
© 2019 NXP Semiconductors B.V.  

 
 

 
 
 

 

 

 

 

 

S32 SDK Release Notes 

Version 3.0.0 RTM 

 

 

 

 

 

 

 

 



 

 

© 2019 NXP Semiconductors B.V.  2 

Contents 
1. DESCRIPTION ......................................................................................................................................3 
2. NEW IN THIS RELEASE ..........................................................................................................................3 

2.1 New features from BETA 2.9.2 ........................................................................................................3 
2.2 List of fixed issues ...........................................................................................................................3 

3. SOFTWARE CONTENTS.........................................................................................................................5 
3.1 Drivers..............................................................................................................................................5 
3.2 PAL ..................................................................................................................................................6 
3.3 Middleware ......................................................................................................................................6 
3.4 Libraries ...........................................................................................................................................6 
3.5 RTOS ...............................................................................................................................................6 

4. DOCUMENTATION .................................................................................................................................7 
5. EXAMPLES ...........................................................................................................................................7 
6. SUPPORTED HARDWARE AND COMPATIBLE SOFTWARE ........................................................................ 12 

6.1 CPUs............................................................................................................................................. 12 
6.2 Boards........................................................................................................................................... 12 
6.3 Compiler and IDE versions ........................................................................................................... 12 

7. KNOWN ISSUES AND LIMITATIONS ....................................................................................................... 13 
7.1 Standalone installation.................................................................................................................. 13 
7.2 Drivers........................................................................................................................................... 13 
7.3 Examples ...................................................................................................................................... 14 
7.4 Backwards compatibility ............................................................................................................... 15 

8. COMPILER OPTIONS .......................................................................................................................... 17 
8.1 IAR Compiler/Linker/Assembler Options ...................................................................................... 17 
8.2 GCC Compiler/Linker/Assembler Options .................................................................................... 19 
8.3 GHS Compiler/Linker/Assembler Options .................................................................................... 21 
8.4 DIAB Compiler/Linker/Assembler Options .................................................................................... 23 
8.5 ARMC Compiler/Linker/Assembler Options ................................................................................. 24 

9. ACRONYMS ...................................................................................................................................... 26 
10. VERSION TRACKING .......................................................................................................................... 27 

 

 
 

  



 

 

© 2019 NXP Semiconductors B.V.  3 

1. Description 

 

The S32 Software Development Kit (S32 SDK) is an extensive suite of peripheral abstraction 
layers, peripheral drivers, RTOS, stacks and middleware designed to simplify and accelerate 
application development on NXP S32K microcontrollers. 

 

All software included in this release have RTM quality level in terms of features, testing and 
quality documentation, according to NXP software release criteria. RTM releases contain all 
planned features implemented and tested. RTM releases are candidates that can be used in 
production. 

 

This SDK can be used standalone or it can be used with S32 Design Studio IDE (see 
Supported hardware and compatible software). 

 

Refer to Product license (License.txt) for licensing information and Software content register 
(SW-Content-Register-S32-SDK.txt) for the Software contents of this product. The files can 
be found in the root of the installation directory. 

 

For support and issue reporting use the following ways of contact: 

• NXP Support to https://www.nxp.com/support/support:SUPPORTHOME 

• NXP Community https://community.nxp.com/community/s32/s32k 

2. New in this release 

2.1 New features from BETA 2.9.2 

 

Examples 

Added call to AutoCalibration function to ADC examples. 
Added FreeRTOS examples for S32K116 and S32K118. 
 

Drivers  

Added support in PINS for configuring SIM ADC interleave. 

 

2.2 List of fixed issues 

Component Issue 

ammclib Compiler specific functions were enabled in AMMCLib configurator 

ammclib IAR compiler was not properly recognized by PEx and AMMCLib and sCST 
components did not work 

can_pal CAN_PAL PEX component did not notify the user if the RxFIFO feature was enabled 
and the space occupied by RxFIFO and Individual MBs exceeded the available 
message buffers. 

can_pal CAN_PAL blocking functions would not abort the transfer in case of timeout error. 

can_pal, flexcan CAN_PAL over FlexCAN - Calling init function twice - first time with FD feature enabled, 
then disabled - the driver would fail to set the new bitrate. 

clock_manager Clock manager module generated a PEX error when creating an example for the 
S32K118_48 48-pins LQFP48 

https://www.nxp.com/support/support:SUPPORTHOME
https://community.nxp.com/community/s32/s32k


 

 

© 2019 NXP Semiconductors B.V.  4 

clock_manager Clock manager did not add warnings when changing power modes for the interface 
clocks frequencies. As a result, when running the code, a hard fault occurred. 

clock_manager When dividing by 1 a peripheral clock, the multiplier could also be set. As a result the 
output clock was disabled. 

