory, as shown in
Figure 43. Using the VSPA DMA, it is the programmer's choice whether each half-word is converted from sign magnitude to two's
complement when it is transferred from internal DMEM to external system memory.

NXP Semiconductors

DMA Controller

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 253 / 536

A DMEM Line

ith complex element Imaginary Real

16 bits each

31 1 0

32 bits each

Figure 44. Data line in internal DMEM

NXP Semiconductors

DMA Controller

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 254 / 536

Chapter 8
Mailboxes
8.1 Mailboxes
The VSPA platform provides several mail box facilities to facilitate communications between the VCPU and the host and between
the VCPU and an external debugger. Here are their features:

1. Bi-directional messages: VCPU <-> host communication:

• Host can send messages to the VCPU (instructions, and parameters)

• The VCPU can send messages to host (printf functions)

• 2x64-bit message mailboxes

• Status flag mechanisms to indicate outgoing messages have been read

• Status flag mechanisms to indicate incoming messages that have not been read

• Generation of IRQ for the host/GO for VSPA

2. Bi-directional messages: VCPU <-> SOC level debug IP

• Debug IP can send messages to the VCPU via the debug IP bus

• The VCPU can send messages to debug IP via the debug IP bus

• 32-bit messages

• 64-bit messages

• Status flag mechanisms to indicate outgoing messages have been read

• Status flag mechanisms to indicate incoming messages that have not been read

3. Unidirectional messages: VSPA DQM -> SOC level debug IP via trace

• VSPA sends a DQM message when writing a certain VSPA IP bus register

• Short messages (25-bit payload)

• > 32-bit messages (57-bit payload)

The VSPA<->host and VSPA<->Debugger mailboxes have symmetrical capabilities from the point of view of the VSPA and the
other processors.

VSPA can send and receive up to two 64-bit messages to the host. The host can send and receive up to two 64-bit messages
to VSPA. VSPA can send and receive 32 and 64-bit messages to the debugger, and the debugger can send and receive 32 and
64-bit messages to VSPA.

Each sender can monitor when the receiver reads each message. When VSPA is the recipient of a message, it can be set up to
GO. When the host is the recipient of a message, it can be interrupted. These GO and interrupt capabilities are configured via
the CONTROL and IRQEN registers respectively.

VSPA can receive a GO when it receive a message from the host (in the VSPA INBOX message), or when the host reads a
messages sent via VSPA OUTBOX (note the host reads the HOST INBOX). The host can receive an interrupt when it receive a
message from VSPA (in the HOST inbox message), or when VSPA reads a messages sent via the HOST OUTBOX (note VSPA
reads the VSPA's INBOX).

Note that both the VCPU and the host can access both sides of the VSPA<->host mailboxes. If communications with the host is
not needed or desired, the VCPU can use the host mailbox registers to communicate with other VCPU processes. Of course,
only the VSPA inboxes have GO generation capability.

The VSPA DQM mailboxes allow trace port messages to be sent at will by software executing on the VCPU or the host.

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 255 / 536

Chapter 9
AXI Slave
9.1 AXI slave overview
The VSPA AXI slave interface allows AXI bus masters to directly access VSPA data memories. It also provides a flag/go system
that allows the AXI masters to set status flags and trigger VSPA go events as a direct result of AXI writes to the VSPA AXI slave.
This allows VSPA DMEM buffers to be read and/or written by remote processors or DMAs, and the flags can be used to
communicate to the VSPA that an action has taken place, or is about to take place.

9.2 Memory map
From the perspective of the AXI slave, the memory map is as follows:

AXI start address AXI end address VSPA resource

AXI base address + 0x000000 AXI base address + 0x0FFFFF VCPU DMEM byte address 0x000000 –
0x0FFFFF

AXI base address + 0x100000 AXI base address + 0x1FFFFF IPPU DMEM byte address 0x000000 – 0x0FFFFF

AXI base address + 0x200000 AXI base address + 0x3FFFFF 64 bits of flags

9.3 Usage example
A remote VSPA (VSPA master or VSPA-M) needs to read a buffer from another VSPA (VSPA slave or VSPA-S). After the VSPA-
S buffer data is fetched, VSPA-M needs to tell VSPA-S that it has consumed the buffer, so the buffer can be overwritten for
another use.

The VSPA-M programs its DMA to read data from the VSPA-S using the VSPA-S AXI slave interface. If the VSPA-S buffer data
resides in IPPU DMEM, with a byte offset of 0x200 from the base of IPPU DMEM, VSPA-M programs the DMA_AXI_ADDRESS
register to VSPA-S AXI Base address + 0x100000 + 0x200. VSMA-M programs the DMA_DMEM_ADDRESS to the desired
destination byte address in its local DMEM. VSPA-M would also program the DMA_AXI_BYTE_COUNT to indicate the number
of bytes to copy, and finally it would write the DMA_XFR_CTRL register to initiate the operation.

To set the remote VSPA AXI slave GO flag, a second VSPA-M DMA command would be used. If this second command is
programmed into the second FIFO entry for the same DMA channel that was used for the data movement, the second command
will not begin until the previous command completes. This ensures that all the data is copied before the VSPA-S flag is set. To
set AXI slave flags 33 and 32, VSPA-M would do the following:

• Initialize a 64-bit location in VSPA-M DMEM to 0x00000003_00000000. The chosen 64-bit location must also be aligned to
the AXI address width of the VSPA-M DMA for the DMA to transfer it.

• Then program the VSPA-M DMA to copy 8 bytes from the chosen DMEM location to AXI location VSPA-S AXI Base address
+ 0x200000.

• After all the data has been read from VSPA-S, the second VSPA-M DMA command will run, causing VSPA-S flags 33 and
32 to set. If VSPA-S had enabled a go due to one or both of those flags, a VCPU GO event will occur. If there is no go
enabled, the flags will set, but no VCPU GO event will be generated.

9.4 VSPA AXI slave flag system
There are 64 AXI slave flags, arranged into two 32-bit VSPA IP registers. There are also two 32-bit flag-go-enable registers,
containing a bit for each flag that determines whether setting the corresponding flag causes a VSPA GO.

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 256 / 536

The flags can only be written to one from AXI, and can only be cleared by VCPU writes, write one to clear. The final beat of wdata
is used to set the flags. When wlast, wready, and wvalid are all asserted, wdata[63:0] is used to set flags. Any bits that are 1’s
will cause the corresponding flag to set. Therefore to use the flags, an 8-byte transfer to VSPA AXI address 0x0020_0000 should
be used. There is no reason to send any more data, or use any other address for flags. Sending less than 8 bytes of data will
cause unintended flags to set, since the wstrb signals are ignored. Also, narrow transfers to flags of less than 64 bits will not work
properly.

AXI reads will return an error response and unintelligible data.

9.5 Interface limitations
The AXI slave interface to VSPA DMEMs has a minimum write resolution of 16-bits. If an AXI master attempts to write a single
byte, the DMEM will be written with 2 bytes instead. These will be aligned to the 16-bit address. For example, a write to address
0x13 will write data to bytes at addresses 0x12 and 0x13, and address 0x12 will be updated with whatever data is on the AXI
wdata bus in the associated bit positions.

The AXI slave interface does not support wrapped or fixed burst types. If these burst encodings are used, addresses will still be
incremented in a linear fashion, ignoring awburst and arburst encodings.

NXP Semiconductors

AXI Slave

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 257 / 536

Chapter 10
Debug and Trace
10.1 Debug
The VSPA platform contains several debug features to enable and simplify both hardware validation and software debug.

Debug activities can be conducted either by an external debugger or a host processor in the system that is capable of controlling
various accessible registers and of taking action based on current conditions. These activities would be controlled by accesses
that would take place through the Debugger IP register interface. Note that this is a separate IP interface that is not directly
accessible by the VCPU.

This section introduces the VSPA Debug architecture and provides a general overview of the top-level blocks and their respective
functionality.

The VSPA debug block is comprised of three main components: debug trace unit (DTU)[30], debug event generation unit (DEGU),
and debug run control (DRC). The VSPA debug block contains separate enable bits for non-invasive debug (nidbg_en), and
invasive debug (idbg_en), in the GDBEN control register. These bits, along with the S0C invasive and non-invasive debug security
overrides (dbg_dbgen and dbg_niden input to VSPA), can be used to independently enable/disable non-invasive (DTU) and
invasive (DRC) debug, or disable VSPA debug entirely by clearing both bits.

The DEGU is comprised of shared, configurable debug resources capable of producing a variety of debug actions (both invasive
and non-invasive), such as generation of a variety of trace messages, halt and resume of the VSPA, capability to act on up to a
maximum of 8 cross-trigger inputs as well as generation of up to four cross-trigger outputs, based on a variety of internal VSPA
debug events. The DEGU contains eight configurable sequencer-capable comparators and also houses the debug control
registers, which are accessed via a dedicated debug IPbus. In addition, a set of message mailboxes exist for inter-VSPA/debug
communication. Both 32-bit and 64-bit mailboxes exist from VSPA to debug and from debug to VSPA. A VSPA IPbus gateway
also exists to read/write the VCPU/host IPbus registers. In addition, this gateway gives the user the choice of which identity to
use for the register access (VCPU or host).

The DRC contains logic both centrally located and implemented in various parts of the VCPU in order to provide invasive run
control of the engine. Once VCPU is halted in debug mode, this provides the ability for the user to single step through VCPU
instructions as well as read the state of all VCPU architectural registers, including the internal jump-return and loop hardware
stacks. In addition the memories may also be read and/or written. Finally, software breakpoint (SWB) functionality is implemented
as part of this unit. When enabled a SWB can be used to halt the core, similar to a hardware breakpoint, as well as generate
other debug events that are configured to produce many different actions. The entire VSPA_debug subblock operates in the
same clock domain as the VCPU (VCPU_clk). Figure 45 depicts the high level block diagram of the debug components and how
they integrate with the VCPU.

TRACE is not available on this device.

 NOTE

[1] TRACE is not available on this device.

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 258 / 536

10.1.1 VSPA debug block diagram

VCPU_clk_ctrl VSPA_debug

Debug trace unit
(DTU)

Debug event
generation unit

(DEGU)

Debug run control
(DRC)

VCPU

V
S

PA
 is

o

VSPA IPbus registers

VSPA DMA

Internal IP
bus interface

VSPA_domain

dbg_sync_req

ATB bus

dbg_trig_in_req
dbg_trig_in_ack
dbg_trig_out_req
dbg_trig_out_ack

dbg_niden

dbg_dbgen

dbg_resum
e_req

dbg_halt_ack

dbg_halt_req

Debug
IPbus I/F

VSPA/debug mailboxes

resume
dbg_see
dbg_halt

VSPA debug trace
interface (RDTI)
(PTM and DTM)

VSPA

Figure 45. VSPA debug block diagram

Debug trace unit (DTU) is not available on this device.

 NOTE

10.1.2 Debug functional description

10.1.2.1 Debug event generation unit (DEGU) subblock
The DEGU block is responsible for generating all non-program trace (PTM) debug events and houses all shared debug resources
such as sequence-capable comparators, cross-trigger control logic, along with all debug configuration, and status registers. The
DEGU contains an IPbus interface coupled to the dedicated debug IPbus, used for configuring the shared resources along with
the actions taken on occurrence of the various debug events. There exists a total of upto 20 VSPA debug events as specified in
the following table below:

Table 96. VSPA debug events

Event Description

VCPU Go One of the (many possible) VCPU Go events has occurred. Refer to VCPU GO events
for all possible sources of this control signal.

VCPU Done VCPU has executed the "done" instruction.

Table continues on the next page...

NXP Semiconductors

Debug and Trace

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 259 / 536

Table 96. VSPA debug events (continued)

Event Description

SWB Software breakpoint.

Comparator n event where n is 0-7 One or more of the eight comparators has triggered (if enabled and armed) due to either
a match event or as a result of a different (armed and enabled) comparator causing it
to trigger (if configured as part of a sequence).

Cross-Trigger in n trigger event where
n is 0-7

One or more of the 8 Cross-trigger inputs has triggered (dbg_trig_in[n]). Each
dbg_trig_in input is internally synchronized to the VSPA clock domain, and once
sampled asserted high, the corresponding dbg_trig_in_ack is asserted high in response.

Each of these debug events can be configured (mapped) to cause multiple actions to occur, such as generating a cross-trigger
out, start/stop Program/Data trace, generate a watchpoint message, cause VSPA to halt. As such, the DEGU unit essentially
straddles the invasive and non-invasive debug boundary since it can directly or indirectly cause the DTU to generate a trace
message and/or cause the DRU to halt/resume the VSPA.

10.1.2.1.1 Comparator resource
The DEGU contains eight highly configurable "sequence-capable" comparators which have the ability to act individually or can
be paired with an adjacent comparator to form address ranges (windows) for added flexibility in filtering trace around areas of
interest. This filtering capability can greatly reduce the amount of trace data produced, alleviating loss of trace data due to FIFO
overflow. Each comparator can also be armed, either manually when it is enabled, or dynamically by any of the upto 20 possible
events (including other comparators). Likewise, each can be disarmed either manually or via any of the upto 20 possible events
(again including any of the comparators). In addition, any (armed and enabled) comparator can trigger any other armed and
enabled comparator to activate, causing a comparator event. This provides the ability to define a sequence of events which must
occur before a specific (final) desired action takes place. This feature allows the capability to filter trace around more complex
sequences of events. Refer to the Debug comparator section for detailed information on the functionality of the comparator
resource.

10.1.2.1.2 Cross-trigger resources
The DEGU contains 8 general purpose cross-trigger inputs and 4 cross-trigger outputs. Any of the DEGU events can be configured
to cause any of the dbg_trig_out_req[n] (where n is 0-3) outputs to trigger (become asserted high). Likewise, any of the
dbg_trig_in_req[n] (where n is 0-7) inputs, can be configured to cause any of the possible actions to occur, some of which are:

• Halt/resume the VSPA, by sending the appropriate control signal(s) to the DRU unit to perform the halt/resume function.

when triggered.

Each of the 8 cross-trigger inputs (dbg_trig_in_req[n], where n is 0-7)is internally synchronized to the VSPA clock domain, and
once sampled asserted high, will drive the corresponding ack output (dbg_trig_in_ack[n]) high until the request is sampled low,
at which point, the ack out will be driven low (released), completing the handshake. The cross-trigger output resources behave
in the same manner, that is, whenever dbg_trig_out_req[n] (where n is 0-3) is driven asserted high, it will remain asserted until
the corresponding ack (dbg_trig_out_ack[n]) is sampled asserted high in the VSPA clock domain. At this point dbg_trig_out_req[n]
will be de-asserted low (released). Note that the dbg_trig_out_ack[n] inputs are internally synchronized to VSPA clock. The
dbg_trig_out_req[n] outputs must be synchronized in the receiving clock domain.

10.1.2.1.3 Debug control, configuration, and status registers
All VSPA debug configuration, control, and status registers are located in the DEGU unit, accessed via the dedicated debug
IPbus. Refer to VSPA_DBG register descriptions

NXP Semiconductors

Debug and Trace

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 260 / 536

Not all possible actions which can be configured for any given event necessarily has a valid use case; and may
cause unpredictable behavior. It is left to the discretion of the User when configuring (mapping) events to desired
actions.

 NOTE

10.1.2.2 Debug run control (DRC) subblock
The DRC subblock implements invasive type debug functionality, such as halting the VSPA, single stepping through VCPU
instructions, and querying (reading) VSPA IPbus registers and/or internal architectural registers. In addition, the memories may
also be read or written by the debug system.

10.1.2.2.1 VSPA halt and resume
The DRC provides the ability for the VSPA to be halted, entering debug mode. Halting can only occur if the idbg_en bit is set in
the GDBEN register (invasive debug enabled) and the security pin, dbg_dbgen, is driven high (1). Halting can be initiated in three
ways, including:

• On occurrence of any DEGU event(s) configured to cause the action of halting the VSPA.

• By writing 1 to the force_halt bit in the RCR control register via debug IPbus.

• When the external system triggers the dedicated halt request input, dbg_halt_req.

Note that the reason (or cause) of the halt is reflected in the RCSTATUS register.

Once VSPA has been halted, it can resume execution by any of the following ways:

• Temporarily by single-stepping on a VCPU instruction, by writing 1 to the single_step bit in the RCR register.

• Writing 1 to the resume bit in the RCR register.

• When the external system triggers the dedicated resume request input, dbg_resume_req.

• When any of the general purpose cross-trigger inputs, dbg_trig_in_req[n], configured to cause the action resume, are
triggered by the external system.

10.1.2.2.2 VSPA internal visibility
There are two mechanisms which can be used to gain access to internal VSPA registers and memory.

• An IP gateway gives the debugger read/write access to VSPA IP bus registers via the debug IP bus.

• An architecture visibility portal provides read access to most VSPA internal architecture registers and read/write access to
VSPA internal memories.

Both mechanisms require invasive debug to be enabled (GDBEN.idbg_en set) and the dbg_dbgen security pin to be driven high
(write 1 to dbg_dbgen).

There is no requirement that VSPA be halted when accessing either the IP gateway or the VSPA visibility portal.
However writes may cause undesirable results, and reads may be of little value, as data could be transitioning
often. For best results, it is recommended that VSPA be in halting debug mode when using these resources.

 NOTE

IP Gateway - The user can gain read/write access to the VSPA IP bus registers via the IP gateway. The VSPA IP bus registers
appear to reside in the upper 4 KB of the debug IP bus memory map. In other words, accesses performed to the upper 4 KB
(offset address 0x000 to 0x7FF) of the debug IP memory map are routed via the IP gateway to the VSPA IP bus registers. In
addition, the ability exists to set the identity of debugger accesses via the IP gateway (VCPU or host) which takes effect for the
IPbus register access. Refer to Debug VSP Architecture Visibility Address Pointer register (RAVAP) for details about the ip_bat
bit in the RAVAP control register.

Architecture Visibility Portal - A separate VSPA architecture visibility portal is implemented via the RAVAP, RAVFD, RAVID
set of registers, to provide visibility to the VSPA internal architectural registers and memories. Using this portal, accesses to the
architectural registers and RF registers (R0-R7) are read-only, while accesses to the memories are read/write.

NXP Semiconductors

Debug and Trace

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 261 / 536

10.1.2.2.3 Software breakpoint (SWB)
The DEGUG software breakpoint event is implemented by setting the two MSBs of the VCPU instruction opcode, either at time
of program compile/assembly (refer to the swbreak mnemonic), or by directly writing them in the memory via the VSPA
architecture visibility portal. In either case, if invasive debug is enabled and the dbg_dbgen pin is not low (0), then the VSPA will
halt upon execution of the swbreak (OpX) instruction. However, if invasive debug is not enabled even if the invasive debug security
override is asserted (dbg_dbgen is driven low), the occurrence of the SWB event can still cause other non-halting actions to
occur, such as arm/disarm/trigger comparator, generate cross-trigger out, trigger start/stop of program/data trace, and others as
long as non-invasive debug is enabled and the non-invasive debug security override is negated (dbg_niden input is driven high).

The SWB instruction has special behavior associated with halting inside of short hardware loops, that is, loops of either 1 or 2
instructions. For the short loops, this is needed because the VCPU replays instructions from the pipeline rather than reloading
them from PMEM. Therefore, using the VSPA architecture visibility portal to clear the SWB would be ineffective once VCPU has
halted on the first iteration of the loop.

Because of this special behavior, in order to allow the VCPU to resume instruction execution, when a SWB is placed in a short
loop and the CPU is halted during the first iteration of the loop, the SWB is cleared from the pipeline automatically. Thus, a resume
command will not halt again on the next iteration of the short loop. Instead, the VCPU will run the loop to completion, and then
re-enable SWB instructions. Trace of each iteration of a short loop can be accomplished by using the single step command.

The VCPU uses an internal prefetch buffer. When the VCPU is halted, its prefetch buffer may already contain the next few
instructions. Changing the instruction or the SWB field of the instructions in the buffer may not be detected when the VCPU
resume running. The user should not attempt to modify the instruction or the SWB field of the 4 instructions following the current
PC.

10.1.2.3 Debug module comparator and sequencer
The VSPA debug module has 8 comparator sub-modules. Each comparator can be used individually, or pairs of comparators
can be used together to generate a more complex event as described below. A comparator pair can consist only of an even
numbered comparator n and its numerically incremented neighbor n+1 (comparator 0 can be paired with comparator 1,
comparator 2 can be paired with comparator 3, and so on).

The comparator block diagram is shown in Figure 46.

Each comparator includes a 17-bit data value register, several control registers, several enable signals, four input buses with 17-
bit data width plus 6-bit attribute qualifiers, muxes with mux control to select one of the input buses, Armed status bit, Seq_Trig
register, and read and write ports to read/write data from/to the internal registers. The read port and the write port are connected
to the debug IP bus.

Since DMEM and IPPU DMEM memories can be accessed to read or write multiple 32-bit words in each clock cycle, special
support is provided so that if any (one or more) 32-bit word is accessed (read or written), and the word address matches the
compare criteria, the comparator match is asserted. To do so, the comparator breaks the data value register address
representation into two parts: the line address, and the word address within the line. The line address is compared against the
line address on input in_a or in_b (DMEM address or IPPU DMEM address, respectively), and the selected word access strobes,
in_a_strbs or in_b_strbs (dmem_elem_strb[NUM_ELEM-1:0] or ippu_dmem_elem_strb[NUM_ELEM-1:0], respectively). If both
the line address and any of the strobes meets the compare criteria (for example, ==, >, <=), the comparator match is asserted.

Only an armed comparator can match (trigger). To trigger, a comparator must first be enabled, then armed, then it can be triggered.

Each comparator/sequencer can also be used as a state of a sequencer. When a comparator/sequencer is triggered, the
corresponding input selected by all other comparators/sequencer action control registers is asserted. If this input is selected to
arm a second comparator/sequencer, the second comparator/sequencer is armed. The second comparator will be triggered when
the corresponding match condition occurs. Note that if the "always" condition is selected, the second comparator/sequencer is
triggered immediately, and if the "never" condition is selected, the second comparator/sequencer is triggered only by the
sequencer trigger (not by the comparator). The user can program the sequencer to create up to 8 sequential states. The sequential
comparator can be triggered by a comparator match, or any other event (for example, any comparator trigger, any dbg_trig_in_req
signal, the VCPU go event, and the VCPU done event)

The inputs to each comparator/sequencer are:

• in_a [16:0] - VCPU DMEM address bus to compare

NXP Semiconductors

Debug and Trace

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 262 / 536

• in_b [16:0] - IPPU DMEM address bus to compare

• in_c [16:0] - VCPU PMEM address bus to compare

• in_d [16:0] - VSPA IP bus address to compare

• in_e [16:0] - IPPU PMEM address bus to compare

cmp_in - compare result from the paired comparator for allowing the triggering of the comparator event in the same clock (for
even numbered comparators, cmp_in is tied to 0. For odd numbered comparators, cmp_in is tied to the cmp_evt from the next
lowest enumerated comparator. So, comparators 1, 3, 5, and 7 cmp_in inputs are tied to the cmp_evt outputs of comparators 0,
2, 4, and 6, respectively.

cmp_evt_in[7:0] - compare result from all other comparators (cmp_evt); used to arm, disarm, or trigger the comparator.

trig_in[7:0] - cross-trigger inputs (dbg_trig_in_req[7:0]); used to arm, disarm, or trigger the comparator.

swb - software breakpoint event; used to arm, disarm, or trigger the comparator.

VCPU_go - VCPU_go event; used to arm, disarm, or trigger the comparator.

VCPU_done - VCPU done event; used to arm, disarm, or trigger the comparator.

Outputs:

cmp_evt - Compare event asserts when the comparator matches. It can be used to generate messages, watchpoints, or start/
stop program/data trace. The cmp_evt outputs from comparators 0, 2, 4, and 6 are also used as inputs to paired comparators 1,
3, 5, and 7.

Note, the VCPU and the IPPU use internal prefetch buffers. When the VCPU and IPPU are halted, their prefetch buffers may
already contain the next few instructions. Setting the comparators to the VCPU/IPPU PMEM address to of the instructions already
in the buffer may not be matched when the VCPU/IPPU resume running. The user should not attempt to set the comparator to
any of the 4 instructions following the current PC.

NXP Semiconductors

Debug and Trace

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 263 / 536

OR

A
N

D

OR

AND

A
N

D

OR

DMEM addr

VSPA IP bus addr

VCPU PMEM addr

IPPU DMEM addr

cmp_in

in_data

in_a

in_b

in_c

in_d

comparator
bit [16:0]

+
attr

==
!=
>

>=
<
<=

0
1 SEQ_TRIGG2

cmp_evt

pair_
mode

force_
trig evt_encond_seldata + attri_sel

r/w r/w r/w r/w r/w r/w

Address, attribute,
and valid signals

ARMED

r/w r/w
r/w

Force
DISARM

Force
ARM

Status Reg

AND

AND

AND

AND

AND

OR

cmp_evt_in[7:0]

VCPU_go

SWB

trig_in[7:0]

VCPU_done

CnDACR

AND

AND

AND

AND

AND

OR

cmp_evt_in[7:0]

VCPU_go

SWB

trig_in[7:0]

VCPU_done

CnAACR

AND

AND

AND

AND

AND

OR

cmp_evt_in[7:0]

VCPU_go

SWB

trig_in[7:0]

VCPU_done

CnTACR

Debug IP bus

ARMED

SEQ_TRIGG2

ARMED
FF

SEQ
TRIG
REG

set

clear

IPPU PMEM addr in_e

Figure 46. Debug comparator and sequencer

10.1.3 Debug using the DMA FIFOs
Unused DMA FIFO entries may be configured to "echo" or "reflect" data that is read or written by the VSPA DMA. The intention
is that this data is stored in a reserved area in system memory, and then available for inspection via the host processor, or
potentially available for packing and streaming out via an external interface.

If only one FIFO entry is being used on a channel, the 2nd entry can be programmed to write the data out to AXI somewhere.
Since the FIFO entries are processed sequentially, the 2nd FIFO entry (AXI writes) will not begin until the 1st FIFO entry has
completed - necessary if the 1st FIFO entry is AXI reads.

NXP Semiconductors

Debug and Trace

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 264 / 536

Chapter 11
Interrupts
11.1 Interrupts
The VSPA module generates active low interrupts. VSPA interrupts are enabled and disabled by writing to the IRQEN register.

The interrupts that the VSPA module generates are:

• vcpu_done_irq_b: indicates that the VCPU has completed processing a software thread.

— This interrupt is negated by writing 1 to the corresponding flag in the VSPA STATUS register.

• vcpu_flags0_irq_b: indicates that the VCPU software has generated an interrupt that needs servicing from the host
software.

— This interrupt will assert (if enabled) when any of the flags in the VCPU_HOST_FLAGS0 register are set by the
VCPU software.

— The definition of the flags is software-defined.

— This interrupt source is negated by writing a 1 to the corresponding flags in the VCPU_HOST_FLAGS0 register.
When no bits are set in the VCPU_HOST_FLAGS0 register the interrupt will be negated.

• vcpu_flags1_irq_b: indicates that the VCPU software has generated an interrupt that needs servicing from the host
software.

— This interrupt will assert (if enabled) when any of the flags in the VCPU_HOST_FLAGS1 register are set by the
VCPU software.

— The definition of these flags is software-defined.

— This interrupt source is negated by writing 1 to the corresponding flags in the VCPU_HOST_FLAGS1 register. When
no bits are set in the VCPU_HOST_FLAGS1 register the interrupt will be negated.

• dma_cmp_irq_b: indicates that DMA channel completed its programmed data transfers.

— This interrupt source is negated by writing 1 to the corresponding flags in the DMA_IRQ_STAT register. When no
bits are set in the DMA_IRQ_STAT register the interrupt will be negated.

• dma_err_irq_b: indicates that an error occurred during a DMA data transfer or in the configuration of the DMA channel.

— This interrupt source is negated by writing a 1 to the corresponding flags in the DMA_XFRERR_STAT and
DMA_CFGERR_STAT registers. When no bits are set in the DMA_IRQ_STAT and DMA_CFGERR_STAT registers
the interrupt will be negated.

• vcpu_msg_irq_b: indicates that the VCPU has sent a mailbox message to the host processor.

— This interrupt source is negated by writing a 1 to the corresponding flag in the VSPA STATUS register.

• ippu_done_irq_b:indicates that the VSPA IPPU has completed processing a software thread.

— This interrupt source is negated by writing a 1 to the corresponding flag is the VSPA STATUS register.

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 265 / 536

Chapter 12
Initialization
12.1 Initialization
The VCPU fetches instructions from the internal PRAM. Before the VCPU can begin execution, application-specific software
programs must be copied from external system memory to internal program RAM.

After an asynchronous reset, the VCPU waits for a go bit to be set. The DMA is used by the host processor to load the boot-up
image of PRAM. The host software must set up and enable the DMA to load PRAM, and then poll for the transfer to complete.
After PRAM is loaded, the host can set the host_go bit for the first time.

After boot-up the VCPU can manage its own PRAM image loads. However, it is also possible for the host to be the manager of
all PRAM image loads after boot-up. In this case, the VCPU must be in the Idle state before a new PRAM image is loaded by the
host software.

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 266 / 536

Chapter 13
Forward Error Correction Unit (FECU)
13.1 FECU overview
The FECU module handles forward error correction (FEC) for applications with proprietary protocols similar to WiFi. It performs
FEC for the data fields. FECU is comprised of multiple sub-modules. Each sub-module performs an operation and hands the
data off to the next sub-module in the chain. Once the chain completes, the entire operation is finished, and an interrupt is
generated.

Input data can be loaded into DMEM using the AXI slave, or VSPA's DMA can fetch the input data and load it into DMEM. FECU's
output data is written to DMEM, and VSPA DMA can transfer it to any AXI address.

FECU is configured by FECU IP registers. See FECU register descriptions for detailed description of these registers.

13.2 FECU features
• Supports proprietary protocols similar to 802.11

• Supports up to 256QAM

• Can support multiple streams through VSPA firmware.

• Runs at 614.4 MHz

• Context save / restore for multi-user support

• Encoding operations

— Scrambling

— Convolutional encoding

— Interleaving

— LDPC tone mapping

— LDPC Encoding

• Decoding operations

— De-interleaving (reuse interleaver)

— LDPC tone de-mapping

— Viterbi Decoding

— De-scrambling (reuse scrambler)

— LDPC Decoding

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 267 / 536

13.3 FECU block diagram

DRI
Data

256

Legend

Encode Path

Decode Path

LDPC
Switch

60

4

24

4

4

LDPC
Mux

16

4

4 4

4

4

BCC
Decoder
Parser

4

Interleaver
Tone Mapper
De-Interleaver

De-Tone Mapper

424 LDPC
Decoder

Viterbi
Decoder

Stream
Parser

Convolutional
Encoder

4 4
LDPC

Encoder

BCC
Encoder
Parser

Stream
De-

Parser

DMEM
Interface

Scrambler
De-Scrambler

VSPA
Go

DMA
Trigger

4

Figure 47. FECU block diagram

13.4 FECU clock generation
• FECU contains internal clock generation used to create the gated clocks for the FECU submodules.

• The FECU internal data paths run on dedicated clocks at the VSPA clock rate that are automatically enabled/disabled as
needed during operation to minimize current consumption.

• Clock enable override register bits are provided for all internally-generated clocks.

13.5 FECU low power modes
• Sleep Mode

— All clocks disabled

— No FECU operation

— All FECU source clocks disabled by SoC level clock control

• Idle Mode

— Decoders not operating

— FECU IP clock is enabled by SoC level clock control

— FECU internal decoder clocks are disabled by the hardware automatically

• Decoder Active Mode

— The decoder is operating.

— IP and any required internal clocks enabled by SoC level clock control

NXP Semiconductors

Forward Error Correction Unit (FECU)

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 268 / 536

— Internal decoder clocks are enabled by the hardware automatically.

13.6 FECU reset
• The FECU module is reset using the hard asynchronous reset for the chip.

• In addition, a software reset is provided. The software reset is enabled by writing to a register bit in the FECU_CONFIG
register. It remains set until cleared by software. This reset is not required for normal operation.

13.7 FECU interrupts and VSPA go
The FECU module has one interrupt output. When FECU completes a command and the irqen_done bit in FECU CONTROL
register is set it will set the irq_pend_fecu_done bit (bit 6) in VSPA STATUS register. When this bit is set and the corresponding
irqen_fecu_done bit (bit 6) in IRQEN register is also set it will generate an interrupt request out of VSPA.

When FECU completes a command and vcpu_go_enable bit in FECU CONTROL register is set, it will set the bit 5 in FECU
CONTROL register. This will cause VSPA to go. See VSPA CONTROL register.

The FECU command completion will also enable IPPU and DMA.

13.8 Viterbi Decoder overview
The Viterbi decoder performs the Viterbi algorithm to optimally decode convolutionally coded data. The Viterbi decoder takes its
input data from the stream de-parser, and sends its output to the BCC decoder parser.

• Implements de-puncturing. Programmable de-puncture mask.

— Supports 1/2, 2/3, 3/4, and 5/6 rates

• Constraint length 7

• 4 bit soft decision (LLR) receive input word size

• Processes 2 output bits per cycle

• 128 bit trace back

• Delays data by 384 bits, except for the last symbol.

• Uses 4 instances of 64 (d) x 128 (w) embedded trace back RAMs

• Processes 1 BCC blocks concurrently

13.9 Interleaver overview
The interleaver performs BCC interleaving and LDPC tone mapping. In does both encode and decode operations. During decode,
it writes one constellation point per cycle (e.g. 64 QAM – 6 LLRs), and reads 4 LLRs per cycle. During encode, it writes 4 bits per
cycle, and reads one constellation point per cycle.

• Performs BCC de-interleaving on 6 bit LLRs, and BCC interleaving on 1 bit data

• Performs LDPC tone de-mapping on 6 bit LLRs, and LDPC tone mapping on 1 bit data

• Configurable to handle 20,40,80, or 160 MHz interleaving

• Performs section 20.3.11.8 and 18.3.5.7 interleaving

• Processes 1 data streams at a time

• Uses 1 instance of 64 (d) x 240 (w) embedded RAMs

— 160 MHz, 1024 QAM support

13.10 Convolutional Encoder overview
• Performs section "18.3.5.6 Convolutional encoder."

NXP Semiconductors

Forward Error Correction Unit (FECU)

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 269 / 536

• Supports puncturing

— Configurable puncturing patterns

— Supports 1/2, 2/3, 3/4, and 5/6 rates

• Processes 4 input and output bits per clock cycle

• Processes 1 BCC blocks concurrently

Input FIFO
(up to 4-bits per

clock)

Convolutional Encoder

From
Scrambler/

BCC Encoder
Parser

Convolutional
Encoder

(up to 4-bits input
per clock)

Configurable
puncturing

Output FIFO
(up to 8-bits
input/4-bit

output per clock)

To
Stream Parser/
Interleaver

Figure 48. Convolutional Encoder

13.11 LDPC Encoder overview
The low density parity check (LDPC) encoder computes the parity check bits from the input message bits. It takes its input from
the scrambler, and sends its output to the stream parser. The LDPC encoder computes the parity bits as it receives message
bits. When it gets enough message bits, it waits the input and sends out the parity bits. The encoder will not send out more than
coded_bits_per_symbol bits during any operation. Extra parity or repeat bits will be saved inside the encoder until the next
operation.

• Performs repetition, shortening, and puncturing

• Supports 1/2, 2/3, 3/4, and 5/6 rates

• Supports 648, 1296 and 1944 block sizes

• Processes 81 bits per clock cycle

13.12 LDPC Decoder overview
The low density parity check (LDPC) decoder find the message and parity bits that satisfy the parity check matrix and are closest
to the received LLRs. It takes 6 bit input LLRs from the stream de-parser, and when it gets enough LLRs, it starts the iterative
decoding operation. If the decoder can't find message and parity bits that satisfy the parity check matrix, the decoder will declare
a decoder failure. It if succeeds, it will send its output to the de-scrambler. The LDPC decoder only sends the message bits, and
does not send parity, shortening, or repetition bits. The number of output bits will be a multiple of the LDPC block size.

• Performs de-repetition, de-shortening, and de-puncturing

• Supports 1/2, 2/3, 3/4, and 5/6 rates

• Supports 648, 1296 and 1944 block sizes

• Separate input and output buffers to allow for near 100% utilization

— FRAM reads and de-scramble happen in parallel with decode

• 1 sub-matrix processing engines

• Processes 1 blocks in parallel

NXP Semiconductors

Forward Error Correction Unit (FECU)

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 270 / 536

13.13 Scrambler overview
• Performs section 18.3.5.5 and 16.2.4 scrambling and de-scrambling

• Processes 4 bits per clock cycle

• LFSR State

— Starting scrambling state specified in IP registers

— Starting de-scrambling state

◦ Section 18.3.5.5 extracted from data

◦ Section 16.2.4 self synchronizes

NXP Semiconductors

Forward Error Correction Unit (FECU)

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 271 / 536

Chapter 14
VSPA IP Registers
14.1 Slow read registers
This version of VSPA has added slow IP register read accesses. Whenever VCPU reads a slow read register address, the data
written back to the VCPU's gX register will be updated after two clock cycles. Normal (non-slow) IP register reads update the gX
register after one clock cycle. All IP registers in VSPA address range 0x100 to 0x3FF (inclusive) are slow read registers. Not all
registers within this range will exist on all versions of VSPA. Read result for non-existent registers is un-defined.

Note that this only applies to VCPU reads. Reads by the debugger or host do not require any additional delay. From the point of
view of the debugger or host, their read behavior is the same as "normal" registers.

14.2 VSPA register descriptions
VSPA IP registers can be accessed either by a host processor through the VSPA IP bus, or by VCPU instructions (mvip). With
some exceptions noted in the register field descriptions these accesses will be the same, that is reads will return the same value
and writes will have the same effect. The register offset shown in all the following tables is the byte offset used by a host access,
the VCPU mvip instruction requires a word index, which is equal to the byte offset / 4.

The following table serves as a key for the VSPA modules' register summary and detailed register descriptions.

Table 97. Register Conventions

Convention Description

Identifies reserved bits.

FIELDNAME Idenfities an implemented bit field.

Register Field Types

RW Read/Write. Only software can change the value of the bit (other than a hardware reset).

In some cases, a read-write register/bit field may have additional non-standard
behavior which is described in detail in the register field description.

 NOTE

RO Read only. Writing this bit has no effect.

WO Write only.

WORZ Write only. Always reads 0.

W1C Write 1 to clear. Writing 0 has no effect.

Reset Values

0 Resets to zero.

1 Resets to one.

u Undefined at reset.

Table continues on the next page...

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 272 / 536

Table 97. Register Conventions (continued)

Convention Description

* See footnote for description.

Memory areas not defined should be considered reserved.

14.2.1 VSPA_CCSR memory map
VSPA base address: 100_0000h

14.2.1.1 DMA Control and Status Registers memory map

Offset Register Width

(In bits)

Access Reset value

B0h DMEM/PRAM Address (DMA_DMEM_PRAM_ADDR) 32 WO See
description

B4h DMA AXI Address (DMA_AXI_ADDRESS) 32 WO See
description

B8h AXI Byte Count register (DMA_AXI_BYTE_CNT) 32 WO See
description

BCh DMA Transfer Control register (DMA_XFR_CTRL) 32 RW See
description

C0h DMA Status/Abort Control (DMA_STAT_ABORT) 32 RW 0000_0000h

C4h DMA IRQ Status (DMA_IRQ_STAT) 32 RW 0000_0000h

C8h DMA Complete Status (DMA_COMP_STAT) 32 W1C 0000_0000h

CCh DMA Transfer Error Status (DMA_XFRERR_STAT) 32 W1C 0000_0000h

D0h DMA Configuration Error Status (DMA_CFGERR_STAT) 32 W1C 0000_0000h

D4h DMA Transfer Running Status (DMA_XRUN_STAT) 32 RO 0000_0000h

D8h DMA Go Status (DMA_GO_STAT) 32 W1C 0000_0000h

DCh DMA FIFO Availability Status (DMA_FIFO_STAT) 32 RO FFFF_FFFFh

14.2.1.2 Debug Messaging and Profiling Registers memory map

Offset Register Width

(In bits)

Access Reset value

98h Cycle counter MSB register (CYC_COUNTER_MSB) 32 RW See
description

9Ch Cycle Counter LSB Register (CYC_COUNTER_LSB) 32 RW 0000_0000h

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 273 / 536

Table continued from the previous page...