CPU S32K146_64 CPU had wrong package description 

CPU .custom_section was not placed at the start of m_data_2 

CPU BSS section overlapped custom_section on ARMC compiler 

CPU Documentation was not linked to CPU configurator component 

CPU SRAM_L was not used in S32K11x linker files 

documentation HTML documentation was generated for a single device in the release, causing 
inconsistencies with other devices included in the release. The solution was to generate 
separate html documentation for each device included in the package. 

enet The Pex component did not check that the string used for callbacks is a valid C string. 

examples S32K14x: SECURITY_PAL example documentation contained inaccurate information 
about the flash partitioning setup. 

examples The following examples were updated to be compatible with latest EVB: 
lpspi_dma_s32k118, lpspi_transfer_s32k118, flexio_i2s_s32k116, flexio_spi_s32k116, 
uart_pal_s32k116. 

examples In all FTM_MC examples the LED toggle period was 1.1s, not 1s as is mentioned in 
documentation. 

flash FLASH_DRV_ProgramCheck didn’t returned STATUS_BUSY. 

flash_mx25l6433f 2 configurations for flash_mx25l6433f couldn’t be added in configurator. 

flash_mx25l6433f, 
qspi 

The limitation to align buffers to 4 bytes was not exposed in flash_mx25l6433f 
documentation. 

flexcan FlexCAN Pretended Network feature did not work without installing a callback function 
to notify the event. 

flexcan FlexCAN driver did not support abort mechanism for RxFIFO transfers. 

flexio_i2c In DMA mode if FLEXIO_I2C_DRV_MasterSendDataBlocking or 
FLEXIO_I2C_DRV_MasterSendData returned STATUS_ERROR, the next transfers 
were blocked. 

ftm_qd If 2 ftm_qd components were added the project wouldn’t compile due to default 
configuration names. 

ftm_pwm If 8 channels were initialized DEV_ASSERT was triggered. 

ic_pal Read- only check box for IC_PAL doesn't generate cost config structures. 

lin LIN slave was woken up from sleep mode after a rising edge 

lin LIN configurator generated code for configurations that were disabled 

lin_stack LIN configurator generated "extern NULL;" when TimerGetTimeIntervalCallback was 
NULL, which caused build errors 

lpi2c In case timeout occurred for LPI2C_DRV_MasterReceiveDataBlocking a new transfer 
couldn't be performed because abort could be done in the middle of a byte, which 
caused SCL line to remain low.  

lpit On S32K11x, LPIT_DRV_InitChannel() was disabling interrupts for all channels, if 
interrupt was not enabled in the configuration structure. 

lpit LPIT driver was not waiting the required time after setting/clearing SW_RST and 
M_CEN bits during intialization 

clock_manager Clock manager did not add warnings when changing power modes for the interface 
clocks frequencies. As a result, when running the code, a hard fault occurred. 

mpu MPU_DRV_SetMasterAccessRights was displaying warnings when it was drag and 
dropped from MPU configurator 

mpu_pal MPU_GetError description was not correct in MPU_PAL configurator methods list 

phy The driver did not set the master role correctly for the generic PHY. 

pwm_pal Configurator PWM_PAL over FTM was allowing separate configuration of 
complementary channel. 



 

 

© 2019 NXP Semiconductors B.V.  5 

qspi QSPI_DRV_Get/DefaultConfig didn’t filled the divider value in the configuration 
structure. 

rtc MISRA violations were present in RTC generated code 

sbc_uja113x The documentation for this driver couldn’t be opened form PEx component. 

sbc_uja1169 When SBC_uja1169 was added 2, OSIF components were added. 

uart_pal UART_PAL deinitialization function did not work properly if called during an ongoing 
transfer over FLEXIO. 

FreeRTOS IAR compiler was not properly recognized by Processor Expert and FreeRTOS 
component did not work. 