Offset Register Width

(In bits)

Access Reset value

600h VCPU to DQM Trace Small Outbox register (DQM_SMALL) 32 WO See
description

620h VCPU to Debugger 32-bit Outbox register (VCPU_DBG_OUT_32) 32 WO 0000_0000h

624h VCPU to Debugger 64-bit MSB Outbox register
(VCPU_DBG_OUT_64_MSB)

32 WO 0000_0000h

628h VCPU to Debugger 64-bit LSB Outbox register
(VCPU_DBG_OUT_64_LSB)

32 WO 0000_0000h

62Ch Debugger to VCPU 32-bit Inbox register (VCPU_DBG_IN_32) 32 RO 0000_0000h

630h Debugger to VCPU 64-bit MSB Inbox register
(VCPU_DBG_IN_64_MSB)

32 RO 0000_0000h

634h Debugger to VCPU 64-bit LSB Inbox register
(VCPU_DBG_IN_64_LSB)

32 RO 0000_0000h

638h VCPU to Debugger Mailbox Status register
(VCPU_DBG_MBOX_STATUS)

32 RO See
description

14.2.1.3 General VCPU Control/Status Registers memory map

Offset Register Width

(In bits)

Access Reset value

8h VCPU System Control register (CONTROL) 32 RW See
description

Ch VSPA Interrupt Enable register (IRQEN) 32 RW See
description

10h VSPA Source 1 Info (STATUS) 32 W1C See
description

30h VSPA VCPU Illegal Opcode Address (ILLOP_STATUS) 32 RO See
description

100h Load Register File Control register (Slow read register)
(LD_RF_CONTROL)

32 RW 4501_00C4h

104h Load Register File Real Coefficient Table register (Slow read
register) (LD_RF_TB_REAL_0)

32 RW 2727_2727h

108h Load Register File Imaginary Coefficient Table register (Slow read
register) (LD_RF_TB_IMAG_0)

32 RW 00AA_55FFh

10Ch Load Register File Real Coefficient Table register (Slow read
register) (LD_RF_TB_REAL_1)

32 RW 2A4C_086Eh

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 274 / 536

Table continued from the previous page...

Offset Register Width

(In bits)

Access Reset value

110h Load Register File Imaginary Coefficient Table register (Slow read
register) (LD_RF_TB_IMAG_1)

32 RW 6666_6666h

114h Load Register File Real Coefficient Table register (Slow read
register) (LD_RF_TB_REAL_2)

32 RW 2A4C_086Eh

118h Load Register File Imaginary Coefficient Table register (Slow read
register) (LD_RF_TB_IMAG_2)

32 RW 8888_8888h

11Ch Load Register File Real Coefficient Table register (Slow read
register) (LD_RF_TB_REAL_3)

32 RW 2A4C_086Eh

120h Load Register File Imaginary Coefficient Table register (Slow read
register) (LD_RF_TB_IMAG_3)

32 RW 0000_0000h

124h Load Register File Real Coefficient Table register (Slow read
register) (LD_RF_TB_REAL_4)

32 RW 2A4C_086Eh

128h Load Register File Imaginary Coefficient Table register (Slow read
register) (LD_RF_TB_IMAG_4)

32 RW CCCC_CCCC
h

12Ch Load Register File Real Coefficient Table register (Slow read
register) (LD_RF_TB_REAL_5)

32 RW 2A4C_086Eh

130h Load Register File Imaginary Coefficient Table register (Slow read
register) (LD_RF_TB_IMAG_5)

32 RW 4444_4444h

134h Load Register File Real Coefficient Table register (Slow read
register) (LD_RF_TB_REAL_6)

32 RW 2A4C_086Eh

138h Load Register File Imaginary Coefficient Table register (Slow read
register) (LD_RF_TB_IMAG_6)

32 RW AAAA_AAAAh

13Ch Load Register File Real Coefficient Table register (Slow read
register) (LD_RF_TB_REAL_7)

32 RW 2A4C_086Eh

140h Load Register File Imaginary Coefficient Table register (Slow read
register) (LD_RF_TB_IMAG_7)

32 RW 2222_2222h

400h VCPU Mode 0 (VCPU_MODE0) 32 RO 0000_0000h

404h VCPU Mode 1 (VCPU_MODE1) 32 RO 0002_0000h

408h VCPU CREG 0 (VCPU_CREG0) 32 RO 0008_0000h

40Ch VCPU CREG 1 (VCPU_CREG1) 32 RO 0000_0000h

410h Store Unalign Vector Length (ST_UL_VEC_LEN) 32 RO C000_0000h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 275 / 536

14.2.1.4 IPPU Control and Status Registers memory map

Offset Register Width

(In bits)

Access Reset value

700h IPPU Control register (IPPUCONTROL) 32 RW See
description

704h IPPU Status register (IPPUSTATUS) 32 RO See
description

708h IPPU Run Control register (IPPURC) 32 RW See
description

70Ch IPPU Arg Base Address register (IPPUARGBASEADDR) 32 RW See
description

710h IPPU Hardware Version (IPPUHWVER) 32 RO 0000_0000h

714h IPPU Software Version (IPPUSWVER) 32 RW 0000_0000h

14.2.1.5 Input/Output Registers memory map

Offset Register Width

(In bits)

Access Reset value

70h Platform Input (PLAT_IN_0) 32 RO See
description

80h Platform Output (PLAT_OUT_0) 32 RW 0000_0000h

500h - 524h General Purpose Input registers [10 registers] (GP_IN0 - GP_IN9) 32 RO See
description

580h - 5A4h General Purpose Output registers [10 registers] (GP_OUT0 -
GP_OUT9)

32 RW 0000_0000h

14.2.1.6 Thread and Protection Control and Status Registers memory map

Offset Register Width

(In bits)

Access Reset value

50h Thread Control and Status (THREAD_CTRL_STAT) 32 RW See
description

54h Protection Fault Status (PROT_FAULT_STAT) 32 W1C 0000_0000h

58h VCPU Exception Control (EXCEPTION_CTRL) 32 RO 1000_0000h

5Ch VCPU Exception Status (EXCEPTION_STAT) 32 W1C 0000_0000h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 276 / 536

14.2.1.7 VCPU Go Control and Status Registers memory map

Offset Register Width

(In bits)

Access Reset value

28h External Go Enable (EXT_GO_ENA) 32 RW See
description

2Ch External Go Status (EXT_GO_STAT) 32 W1C See
description

60h - 64h AXI Slave flags register a (AXISLV_FLAGS0 - AXISLV_FLAGS1) 32 W1C 0000_0000h

68h - 6Ch AXI Slave Go Enable register a (AXISLV_GOEN0 -
AXISLV_GOEN1)

32 RW 0000_0000h

180h VCPU Go Address (VCPU_GO_ADDR) 32 RW 0000_0000h

184h VCPU Go Stack (VCPU_GO_STACK) 32 RW 0000_0000h

14.2.1.8 VCPU - Host Messaging Registers memory map

Offset Register Width

(In bits)

Access Reset value

14h - 18h VCPU to Host flags register a (VCPU_HOST_FLAGS0 -
VCPU_HOST_FLAGS1)

32 W1C 0000_0000h

1Ch - 20h Host to VCPU Flags register a (HOST_VCPU_FLAGS0 -
HOST_VCPU_FLAGS1)

32 RW 0000_0000h

640h VCPU to host outbox message n MSB register
(VCPU_OUT_0_MSB)

32 WO 0000_0000h

644h VCPU to host outbox message n LSB register (VCPU_OUT_0_LSB) 32 WO 0000_0000h

648h VCPU to host outbox message n MSB register
(VCPU_OUT_1_MSB)

32 WO 0000_0000h

64Ch VCPU to host outbox message n LSB register (VCPU_OUT_1_LSB) 32 WO 0000_0000h

650h VCPU from Host Inbox Message n MSB (VCPU_IN_0_MSB) 32 RO 0000_0000h

654h VCPU from host inbox message n LSB register (VCPU_IN_0_LSB) 32 RO 0000_0000h

658h VCPU from Host Inbox Message n MSB (VCPU_IN_1_MSB) 32 RO 0000_0000h

65Ch VCPU from host inbox message n LSB register (VCPU_IN_1_LSB) 32 RO 0000_0000h

660h VCPU to Host Mailbox Status register (VCPU_MBOX_STATUS) 32 RO 0000_0000h

680h Host to VCPU Outbox Message n MSB register
(HOST_OUT_0_MSB)

32 WO 0000_0000h

684h Host to VCPU Outbox Message n LSB register (HOST_OUT_0_LSB) 32 WO 0000_0000h

688h Host to VCPU Outbox Message n MSB register
(HOST_OUT_1_MSB)

32 WO 0000_0000h

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 277 / 536

Table continued from the previous page...

Offset Register Width

(In bits)

Access Reset value

68Ch Host to VCPU Outbox Message n LSB register (HOST_OUT_1_LSB) 32 WO 0000_0000h

690h Host from VCPU Inbox Message n MSB (HOST_IN_0_MSB) 32 RO 0000_0000h

694h Host from VCPU Inbox Message n LSB Register (HOST_IN_0_LSB) 32 RO 0000_0000h

698h Host from VCPU Inbox Message n MSB (HOST_IN_1_MSB) 32 RO 0000_0000h

69Ch Host from VCPU Inbox Message n LSB Register (HOST_IN_1_LSB) 32 RO 0000_0000h

6A0h Host Mailbox Status Register (HOST_MBOX_STATUS) 32 RO 0000_0000h

14.2.1.9 Version and Configuration Registers memory map

Offset Register Width

(In bits)

Access Reset value

0h VSPA Hardware Version (HWVERSION) 32 RO 0201_0F00h

4h VCPU Software Version (SWVERSION) 32 RW 0000_0000h

40h VSPA Parameters 0 (PARAM0) 32 RO See
description

44h VSPA Parameters 1 (PARAM1) 32 RO 2510_0A0Ah

48h VSPA Parameters 2 (PARAM2) 32 RO See
description

4Ch VCPU DMEM Size (VCPU_DMEM_BYTES) 32 RO 0002_0000h

14.2.2 VSPA Hardware Version (HWVERSION)

Offset

Register Offset

HWVERSION 0h

Function
VSPA hardware version

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 278 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vspa_hw_version

W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R vspa_hw_version

W

Reset 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

vspa_hw_versio
n

vspa_hw_version

VSPA hardware version

Indicates the version of the VSPA module's hardware. The values in this register are valid immediately after
reset.

14.2.3 VCPU Software Version (SWVERSION)

Offset

Register Offset

SWVERSION 4h

Function
VCPU Software Version

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
pram_ucode_version_31_16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
pram_ucode_version_15_0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 279 / 536

Fields

Field Function

31-16

pram_ucode_ve
rsion_31_16

pram_ucode_version

PRAM Software Version

This field can be used to indicate the version of the PRAM assembly code.

VCPU software configures this register during global initialization after download of a new PRAM image.

PRAM version numbers are non-zero.

15-0

pram_ucode_ve
rsion_15_0

pram_ucode_version

PRAM Software Version

This field can be used to indicate the version of the PRAM assembly code.

VCPU software configures this register during global initialization after download of a new PRAM image.

PRAM version numbers are non-zero.

14.2.4 VCPU System Control register (CONTROL)

Offset

Register Offset

CONTROL 8h

Function

Pay close attention to the register bit field descriptions following the register figure because a field designated with
read-write access in the register figure may have additional non-standard behavior described in its corresponding
register bit field description.

 NOTE

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

host_r
e...

host_r
e...

host_
ms...

host_
ms...

host_r
e...

host_r
e...

host_s
e...

host_s
e... Reserved

dma_h
al...

Reserv
ed

W W1C W1C W1C W1C 0

Reset u u u u 0 0 0 0 0 0 0 0 u u 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

host_v
s...

host_v
s...

Reserv
ed

debug
_m...

axislv_
...

fecu_
go

host_v
s...

debug
_m...

vcpu_
go

ext_go
dma_

go
ippu_

go host_
go

W W1C W1C W1C

Reset u u u 0 0 u 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 280 / 536

Fields

Field Function

31-28

—

-

Reserved

27

host_read_msg
1_go_en

host_read_msg1_go_en

This is a read/write control bit. It can be written and read at any time, by either VSPA or a host. This bit
allows the generation of a VSPA_go request when the Host Read Message 1 from VCPU - Go flag
(host_read_msg1_go) is set.

0b - No Go request is generated when the host_read_msg1_go is set.

1b - A Go request is generated when the host_read_msg1_go is set.

26

host_read_msg
0_go_en

host_read_msg0_go_en

This is a read/write control bit. It can be written and read at any time, by either VSPA or a host. This bit
allows the generation of a VSPA_go request when the Host Read Message 0 from VCPU - Go flag
(host_read_msg0_go) is set.

0b - No Go request is generated when the host_read_msg0_go is set.

1b - A Go request is generated when the host_read_msg0_go is set.

25

host_msg1_go_
en

host_msg1_go_en

This is a read/write control bit. It can be written and read at any time, by either VSPA or a host. This bit
allows the generation of a VSPA_go request when the Host Sent Message 1 to VCPU - Go flag
(host_sent_msg1_go) is set.

0b - No Go request is generated when the host_sent_msg1_go is set.

1b - A Go request is generated when the host_sent_msg1_go is set.

24

host_msg0_go_
en

host_msg0_go_en

This is a read/write control bit. It can be written and read at any time, by either VSPA or a host. This bit
allows the generation of a VSPA_go request when the Host Sent Message 0 to VCPU - Go flag
(host_sent_msg0_go) is set.

0b - No Go request is generated when the host_sent_msg0_go is set.

1b - A Go request is generated when the host_sent_msg0_go is set.

23

host_read_msg
1_go

host_read_msg1_go

Access to this field is non-standard and is described in detail below.

 NOTE

Host Read Message 1 from VCPU - Go flag.

This is a VCPU write-1-to-clear status bit. When set, it indicates that the host has read message 1 from the
VCPU-to-Host Mailbox. This bit can only be set when the host reads the message mentioned. It can only
be cleared by the VCPU writing a 1 to it. The host cannot clear it.

0b - VCPU/Host read - No go request is pending from the host mailbox

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 281 / 536

Table continued from the previous page...

Field Function

1b - VCPU/Host read - Go request was generated by the host reading a message from the
mailbox.

22

host_read_msg
0_go

host_read_msg0_go

Access to this field is non-standard and is described in detail below.

 NOTE

Host Read Message 0 from VCPU - Go flag.

This is a VCPU write-1-to-clear status bit. When set, it indicates that the host has read message 0 from the
VCPU-to-Host Mailbox. This bit can only be set when the host reads the message mentioned. It can only
be cleared by the VCPU writing a 1 to it. The host cannot clear it.

0b - VCPU/Host read - No go request is pending from the host mailbox

1b - VCPU/Host read - Go request was generated by the host reading a message from the
mailbox

21

host_sent_msg
1_go

host_sent_msg1_go

Access to this field is non-standard and is described in detail below.

 NOTE

Host Sent Message 1 to VCPU - Go flag.

This is a VCPU write-1-to-clear status bit. When set, it indicates that the host has written a message into
the Host-to-VCPU Mailbox. This bit can only be set by writing the message mentioned. It can only be cleared
by the VCPU writing a 1 to it. The host cannot clear it.

VCPU must read the message before clearing this bit. Failing to follow this protocol may
result in spurious VCPU_Go events.

 NOTE

0b - VCPU/Host read - No go request is pending from the host mailbox

1b - VCPU/Host read - Go request was generated by the host writing a message to the mailbox

20

host_sent_msg
0_go

host_sent_msg0_go

Access to this field is non-standard and is described in detail below.

 NOTE

Host Sent Message 0 to VCPU - Go flag.

This is a VCPU write-1-to-clear status bit. When set, it indicates that the host has written a message into
the Host-to-VCPU Mailbox. This bit can only be set by writing the message mentioned. It can only be cleared
by the VCPU writing a 1 to it. The host cannot clear it.

VCPU must read the message before clearing this bit. Failing to follow this protocol may
result in spurious VCPU_Go events.

 NOTE

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 282 / 536

Table continued from the previous page...

Field Function

0b - VCPU/Host read - No go request is pending from the host mailbox

1b - VCPU/Host read - Go request was generated by the host writing a message to the mailbox

19-18

—

-

Reserved

17

dma_halt_req

dma_halt_req

DMA Halt Request

Setting this bit makes a request to the DMA to halt operation at a clean AXI transaction boundary. This
control bit must be set prior to allowing reset, isolation, or powering of the VSPA DMA circuitry. After this
bit is set, the system must wait until the VSPA_STATUS register bit dma_halt_ack is also set before allowing
any of the aforementioned actions. This ensures that the AXI bus is in a neutral state, and will prevent any
corruption of AXI bus operation.

0b - Not requesting the DMA to halt

1b - Request for the DMA to halt operation at a clean AXI boundary

16

—

-

This bit MUST be written to a 0.

15-13

—

-

Reserved

12

host_vsp_flags1
_go_en

host_vsp_flags1_go_en

Host to VSPA flags 1 GO enable

This bit enables/disables VSPA GO as results of one or more bits set in VSPA_HOST_VCPU_FLAGS1
register. If enabled, VSPA_GO request will be asserted whenever one or more bits are set in the
VSPA_HOST_VCPU_FLAGS1 register.

0b - Host to VSPA flags 1 GO is disabled

1b - Host to VSPA flags 1 GO is enabled

11

host_vsp_flags0
_go_en

host_vsp_flags0_go_en

Host to VSPA flags 0 GO enable

This bit enables/disables VSPA GO as a result of one or more bits set in VSPA_HOST_VCPU_FLAGS0
register. If enabled, VSPA_GO request will be asserted whenever one or more bits are set in the
VSPA_HOST_VCPU_FLAGS0 register.

0b - Host to VSPA flags 0 GO is disabled

1b - Host to VSPA flags 0 GO is enabled

10

—

-

Reserved

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 283 / 536

Table continued from the previous page...

Field Function

9

debug_msg_go
_en

debug_msg_go_en

Debug message go enable

This is a control bit. When set, it enables VCPU_Go when the debug module writes a 32-bit message or a
64-bit message LSB into the Debug-to-VCPU Mailbox.

It is a read/write register bit. It can be written and read at any time.

0b - No Go request is generated when the debug module writes a message to the debug mailbox

1b - Go request is generated when the debug module writes a message to the debug mailbox

8

axislv_go

axislv_go

Read only status bit.

0b - Indicates no VCPU go is pending from the AXI slave subsystem.

1b - Indicates that a VCPU go is pending due to one or more AXI slave flag bits being set, while
the corresponding AXI slave go enable bits are also set.

7

fecu_go

fecu_go

Access to this field is non-standard and is described in detail below.

 NOTE

This is a VCPU write-1-to-clear status bit. When set, it reflects that FECU issued a VCPU GO command.

It can only be set if FECU asserts the fecu_done signal AND the vcpu_go_enable bit in the
FECU_CONTROL register (FECU_CONTROL[10]) is also set. It can only be cleared by VCPU writing a 1
to it. The external IPbus master (host) may not clear this bit.

0b - VCPU/Host read - No go request is pending from FECU

1b - VCPU/Host read - Go request was generated by FECU

6

host_vsp_flags_
go

host_vsp_flags_go

Access to this field is non-standard and is described in detail below.

 NOTE

This bit is set when either condition occurs:

• one or more bits are set in the VSPA_HOST_VCPU_FLAGS0 register and host_vsp_flags0_go_en
is set to one, or

• one or more bits are set in the VSPA_HOST_VCPU_FLAGS1 register and host_vsp_flags1_go_en
is set to one

This bit is cleared when both conditions occur:

• all bits in the VSPA_HOST_VCPU_FLAGS0 register are zero or the host_vsp_flags0_go_en is
cleared, and

• all bits in the VSPA_HOST_VCPU_FLAGS1 register are zero or the host_vsp_flags1_go_en is
cleared

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 284 / 536

Table continued from the previous page...

Field Function

0b - VCPU/Host read - No go request is pending from the host flags registers

1b - VCPU/Host read - Go request was generated by the host setting a bit/bits in the
VSPA_HOST_VCPU_FLAGS0/1 registers, and the corresponding enable bit is set.

5

debug_msg_go

debug_msg_go

Access to this field is non-standard and is described in detail below.

 NOTE

Debug message go

This is a VCPU write-1-to-clear status bit. When set, it indicates that the debug module has written a 32-
bit message or a 64-bit message LSB into the Debug-to-VCPU Mailbox.

It can only be set only by writing the messages mentioned. It can only be cleared by the VCPU writing a 1
to it. The host cannot clear it.

Note: VCPU must read the message (either the 32-bit message or the 64-bit message) before clearing this
bit. Failing to follow this protocol may result in spurious VCPU_Go events.

0 VCPU/Host read - No go request is pending from the debug host mailbox

1 VCPU/Host read - Go request was generated by the debug host writing a message to the mailbox

0 Host write - Ignored

1 Host write - Ignored

0 VCPU write - Ignored

1 VCPU write - Clear the status bit (if set)

4

vcpu_go

vcpu_go

The VCPU program, operating in either USER or SUPV state, uses this bit to tell ITSELF to go. This allows
deferred (queued) tasks to be processed repeatedly (and end with a DONE) even if there were no other
pending GO requests.

The VCPU SUPV or USER can write to 1, only SUPV can write to 0. When 1, a GO event will be pending.

Host reads and writes have no effect.

Since this version of VSPA is not implementing thread protection, USER mode is disabled
and the SUPV bit is always held in the SUPV state.

 NOTE

3

ext_go

ext_go

External go

This is a read-only status bit. When set, it reflects that an external GO event issued a VCPU GO command
(that is, 2 corresponding bits in the EXT_GO_STAT and EXT_GO_ENA registers were both set). This bit
is cleared by clearing all the corresponding pairs of EXT_GO_STAT and EXT_GO_ENA register bits. To
clear a corresponding pair of EXT_GO_STAT and EXT_GO_ENA register bits the user can clear either one
or both bits. See for more details.

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 285 / 536

Table continued from the previous page...

Field Function

0b - No go request is pending from an external event

1b - Go request was generated by an external event

2

dma_go

dma_go

DMA unit go

This is a read-only status bit. When set, it reflects that the DMA unit issued a VCPU GO command. This
bit is read only and can only be cleared by clearing all the bits in the DMA_GO_STAT register.

0b - No go request is pending from the DMA unit

1b - Go request was generated by the DMA unit

1

ippu_go

ippu_go

Access to this field is non-standard and is described in detail below.

 NOTE

IPPU go

This is a VCPU write-1-to-clear status bit. When set, it reflects that the IPPU issued a VCPU GO command.

It can only be set by the IPPU completion with vcpu_go_en=1. It can only be cleared by VCPU writing a 1
to it. The external IPbus master (host) may not clear this bit.

0 VCPU/Host read - No go request is pending from the IPPU

1 VCPU/Host read - Go request was generated by the IPPU

0 Host write - Ignored

1 Host write - Ignored

0 VCPU write - Ignored

1 VCPU write - Clear the status bit (if set)

0

host_go

host_go

Access to this field is non-standard and is described in detail below.

 NOTE

Host go

This is a combination control/status bit. It can only be set by the external IPbus master (host processor)
writing a 1 to it. It can only be cleared by VCPU writing a 1 to it. The external IPbus master (host) may not
clear this bit.

When set, it requests that VCPU start processing instructions at PMEM address 0 (assuming VCPU is
stopped).

0 VCPU/Host read - VCPU has not been requested to go by the host since it last cleared this bit

1 VCPU/Host read - A VCPU host go was requested by the host and was not yet cleared by the VCPU

0 Host write - Ignored

1 Host write - Start VCPU core processing at PMEM address 0.

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 286 / 536

Table continued from the previous page...

Field Function

0 VCPU write - Ignored

1 VCPU write - Clear the status bit (if set)

14.2.5 VSPA Interrupt Enable register (IRQEN)

Offset

Register Offset

IRQEN Ch

Function
VSPA Interrupt Enable register

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R irqen_
v...

irqen_
v...

irqen_
v...

irqen_
v...

Reserved
irqen_

v...
irqen_f

...
irqen_

d...
irqen_

d...
irqen_f

...
irqen_f

...
irqen_i

...
irqen_

d...W

Reset 0 0 0 0 u u u u 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

—

-

Reserved

15

irqen_vcpu_rea
d_msg1

irqen_vcpu_read_msg1

Host to VCPU message 1 read interrupt enable.

This bit enables/disables one of the host message interrupts. If enabled, the interrupt will be asserted
whenever the VSPA_STATUS vcpu_read_msg1 bit is set.

0b - Host to VCPU message 1 read interrupt disabled

1b - Host to VCPU message 1 read interrupt enabled

14 irqen_vcpu_read_msg0

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 287 / 536

Table continued from the previous page...

Field Function

irqen_vcpu_rea
d_msg0

Host to VCPU message 0 read interrupt enable.

This bit enables/disables one of the host message interrupts. If enabled, the interrupt will be asserted
whenever the VSPA_STATUS vcpu_read_msg0 bit is set.

0b - Host to VCPU message 0 read interrupt disabled

1b - Host to VCPU message 0 read interrupt enabled

13

irqen_vcpu_sen
t_msg1

irqen_vcpu_sent_msg1

VCPU to Host message 1 sent interrupt enable.

This bit enables/disables one of the host message interrupts. If enabled, the interrupt will be asserted
whenever the VSPA_STATUS vcpu_sent_msg1 bit is set.

0b - VCPU to host message 1 sent interrupt disabled

1b - VCPU to host message 1 sent interrupt enabled

12

irqen_vcpu_sen
t_msg0

irqen_vcpu_sent_msg0

VCPU to Host message 0 sent interrupt enable.

This bit enables/disables one of the host message interrupts. If enabled, the interrupt will be asserted
whenever the VSPA_STATUS vcpu_sent_msg0 bit is set.

0b - VCPU to host message 0 sent interrupt disabled

1b - VCPU to host message 0 sent interrupt enabled

11-8

—

-

Reserved.

7

irqen_vcpu_iit

irqen_vcpu_iit

VCPU illegal instruction trap interrupt enable.

This bit enables or disables the vspa_iit_irq_b interrupt. This is used to interrupt the host in the event when
the VCPU attempts to execute an illegal instruction.

0b - VCPU Illegal instruction trap interrupt disabled

1b - VCPU Illegal instruction trap interrupt enabled

6

irqen_fecu_don
e

FECU done interrupt enable

Enables the FECU done interrupt. When enabled, when FECU asserts the fecu_done signal AND the
'vspa_irq_enable' bit in the FECU_CONTROL register (FECU_CONTROL[12]) is also set, vspa_fecu_irq_b
interrupt will be asserted.

0b - FECU done interrupt disabled

1b - FECU done interrupt enabled

5

irqen_dma_erro
r

irqen_dma_error

VSPA DMA error interrupt enable

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 288 / 536

Table continued from the previous page...

Field Function

Enables the dma_err_irq_b interrupt. When enabled, if any DMA channel detects either an AXI transfer
error or a DMA configuration error, this interrupt will be asserted.

0b - DMA error interrupt disabled

1b - DMA error interrupt enabled

4

irqen_dma_cmp

irqen_dma_cmp

VSPA DMA complete interrupt enable

Enables the dma_cmp_irq_b interrupt. When enabled, this interrupt will be asserted whenever any
DMA_COMP_STAT status flag is set and its associated DMA_XFR_CTRL[irq_en] is also set.

0b - DMA transfer complete interrupt disabled

1b - DMA transfer complete interrupt enabled

3

irqen_flags1

irqen_flags1

Flags 1 Interrupts Enable

Enables the vcpu_flags1_irq_b interrupt. This interrupt is asserted whenever any of the bits in the
VCPU_HOST_FLAGS1 register are set.

0b - VCPU_HOST_FLAGS1 interrupts disabled

1b - VCPU_HOST_FLAGS1 interrupts enabled

2

irqen_flags0

irqen_flags0

Flags 0 interrupts enable

Enables the vcpu_flags0_irq_b interrupt. This interrupt is asserted whenever any of the bits in the
VCPU_HOST_FLAGS0 register are set.

0b - VCPU_HOST_FLAGS0 interrupts disabled

1b - VCPU_HOST_FLAGS0 interrupts enabled

1

irqen_ippu_don
e

irqen_ippu_done

IPPU done interrupt enable

Enables the IPPU done interrupt. When enabled, when the IPPU done status flag asserts, this interrupt will
be asserted.

0b - IPPU done interrupt disabled

1b - IPPU done interrupt enabled

0

irqen_done

irqen_done

VCPU Done interrupt enable

Enables the vcpu_done_irq_b interrupt. This interrupt is asserted whenever the DONE bit in the STATUS
register is set.

0b - Done interrupt disabled

1b - Done interrupt enabled

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 289 / 536

14.2.6 VSPA Source 1 Info (STATUS)

Offset

Register Offset

STATUS 10h

Function

Pay close attention to the register bit field descriptions following the register figure because a field designated with
read-write access in the register figure may have additional non-standard behavior described in its corresponding
register bit field description.

 NOTE

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

dma_h
al... Reserv

ed
W

Reset u u u u u u u u u u u u u u 0 u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
vcpu_r

e...
vcpu_r

e...
vcpu_s

e...
vcpu_s

e... Reserved
busy

vcpu_
iit

irq_pe
n...

irq_pe
n...

irq_pe
n...

irq_pe
n...

irq_pe
n...

irq_pe
n...

done

W W1C W1C W1C W1C W1C W1C W1C W1C

Reset 0 0 0 0 u u u 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-18

—

-

Reserved

17

dma_halt_ack

dma_halt_ack

DMA halt acknowledge.

This bit is set whenever the DMA has completed a halt request. A DMA halt request can come from either
a debugger halt request, or the dma_halt_req bit in the VSPA_CONTROL register. This status bit must be
set prior to allowing reset, isolation, or powering of the VSPA DMA circuitry. This ensures that the AXI bus
is in a neutral state, and will prevent any corruption of AXI bus operation..

0b - The DMA has not halted operation in response to a halt request

1b - The DMA has halted operation in response to a halt request

16 -

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 290 / 536

Table continued from the previous page...

Field Function

— Reserved

15

vcpu_read_msg
1

vcpu_read_msg1

VCPU read message 1.

This status bit sets when the VCPU reads message 1 (sent by the host). This can act as an
acknowledgement to the host that the VCPU has consumed the message in mailbox 1. It can also be used
to produce an interrupt if the irqen_vcpu_read_msg1 bit in the VSPA_IRQEN register is set.

This status bit will be set only if the VCPU reads the VSPA_VCPU_IN_1_LSB register while
VSPA_VCPU_MBOX_STATUS bit msg1_in_valid==1. The bit will be cleared when written to a 1 by either
the host or the VCPU.

0b - The status bit was never set following reset, or was cleared by a write 1 to clear (for read)

1b - The VCPU read the VSPA_VCPU_IN_1_LSB register while VSPA_VCPU_MBOX_STATUS
bit msg1_in_valid was set (for read)

14

vcpu_read_msg
0

vcpu_read_msg0

VCPU read message 0.

This status bit sets when the VCPU reads message 0 (sent by the host). This can act as an
acknowledgement to the host that the VCPU has consumed the message in mailbox 0. It can also be used
to produce an interrupt if the irqen_vcpu_read_msg0 bit in the VSPA_IRQEN register is set.

This status bit will set only if the VCPU reads the VSPA_VCPU_IN_0_LSB register while
VSPA_VCPU_MBOX_STATUS bit msg0_in_valid==1. The bit will be cleared when written to a 1 by either
the host or the VCPU.

0b - The status bit was never set following reset, or was cleared by a write 1 to clear (for read)

1b - The VCPU read the VSPA_VCPU_IN_0_LSB register while VSPA_VCPU_MBOX_STATUS
bit msg0_in_valid was set (for read)

13

vcpu_sent_msg
1

vcpu_sent_msg1

VCPU sent message 1.

This status bit sets when the VCPU sends message 1 to the host. It can also be used to produce an interrupt
if the irqen_vcpu_sent_msg1 bit in the VSPA_IRQEN register is set.

This bit will be set only if the VCPU writes the VSPA_VCPU_OUT_1_LSB register. The bit will be cleared
when written to a 1 by either the host or the VCPU.

The host must read the message before clearing this bit. Failing to follow this protocol may
result in spurious interrupts.

 NOTE

0b - The status bit was never set following reset, or was cleared by a write 1 to clear (for read)

1b - The VCPU wrote the VSPA_VCPU_OUT_1_LSB register (for read)

12 vcpu_sent_msg0

VCPU sent message 0.

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 291 / 536

Table continued from the previous page...

Field Function

vcpu_sent_msg
0

This status bit sets when the VCPU sends message 0 to the host. It can also be used to produce an interrupt
if the irqen_vcpu_sent_msg0 bit in the VSPA_IRQEN register is set.

This bit will be set only if the VCPU writes the VSPA_VCPU_OUT_0_LSB register. The bit will be cleared
when written to a 1 by either the host or the VCPU.

The host must read the message before clearing this bit. Failing to follow this protocol may
result in spurious interrupts.

 NOTE

0b - The status bit was never set following reset, or was cleared by a write 1 to clear (for read)

1b - The VCPU wrote the VSPA_VCPU_OUT_0_LSB register (for read)

11-9

—

-

Reserved

8

busy

busy

VCPU busy

Indicates whether the VCPU core is idle or busy executing code.

0b - Idle

1b - Busy

7

vcpu_iit

vcpu_iit

VCPU illegal instruction trap.

This status bit indicates that the VCPU decoded an illegal instruction. Note that the illegal instruction is
treated as an NOP. When set, the VSPA_ILLOP_STATUS register is updated to contain the address where
the first illegal instruction was found. This status bit is write one to clear. When it is cleared, the
VSPA_ILLOP_STATUS register is also cleared.

0b - No illegal instructions were detected by the VCPU

1b - One or more illegal instructions were detected by the VCPU

6

irq_pend_fecu_
done

IRQ pending FECU done

Indicates FECU done status flag was asserted (AND the 'vspa_irq_enable` bit in the FECU_CONTROL
register (FECU_CONTROL[12]) is also set). This bit can only be cleared by writing one to this bit location.

0b - No IRQ pending

1b - FECU done interrupt is pending

5

irq_pend_dma_
error

irq_pend_dma_error

IRQ pending DMA error

Indicates that the DMA unit detected an AXI bus error during a transfer of data over the AXI interface, or
that an attempt was made to activate a channel with incorrectly configured parameters. This status bit
cannot be directly cleared. It is simply the logical OR of all of the bits contained in the DMA_XFRERR_STAT

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 292 / 536

Table continued from the previous page...

Field Function

and DMA_CFGERR_STAT registers. It can only be cleared by clearing those underlying status register
bits.

0b - No IRQ pending

1b - DMA transfer or configuration error occurred

4

irq_pend_dma_
comp

irq_pend_dma_comp

IRQ pending DMA complete

Indicates that one or more bits are set in the DMA_IRQ_STAT register.

This bit is simply the logical OR of all the bits in the DMA_IRQ_STAT register. It can only be cleared by
clearing all of the bits in the DMA_IRQ_STAT register.

0b - No IRQ pending

1b - DMA transfer completed for at least one channel which has its associated DMA_IRQ_STAT
bit set

3

irq_pend_flags1

irq_pend_flags1

IRQ pending VCPU_HOST_FLAGS1

Indicates that one or more bits are set in the VCPU_HOST_FLAGS1 register.

This bit is simply the logical OR of all of the bits in the VCPU_HOST_FLAGS1 register. It can only be cleared
by clearing all of the bits in the VCPU_HOST_FLAGS1 register.

0b - No VCPU_HOST_FLAGS1 bits set

1b - At least one bit in the VCPU_HOST_FLAGS1 register is set

2

irq_pend_flags0

irq_pend_flags0

IRQ pending VCPU_HOST_FLAGS0

Indicates that one or more bits are set in the VCPU_HOST_FLAGS0 register.

This bit is simply the logical OR of all of the bits in the VCPU_HOST_FLAGS0 register. It can only be cleared
by clearing all of the bits in the VCPU_HOST_FLAGS0 register.

0b - No VCPU_HOST_FLAGS0 bits set

1b - At least one bit in the VCPU_HOST_FLAGS0 register is set

1

irq_pend_ippu_
done

irq_pend_ippu_done

IRQ pending IPPU done

Indicates that IPPU done status flag was asserted. This bit can only be cleared by writing one to this bit
location.

0b - No IRQ pending

1b - IPPU done interrupt is pending

0

done

done

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 293 / 536

Table continued from the previous page...

Field Function

Access to this field is non-standard and is described in detail below.

 NOTE

Done

Indicates whether the VCPU core wishes to indicate it has completed its processing. This bit will be set
automatically when the VCPU executes a "done" instruction. It can also be set anytime VCPU software
writes a 1 to it. It is only cleared by a VCPU reset or the host writing a 1 to it.

This bit is intended to be used to communicate status or generate an IRQ to the host processor (enabled
by IRQEN register bit irqen_done).

0b - VCPU indicates processing not done

1b - VCPU indicates processing done

14.2.7 VCPU to Host flags register a (VCPU_HOST_FLAGS0 - VCPU_HOST_FLAGS1)

Offset

Register Offset

VCPU_HOST_FLAGS0 14h

VCPU_HOST_FLAGS1 18h

Function

Pay close attention to the register bit field descriptions following the register figure because a field designated with
read-write access in the register figure may have additional non-standard behavior described in its corresponding
register bit field description.

 NOTE

The VCPU_HOST_FLAGSn register can be used to generate host interrupts from VCPU software. If irqen_flagsn is set in the
VCPU Interrupt Enable Register, then a VCPU host group n event interrupt is generated when VCPU software writes any bits to
a 1 in this register.

• The meaning of the 32 bits in this register is determined by the VCPU software. Each bit could be used as an independent
event or the register could be used as an event code.

• Note that the event is cleared when the host writes 1 into this register.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 294 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R flagn

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R flagn

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

flagn

flagn

Access to this field is non-standard and is described in detail below.

 NOTE

Indicates that a VCPU group n event occurred, the nature of which is definable by VCPU software.

0 VCPU/Host read - No VCPU group n event occurred

1 VCPU/Host read - VCPU group n event occurred

0 Host write - Ignored

1 Host write - Clear VCPU group n event flag

0 VCPU write - Ignored

1 VCPU write - Set VCPU group n event flag

14.2.8 Host to VCPU Flags register a (HOST_VCPU_FLAGS0 - HOST_VCPU_FLAGS1)

Offset

Register Offset

HOST_VCPU_FLAGS0 1Ch

HOST_VCPU_FLAGS1 20h

Function

This register is essentially a collection of 32 single bit flags, for communications from the host to the VCPU. The host sets the
bits, and the VCPU clears them, presumably to acknowledge they were seen as set. This register has an associated go enable
bit, so that the VCPU can be made to go if any bit in the VSPA_HOST_VCPU_FLAGSn register is set.

The flags can only be set by writing a 1 from the host. They can only be cleared by writing a 1 from the VCPU, or by reset.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 295 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
flagn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
flagn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

flagn

flagn

Host to VCPU flag.

Read behavior is identical for both the host and the VCPU. Write behavior differs between the host and the
VCPU.

0 - indicates VCPU wrote the bit to 1, or the bit was never set by the host, since the last reset. (for read
behavior)

1- indicates the host wrote the bit to 1 (for read behavior)

0 - no effect (for host write behavior)

1 - sets the bit (for host write behavior)

0 - no effect (for VCPU write behavior)

1 - clears the bit (for VCPU write behavior)

14.2.9 External Go Enable (EXT_GO_ENA)

Offset

Register Offset

EXT_GO_ENA 28h

Function

The EXT_GO_ENA register is used to control the generation of VCPU GO events in response to rising edges detected on
ext_VCPU_go inputs to the VSPA platform. If a given bit x is set in both the EXT_GO_STAT and EXT_GO_ENA registers, then
a VCPU GO will be asserted.

These register bits can be read and written by either VCPU or an IPbus host.

Once asserted, the GO event can be cleared by either:

• Clearing the EXT_GO_ENA register bit.

• Clearing the EXT_GO_STAT register bit.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 296 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ext_go_ena

W

Reset u u u u u u u u 0 0 0 0 0 0 0 0

Fields

Field Function

31-8

—

-

Reserved

7-0

ext_go_ena

ext_go_ena

External Go Enable

Enable/disable a VCPU GO event upon detection of rising edges of the associated ext_VCPU_go inputs
of the VSPA platform.

00000000b - Do not allow generation of a GO event.

00000001b - Enable generation of a GO event.

14.2.10 External Go Status (EXT_GO_STAT)

Offset

Register Offset

EXT_GO_STAT 2Ch

Function

Pay close attention to the register bit field descriptions following the register figure because a field designated with
read-write access in the register figure may have additional non-standard behavior described in its corresponding
register bit field description.

 NOTE

The EXT_GO_STAT register is used to detect rising edges on the ext_VCPU_go inputs of the VSPA platform. If bits in the
EXT_GO_ENA register are set, then the rising edges can also cause a VCPU GO event. If a given bit x is set in both the
EXT_GO_STAT and EXT_GO_ENA registers, then a VCPU GO will be asserted.

These registers can be set only by rising edges on the ext_VCPU_go inputs. They can be cleared only by VCPU writing a 1 to
them (write 1 to clear). The IPbus host cannot write to this register. If GO is enabled by the EXT_GO_ENA, a GO event to VCPU
can be blocked or cleared by either:

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 297 / 536

• Clearing the associated EXT_GO_ENA register bit (VCPU or host must write a 0 to it).

• Clearing the associated EXT_GO_STAT register bit (VCPU must write a 1 to it).

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

ext_go_stat

W W1C

Reset u u u u u u u u 0 0 0 0 0 0 0 0

Fields

Field Function

31-8

—

-

Reserved

7-0

ext_go_stat

ext_go_stat

Access to this field is non-standard and is described in detail below.

 NOTE

External Go Stat

Rising edges detected on the ext_VCPU_go input.

0 VCPU/Host read - No rising edge detected

1 VCPU/Host read - At least one rising edge was detected

0 VCPU write - Ignored

1 VCPU write - Clear status bit (if set)

0 Host write - Ignored

1 Host write - Ignored

14.2.11 VSPA VCPU Illegal Opcode Address (ILLOP_STATUS)

Offset

Register Offset

ILLOP_STATUS 30h

Function
VSPA VCPU Illegal Opcode Address

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 298 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

vcpu_illop_addr

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R vcpu_illop_addr

W

Reset u u u u u u u u u u u u u u u u

Fields

Field Function

31-25

—

-

Reserved

24-0

vcpu_illop_addr

vcpu_illop_addr

VSPA VCPU Illegal Opcode Address.

Indicates the address of the first illegal opcode encountered by the VCPU. The address is in units of 32-bit
words. This register can only be cleared by writing a 1 to the vcpu_iit bit in the VSPA_STATUS register.
Once cleared as described, the trap is rearmed. The next time the VCPU decodes an illegal opcode, it will
be trapped. The VSPA_ILLOP_STATUS register and the vcpu_iit bit in the VSPA_STATUS register will
both be updated.

14.2.12 VSPA Parameters 0 (PARAM0)

Offset

Register Offset

PARAM0 40h

Function

PARAM0 register can be read to determine the VSPA hardware configuration which has been implemented.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 299 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ippu_is

...
vcpu_i

s...
axi_sideband_width lut_table_count

thread
_...

dma_d
i_...

nco_pr
e...

cmm_
pre...

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
srt_pre

...
rrt_pre.

..
rcp_pr

e...
atan_p

r... Reserv
ed

unalign
st_llr8..

.
atid_value

W

Reset 1 1 1 0 u 0 0 0 0 u u u u u u u

Fields

Field Function

31

ippu_isolate

ippu_isolate

IPPU isolation status

Indicates whether the IPPU can operate while the VCPU is powered down.

The values in this register are valid immediately after reset.

0b - The IPPU and VCPU are both powered down together.

1b - The IPPU will not be powered down, it can operate when the VCPU is powered down.

30

vcpu_isolate

vcpu_isolate

VCPU isolate.

This status bit indicates that the VCPU can be isolated, and possibly powered down by the system.

0b - The VCPU cannot be isolated (and cannot be powered down independently for the VSPA).

1b - The VCPU can be isolated (and possibly powered down).

29-27

axi_sideband_w
idth

axi_sideband_width

These status bits indicate the number of AXI sideband outputs the DMA uses for any given chip. The
encodings are as follows:

000b - 8 awsideband and 8 arsideband outputs

001b - 1 awsideband and 1 arsideband outputs

010b - 2 awsideband and 2 arsideband outputs

011b - 3 awsideband and 3 arsideband outputs

100b - 4 awsideband and 4 arsideband outputs

101b - 5 awsideband and 5 arsideband outputs

110b - 6 awsideband and 6 arsideband outputs

111b - 7 awsideband and 7 arsideband outputs

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 300 / 536

Table continued from the previous page...

Field Function

26-20

lut_table_count

lut_table_count

Lookup table count

These status bits indicate the number of full lookup tables supported by this instance of VSPA. Any number
between 0-127 is possible, and not just the two ends.

0000000b - The VCPU has no support for lookup table functionality

0111111b - The VCPU has support for 127 full lookup tables (and 254 half tables)

19

thread_protectio
n

thread_protection

This status bit indicates whether this implementation of VSPA supports thread protection. If thread
protection is supported, all the protection unit registers are implemented. If not supported, the registers do
not exist, and the registers all read as 0 and the logic behaves as if the registers are always 0.

0b - thread protection is not supported

1b - thread protection is supported

18

dma_di_eng

dma_di_eng

DMA de-interleaving engine.

This status bit indicates whether the VSPA DMA supports de-interleaving commands. If a DMA de-
interleaving command is issued to a DMA that does not support the function, a DMA configuration error will
result, and the DMA command will be ignored. For further information on the DMA de-interleaving functions,
refer the description of the VSPA_DMA_XFR_CTRL register.

0b - DMA does not support de-interleaving commands

1b - DMA does support de-interleaving commands

17

nco_present

nco_present

This status bit indicates whether the VSPA VCPU supports numerically controlled oscillator instructions. If
a VCPU NCO instruction is issued when the VCPU does not support NCO functionality, the instruction will
be treated as a NOP, and will not be trapped as an illegal opcode.

0b - VCPU does not support NCO instructions

1b - VCPU does support NCO instructions

16

cmm_present

cmm_present

This status bit indicates whether the VSPA VCPU supports Clustered Matrix Muxing (CMM) modes. The
CMM modes are - S0group2nr, S0group2nc, S1interp2nr and S1interp2nc. If a VCPU CMM instruction is
issued when the VCPU does not support CMM functionality, the instruction behavior will be undefined.

0b - VCPU does not support CMM modes

1b - VCPU supports CMM modes

15

srt_present

srt_present

This status bit indicates whether the VSPA VCPU supports the square root instruction. If a VCPU srt
instruction is issued when the VCPU does not support srt functionality, the instruction will be treated as a
NOP, and will not be trapped as an illegal opcode.

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 301 / 536

Table continued from the previous page...

Field Function

0b - VCPU does not support srt instructions

1b - VCPU supports srt instructions

14

rrt_present

rrt_present

This status bit indicates whether the VSPA VCPU supports the reciprocal square root instruction. If a VCPU
rrt instruction is issued when the VCPU does not support rrt functionality, the instruction will be treated as
a NOP, and will not be trapped as an illegal opcode.

0b - VCPU does not support rrt instructions

1b - VCPU supports rrt instructions

13

rcp_present

rcp_present

This status bit indicates whether the VSPA VCPU supports the reciprocal instruction. If a VCPU rcp
instruction is issued when the VCPU does not support rcp functionality, the instruction will be treated as a
NOP, and will not be trapped as an illegal opcode.

0b - VCPU does not support rcp instructions

1b - VCPU supports rcp instructions

12

atan_present

atan_present

This status bit indicates whether the VSPA VCPU supports the arc tangent instruction. If a VCPU atan
instruction is issued when the VCPU does not support atan functionality, the instruction will be treated as
a NOP, and will not be trapped as an illegal opcode.

0b - VCPU does not support atan instructions

1b - VCPU supports atan instructions

11

—

-

Reserved

10-8

unalign

unalign

The unalign bit field is: 0

000b - No support for the st.uline instruction. Regardless of MAG pointer value, a full line will be
stored, with no adjustment to the data alignment

001b - Full support for st.uline instruction. The MAG pointer can point to any 16-bit alignment and
the data will be rotated into that 16-bit alignment

010b - Reduced support for st.uline instruction. The MAG pointer will be truncated to point to any
32-bit alignment and the data will be rotated into that 32-bit alignment

011b - Reduced support for st.uline instruction. The MAG pointer will be truncated to point to any
64-bit alignment and the data will be rotated into that 64-bit alignment

100b - Reduced support for st.uline instruction. The MAG pointer will be truncated to point to any
128-bit alignment and the data will be rotated into that 128-bit alignment

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 302 / 536

Table continued from the previous page...

Field Function

101b - Reduced support for st.uline instruction. The MAG pointer will be truncated to point to any
256-bit alignment and the data will be rotated into that 256-bit alignment

110b - Reduced support for st.uline instruction. The MAG pointer will be truncated to point to any
512-bit alignment and the data will be rotated into that 512-bit alignment

111b - Reduced support for st.uline instruction. The MAG pointer will be truncated to point to any
1024-bit alignment and the data will be rotated into that 1024-bit alignment

7

st_llr8_qam_en
able

st_llr8_qam_enable

Indicates if the Store QAM llr8 instructions are enabled

0b - VCPU does not support st.uline.llr8 instructions

1b - VCPU supports st.uline.llr8 instructions

6-0

atid_value

atid_value

ATID value

A VSPA instance is assigned a unique identifier. VSPA can discover its own unique identifier by reading
the atid_value field in the PARAM0 register.

14.2.13 VSPA Parameters 1 (PARAM1)

Offset

Register Offset

PARAM1 44h

Function

PARAM1 register can be read to determine the VSPA hardware configuration which has been implemented.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R rsse axi_data_width axi_id_width dma_cnt

W

Reset 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R gp_out gp_in

W

Reset 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 303 / 536

Fields

Field Function

31

rsse

rsse

RSSE module present

Indicates the presence of the RSSE sub-module selected by the VSPA block configuration. The values in
this register are valid immediately after reset.

0b - RSSE module does not exist in this configuration

1b - RSSE module exists in this configuration

30-28

axi_data_width

axi_data_width

AXI data width

Indicates the width of the data channels of the external AXI buses selected by the VSPA configuration
parameter AXI_DATA_WIDTH. The values in this register are valid immediately after reset

000b - 32-bit AXI data width

001b - 64-bit AXI data width

010b - 128-bit AXI data width

011b - 256-bit AXI data width

100b - 512-bit AXI data width

101b - 1024-bit AXI data width

27-24

axi_id_width

axi_id_width

AXI ID width

Indicates the width of the ID channels of the external AXI buses selected by the VSPA configuration
parameter AXI_ID_WIDTH. The values in this register are valid immediately after reset

23-16

dma_cnt

dma_cnt

DMA channel count

Indicates the number of DMA channels selected by the VSPA configuration parameter
DMA_CHANNEL_COUNT. The values in this register are valid immediately after reset.

15-8

gp_out

gp_out

GP_OUT Register Count

Indicates the number of GP Output registers selected by the VSPA configuration parameter
GP_OUT_REG_COUNT. The values in this register are valid immediately after reset

7-0

gp_in

gp_in

GP_IN Register Count

Indicates the number of GP Input registers selected by the VSPA configuration parameter
GP_IN_REG_COUNT. The values in this register are valid immediately after reset

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 304 / 536

14.2.14 VSPA Parameters 2 (PARAM2)

Offset

Register Offset

PARAM2 48h

Function

PARAM2 register can be read to determine the VSPA hardware configuration which has been implemented on this VSPA
instance.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ippu_p

r...
fecu_p

r...
Reserv

ed
ext_go_width float64

hpfloat
... Reserved

dmem_size

W

Reset 1 1 0 0 1 0 0 0 0 1 u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R dmem_size nau

W

Reset u u u u u u u u 0 0 0 1 0 0 0 0

Fields

Field Function

31

ippu_present

ippu_present

IPPU present

This bit indicates whether an IPPU exists in this instance of VSPA

0b - IPPU does not exist in this instance of VSPA

1b - IPPU exists in this instance of VSPA

30

fecu_present

fecu_present

FECU present

This bit indicates whether a FECU exists in this instance of VSPA.

0b - FECU does not exist in this instance of VSPA

1b - FECU exists in this instance of VSPA

29

—

-

Reserved

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 305 / 536

Table continued from the previous page...

Field Function

28-24

ext_go_width

ext_go_width

External go width

The value of this bit field indicates the number of ext_VCPU_go inputs that VCPU has and can respond to.
Values from 1 to 31 indicate directly the number of go inputs. A value of 0 indicates there are 32
ext_VCPU_go inputs.

Settings: b01000

23

float64

float64 enable

Float 64 support

The value of this bit indicates whether this instance of VCPU supports 64-bit floating point AU operations.
This is determined by the construction of the instance in an SoC. The reset state is n, and the value of the
register is a constant.

0b - 64-bit floating point AU operations are not supported

1b - 64-bit floating point AU operations are supported

22

hpfloat_present

hpfloat_present

This status bit indicates whether the VSPA VCPU supports the use of half-precision floating point format.

0b - VCPU does not support half-precision floating point format

1b - VCPU supports half-precision floating point format

21-19

—

-

Reserved

18-8

dmem_size

dmem_size

VSPA DMEM size

Indicates the location of the partition, beyond which the VCPU accesses IPPU DMEM. The memory size
in bytes can be determined by multiplying the field value by 0x400.The values in this register are valid
immediately after reset.

WARNING: This bit field is deprecated, and will not be available in future revisions. It is replaced by the
register VSPA_VCPU_DMEM_BYTES. Ensure that the software uses VSPA_VCPU_DMEM_BYTES for
forward compatibility.

7-0

nau

nau

Number of arithmetic units (AU)

Indicates the number of arithmetic units implemented in this VCPU configuration. The values in this register
are valid immediately after reset.

00010000b - 16AU

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 306 / 536

14.2.15 VCPU DMEM Size (VCPU_DMEM_BYTES)

Offset

Register Offset

VCPU_DMEM_BYTES 4Ch

Function
VCPU DMEM Size

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vcpu_dmem_bytes

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R vcpu_dmem_bytes

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

vcpu_dmem_by
tes

VSPA VCPU DMEM size in bytes.

Indicates the location of VCPU DMEM partition, beyond which the VCPU and DMA access IPPU DMEM.
The partition size is expressed in bytes. Note that the actual size of VCPU DMEM could be larger than the
partition size; however, in most cases they will be the same. The values in this register are implementation
specific, and are valid immediately after reset.

14.2.16 Thread Control and Status (THREAD_CTRL_STAT)

Offset

Register Offset

THREAD_CTRL_STAT 50h

Function
Thread Control and Status

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 307 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
thread

_... Reserved
req_thread_id

thread
_... Reserved active_thread_id

W W1C W1C

Reset 0 0 0 0 u u u u 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

—

-

Reserved

15

thread_change_
flag

thread_change_flag

w1c only by VCPU SUPV or the debugger; read only by all other masters.

This bit is set when a rising edge is detected on the VSPA new_thread_req input. It is intended to be used
to determine that a request has been made to change to a new active thread. This request would come
from an external thread scheduling system.

This is a non-maskable GO source.

 NOTE

14-12

—

-

Reserved

11-8

req_thread_id

req_thread_id

These bits continuously reflect the synchronized state of the VSPA requested_thread_id inputs. The
intended use is to determine the new thread ID being requested by an external thread scheduling system
when the THREAD_CHANGE_FLAG bit is set. This bitfield is read-only.

7

thread_change_
ack

thread_change_ack

This bit is used by the VCPU to signal to an external thread scheduler that the previous assertion of the
VSPA new_thread_req input has been acknowledged.

This bit can only be written by the VCPU SUPV and the debugger; when it is written to 1, the VSPA output
new_thread_ack will be asserted, conveying acknowledgment to the external thread scheduler. Writes of
0 or by any other master are ignored.

This bit is self clearing; it is cleared when hardware detects the negation of the VSPA new_thread_req input.

w1 to ack;

When w1, asserts VSPA new_thread_ack output

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 308 / 536

Table continued from the previous page...

Field Function

Clears when the new_thread_req pin negates

Read returns the present state of the ack output.

6-4

—

-

Reserved

3-0

active_thread_i
d

active_thread_id

These bits directly control the VSPA active_thread_id outputs, and also control the internal state of the
VCPU thread ID. These bits are writable by the debugger and the VCPU when it's in SUPV mode. Host
writes and VCPU writes while in USER mode have no effect. Intended use is for differentiating between
VSPA threads, and protecting various VSPA resources from corruption by unauthorized threads.

Write changes the active_thread_id outputs.

Read returns the current state.

Host/VCPU Access

Host RO

VCPU/Debugger RW

Since this version of VSPA is not implementing thread protection, USER mode is disabled
and the SUPV bit is always held in the SUPV state.

 NOTE

14.2.17 Protection Fault Status (PROT_FAULT_STAT)

Offset

Register Offset

PROT_FAULT_STAT 54h

Function
Protection Fault Status

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 309 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R fault Reserv
ed

flt_mstr Reserv
ed

flt_type flt_thread flt_addr

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R flt_addr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31

fault

fault

Indicates that a fault occurred.

When this bit is set, all the other bits in this register are frozen.

Subsequent faults won’t change the other bits unless this bit is cleared first.

30

—

-

Reserved

29-28

flt_mstr

flt_mstr

Faulting master - read-only

(HOST=0,VCPU=1,DMA=2,IPPU=3)

27

—

-

Reserved

26-24

flt_type

flt_type

Fault type - read-only

(VDMEM write=1,IDMEM write=2, attempted reg. write of: IPPU=5,DMA=3,FLAG=7,GPOUT=6,SUPV
ONLY reg=4,HOST wrote to VCPU only reg.=4)

23-20

flt_thread

flt_thread

Thread ID that caused the fault - read-only

If fault was HOST, value will be 0.

19-0

flt_addr

flt_addr

Address of faulting master - read-only

(VCPU=VCU_PC, IPPU=IPPU_PC, HOST=IPaddr, DMA=channel number)

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 310 / 536

14.2.18 VCPU Exception Control (EXCEPTION_CTRL)

Offset

Register Offset

EXCEPTION_CTRL 58h

Function
This register is only writable by the VCPU, as a SUPV. Other write attempts will cause IP register protection faults.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
restore

... Reserv
ed

vcpu_ir
...

supv
Reserved

vec_base

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R vec_base Reserv
edW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31

restore_prev_vc
pu_irqen

restore_prev_vcpu_irqen

When written to 1, set the value of VCPU_IRQEN to PREV_VCPU_IRQEN

Always reads as 0.

30

—

-

Reserved

29

vcpu_irq_en

vcpu_irq_en

This bit can be written by the VCPU SUPV. Other write attempts will cause IP register protection faults. It
can be cleared by hardware (whenever a GO occurs or SUPV mode is entered). It can be set by hardware
as an immediate response to a write of 1 to the RESTORE_PREV_VCPU_IRQEN bit, if the previous state
of IRQEN was 1 when SUPV mode was last entered.

This control bit enables or disables the VCPU IRQ function.

0b - The VCPU interrupt is disabled, and an assertion of VSPA input vcpu_irq will NOT cause a
VCPU interrupt.

1b - The VCPU interrupt is enabled, and an assertion of VSPA input vcpu_irq WILL cause a
VCPU interrupt.

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 311 / 536

Table continued from the previous page...

Field Function

28

supv

supv

Read: 1 if in SUPV state, 0 if in USER state. Only meaningful if VCPU is BUSY.

Since this version of VSPA is not implementing thread protection, USER mode is disabled
and the SUPV bit is always held in the SUPV state.

 NOTE

Can only be written by VCPU when in SUPV mode; host can't write; debugger can write.

Can also be set to 1 (SUPV) by processing a vcpu_irq, swi, or go. Reset value is 1.

27-20

—

-

Reserved

19-1

vec_base

vec_base

LSB (bit 1) is the full word aligned instruction address of the start of the JMP table which is used when
processing SWI and VCPU_IRQ.

With this alignment, software can mvip EXCEPTION_CTRL, SYMBOL, using a mask of 0x000FFFFF and
initialize the table address (no shifting required). The JMP table base address VEC_BASE+0 is the target
for the SWI. The JMP table base address VEC_BASE+8 is the target for the VCPU_IRQ.

0

—

-

Reserved; always reads as 0.

14.2.19 VCPU Exception Status (EXCEPTION_STAT)

Offset

Register Offset

EXCEPTION_STAT 5Ch

Function

This register is only writable by the VCPU, as a SUPV. Other write attempts will cause IP register protection faults.

 NOTE

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 312 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
prev_v

c...
vcpu_ir

...
vcpu_ir

... Reserved
swi_arg_irq_pc

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R swi_arg_irq_pc

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31

prev_vcpu_irqe
n

prev_vcpu_irqen

Read only: reflects the state of the VCPU_IRQ_EN bit when SUPV was entered last (either from SWI/
VCPU_IRQ or go); writes have no effect.

30

vcpu_irq_go

vcpu_irq_go

w1c when in suvp mode; else read only.

Disallowed write attempts cause protection faults. This flag is set whenever the vcpu_irq input is asserted
at the same time as vcpu_iqr_en (VSPA_EXCEPTION_CTRL[29]) is set. IRQ handlers must clear this bit
in order to prevent a subsequent go event

29

vcpu_irq_state

vcpu_irq_state

Read only: reflects the current state or the vcpu_irq input; writes have no effect.

28-20

—

-

Reserved

19-0

swi_arg_irq_pc

swi_arg_irq_pc

If an SWI was the cause of the current exception, a read [15:0] returns the argument provided with SWI
(SWI flag is not needed since it has its own vector).

Read [19:16] returns 0.

If a vcpu_irq was the cause of the current exception, a read returns the PC value of the VCPU at the point
the vcpu_irq was recognized.

If BUSY was 0 at IRQ, this will be 0. Writes have no effect.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 313 / 536

14.2.20 AXI Slave flags register a (AXISLV_FLAGS0 - AXISLV_FLAGS1)

Offset

Register Offset

AXISLV_FLAGS0 60h

AXISLV_FLAGS1 64h

Function

The register bits are w1c status bits, read from the VCPU and the host, only the VCPU can w1c.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R axislv_flagn

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R axislv_flagn

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

axislv_flagn

axislv_flagn (n is 31-0 for flags0, and 63-32 for flags1)

The flags are set whenever the AXI slave interface is written to, with an address between 0x200000 and
0x3FFFFF. The last 64 bits of the AXI data control which flags are set by the AXI write. An AXI write of "1"
will set the corresponding flag bit.

14.2.21 AXI Slave Go Enable register a (AXISLV_GOEN0 - AXISLV_GOEN1)

Offset

Register Offset

AXISLV_GOEN0 68h

AXISLV_GOEN1 6Ch

Function

The bits are simple R/W bits, read and write from the VCPU and the host.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 314 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
axislv_goenn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
axislv_goenn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

axislv_goenn

axislv_goenn (n is 31-0 for goen0, and 63-32 for goen1)

Enable/disable a VCPU GO event upon detection of rising edges of the associated ext_VCPU_go inputs
of the VSPA platform.

00000000000000000000000000000000b - Do not allow generation of a GO event.

00000000000000000000000000000001b - Enable generation of a GO event.

14.2.22 Platform Input (PLAT_IN_0)

Offset

Register Offset

PLAT_IN_0 70h

Function

This register is read only by any master, writes have no effect.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R plat_in

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R plat_in

W

Reset u u u u u u u u u u u u u u u u

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 315 / 536

Fields

Field Function

31-0

plat_in

plat_in

Platform integration inputs.

These bits are general purpose platform-level integration inputs. They can be tied by the integration of a
VSPA platform to provide visibility of the connected signals to VSPA or host software. The usage is chip-
dependent.

14.2.23 Platform Output (PLAT_OUT_0)

Offset

Register Offset

PLAT_OUT_0 80h

Function

This is a read/write register. Writes possible from host, debugger, or VCPU as SUPV. VCPU user writes are ignored.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
plat_out

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
plat_out

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

plat_out

plat_out

Platform integration outputs.

These bits are general purpose platform-level integration outputs. They can be tied by the integration of a
VSPA platform to provide control of the connected signals via VSPA or host software. The usage is chip-
dependent.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 316 / 536

14.2.24 Cycle counter MSB register (CYC_COUNTER_MSB)

Offset

Register Offset

CYC_COUNTER_MSB 98h

Function

VSPA core has a built-in 48-bit free-running cycle counter. The cycle counter counts at the resolution of VSPA clock cycles. Out
of reset, the cycle counter is disabled to save power. VCPU or the host must enable it, by writing a 1 to the msb (bit 31) of the
CYC_COUNTER_MSB register, to start counting. When enabled, the cycle counter increments by one VSPA clock. The cycle
counter can be used to count:

• number of clock cycles between a go event and an idle instruction

• number of clock cycles between an idle instruction and a go event

• time taken by a function in clock cycles

The VCPU can read the 48-bit register coherently, by reading the VSPA_CYC_COUNTER_MSB and the
VSPA_CYC_COUNTER_LSB in two consecutive IP register accesses.

When the VCPU reads the upper 16-bits of the register, VSPA_CYC_COUNTER_MSB, the value of the lower 32 bits is captured
in an internal shadow register. When the VCPU reads the lower 32-bits of the register, VSPA_CYC_COUNTER_LSB, the value
read is the acquired 32 bit in a shadow register. This guarantee the 48-bit value composed from these reads is the state of the
cycle counter at the time of the upper 16-bit, VSPA_CYC_COUNTER_MSB, read.

The VCPU can write the 48-bit register coherently, by writing the VSPA_CYC_COUNTER_MSB and the
VSPA_CYC_COUNTER_LSB in two consecutive IP register accesses.

When the VCPU writes the upper 16-bits of the register, VSPA_CYC_COUNTER_MSB, the value of the upper 16-bit is captured
in an internal shadow register. VSPA_CYC_COUNTER_MSB is not modified at this point of time. When the VCPU writes the
lower 32-bit of the register, VSPA_CYC_COUNTER_LSB, the entire cycle counter 48-bit value is written at the same time. The
upper 16-bit is written from the internal shadow register, simultaneously when the lower 32-bit is written. This guarantees the 48-
bit value is composed from the two write accesses, the VSPA_CYC_COUNTER_MSB and the VSPA_CYC_COUNTER_LSB.

Similar to the VCPU, the host can read and write the registers coherently, and the same coherency mechanism is provided.

However, VSPA is not prevented from reading/writing the register between the host access of the upper part and the lower part.
This interleaving coherency must be protected by the software. For example, host software can read the 48-bit register twice,
and determine it is correct if the difference between the two read values is less than certain value. If the host write a 48-bit value,
it must read it back to make sure the written value is correct.

The registers' interleaving coherency is protected only when VSPA issues the read (or write) of the upper/lower parts of the
register in consecutive cycles.

For debug purposes, the cycle counter can be configured to halt when VSPA enters debug halted mode. For more
detailed information, refer to halt_cyc_counter bit in the Debug Run Control register (RCR) register.

 NOTE

The values for VSPA_CYC_COUNTER_MSB and VSPA_CYC_COUNTER_LSB registers are a snapshot when
the core was stopped, but the values cannot be used with stepping to determine how much clock cycles takes for
an instruction or block of code to execute.

 NOTE

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 317 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R cyn_cn
t...

Reserved
W

Reset 0 u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cyc_cnt_msb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31

cyn_cnt_en

cyn_cnt_en

Cycle count enable.

This bit controls if the Cycle Counter is enabled (counting) or disabled (stopped).

0b - Counter is disabled. The counter is not incremented.

1b - Counter is enabled. The counter is incremented by one VSPA clock.

30-16

—

-

Reserved

15-0

cyc_cnt_msb

cyc_cnt_msb

Cycle count MSB

This field contains the upper 16-bit, cyc_count[47:32], of the 48-bit cycle counter.

Settings: Reads return 16-bit MSB, cyc_count[47:32], of the 48-bit cycle counter. Writes sets the 16-bit
MSB, cyc_count[47:32], of the 48-bit cycle counter.

14.2.25 Cycle Counter LSB Register (CYC_COUNTER_LSB)

Offset

Register Offset

CYC_COUNTER_LSB 9Ch

Function

VSPA core has a built-in 48-bit free-running cycle counter. See Cycle Counter MSB Register(VSPA_CYC_COUNTER_MSB) for
detailed description of the cycle counter.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 318 / 536

The values for VSPA_CYC_COUNTER_MSB and VSPA_CYC_COUNTER_LSB registers are a snapshot when
the core was stopped, but the values cannot be used with stepping to determine how much clock cycles takes for
an instruction or block of code to execute.

 NOTE

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cyc_cnt_lsb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cyc_cnt_lsb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

cyc_cnt_lsb

cyc_cnt_lsb

Cycle count LSB.

This field contains the lower 32-bit, cyc_count[31:0], of the 48-bit cycle counter.

Settings: Reads return 32-bit LSB, cyc_count[31:0], of the 48-bit cycle counter. Writes sets the 32-bit LSB,
cyc_count[31:0], of the 48-bit cycle counter.

14.2.26 DMEM/PRAM Address (DMA_DMEM_PRAM_ADDR)

Offset

Register Offset

DMA_DMEM_PRAM_AD
DR

B0h

Function

• The DMA_DMEM_PRAM_ADDR register should be written before writing to the DMA_XFR_CTRL register.

• This register is not affected by reset and cannot be read (reads return 0s).

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 319 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W starting_address

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W starting_address

Reset u u u u u u u u u u u u u u u u

Fields

Field Function

31-21

—

-

Reserved

20-0

starting_addres
s

starting_address

Starting address

This bit field describes the DMEM/PRAM/IPPU PRAM byte address to be used by the transfer. For example,
if reading or writing DMEM, setting this field to 0x00000 will select DMEM byte 0, 0x00006 will select DMEM
byte 6.

• Note that all DMEM transfers must START at a DMEM byte address that is aligned to the width of
the AXI data bus. Therefore, on devices using a 32-bit data bus, the DMEM address bits 1 and 0
must be 0. On devices using a 64-bit data bus, the DMEM address bits 2, 1, and 0 must be 0. On
devices using a 128-bit data bus, the DMEM address bits 3, 2, 1, and 0 must be 0.

• When writing PRAM, each PRAM location is composed of 8 bytes. Therefore, this register must
always be set so that bits 2, 1, and 0 are 0. Furthermore, the PMEM address specified must be
aligned to the width of the AXI data bus.

• When writing to IPPU PRAM, each IPPU PRAM location is considered to be composed of 4 bytes.
Therefore, this register must always be set so that bits 1 and 0 are 0. Note that the starting 32-bit
IPPU PRAM word is also expected to be aligned to the width of the AXI data bus. If the AXI data bus
is 64 bits wide, the AXI address also needs to be 64-bit aligned. Furthermore, the IPPU PRAM
starting address must be 64-bit aligned.

Settings: Memory byte address in PRAM, IPPU PRAM, or DMEM, as appropriate to what the channel is
configured to operate on. When the DMA is programmed for a DI storage operation, this register must be
programmed to point to the DMEM byte address of the first data value of the DI data table.

14.2.27 DMA AXI Address (DMA_AXI_ADDRESS)

Offset

Register Offset

DMA_AXI_ADDRESS B4h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 320 / 536

Function

• The DMA_AXI_ADDRESS register should be written before writing to the DMA_XFR_CTRL register.

• This register is not affected by reset and cannot be read (reads return 0s).

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W starting_address

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W starting_address

Reset u u u u u u u u u u u u u u u u

Fields

Field Function

31-0

starting_addres
s

starting_address

Starting address

This field is a 32-bit field.

• For transfers both to and from AXI, the LSBs of the address must be 0, allowing AXI transfers to
start only on AXI bus width aligned boundaries. If the appropriate number of LSBs are not 0 in this
configuration, then the configuration error status bit will be set if an attempt is made to set the
associated channel enable bit, and the channel enable bit will not be set.

• If transferring data into PMEM, the AXI address must be aligned to the LARGER of 64 bits or the AXI
data bus width, or the configuration error status bit will be set.

Settings:

AXI byte address where the first transfer will begin. If the associated burst_type bit in DMA_CHAN_CTRL
is set to "1", all AXI transfers will be made to this address. When the DMA is programmed for a DI storage
operation, this register must be programmed to point to the DMEM byte address of the first AXI address of
the DI AXI address table. This address must be aligned to a 32-bit boundary.

14.2.28 AXI Byte Count register (DMA_AXI_BYTE_CNT)

Offset

Register Offset

DMA_AXI_BYTE_CNT B8h

Function

• The DMA_AXI_BYTE_CNT register should be written before writing to the DMA_XFR_CTRL register.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 321 / 536

• This register is not affected by reset and cannot be read (reads return 0s).

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W count

Reset u u u u u u u u u u u u u u u u

Fields

Field Function

31-16

—

-

Reserved

15-0

count

count

The number of bytes that get transferred.

Maximum transfer size is 65536 bytes.

• Note that when transferring data TO DMEM, the LSB of this register must be 0. Otherwise, the
configuration error status bit will be set if an attempt is made to set the associated channel enable
bit, and the channel enable bit will not be set. This is because memory write resolution is limited to
minimum field sizes of 16 bits.

• A configuration error will result when transferring to PRAM unless the total number of bytes
transferred is an integer multiple of 8. This is required because each PRAM word is comprised of 8
bytes.

• A configuration error will result when transferring to IPPU PRAM unless the total number of bytes
transferred is an integer multiple of 4 bytes.

Settings:

0=65536 bytes, 1=1 byte, 2=2 bytes, and so on.

When the DMA is programmed for a DI storage operation, this register must be programmed to the number
of data values to be stored.

14.2.29 DMA Transfer Control register (DMA_XFR_CTRL)

Offset

Register Offset

DMA_XFR_CTRL BCh

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 322 / 536

Function

The DMA_XFR_CTRL register must not be written until after all configuration information has first been written into the
DMA_DMEM_PRAM_ADDR, DMA_AXI_ADDRESS and DMA_AXI_BYTE_CNT registers. Upon writing the DMA_XFR_CTRL
register, all the command attributes from all four of these registers will be captured into the associated channel's FIFO, and the
channel will be activated. Even writes from the VCPU core with no register bit mask bits set are considered writes and will activate
the channel, so this register must be updated with a single write, not a series of masked writes.

Since VCPU and a host processor can both use the DMA, there are separate sets of registers for each of them. Both sets of
registers are located at the same addresses; the DMA detects whether writes come from VCPU or from the host, and updates
the appropriate registers.

All bits of the registers should be written since they are not initialized by default.

Channel arbitration and priority:

• The DMA has two data movement engines, one for AXI writes and one for AXI reads. Thus, AXI read and writes can and will
occur simultaneously. Each engine has its own arbitration unit.

• Each channel has a 2-entry FIFO. Commands in the FIFO will be executed in sequence (that is, the 1st command must be
fully completed before the 2nd command can start).

• Channel 0 is a priority channel. If it is enabled and ready (external trigger satisfied if selected) its commands will be completed
before any other channel is allowed to move any data.

• Channels other than channel 0 use round robin arbitration, arbitrating at the completion of each AXI burst. Therefore, if
channels 2 and 4 are both writing to AXI, they will alternate doing one AXI burst each until one is finished. At that point the
unfinished one will win every arbitration since there will be no other competition. If channels 1 and 3 were both reading from
AXI (and enabled at the same time as 2 and 4), they would also alternate bursts, but their activity would be unaffected by
channels 2 and 4 since those are processed by the other engine.

• If multiple channels are configured to read from AXI and channel 0 is configured as one of these channels, the usual round
robin arbitration is disrupted and the next 2 highest priority channels will always win arbitration on the remaining read
engines. As any channel completes, the next highest channel will become one of the always winning channels. When channel
0 completes the usual round robin arbitration will resume beginning with the channels currently running.

• The multi-burst feature affects only channels doing AXI reads. Observe and consider all the warnings accompanying the bit
description. The round robin arbitration "fairness" can be distorted by the use of this feature, since it allows 4 bursts per
arbitration win, compared to only 1 burst per arbitration win for channels not using multi-burst.

• The following characteristics apply to channels using an external trigger:

1. They will only arbitrate when the external trigger input is asserted (high).

2. They will only arbitrate when the associated ptr_rst_req/ack signals are both negated (low).

3. If the transfers are AXI writes, the BRESP for each burst of a channel must be recieved before that channel will be
allowed to be considered by the arbiter again.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 323 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0
fecu_tr

...
fecu_g

o...
Reserv

ed

0 0 0

W sideband di_mode
ippu_tr

...
ext_
trig

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0

Reserved

0

W ptr_rst irq_en
vcpu_g

o...
ippu_g

o...
burst_t

...
trans_mode_select

multi_b
...

channel_select

Reset u u u u u u u u u u u u u u u u

Fields

Field Function

31-24

sideband

sideband

Used to control the AXI address phase signals arsideband and awsideband, for AXI reads and writes
respectively. Typical use of these bits would be for extending AXI address beyond 32 bits, or adding special
security extensions. The bitfield can be anywhere from 1 to 8 bits, with the size depending on the value of
parameter AXI_SIDEBAND_WIDTH, which is visible in VSPA_PARAM_0

23

fecu_trig

FECU trigger

Used to control the DMA's sensitivity to FECU to DMA trigger events. If enabled, the initial DMA channel
arbitration will occur only after the FECU asserts a DMA trigger event. The trigger event from FECU will
only be asserted if the FECU_CONTROL register bit 8 (dma_go_enable) was set when the FECU command
was placed into the FIFO.

Note that the FECU to DMA trigger event is produced only for 1 cycle, when the FECU completes the FIFO
command. If the FECU previously completed a command and asserted the trigger, that will not enable the
DMA. The DMA waits for a trigger event that occurs after the DMA command is programmed.

0b - Ignore FECU to DMA trigger events

1b - Wait for a single (future) FECU DMA trigger event before enabling all transfers scheduled for
this channel

22

fecu_go_en

FECU go enable

Used to control assertion of a DMA->FECU trigger event, which can cause FECU to begin processing a
scheduled command.

If enabled, the DMA -> FECU event will assert immediately following the completion of the DMA command.
This trigger event will only be monitored by FECU if the FECU_CONTROL register bits [1:0] (start_type)
were set to 01 (wait for an external DMA trigger) when the FECU command was placed into the FIFO.

Note that the DMA to FECU trigger event is asserted only for 1 cycle, after the DMA completes the FIFO
command.

0b - Do not assert a DMA to FECU trigger event on completion of the DMA command.

1b - Assert a DMA to FECU trigger event on completion of the DMA command.

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 324 / 536

Table continued from the previous page...

Field Function

21

—

-

Reserved

20-18

di_mode

Deinterleaving mode

The reserved modes listed below should be avoided if the trans_mode_select field is programmed to
0b100 (deinterleave data to AXI). Other configurations of trans_mode_select allow the DMA to ignore
this field, so it can be safely set to any value in those cases.

000b - reserved

001b - 8-bit deinterleave

010b - 4-bit deinterleave, AXI address MSB=0

011b - 4-bit deinterleave, AXI address MSB=1

100b - 16-bit deinterleave

101b - 32-bit deinterleave

110b - reserved

111b - reserved

17

ippu_trig

IPPU trigger

Used to control the DMA's sensitivity to IPPU done events. If enabled, initial channel arbitration will not be
authorized until the IPPU signals a completion (done) event.

Note that a done event is produced only for 1 cycle when the IPPU conpletes a task and enters the done
state. If the IPPU is already in the done state when the DMA channel command is activated, the IPPU will
need to start again and signal done again to satisfy this trigger.

0b - Ignore IPPU done events

1b - Wait for a single IPPU done event before enabling all transfers scheduled for this channel

16

ext_trig

External trigger

Used to control the DMA's sensitivity to the dma_ext_trig input of the VSPA platform. If enabled, channel
arbitration will not take place unless dma_ext_trig is high.

This feature cannot be enabled in conjunction with a DI storage operation. Attempts to do
so will result in a configuration error and the command will be ignored.

 NOTE

0b - Ignore dma_ext_trig input

1b - Wait for dma_ext_trig input before beginning each AXI burst

15

ptr_rst

Pointer reset

Used for control of external FIFOs containing pointers. When enabled, the DMA will assert ptr_rst_req at
the end of the channel's transfers to reset the FIFO's pointers. A ptr_rst_ack should be returned by the
external device. If bit 16, ext_trig, is also set to 1, the channel will be disabled from arbitration until the
handshake is completed and the ptr_rst_req and ptr_rst_ack are both low.

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 325 / 536

Table continued from the previous page...

Field Function

Note that if bit 16, ext_trig, is cleared, the channel will participate in arbitration upon transfer completion
ignoring the state of ptr_rst_req and ptr_rst_ack as well as the state of the dma_ext_trig input.

0b - Ignored

1b - Upon completion of the scheduled transfers, assert ptr_rst_req

14

irq_en

IRQ enable

Used to generate an IRQ to the host upon completion of the scheduled transfers.

0b - Ignored

1b - Generate IRQ upon completion of scheduled transfers

13

vcpu_go_en

VCPU Go enable

Used to generate a VCPU GO upon completion of the scheduled transfers. This will set the associated
dma_go status flag in the DMA_GO_STAT register.

0b - Ignored

1b - Generate VCPU GO upon completion of scheduled transfers

12

ippu_go_en

IPPU Go enable

Used to generate a IPPU GO upon completion of the scheduled transfers.

0b - Ignored

1b - Generate IPPU GO upon completion of scheduled transfers

11

burst_type

Burst type

Used to select between transferring to a memory or to a FIFO.

0b - Incrementing burst type

1b - Fixed burst type (all bursts go to the same AXI address)

10-8

trans_mode_sel
ect

Transfer mode select

Used to select characteristics of the desired DMA transfer, such as source and target memory and format
conversion.

Table 98. Transfer Mode Select Encoding

Encoding DMA from DMA to Notes

000 AXI DMEM No format conversion

001 AXI DMEM Format conversion from 16-bit 2's complement -> 16-bit
sign magnitude

010 AXI PRAM Load VCPU PRAM

011 AXI IPPU PRAM Load IPPU PRAM

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 326 / 536

Table continued from the previous page...