3. Software Contents 

3.1 Drivers 

• ADC 

• CMP 

• CRC 

• CSEc 

• DMA 

• EIM 

• ENET 

• ERM 

• EWM 

• FLASH 

• FLASH_MX25L6433F 

• FLEXCAN 

• FLEXIO (I2C, SPI, I2S, UART profiles) 

• FTM   

• LIN                 

• LPI2C 

• LPIT 

• LPSPI 

• LPTMR          

• LPUART 

• MCU (Clock Manager, Interrupt Manager, Power Manager) 

• MPU 

• PINS 

• PDB  

• PHY_TJA110x             

• QSPI 

• RTC 

• SAI 

• TRGMUX 

• WDOG 

 
 
 



 

 

© 2019 NXP Semiconductors B.V.  6 

 

3.2 PAL 

• ADC 

• CAN 

• I2C 

• I2S 

• IC 

• MPU 

• OC 

• PWM 

• SECURITY 

• SPI 

• TIMING 

• UART 

• WDG 

3.3 Middleware 

• LIN stack – provides support for LIN 2.1, LIN 2.2 and J2602 communication 
protocols 

• TCP/IP stack – available for S32K148, for more details see TCP/IP stack release 
notes (in the SDK installation folder) 

• SBC drivers – provides support for UJA1169 and UJA113x System Basis Chips 

Note: For ISELED and NFC contact your Sales representative or FAE for more information. 

3.4 Libraries 

• sCST – available for S32K1xx 

3.5 RTOS 

• FreeRTOS version 10.0.1  



 

 

© 2019 NXP Semiconductors B.V.  7 

4. Documentation 

 

• Quick start guide available in “doc” folder. 

• User and integration manual available at “doc\Start_here.html”. 

• Driver user manuals available in “doc” folder. 

5. Examples  
 

Type Name Description 

D
riv

e
r e

x
a

m
p

le
s
 

adc_hwtrigger Uses PDB to trigger an ADC conversion with a 
configured delay and sends the result to host via 
LPUART. 

adc_swtrigger Uses software trigger to periodically trigger an ADC 
conversion and sends the result to host via LPUART. 

adc_pal_example The application uses ADC PAL to trigger multiple 
executions of two groups of ADC conversions: first 
group configured for SW triggering and second group 
for HW triggering. For each execution of a group of 
conversions, an average conversion value is computed 
in SW, and the average value is printed on UART. 

can_pal Shows the usage of the CAN PAL module with Flexible 
Data Rate 

cmp_dac Configures the analog comparator to compare the input 
from the potentiometer with the internal DAC 
(configured to output half of the reference voltage) and 
shows the result using the LEDs found on the board. 

crc_checksum The CRC is configured to generate the cyclic 
redundancy check value using 16 and 32 bits wide 
result. 

csec_keyconfig The example demonstrates how to prepare the MCU 
before using CSEc(Key configuration, flash 
partitioning). 

edma_transfer Demonstrates the following eDMA use cases: single 
block memory to memory transfer, a loop memory to 
memory transfer, memory to memory transfer using 
scatter/gather, LPUART transmission/reception using 
DMA requests. 

eim_injection The purpose of this demo is to provide the user check 
able correction of ECC. 
Module EIM enable user addition error to RAM (low). 
And enable user can use module ERM to read address 
that user already error to region RAM. User seen 
RED_LED off when ERM read right address which EIM 
injected error. 

enet_ping Shows the usage of a basic ping application using the 
ENET driver 



 

 

© 2019 NXP Semiconductors B.V.  8 

erm_report The purpose of this driver application is to show the 
user how to use the EWM from the S32K148 using the 
S32 SDK API. 
This Example only debug equal Flash 
This example use module EIM to addition error to RAM 
and use module ERM to read address and notify 
interrupt. 

ewm_interrupt Shows the usage of the EWM driver. 

flash_partitioning  Writes, verifies and erases data on Flash. 
 

flexio_i2c Demonstrates FlexIO I2C emulation. Use one instance 
of FlexIO and one instance of LPI2C to transfer data on 
the same board. 

flexio_spi Demonstrates FlexIO SPI emulation for both master 
and slave configurations. Use one instance of FlexIO to 
instantiate master and slave drivers to transfer data on 
the same board. 

flexio_i2s Demonstrates FlexIO I2S emulation for both master 
and slave configurations. Use one instance of FlexIO to 
instantiate master and slave drivers to transfer data on 
the same board. 

flexio_uart Demonstrates FlexIO UART emulation for both TX and 
RX configurations. Use one instance of FlexIO to 
instantiate UART transmitter and receiver drivers to 
transfer data from/to the host. 

ftm_pwm Uses FTM PWM functionality using a single channel to 
light a LED on the board. The light's intensity is 
increased and decreased periodically. 

ftm_combined_pwm Uses FTM PWM functionality using two combined 
channels to light two LEDs on the board with opposite 
pulse width. The light's intensity is increased and 
decreased periodically. 