Field Function

Table 98. Transfer Mode Select Encoding (continued)

Encoding DMA from DMA to Notes

100 DMEM AXI Store and deinterleave data to AXI

101 u u Reserved

110 DMEM AXI No format conversion

111 DMEM AXI Format conversion from 16-bit sign magnitude -> 16-bit
2's complement

While selecting any transfer mode except 000, Bit reversal mode (br32) shall be kept
disabled. If Bit reversal mode is also enabled, format conversion of data will not happen for
that particular transfer.

 NOTE

7

multi_burst

Multi-read burst enable

Used to enable AXI read engine feature that produces up to 4 outstanding AXI read transactions per
arbitration win for the channel. The state of this bit is ignored if the channel is configured to write to the AXI.

Warnings:

This feature cannot be enabled in conjunction with a DI storage operation. Attempts to do so will result in
a configuration error and the command will be ignored.

This feature is intended only for use with "normal" memory, not for FIFOs, so it should not be used in
combination with burst_type=1 or ext_trig=1. It should also not be used for transfers targeting the VCPU or
IPPU PMEM. It is only intended for AXI-> DMEM or IPPU DMEM transfers.

When enabled, up to 4 outstanding AXI read address transactions will be issued in rapid succession. Some
AXI interconnect or memory systems may not support this functionality. Also, other DMA channels
performing AXI reads will experience a reduction in relative bus bandwidth since the multi_burst channels
are allowed 4 bursts while the others are allowed only 1.

0b - Do only 1 AXI read burst per arbitration win

1b - Perform up to 4 AXI read bursts per arbitration win

6-5

—

-

Reserved

4-0

channel_select

Channel select

Selects the DMA channel to be used to execute the command.

Note that channel 0 has arbitration priority over all other channels. If channel 0 is enabled and ready to
transfer, no transfers for any other channels will be performed until all channel 0 transfers have been
completed.

00000b - channel 0

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 327 / 536

Table continued from the previous page...

Field Function

00001b - channel 1

11111b - channel 31

14.2.30 DMA Status/Abort Control (DMA_STAT_ABORT)

Offset

Register Offset

DMA_STAT_ABORT C0h

Function

Pay close attention to the register bit field descriptions following the register figure because a field designated with
read-write access in the register figure may have additional non-standard behavior described in its corresponding
register bit field description.

 NOTE

• The DMA_STAT_ABORT register bits, when read, indicate the status of all the DMA channels, that is, whether there is
current or pending activity.

• When this register is written with 1s, the associated channels are aborted or descheduled, and all pending FIFO
commands are cleared.

• When a channel is aborted, the DMA_STAT_ABORT status bit will be cleared immediately, regardless of the fact that all
activity may not yet have ceased. To be certain that all activity on a channel has ceased following an abort request, the
corresponding bit in the DMA_XRUN_STAT must be read as a "0". No new FIFO commands should be initiated to a
channel that has not completed a requested abort. Note that channels that are aborted will not set the corresponding
DMA_COMP_STAT bits; the abort is treated as if the channel did not finish, so the following features will not be activated
due to an abort:

— the DMA will not trigger an IRQ for the aborted channel

— the DMA will not trigger the IPPU even if the ippu_go_en bit was set

— the DMA will not trigger the VCPU to go, even if the vcpu_go_en bit was set

— the DMA will not trigger a ptr_rst_req, even if the ptr_rst bit was set

• Note that following a VCPU write to the DMA_XFR_CTRL register, these status bits do not update until one cycle after the
write occurs. Therefore, an instruction to read this register should not immediately follow the instruction that writes the
DMA_XFR_CTRL register.

• Channels that have been configured for DI transfers cannot be aborted. Abort commands for those channels will be
ignored.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 328 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dma_chan_n

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

—

-

Reserved

15-0

dma_chan_n

dma_chan_n

Access to this field is non-standard and is described in detail below.

 NOTE

Read - DMA Channel n status for n=15 to 0

Each nth bit specifies if the nth DMA channel is enabled.

Write 1 - Disable/abort channel n and clear its FIFO.

Read:

0 Channel n Disabled.

1 Channel n Enabled.

Write:

0 Do Nothing.

1 Disable/abort channel n, clear its FIFO entries.

14.2.31 DMA IRQ Status (DMA_IRQ_STAT)

Offset

Register Offset

DMA_IRQ_STAT C4h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 329 / 536

Function

Pay close attention to the register bit field descriptions following the register figure because a field designated with
read-write access in the register figure may have additional non-standard behavior described in its corresponding
register bit field description.

 NOTE

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
irq_chan_n

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

—

-

Reserved

15-0

irq_chan_n

irq_chan_n

Access to this field is non-standard and is described in detail below.

 NOTE

IRQ channel n for n=15 to 0

Each nth bit specifies whether the nth DMA channel asserted an interrupt request upon completion of all
of its scheduled transfers.

These bits are write 1 to clear, and they can only be cleared by the external IPbus master, not by VCPU.

0000000000000000b - Channel n interrupt not requested

0000000000000001b - Channel n interrupt requested

14.2.32 DMA Complete Status (DMA_COMP_STAT)

Offset

Register Offset

DMA_COMP_STAT C8h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 330 / 536

Function

• The DMA_COMP_STAT register bits are cleared by writing ones to their respective bit positions.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R dma_comp_chan_n

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

—

-

Reserved

15-0

dma_comp_cha
n_n

dma_comp_chan_n

DMA completed channel n for n=15 to 0

Each nth bit specifies whether the nth DMA channel has completed all of its scheduled transfers.

0000000000000000b - Channel n transfers have not completed.

0000000000000001b - Channel n transfers have completed.

14.2.33 DMA Transfer Error Status (DMA_XFRERR_STAT)

Offset

Register Offset

DMA_XFRERR_STAT CCh

Function

• The DMA_XFRERR_STAT register bits are cleared by writing ones to their respective bit positions.

• These register bits will set as soon as an error is detected, even if all of the transfers have not yet been completed.

• Detection of an AXI transfer error does not abort any pending transfers. All transfers will be completed whether AXI
transaction errors are detected.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 331 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R xfr_error_chan_n

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

—

-

Reserved

15-0

xfr_error_chan_
n

dma_comp_chan_n

DMA transfer error channel n for n=15 to 0

Each nth bit indicates whether the nth DMA channel has detected AXI transaction errors during a
programmed transfer.

0000000000000000b - Channel n AXI transfers have no errors, or have not completed.

0000000000000001b - Channel n AXI transfers have errors.

14.2.34 DMA Configuration Error Status (DMA_CFGERR_STAT)

Offset

Register Offset

DMA_CFGERR_STAT D0h

Function

This register is used to indicate when software has attempted to activate a DMA channel that has been set up in an improper
configuration.

• Note that following a VCPU write to the DMA_XFR_CTRL register, these status bits do not update until one cycle after the
write occurs. Therefore, an instruction to read this register should not immediately follow the instruction that writes the
DMA_XFR_CTRL register.

• If a configuration error occurs, the associated channel will not act on the invalid command, so no transfers will be
scheduled.

• The DMA_CFGERR_STAT register bits are cleared by writing ones to their respective bit positions.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 332 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R cfg_error_chan_n

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

—

-

Reserved

15-0

cfg_error_chan
_n

cfg_error_chan_n

DMA configuration error for channel n for n=15 to 0

Each n bit indicates whether the nth DMA channel has detected an attempt to configure the associated
channel while an invalid configuration was present in its associated control registers.

0000000000000000b - No attempt has been made to activate channel n with an invalid
configuration.

0000000000000001b - An attempt was made to activate channel n with an invalid configuration
specified by the associated channel configuration registers.

14.2.35 DMA Transfer Running Status (DMA_XRUN_STAT)

Offset

Register Offset

DMA_XRUN_STAT D4h

Function

• The DMA_XRUN_STAT register bits are read-only status bits. They are self clearing.

• The associated register bit will set as soon as a channel has begun transfers. When the channel has completed all
transfers, the associated register bit will be cleared.

.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 333 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R xfr_run_chan_n

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

—

-

Reserved

15-0

xfr_run_chan_n

xfr_run_chan_n

Transfer running for channel n for n=15 to 0

Each nth bit indicates whether the nth DMA channel is actively doing transfers.

0000000000000000b - No transfer activity is presently happening for the associated channel.

0000000000000001b - Transfer activity is presently happening for the associated channel.

14.2.36 DMA Go Status (DMA_GO_STAT)

Offset

Register Offset

DMA_GO_STAT D8h

Function

• The DMA_GO_STAT register bits are write 1 to clear status bits.

To prevent VSPA from missing a go event caused by these bits, they should NOT be cleared by the external IPbus
master

 CAUTION

• The associated status bit will set when the channel completes all specified transactions only if the channel's go_en bit was
set in the DMA_XFR_CTRL register when the transfer was initially programmed.

• If the status bit initiating a VCPU GO is not cleared before VCPU executes the DONE instruction, VCPU will GO again.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 334 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R dma_go_chan_n

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

—

-

Reserved

15-0

dma_go_chan_
n

dma_go_chan_n

Access to this field is non-standard and is described in detail below.

 NOTE

VCPU go generated by channel n for n=15 to 0

Each nth bit indicates whether the nth DMA channel initiated a GO.

0 read - Channel did not initiate a GO

1 read - Channel initiated a GO

0 write - Ignored

1 write - Clear the bit (if set)

14.2.37 DMA FIFO Availability Status (DMA_FIFO_STAT)

Offset

Register Offset

DMA_FIFO_STAT DCh

Function

• The DMA_FIFO_STAT register bits are read only status bits.

• The status register bit will set as soon as an empty FIFO entry is available for a given channel.

• Note that following a VCPU write to the DMA_XFR_CTRL register, these status bits do not update until one cycle after the
write occurs. Therefore, an instruction to read this register should not immediately follow the instruction that writes the
DMA_XFR_CTRL register.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 335 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R fifo_avail_chan_n

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fields

Field Function

31-16

—

-

Reserved

15-0

fifo_avail_chan_
n

fifo_avail_chan_n

Empty FIFO entry available for channel n for n=15 to 0

Each nth bit indicates whether the nth DMA channel has an empty FIFO entry, and is thus capable of
accepting a new command.

0000000000000000b - No FIFO entry is available for the associated channel.

0000000000000001b - One or more FIFO entries are available for the associated channel.

14.2.38 Load Register File Control register (Slow read register) (LD_RF_CONTROL)

Offset

Register Offset

LD_RF_CONTROL 100h

Function

This register is used to select the table mode used by the ld.qam instruction when used in QAM mode. For more complete usage
information, refer to the detailed description of the ld.qam instructions in the VSPA Instruction Set Manual.

Note that the reset state of this register corresponds to the correct setting for real mode 16QAM.

This register is a Slow read register.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 336 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Qsign Qlsb Isign Ilsb

W

Reset 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

Reserved
bitRev

s
Size2sComp SignPol Cplx imag mode

W
tblWrit.

..

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0

Fields

Field Function

31-28

Qsign

Qsign

Sign bit of imaginary component for QAM 256 and QAM 1024

27-24

Qlsb

Qlsb

Least significant bit of imaginary component for QAM 256 and QAM 1024

23-20

Isign

Isign

Sign bit of real component for QAM 256 and QAM 1024

19-16

Ilsb

Ilsb

Least significant bit of real component for QAM 256 and QAM 1024

15

tblWriteEn_b

QAM Table Write Enable

Writing a 0 to this bit location (data=0 and wem=1) will allow the automatic update of the
LD_RF_TB_REAL_0 - LD_RF_TB_IMAG_7 registers as described in the mode field (bits 3:0) of this
register. Any other write, including wem=0, will block the automatic update of the LD_RF_TB_xxx registers.
This bit always reads 0.

14-13

—

-

Reserved

12

bitRevs

bitRevs

Controls sample reversal of the ld.2scomp instruction. This bit has no meaning for ld.qam

0b - Sample will not be bit-reversed before conversion from 2's complement value to half fixed
value.

1b - Sample will be bit-reversed before conversion from 2's complement value to half fixed value.

11-8

Size2sComp

Size of input for 2s Complement Conversion

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 337 / 536

Table continued from the previous page...

Field Function

Select the size of the value to be converted from 2s complement to half fixed. These bits have no meaning
for ld.qam.

0000b - Convert 16 bit 2's complement data

1000b - Convert 8 bit 2's complement data

1010b - Convert 10 bit 2's complement data

1100b - Convert 12 bit 2's complement data

7-6

SignPol

SignPol

Polarity of sign bits

Bit 7 indicates the polarity of the sign bit of the imaginary (Q) component for QAM 256 and QAM 1024

Bit 6 indicates the polarity of the sign bit of the real (I) component for QAM 256 and QAM 1024

0 - non-inverted sign

1 - inverted sign

5

Cplx

Complex

Generate complex values for the QAM data

4

imag

imag

Imaginary Load Select

Used to control which 16 bit half-word of a 32 bit modulation symbol is written to the register file after
decoding when VCPU is operating in COMPLEX mode. This bit has no effect in REAL mode.

0b - real

1b - imag

3-0

mode

mode

Modulation Mode Select

Selects between coefficient table expansion modes corresponding to the modulation order, and therefore
the number of bits from a 16 bit DMEM half-word which are decoded into a modulation symbol. For each
possible mode, a specific number of coefficients are used when the ld.qam Rx, QAM instruction is executed.
This allows mappings for WCDMA BPSK and 4PAM as well as LTE and 16QAM and 64QAM.

Coefficients for all modes except 64QAM are stored as bit pairs in the LD_RF_REAL0 and LD_RF_IMAG0
registers. Coefficient bit pairs are LSB justified, so if only 2 pairs are used, they are bits [3:2] and [1:0].
Coefficients for 64QAM mode are stored as nibbles in the LD_RF_TB_REAL_0-7 and
LD_RF_TB_IMAG_0-7 registers. Only bits 3:1 of each nibble are used to decode the modulation symbols.

1 = 2 coefficients (BPSK)

2 = 4 coefficients (4PAM)

4 = 16 coefficients (16Q/PAM)

6 = 64 coefficients (64Q/PAM)

8 = 256 coefficients (256Q/PAM)

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 338 / 536

Table continued from the previous page...

Field Function

10 = 1024 coefficients (1024Q/PAM)

• Writing anything other than 6, 8 or 10 to the mode bits will automatically update the

LD_RF_TB_REAL_0 and LD_RF_TB_IMAG_0 registers to 16QAM values.

• Writing 6 to the mode bits will automatically update these registers to 64QAM values.

• Writing 8 to the mode bits will automatically update these registers to 256QAM values.

• Writing 10 to the mode bits will automatically update these registers to 1024QAM
values.

• Bit 15 of this register must also be written to a 0 to allow the above described automatic
update of these registers. See the description of bit 15 for more details.

 NOTE

14.2.39 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_0)

Offset

Register Offset

LD_RF_TB_REAL_0 104h

Function

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is 2A4C_086Eh immediately after the mode change, when
the value of mode is changed to mode==1000 the register read value is 25163407h immediately after the mode change and
when the value of mode is changed to mode==1010 the register read value is 4B3C_780Fh immediately after the mode change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0100 Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-15 for mode=0100

X=0-7 for all other
modes

00 - 1

01 - 3

10 - -1

11 - -3

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 339 / 536

Register bit-fields Mode==0100 Mode==0110 Mode==1000 Mode==1010

0b111x - -7 0bx111 - 15 0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp7 cp6 cp5 cp4

W

Reset 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp3 cp2 cp1 cp0

W

Reset 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1

Fields

Field Function

31-28

cp7

cp7

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24 cp6

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 340 / 536

Table continued from the previous page...

Field Function

cp6 Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp5

cp5

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp4

cp4

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp3

cp3

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 341 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp2

cp2

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp1

cp1

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp0

cp0

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 342 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.40 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_0)

Offset

Register Offset

LD_RF_TB_IMAG_0 108h

Function

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is EEEE_EEEEh immediately after the mode change, when
the value of mode is changed to mode==1000 the register read value is 7777_7777h immediately after the mode change and
when the value of mode is changed to mode==1010 the register read value is 4B3C_780Fh immediately after the mode change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0100 Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-15 for mode=0100

X=0-7 for all other
modes

00 - 1

01 - 3

10 - -1

11 - -3

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 343 / 536

Register bit-fields Mode==0100 Mode==0110 Mode==1000 Mode==1010

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp7 cp6 cp5 cp4

W

Reset 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp3 cp2 cp1 cp0

W

Reset 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1

Fields

Field Function

31-28

cp7

cp7

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp6

cp6

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 344 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp5

cp5

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp4

cp4

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp3

cp3

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 345 / 536

Table continued from the previous page...

Field Function

101xb - -3

110xb - -5

111xb - -7

11-8

cp2

cp2

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp1

cp1

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp0

cp0

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 346 / 536

Field Function

14.2.41 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_1)

Offset

Register Offset

LD_RF_TB_REAL_1 10Ch

Function

This register holds the real coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for example
when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5, and -7.
For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU Programmer's
Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still 2A4C_086Eh immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 2516_3407h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is 5A2D_691Eh immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 347 / 536

Register bit-fields Mode==0110 Mode==1000 Mode==1010

0b1101 - 27

0b1110 - 29

0b1111 - 31

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp15 cp14 cp13 cp12

W

Reset 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp11 cp10 cp9 cp8

W

Reset 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0

Fields

Field Function

31-28

cp15

cp15

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp14

cp14

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 348 / 536

Table continued from the previous page...

Field Function

101xb - -3

110xb - -5

111xb - -7

23-20

cp13

cp13

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp12

cp12

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp11

cp11

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 349 / 536

Table continued from the previous page...

Field Function

11-8

cp10

cp10

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp9

cp9

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp8

cp8

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 350 / 536

14.2.42 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_1)

Offset

Register Offset

LD_RF_TB_IMAG_1 110h

Function

This register holds the imaginary coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for
example when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5,
and -7. For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU
Programmer's Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still 6666_6666h immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 0000_0000h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is 5A2D_691Eh immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 351 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp15 cp14 cp13 cp12

W

Reset 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp11 cp10 cp9 cp8

W

Reset 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

Fields

Field Function

31-28

cp15

cp15

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp14

cp14

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp13

cp13

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 352 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp12

cp12

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp11

cp11

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp10

cp10

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 353 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp9

cp9

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp8

cp8

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.43 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_2)

Offset

Register Offset

LD_RF_TB_REAL_2 114h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 354 / 536

Function

This register holds the real coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for example
when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5, and -7.
For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU Programmer's
Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still 2A4C_086Eh immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 2516_3407h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is 2A4C_086Eh immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 355 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp23 cp22 cp21 cp20

W

Reset 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp19 cp18 cp17 cp16

W

Reset 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0

Fields

Field Function

31-28

cp23

cp23

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp22

cp22

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp21

cp21

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 356 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp20

cp20

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp19

cp19

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp18

cp18

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 357 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp17

cp17

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp16

cp16

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.44 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_2)

Offset

Register Offset

LD_RF_TB_IMAG_2 118h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 358 / 536

Function

This register holds the imaginary coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for
example when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5,
and -7. For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU
Programmer's Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still 8888_8888h immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 4444_4444h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is 8888_8888h immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 359 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp23 cp22 cp21 cp20

W

Reset 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp19 cp18 cp17 cp16

W

Reset 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Fields

Field Function

31-28

cp23

cp23

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp22

cp22

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp21

cp21

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 360 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp20

cp20

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp19

cp19

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp18

cp18

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 361 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp17

cp17

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp16

cp16

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.45 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_3)

Offset

Register Offset

LD_RF_TB_REAL_3 11Ch

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 362 / 536

Function

This register holds the real coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for example
when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5, and -7.
For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU Programmer's
Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still 2A4C_086Eh immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 2516_3407h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is 2A4C_086Eh immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 363 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp31 cp30 cp29 cp28

W

Reset 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp27 cp26 cp25 cp24

W

Reset 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0

Fields

Field Function

31-28

cp31

cp31

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp30

cp30

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp29

cp29

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 364 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp28

cp28

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp27

cp27

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp26

cp26

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 365 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp25

cp25

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp24

cp24

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.46 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_3)

Offset

Register Offset

LD_RF_TB_IMAG_3 120h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 366 / 536

Function

This register holds the imaginary coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for
example when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5,
and -7. For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU
Programmer's Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still 0000_0000h immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 3333_3333h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is 0000_0000h immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 367 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp31 cp30 cp29 cp28

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp27 cp26 cp25 cp24

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-28

cp31

cp31

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp30

cp30

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp29

cp29

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 368 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp28

cp28

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp27

cp27

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp26

cp26

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 369 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp25

cp25

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp24

cp24

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.47 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_4)

Offset

Register Offset

LD_RF_TB_REAL_4 124h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 370 / 536

Function

This register holds the real coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for example
when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5, and -7.
For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU Programmer's
Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still 2A4C_086Eh immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 2516_3407h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is 2A4C_086Eh immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 371 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp39 cp38 cp37 cp36

W

Reset 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp35 cp34 cp33 cp32

W

Reset 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0

Fields

Field Function

31-28

cp39

cp39

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp38

cp38

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp37

cp37

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 372 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp36

cp36

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp35

cp35

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp34

cp34

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 373 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp33

cp33

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp32

cp32

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.48 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_4)

Offset

Register Offset

LD_RF_TB_IMAG_4 128h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 374 / 536

Function

This register holds the imaginary coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for
example when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5,
and -7. For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU
Programmer's Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still CCCC_CCCCh immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 6666_6666h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is CCCC_CCCCh immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 375 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp39 cp38 cp37 cp36

W

Reset 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp35 cp34 cp33 cp32

W

Reset 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

Fields

Field Function

31-28

cp39

cp39

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp38

cp38

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp37

cp37

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 376 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp36

cp36

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp35

cp35

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp34

cp34

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 377 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp33

cp33

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp32

cp32

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.49 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_5)

Offset

Register Offset

LD_RF_TB_REAL_5 12Ch

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 378 / 536

Function

This register holds the real coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for example
when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5, and -7.
For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU Programmer's
Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still 2A4C_086Eh immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 2516_3407h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is 2A4C_086Eh immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 379 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp47 cp46 cp45 cp44

W

Reset 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp43 cp42 cp41 cp40

W

Reset 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0

Fields

Field Function

31-28

cp47

cp47

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp46

cp46

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp45

cp45

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 380 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp44

cp44

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp43

cp43

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp42

cp42

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 381 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp41

cp41

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp40

cp40

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.50 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_5)

Offset

Register Offset

LD_RF_TB_IMAG_5 130h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 382 / 536

Function

This register holds the imaginary coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for
example when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5,
and -7. For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU
Programmer's Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still 4444_4444h immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 1111_1111h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is 4444_4444h immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 383 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp47 cp46 cp45 cp44

W

Reset 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp43 cp42 cp41 cp40

W

Reset 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

Fields

Field Function

31-28

cp47

cp47

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp46

cp46

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp45

cp45

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 384 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp44

cp44

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp43

cp43

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp42

cp42

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 385 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp41

cp41

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp40

cp40

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.51 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_6)

Offset

Register Offset

LD_RF_TB_REAL_6 134h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 386 / 536

Function

This register holds the real coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for example
when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5, and -7.
For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU Programmer's
Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still 2A4C_086Eh immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 2516_3407h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is 2A4C_086Eh immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 387 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp55 cp54 cp53 cp52

W

Reset 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp51 cp50 cp49 cp48

W

Reset 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0

Fields

Field Function

31-28

cp55

cp55

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp54

cp54

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp53

cp53

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 388 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp52

cp52

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp51

cp51

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp50

cp50

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 389 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp49

cp49

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp48

cp48

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.52 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_6)

Offset

Register Offset

LD_RF_TB_IMAG_6 138h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 390 / 536

Function

This register holds the imaginary coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for
example when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5,
and -7. For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU
Programmer's Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still AAAA_AAAAh immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 5555_5555h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is AAAA_AAAAh immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 391 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp55 cp54 cp53 cp52

W

Reset 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp51 cp50 cp49 cp48

W

Reset 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Fields

Field Function

31-28

cp55

cp55

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp54

cp54

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp53

cp53

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 392 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp52

cp52

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp51

cp51

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp50

cp50

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 393 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp49

cp49

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp48

cp48

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.53 Load Register File Real Coefficient Table register (Slow read register)
(LD_RF_TB_REAL_7)

Offset

Register Offset

LD_RF_TB_REAL_7 13Ch

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 394 / 536

Function

This register holds the real coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for example
when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5, and -7.
For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU Programmer's
Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100. When
the value of mode is changed to mode==0110 the register read value is still 2A4C_086Eh immediately after the mode change,
when the value of mode is changed to mode==1000 the register read value is 2516_3407h immediately after the mode change
and when the value of mode is changed to mode==1010 the register read value is 2A4C_086Eh immediately after the mode
change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 395 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp63 cp62 cp61 cp60

W

Reset 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp59 cp58 cp57 cp56

W

Reset 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0

Fields

Field Function

31-28

cp63

cp63

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp62

cp62

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp61

cp61

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 396 / 536

Table continued from the previous page...

Field Function

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp60

cp60

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp59

cp59

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp58

cp58

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 397 / 536

Table continued from the previous page...

Field Function

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp57

cp57

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp56

cp56

Real coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.54 Load Register File Imaginary Coefficient Table register (Slow read register)
(LD_RF_TB_IMAG_7)

Offset

Register Offset

LD_RF_TB_IMAG_7 140h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 398 / 536

Function

This register holds the imaginary coefficients used by the ld.qam Rx, QAM64 instruction. Up to 64 coefficients may be used, for
example when working with 64QAM. The encodings of the coefficient bit groups map to coefficient values of 1, 3, 5, 7, -1, -3, -5,
and -7. For more complete usage information, refer to the detailed description of the ld.qam instructions in the VCPU
Programmer's Guide.

Note that the reset state of this register corresponds to the correct coefficients for real mode 64QAM.

This register is a Slow read register.

The reset values shown in the register diagram below are true when the 'LD_RF_CONTROL' register bit-field mode<0100 as
well as when the mode is changed to mode==0110, mode==1000, mode==1010, immediately after the mode change.

The mapping shown in the fields section below is true only when the mode==0110. See the table below for the mapping for other
QAM modes.

Register bit-fields Mode==0110 Mode==1000 Mode==1010

cpX:

X=0-7

0b000x - 1

0b001x - 3

0b010x - 5

0b011x - 7

0b100x - -1

0b101x - -3

0b110x - -5

0b111x - -7

0bx000 - 1

0bx001 - 3

0bx010 - 5

0bx011 - 7

0bx100 - 9

0bx101 - 11

0bx110 - 13

0bx111 - 15

0b0000 - 1

0b0001 - 3

0b0010 - 5

0b0011 - 7

0b0100 - 9

0b0101 - 11

0b0110 - 13

0b0111 - 15

0b1000 - 17

0b1001 - 19

0b1010 - 21

0b1011 - 23

0b1100 - 25

0b1101 - 27

0b1110 - 29

0b1111 - 31

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
cp63 cp62 cp61 cp60

W

Reset 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
cp59 cp58 cp57 cp56

W

Reset 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 399 / 536

Fields

Field Function

31-28

cp63

cp63

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

27-24

cp62

cp62

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

23-20

cp61

cp61

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

19-16

cp60

cp60

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 400 / 536

Table continued from the previous page...

Field Function

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

15-12

cp59

cp59

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

11-8

cp58

cp58

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

7-4

cp57

cp57

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 401 / 536

Table continued from the previous page...

Field Function

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

3-0

cp56

cp56

Imaginary coefficients. Only used if mode == 0110 in LD_RF_CONTROL register.

000xb - 1

001xb - 3

010xb - 5

011xb - 7

100xb - -1

101xb - -3

110xb - -5

111xb - -7

14.2.55 VCPU Go Address (VCPU_GO_ADDR)

Offset

Register Offset

VCPU_GO_ADDR 180h

Function

This register can only be written by the VCPU, writes by HOSTs are ignored.

Software can change the VCPU_GO_ADDR value at any time. For example, the startup code can write the address of the main
function in this register, for subsequent go events to start execution of main.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 402 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved vcpu_go_addr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
vcpu_go_addr

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-25

—

-

Reserved

24-1

vcpu_go_addr

vcpu_go_addr

The bit field width is 24 bits, and it points to an OpS sized (32-bit) instruction. Only 64-bit aligned
instructions can be go starting addresses.

This is a pointer to a 4-byte location in PMEM, the first 4 bytes of PMEM are accessed as
0x0, the next 4 bytes are accessed as 0x1, and so on.

 NOTE

0

—

-

Reserved

14.2.56 VCPU Go Stack (VCPU_GO_STACK)

Offset

Register Offset

VCPU_GO_STACK 184h

Function
This register can only be written by the VCPU, writes by HOSTs are ignored.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 403 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved vcpu_go_stack

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
vcpu_go_stack

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-20

—

-

Reserved

19-0

vcpu_go_stack

vcpu_go_stack

The bit field width is 20 bits, and it points to a half-word (16-bit) DMEM address. If this register is written
to, all subsequent go events will cause the SP to be loaded with this value. If the register is not written to,
go events will not cause the SP to be loaded, it will retain the value it had following the execution of the
last done instruction.

14.2.57 VCPU Mode 0 (VCPU_MODE0)

Offset

Register Offset

VCPU_MODE0 400h

Function
This register may only be written by the VCPU, it is read only by the host.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 404 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
fftVmo

de
wrMod

e
fftSmo

de Reserved
s2Mode Reserv

ed

order_i Reserv
ed

order_g

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

s1Mode s0chs s0Conj
Reserved

s0Mode

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31

fftVmode

fftVmode

FFT mode control bit for vector writeback

30

wrMode

wrMode

Mode control bit for vector writeback

29

fftSmode

fftSmode

FFT mode control bit for source mux

28-27

—

-

Reserved

26-24

s2Mode

s2Mode

Mode control for source mux 2

23

—

-

Reserved

22-20

order_i

S1 order_i

This is the exponent of base 2 in determining number of elements (n) in group, see S1mode options and
detailed description - description of S1interp2nr and S1interp2nc. Value of order_i is restricted
(1<2^order_i<NAU*4).

19

—

-

Reserved

18-16

order_g

S0 order_g

This is the exponent of base 2 in determining number of elements (n) in group, see S0mode options and
detailed description - description of S0group2nr and S0group2nc. Value of order_g is restricted
(1<2^order_g<NAU).

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 405 / 536

Table continued from the previous page...

Field Function

15-13

—

-

Reserved

12-8

s1Mode

s1Mode

Mode control for source mux 1

7

s0chs

s0chs

Sign control for source mux 0

6

s0Conj

s0Conj

Conjugate control for source mux 0

5-4

—

-

Reserved

3-0

s0Mode

s0Mode

Mode control for source mux 0

14.2.58 VCPU Mode 1 (VCPU_MODE1)

Offset

Register Offset

VCPU_MODE1 404h

Function
This register may only be written by the VCPU, it is read only by the host.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

Vprec S2prec S1prec S0prec AUprec

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

rolMode
Reserved

rorMode

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 406 / 536

Fields

Field Function

31-26

—

-

Reserved

25-24

Vprec

Vprec

VRA write back precision mode

23-22

S2prec

S2prec

Source mux 2 precision mode

21-20

S1prec

S1prec

Source mux 1 precision mode

19-18

S0prec

S0prec

Source mux 0 precision mode

17-16

AUprec

AUprec

Arithmetic unit precision mode

15-13

—

-

Reserved

12-8

rolMode

rolMode

Left rotation mode

7-6

—

-

Reserved

5-0

rorMode

rorMode

Right rotation mode

14.2.59 VCPU CREG 0 (VCPU_CREG0)

Offset

Register Offset

VCPU_CREG0 408h

Function
This register may only be written by the VCPU, it is read only by the host.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 407 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

vspa1
ccUpd

ate Reserv
ed

signMo
de

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R signMode H_index angle1 Reserv
ed

auOutSel
halfSc

a...
halfSc

a...
AUOM ALLAU RC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-20

—

-

Reserved

19

vspa1

vspa1

Legacy dmem addressing

18

ccUpdate

ccUpdate

Condition Code update switch

17

—

-

Reserved

16-14

signMode

signMode

H register control

13-10

H_index

H_index

H register sub-address. Read only.

9

angle1

angle

ANGLE_MODULO_WRAP

8

—

-

Reserved

7-6

auOutSel

auOutSel

SP VAU output lane switch

5 halfScale

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 408 / 536

Table continued from the previous page...

Field Function

halfScale1 S1prec control

4

halfScale

halfScale

Vprec control

3-2

AUOM

AUOM

VAU output mode control

1

ALLAU

ALLAU

SP VAU output width switch

0

RC

RC

Real/Complex mode control

14.2.60 VCPU CREG 1 (VCPU_CREG1)

Offset

Register Offset

VCPU_CREG1 40Ch

Function
This register may only be written by the VCPU, it is read only by the host.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

readIndex

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R readIndex interpN interpD interpP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-20 -

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 409 / 536

Table continued from the previous page...

Field Function

— Reserved

19-12

readIndex

readIndex

CReg read address

11-8

interpN

interpN

Fractional interpolator numerator constant

7-4

interpD

interpD

Fractional interpolator denominator constant. For more information, refer to Table 21

3-0

interpP

interpP

Fractional interpolator phase

14.2.61 Store Unalign Vector Length (ST_UL_VEC_LEN)

Offset

Register Offset

ST_UL_VEC_LEN 410h

Function

See st.uline instruction.

This register may only be written by the VCPU, it is read only by the host.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R State
Reserved Reserved

ST_ROT_COUNT Reserv
ed

ST_VEC_LEN

W

Reset 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ST_VEC_LEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 410 / 536

Fields

Field Function

31-30

State

State

Current state of mis-aligned store FSM

To properly use the st.uline instruction, bits 31-19 must be written to 0's when initializing
the ST_VEC_LEN field (bits 18-0) in this register.

 NOTE

00b - active wrap (store crossing line boundary)

01b - invalid

10b - active no wrap (full line store)

11b - idle

29-28

—

-

Reserved

27-26

—

-

Reserved

25-20

ST_ROT_COU
NT

ST_ROT_COUNT

Rotation offset into dmem line. Maximum width of field is 8 bits, actual width is dependent on AU count.
Actual width = log2(NAU*4)

To properly use the st.uline instruction, bits 31-19 must be written to 0's when initializing
the ST_VEC_LEN field (bits 18-0) in this register.

 NOTE

19

—

-

Reserved

18-0

ST_VEC_LEN

ST_VEC_LEN

Total length of vector (in half-words) to be stored. This field gets updated on every st.uline instruction to
reflect the remaining data length to be stored.

This register may only be written by the VCPU, it is read only by the host.

14.2.62 General Purpose Input registers [10 registers] (GP_IN0 - GP_IN9)

Offset

For a = 0 to 9:

Register Offset

GP_INa 500h + (a × 4h)

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 411 / 536

Function

• GP_IN registers are read only - writes have no meaning or effect.

• 10 General Purpose Input registers are available.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R gp_in_data

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R gp_in_data

W

Reset u u u u u u u u u u u u u u u u

Fields

Field Function

31-0

gp_in_data

gp_in_data

Reads return the status of the associated VSPA external ports from 2 to 4 VSPA clocks in the past. The
2-4 clock delay is associated with clock gating and synchronization. These bits are general purpose inputs.
They can be tied by the integration of a VSPA platform to provide visibility of the connected signals to VSPA
or host software. The usage is chip dependent.

14.2.63 General Purpose Output registers [10 registers] (GP_OUT0 - GP_OUT9)

Offset

For a = 0 to 9:

Register Offset

GP_OUTa 580h + (a × 4h)

Function

• GP_OUT registers can be written and read. Writes update the associated VSPA output ports. Reads read back the value
of the associated GP_OUT register.

• 10 General Purpose Output registers are available.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 412 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
gp_out_data

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
gp_out_data

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

gp_out_data

gp_out_data

gp_out_data

• Writes control the state of the associated output port.

• Reads return the state of the associated output port.

00000000000000000000000000000000b - output port low.

00000000000000000000000000000001b - output port high.

14.2.64 VCPU to DQM Trace Small Outbox register (DQM_SMALL)

Offset

Register Offset

DQM_SMALL 600h

Function

This register can be used by VCPU (or a host) to generate a "small" (25-bit payload) data acquisition message (DQM). Debug
and DQM trace must both be enabled for the message to be sent out via VSPA's trace port.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 413 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W vcpu_dqm_out_small

Reset u u u u u u u 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W vcpu_dqm_out_small

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-25

—

-

Reserved

24-0

vcpu_dqm_out_
small

vcpu_dqm_out_small

DQM output data (small)

• Writes cause the value written to be transmitted as a DQM message.

• This register is write only - reads always return 0's.

Settings: Data value to be transmitted as a DQM via the VSPA trace port.

14.2.65 VCPU to Debugger 32-bit Outbox register (VCPU_DBG_OUT_32)

Offset

Register Offset

VCPU_DBG_OUT_32 620h

Function

This register can be used by VCPU (or a host) to send a 32-bit message to the debugger. Writes to this register cause a 32-bit
message to be forwarded to the debugger.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 414 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W vcpu_outbox32

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W vcpu_outbox32

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

vcpu_outbox32

vcpu_outbox32

VCPU to Debugger 32-bit outbox

• Writes cause the value written to be sent to the debugger.

• This register is write only - reads always return 0's.

Settings: Data value to be sent to the debugger inbox.

14.2.66 VCPU to Debugger 64-bit MSB Outbox register (VCPU_DBG_OUT_64_MSB)

Offset

Register Offset

VCPU_DBG_OUT_64_M
SB

624h

Function

This register is part of the interface used by VCPU (or a host) to generate a 64-bit mail message directed to the debugger's 64-
bit inbox.

Note that writing this register is not required to send the 64-bit mail message. The mail message will be sent following a write to
the DBG_OUT_64_LSB register.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 415 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W vcpu_outbox64msb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W vcpu_outbox64msb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

vcpu_outbox64
msb

vcpu_outbox64msb

VCPU to Debugger 64-bit output data (MSB)

• Writes update the 32 MSBs of a pending 64-bit message that will be sent to the debugger's 64-bit
inbox.

• The mail message will be sent in its entirety only after a write to the VCPU_DBG_OUT_64_LSB
register.

• Note that this register does not have to be updated for each 64-bit mail message - if it is not
updated, the last value written will be reused when the mail message is sent.

• This register is write only - reads always return 0's.

Settings: MSB 32-bit data value to be sent to the debugger's 64-bit inbox.

14.2.67 VCPU to Debugger 64-bit LSB Outbox register (VCPU_DBG_OUT_64_LSB)

Offset

Register Offset

VCPU_DBG_OUT_64_L
SB

628h

Function

This register is part of the interface used by VCPU (or a host) to generate a 64-bit mail message directed to the debugger's 64-
bit inbox.

Note that writing to this register alone will trigger the delivery of the 64-bit mail message to the debugger. The mail message will
contain 32 MSBs from the VCPU_DBG_OUT_64_MSB register plus all 32 bits from this register.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 416 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W vcpu_outbox64lsb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W vcpu_outbox64lsb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

vcpu_outbox64l
sb

vcpu_outbox64lsb

VCPU to Debugger 64-bit output data (LSB)

• Writes cause the immediate delivery of a 64-bit mail message to the debugger 64-bit mail inbox. The
32 LSBs of the message come from the data written to this register; the 32 MSBs come from the
value contained in the VCPU_DBG_OUT_64_MSB register.

• This register is write only - reads always return 0's.

Settings: LSB 32-bit data value to be sent to the debugger's 64-bit inbox.

14.2.68 Debugger to VCPU 32-bit Inbox register (VCPU_DBG_IN_32)

Offset

Register Offset

VCPU_DBG_IN_32 62Ch

Function

This register is the VCPU incoming mailbox for 32-bit messages from the debugger. It can be used by VCPU (or a host) to read
a 32-bit message from the debugger. The validity of the data in this register should be checked before it is read. The state of the
32-bit_msg_in_valid flag in the VCPU to Debugger mailbox status register conveys validity information.

Reads of this register will automatically clear both the 32-bit_msg_in_valid flag in the VCPU to Debugger mailbox status register
(on the VSPA IP bus) and the 32-bit_msg_out_valid flag in the Debug-VCPU mailbox status register (on the debug IP bus).

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 417 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vcpu_inbox32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R vcpu_inbox32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

vcpu_inbox32

vcpu_inbox32

Debugger to VCPU 32-bit inbox

• Reads the 32-bit mail message sent by the debugger.

• This register is read only - writes have no effect.

Settings: Reads 32-bit data value sent by the debugger outbox.

14.2.69 Debugger to VCPU 64-bit MSB Inbox register (VCPU_DBG_IN_64_MSB)

Offset

Register Offset

VCPU_DBG_IN_64_MS
B

630h

Function

This register is part of the VCPU incoming mailbox for 64-bit messages from the debugger. It can be used by VCPU (or a host)
to read the 32 MSBs of a 64-bit message from the debugger. The validity of the data in this register should be checked before it
is read. The state of the 64-bit_msg_in_valid flag in the VCPU to Debugger mailbox status register conveys validity information.

Reads of this register do not affect the 64-bit_msg_in_valid flag in the VCPU to Debugger mailbox status register or the 64-
bit_msg_out_valid flag in the Debug-VCPU mailbox status register on the debug IP bus. Those flags are cleared by reads of the
Debugger to VCPU 64-bit LSB inbox register (on the debug IP bus).

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 418 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vcpu_inbox64msb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R vcpu_inbox64msb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

vcpu_inbox64m
sb

vcpu_inbox64msb

Debugger to VCPU 64-bit input data (MSB)

• Reads the 32 MSBs of the 64-bit mail message sent by the debugger.

• This register is read only - writes have no effect.

Settings:

Reads return 32 MSBs of the 64-bit data value sent via the debugger's 64-bit outbox.

14.2.70 Debugger to VCPU 64-bit LSB Inbox register (VCPU_DBG_IN_64_LSB)

Offset

Register Offset

VCPU_DBG_IN_64_LSB 634h

Function

This register is part of the VCPU incoming mailbox for 64-bit messages from the debugger. It can be used by VCPU (or a host)
to read the 32 LSBs of a 64-bit message from the debugger. The validity of the data in this register should be checked before it
is read. The state of the 64-bit_msg_in_valid flag in the VCPU to Debugger mailbox status register conveys validity information.

Reads of this register will automatically clear the 64-bit_msg_in_valid flag in the VCPU to Debugger mailbox status register (on
the VSPA IP bus) and the 64-bit_msg_out_valid flag in the VCPU-Debug mailbox status register on the debug IP bus.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 419 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vcpu_inbox64lsb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R vcpu_inbox64lsb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

vcpu_inbox64ls
b

vcpu_inbox64lsb

Debugger to VCPU 64-bit input data (LSB)

• Reads the 32 LSBs of the 64-bit mail message sent by the debugger.

• This register is read only - writes have no effect.

Settings: Reads return 32 LSBs of the 64-bit data value sent via the debugger's 64-bit outbox.

14.2.71 VCPU to Debugger Mailbox Status register (VCPU_DBG_MBOX_STATUS)

Offset

Register Offset

VCPU_DBG_MBOX_ST
ATUS

638h

Function

This register is used to determine the status of messages sent and received by VCPU (or a host) to and from the debugger. There
are four status flags, one each for the 32 and 64-bit outgoing mailboxes and the 32 and 64-bit incoming mailboxes.

These flags are set and cleared automatically by hardware - reads and writes of this register do not affect the status flags.
However, reads and writes of the mailbox data registers do control the state of the status flags.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 420 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

msg_in
_...

msg_in
_...

msg_o
ut...

msg_o
ut...

W

Reset u u u u u u u u u u u u 0 0 0 0

Fields

Field Function

31-4

—

-

Reserved

3

msg_in_valid_6
4bit

msg_in_valid_64bit

64-bit message inbox valid

• Shows the validity/invalidity of the data in the 64-bit message inbox registers (Debugger to VCPU
64-bit MSB Inbox register and Debugger to VCPU 64-bit LSB Inbox register).

0b - Data in the 64-bit inbox registers is NOT valid.

1b - Data in the 64-bit inbox registers is valid.

2

msg_in_valid_3
2bit

msg_in_valid_32bit

32-bit message inbox valid

• Shows the validity/invalidity of the data in the 32-bit message inbox register (Debugger to VCPU 32-
bit Inbox register).

0b - Data in the 32-bit inbox register is NOT valid.

1b - Data in the 32-bit inbox register is valid.

1

msg_out_valid_
64bit

msg_out_valid_64bit

64-bit message outbox valid

• Shows whether a pending (unread by the debugger) message is in the 64-bit message outbox
registers (VCPU to Debugger 64-bit MSB outbox register and VCPU to Debugger 64-bit LSB Outbox
register).

0b - No unread data is in the 64-bit outbox registers.

1b - Data in the 64-bit outbox registers has not yet been read by the debugger.

0 msg_out_valid_32bit

32-bit message outbox valid

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 421 / 536

Table continued from the previous page...

Field Function

msg_out_valid_
32bit

Shows whether a pending (unread by the debugger) message is in the 32-bit message outbox register
(VCPU to Debugger 32-bit Outbox register).

0b - No unread data is in the 32-bit outbox register.

1b - Data in the 32-bit outbox register has not yet been read by the debugger.

14.2.72 VCPU to host outbox message n MSB register (VCPU_OUT_0_MSB -
VCPU_OUT_1_MSB)

Offset

Register Offset

VCPU_OUT_0_MSB 640h

VCPU_OUT_1_MSB 648h

Function

This register is the 32-bit MSB part of the interface used by VCPU to generate 64-bit mail message n directed to the host's inbox.

Note that writing this register is not required to send the 64-bit mail message. The mail message will be sent following a write to
the VSPA_VCPU_OUT_n_LSB register. This register is write only; reads always return 0's.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W vcpu_out_n_msb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W vcpu_out_n_msb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

vcpu_out_n_ms
b

vcpu_out_n_msb

VCPU output message n data (MSB).

• Writes update the 32 MSBs of a pending 64-bit message n that will be sent to the host's 64-bit inbox.

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 422 / 536

Field Function

• The mail message will be sent in its entirety only after a write to the VSPA_VCPU_OUT_n_LSB
register.

• Note that this register does not have to be updated for each 64-bit mail message - if it is not
updated, the last value written will be reused when the mail message is sent (when
VSPA_VCPU_OUT_n_LSB is written).

Settings: MSB 32-bit data value will be sent to the host's 64-bit message n inbox .

14.2.73 VCPU to host outbox message n LSB register (VCPU_OUT_0_LSB -
VCPU_OUT_1_LSB)

Offset

Register Offset

VCPU_OUT_0_LSB 644h

VCPU_OUT_1_LSB 64Ch

Function

This register is the 32-bit LSB part of the interface used by VCPU to generate 64-bit mail message n directed to the host's inbox.

Note that writing to this register alone will trigger the delivery of the 64-bit mail message to the host. The mail message will contain
32 MSBs from the VSPA_VCPU_OUT_n_MSB register along with all the 32 bits from this register. This register is write only -
reads always return 0's

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W vcpu_out_n_lsb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W vcpu_out_n_lsb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

vcpu_out_n_lsb

vcpu_out_n_lsb

VCPU output message n data (LSB)

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 423 / 536

Field Function

Writes cause the immediate delivery of a 64-bit mail message n to the host mail inbox. The 32 LSBs of the
message come from the data written to this register; the 32 MSBs come from the value contained in the
VSPA_VCPU_OUT_n_MSB register.

Settings: LSB 32-bit data value will be sent to the host's 64-bit inbox.

14.2.74 VCPU from Host Inbox Message n MSB (VCPU_IN_0_MSB - VCPU_IN_1_MSB)

Offset

Register Offset

VCPU_IN_0_MSB 650h

VCPU_IN_1_MSB 658h

Function

This register is the 32-bit MSB part of the incoming 64-bit mail message n from the host. It can be used by VCPU to read the 32
MSBs of a 64-bit message n from the host. The validity of the data in this register should be checked before it is read. The state
of the msg_in_n_valid flag in the VCPU-host mailbox status register indicates validity information when set.

Reads of this register do not affect the msg_in_n_valid flag in the VCPU to Host Mailbox Status register (VCPU_MBOX_STATUS)
or the msg_out_n_valid flag in the Host Mailbox Status register (HOST_MBOX_STATUS). These flags are cleared by reads of
the host to VCPU 64-bit LSB inbox register. This register is read only - writes have no effect.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vcpu_in_n_msb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R vcpu_in_n_msb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

vcpu_in_n_msb

vcpu_in_n_msb

VCPU 64-bit message n input data (MSB). This bits are used for reading the 32 MSBs of the 64-bit mail
message sent by the host.

Settings: Reads return 32 MSBs of the message n 64-bit data value sent via the host outbox.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 424 / 536

14.2.75 VCPU from host inbox message n LSB register (VCPU_IN_0_LSB - VCPU_IN_1_LSB)

Offset

Register Offset

VCPU_IN_0_LSB 654h

VCPU_IN_1_LSB 65Ch

Function

This register is the 32-bit LSB part of the incoming 64-bit mail message n from the host. It can be used by VCPU to read the 32
LSBs of a 64-bit message n from the host. The validity of the data in this register should be checked before it is read. The state
of the msg_in_n_valid flag in the VCPU-host mailbox status register indicates validity information when set.

Reads of this register will automatically clear the msg_in_n_valid flag in the VCPU host mailbox status register
(VCPU_MBOX_STATUS) and the msg_out_n_valid flag in the Host Mailbox Status register (HOST_MBOX_STATUS). This
register is read only - writes have no effect.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vcpu_in_n_lsb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R vcpu_in_n_lsb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

vcpu_in_n_lsb

vcpu_in_n_lsb

VCPU 64-bit message n input data (LSB).

the bits are used for reading the 32 LSBs of the 64-bit mail message sent by the host. Settings: Reads
return 32 LSBs of the message n 64-bit data value sent via the host outbox.

14.2.76 VCPU to Host Mailbox Status register (VCPU_MBOX_STATUS)

Offset

Register Offset

VCPU_MBOX_STATUS 660h

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 425 / 536

Function

This register is used to determine the status of messages sent and received by VCPU (or a host) to and from the host. There are
four status flags, one each for message 0 and message 1 outgoing mailboxes and message 0 and message 1 incoming mailboxes.
These flags are set and cleared automatically by hardware - reads and writes of this register do not affect the status flags.
However, reads and writes of the mailbox data registers do control the state of the status flags.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

msg_in
_...

msg_in
_...

msg_o
ut...

msg_o
ut...

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-4

—

-

Reserved

3

msg_in_1_valid

msg_in_1_valid

64-bit inbox message 1 valid.

Indicates the validity/invalidity of the data in the VCPU 64-bit message 1 inbox registers
(VSPA_VCPU_IN_1_MSB register and VSPA_VCPU_IN_1_LSB register).

0b - Data in the 64-bit inbox registers is not valid.

1b - Data in the 64-bit inbox registers is valid.

2

msg_in_0_valid

msg_in_0_valid

64-bit inbox message 0 valid.

Indicates the validity/invalidity of the data in the VCPU 64-bit message 0 inbox registers
(VSPA_VCPU_IN_0_MSB register and VSPA_VCPU_IN_0_LSB register).

0b - Data in the inbox registers VSPA_VCPU_IN_0_MSB and VSPA_VCPU_IN_0_LSB is not
valid.

1b - Data in the inbox registers VSPA_VCPU_IN_0_MSB and VSPA_VCPU_IN_0_LSB is valid.

1

msg_out_1_vali
d

msg_out_1_valid

64-bit outbox message 1 valid.

Indicates if the 64-bit VCPU message outbox 1 (VSPA_VCPU_OUT_1_MSB register and
VSPA_VCPU_OUT_1_LSB register) is pending (unread by the host).

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 426 / 536

Table continued from the previous page...

Field Function

0b - No data is pending to be read in the 64-bit message 1 outbox registers.

1b - Data in the 64-bit message 1 outbox registers has not yet been read by the host.

0

msg_out_0_vali
d

msg_out_0_valid

64-bit outbox message 0 valid.

Indicates if the 64-bit VCPU message outbox 0 (VSPA_VCPU_OUT_0_MSB register and
VSPA_VCPU_OUT_0_LSB register) is pending (unread by the host).

0b - No data is pending to be read in the 64-bit message 0 outbox registers.

1b - Data in the 64-bit message 0 outbox registers has not yet been read by the host.

14.2.77 Host to VCPU Outbox Message n MSB register (HOST_OUT_0_MSB -
HOST_OUT_1_MSB)

Offset

Register Offset

HOST_OUT_0_MSB 680h

HOST_OUT_1_MSB 688h

Function

This register is the 32-bit MSB part of the interface used by the host to generate 64-bit mail message n directed to VCPU's inbox.

Note that writing this register is not required to send the 64-bit mail message. The mail message will be sent following a write to
the VSPA_HOST_OUT_n_LSB register. This register is write only - reads always return 0's.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W host_out_n_msb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W host_out_n_msb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 427 / 536

Fields

Field Function

31-0

host_out_n_ms
b

host_out_n_msb

Host output message n data (MSB)

• Writes update the 32 MSBs of a pending 64-bit message n that will be sent to VCPU's 64-bit inbox.

• The mail message will be sent in its entirety only after a write to the VSPA_HOST_OUT_n_LSB
register.

• Note that this register does not have to be updated for each 64-bit mail message; if it is not updated,
the last value written will be reused when the mail message is sent (when
VSPA_HOST_OUT_n_LSB is written)

Settings: MSB 32-bit data value to be sent to VCPU's 64-bit message n inbox .

14.2.78 Host to VCPU Outbox Message n LSB register (HOST_OUT_0_LSB -
HOST_OUT_1_LSB)

Offset

Register Offset

HOST_OUT_0_LSB 684h

HOST_OUT_1_LSB 68Ch

Function

This register is the 32-bit LSB part of the interface used by the host to generate 64-bit mail message n directed to VCPU's inbox.

Note that writing to this register alone will trigger the delivery of the 64-bit mail message to VCPU. The mail message will contain
32 MSBs from the VSPA_HOST_OUT_n_MSB register plus all 32 bits from this register. This register is write only - reads always
return 0's.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W host_out_n_lsb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W host_out_n_lsb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 428 / 536

Fields

Field Function

31-0

host_out_n_lsb

host_out_n_lsb

Host output message n data (LSB)

Writes cause the immediate delivery of a 64-bit mail message n to VCPU mail inbox. The 32 LSBs of the
message come from the data written to this register; the 32 MSBs come from the value contained in the
VSPA_HOST_OUT_n_MSB register.

Settings: LSB 32-bit data value to be sent to VCPU's 64-bit inbox.

14.2.79 Host from VCPU Inbox Message n MSB (HOST_IN_0_MSB - HOST_IN_1_MSB)

Offset

Register Offset

HOST_IN_0_MSB 690h

HOST_IN_1_MSB 698h

Function

This register is the 32-bit MSB part of the incoming 64-bit mail message n from the VCPU. It can be used by the host to read the
32 MSBs of a 64-bit message n from the VCPU. The validity of the data in this register should be checked before it is read. The
state of the msg_in_n_valid flag in the host-VCPU mailbox status register indicates validity information when set.

Reads of this register do not affect the msg_in_n_valid flag in the Host Mailbox Status register (HOST_MBOX_STATUS) or the
msg_out_n_valid flag in VCPU to Host Mailbox Status Register (VCPU_MBOX_STATUS). These flags are cleared by reads of
VCPU to the host 64-bit LSB inbox register.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R host_in_n_msb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R host_in_n_msb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 429 / 536

Fields

Field Function

31-0

host_in_n_msb

host_in_n_msb

Host 64-bit message n input data (MSB). Reads the 32 MSBs of the 64-bit mail message sent by VCPU.

Settings: Reads return 32 MSBs of the message n 64-bit data value sent via VCPU outbox.

14.2.80 Host from VCPU Inbox Message n LSB Register (HOST_IN_0_LSB - HOST_IN_1_LSB)

Offset

Register Offset

HOST_IN_0_LSB 694h

HOST_IN_1_LSB 69Ch

Function

This register is the 32-bit LSB part of the incoming 64-bit mail message n from the VCPU. It can be used by the host to read the
32 LSBs of a 64-bit message n from the VCPU. The validity of the data in this register should be checked before it is read. The
state of the msg_in_n_valid flag in the host-VCPU mailbox status register indicates validity information when set.

Reads of this register will automatically clear the msg_in_n_valid flag in the Host Mailbox Status register
(HOST_MBOX_STATUS) and the msg_out_n_valid flag in VCPU to Host Mailbox Status Register (VCPU_MBOX_STATUS).
This register is read only - writes have no effect.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R host_in_n_lsb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R host_in_n_lsb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

host_in_n_lsb

host_in_n_lsb

Host 64-bit message n input data (LSB). Reads the 32 LSBs of the 64-bit mail message sent by VCPU.

Settings: Reads return 32 LSBs of the message n 64-bit data value sent via VCPU outbox.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 430 / 536

14.2.81 Host Mailbox Status Register (HOST_MBOX_STATUS)

Offset

Register Offset

HOST_MBOX_STATUS 6A0h

Function

This register is used to determine the status of messages sent and received by the host to and from VCPU. There are four status
flags, one each for 64-bit message 0 and message 1 outgoing mailboxes and 64-bit message 0 and message 1 incoming
mailboxes. These flags are set and cleared automatically by hardware - reads and writes of this register do not affect the status
flags. However, reads and writes of the mailbox data registers do control the state of the status flags.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

msg_in
_...

msg_in
_...

msg_o
ut...

msg_o
ut...

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-4

—

-

Reserved

3

msg_in_1_valid

msg_in_1_valid

64-bit inbox message 1 valid

Indicates the validity/invalidity of the data in the host 64-bit message 1 inbox registers
(VSPA_HOST_IN_1_MSB and VSPA_HOST_IN_1_LSB registers).

0b - Data in the 64-bit inbox registers is not valid.

1b - Data in the 64-bit inbox registers is valid.

2

msg_in_0_valid

msg_in_0_valid

64-bit inbox message 0 valid

Indicates the validity/invalidity of the data in the host 64-bit message 0 inbox registers
(VSPA_HOST_IN_0_MSB and VSPA_HOST_IN_0_LSB registers).

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 431 / 536

Table continued from the previous page...

Field Function

0b - Data in the inbox registers VSPA_HOST_IN_0_MSB and VSPA_HOST_IN_0_LSB is not
valid.

1b - Data in the inbox registers VSPA_HOST_IN_0_MSB and VSPA_HOST_IN_0_LSB is valid

1

msg_out_1_vali
d

msg_out_1_valid

64-bit outbox message 1 valid

Indicates if the 64-bit host message outbox 1 (VSPA_HOST_OUT_1_MSB and VSPA_HOST_OUT_1_LSB
registers) is pending (unread by VCPU).

0b - No data is pending to be read in the 64-bit message 1 outbox registers.

1b - Data in the 64-bit message 1 outbox registers has not yet been read by VCPU.

0

msg_out_0_vali
d

msg_out_0_valid

64-bit outbox message 0 valid

Indicates if the 64-bit host message outbox 0 (VSPA_HOST_OUT_0_MSB and VSPA_HOST_OUT_0_LSB
registers) is pending (unread by VCPU).

0b - No data is pending to be read in the 64-bit message 0 outbox registers.

1b - Data in the 64-bit message 0 outbox registers has not yet been read by VCPU.

14.2.82 IPPU Control register (IPPUCONTROL)

Offset

Register Offset

IPPUCONTROL 700h

Function

The IPPU_CONTROL register must not be written until after the IPPU_ARG_BASE_ADDR register (if used) has first been written.
Upon writing the IPPU_CONTROL register, all the command attributes from the IPPU_CONTROL register and the
IPPU_ARG_BASE_ADDR register will be captured into the Command FIFO, and the IPPU will be activated. Note that Even writes
from the VCPU core with no register bit mask bits set are considered writes and will activate the IPPU, so the IPPU_CONTROL
register must be updated with a single write, not a series of masked writes.

The IPPU command fifo does not provide IPPU_ARG_BASE_ADDR register coherency between the VCPU and the host
processor. Since VCPU and a host processor can both use the IPPU, and since there are NO separate sets of the
IPPU_ARG_BASE_ADDR register for each of them, no coherency is provided, and the user must be causioned of such conflict.

All bits of the registers should be written since they are not initialized by default.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 432 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
start_type

Reserv
ed

ippu_d
m...

ippu_f
e...

Reserv
ed

ippu_le
...

vcpu_g
o...

ippu_ir
...

Reserved
W

Reset 0 0 0 0 0 0 0 0 0 0 u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ippu_start_address

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-29

start_type

Start type

Start type

000b - Reserved

001b - dma_ippu_go_en - DMA GO command Enable to IPPU1

010b - fecu_ippu_go_en - FECU GO command Enable to IPPU2

011b - Reserved

100b - ippu_go_now3

101b - Reserved

110b - Reserved

111b - Reserved

28

—

-

This bit is implemented, but has no effect

27

ippu_dma_trigg
er

ippu_dma_trigger

Used to start a DMA transfer upon completion of IPPU code execution (ippu_done instruction is executed).

0b - Ignored

1b - Generate DMA start trigger upon completion of IPPU code execution (ippu_done instruction
is executed).

26

ippu_fecu_trigg
er

ippu_fecu_trigger

Used to start a FECU operation upon completion of the IPPU code execution (ippu_done instruction is
executed).

0b - Ignored

1b - Generate FECU start operation upon completion of the IPPU code execution (ippu_done
instruction is executed).

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 433 / 536

Table continued from the previous page...

Field Function

25

—

-

This bit is implemented, but has no effect

24

ippu_legacy_m
em_addr

ippu_legacy_mem_addr

IPPU mode: legacy_mem_addr

0b - Turn on the mode. IPPU DMEM address pointers (aX) point to 32-bit elements.

1b - Turn off the mode. IPPU DMEM address pointers (aX) point to 16-bit elements.

23

vcpu_go_en

IPPU vcpu_go_enable

Enables the VCPU GO upon executing the IPPU done instruction.

When set, it causes a VCPU_GO upon IPPU executing the done instruction by setting the ippu_go status
bit in the VSPA_CONTROL register bit 1.

Refer to VSPA_CONTROL for additional information.

0b - No Go request is generated when the IPPU executes a done instruction.

1b - Go request is generated when the IPPU executes a done instruction by setting the ippu_go
status in the VSPA_CONTROL register.

22

ippu_irq_en

IPPU done interrupt enable

Enables the IPPU interrupt upon executing the IPPU done instruction.

When set, IPPU executes a done instruction will set the irq_pend_ippu_done status flag in the
VSPA_STATUS register bit 1.

This will assert the ippu_irq signal.

Refer to VSPA_STATUS register for additional information.

0b - No interrupt is generated upon executing the IPPU done instruction.

1b - An interrupt is generated upon executing the IPPU done instruction

21-16

—

-

Reserved

15-0

ippu_start_addr
ess

ippu_start_address

ippu_start_address- IPPU Start Address

IPPU operation starts when VCPU software or host software writes to the start_type field. The IPPU Loads
the ippu_start_address and start code fetch and execution.

The ippu_start_address field is used by the IPPU only in conjunction with the start_type field.

The ippu_start_address field is not affected by reset. It can be written and read by the host software or
VCPU software at any time.

Settings: When writing the start_type field, this field is used as a start address for instruction fetch and
execution.

1. The DMA has the capability to start the IPPU upon completion of the DMA transfer. When a DMA channel completes a transfer
and the ippu_go_en bit is set (in the DMA control register), the DMA will signal the IPPU to "go".

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 434 / 536

When the DMA signals the IPPU to go and the IPPU starts the IPPU operation AND the IPPU enters the Running state. The
IPPU clears the ippu_done and the 'dma_ippu_go_en' field is present at the top of the command fifo, the IPPU enters the
IPPU into the Running state. The IPPU clears the ippu_done and ippu_aborted bits and sets the ippu_busy bit in the
IPPU_STATUS register. The IPPU loads ippu_start_address and start code execution starting at this address. The IPPU
resets the loop logic (state machine, and counters) and the return address stack, allowing clean start, even if previous
reordering using execution terminated with abort, or the user neglected to clear the loop count or the Return Address Stack.

When the DMA signals the IPPU to go AND other entry/entries in the command fifo are set to 'dma_ippu_go_en', the IPPU
marks the corresponding entry, so when this entry pops to the top of the command fifo, the IPPU will start code execution
immediatley (consumed the dma signal to go). After poping the said entry to the top of the command fifo, the IPPU enters the
Running state. The IPPU clears the ippu_done and the 'dma_ippu_go_en' field is present at the top of the command fifo, the
IPPU enters the IPPU into the Running state. The IPPU clears the ippu_done and ippu_aborted bits and sets the ippu_busy
bit in the IPPU_STATUS register. The IPPU Loads ippu_start_address and start code execution starting at this address.

The IPPU resets the loop logic (state machine, and counters) and the Return Address Stack, allowing clean start, even if
previous Reordering Using execution terminated with abort, or the user neglected to clear the loop count or the Return Address
Stack.

When the DMA signals the IPPU to go AND no entry in the command fifo is set to 'dma_ippu_go_en', the DMA signal is
ignored.

2. The FECU has the capability to start the IPPU upon completion of the FECU operation. When a FECU completes an operation
and the ippu_go_en bit is set(in the FECU control regisster), FECU will signal the IPPU to "go".

When the FECU signals the IPPU to go and the IPPU starts the IPPU operation AND the IPPU enters the Running state. The
IPPU clears the ippu_done and the 'fecu_ippu_go_en' field is present at the top of the comand fifo, the IPPU enters the IPPU
into the Running state. The IPPU clears the ippu_done and ippu_aborted bits and sets the ippu_busy bit in the IPPU_STATUS
register. The IPPU Loads ippu_start_address and start code execution starting at this address. The IPPU resets the loop
logic (state machine, and counters) and the Return Address Stack, allowing clean start, even if previous Reordering Using
execution terminated with abort, or the user neglected to clear the loop count or the Return Address Stack.

When the FECU signals the IPPU to go AND other entry/entries in the command fifo are set to 'fecu_ippu_go_en', the IPPU
marks the corresponding entry, so when this entry pops to the top of the command fifo, the IPPU will start code execution
immediatley (consumed the fecu signal to go). Afteer poping the said entry to the top of the comand fifo, the IPPU enters the
Running state. The IPPU clears the ippu_done and the 'fecu_ippu_go_en' field is present at the top of the comand fifo, the
IPPU enters the IPPU into the Running state. The IPPU clears the ippu_done and ippu_aborted bits and sets the ippu_busy
bit in the IPPU_STATUS register. The IPPU Loads ippu_start_address and start code execution starting at this address.

The IPPU resets the loop logic (state machine, and counters) and the Return Address Stack, allowing clean start, even if
previous Reordering Using execution terminated with abort, or the user neglected to clear the loop count or the Return Address
Stack.

When the FECU signals the IPPU to go AND no entry in the command fifo is set to 'fecu_ippu_go_en', the FECU signal is
ignored.

3. Writing one into the ippu_go bit enters the IPPU into the Running state. The IPPU clears the ippu_done and ippu_aborted
bits and sets the ippu_busy bit in the IPPU_STATUS register. The IPPU Loads ippu_start_address and start code execution
starting at this address.

The IPPU resets the loop logic (state machine, and counters) and the Return Address Stack, allowing clean start, even if
previous Reordering Using execution terminated with abort, or the user neglected to clear the loop count or the Return Address
Stack.

14.2.83 IPPU Status register (IPPUSTATUS)

Offset

Register Offset

IPPUSTATUS 704h

Function
IPPU Status register

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 435 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ippu_a

c...
ippu_s

u...
ippu_a

b...
ippu_d

o...
cmd_e

rr...
cmd_last Reserv

ed

command_fifo_
de...

ru_ip_
b...

cmd_fif
... Reserved

W

Reset 0 0 0 0 0 0 0 u 0 0 0 0 u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ippu_pc

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31

ippu_active

ippu_active (busy_or_pending)

0b - Not busy and command fifo is empty

1b - Busy is set or there is at least one command pending in the FIFO.

30

ippu_suspende
d

ippu_suspended

ippu_suspended - IPPU Suspended

ippu_suspended indicates whether the IPPU core is suspended or not.

This bit is set when the IPPU enters the Suspended state. It is cleared when the IPPU is not in the
Suspended state.

ippu_suspended can be read by the host software or VCPU software at any time. Writing this bit has no
effect.

0b - IPPU not in Suspended state.

1b - IPPU in Suspended state.

29

ippu_aborted

ippu_aborted

ippu_aborted - IPPU Aborted

Indicates whether the IPPU core received the ippu_abort command while in the Running state.

ippu_aborted is set when the IPPU is in the Running state and the ippu_abort bit in the IPPURC register is
set.

This bit will be cleared when the IPPU is activated (that is, when it is in idle state and receives an IPPU_GO
which can happen on immediate start, FECU done start, DMA done start).

ippu_aborted can be read by the host software or VCPU software at any time. Writing this bit has no effect.

0b - After Reset or IPPU in the Running state.

1b - ippu_abort bit was set while the IPPU was in the Running state.

28 ippu_done

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 436 / 536

Table continued from the previous page...

Field Function

ippu_done ippu_done - IPPU Done

Indicates whether the IPPU core executed the done instruction.

ippu_done is set when the IPPU executes the done instruction.

ippu_done is cleared after reset and when the IPPU enters the Running state.

ippu_done can be read by the host software or VCPU software at any time. Writing this bit has no effect.

0b - After Reset or IPPU busy

1b - IPPU executed the done instruction and in Idle sate.

27

cmd_error

command error

command error - IPPU command fifo error

Note: To avoid command fifo error, cmd_error, the host software or VCPU software must check the
cmd_fifo_full bit is cleared before writing the IPPU Control register (IPPUCONTROL). Writing the IPPU
Control register (IPPUCONTROL) when the cmd_fifo_full bit is set may result in loss of this command.

0b - After reset or no command error

1b - A write to the IPPU_CONTROL register was attempted when the command FIFO is full.
Cleared by writing 1 to IPPURC[31].

26-25

cmd_last

command last source

Indicates the last ippu_go command to the IPPU was received from the DMA, the IPPU or start_now by
writing to the control register.

00b - After Reset or when ip_ippu_go_now is set.

01b - The fecu_ippu_go_en bit was set and the fecu_ippu_go signal was asserted.

10b - The dma_ippu_go_en bit was set and the dma_ippu_go signal was asserted.

11b - Reserved

24

—

-

Reserved

23-22

command_fifo_
depth

Command Fifo Depth

command_fifo_depth is the number of pending or inprogress operations in the command FIFO.

A maximum of 2 operations can be pending or in progress.

Further attempts to start an operation will set command_error.

00b - Empty, no entries in the fifo

01b - One entry in the fifo

10b - Full, two or more entries in the fifo

11b - Reserved

21 IPPU Busy

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 437 / 536

Table continued from the previous page...

Field Function

ru_ip_busy ippu_busy indicates whether the IPPU core is Idle or busy executing code.

ippu_busy is set when the IPPU enters the Running state.

ippu_busy is cleared after reset and when the IPPU executes the done instruction.

ippu_busy can be read by the host software or VCPU software at any time. Writing this bit has no effect.

0b - Idle state

1b - Running state

20

cmd_fifo_full

Command Fifo Full

Note: The host software or VCPU software must check this bit is cleared before writing the IPPU Control
register (IPPUCONTROL). Writing the IPPU Control register (IPPUCONTROL) when this bit is set may
result is loss of this command.

0b - Command fifo is not full

1b - Command fifo is full; Command_depth equals 2.

19-16

—

-

Reserved

15-0

ippu_pc

ippu_pc

ippu_pc - IPPU Program Counter

Reading this value provides approximate value of the pc at the time the IPPU_STATUS register is read.

ippu_pc can be read by the host software or VCPU software at any time. Writing this field has no effect.

Settings: ippu_pc provides approximate value of the pc at the time this register is read.

14.2.84 IPPU Run Control register (IPPURC)

Offset

Register Offset

IPPURC 708h

Function
IPPU Run Control register

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 438 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ippu_s

u...
Reserved

W
clear_c

...
ippu_a

b...

Reset 0 0 0 u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Fields

Field Function

31

clear_cmd_fifo_
error

Clear command fifo error bit

Write only bit. Reading always return zero.

Writing one to this bit clears the IPPU command error bit in the status register.

0b - Do not clear

1b - Writing 1 clears the IPPU command error bit in the status register

30

ippu_suspend

IPPU suspend bit

The ippu_suspend bit acts as stop/continue control for the IPPU.

Setting this bit to one while the IPPU is in the Running state, will suspend the IPPU instruction fetch and
execution. Instruction fetch and execution will resume when the ippu_suspend bit is cleared. The
ippu_suspend bit has no effect on the IPPU while in Idle state.

The ippu_suspend bit is reset to zero. It can be set, cleared and read by the host software or VCPU software
at any time.

0b - IPPU runs normally

1b - While in Running state, the IPPU suspends instruction fetch and execution. No effect while in
Idle state

29

ippu_abort

IPPU Abort

The ippu_abort bit provides the host and the VCPU software a means to immediately terminate the IPPU
operation, and all pending FIFO commands are cleared.

When VCPU software or host software sets the ippu_abort bit while the IPPU is in the Running state, the
IPPU immediately stops instruction fetch and execution, enters the Idle state, sets the ippu_aborted bit and
clears the ippu_busy bit in the IPPU_STATUS register. The ippu_done bit is unaffected by setting the
ippu_abort bit.

When the abort bit is set, the IPPU clears all pending FIFO commands.

Table continues on the next page...

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 439 / 536

Table continued from the previous page...

Field Function

The ippu_abort bit is reset to zero and is self clearing. Reading this bit will always return
zero.

 NOTE

0b - Do nothing.

1b - While in Running state, the IPPU aborts instruction fetch and execution and enters the Idle
state. No effect while in Idle state.

28-0

—

-

Reserved

14.2.85 IPPU Arg Base Address register (IPPUARGBASEADDR)

Offset

Register Offset

IPPUARGBASEADDR 70Ch

Function

• The IPPU_ARG_BASE_ADDR register, if used, should be written before writing to the IPPU_CONTROL

register.

• Reading this register returns the last written value, and not necessarily the active value.

 NOTE

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved ippu_arg_base_addr

W

Reset u u u u u u u u u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ippu_arg_base_addr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 440 / 536

Fields

Field Function

31-19

—

-

Reserved

18-0

ippu_arg_base_
addr

ippu_arg_base_addr

ippu_arg_base_addr - IPPU Argument Base Address

This field defines the starting address of a memory sector which is passed to the IPPU for argument transfer.
After reset, this field is reset to zero (0x00000), and normally does not require to be written. The user
software of VCPU software can change the address. The address is a 32 bit word address. Only the proper
amount of the least significant bits (that is, 18 bits when the ippu_legacy_mem_addr is clear and 19 bits
when ippu_legacy_mem_addr is set) are used by the IPPU. The rest of the bits are ignored. The
ippu_arg_base_addr field is reset to zero. It can be read and written by the host software or VCPU software
at any time.

Settings: when the IPPU is accessing its arguments, this field is used as a start address for the argument
memory space.

14.2.86 IPPU Hardware Version (IPPUHWVER)

Offset

Register Offset

IPPUHWVER 710h

Function
IPPU Hardware Version

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ippu_hw_version

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ippu_hw_version

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 441 / 536

Fields

Field Function

31-0

ippu_hw_versio
n

ippu_hw_version

IPPU Hardware Version

This field indicates the IPPU hardware version.

ippu_hw_version can be read by the host software or VCPU software at any time. Writing this field has no
effect.

14.2.87 IPPU Software Version (IPPUSWVER)

Offset

Register Offset

IPPUSWVER 714h

Function
IPPU Software Version

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ippu_code_version

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ippu_code_version

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

ippu_code_vers
ion

ippu_code_version

IPPU software code version

This field can be used to indicate the version of the IPPU PRAM assembly code.

• IPPU software configures this register during global initialization after download of a new
IPPUPRAM image.

• IPPUPRAM version numbers are non-zero.

• This register does not affect the HW operation on the IPPU. It provides a place holder for the
programmer.

NXP Semiconductors

VSPA IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 442 / 536

Chapter 15
Debug registers
15.1 VSPA_DBG register descriptions
The VSP Debugger registers are defined in terms of byte addresses. The lowest two bits of the address are ignored so an access
to byte address 0x01 returns the same data as an access to 0x00. Host writes to these registers are always assumed to be 32-
bit accesses, so it is strongly suggested that all accesses to the registers be 32-bit aligned.

These registers can be reset in more than one way:

• The chip is powered up (power on reset)

• The debugger reset signal is asserted. Note that this resets only the debugger registers.

The memory map is segmented into several different regions as shown and described in the following table.

Addresses 0-7FF are a gateway to access the VSPA IP Bus memory-mapped registers via the VSPA Debug IP Bus. These
registers are directly mapped into the lower portion of the debug memory map (address 0-7FF) and are read/written by performing
accesses directly to those lower addresses. See VSPA register descriptions for details on the VSPA IP Bus registers. Registers
at address 0x800 and above are only accessible by the VSPA Debug IP bus and are not accessible to the VCPU.

15.1.1 VSPA_DBG memory map
VSPA_DBG base address: 4_6000h

Offset Register Width

(In bits)

Access Reset value

800h Global Debug Enable register (GDBEN) 32 RW See
description

804h Debug Run Control register (RCR) 32 RW See
description

808h Debug Run Control Status register (RCSTATUS) 32 RO See
description

83Ch Debug Halt Action Control register (HACR) 32 RW See
description

840h Debug Resume Action Control register (RACR) 32 RW See
description

870h Debug VSP Architecture Visibility Address Pointer register (RAVAP) 32 RW See
description

874h Debug VSP Architecture Visibility Fixed Data register (RAVFD) 32 RW F001_F001h

878h Debug VSP Architecture Visibility Incrementing Data register
(RAVID)

32 RW F001_F001h

87Ch Debug Verification register (DVR) 32 RO See
description

880h - 88Ch Debug Cross Trigger Out a Action Control registers (CTO0ACR -
CTO3ACR)

32 RW See
description

Table continues on the next page...

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 443 / 536

Table continued from the previous page...

Offset Register Width

(In bits)

Access Reset value

900h Debug Comparator Control and Status register (DC0CS) 32 RW See
description

904h Debug Comparator a Data register (DC0D) 32 RW See
description

908h Debug Comparator a Arm Action Control registers (C0AACR) 32 RW See
description

90Ch Debug Comparator a Disarm Action Control registers (C0DACR) 32 RW See
description

910h Debug Comparator a Trigger Action Control registers (C0TACR) 32 RW See
description

914h Debug Comparator Control and Status register (DC1CS) 32 RW See
description

918h Debug Comparator a Data register (DC1D) 32 RW See
description

91Ch Debug Comparator a Arm Action Control registers (C1AACR) 32 RW See
description

920h Debug Comparator a Disarm Action Control registers (C1DACR) 32 RW See
description

924h Debug Comparator a Trigger Action Control registers (C1TACR) 32 RW See
description

928h Debug Comparator Control and Status register (DC2CS) 32 RW See
description

92Ch Debug Comparator a Data register (DC2D) 32 RW See
description

930h Debug Comparator a Arm Action Control registers (C2AACR) 32 RW See
description

934h Debug Comparator a Disarm Action Control registers (C2DACR) 32 RW See
description

938h Debug Comparator a Trigger Action Control registers (C2TACR) 32 RW See
description

93Ch Debug Comparator Control and Status register (DC3CS) 32 RW See
description

940h Debug Comparator a Data register (DC3D) 32 RW See
description

944h Debug Comparator a Arm Action Control registers (C3AACR) 32 RW See
description

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 444 / 536

Table continued from the previous page...

Offset Register Width

(In bits)

Access Reset value

948h Debug Comparator a Disarm Action Control registers (C3DACR) 32 RW See
description

94Ch Debug Comparator a Trigger Action Control registers (C3TACR) 32 RW See
description

950h Debug Comparator Control and Status register (DC4CS) 32 RW See
description

954h Debug Comparator a Data register (DC4D) 32 RW See
description

958h Debug Comparator a Arm Action Control registers (C4AACR) 32 RW See
description

95Ch Debug Comparator a Disarm Action Control registers (C4DACR) 32 RW See
description

960h Debug Comparator a Trigger Action Control registers (C4TACR) 32 RW See
description

964h Debug Comparator Control and Status register (DC5CS) 32 RW See
description

968h Debug Comparator a Data register (DC5D) 32 RW See
description

96Ch Debug Comparator a Arm Action Control registers (C5AACR) 32 RW See
description

970h Debug Comparator a Disarm Action Control registers (C5DACR) 32 RW See
description

974h Debug Comparator a Trigger Action Control registers (C5TACR) 32 RW See
description

978h Debug Comparator Control and Status register (DC6CS) 32 RW See
description

97Ch Debug Comparator a Data register (DC6D) 32 RW See
description

980h Debug Comparator a Arm Action Control registers (C6AACR) 32 RW See
description

984h Debug Comparator a Disarm Action Control registers (C6DACR) 32 RW See
description

988h Debug Comparator a Trigger Action Control registers (C6TACR) 32 RW See
description

98Ch Debug Comparator Control and Status register (DC7CS) 32 RW See
description

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 445 / 536

Table continued from the previous page...