ftm_periodic_interrupt Uses FTM Timer functionality to trigger an interrupt at a 
given period which toggles a LED. 

ftm_signal_measurement Using one FTM instance the example application 
generates a PWM signal with variable frequency which 
is measured by another FTM instance configured in 
signal measurement mode. 

i2c_pal Shows the usage of I2C PAL driver in both master and 
slave configurations using FLEXIO and LPI2C 

lin_master_baremetal Shows the usage of LIN driver in master mode. 

lin_slave_baremetal Shows the usage of LIN driver in slave mode. 

lpi2c_master Shows the usage of the LPI2C driver in Master 
configuration 

lpi2c_slave Shows the usage of the LPI2C driver in Slave 
configuration 



 

 

© 2019 NXP Semiconductors B.V.  9 

lpit_periodic_interrupt Shows how to initialize the LPIT to generate an 
interrupt every 1 s. It is the starting point for any 
application using LPIT. 

lpspi_dma The application uses two on board instances of LPSPI, 
one in master configuration and the other one is slave 
to communicate data via the SPI bus using DMA. 

lpspi_transfer Uses one instance of the LPSPI as slave to send ADC 
data to the master LPSPI instance which is on the 
same board. The master uses data received to feed a 
FlexTimer PWM. 

lptmr_periodic_interrupt Exemplifies to the user how to initialize the LPTIMER 
so that it will generate an interrupt every 1 second. To 
make the interrupt visible a LED is toggled every time it 
occurs. 

lptmr_pulse_counter Shows the LPTIMER pulse count functionality by 
generating an interrupt every 4 rising edges. 

lpuart_echo Simple example of a basic echo using LPUART. 

mpu_memory_protection Configures MPU to protect a memory area and 
demonstrates that read access is correctly restricted. 

mpu_pal_memory_protection The purpose of this demo application is to show you 
how to configure and use the Memory Protection Unit 
PAL 

oc_pal Shows the Periodic Event Generation functionality of 
the OC_PAL 

pdb_periodic_interrupt Configures the Programmable Delay Block to generate 
an interrupt every 1 second. This example shows the 
user how to configure the PDB timer for interrupt 
generation. The PDB is configured to trigger ADC 
conversions in ADC_HwTrigger_Example. 

power_mode_switch Demonstrates the usage of Power Manager by allowing 
the user to switch to all power modes available. 

qspi_external_flash The purpose of this demo is to present the usage of the 
flash_mx25l6433f (external serial flash) and QSPI 
drivers. The flash_mx25l6433f driver allows the 
application to use an external Macronix MX25L6433F 
serial flash device, using the QuadSPI interface for 
communication. 

sai_transfer Demonstrates the usage of the SAI module driver 

sbc_uja1169 Show the usage of the SBC UJA1169 driver with low 
power modes 

sbc_uja113x Show the usage of the SBC UJA113x driver with low 
power modes 

security_pal This is an application created to show the generation of 
rnd and CBC encryption/decryption of a string. 

rtc_alarm Show the frequently used RTC use cases such as the 
generation of an interrupt every second and triggering 
an alarm. 

spi_pal The purpose of this application is to show you how to 
use the LPSPI and FLEXIO Interfaces on the S32K144 
using the S32 SDK API. 



 

 

© 2019 NXP Semiconductors B.V.  10 

The application uses one board instance of LPSPI in 
slave configuration and one board instance of FLEXIO 
in master configuration to communicate data via the 
SPI bus using interrupts. 

timing_pal The purpose of this application is to show you how to 
use the TIMING PAL over LPIT, LPTMR and FTM 
timers on the S32K144 using the S32 SDK API. 
The application uses one board instance of LPIT, 
LPTMR and FTM to periodically toggle 3 leds. 

trgmux_lpit The purpose of this demo application is to show you 
how to use the Trigger MUX Control of the S32K14x 
MCU with this SDK. 

uart_pal_echo The purpose of this demo is to show the user how 
UART PAL works over FLEXIO_UART or LPUART 
peripherals. 
The user can choose whether to use FLEXIO_UART or 
LPUART. 
The board sends a welcome message to the console 
with further instructions. 

wdog_interrupt Shows the basic usage scenario and configuration for 
the Watchdog. 

wdg_pal_interrupt The purpose of this driver application is to show the 
user how to use the WDG PAL from the S32K148 using 
the S32 SDK API. 
The examples uses the SysTick timer from the ARM 
core to refresh the WDG PAL counter for 30 times. 
After this the WDG PAL counter will expire and the 
CPU will be reset. 