Offset Register Width

(In bits)

Access Reset value

990h Debug Comparator a Data register (DC7D) 32 RW See
description

994h Debug Comparator a Arm Action Control registers (C7AACR) 32 RW See
description

998h Debug Comparator a Disarm Action Control registers (C7DACR) 32 RW See
description

99Ch Debug Comparator a Trigger Action Control registers (C7TACR) 32 RW See
description

E20h Debug to VSP 32-bit Outbox register (OUT_32) 32 WO 0000_0000h

E24h Debug to VSP 64-bit MSB Outbox register (OUT_64_MSB) 32 WO 0000_0000h

E28h Debug to VSP 64-bit LSB Outbox register (OUT_64_LSB) 32 WO 0000_0000h

E2Ch VSP to Debugger 32-bit Inbox register (IN_32) 32 RO 0000_0000h

E30h VSP to Debugger 64-bit MSB Inbox register (IN_64_MSB) 32 RO 0000_0000h

E34h VSP to Debugger 64-bit LSB Inbox register (IN_64_LSB) 32 RO 0000_0000h

E38h Debugger to VSP Mailbox Status register (MBOX_STATUS) 32 RO See
description

F00h Debug Parameter 0 Register (PARAM_0) 32 RO See
description

FD0h Peripheral ID4 register (PIDR4) 32 RO 0000_0000h

FD4h Peripheral ID5 register (PIDR5) 32 RO 0000_0000h

FD8h Peripheral ID6 register (PIDR6) 32 RO 0000_0000h

FDCh Peripheral ID7 register (PIDR7) 32 RO 0000_0000h

FE0h Peripheral ID0 register (PIDR0) 32 RO 0000_0000h

FE4h Peripheral ID1 register (PIDR1) 32 RO 0000_00E0h

FE8h Peripheral ID2 register (PIDR2) 32 RO 0000_00F8h

FECh Peripheral ID3 register (PIDR3) 32 RO 0000_00F0h

FF0h Component ID0 register (CIDR0) 32 RO 0000_000Dh

FF4h Component ID1 register (CIDR1) 32 RO 0000_00F0h

FF8h Component ID2 register (CIDR2) 32 RO 0000_0005h

FFCh Component ID3 register (CIDR3) 32 RO 0000_00B1h

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 446 / 536

15.1.2 Global Debug Enable register (GDBEN)

Offset

Register Offset

GDBEN 800h

Function

This 32-bit read-write register is the overall (top-level) Global VSP Debug Enable control register.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

nidbg_
en

idbg_
enW

Reset u u u u u u u u u u u u u u 0 0

Fields

Field Function

31-2

—

-

Reserved

1

nidbg_en

nidbg_en

Non-invasive debug mode enable

This bit enables/disables non-invasive debug mode.

Note: if this bit is zero, then trace is disabled, irrespective of the configuration of the other trace and action
control registers. This enable bit will be overridden if the dbg_niden input is negated (driven to "0") by the
external system due to security related issues. So trace can only be generated if both this bit AND the
dbg_niden input are "1".

0b - Non-Invasive debug mode disabled (no trace Messages will be produced).

1b - Non-Invasive debug mode enabled (trace Messages will be output on occurrence of
appropriate debug events - if configured to produce a trace message) if the dbg_niden input is
driven to a "1".

0

idbg_en

idbg_en

Invasive debug mode enable

This is the enable for invasive (halting) debug mode.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 447 / 536

Table continued from the previous page...

Field Function

Note: if this bit is zero, VSP cannot be halted irrespective of the configuration of the HACR register. This
enable bit will be overridden if the dbg_dbgen input is negated (driven to "0") by the external system due
to security related issues. So HALT can occur only if both this bit AND the dbg_dbgen input are "1".

0b - Halting debug mode is disabled (VSP cannot be halted).

1b - Halting debug mode is enabled (VSP can be halted and enter debug mode) if the dbg_dbgen
input is driven to a "1".

15.1.3 Debug Run Control register (RCR)

Offset

Register Offset

RCR 804h

Function

This 32-bit read-write register is used for controlling invasive debug functions for halting all engines within the VSP (entering
debug mode), single step (SS) a single VSP instruction at a time, and resume (exit from debug mode) via software. Note that in
order for the VSP engine to halt and enter debug mode, the system must wait for the VSP engine to complete its current instruction
and potentially wait for suspension of the DMA and IPPU units if either was actively processing at the time of the write to the Halt
bit.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

Reserved
halt_cy

...
Reserved

W
force_

h...
resum

e
single_

...

Reset u u u u u u u 0 u u u u u 0 0 0

Fields

Field Function

31-9

—

-

Reserved

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 448 / 536

Table continued from the previous page...

Field Function

8

halt_cyc_counte
r

halt_cyc_counter

This bit controls halting the cycle counter, VSPA_CYC_COUNTER_MSB/VSPA_CYC_COUNTER_LSB
registers, when in halted state.

0b - Cycle counter continues counting when VSPA is in the halted state

1b - Cycle counter halts counting when VSPA is in the halted state

7-3

—

-

Reserved

2

force_halt

force_halt

Force halt - Cause VSP to enter halting debug mode

When this bit is written to '1', VSP engine, IPPU engine, and DMA engines are halted in debug mode as
soon as possible. Once all the units are halted, the dedicated output dbg_halt_ack will be asserted high.
This command bit is write only - it will always read as "0".

Settings: Write-only; Always reads as '0'.

1

resume

resume

Resume normal operation - exit halting debug mode

When this bit is written to '1', VSP exits halting debug mode and resumes execution where it left off prior
to the halt.

This command bit is write only - it will always read as "0".

Settings: Write-only; Always reads as '0'.

0

single_step

single_step

single step - execute a single instruction, then halt again

When this bit is written to '1', VSP temporarily exits halting debug mode (with dbg_halt_ack de-asserting
low), and executes a single VSP instruction (advances all VSP instructions in the VSP pipeline by one
clock). Once the instruction completes, the VSP engine is again halted and halting debug mode is once
again entered upon suspension of both the DMA and the IPPU units (at which point dbg_halt_ack will be
asserted high).

Note that single stepping through VSP 'done' instruction is not allowed. When the single stepping and the
next instruction are done, VSP must receive a 'resume' command.

Note that once the VCPU is halted, trace messages are not guarnteed to be accurate when resuming or
single stepping, as debugging can be done in the halted mode.

This command bit is write only - it will always read as "0".

Settings: Write-only; Always reads as '0'.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 449 / 536

15.1.4 Debug Run Control Status register (RCSTATUS)

Offset

Register Offset

RCSTATUS 808h

Function

This 32-bit read-only status register is used to determine the reason for VSP being halted. Any or all these flags could potentially
be asserted, indicating what caused the halt. These flags will self-clear upon exit from halting debug mode (resume).

The halted flag (bit 13) will set after all the engines (VSP, IPPU, and DMA) have halted. The other status flags can
set before the halt has completely halted all the engines. This is especially important when the debugger wishes
to read VSP registers or access VSP memories via the architectural visibility portal. The portal can only work
reliably when the engines are halted.

 WARNING

Note that this register can act as an "accumulator" during a halting debug session. After initially halting for one reason, other
reasons for halting can also occur, and those reasons will accumulate in this register while halted or while single stepping.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
vcpu_

go
vcpu_d

o...
swb iit

prot_fa
...

irq_inp
... Reserved

ctinn

W

Reset 0 0 0 0 0 0 u u 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dbg_h

al...
forced

_...
halted

Reserved
cmpn

W

Reset 0 0 0 u u u u u 0 0 0 0 0 0 0 0

Fields

Field Function

31

vcpu_go

vcpu_go

VCPU Go event

When '1', this flag indicates that VSPA was halted due to occurrence of VCPU "Go" event.

Note that this flag self-clears on exit from halting debug mode.

0b - VCPU "Go" NOT reason for VSPA being halted.

1b - VCPU "Go" one reason for VSPA being halted.

30 vcpu_done

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 450 / 536

Table continued from the previous page...

Field Function

vcpu_done VCPU done instruction

When '1', this flag indicates that VSPA was halted due to execution of VCPU "Done" instruction.

Note that this bit self-clears on exit from halting debug mode.

0b - VCPU "Done" NOT reason for VSPA being halted.

1b - VCPU "Done" one reason for VSPA being halted.

29

swb

swb

Software breakpoint

When '1', this flag indicates that VSPA was halted due to occurrence of Software Breakpoint.

Note that this flag self-clears on exit from halting debug mode.

0b - Software Breakpoint NOT reason for VSPA being halted.

1b - Software Breakpoint one reason for VSPA being halted.

28

iit

iit

VCPU illegal instruction

When '1', this flag indicates that VSPA was halted due to execution of VCPU illegal instruction.

Note that this bit self-clears on exit from halting debug mode.

0b - VCPU “illegal instruction” NOT reason for VSPA being halted.

1b - VCPU "illegal instruction" one reason for VSPA being halted.

27

prot_fault

prot_fault

VCPU protection fault

When '1', this flag indicates that VSPA encountered a protection fault.

Note that this bit self-clears on exit from halting debug mode.

0b - VCPU "protection fault" NOT reason for VSPA being halted.

1b - VCPU "protection fault" one reason for VSPA being halted.

26

irq_input

irq_input

VCPU interrupt request

When '1', This flag indicates that VCPU was interrupted as result of the input signal “vcpu_irq” assertion.

Note that this bit self-clears on exit from halting debug mode.

0b - VCPU “interrupt request” NOT reason for VSPA being halted.

1b - VCPU "interrupt request" one reason for VSPA being halted.

25-24

—

-

Reserved

23-16 ctinn

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 451 / 536

Table continued from the previous page...

Field Function

ctinn dbg_trig_in_req[n] input triggered where n is 7-0

When '1', This flag indicates that VSPA was halted due to assertion of the dbg_trig_in_req[n] input.

Note that this flag self-clears on exit from halting debug mode.

00000000b - dbg_trig_in_req[n] not a reason for VSPA being halted.

00000001b - dbg_trig_in_req[n] one reason for VSPA being halted.

15

dbg_halt_req

dbg_halt_req

dbg_halt_req dedicated input triggered

When '1', This flag indicates that VSPA was halted due to assertion of the dedicated halt request input.

Note that this flag self-clears on exit from halting debug mode.

0b - dbg_halt_req not a reason for VSPA being halted.

1b - dbg_halt_req one reason for VSPA being halted.

14

forced_halt

forced_halt

Debugger forced halt

When '1', This flag indicates that the debugger set the force_halt control bit in the RCR register.

Note that this flag self-clears on exit from halting debug mode.

0b - VSPA not halted due to debugger forced halt.

1b - VSPA halted due to debugger forced halt.

13

halted

halted

Halted

When '1', This flag indicates that the VCPU, IPPU, and DMA engines have all halted.

The other bits in the register may be asserted before halt has completed, so it is important to observe the
state of this flag to know when the halt has actually completed. This is especially important when the
debugger wishes to read VSPA registers or access VSPA memories via the architectural visibility portal.
The portal can only work reliably when all the engines are halted.

Note that this bit self-clears on exit from halting debug mode. It also clears temporarily every time the
single_step bit in the Debug Run Control Register (RCR) is set. After the single step command completes
and VSPA has halted again, the halted flag will be set again.

It should also be noted that this bit will be set only after the VCPU, IPPU, and the DMA engines have all
halted. So, other status bits in this register may indicate a halt source prior to the completion of the halting
of all the engines. The halted bit may also clear up to one cycle after the other status bits are cleared.

This is self-clearing bit. Writing a one sets the bit. The bit will clear automatically and it will
always read as zero.

 NOTE

0b - Halt action (if applicable) has not completed.

1b - Halt action has completed - all engines are halted.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 452 / 536

Table continued from the previous page...

Field Function

12-8

—

-

Reserved

7-0

cmpn

cmpn

Comparator n event occurred where n is 7-0

When '1', This flag indicates that VSPA was halted due to occurrence of Comparator n event.

Note that this bit self-clears on exit from halting debug mode.

00000000b - Comparator n not reason for VSPA being halted.

00000001b - Comparator n one reason for VSPA being halted.

15.1.5 Debug Halt Action Control register (HACR)

Offset

Register Offset

HACR 83Ch

Function

This 32-bit read-write register configures which events enable the action of halting VSPA. Note that the dedicated dbg_halt_req
input is not configurable in this register. It will always halt VSPA when triggered.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vcpu_
go

vcpu_d
o...

swb
vcpu_il

...
Reserved ctinn

W

Reset 0 0 0 0 u u u u 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved cmpn

W

Reset u u u u u u u u 0 0 0 0 0 0 0 0

Fields

Field Function

31

vcpu_go

vcpu_go

Halt on VCPU Go

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 453 / 536

Table continued from the previous page...

Field Function

Controls whether VSPA will be halted on "Go" events.

0b - Disable VSPA halt on occurrence of a VCPU "Go" event.

1b - Enable VSPA halt on occurrence of a VCPU "Go" event.

30

vcpu_done

vcpu_done

Halt on VCPU Done

Controls whether VSPa will be halted on "Done" events.

0b - Disable VSPA halt on occurrence of a VCPU "Done" event.

1b - Enable VSPA halt on occurrence of a VCPU "Done" event.

29

swb

swb

Halt on VCPU software breakpoint

Controls whether VSPA will be halted on Software Breakpoint events.

0b - Disable VSPA halt on occurrence of software breakpoint.

1b - Enable VSPA halt on occurrence of software breakpoint.

28

vcpu_illop

vcpu_illop

Halt on illegal instruction trap.

Controls whether VSPA will be halted on illegal instruction trap events.

0b - Disable VSPA halt on occurrence of a VCPU illegal instruction trap event.

1b - Enable VSPA halt on occurrence of a VCPU illegal instruction trap event.

27-24

—

-

Reseved

23-16

ctinn

ctinn

Halt on VSPA cross trigger input n where n is 7-0

Controls whether VSPA will be halted on dbg_trig_in_req[n] events.

00000000b - Disable VSPA halt on occurrence of cross trigger in n.

00000001b - Enable VSPA halt on occurrence of cross trigger in n.

15-8

—

-

Reserved

7-0

cmpn

cmpn

Halt on VSPA comparator n match where n is 7-0

Controls whether or not VSPA will be halted on comparator n match events.

00000000b - Disable VSPA halt on occurrence of comparator n match.

00000001b - Enable VSPA halt on occurrence of comparator n match.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 454 / 536

15.1.6 Debug Resume Action Control register (RACR)

Offset

Register Offset

RACR 840h

Function

This 32-bit read-write register configures which events are capable of causing VSPA to resume execution if currently halted
(dbg_halt_ack output is asserted high). Note that the dedicated dbg_resume_req input is not configurable in this register. It will
always resume VSPA when triggered.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vcpu_
go

vcpu_d
o...

swb Reserved ctinn
W

Reset 0 0 0 u u u u u 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved cmpn

W

Reset u u u u u u u u 0 0 0 0 0 0 0 0

Fields

Field Function

31

vcpu_go

vcpu_go

Resume on VCPU Go

Controls whether VSPA will resume (if halted) on "Go" events.

0b - Disable VSPA resume on occurrence of a VCPU "Go" event.

1b - Enable VSPA resume on occurrence of a VCPU "Go" event.

30

vcpu_done

vcpu_done

Resume on VCPU Done

Controls whether VSPA will resume (if halted) on "Done" events.

0b - Disable VSPA resume on occurrence of a VSP "Done" event.

1b - Enable VSPA resume on occurrence of a VSP "Done" event.

29

swb

swb

Resume on VCPU software breakpoint

Controls whether VSPA will resume (if halted) on Software Breakpoint events.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 455 / 536

Table continued from the previous page...

Field Function

0b - Disable VSPA resume on occurrence of software breakpoint.

1b - Enable VSPA resume on occurrence of software breakpoint.

28-24

—

-

Reserved

23-16

ctinn

ctinn

Resume on VSPA cross trigger input n where n is 7-0

Controls whether VSPA will resume (if halted) on dbg_trig_in_req[n] events.

00000000b - Disable VSPA resume on occurrence of cross trigger in n.

00000001b - Enable VSPA resume on occurrence of cross trigger in n.

15-8

—

-

Reserved

7-0

cmpn

cmpn

Resume on VSPA comparator n match where n is 7-0

Controls whether VSPA will resume (if halted) on comparator n match events.

00000000b - Disable VSPA Resume on occurrence of comparator n match.

00000001b - Enable VSPA Resume on occurrence of comparator n match.

15.1.7 Debug VSP Architecture Visibility Address Pointer register (RAVAP)

Offset

Register Offset

RAVAP 870h

Function

This 32-bit read-write register is used for accessing VSP internal memory and architectural registers during halting debug mode,
providing visibility to the register/memory state of the machine. This register provides the index of the item to be read/written,
Refer to Table 99 for details. Note that the architectural registers and register file registers (R0-R7) can only be read, whereas
the internal memories can be both read and written. Unless otherwise specified, the data returned for the VSP Architectural
Register Portal are LSB justified in the data[31:0] field of the RAVFD or RAVID register.

Note that this visibility portal is disabled whenever invasive debug is disabled. So it is disabled when either the global invasive
debug enable bit (idbg_en in the global debug enable register) is "0", OR the VSP input port dbg_dbgen is driven to "0".

Note also that a separate gateway exists for accessing the VSP IPbus registers. These registers are directly mapped into the
lower portion of the debug memory map and are read/written by performing accesses directly to those lower addresses. Refer
to VSPA register descriptions for details on the VSP IPbus registers.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 456 / 536

The VSP, IPPU, and DMA engines must be halted (or inactive) for program memory or register accesses via this
resource to be successful. If a memory read or write is attempted while any of these units are active and NOT
halted, the result may be non-deterministic. Data memory (DMEM and IPPU-DMEM) accesses will wait state the
debug-IP bus until a free memory access cycle allows the debugger access to complete.

 NOTE

A special precaution must be taken when using a debugger to access VCPU program memory while the VCPU is
halted. When single stepping or resuming, the VCPU logic expects the state of the program memory's read data
pins to be exactly as they were left prior to the halt.

If the debugger halts the VCPU and then reads or writes to VCPU program memory, the state of the memory read
data pins can be altered. So prior to executing a single step or resuming, the debugger must re-read the same
address as the VCPU last issued.

Visibility into the fetch PC is provided specifically for this purpose.

So, after a halt, if the debugger accesses VCPU program memory it must restore the read data state as follows:

1. Read the VCPU fetch PC

• Write RAVAP to 0x00000000.

• Read RAVFD and save the result into a variable (let's call the variable FPCADDR).

2. Read the VCPU program memory address

• Write RAVAP to FPCADDR + 0x03000000.

• Read RAVFD. The data read can be ignored.

After the restoration sequence above is completed, it is safe to single step or resume VCPU operation.

 NOTE

Table 99. VSP/IPPU Architectural Access Modes

a_mode[27:24] Description

0 VSP Architectural Register list. Refer to Table 100.

Data is LSB justified.

 NOTE

1 VSP DMEM Memory.

a_index addresses 32-bit words

Note return data format:

data[31:0] =DMEM[a_index].

2 IPPU DMEM Memory.

a_index addresses 32-bit words

Note return data format:

data[31:0] =DMEM[a_index].

3 VSP PRAM Memory.

a_index addresses 32-bit words.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 457 / 536

Table 99. VSP/IPPU Architectural Access Modes (continued)

a_mode[27:24] Description

PRAM is 64-bits wide. Two accesses are required to read/write the full 64 bits of data. When a_index[2]
= 0, the access reads/writes 32 LSBs of PRAM data. When a_index[2] = 1, the access reads/writes the
32 MSBs of PRAM data. Writes to the PRAM must be made in pairs. The first write of the pair must be
done with a_index[2]=0, and the second write must be done while a_index[2]=1. This procedure is
necessary since the actual PRAM has only one write strobe, and when it's asserted all 64 bits of the PRAM
are written. So, the first write's data is stored in a 32 bit buffer, and the second write triggers an actual
PMEM write with data that is the concatenation of the buffered bits from the first write plus the raw data
from the second write.

4 Reserved

5 IPPU PRAM Memory.

a_index addresses 32-bit words.

Note return data format:

data[31:0] =IPPU PRAM [a_index].

6 VSP Register File (RF) R0-R7 registers.

a_index addresses a 32-bit word starting with least significant element at R0.

Note return data format:

data[31:0] =Rn[a_index] (where n = a_index/32)

7 H Register.

8 IPPU Architectural Register list. Refer to Table 101.

Data is LSB justified.

 NOTE

9 IPPU Register File (RF) R0-R1 registers.

a_index addresses a 32-bit word starting with least significant element at R0.

Note: return data format:

data[31:0] =Rn[a_index] (where n = a_index/32)

10 Reserved

Table 100. VSP Architectural Register list (a_mode = 0)

a_index[18:2] VSP Architectural Register

0 Prefetch PC. This is the address to PMEM.

1 Exec PC. This is the PC value of the instruction currently being executed.

2-13 General purpose registers G0 - G11.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 458 / 536

Table 100. VSP Architectural Register list (a_mode = 0) (continued)

a_index[18:2] VSP Architectural Register

14 MAG hardware stack pointer (SP) value.

15-18 MAG general purpose address registers a0 - a3.

19-20 MAG a2.min, MAG a2.max.

21-22 MAG a3.min, MAG a3.max.

23-25 MAG rr_mod_max, rr_mod_min, rr_mod_size.

26-41 MAG address storage registers as0 - as15.

42 MAG bit reversal, digit reversal mode register (br_dr_mode) and flip mode register (flip_mode).

Note return data format:

data[31:0] ={27'b0,br_dr_mode[1:0], flip_mode[2:0]}.

data[31:0] ={29'b0,flip_mode[2:0]}.

43 CREG bits: real/complex, lite, AuOut (soft bits, hard bits, threshold bits).

Note return data format:

data[31:0] ={28'b0, mode, lite_mode, auout[1:0]}.

44 CREG bits (cc_update, previous cc bits, current cc bits).

Note return data format:

data[31:0] ={cc_update,19'b0,prev_cc[3:0], 4'b0, cc[3:0]}.

45 HW Loop depth pointer (for loops of size > 2).

46-53 HW Loop End Addresses 1-8 (top of loop stack is 1).

54-61 HW Loop Instruction Count 1-8 (top of loop stack is 1).

62-69 HW Loop Iteration Count 1-8 (top of loop stack is 1).

70 HW Loop (size 1 or 2) iteration count, in_loop_sz1 flag, in_loop_sz2 flag.

Note return data format:

data[31:0] ={14'b0, iter_count_loop1_or_2[15:0], in_loop1, in_loop2}.

71 Return Stack (RTS) depth pointer. Bit 31 is overflow, bit 30 is underflow.

72-87 Return Stack rts_storage 1-16 (top of loop stack is 1).

88 Source operands registers (S2mode, S1mode, S0mode, S0conj, S0chs).

Note return data format:

data[31:0] ={16'b0, S2mode[3:0], S1mode[3:0], 2'b0, S0conj, S0chs, S0mode[3:0]}.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 459 / 536

Table 100. VSP Architectural Register list (a_mode = 0) (continued)

a_index[18:2] VSP Architectural Register

89 RF rot_mode register.

data[31:0] ={19'b0, lt_mode[4:0], 2'b0, rt_mode[5:0]

90 NCO 'k' parameter "next" value (not the current value).

91 NCO 'freq' parameter "next" value (not the current value).

92 NCO 'phase' "next" value (not the current value).

93 Reserved

94 Reserved

95 Reserved

96 Reserved

97 RAG S0 ptr register.

98 RAG S0 incr register.

99 Reserved

100 Reserved

101 Reserved

102 Reserved

103 RAG S1 ptr register.

104 RAG S1 incr register.

105 Reserved

106 Reserved

107 Reserved

108 Reserved

109 RAG S2 ptr register.

110 RAG S2 incr register.

111 Reserved

112 Reserved

113 Reserved

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 460 / 536

Table 100. VSP Architectural Register list (a_mode = 0) (continued)

a_index[18:2] VSP Architectural Register

114 Reserved

115 RAG au ptr register.

116 RAG au incr register.

117 Reserved

118 Reserved

119 Reserved

120 Reserved

121 RAG mem ptr register.

122 RAG mem incr register.

123 min a0

124 max a0

125 min a1

126 max a1

Table 101. IPPU Architectural Register list (a_mode = 8)

a_index[18:2] VSP Architectural Register

0 Reserved

1 a0 - MAG general purpose address registers a0.

2 a1 - MAG general purpose address registers a1.

3 as0 - MAG address storage register as0.

4 as1 - MAG address storage register as1.

5 as2 - MAG address storage register as2.

6 as3 - MAG address storage register as3.

7 m0 - DMEM offset register 0 to access pointers in load/store instructions.

8 m1 - DMEM offset register 0 to access pointers in load/store instructions.

9 r_rd_ptr - Read pointer to a 4-bit element within the data register file.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 461 / 536

Table 101. IPPU Architectural Register list (a_mode = 8) (continued)

a_index[18:2] VSP Architectural Register

10 r_wr_ptr - Write pointer to a 4-bit element within the data register file.

11 elem_mask_ptr - Pointer to a bit within the mask register file.

12 mem_elem_rd_ptr - Pointer to a 4-bit element within a 32-bit element addressed by a0 or a1.

13 mem_elem_wr_ptr - Pointer to a 4-bit element within a 32-bit element addressed by a0 or a1.

14 a0_range_start - MAG a0 minimum value while in cyclic buffer mode.

15 a0_range_end - MAG a0 maximum value while in cyclic buffer mode.

16 a1_range_start - MAG a1 minimum value while in cyclic buffer mode.

17 a1_range_end - MAG a1 maximum value while in cyclic buffer mode.

18 z_flag - Zero flag used for conditional jmp/jsr/rts instructions.

19 Prefetch PC. This is the address to PMEM.

20 Exec IR. This is the IR (Instruction Register) value of the instruction currently being executed.

21 Exec PC. This is the PC value of the instruction currently being executed.

22 vindx_ptr - Vectorized Index pointer

23 mem_index0 - Memory Index register associated with a0

24 mem_index1 - Memory Index register associated with a1

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ip_bat Reserved a_mode Reserved a_index

W

Reset 0 u u u 0 0 0 0 u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
a_index Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 462 / 536

Fields

Field Function

31

ip_bat

ip_bat

VSP IPbus gateway - IP bridge access type.

This bit specifies which identity should be used for the access to the VSP IPbus (host or VSP).

Note the VSP IP Bus gateway is separate from the architecture visibility portal accessed via the a_mode
and a_index fields of this register. The VSP IPbus bridge gateway is directly mapped into the lower portion
of the debug IPbus memory map. This bit in no way applies to the architecture visibility portal.

0b - Access is executed as if it were from the host.

1b - Access is executed as if it were from VSP.

30-28

—

-

Reserved

27-24

a_mode

a_mode

Run control visibility - access mode.

These bits select between the VSP internal memories and the architectural registers.

Note that access to the RF registers, R0-R7 (a_mode = 6), are read-only. Also, they can only be read
successfully if the VSP engine is in the halted state. Reads while VSP is not halted return unpredictable
data.

Note also that program memory access modes (PRAM, IPPU PRAM) will only function properly when the
associated engine is halted or inactive. If accesses are attempted they may or may not be successful. This
is because the engines control their program memory unless they are halted or not running.

0000b - VSP architectural registers mode - registers selected via the a_index field.

0001b - VSP DMEM mode.

0010b - VSP IPPU DMEM mode.

0011b - VSP PRAM mode.

0100b - Reserved.

0101b - VSP IPPU PRAM mode.

0110b - VSP RF register mode (R0-R7).

0111b - VSP H register mode.

1000b - IPPU architectural registers mode - registers selected via the a_index field.

1001b - IPPU RF register mode (R0-R1).

1010b - Reserved.

23-19

—

-

Reserved

18-2

a_index

a_index

Run control visibility - access index.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 463 / 536

Table continued from the previous page...

Field Function

These bits provide the index to access the data object based on the mode selected in the a_mode field
(either architecture registers or one of the internal memories). Note that the two LSBs are always "0",
restricting access to full 32-bit words only. Refer to Table 100 for the index value definitions for VSP register
access. Refer to Table 101 for the index value definitions for IPPU register access.

Settings: Index value for a given data object, depending on mode selected by a_mode field.

1-0

—

-

Reserved

15.1.8 Debug VSP Architecture Visibility Fixed Data register (RAVFD)

Offset

Register Offset

RAVFD 874h

Function

This 32-bit read-write register is used for accessing VSP internal memory and architectural registers during halting debug mode,
providing visibility to the register/memory state of the machine. This register provides the data to/from the item to be read/written,
depending on the configuration of RAVAP register. Note that the architectural registers can only be read, whereas the internal
memories can be both read and written. Read/Write access to this register will NOT cause the RAVAP register to auto-increment.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
data

W

Reset 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
data

W

Reset 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

Fields

Field Function

31-0

data

data

Run Control Visibility - Fixed Addressing Mode Data Register.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 464 / 536

Field Function

Data to be written or read (depending on access type to this register) to the data object at address configured
by the RAVAP register.

Note accesses to this register will NOT cause the RAVAP to auto-increment.

Settings: Data to read/write, depending on configuration of RAVAP register.

15.1.9 Debug VSP Architecture Visibility Incrementing Data register (RAVID)

Offset

Register Offset

RAVID 878h

Function

This 32-bit read-write register is used for accessing VSP internal memory and architectural registers during halting debug mode,
providing visibility to the register/memory state of the machine. This register provides the data to/from the item to be read/written,
depending on the configuration of RAVAP register. Note that the architectural registers can only be read, whereas the internal
memories can be both read and written. Read/Write access to this register will cause the RAVAP register to auto-increment.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
data

W

Reset 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
data

W

Reset 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

Fields

Field Function

31-0

data

data

Run control visibility - Incrementing addressing mode data register.

Data to be written or read (depending on access type to this register) to the data object at address configured
by the RAVAP register.

Note accesses to this register will cause the RAVAP to auto-increment.

Settings: Data to read/write, depending on configuration of RAVAP register.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 465 / 536

15.1.10 Debug Verification register (DVR)

Offset

Register Offset

DVR 87Ch

Function

This 32-bit read-only register is used for verifying the connectivity of the VSP debug inputs. The bits in this register simply reflect
the value driven on the corresponding VSP debug block input pins.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
dbg_sy

n... Reserved
ctinn

W

Reset 0 u u u u u u u 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dbg_h

al...
dbg_re

s...
dbg_d
bg...

dbg_ni
d... Reserved Reserved

dbg_trig_out_ack_n

W

Reset 0 0 u u u u u u u u u u 0 0 0 0

Fields

Field Function

31

dbg_sync_req

dbg_sync_req

Verification - Value driven on debug sync request pin.

This bit reflects the value driven on the dbg_sync_req debug input pin for integration verification purposes.

0b - dbg_sync_req input driven low.

1b - dbg_sync_req input driven high.

30-24

—

-

Reserved

23-16

ctinn

ctinn

Verification - Value driven on cross-trigger in request input n pin where n is 7-0.

This bit reflects the value driven on the dbg_trig_in_req[n] input pin for integration verification purposes.

00000000b - dbg_trig_in_req[n] input driven low.

00000001b - dbg_trig_in_req[n] input driven high.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 466 / 536

Table continued from the previous page...

Field Function

15

dbg_halt_req

dbg_halt_req

Verification - Value driven on dbg_halt_req pin.

This bit reflects the value driven on the dbg_halt_req input pin for integration verification purposes.

0b - dbg_halt_req input driven low.

1b - dbg_halt_req input driven high.

14

dbg_resume_re
q

dbg_resume_req

Verification - Value driven on dbg_resume_req pin.

This bit reflects the value driven on the dbg_resume_req input pin for integration verification purposes.

0b - dbg_resume_req input driven low.

1b - dbg_resume_req input driven high.

13

dbg_dbgen

dbg_dbgen

Verification - Value driven on dbg_dbgen pin

This bit reflects the value driven on the dbg_dbgen input pin for integration verification purposes.

0b - dbg_dbgen input driven low.

1b - dbg_dbgen input driven high.

12

dbg_niden

dbg_niden

Verification - Value driven on dbg_niden pin

This bit reflects the value driven on the dbg_niden input pin for integration verification purposes.

0b - dbg_niden input driven low.

1b - dbg_niden input driven high.

11-8

—

-

Reserved

7-4

—

-

Reserved

3-0

dbg_trig_out_ac
k_n

dbg_trig_out_ack_n

Verification - Value driven on Cross-Trigger Out Ack input n pin where n is 3-0.

This bit reflects the value driven on the dbg_trig_out_ack[n] input pin for integration verification purposes.

0000b - dbg_trig_out_ack[n] input driven low.

0001b - dbg_trig_out_ack[n] input driven high.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 467 / 536

15.1.11 Debug Cross Trigger Out a Action Control registers (CTO0ACR - CTO3ACR)

Offset

Register Offset

CTO0ACR 880h

CTO1ACR 884h

CTO2ACR 888h

CTO3ACR 88Ch

Function

These 32-bit read-write registers configure which events enable the action of triggering cross-trigger out n, where n is 0 -3
(dbg_trig_out_req[n]) output. Note that when triggered on occurrence of the specific event(s) enabled in this register, the
dbg_trig_out_req[n] output will remain asserted until the corresponding acknowledge input (dbg_trig_out_ack[n]) is received. At
this point the cross-trigger will be negated (driven low).

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vcpu_
go

vcpu_d
o...

swb Reserved ctinm
W

Reset 0 0 0 u u u u u 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved cmpm

W

Reset u u u u u u u u 0 0 0 0 0 0 0 0

Fields

Field Function

31

vcpu_go

vcpu_go

Enable Cross-Trigger Out n triggered on a VCPU "Go" event

dbg_trig_out[n]triggered high on occurrence of a VCPU "Go" event.

Disabled when CTOnACR = 0x0000000.

0b - dbg_trig_out[n] NOT generated on occurrence of a VCPU "Go" event.

1b - dbg_trig_out[n] generated on occurrence of a VCPU "Go" event.

30

vcpu_done

vcpu_done

Enable Cross-Trigger Out n triggered on execution of a VCPU "Done" instruction

dbg_trig_out[n] triggered high on execution of a VCPU "Done" instruction.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 468 / 536

Table continued from the previous page...

Field Function

Disabled when CTOnACR = 0x0000000.

0b - dbg_trig_out[n] NOT generated on execution of a VCPU "Done" instruction.

1b - dbg_trig_out[n] generated on execution of a VCPU "Done" instruction.

29

swb

swb

Enable Cross-Trigger Out n triggered on Software Breakpoint event

dbg_trig_out[n] triggered high on occurrence of Software Breakpoint event.

Disabled when CTOnACR = 0x0000000.

0b - dbg_trig_out[n] NOT generated on occurrence of Software Breakpoint event.

1b - dbg_trig_out[n] generated on occurrence of Software Breakpoint event.

28-24

—

-

Reserved

23-16

ctinm

ctinm

Enable Cross-Trigger Out n triggered on occurrence of Cross-Trigger In m event where m is 7-0

dbg_trig_out[m] triggered high on occurrence of event dbg_trig_in_req[m].

Disabled when CTOnACR = 0x0000000.

00000000b - dbg_trig_out[n] NOT generated on occurrence of dbg_trig_in_req[m] event.

00000001b - dbg_trig_out[n] generated on occurrence of dbg_trig_in_req[m] event.

15-8

—

-

Reserved

7-0

cmpm

cmpm

Enable Cross-Trigger Out n triggered on occurrence of Comparator m match event where m is 7-0

dbg_trig_out[n] triggered high on occurrence of Comparator m match event.

Disabled when CTOnACR = 0x0000000.

00000000b - dbg_trig_out[n] NOT generated on occurrence of Comparator m match event.

00000001b - dbg_trig_out[n] generated on occurrence of Comparator m match event.

15.1.12 Debug Comparator Control and Status register (DC0CS - DC7CS)

Offset

For a = 0 to 7:

Register Offset

DCaCS 900h + (a × 14h)

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 469 / 536

Function

This 32-bit register is used to configure comparator n as well as provide status information on the state of the comparator
(triggered, armed, sequential trigger state, state of comparator output).

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

cmp_
evt Reserv

ed

seq_
evt

armed
trigger.

..

W W1C

Reset u u u u u u u u u u u 0 u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved pair_mode

Reserv
ed

i_sel
Reserv

ed
cond_sel

force_
a...

force_
d...

force_t
...

evt_en
W

Reset u u 0 0 u 0 0 0 u 0 0 0 0 0 0 0

Fields

Field Function

31-21

—

-

Reserved

20

cmp_evt

cmp_evt

Compare state status bit.

This read-only status bit indicates the current state of the comparator output signal cmp_evt.

0b - The comparator output signal cmp_evt is cleared.

1b - The comparator output signal cmp_evt is asserted.

19

—

-

Reserved

18

seq_evt

seq_evt

Comparator sequential trigger status bit.

This read-only status bit indicates the state of the sequential trigger bit in the comparator (seqtrig). The
seqtrig bit is set on occurrence of an event (comparator trigger, trig_in, SWB, VSP "Go", VSP "Done") and
the corresponding trigger enable bit is set to 1. The comparator can be triggered when either a Sequential
Trigger or comparator match is detected. Note that the comparator must also be armed and enabled to be
triggered.

0b - The comparator is not triggered.

1b - The comparator is triggered.

17

armed

armed

Comparator armed status bit.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 470 / 536

Table continued from the previous page...

Field Function

This read-only status bit indicates the ARMed state of the comparator. The comparator can only be armed
when either one or both of the following two conditions were met:

1) the force_arm bit in the corresponding Debug Comparator Control and Status Register (DCnCS) was
set

2) the corresponding bit in the ARM Action Control Register (CnAACR) is set, and the corresponding
activation event was active

0b - Comparator is not armed.

1b - Comparator is armed.

16

triggered

triggered

Comparator triggered status bit.

Anytime the comparator is triggered and the output signal cmp_evt is asserted high, this status bit is set to
one. This bit remains asserted (sticky 1) until a value of "1" is written (W1C - write 1 to clear). The triggered
bit is always readable.

0b - Comparator was not triggered since this bit was last cleared (or reset).

1b - Comparator was triggered one or more times since this bit was last cleared (or reset).

15-14

—

-

Reserved

13-12

pair_mode

pair_mode

Comparator pair mode configuration bits.

These bits are used to configure whether the comparator is to be used individually, or paired with an adjacent
comparator. If paired, the cmp_evt outputs are logically combined using either an "AND" or "OR" function.

Only certain sets of comparators can be paired:

The legal combinations are 0 and 1, 2 and 3, 4 and 5, 6 and 7.

The pair_mode bits of the even numbered comparators should always be set to 0. The desired pairing mode
should be programmed into the odd numbered comparator, and that comparator's output is the paired
output.

00b - comp_out is the condition selected by cond_sel field.

01b - comp_out is the condition selected by cond_sel field AND cmp_in selected by i_sel field.

10b - comp_out is the condition selected by cond_sel field OR cmp_in selected by i_sel field.

11b - Reserved.

11

—

-

Reserved

10-8

i_sel

i_sel

Comparator input select configuration bits.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 471 / 536

Table continued from the previous page...

Field Function

These bits are used to select the inputs (address bus) for in_data values.

Note - When the comparator is used to generate DTM trace messages, i_sel must be set to '001 - Select
VSP DMEM'.

000b - Select none (constant zero).

001b - Select VSP DMEM.

010b - Select IPPU DMEM.

011b - Select VSP PMEM.

100b - Select VSP Peripheral Bus -IPbus.

101b - Select IPPU PMEM.

110-111b - Reserved.

7

—

-

Reserved

6-4

cond_sel

cond_sel

Comparator condition selects configuration bits.

These bits are used to configure the condition under which a match occurs between the data_in (and
attributes) input and the comp_data field in the corresponding comparator data register.

000b - Select none (comparator off).

001b - data_in == data_reg.

010b - data_in != data_reg.

011b - data_in > data_reg.

100b - data_in >= data_reg.

101b - data_in < data_reg.

110b - data_in <= data_reg.

111b - Reserved.

3

force_arm

force_arm

Force comparator arm bit.

When the force Arm bit is set to one, the comparator ARMED register is asserted (driven to 1). This allows
the comparator to trigger on the next input event (cmp_evt_in, trig_in, and SWB).Note that the Event Enable
bit must also be set to one to enable the comparator.

0b - Do not force the ARMED register to one.

1b - Force the ARMED register to one.

2

force_disarm

force_disarm

Force comparator disarm bit.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 472 / 536

Table continued from the previous page...

Field Function

When the Force Disarm bit is set to one, the comparator ARMED register is negated (driven to 0). This
disables the comparator from triggering on any of the next input events (cmp_evt_in, trig_in, and SWB). If
both the Force Arm bit and Force Disarm bits are set at the same time, the ARMED register is cleared.

0b - Do NOT force the ARMED register to zero.

1b - Force the ARMED register to zero.

1

force_trig

force_trig

Force comparator trigger bit.

When the force trigger bit is set to one, the comparator output cmp_evt is asserted (driven to 1). The Event
Enable bit must also be set to one to enable the comparator. The state of all other control bits and input
signals are ignored.

0b - Do not force the comparator output signal cmp_evt.

1b - Assert (drive to 1) the comparator output signal cmp_evt.

0

evt_en

evt_en

Comparator event enable bit.

This is the main On/Off control of the comparator. When it is zero, the comparator is disabled and does not
generate a comparator event. Note that the comparator register is fully accessible for both read and write
regardless of the setting of this bit.

0b - Comparator is disabled. The comparator output cmp_evt is de-asserted and driven to 0.

1b - Comparator is enabled. A comparator event may be generated and output cmp_evt asserted
when conditions defined by this comparator are met.