phy_autoneg 
Shows the usage of the PHY module with 
autonegociation 

ic_pal Shows the usage of the IC_PAL 

D
e

m
o

s
 

hello_world This is a simple application created to show the basic 
configuration with S32DS 

hello_world_iar This is a simple application created to show the basic 
configuration with IAR Embedded Workbench 

hello_world_mkf This is a simple application created to show the basic 
configuration with makefile for the supported compilers 

flexcan_encrypted Uses two boards to demonstrate FlexCAN functionality 
with Flexible Data Rate on. LEDs on a board are 
toggled depending on the buttons actioned on the other 
board. Also demonstrates the use of SBC driver to 
configure the CAN transceiver from EVB board. The 
application is configured to use CSEc to encrypt the 
data on security enabled parts. 

freertos This demo application demonstrates the usage of the 
SDK with the included FreeRTOS. Uses a software 
timer to trigger a led and waits for a button interrupt to 
occur. 

lin_master This demo application shows the usage of LIN stack in 
master mode. 



 

 

© 2019 NXP Semiconductors B.V.  11 

lin_slave This demo application shows the usage of LIN stack in 
slave mode. 

adc_low_power This demo shows the user how to reduce CPU 
overhead and power usage by triggering ADC 
conversions with the LPIT via TRGMUX. The CPU is 
set in the STOP mode via the Power Manager API, with 
the wakeup condition being the validity of the ADC 
conversion result, the latter being a value greater than 
half of the ADC reference voltage achieved by using the 
hardware compare functionality. If the condition is met, 
the value in the form of a graph is sent using LPUART 
and DMA to further reduce the CPU usage. 

freemaster This demo uses the FreeMASTER Run-Time 
Debugging Tool to visualize ADC 
conversions and allows the user to monitor the ADC 
sampling rate for 
different ADC configurations (ADC sampling time and 
resolution can be 
controlled through FreeMASTER Variable Watch). 
The application uses FreeMASTER SCI driver for 
communication. 

lwip Shows the usage of lwIP stack. 

anfc Shows the integration between Automotive NFC stack 
and S32SDK 

sCST Demo application created to demonstrate sCST 
integration with S32 SDK 

 

  



 

 

© 2019 NXP Semiconductors B.V.  12 

6. Supported hardware and compatible software 

6.1 CPUs 

• S32K116_32 revision 1.0, maskset 0N96V 

• S32K116_48 revision 1.0, maskset 0N96V 

• S32K118_48 revision 1.0, maskset 0N97V 

• S32K116_64 revision 1.0, maskset 0N97V 

• S32K142_64 revision 1.0, maskset 0N33V 

• S32K142_100 revision 1.0, maskset 0N33V 

• S32K144_64 revision 2.1, maskset 0N57U 

• S32K144_100 revision 2.1, maskset 0N57U           

• S32K144_100_BGA revision 2.1, maskset 0N57U 

• S32K146_64 revision 1.0, maskset 0N73V 

• S32K146_100 revision 1.0, maskset 0N73V 

• S32K146_100_BGA revision 1.0, maskset 0N73V 

• S32K146_144 revision 1.0, maskset 0N73V 

• S32K148_100_BGA revision 1.0, maskset 0N20V 

• S32K148_144 revision 1.0, maskset 0N20V 

• S32K148_176 revision 1.0, maskset 0N20V           

 

The following processor reference manual has been used to add support:  

• S32K1XXRM Rev. 9, 09/2018 

6.2 Boards 

• S32K-MB with mini module S32K144-100LQFP REV X1/X2 

• S32K-MB with mini module S32K14xCVD-Q144 REV X3 

• S32K-MB with mini module S32K1xxCVD-Q048 REV X1 

• S32K-MB with mini module S32K1xxCVD-Q064 REV X2 

• S32K144-EVB-Q100 REV X3 

• S32K148-EVB-Q144 REV X2 

• S32K142-EVB-Q100 REV X1 

• S32K146-EVB-Q144 REV X1 

• S32K116-EVB-Q048 REV X2 

• S32K118-EVB-Q064 REV X2 

6.3 Compiler and IDE versions 

• GreenHills compiler v. 2017.1.4 

• IAR compiler v. 8.11.2 

• GCC compiler for ARM v. 6.3.1 20170509 

• Wind River Diab Compiler v5.9.6.2 

• ARM Compiler 6.6.1 Long Term Maintenance 

• S32 Design Studio v2018.R1 IDE 

 

 

 



 

 

© 2019 NXP Semiconductors B.V.  13 

7. Known issues and limitations 

7.1 Standalone installation 

• The installer will automatically append the new SDK path to the S32SDK_PATH 
variable. Please make sure that only the desired value is kept, if the variable is used 
by previous projects. 