15.1.13 Debug Comparator a Data register (DC0D - DC7D)

Offset

For a = 0 to 7:

Register Offset

DCaD 904h + (a × 14h)

Function

The comparator n (where n = 0-7) data registers each contain 17-bit data to be compared against the selected input data bus,
and enables for attribute bit values (bits 29-24).

The comparator is considered matched (and the output asserts) when all of the following conditions are met:

1. the selected input data (according to the Condition Select field of the DCnCS register) matches the comp_data field.

2. a) the selected input access is a read and the rd attribute bit is set OR

b) the selected input access is a write and the wr attribute bit is set

3. Any of the following a) - d) is true

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 473 / 536

a. The selected input is DMEM AND

there is a DMEM access from the FECU and the fecu attribute bit is set OR

there is a DMEM access from the IPPU and the IPPU attribute bit is set OR

there is a DMEM access from the VSP and the VSP attribute bit is set OR

there is a DMEM access from the DMA and the dma_host attribute bit is set

b. The selected input is IPPU DMEM AND

there is a DMEM access from the FECU and the fecu attribute bit is set OR

there is an IPPU DMEM access from the IPPU and the IPPU attribute bit is set OR

there is an IPPU DMEM access from the VSP and the VSP attribute bit is set OR

there is an IPPU DMEM access from the DMA and the dma_host attribute bit is set

c. The selected input is PMEM AND

there is a PMEM (PRAM) access from the VSP and the VSP attribute bit is set

d. The selected input is VSP Peripheral Bus AND

there is a VSP peripheral bus access from the VSP and the VSP attribute bit is set OR

there is a VSP peripheral bus access from the host and the dma_host attribute bit is set

Note that the comparator will never match unless at least one attribute from the set {rd, wr} is set, and at least one attribute from
the set {fecu, IPPU, VSP, dma_host}

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved wr rd fecu ippu vcpu

dma_
host

Reserved comp_data
W

Reset u u 0 0 0 0 0 0 u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
comp_data Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-30

—

-

Reserved

29

wr

wr

Write access attribute bit.

When the wr bit is set to one and there is a write transaction on the selected bus, the comparator is enabled
to match the input data with the compare data field.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 474 / 536

Table continued from the previous page...

Field Function

0b - Do NOT enable match when a write access occurs.

1b - Enable match when a write access occurs.

28

rd

rd

Read access attribute bit.

When the rd bit is set to one and there is a read transaction on the selected bus, the comparator is enabled
to match the input data with the compare data field.

0b - Do NOT enable match when a read access occurs.

1b - Enable match when a read access occurs.

27

fecu

fecu

FECU access attribute bit.

When the fecu bit is set to one and there is a FECU transaction on the selected bus, the comparator is
enabled to match the input data with the compare data field.

Note that this bit should only be set when DMEM or IPPU DMEM is being chosen by the i_sel bit field of
the comparator control/status register.

0b - Do not enable match when an FECU access occurs.

1b - Enable match when an FECU access occurs.

26

ippu

ippu

IPPU access attribute bit.

When the ippu bit is set to one and there is an IPPU transaction on the selected bus, the comparator is
enabled to match the input data with the compare data field.

Note that this bit should only be set when DMEM or IPPU DMEM is being chosen by the i_sel bit field of
the comparator control/status register.

0b - Do not enable match when an IPPU access occurs.

1b - Enable match when an IPPU access occurs.

25

vcpu

vcpu

VCPU access attribute bit.

When the vcpu bit is set to one and there is a VCPU engine transaction on the selected bus, the comparator
is enabled to match the input data with the compare data field.

0b - Do not enable match when a VCPU engine access occurs.

1b - Enable match when a VCPU engine access occurs.

24

dma_host

dma_host

DMA or host attribute bit.

When the dma_host bit is set to one and there is a DMA or host transaction on the selected bus, the
comparator is enabled to match the input data with the compare data field.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 475 / 536

Table continued from the previous page...

Field Function

Note that the meaning of this bit depends on what bus is being chosen by the i_sel bit field of the comparator
control/status register.

It matches a DMA access to DMEM or IPPU DMEM. It matches a host access to the VSP IP Bus.

0b - Do not enable match when a DMA or host access occurs.

1b - Enable match when a DMA or host access occurs.

23-19

—

-

Reserved

18-2

comp_data

comp_data

Compare data value.

The comp_data field contains 17-bit data to be compared against the selected input data bus. This field is
aligned so as to make the address appear to be a byte address if one thinks of the LSB of this field as being
bit 0 of the register.

17-bit compare data value.

1-0

—

-

Reserved

15.1.14 Debug Comparator a Arm Action Control registers (C0AACR - C7AACR)

Offset

For a = 0 to 7:

Register Offset

CaAACR 908h + (a × 14h)

Function

These 32-bit read-write registers configure which events enable the action of arming debug comparator n, where n is 0-7. Note
that once enabled, a comparator must then be armed before it can trigger (assert) upon match of a pre-programmed set of
attributes. The bits in this register enable which events are capable of arming debug comparator n. Refer to Debug module
comparator and sequencer for detailed information on the VSPA debug sequencer comparator resource.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 476 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vcpu_
go

vcpu_d
o...

swb Reserved ctinm
W

Reset 0 0 0 u u u u u 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved cmpm

W

Reset u u u u u u u u 0 0 0 0 0 0 0 0

Fields

Field Function

31

vcpu_go

vcpu_go

Enable arm of comparator n on a VCPU "Go" event

Select whether comparator n will be armed as a result of a VCPU "Go" event.

Note that comparator n must first be enabled prior to arming.

0b - Comparator n not armed on occurrence of a VCPU "Go" event.

1b - Comparator n armed on occurrence of a VCPU "Go" event.

30

vcpu_done

vcpu_done

Enable arm of comparator n on execution of a VCPU "Done" instruction

Select whether comparator n will be armed as a result of the execution of a VCPU "Done" instruction.

Note that comparator n must first be enabled prior to arming.

0b - Comparator n not armed on execution of a VCPU "Done" instruction.

1b - Comparator n armed on execution of a VCPU "Done" instruction.

29

swb

swb

Enable arm of comparator n on software breakpoint event

Select whether comparator n will be armed as a result of the execution of an instruction tagged with a SWB.

Note that comparator n must first be enabled prior to arming.

0b - Comparator n not armed on occurrence of Software Breakpoint event.

1b - Comparator n armed on occurrence of Software Breakpoint event.

28-24

—

-

Reserved

23-16

ctinm

ctinm

Enable arming of comparator n on occurrence of cross-trigger in m event where m is 7-0.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 477 / 536

Table continued from the previous page...

Field Function

Select whether comparator n will be armed as a result of the detection of a dbg_trig_in_req[m] event.

Note that comparator n must first be enabled prior to arming.

00000000b - Comparator n not armed on occurrence of dbg_trig_in_req[m] event.

00000001b - Comparator n armed on occurrence of dbg_trig_in_req[m] event.

15-8

—

-

Reserved

7-0

cmpm

cmpm

Enable arming of comparator n on occurrence of comparator m match event where m is 7-0

Select whether comparator n will be armed as a result of the detection of a comparator m match event.

Note that comparator n must first be enabled prior to arming.

00000000b - Comparator n not armed on occurrence of Comparator m match event.

00000001b - Comparator n armed on occurrence of Comparator m match event.

15.1.15 Debug Comparator a Disarm Action Control registers (C0DACR - C7DACR)

Offset

For a = 0 to 7:

Register Offset

CaDACR 90Ch + (a × 14h)

Function

These 32-bit read-write registers configure which events enable the action of disarming debug comparator n, where n is 0-7.
Note that a comparator must be enabled and armed for a disarm action to take effect. Once disarmed, a comparator cannot be
triggered (even if it's match criteria is met).The bits in this register enable which events are capable of disarming debug comparator
n. Refer to Debug module comparator and sequencer for detailed information on the VSPA debug Sequencer Comparator
resource.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 478 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vcpu_
go

vcpu_d
o...

swb Reserved ctinm
W

Reset 0 0 0 u u u u u 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved cmpm

W

Reset u u u u u u u u 0 0 0 0 0 0 0 0

Fields

Field Function

31

vcpu_go

vcpu_go

Enable Disarm of Comparator n on a VCPU "Go" event

Select whether comparator n will be disarmed as a result of a VCPU "Go" event.

0b - Comparator n not disarmed on occurrence of a VCPU "Go" event.

1b - Comparator n disarmed on occurrence of a VCPU "Go" event.

30

vcpu_done

vcpu_done

Enable Disarm of Comparator n on execution of a VCPU "Done" instruction

Select whether comparator n will be disarmed as a result of the execution of a VCPU "Done" instruction.

0b - Comparator n not disarmed on execution of a VCPU "Done" instruction.

1b - Comparator n disarmed on execution of a VCPU "Done" instruction.

29

swb

swb

Enable Disarm of Comparator n on Software Breakpoint event

Select whether comparator n will be disarmed as a result of the execution of an instruction tagged with a
SWB.

0b - Comparator n not disarmed on occurrence of Software Breakpoint event.

1b - Comparator n disarmed on occurrence of Software Breakpoint event.

28-24

—

-

Reserved

23-16

ctinm

ctinm

Enable disarming of comparator n on occurrence of cross-trigger in m event where m is 8-0

Select whether comparator n will be disarmed as a result of the detection of a dbg_trig_in_req[m] event.

00000000b - Comparator n not disarmed on occurrence of dbg_trig_in_req[m] event.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 479 / 536

Table continued from the previous page...

Field Function

00000001b - Comparator n disarmed on occurrence of dbg_trig_in_req[m] event.

15-8

—

-

Reserved

7-0

cmpm

cmpm

Enable disarming of comparator n on occurrence of comparator m match event where m is 7-0

Select whether comparator n will be disarmed as a result of the detection of a Comparator m match event.

00000000b - Comparator n not disarmed on occurrence of Comparator m match event.

00000001b - Comparator n disarmed on occurrence of Comparator m match event.

15.1.16 Debug Comparator a Trigger Action Control registers (C0TACR - C7TACR)

Offset

For a = 0 to 7:

Register Offset

CaTACR 910h + (a × 14h)

Function

These 32-bit read-write registers configure which events enable the action of triggering debug comparator n, where n is 0-7. Note
that once enabled, a comparator must then be armed before it can trigger (assert) upon match of a pre-programmed set of
attributes and/or on occurrence of other debug events. The bits in this register enable which events are capable of triggering
debug comparator n. Refer to Debug module comparator and sequencer for detailed information on the VSPA debug Sequencer
Comparator resource.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R vcpu_
go

vcpu_d
o...

swb Reserved ctinm
W

Reset 0 0 0 u u u u u 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved cmpm

W

Reset u u u u u u u u 0 0 0 0 0 0 0 0

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 480 / 536

Fields

Field Function

31

vcpu_go

vcpu_go

Enable Trigger of Comparator n on a VCPU "Go" event

Select whether comparator n will be triggered as a result of a VCPU "Go" event.

0b - Comparator n not triggered on occurrence of a VCPU "Go" event.

1b - Comparator n triggered on occurrence of a VCPU "Go" event.

30

vcpu_done

vcpu_done

Enable Trigger of Comparator n on execution of a VCPU "Done" instruction

Select whether comparator n will be triggered as a result of the execution of a VCPU "Done" instruction.

0b - Comparator n not triggered on execution of a VCPU "Done" instruction.

1b - Comparator n triggered on execution of a VCPU "Done" instruction.

29

swb

swb

Enable Trigger of Comparator n on Software Breakpoint event

Select whether comparator n will be triggered as a result of the execution of an instruction tagged with a
SWB.

0b - Comparator n not triggered on occurrence of Software Breakpoint event.

1b - Comparator n triggered on occurrence of Software Breakpoint event.

28-24

—

-

Reserved

23-16

ctinm

ctinm

Enable triggering of comparator n on occurrence of cross-trigger in m event where m is 7-0

Select whether comparator n will be triggered as a result of the detection of a dbg_trig_in_req[m] event.

00000000b - Comparator n not triggered on occurrence of dbg_trig_in_req[m] event.

00000001b - Comparator n triggered on occurrence of dbg_trig_in_req[m] event.

15-8

—

-

Reserved

7-0

cmpm

cmpm

Enable triggering of comparator n on occurrence of comparator m match event where m is 7-0

Select whether comparator n will be triggered as a result of the detection of a Comparator m match event.

00000000b - Comparator n not triggered on occurrence of Comparator m match event.

00000001b - Comparator n triggered on occurrence of Comparator m match event.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 481 / 536

15.1.17 Debug to VSP 32-bit Outbox register (OUT_32)

Offset

Register Offset

OUT_32 E20h

Function

This register can be used by the debug unit to send a 32-bit message to VSP. Writes to this register cause a 32-bit message to
be forwarded to VSP.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W debug_outbox32

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W debug_outbox32

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

debug_outbox3
2

debug_outbox32

Debug to VSP 32-bit Outbox

Writes cause the value written to be sent to VSP.

This register is write only - reads always return 0's.

Data value to be sent to VSP inbox.

15.1.18 Debug to VSP 64-bit MSB Outbox register (OUT_64_MSB)

Offset

Register Offset

OUT_64_MSB E24h

Function

This register is part of the interface used by the debug unit to generate a 64-bit mail message directed to VSP's 64-bit inbox.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 482 / 536

Note that writing this register is not required to send the 64-bit mail message. The mail message will be sent following a write to
the DBG_OUT_64_LSB register.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W debug_outbox64msb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W debug_outbox64msb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

debug_outbox6
4msb

debug_outbox64msb

Debug 64-bit output data (MSB)

Writes update the 32 MSBs of a pending 64-bit message that will be sent to the VSP's 64-bit inbox.

The mail message will be sent in its entirety only after a write to the DBG_OUT_64_LSB register.

Note that this register does not have to be updated for each 64-bit mail message - if it is not updated, the
last value written will be reused when the mail message is sent.

This register is write only - reads always return 0's.

Settings: MSB 32-bit data value to be sent to VSP's 64-bit inbox.

15.1.19 Debug to VSP 64-bit LSB Outbox register (OUT_64_LSB)

Offset

Register Offset

OUT_64_LSB E28h

Function

This register is part of the interface used by the debug unit to generate a 64-bit mail message directed to VSP's 64-bit inbox.

Note that writing to this register alone will trigger the delivery of the 64-bit mail message to VSP. The mail message will contain
32 MSBs from the DBG_OUT_64_MSB register plus all 32 bits from this register.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 483 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W debug_outbox64lsb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W debug_outbox64lsb

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

debug_outbox6
4lsb

debug_outbox64lsb

Debug 64-bit output data (LSB)

Writes cause the immediate delivery of a 64-bit mail message to the VSP 64-bit mail inbox. The 32 LSBs
of the message come from the data written to this register; the 32 MSBs come for the value contained in
the DBG_OUT_64_MSB register.

This register is write only - reads always return 0's.

Settings: LSB 32-bit data value to be sent to VSP's 64-bit inbox.

15.1.20 VSP to Debugger 32-bit Inbox register (IN_32)

Offset

Register Offset

IN_32 E2Ch

Function

This register is the Debug unit incoming mailbox for 32-bit messages from VSP. It can be used by the debug unit to read a 32-
bit message from the VSP. The validity of the data in this register should be checked before it is read. The state of the 32-
bit_msg_in_valid flag in the Debug-VSP Mailbox Status register conveys validity information.

Reads of this register will automatically clear both the 32-bit_msg_in_valid flag in the Debug-VSP Mailbox Status register (on the
debug IP bus) and the 32-bit_msg_out_valid flag in the VSP-Debug Mailbox Status register (on the VSP IP bus).

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 484 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R debug_inbox32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R debug_inbox32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

debug_inbox32

debug_inbox32

VSP to Debugger 32-bit Inbox

Reads the 32-bit mail message sent by VSP.

This register is read only - writes have no effect.

Settings: Reads 32-bit data value sent by VSP outbox.

15.1.21 VSP to Debugger 64-bit MSB Inbox register (IN_64_MSB)

Offset

Register Offset

IN_64_MSB E30h

Function

This register is part of the Debug unit incoming mailbox for 64-bit messages from VSP. It can be used by the debugger to read
the 32 MSBs of a 64-bit message from VSP. The validity of the data in this register should be checked before it is read. The state
of the 64-bit_msg_in_valid flag in the Debug-VSP Mailbox Status register conveys validity information.

Reads of this register do not affect the 64-bit_msg_in_valid flag in the Debug-VSP Mailbox Status register or the 64-
bit_msg_out_valid flag in the VSP-Debug Mailbox Status register on the VSP IP bus. Those flags are cleared by reads of the
VSP to Debug 64-bit LSB Inbox Register.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 485 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R debug_inbox64msb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R debug_inbox64msb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

debug_inbox64
msb

debug_inbox64msb

Debug 64-bit input data (MSB)

Reads the 32 MSBs of the 64-bit mail message sent by VSP.

This register is read only - writes have no effect.

Settings: Reads return 32 MSBs of the 64-bit data value sent via VSP's 64-bit outbox.

15.1.22 VSP to Debugger 64-bit LSB Inbox register (IN_64_LSB)

Offset

Register Offset

IN_64_LSB E34h

Function

This register is part of the Debug unit incoming mailbox for 64-bit messages from VSP. It can be used by the debug unit to read
the 32 LSBs of a 64-bit message from VSP. The validity of the data in this register should be checked before it is read. The state
of the 64-bit_msg_in_valid flag in the Debug-VSP Mailbox Status register conveys validity information.

Reads of this register will automatically clear the 64-bit_msg_in_valid flag in the Debug-VSP Mailbox Status register and the 64-
bit_msg_out_valid flag in the VSP-Debug Mailbox Status register on the VSP IP bus.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 486 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R debug_inbox64lsb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R debug_inbox64lsb

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

debug_inbox64l
sb

debug_inbox64lsb

Debug 64-bit input data (LSB)

Reads the 32 LSBs of the 64-bit mail message sent by VSP.

This register is read only - writes have no effect.

Settings: Reads return 32 LSBs of the 64-bit data value sent via VSP's 64-bit outbox.

15.1.23 Debugger to VSP Mailbox Status register (MBOX_STATUS)

Offset

Register Offset

MBOX_STATUS E38h

Function

This register is used to determine the status of messages sent and received by the Debug unit to and from VSP. There are four
status flags, one each for the 32 and 64-bit outgoing mailboxes and the 32 and 64-bit incoming mailboxes.

These flags are set and cleared automatically by hardware - reads and writes of this register do not affect the status flags.
However, reads and writes of the mailbox data registers do control the state of the status flags.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 487 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

msg_in
_...

msg_in
_...

msg_o
ut...

msg_o
ut...

W

Reset u u u u u u u u u u u u 0 0 0 0

Fields

Field Function

31-4

—

-

Reserved

3

msg_in_valid_6
4bit

msg_in_valid_64bit

64-bit message inbox valid

Shows the validity/invalidity of the data in the Debug 64-bit message inbox registers (VSP to Debugger 64-
bit MSB Inbox register and VSP to Debugger 64-bit LSB Inbox register).

0b - Data in the 64-bit inbox registers is NOT valid.

1b - Data in the 64-bit inbox registers is valid.

2

msg_in_valid_3
2bit

msg_in_valid_32bit

32-bit message inbox valid

Shows the validity/invalidity of the data in the debugger 32-bit message inbox register (VSP to Debugger
32-bit Inbox register).

0b - Data in the 32-bit inbox register is NOT valid.

1b - Data in the 32-bit inbox register is valid.

1

msg_out_valid_
64bit

msg_out_valid_64bit

64-bit message outbox valid

Shows whether a pending (unread by the debugger) message is in the debug 64-bit message outbox
registers (Debugger to VSP 64-bit MSB outbox register and Debugger to VSP 64-bit LSB Outbox register).

0b - No unread data is in the 64-bit outbox registers.

1b - Data in the 64-bit outbox registers has not yet been read by VSP.

0

msg_out_valid_
32bit

msg_out_valid_32bit

32-bit message outbox valid

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 488 / 536

Table continued from the previous page...

Field Function

Shows whether a pending (unread by the debugger) message is in the Debug 32-bit message outbox
register (Debugger to VSP 32-bit Outbox register).

0b - No unread data is in the 32-bit outbox register.

1b - Data in the 32-bit outbox register has not yet been read by VSP.

15.1.24 Debug Parameter 0 Register (PARAM_0)

Offset

Register Offset

PARAM_0 F00h

Function
Debug Parameter 0 Register

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

xtrig_out_count xtrig_in_count num_comps

W

Reset u u u u 0 1 0 0 1 0 0 0 1 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DBG_FIFO_SIZE Reserv
ed

ATID_VALUE

W

Reset 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0

Fields

Field Function

31-28

—

-

Reserved

27-24

xtrig_out_count

xtrig_out_count

Cross trigger output count.

These status bits indicate the number of cross trigger outputs supported by this instance of VSPA.

Settings: Reads return the number of cross trigger outputs supported by this instance of VSPA. Writes have
no affect.

Table continues on the next page...

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 489 / 536

Table continued from the previous page...

Field Function

23-20

xtrig_in_count

xtrig_in_count

Cross trigger input count.

These status bits indicate the number of cross trigger inputs supported by this instance of VSPA.

Settings: Reads return the number of cross trigger inputs supported by this instance of VSPA. Writes have
no affect.

19-16

num_comps

num_comps

Number of debug comparators (comparator count).

Debug comparator count.These status bits indicate the number of debug comparators supported by this
instance of VSPA.

Settings: Reads return the number of debug comparators supported by this instance of VSPA. Writes have
no affect.

15-8

DBG_FIFO_SIZ
E

DBG_FIFO_SIZE

Number of entries in the Debug FIFO (debug FIFO size).

These status bits indicate the number of entries in the debug FIFO in this instance of VSPA.

Settings: Reads return the Number of entries in the Debug FIFO in this instance of VSPA. Writes have no
affect.

00000000b - 0 entries

00000101b - 32 entries

00000110b - 64 entries

11111111b - Illegal

7

—

-

Reserved

6-0

ATID_VALUE

ATID_VALUE

These status bits indicate the value this VSPA places on the ATID lines when a trace message is sent on
the ATB.

Settings: Reads return the value this VSPA places on the ATID lines when a trace message is sent on the
ATB. Writes have no affect.

15.1.25 Peripheral ID4 register (PIDR4)

Offset

Register Offset

PIDR4 FD0h

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 490 / 536

Function

Peripheral ID4 register is part of a group of peripheral identification registers which uniquely identify the component. The peripheral
ID registers can be read by a debugger and used to identify the component to gain access to the components programmer's
model and capabilities. Refer to the CoreSight Architecture Specification or ARM Debug Interface v5 Architecture Specification
for details.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R raz size des_2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-8

raz

raz

Reads As Zero

7-4

size

size

4KByte Count Value

Indicates the contiguous size of the memory window used by the component in powers of 2 from the
standard 4KB (0x0=4KB, 0x1=8KB, 0x2=16KB, 0x3=32KB, and so on)

VSP 4KByte Count = 0x0 = 4KB

3-0

des_2

des_2

JEP106 Continuation Code

DES_2, DES_1, DES_0 indicates the designer of the component.

DES_2 is the JTAG106 Continuation Code (for NXP, DES_2=0x0)

15.1.26 Peripheral ID5 register (PIDR5)

Offset

Register Offset

PIDR5 FD4h

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 491 / 536

Function

Peripheral ID5 register is part of a group of peripheral identification registers which uniquely identify the component. The peripheral
ID registers can be read by a debugger and used to identify the component to gain access to the components programmer's
model and capabilities. Refer to the CoreSight Architecture Specification or ARM Debug Interface v5 Architecture Specification
for details.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

raz

raz

Reads As Zero

15.1.27 Peripheral ID6 register (PIDR6)

Offset

Register Offset

PIDR6 FD8h

Function

Peripheral ID6 register is part of a group of peripheral identification registers which uniquely identify the component. The peripheral
ID registers can be read by a debugger and used to identify the component to gain access to the components programmer's
model and capabilities. Refer to the CoreSight Architecture Specification or ARM Debug Interface v5 Architecture Specification
for details.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 492 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

raz

raz

Reads As Zero

15.1.28 Peripheral ID7 register (PIDR7)

Offset

Register Offset

PIDR7 FDCh

Function

Peripheral ID7 register is part of a group of peripheral identification registers which uniquely identify the component. The peripheral
ID registers can be read by a debugger and used to identify the component to gain access to the components programmer's
model and capabilities. Refer to the CoreSight Architecture Specification or ARM Debug Interface v5 Architecture Specification
for details.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 493 / 536

Fields

Field Function

31-0

raz

raz

Reads As Zero

15.1.29 Peripheral ID0 register (PIDR0)

Offset

Register Offset

PIDR0 FE0h

Function

Peripheral ID0 register is part of a group of peripheral identification registers which uniquely identify the component. The peripheral
ID registers can be read by a debugger and used to identify the component to gain access to the components programmer's
model and capabilities. Refer to the CoreSight Architecture Specification or ARM Debug Interface v5 Architecture Specification
for details.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R raz part_0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-8

raz

raz

Reads As Zero

7-0

part_0

part_0

Part Number bits[7:0]

{PART_1, PART_0} = PART[11:0] - indicates the component part number selected by the designer.

PART[11:0] = 0x000 indicates a VSP.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 494 / 536

15.1.30 Peripheral ID1 register (PIDR1)

Offset

Register Offset

PIDR1 FE4h

Function

Peripheral ID1 register is part of a group of peripheral identification registers which uniquely identify the component. The peripheral
ID registers can be read by a debugger and used to identify the component to gain access to the components programmer's
model and capabilities. Refer to the CoreSight Architecture Specification or ARM Debug Interface v5 Architecture Specification
for details.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R raz des_0 part_1

W

Reset 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

Fields

Field Function

31-8

raz

raz

Reads As Zero

7-4

des_0

des_0

JEP106 Identification Code bits[3:0]

The concatenated {DES_2, DES_1, DES_0} indicates the designer of the component.

DES_0 are the upper bits of the JEP106 identification code (for NXP, DES_0=0xE)

3-0

part_1

part_1

Part Number bits[11:8]

{PART_1, PART_0} = PART[11:0] - indicates the component part number selected by the designer.

PART[11:0] == 0x0 indicates a VSP.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 495 / 536

15.1.31 Peripheral ID2 register (PIDR2)

Offset

Register Offset

PIDR2 FE8h

Function

Peripheral ID2 register is part of a group of peripheral identification registers which uniquely identify the component. The peripheral
ID registers can be read by a debugger and used to identify the component to gain access to the components programmer's
model and capabilities. Refer to the CoreSight Architecture Specification or ARM Debug Interface v5 Architecture Specification
for details.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R raz revision jedec des_1

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0

Fields

Field Function

31-8

raz

raz

Reads As Zero

7-4

revision

revision

Revision

The revision is hard-coded to 4'b1111 which should be ignored.

Refer to the VSP HWVERSION register for the VSP version details.

3

jedec

jedec

Indicates a JEDEC assigned values are used (always 1'b1).

2-0

des_1

des_1

JEP106 Identification Code bits[6:4]

The concatenated {DES_2, DES_1, DES_0} indicates the designer of the component.

DES_1 are the upper bits of the JEP106 identification code (for NXP, DES_1=0x0)

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 496 / 536

15.1.32 Peripheral ID3 register (PIDR3)

Offset

Register Offset

PIDR3 FECh

Function

Peripheral ID3 register is part of a group of peripheral identification registers which uniquely identify the component. The peripheral
ID registers can be read by a debugger and used to identify the component to gain access to the components programmer's
model and capabilities. Refer to the CoreSight Architecture Specification or ARM Debug Interface v5 Architecture Specification
for details.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R raz revand cmod

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

Fields

Field Function

31-8

raz

raz

Reads As Zero

7-4

revand

revand

RevAnd

The minor revision is hard-coded to 4'b1111 which should be ignored.

Refer to the VSP HWVERSION register for the VSP version details.

3-0

cmod

cmod

Customer Modified

Currently hard-coded to 4'b0000.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 497 / 536

15.1.33 Component ID0 register (CIDR0)

Offset

Register Offset

CIDR0 FF0h

Function

Component ID0 register is part of a group of component identification registers which identify the component class. The
component class can be read by a debugger and used to identify the type of component. Refer to the CoreSight Architecture
Specification or ARM Debug Interface v5 Architecture Specification for details.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R raz prmbl_0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

Fields

Field Function

31-8

raz

raz

Reads As Zero

7-0

prmbl_0

prmbl_0

Preamble

Hard-coded to 0x0D

15.1.34 Component ID1 register (CIDR1)

Offset

Register Offset

CIDR1 FF4h

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 498 / 536

Function

Component ID1 register is part of a group of component identification registers which identify the component class. The
component class can be read by a debugger and used to identify the type of component. Refer to the CoreSight Architecture
Specification or ARM Debug Interface v5 Architecture Specification for details.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R raz class prmbl_1

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

Fields

Field Function

31-8

raz

raz

Reads As Zero

7-4

class

class

Component Class

Hard-coded to 0xF

(indicates a CoreLink, PrimeCell, or System component with no standardized register layout)

3-0

prmbl_1

prmbl_1

Preamble

Hard-coded to 0x0

15.1.35 Component ID2 register (CIDR2)

Offset

Register Offset

CIDR2 FF8h

Function

Component ID2 register is part of a group of component identification registers which identify the component class. The
component class can be read by a debugger and used to identify the type of component. Refer to the CoreSight Architecture
Specification or ARM Debug Interface v5 Architecture Specification for details.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 499 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R raz prmbl_2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Fields

Field Function

31-8

raz

raz

Reads As Zero

7-0

prmbl_2

prmbl_2

Preamble

Hard-coded to 0x05

15.1.36 Component ID3 register (CIDR3)

Offset

Register Offset

CIDR3 FFCh

Function

Component ID3 register is part of a group of component identification registers which identify the component class. The
component class can be read by a debugger and used to identify the type of component. Refer to the CoreSight Architecture
Specification or ARM Debug Interface v5 Architecture Specification for details.

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 500 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R raz

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R raz prmbl_3

W

Reset 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1

Fields

Field Function

31-8

raz

raz

Reads As Zero

7-0

prmbl_3

prmbl_3

Preamble

Hard-coded to 0xB1

NXP Semiconductors

Debug registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 501 / 536

Chapter 16
FECU IP Registers
16.1 FECU IP Registers
FECU registers are a part of the VSPA memory map and reside in the address space starting at 0x300 and ending at 0x384.
See chapter VSPA IP Registers for VSPA memory map and register definition.

All FECU registers are slow read registers. See Slow read registers for a description of their read behavior.

16.2 FECU register descriptions

16.2.1 FECU memory map
FECU base address: 100_0000h

Offset Register Width

(In bits)

Access Reset value

300h FECU Configuration register (FECU_CONFIG) 32 RW See
description

304h FECU Symbol size register (FECU_SIZES) 32 RW 0000_0000h

308h FECU Number of padding bits register (FECU_NUM_PAD) 32 RW See
description

30Ch FECU Binary Convolutional Code (BCC) puncture mask register
(FECU_BCC_PUNC_MASK)

32 RW 0000_0003h

310h FECU Binary Convolutional Code (BCC) configuration register
(FECU_BCC_CONFIG)

32 RW See
description

314h FECU LDPC configuration register (FECU_LDPC_CONFIG) 32 RW See
description

318h FECU LDPC repeat, parity, and shortening sizes register
(FECU_LDPC_SIZES)

32 RW See
description

31Ch FECU LDPC blocks with an extra shortening bit register
(FECU_LDPC_EXTRA_SHORT)

32 RW 0000_0000h

320h FECU LDPC blocks with an extra puncturing or repetition bit register
(FECU_LDPC_EXTRA_REP)

32 RW 0000_0000h

324h FECU Bypass register (FECU_BYPASS) 32 RW See
description

328h FECU Scrambler / De-scrambler configuration register
(FECU_SC_CONFIG)

32 RW See
description

32Ch FECU DMEM Read count register (FECU_DMEM_READ_COUNT) 32 RW See
description

330h FECU DMEM Source address register (FECU_DMEM_SRC_ADR) 32 RW See
description

Table continues on the next page...

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 502 / 536

Table continued from the previous page...

Offset Register Width

(In bits)

Access Reset value

334h FECU DMEM Destination address register
(FECU_DMEM_DST_ADR)

32 RW See
description

338h FECU DMEM 2nd address register (FECU_DMEM_2ND_ADR) 32 RW See
description

33Ch FECU DMEM 3rd address register (FECU_DMEM_3RD_ADR) 32 RW See
description

340h FECU DMEM 4th address register (FECU_DMEM_4TH_ADR) 32 RW See
description

344h FECU DMEM 5th address register (FECU_DMEM_5TH_ADR) 32 RW See
description

348h FECU DMEM 6th address register (FECU_DMEM_6TH_ADR) 32 RW See
description

34Ch FECU DMEM 7th address register (FECU_DMEM_7TH_ADR) 32 RW See
description

350h FECU DMEM 8th address register (FECU_DMEM_8TH_ADR) 32 RW See
description

354h FECU Save and restore configuration register
(FECU_SAVE_RESTORE)

32 RW See
description

358h FECU Control register (FECU_CONTROL) 32 RW See
description

364h FECU Status register (FECU_STATUS) 32 W1C See
description

368h FECU DMEM Write count register (FECU_DMEM_WRITE_COUNT) 32 RO See
description

36Ch FECU LDPC encoder block sizes register
(FECU_LDPC_ENC_BLOCK)

32 RO See
description

370h FECU LDPC encoder status register (FECU_LDPC_ENC_STATUS) 32 RO See
description

374h FECU LDPC decoder block sizes and counts register
(FECU_LDPC_DEC_BLOCK)

32 RO 0000_0000h

378h FECU LDPC decoder status register (FECU_LDPC_DEC_STATUS) 32 W1C See
description

380h FECU Hardware parameters / capabilities of FECU
(FECU_HW_PARAMS)

32 RO See
description

384h FECU Hardware parameters / capabilities of the LDPC encoder and
decoder in FECU (FECU_LDPC_HW_PARAMS)

32 RO 0101_1B00h

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 503 / 536

16.2.2 FECU Configuration register (FECU_CONFIG)

Offset

Register Offset

FECU_CONFIG 300h

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved num_bcc_encoders

W

Reset u u u u u u u u u u u u 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

num_stream channel_type
Reserv

ed
coded_bits_per_scs

fecu_s
w...

use_
ldpc

fecu_e
n...W

clear_
p...

Reset 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0

Fields

Field Function

31-20

—

-

Reserved

19-16

num_bcc_enco
ders

num_bcc_encoders

The number of BCC encoders or decoders used. Must be <= max_num_bcc_encoders.

15-12

num_stream

num_stream

The number of spatial streams. Must be <= max_num_streams.

11-8

channel_type

channel_type

The RF bandwidth of the channel.

0000b - 20MHZ_11a

0001b - 20MHZ__11ac

0010b - 40MHZ_11ac

0011b - 80MHZ_11ac

1000b - RU26_11ax

1001b - RU52_11ax

1010b - RU106_11ax

Table continues on the next page...

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 504 / 536

Table continued from the previous page...

Field Function

1011b - RU242_11ax

1100b - RU484_11ax

1101b - RU996_11ax

7

—

-

Reserved

6-4

coded_bits_per
_scs

coded_bits_per_scs

The number of bits per sub-carrier per symbol. Also, the number of bits in a constellation point.

000b - BPSK

001b - QPSK

010b - 16 QAM

011b - 64 QAM

100b - 256 QAM

3

fecu_sw_reset

fecu_sw_reset

When high the FECU block is held in reset, and all pending commands are cleared. In order to reset
FECU, this bit must remain high for 20 clock cycles.

2

clear_pending

clear_pending

Writing a one to this bit will clear all pending operations in the command FIFO. This bit always reads as
0.

1

use_ldpc

use_ldpc

0b - Use BCC (convolutional / Viterbi)

1b - Use LDPC encoding / decoding

0

fecu_encode

fecu_encode

0b - FECU is decoding

1b - FECU is encoding

16.2.3 FECU Symbol size register (FECU_SIZES)

Offset

Register Offset

FECU_SIZES 304h

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 505 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
coded_bits_per_symbol

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
data_bits_per_symbol

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

coded_bits_per
_symbol

coded_bits_per_symbol

The number of bits per symbol after the size is increased by encoding.

Only used for LDPC encoding.

Specifies the maximum number of bits the LDPC encoder will output.

15-0

data_bits_per_s
ymbol

data_bits_per_symbol

The number of bits per symbol before the size is increased by encoding.

16.2.4 FECU Number of padding bits register (FECU_NUM_PAD)

Offset

Register Offset

FECU_NUM_PAD 308h

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
num_pad_bits

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 506 / 536

Fields

Field Function

31-16

—

-

15-0

num_pad_bits

num_pad_bits

The number of bits after the tail bits.

This value is ignored unless final_symbol is set.

Only used for BCC.

16.2.5 FECU Binary Convolutional Code (BCC) puncture mask register
(FECU_BCC_PUNC_MASK)

Offset

Register Offset

FECU_BCC_PUNC_MA
SK

30Ch

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
punc_mask

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
punc_mask

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Fields

Field Function

31-0

punc_mask

punc_mask

The puncture mask used for BCC encoding and decoding.

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 507 / 536

16.2.6 FECU Binary Convolutional Code (BCC) configuration register (FECU_BCC_CONFIG)

Offset

Register Offset

FECU_BCC_CONFIG 310h

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved encoder_end_state Reserved encoder_start_state

W

Reset u u 0 0 0 0 0 0 u u 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved punc_length

W

Reset u u u u u u u u u u u 0 0 0 1 0

Fields

Field Function

31-30

—

-

Reserved

29-24

encoder_end_st
ate

encoder_end_state

The ending state of the BCC encoder.

Used for both encoding and decoding.

23-22

—

-

Reserved

21-16

encoder_start_s
tate

encoder_start_state

The starting state of the BCC encoder.

Used for both encoding and decoding.

15-5

—

-

Reserved

4-0

punc_length

punc_length

The length of the valid bits in punc_mask.

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 508 / 536

16.2.7 FECU LDPC configuration register (FECU_LDPC_CONFIG)

Offset

Register Offset

FECU_LDPC_CONFIG 314h

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved ldpc_max_iterations

W

Reset u u u u u u u u 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

ldpc_coding_rat
e

Reserved
ldpc_block_leng

...
Reserved

ldpc_re
...W

Reset u u u u u u 0 0 u u 0 0 u u u 0

Fields

Field Function

31-24

—

-

Reserved

23-16

ldpc_max_iterat
ions

ldpc_max_iterations

The maximum number of LDPC decoder iterations allowed before a decoder failure is declared.

Setting this to 0 will allow 256 iterations.

15-10

—

-

Reserved

9-8

ldpc_coding_rat
e

ldpc_coding_rate

Specifies the coding rate used for LDPC.

00b - 1/2

01b - 2/3

10b - 3/4

11b - 5/6

7-6

—

-

Reserved

5-4 ldpc_block_length

Table continues on the next page...

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 509 / 536

Table continued from the previous page...

Field Function

ldpc_block_leng
th

Specifies the length of the LDPC codeword.

00b - 648

01b - 1296

10b - 1944

11b - Reserved

3-1

—

-

Reserved

0

ldpc_repeat

ldpc_repeat

Used for both encoding and decoding.

0b - Use puncturing

1b - Use repetition when processing LDPC blocks

16.2.8 FECU LDPC repeat, parity, and shortening sizes register (FECU_LDPC_SIZES)

Offset

Register Offset

FECU_LDPC_SIZES 318h

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ldpc_num_rep_bits

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ldpc_num_short_bits

W

Reset u u u u u 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-16 ldpc_num_rep_bits

The number of bits to be repeated or punctured per block, based on the ldpc_repeat bit.

Table continues on the next page...

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 510 / 536

Table continued from the previous page...

Field Function

ldpc_num_rep_
bits

15-11

—

-

Reserved

10-0

ldpc_num_short
_bits

ldpc_num_short_bits

The number of shortening bits to add before encoding, or remove after decoding per block.

16.2.9 FECU LDPC blocks with an extra shortening bit register (FECU_LDPC_EXTRA_SHORT)

Offset

Register Offset

FECU_LDPC_EXTRA_S
HORT

31Ch

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ldpc_extra_short

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ldpc_extra_short

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

ldpc_extra_shor
t

ldpc_extra_short

The number of LDPC blocks that have 1 extra shortening bit.

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 511 / 536

16.2.10 FECU LDPC blocks with an extra puncturing or repetition bit register
(FECU_LDPC_EXTRA_REP)

Offset

Register Offset

FECU_LDPC_EXTRA_R
EP

320h

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ldpc_extra_rep

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ldpc_extra_rep

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-0

ldpc_extra_rep

ldpc_extra_rep

The number of LDPC blocks that have 1 extra puncture or repeat bit.

16.2.11 FECU Bypass register (FECU_BYPASS)

Offset

Register Offset

FECU_BYPASS 324h

Function

Control bits used to skip some of the FECU operations.

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 512 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

ld_byp
a...

le_byp
a...

sc_byp
a...

ce_byp
a...

vd_byp
a...

int_byp
...W

Reset u u u u u u u u u u 0 0 0 0 0 0

Fields

Field Function

31-6

—

-

Reserved

5

ld_bypass

ld_bypass

When high, the LDPC decoder is bypassed.