• Uninstalling the SDK will not remove references to it from S32 Design Studio, this 
will result in a broken path displayed in Window->Preferences->Processor Expert. 

• Custom installation type is not fully supported, keep “All Packages” selection in 
Choose Components page. 

7.2 Drivers 

 

ALL DRIVERS 

• Drivers may not respect the requirements for nesting level and cyclomatic complexity 
due to an issue in tools. 

CPU 

• When using DIAB toolchain on S32K11x and the interrupt handlers are overwritten with 
INT_SYS_InstallHandler, the core will not return from interrupt handlers that are not 
calling other functions or writing a global variable. Workaround: Make sure that all 
interrupt handlers are performing at least one function call or are writing a global 
variable. 

CLOCK 

• CLOCK_SYS_GetFreq function returns obsolete core clock frequency right after 
VLPR to HSRUN power mode transition because SCS bitfield from SCG_CSR 
register is not immediately updated (workaround: function to be called twice, second 
call returns correct value). 

EIM 

• An attempt to invert more than 2 bits in check bit mask or data mask might result in 
undefined behavior. To avoid this situation, you should invert a maximum of two bits. 

FlexIO, SAI 
• FlexIO drivers and the SAI driver cannot be simultaneously used in DMA mode due 

to overlapping DMA requests.  
FlexIO_I2C  

• No STOP condition is generated when aborting a transfer due to NACK reception. 

• No clock stretching when the application does not provide data fast enough, so Tx 
underflows and Rx overflows are possible. 

• There is a maximum limit of 13 bytes on the size of any transfer. 

• The driver does not support multi-master mode. It does not detect arbitration loss 
condition. 

• Due to device limitations, it is not always possible to tell the difference between 
NACK reception and receiver overflow. 

Note: FLEXIO I2C issues described above are caused by Hardware limitations. 

FlexIO_SPI 

• The driver does not support back-to-back transmission mode for CPHA = 1 
 



 

 

© 2019 NXP Semiconductors B.V.  14 

 
 
FTM  

• Module can be used only in one mode (e.g. only PWM, OC). For example, this 
configuration is not possible: 4 channels of FTM0 run in PWM and 4 channels of 
FTM0 run in input capture. 

• Complementary channel is not enabled in all configurations for independent 
channels. The workaround is to use complementary channel only for combined 
channels. 

• The Cyclomatic complexity for FTM_DRV_InitPwm is higher than 20. 

FreeRTOS 

• The UI configuration does not open method definition when the method is double-
clicked in the method list. 

I2C_PAL, LPI2C 

• When (LPI2C|I2C)_MasterAbortTransfer is called after a transfer operation was 
started and the address was not sent, the bus may hang. Workaround is to avoid 
calling the function shortly after a transfer was initiated. 

LPI2C 

• LPI2C_DRV_MasterAbortTransferData function can’t abort a master receive transfer 
because the module sees the whole receive as a single operation and will not stop it 
even if the FIFO is reset.  

RTC 

• When using LPO clock as input, the user may need to use LPO trimming to obtain 
the 32kHz frequency needed by RTC module. 

7.3 Examples 

• Running the FLASH driver example from the flash will secure the device. To 
unsecure the MCU a mass erase of the flash needs to be done. 

• Redundant code for configuring pins can be found in the examples. 

• Hello World project S32K146 cannot be debugged on IAR IDE, since the IDE version 
supported by the SDK does not support S32K146. 

• After partitioning Flash for CSEc operation, using the JLink Flash configuration of any 
other project will not work anymore. 
Workaround: 
 - Run csec_keyconfig example with ERASE_ALL_KEYS 0, using PEmicro 
debug configuration 
 - Run csec_keyconfig example with ERASE_ALL_KEYS 1, using PEmicro 
debug configuration 

• Example projects for IAR Embedded Workbench use simulator as default debugger. 
The user has to manually select and configure the debug probe prior to downloading 
to the target. 

• FLASH partitioning example should be run in RAM configuration. 

• An internal error may appear upon importing LPUART example for S32K148; clicking 
the Generate code button once again fixes the error and the example works fine. 

 



 

 

© 2019 NXP Semiconductors B.V.  15 

7.4 Backwards compatibility 

• Existing projects created with S32 SDK EAR 1.8.7 or S32 SDK EAR 1.8.8 

A copy of the Custom section contents is now stored in m_text to be used for region 
initialization. The linker files from the previously created projects have to be updated 
to define __CUSTOM_ROM and __CUSTOM_END. Lines marked with red are 
required in the linker files. 

 

 

GCC: 

  __CUSTOM_ROM = __CODE_END; 

   

  /* Custom Section Block that can be used to place data at absolute address. */ 

  /* Use __attribute__((section (".customSection"))) to place data here. */ 

  .customSectionBlock  ORIGIN(m_data_2) : AT(__CUSTOM_ROM) 

  { 

    __customSection_start__ = .; 

    KEEP(*(.customSection))  /* Keep section even if not referenced. */ 

    __customSection_end__ = .; 

  } > m_data_2 

  __CUSTOM_END = __CUSTOM_ROM + (__customSection_end__ - 
__customSection_start__); 

 

DCC: 

  __CUSTOM_ROM = __CODE_END; 

  /* Custom Section Block that can be used to place data at absolute address. */ 

  /* Use #pragma section to place data here. */ 

  .customSectionBlock LOAD (__CUSTOM_ROM): 

  { 

    __customSection_start__ = .; 

    KEEP(*(.customSection))  /* Keep section even if not referenced. */ 

    __customSection_end__ = .; 

  } 

  __CUSTOM_END = __CUSTOM_ROM + (__customSection_end__ - 
__customSection_start__); 

 

GHS:  

  __CUSTOM_ROM = __CODE_END; 

 

  /* Custom Section Block that can be used to place data at absolute address. */ 

  /* Use __attribute__((section (".customSection"))) to place data here. */ 

  .customSectionBlock : AT(__CUSTOM_ROM) 

  { 

    __customSection_start__ = .; 



 

 

© 2019 NXP Semiconductors B.V.  16 

    "*(.customSection)"      /* Keep section even if not referenced. */ 

    __customSection_end__ = .; 

  } > m_data_2 

  __CUSTOM_END = __CUSTOM_ROM + (__customSection_end__ - 
__customSection_start__); 

 

For IAR: 

 No updates are required. 

  



 

 

© 2019 NXP Semiconductors B.V.  17 

8. Compiler options 
 

The example projects are using the first level of optimizations (low optimizations). 

 

For exceptions from the following compiler settings, additional information can be found in the 
SDK documentation, Build Tools section. 

8.1 IAR Compiler/Linker/Assembler Options 

Table 8.1 IAR Compiler Options 

Option Description 

-Ol Low optimizations 

-e Allow IAR extensions 

--cpu=Cortex-M4 / --cpu Cortex-M0+ Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

--thumb Selects generating code that executes in Thumb 
state. 

--fpu VFPv4_sp / --fpu none Use floating point instructions / Use software 
floating point 

--debug Include debug information 

-D<cpu_define> Define a preprocessor symbol for MCU 

-warnings_are_errors Treat code warnings as errors 

 

Table 8.2 IAR Assembler Options 

Option Description 

--cpu Cortex-M4 / --cpu Cortex-M0+ Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

--thumb Selects generating code that executes in Thumb 
state. 

--fpu VFPv4_sp / --fpu none Use floating point instructions / Use software 
floating point 

-DSTART_FROM_FLASH Mandatory when flash target is used 

 

  



 

 

© 2019 NXP Semiconductors B.V.  18 

Table 8.3 IAR Linker Options 

Option Description 

--cpu Cortex-M4 / --cpu Cortex-M0+ Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

--thumb Selects generating code that executes in Thumb 
state. 

--fpu VFPv4_sp / --fpu none Use floating point instructions / Use software 
floating point 

--map <map_file> Produce a linker memory map file 

--entry Reset_Handler Make the symbol Reset_Handler be treated as a 
root symbol and the start label of the 

application 

--config <linker_file.icf> Use the specified linker file 

 
  



 

 

© 2019 NXP Semiconductors B.V.  19 

8.2 GCC Compiler/Linker/Assembler Options 

Table 8.4 GCC Compiler Options 

Option Description 

-mcpu=cortex-m4 / -mcpu=cortex-m0plus Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

-mthumb Selects generating code that executes in Thumb 
state. 

-O1 Optimize 

-funsigned-char  Let the type char be unsigned, like unsigned char 

-funsigned-bitfields Bit-fields are signed by default 

-fshort-enums Allocate to an enum type only as many bytes as it 
needs for the declared range of possible values. 