4

le_bypass

le_bypass

When high, the LDPC encoder is bypassed.

3

sc_bypass

sc_bypass

When high, the scrambler is bypassed.

2

ce_bypass

ce_bypass

When high, the convolutional encoder is bypassed.

1

vd_bypass

vd_bypass

When high, the Viterbi decoder is bypassed.

0

int_bypass

int_bypass

When high, the interleaver is bypassed.

16.2.12 FECU Scrambler / De-scrambler configuration register (FECU_SC_CONFIG)

Offset

Register Offset

FECU_SC_CONFIG 328h

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 513 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

sc_fec
u...

Reserv
ed

sc_lfsr_init
W

Reset u u u u u u u 0 u 0 0 0 0 0 0 0

Fields

Field Function

31-9

—

-

Reserved

8

sc_fecu_802b

sc_fecu_802b

When set, the scrambler will process according to 802.11b

7

—

-

Reserved

6-0

sc_lfsr_init

sc_lfsr_init

The initial state of the scrambler LFSR. Only used during encoding.

16.2.13 FECU DMEM Read count register (FECU_DMEM_READ_COUNT)

Offset

Register Offset

FECU_DMEM_READ_C
OUNT

32Ch

Function

The number of items FECU should read from DMEM.

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 514 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved dmem_read_count

W

Reset u u u u u u u u 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dmem_read_count

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-24

—

-

Reserved

23-0

dmem_read_co
unt

dmem_read_count

Number of LLRs (decode) or bits (encode) to read from DMEM.

16.2.14 FECU DMEM Source address register (FECU_DMEM_SRC_ADR)

Offset

Register Offset

FECU_DMEM_SRC_AD
R

330h

Function

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
num_keep_read_bits Reserved dmem_src_addr

W

Reset 0 0 0 0 0 0 0 0 u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dmem_src_addr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 515 / 536

Fields

Field Function

31-24

num_keep_read
_bits

num_keep_read_bits

The number of bits that are read from DMEM, but not sent out to FECU for processing during this symbol.

These num_keep_read_bits, will be sent out before any new data in the next symbol, if first_symbol=0.

When first_symbol=1, keep bits from the previous symbol are discarded, and no keep bits are sent to FECU
before new data.

However, when first_symbol=1, num_keep_read_bits will be read and saved for the next symbol.

The maximum value allowed is only AXI_DATA_WIDTH, even though 8 bits are allocated for this bit field.

23-19

—

-

Reserved

18-0

dmem_src_addr

dmem_src_addr

The source half-word (16 bit) address data is read from DMEM.

16.2.15 FECU DMEM Destination address register (FECU_DMEM_DST_ADR)

Offset

Register Offset

FECU_DMEM_DST_AD
R

334h

Function

The destination half-word (16 bit) address in DMEM.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
num_repeat_write_bits Reserved dmem_dst_addr

W

Reset 0 0 0 0 0 0 0 0 u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dmem_dst_addr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 516 / 536

Fields

Field Function

31-24

num_repeat_wri
te_bits

num_repeat_write_bits

The number of bits to repeat. These bits are written before new bits coming from FECU.

They are the last bits from the previous operation.

They are written starting at address dmem_dst_addr.

The maximum value allowed is only AXI_DATA_WIDTH, even though 8 bits are allocated for this bit field.

23-19

—

-

Reserved

18-0

dmem_dst_addr

dmem_dst_addr

The half-word (16 bit) address data is written to DMEM.

16.2.16 FECU DMEM 2nd address register (FECU_DMEM_2ND_ADR)

Offset

Register Offset

FECU_DMEM_2ND_AD
R

338h

Function

The half-word (16 bit) DMEM address of the 2nd stream.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved dmem_2nd_addr

W

Reset u u u u u u u u u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dmem_2nd_addr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 517 / 536

Fields

Field Function

31-19

—

-

Reserved

18-0

dmem_2nd_add
r

dmem_2nd_addr

The half-word (16 bit) address used for the 2nd stream.

Read address when decoding, write when encoding.

Only implemented when FECU_MAX_NSS >= 2.

16.2.17 FECU DMEM 3rd address register (FECU_DMEM_3RD_ADR)

Offset

Register Offset

FECU_DMEM_3RD_AD
R

33Ch

Function

The half-word (16 bit) DMEM address of the 3rd stream.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved dmem_3rd_addr

W

Reset u u u u u u u u u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dmem_3rd_addr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-19

—

-

Reserved

18-0 dmem_3rd_addr

Table continues on the next page...

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 518 / 536

Table continued from the previous page...

Field Function

dmem_3rd_add
r

The half-word (16 bit) address used for the 3rd stream.

Read address when decoding, write when encoding.

Only implemented when FECU_MAX_NSS >= 3.

16.2.18 FECU DMEM 4th address register (FECU_DMEM_4TH_ADR)

Offset

Register Offset

FECU_DMEM_4TH_AD
R

340h

Function

The half-word (16 bit) DMEM address of the 4th stream.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved dmem_4th_addr

W

Reset u u u u u u u u u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dmem_4th_addr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-19

—

-

Reserved

18-0

dmem_4th_add
r

dmem_4th_addr

The half-word (16 bit) address used for the 4th stream.

Read address when decoding, write when encoding.

Only implemented when FECU_MAX_NSS >= 4.

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 519 / 536

16.2.19 FECU DMEM 5th address register (FECU_DMEM_5TH_ADR)

Offset

Register Offset

FECU_DMEM_5TH_AD
R

344h

Function

The half-word (16 bit) DMEM address of the 5th stream.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved dmem_5th_addr

W

Reset u u u u u u u u u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dmem_5th_addr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-19

—

-

Reserved

18-0

dmem_5th_add
r

dmem_5th_addr

The half-word (16 bit) address used for the 5th stream.

Read address when decoding, write when encoding.

Only implemented when FECU_MAX_NSS >= 5.

16.2.20 FECU DMEM 6th address register (FECU_DMEM_6TH_ADR)

Offset

Register Offset

FECU_DMEM_6TH_AD
R

348h

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 520 / 536

Function

The half-word (16 bit) DMEM address of the 6th stream.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved dmem_6th_addr

W

Reset u u u u u u u u u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dmem_6th_addr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-19

—

-

Reserved

18-0

dmem_6th_add
r

dmem_6th_addr

The half-word (16 bit) address used for the 6th stream.

Read address when decoding, write when encoding.

Only implemented when FECU_MAX_NSS >= 6.

16.2.21 FECU DMEM 7th address register (FECU_DMEM_7TH_ADR)

Offset

Register Offset

FECU_DMEM_7TH_AD
R

34Ch

Function

The half-word (16 bit) DMEM address of the 7th stream.

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 521 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved dmem_7th_addr

W

Reset u u u u u u u u u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dmem_7th_addr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-19

—

-

Reserved

18-0

dmem_7th_add
r

dmem_7th_addr

The half-word (16 bit) address used for the 7th stream.

Read address when decoding, write when encoding.

Only implemented when FECU_MAX_NSS >= 7.

16.2.22 FECU DMEM 8th address register (FECU_DMEM_8TH_ADR)

Offset

Register Offset

FECU_DMEM_8TH_AD
R

350h

Function

The half-word (16 bit) DMEM address of the 8th stream.

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 522 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved dmem_8th_addr

W

Reset u u u u u u u u u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
dmem_8th_addr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-19

—

-

Reserved

18-0

dmem_8th_add
r

dmem_8th_addr

The half-word (16 bit) address used for the 8th stream.

Read address when decoding, write when encoding.

Only implemented when FECU_MAX_NSS >= 8.

16.2.23 FECU Save and restore configuration register (FECU_SAVE_RESTORE)

Offset

Register Offset

FECU_SAVE_RESTOR
E

354h

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R save_s
t...

restore
...

Reserved save_restore_addr
W

Reset 0 0 u u u u u u u u u u u 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
save_restore_addr Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 u u u u

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 523 / 536

Fields

Field Function

31

save_state

save_state

When set, FECU will store FECU state (context) after the current operation completes.

30

restore_state

restore_state

When set, FECU will restore FECU state before the current operation starts.

When clear, FECU will continue from ending state of the last operation.

29-19

—

-

Reserved

18-4

save_restore_a
ddr

save_restore address

The pointer to store FECU state after the current operation completes, or restore the state before the current
operation starts.

3-0

—

-

Reserved

16.2.24 FECU Control register (FECU_CONTROL)

Offset

Register Offset

FECU_CONTROL 358h

Function

A write to this register will add a pending command in the command FIFO.

Reads return the last value written.

NOTE: The FECU_CONTROL register must be written after all other IP registers. IP register values must not change during a
FECU operation.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

irqen_
d...

decod
er...

vcpu_g
o...

ippu_g
o...

dma_g
o_...

Reserv
ed

final_s.
..

one_b
ef...

first_s..
.

Reserv
ed

queue
_o...

start_type
W

Reset u u u 0 0 0 0 0 u 0 0 0 u 0 0 0

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 524 / 536

Fields

Field Function

31-13

—

-

Reserved

12

irqen_done

irqen_done

When set, FECU will send an interrupt to the host upon a fecu_done event.

When cleard, FECU will not generate a host interrupt for this FECU operation.

11

decoder_error_
vcpu_go

decoder_error_vcpu_go

When set, FECU will send a VCPU go when the decoder gets a decode error, and the ldpc_decode_error
bit is set.

When cleared, no VCPU go events will be generated as a result of ldpc_decode_error.

10

vcpu_go_enabl
e

vcpu_go_enable

When set, FECU will generate a VCPU go when FECU is done with an output buffer.

When cleared, FECU will not generate a VCPU go when it is done with an output buffer.

9

ippu_go_enable

ippu_go_enable

When set, FECU will generate an IPPU go when FECU is done with an output buffer.

When cleared, FECU will not generate an IPPU go when it is done with an output buffer.

8

dma_go_enable

dma_go_enable

When set, FECU will trigger a DMA transfer when FECU is done with an output buffer.

When cleared, FECU will not trigger a DMA transfer when it is done with an output buffer.

7

—

-

Reserved

6

final_symbol

final_symbol

Set when this is the last symbol in a code block.

5

one_before_fina
l_symbol

one_before_final_symbol

Set when this operation is the one before the last symbol in a code block.

4

first_symbol

first_symbol

Set when this is the first symbol in a code block.

3

—

-

Reserved

2 queue_output

When set, the write to the FECU_CONTROL register creates an output buffer command.

Table continues on the next page...

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 525 / 536

Table continued from the previous page...

Field Function

queue_output When cleared, no output buffer command is created. An input buffer command is always created.

1-0

start_type

start_type

Determines when FECU should start.

00b - Start immediately

01b - Wait for an external DMA trigger

10b - Wait for an external IPPU trigger

11b - Reserved

16.2.25 FECU Status register (FECU_STATUS)

Offset

Register Offset

FECU_STATUS 364h

Function

Reflects the current state of the FECU unit.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

start_e
...

start_source
Reserved

command_dept
h

suspen
d

comm
and...

busy_o
r...

busy

W W1C

Reset u u u u u 0 0 0 u u 0 0 0 0 0 0

Fields

Field Function

31-11

—

-

Reserved

10 start_error

Table continues on the next page...

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 526 / 536

Table continued from the previous page...

Field Function

start_error High after a write to the FECU_CONTROL register when the command FIFO is full.

Cleared by writing 1 to this bit.

9-8

start_source

start_source

Indicates the source of start for the current operation or last completed operation.

00b - Immediate start

01b - dma trigger

10b - ippu trigger

11b - Reserved

7-6

—

-

Reserved

5-4

command_dept
h

command_depth

Number of pending operations in the command FIFO. A maximum of 2 operations can be pending.

Further attempts to start an operation will set start_error.

3

suspend

suspend

High if FECU is suspended by the debugger. In this state, FECU will not access DMEM.

2

command_fifo_f
ull

command_fifo_full

High when command_depth equals 2.

1

busy_or_pendin
g

busy_or_pending

High when busy is set or there is at least one command pending in the FIFO.

0

busy

busy

High while FECU is currently running an operation. Busy will be set until all output buffers have completed.

16.2.26 FECU DMEM Write count register (FECU_DMEM_WRITE_COUNT)

Offset

Register Offset

FECU_DMEM_WRITE_
COUNT

368h

Function

The number of items FECU wrote to DMEM.

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 527 / 536

Updated as each line is written.

Used for diagnotics / debug.

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R dmem_write_count

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

—

-

Reserved

15-0

dmem_write_co
unt

dmem_write_count

Number of new LLRs (decode) or new bits (encode) written to DMEM. This count does not include repeated
bits.

16.2.27 FECU LDPC encoder block sizes register (FECU_LDPC_ENC_BLOCK)

Offset

Register Offset

FECU_LDPC_ENC_BLO
CK

36Ch

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 528 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ldpc_num_parity_bits

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

ldpc_num_message_bits

W

Reset u u u u u 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

ldpc_num_parit
y_bits

ldpc_num_parity_bits

The total number of parity plus repetition bits in the block the LDPC encoder is currently processing.

15-11

—

-

Reserved

10-0

ldpc_num_mes
sage_bits

ldpc_num_message_bits

The total number of message bits in the block the LDPC encoder is currently processing.

16.2.28 FECU LDPC encoder status register (FECU_LDPC_ENC_STATUS)

Offset

Register Offset

FECU_LDPC_ENC_STA
TUS

370h

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 529 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ldpc_parity_bits_left

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

ldpc_message_bits_left

W

Reset u u u u u 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-16

ldpc_parity_bits
_left

ldpc_parity_bits_left

The number of parity plus repeat bits that FECU still needs to send out in order to complete the current
LDPC block.

15-11

—

-

Reserved

10-0

ldpc_message_
bits_left

ldpc_message_bits_left

The number of input message bits that are still required to complete the current LDPC block.

16.2.29 FECU LDPC decoder block sizes and counts register (FECU_LDPC_DEC_BLOCK)

Offset

Register Offset

FECU_LDPC_DEC_BLO
CK

374h

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 530 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ldpc_num_good ldpc_num_error

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ldpc_num_block_llrs

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-24

ldpc_num_good

ldpc_num_good

The number of LDPC blocks that the decoder was able to decode, during the last symbol. The decoder is
able to decode when its output satisfies the parity check matrix.

23-16

ldpc_num_error

ldpc_num_error

The number of LDPC blocks that the decoder failed to decode, during the last symbol. A decoder failure
occurs when the LDPC decoder's output does not satisfy the parity check matrix after ldpc_max_iterations
number of iterations.

15-0

ldpc_num_block
_llrs

ldpc_num_block_llrs

The total number of LLRs in the block the LDPC decoder is currently processing.

16.2.30 FECU LDPC decoder status register (FECU_LDPC_DEC_STATUS)

Offset

Register Offset

FECU_LDPC_DEC_STA
TUS

378h

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 531 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

ldpc_d
e...

ldpc_actual_iterations

W W1C

Reset u u u u u u u 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ldpc_block_left

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fields

Field Function

31-25

—

-

Reserved

24

ldpc_decode_er
ror

ldpc_decode_error

The bit will be set when the LDPC decoder fails to decode a block for ldpc_max_iterations. This bit is cleared
by a write to this register with a 1 in this bit position.

This bit can be used to send a VCPU go event.

23-16

ldpc_actual_iter
ations

ldpc_actual_iterations

The actual number of iterations used to decode the last LDPC block.

15-0

ldpc_block_left

ldpc_block_left

The number of input LLRs that are still required to complete the current LDPC block.

16.2.31 FECU Hardware parameters / capabilities of FECU (FECU_HW_PARAMS)

Offset

Register Offset

FECU_HW_PARAMS 380h

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 532 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

ldpc_pr
...

max_num_bcc_encoders max_num_streams

W

Reset u u u u u u u 1 0 0 0 1 0 0 0 1

Fields

Field Function

31-9

—

-

Reserved

8

ldpc_present

ldpc_present

Set when FECU includes an LDPC encoder and decoder.

7-4

max_num_bcc_
encoders

max_num_bcc_encoders

The maximum number of BCC encoders the FECU hardware supports that is (1).

3-0

max_num_strea
ms

max_num_streams

The maximum number of spatial streams the FECU hardware supports that is (1).

16.2.32 FECU Hardware parameters / capabilities of the LDPC encoder and decoder in FECU
(FECU_LDPC_HW_PARAMS)

Offset

Register Offset

FECU_LDPC_HW_PAR
AMS

384h

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 533 / 536

Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ldpc_num_dc ldpc_num_sp

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ldpc_lu_dw ldpc_io_dw

W

Reset 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

Fields

Field Function

31-24

ldpc_num_dc

ldpc_num_dc

Number of decoder cores in the LDPC decoder.

23-16

ldpc_num_sp

ldpc_num_sp

Number of sub-matrix processors in a single LDPC decoder core.

15-8

ldpc_lu_dw

ldpc_lu_dw

LDPC load / un-load data width.

The number of LLRs loaded in the LDPC core every cycle.

7-0

ldpc_io_dw

ldpc_io_dw

The number of LLRs loaded into the LDPC decoder per cycle.

Also, the number of bits that come out of the LDPC decoder each cycle.

NXP Semiconductors

FECU IP Registers

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 534 / 536

Appendix A
Revision History
A.1 Revision History
This table summarizes changes to this document.

Revision Date Change

0 06/2021 Initial NDA release.

NXP Semiconductors

VSPA-16SP ISA-v2.0 Instruction Set Manual for LA9310, Rev. 0, 06/2021
Reference Manual 535 / 536

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special
or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related
to the removal or replacement of any products or rework charges) whether or not such damages are based on tort
(including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to
reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also
extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications.
NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow
up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance
with all legal, regulatory, and security related requirements concerning its products, regardless of any information or
support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, the Freescale logo, CodeWarrior,
Layerscape, QorIQ, QorIQ Qonverge, are trademarks of NXP B.V. All other product or service names are the property
of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile
are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 06/2021
Document identifier:

vspa2_ism_16au_la9310RM

http://www.nxp.com
http://www.nxp.com/support

	Contents
	1 Preface
	1.1 Introduction
	1.2 Variants of VSPA
	1.3 New features in VSPA ISA-v2.0
	1.3.1 Overview
	1.3.2 Enhancements in vector data path
	1.3.3 Enhancements in program control and scalar data path
	1.3.4 Enhancements in data memory access

	1.4 Using this manual
	1.5 Conventions
	1.6 Acronyms and abbreviations

	2 VSPA Architecture Overview
	2.1 VSPA architecture introduction
	2.1.1 VCPU introduction
	2.1.2 IPPU introduction
	2.1.3 DMA controller
	2.1.4 IP registers
	2.1.5 Vector data memory
	2.1.6 Data Memory Arbitration

	3 VCPU Architecture
	3.1 Control plane
	3.1.1 Program memory
	3.1.2 Program control
	Return address stack

	3.2 Data plane
	3.2.1 Data memory
	3.2.2 Data memory pointers
	Pointer registers
	Hardware buffer management
	Pointer reordering algorithms
	Normal mode
	Bit-reversal mode

	3.2.3 Vector register array
	VRA read/write ports
	VRA operation source and destination
	VRA access granularity
	VRA pointer control registers
	VRA data conflicts

	3.2.4 DMEM address space vs. VRA address space
	3.2.5 Vector rotate unit
	3.2.6 VAU operand source registers
	3.2.7 VAU operand source register muxes
	Port permutation modes
	Data type conversion

	3.2.8 Vector arithmetic unit
	Arithmetic unit
	Special arithmetic unit

	3.2.9 VAU destination mux
	3.2.10 Vector sign capture register (H)
	3.2.11 Vector NCO
	3.2.12 Scalar arithmetic & logic unit

	3.3 Data precision
	3.3.1 Two's complement conversion

	3.4 Data types
	3.5 VCPU GO events
	3.6 Byte order
	3.7 IRQ for thread killing

	4 VCPU Instruction Set
	4.1 VCPU instruction set overview
	4.2 Instruction set organization
	4.2.1 Instruction families
	4.2.2 Instruction formats

	4.3 Internal operand generators
	4.4 VCPU instruction set summary
	4.5 System control registers
	4.5.1 Control register latency
	4.5.2 Vector precision latency

	4.6 VCPU condition codes
	4.6.1 Multiply condition codes
	4.6.2 Divide condition codes
	4.6.3 Modulus condition codes

	4.7 Data memory pointer instructions
	4.8 Data memory load & store instructions
	4.8.1 DMEM address generation modes (ptr_mode)
	4.8.2 Post-modifications of aX registers
	4.8.3 Special notes
	Loads
	Stores
	st.llr_mode instruction
	st.uline instruction
	st.low
	st.high

	MAG update conflicts

	4.9 Vector register array instructions
	4.9.1 RAG instructions
	RAG circular buffers configurations
	RAG pointer update algorithm
	Syntax for RAG pointer value
	Syntax for RAG increment value
	RAG destination conflicts

	4.10 Rotate register instructions
	4.10.1 Rotate-register modes
	Right rotate/shift on R0 and R1
	Right rotate/shift on R2 and R3
	Left rotate/shift on R4 and R5
	Left rotate/shift on R6 and R7
	Rotate-register modes examples

	4.11 Extrema instructions
	4.11.1 Extrema configuration
	Extrema
	Extrema modes
	Extrema element count
	Extrema result mode
	Extrema latency

	4.11.2 Extrema Functionality
	RAG configuration
	Latency
	Multiple extrema

	4.11.3 Extrema instructions code example

	4.12 Vector AU source register instructions
	4.12.1 VRA data reads
	Pipeline delay
	VRA pointers
	RAG pointer registers updates

	4.12.2 Data permutation and/or replication
	4.12.3 VRA data type conversion
	4.12.4 S0mode options and detailed description
	4.12.5 S1mode options and detailed description
	4.12.6 S2mode options and detailed description

	4.13 AU instructions
	4.13.1 AU latency
	4.13.2 AU instructions code example
	4.13.3 Multiply add functionality
	4.13.4 Multiply and add with sign conversion
	4.13.5 Multiply accumulate functionality
	4.13.6 Multiply add with feedback functionality
	4.13.7 Decimation in time and frequency butterfly functionality

	4.14 Special AU instructions
	4.14.1 SAU input and output vector
	4.14.2 SAU latency
	4.14.3 Special AU instructions code example
	4.14.4 Reciprocal functionality
	4.14.5 Reciprocal square root functionality
	4.14.6 Square root functionality
	4.14.7 Pre adder functionality

	4.15 Store AU/SAU output instructions
	4.15.1 VAU data type conversion

	4.16 GP instructions
	4.16.1 GP move instructions
	Move vector register array instructions
	Move hardware register instructions
	Move scalar registers
	Move IP instruction

	4.16.2 Linear feedback shift register instructions
	4.16.3 Floating point generation instructions
	4.16.4 Arithmetic instructions
	Log base 2 instruction
	Fixed to single precision float instruction
	Single precision float to fixed-point instruction
	Half fixed to single precision float instruction
	Single precision float to half fixed instruction
	Half precision float to single precision float instruction
	Single precision float to half precision float instruction
	Scale single precision float instruction

	4.17 Hardware loop instructions
	4.17.1 Hardware loop control mechanism
	General hardware loop format example
	Two instruction hardware loop format example
	One instruction hardware loop format example

	4.17.2 Overwriting a set.loop instruction
	4.17.3 Nested hardware loops
	4.17.4 Early termination of a hardware loop
	4.17.5 Hardware loop execution constraints
	4.17.6 Hardware loop legal examples
	4.17.7 set.loop instruction

	4.18 Control flow instructions
	4.18.1 Jump delay slots
	Register setup times

	4.18.2 Compare-and-jump example
	4.18.3 Back-to-back conditional jumps

	4.19 Conditional instructions
	4.19.1 Logical test instruction modifiers
	4.19.2 Condition code flags
	4.19.3 Conditional instruction setup time

	4.20 Numerically controlled oscillator (NCO) instructions

	5 IPPU Architecture
	5.1 IPPU overview
	5.1.1 IPPU SOC level components
	5.1.2 IPPU features

	5.2 Inter-vector permutation processing unit
	5.2.1 IPPU core
	5.2.2 IPPU operating states
	5.2.3 IPPU memory access considerations
	5.2.4 IPPU initialization

	5.3 IPPU interrupts
	5.4 IPPU done to VCPU go event

	6 IPPU Instruction Set
	6.1 Size definitions
	6.2 Hardware definitions
	6.3 IPPU instructions summary
	6.4 Load instructions
	6.5 Load memory index instructions
	6.6 Store instructions
	6.7 Set range instructions
	6.8 Configure bit-reversal, digit-reversal engine instructions
	6.9 Move register instruction
	6.10 Load input argument instruction
	6.11 Compare instruction
	6.12 Jump instructions
	6.13 Loop instructions
	6.14 Done instruction
	6.15 Clear register instruction
	6.16 Set/clear element mask register instructions
	6.17 Add instructions
	6.18 Advanced features/usage notes
	6.18.1 Delay slot considerations
	6.18.2 BR - Bit-reversal
	6.18.3 Indirect addressing
	6.18.4 Vectorized indirect addressing

	7 DMA Controller
	7.1 Direct memory access unit (DMA)
	7.1.1 DMA module operation
	7.1.2 Issuing DMA commands
	7.1.3 DMA channel arbitration
	7.1.4 DMA deinterleaving engine
	DI table structures in DMEM
	DI modes
	DI engine arbitration
	DI special notes

	7.1.5 Effect of invasive debug on DMA
	7.1.6 DMA use with FIFOs
	7.1.7 DMA features not supported
	7.1.8 Source/destination memory formatting

	8 Mailboxes
	8.1 Mailboxes

	9 AXI Slave
	9.1 AXI slave overview
	9.2 Memory map
	9.3 Usage example
	9.4 VSPA AXI slave flag system
	9.5 Interface limitations

	10 Debug and Trace
	10.1 Debug
	10.1.1 VSPA debug block diagram
	10.1.2 Debug functional description
	Debug event generation unit (DEGU) subblock
	Comparator resource
	Cross-trigger resources
	Debug control, configuration, and status registers

	Debug run control (DRC) subblock
	VSPA halt and resume
	VSPA internal visibility
	Software breakpoint (SWB)

	Debug module comparator and sequencer

	10.1.3 Debug using the DMA FIFOs

	11 Interrupts
	11.1 Interrupts

	12 Initialization
	12.1 Initialization

	13 Forward Error Correction Unit (FECU)
	13.1 FECU overview
	13.2 FECU features
	13.3 FECU block diagram
	13.4 FECU clock generation
	13.5 FECU low power modes
	13.6 FECU reset
	13.7 FECU interrupts and VSPA go
	13.8 Viterbi Decoder overview
	13.9 Interleaver overview
	13.10 Convolutional Encoder overview
	13.11 LDPC Encoder overview
	13.12 LDPC Decoder overview
	13.13 Scrambler overview

	14 VSPA IP Registers
	14.1 Slow read registers
	14.2 VSPA register descriptions
	14.2.1 VSPA_CCSR memory map
	DMA Control and Status Registers memory map
	Debug Messaging and Profiling Registers memory map
	General VCPU Control/Status Registers memory map
	IPPU Control and Status Registers memory map
	Input/Output Registers memory map
	Thread and Protection Control and Status Registers memory map
	VCPU Go Control and Status Registers memory map
	VCPU - Host Messaging Registers memory map
	Version and Configuration Registers memory map

	14.2.2 VSPA Hardware Version (HWVERSION)
	14.2.3 VCPU Software Version (SWVERSION)
	14.2.4 VCPU System Control register (CONTROL)
	14.2.5 VSPA Interrupt Enable register (IRQEN)
	14.2.6 VSPA Source 1 Info (STATUS)
	14.2.7 VCPU to Host flags register a (VCPU_HOST_FLAGS0 - VCPU_HOST_FLAGS1)
	14.2.8 Host to VCPU Flags register a (HOST_VCPU_FLAGS0 - HOST_VCPU_FLAGS1)
	14.2.9 External Go Enable (EXT_GO_ENA)
	14.2.10 External Go Status (EXT_GO_STAT)
	14.2.11 VSPA VCPU Illegal Opcode Address (ILLOP_STATUS)
	14.2.12 VSPA Parameters 0 (PARAM0)
	14.2.13 VSPA Parameters 1 (PARAM1)
	14.2.14 VSPA Parameters 2 (PARAM2)
	14.2.15 VCPU DMEM Size (VCPU_DMEM_BYTES)
	14.2.16 Thread Control and Status (THREAD_CTRL_STAT)
	14.2.17 Protection Fault Status (PROT_FAULT_STAT)
	14.2.18 VCPU Exception Control (EXCEPTION_CTRL)
	14.2.19 VCPU Exception Status (EXCEPTION_STAT)
	14.2.20 AXI Slave flags register a (AXISLV_FLAGS0 - AXISLV_FLAGS1)
	14.2.21 AXI Slave Go Enable register a (AXISLV_GOEN0 - AXISLV_GOEN1)
	14.2.22 Platform Input (PLAT_IN_0)
	14.2.23 Platform Output (PLAT_OUT_0)
	14.2.24 Cycle counter MSB register (CYC_COUNTER_MSB)
	14.2.25 Cycle Counter LSB Register (CYC_COUNTER_LSB)
	14.2.26 DMEM/PRAM Address (DMA_DMEM_PRAM_ADDR)
	14.2.27 DMA AXI Address (DMA_AXI_ADDRESS)
	14.2.28 AXI Byte Count register (DMA_AXI_BYTE_CNT)
	14.2.29 DMA Transfer Control register (DMA_XFR_CTRL)
	14.2.30 DMA Status/Abort Control (DMA_STAT_ABORT)
	14.2.31 DMA IRQ Status (DMA_IRQ_STAT)
	14.2.32 DMA Complete Status (DMA_COMP_STAT)
	14.2.33 DMA Transfer Error Status (DMA_XFRERR_STAT)
	14.2.34 DMA Configuration Error Status (DMA_CFGERR_STAT)
	14.2.35 DMA Transfer Running Status (DMA_XRUN_STAT)
	14.2.36 DMA Go Status (DMA_GO_STAT)
	14.2.37 DMA FIFO Availability Status (DMA_FIFO_STAT)
	14.2.38 Load Register File Control register (Slow read register) (LD_RF_CONTROL)
	14.2.39 Load Register File Real Coefficient Table register (Slow read register) (LD_RF_TB_REAL_0)
	14.2.40 Load Register File Imaginary Coefficient Table register (Slow read register) (LD_RF_TB_IMAG_0)
	14.2.41 Load Register File Real Coefficient Table register (Slow read register) (LD_RF_TB_REAL_1)
	14.2.42 Load Register File Imaginary Coefficient Table register (Slow read register) (LD_RF_TB_IMAG_1)
	14.2.43 Load Register File Real Coefficient Table register (Slow read register) (LD_RF_TB_REAL_2)
	14.2.44 Load Register File Imaginary Coefficient Table register (Slow read register) (LD_RF_TB_IMAG_2)
	14.2.45 Load Register File Real Coefficient Table register (Slow read register) (LD_RF_TB_REAL_3)
	14.2.46 Load Register File Imaginary Coefficient Table register (Slow read register) (LD_RF_TB_IMAG_3)
	14.2.47 Load Register File Real Coefficient Table register (Slow read register) (LD_RF_TB_REAL_4)
	14.2.48 Load Register File Imaginary Coefficient Table register (Slow read register) (LD_RF_TB_IMAG_4)
	14.2.49 Load Register File Real Coefficient Table register (Slow read register) (LD_RF_TB_REAL_5)
	14.2.50 Load Register File Imaginary Coefficient Table register (Slow read register) (LD_RF_TB_IMAG_5)
	14.2.51 Load Register File Real Coefficient Table register (Slow read register) (LD_RF_TB_REAL_6)
	14.2.52 Load Register File Imaginary Coefficient Table register (Slow read register) (LD_RF_TB_IMAG_6)
	14.2.53 Load Register File Real Coefficient Table register (Slow read register) (LD_RF_TB_REAL_7)
	14.2.54 Load Register File Imaginary Coefficient Table register (Slow read register) (LD_RF_TB_IMAG_7)
	14.2.55 VCPU Go Address (VCPU_GO_ADDR)
	14.2.56 VCPU Go Stack (VCPU_GO_STACK)
	14.2.57 VCPU Mode 0 (VCPU_MODE0)
	14.2.58 VCPU Mode 1 (VCPU_MODE1)
	14.2.59 VCPU CREG 0 (VCPU_CREG0)
	14.2.60 VCPU CREG 1 (VCPU_CREG1)
	14.2.61 Store Unalign Vector Length (ST_UL_VEC_LEN)
	14.2.62 General Purpose Input registers [10 registers] (GP_IN0 - GP_IN9)
	14.2.63 General Purpose Output registers [10 registers] (GP_OUT0 - GP_OUT9)
	14.2.64 VCPU to DQM Trace Small Outbox register (DQM_SMALL)
	14.2.65 VCPU to Debugger 32-bit Outbox register (VCPU_DBG_OUT_32)
	14.2.66 VCPU to Debugger 64-bit MSB Outbox register (VCPU_DBG_OUT_64_MSB)
	14.2.67 VCPU to Debugger 64-bit LSB Outbox register (VCPU_DBG_OUT_64_LSB)
	14.2.68 Debugger to VCPU 32-bit Inbox register (VCPU_DBG_IN_32)
	14.2.69 Debugger to VCPU 64-bit MSB Inbox register (VCPU_DBG_IN_64_MSB)
	14.2.70 Debugger to VCPU 64-bit LSB Inbox register (VCPU_DBG_IN_64_LSB)
	14.2.71 VCPU to Debugger Mailbox Status register (VCPU_DBG_MBOX_STATUS)
	14.2.72 VCPU to host outbox message n MSB register (VCPU_OUT_0_MSB - VCPU_OUT_1_MSB)
	14.2.73 VCPU to host outbox message n LSB register (VCPU_OUT_0_LSB - VCPU_OUT_1_LSB)
	14.2.74 VCPU from Host Inbox Message n MSB (VCPU_IN_0_MSB - VCPU_IN_1_MSB)
	14.2.75 VCPU from host inbox message n LSB register (VCPU_IN_0_LSB - VCPU_IN_1_LSB)
	14.2.76 VCPU to Host Mailbox Status register (VCPU_MBOX_STATUS)
	14.2.77 Host to VCPU Outbox Message n MSB register (HOST_OUT_0_MSB - HOST_OUT_1_MSB)
	14.2.78 Host to VCPU Outbox Message n LSB register (HOST_OUT_0_LSB - HOST_OUT_1_LSB)
	14.2.79 Host from VCPU Inbox Message n MSB (HOST_IN_0_MSB - HOST_IN_1_MSB)
	14.2.80 Host from VCPU Inbox Message n LSB Register (HOST_IN_0_LSB - HOST_IN_1_LSB)
	14.2.81 Host Mailbox Status Register (HOST_MBOX_STATUS)
	14.2.82 IPPU Control register (IPPUCONTROL)
	14.2.83 IPPU Status register (IPPUSTATUS)
	14.2.84 IPPU Run Control register (IPPURC)
	14.2.85 IPPU Arg Base Address register (IPPUARGBASEADDR)
	14.2.86 IPPU Hardware Version (IPPUHWVER)
	14.2.87 IPPU Software Version (IPPUSWVER)

	15 Debug registers
	15.1 VSPA_DBG register descriptions
	15.1.1 VSPA_DBG memory map
	15.1.2 Global Debug Enable register (GDBEN)
	15.1.3 Debug Run Control register (RCR)
	15.1.4 Debug Run Control Status register (RCSTATUS)
	15.1.5 Debug Halt Action Control register (HACR)
	15.1.6 Debug Resume Action Control register (RACR)
	15.1.7 Debug VSP Architecture Visibility Address Pointer register (RAVAP)
	15.1.8 Debug VSP Architecture Visibility Fixed Data register (RAVFD)
	15.1.9 Debug VSP Architecture Visibility Incrementing Data register (RAVID)
	15.1.10 Debug Verification register (DVR)
	15.1.11 Debug Cross Trigger Out a Action Control registers (CTO0ACR - CTO3ACR)
	15.1.12 Debug Comparator Control and Status register (DC0CS - DC7CS)
	15.1.13 Debug Comparator a Data register (DC0D - DC7D)
	15.1.14 Debug Comparator a Arm Action Control registers (C0AACR - C7AACR)
	15.1.15 Debug Comparator a Disarm Action Control registers (C0DACR - C7DACR)
	15.1.16 Debug Comparator a Trigger Action Control registers (C0TACR - C7TACR)
	15.1.17 Debug to VSP 32-bit Outbox register (OUT_32)
	15.1.18 Debug to VSP 64-bit MSB Outbox register (OUT_64_MSB)
	15.1.19 Debug to VSP 64-bit LSB Outbox register (OUT_64_LSB)
	15.1.20 VSP to Debugger 32-bit Inbox register (IN_32)
	15.1.21 VSP to Debugger 64-bit MSB Inbox register (IN_64_MSB)
	15.1.22 VSP to Debugger 64-bit LSB Inbox register (IN_64_LSB)
	15.1.23 Debugger to VSP Mailbox Status register (MBOX_STATUS)
	15.1.24 Debug Parameter 0 Register (PARAM_0)
	15.1.25 Peripheral ID4 register (PIDR4)
	15.1.26 Peripheral ID5 register (PIDR5)
	15.1.27 Peripheral ID6 register (PIDR6)
	15.1.28 Peripheral ID7 register (PIDR7)
	15.1.29 Peripheral ID0 register (PIDR0)
	15.1.30 Peripheral ID1 register (PIDR1)
	15.1.31 Peripheral ID2 register (PIDR2)
	15.1.32 Peripheral ID3 register (PIDR3)
	15.1.33 Component ID0 register (CIDR0)
	15.1.34 Component ID1 register (CIDR1)
	15.1.35 Component ID2 register (CIDR2)
	15.1.36 Component ID3 register (CIDR3)

	16 FECU IP Registers
	16.1 FECU IP Registers
	16.2 FECU register descriptions
	16.2.1 FECU memory map
	16.2.2 FECU Configuration register (FECU_CONFIG)
	16.2.3 FECU Symbol size register (FECU_SIZES)
	16.2.4 FECU Number of padding bits register (FECU_NUM_PAD)
	16.2.5 FECU Binary Convolutional Code (BCC) puncture mask register (FECU_BCC_PUNC_MASK)
	16.2.6 FECU Binary Convolutional Code (BCC) configuration register (FECU_BCC_CONFIG)
	16.2.7 FECU LDPC configuration register (FECU_LDPC_CONFIG)
	16.2.8 FECU LDPC repeat, parity, and shortening sizes register (FECU_LDPC_SIZES)
	16.2.9 FECU LDPC blocks with an extra shortening bit register (FECU_LDPC_EXTRA_SHORT)
	16.2.10 FECU LDPC blocks with an extra puncturing or repetition bit register (FECU_LDPC_EXTRA_REP)
	16.2.11 FECU Bypass register (FECU_BYPASS)
	16.2.12 FECU Scrambler / De-scrambler configuration register (FECU_SC_CONFIG)
	16.2.13 FECU DMEM Read count register (FECU_DMEM_READ_COUNT)
	16.2.14 FECU DMEM Source address register (FECU_DMEM_SRC_ADR)
	16.2.15 FECU DMEM Destination address register (FECU_DMEM_DST_ADR)
	16.2.16 FECU DMEM 2nd address register (FECU_DMEM_2ND_ADR)
	16.2.17 FECU DMEM 3rd address register (FECU_DMEM_3RD_ADR)
	16.2.18 FECU DMEM 4th address register (FECU_DMEM_4TH_ADR)
	16.2.19 FECU DMEM 5th address register (FECU_DMEM_5TH_ADR)
	16.2.20 FECU DMEM 6th address register (FECU_DMEM_6TH_ADR)
	16.2.21 FECU DMEM 7th address register (FECU_DMEM_7TH_ADR)
	16.2.22 FECU DMEM 8th address register (FECU_DMEM_8TH_ADR)
	16.2.23 FECU Save and restore configuration register (FECU_SAVE_RESTORE)
	16.2.24 FECU Control register (FECU_CONTROL)
	16.2.25 FECU Status register (FECU_STATUS)
	16.2.26 FECU DMEM Write count register (FECU_DMEM_WRITE_COUNT)
	16.2.27 FECU LDPC encoder block sizes register (FECU_LDPC_ENC_BLOCK)
	16.2.28 FECU LDPC encoder status register (FECU_LDPC_ENC_STATUS)
	16.2.29 FECU LDPC decoder block sizes and counts register (FECU_LDPC_DEC_BLOCK)
	16.2.30 FECU LDPC decoder status register (FECU_LDPC_DEC_STATUS)
	16.2.31 FECU Hardware parameters / capabilities of FECU (FECU_HW_PARAMS)
	16.2.32 FECU Hardware parameters / capabilities of the LDPC encoder and decoder in FECU (FECU_LDPC_HW_PARAMS)

	A Revision History
	A.1 Revision History