-ffunction-sections Place each function into its own section in the 
output file 

-fdata-sections Place data item into its own section in the output 
file 

-fno-jump-tables Do not use jump tables for switch statements 

-std=c99 Use C99 standard 

-g Generate debug information 

-D<cpu_define> Define a preprocessor symbol for MCU 

-mfloat-abi=hard / -mfloat-abi=soft Use FPU instructions / Use software FP 

-mfpu=fpv4-sp-d16 Specify the FPU variant (only for S32K14x) 

-Wall  Produce warnings about questionable constructs 

-Wextra Produce extra warnings that -Wall 

-Wstrict-prototypes Warn if a function is declared or defined without 
specifying the argument types. 

-pedantic Issue all the warnings demanded by strict ISO C 

-Wunused Produce warnings for unused variables 

-Werror Treat warnings as errors 

-Wsign-compare Produce warnings when comparing signed type 
with unsigned type 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

© 2019 NXP Semiconductors B.V.  20 

 

Table 8.5 GCC Assembler Options 

Option Description 

-mcpu=cortex-m4 / -mcpu=cortex-m0plus Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

-mthumb Selects generating code that executes in Thumb 
state. 

-mfloat-abi=hard / -mfloat-abi=soft Use FPU instructions / Use software FP 

-mfpu=fpv4-sp-d16 Specify the FPU variant (only for S32K14x) 

-Wall  Produce warnings about questionable constructs 

-Wextra Produce extra warnings that -Wall 

-Wstrict-prototypes Warn if a function is declared or defined without 
specifying the argument types. 

-pedantic Issue all the warnings demanded by strict ISO C 

-Werror Treat warnings as errors 

-x assembler-with-cpp Preprocess assembly files 

-DSTART_FROM_FLASH Mandatory when flash target is used 

 

Table 8.6 GCC Linker Options 

Option Description 

-mcpu=cortex-m4 / -mcpu=cortex-m0plus Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

-mthumb Selects generating code that executes in Thumb 
state. 

--entry=Reset_Handler Make the symbol Reset_Handler be treated as a 
root symbol and the start label of the 

application 

-T<linker_file.ld> Use the specified linker file 

-mfloat-abi=hard / -mfloat-abi=soft Use FPU instructions / Use software FP 

-mfpu=fpv4-sp-d16 Specify the FPU variant (only for S32K14x) 

-Xlinker –gc-sections Remove unused sections 

-Wl, -Map=<map_file> Produce a map file 

-lgcc Link libgcc 

-lc Link C library 

-lm  Link Math library 

 

 

 

 

 

 

 

 

 



 

 

© 2019 NXP Semiconductors B.V.  21 

8.3 GHS Compiler/Linker/Assembler Options 

Table 8.7 GHS Compiler Options 

Option Description 

-cpu=cortexm0plus / -cpu=cortexm4 Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

-thumb Selects generating code that executes in Thumb 
state. 

-fhard / -fsoft Use FPU instructions / Use software FP 

-fpu=vfpv4_d16 Specify FPU type (only for S32K14x) 

-c99 Use C99 standard 

--gnu_asm Enables GNU extended asm syntax support 

-Ogeneral Optimize 

-gdwarf-2 Generate DWARF 2.0 debug information 

-G Generate debug information 

-D<cpu_define> Define a preprocessor symbol for MCU 

--quit_after_warnings Treat warnings as errors 

-Wimplicit-int Produce warnings if functions are assumed to 
return int 

-Wshadow Produce warnings if variables are shadowed 

-Wtrigraphs Produce warnings if trigraphs are detected 

-Wundef Produce a warning if undefined identifiers are used 
in #if preprocessor statements 

 

Table 8.8 GHS Assembler Options 

Option Description 

-cpu=cortexm0plus / -cpu=cortexm4 Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

-fhard / -fsoft Use FPU instructions / Use software FP 

-fpu=vfpv4_d16 Specify FPU type (only for S32K14x) 

-preprocess_assembly_files  Preprocess assembly files 

DSTART_FROM_FLASH Mandatory when flash target is used 

 

  



 

 

© 2019 NXP Semiconductors B.V.  22 

Table 8.9 GHS Linker Options 

Option Description 

-cpu=cortexm0plus / -cpu=cortexm4 Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

-thumb Selects generating code that executes in Thumb 
state. 

-entry=Reset_Handler Make the symbol Reset_Handler be treated as a 
root symbol and the start label of the 

application 

-T<linker_file.ld> Use the specified linker file 

-map=<map_file> Produce a map file 

-larch Link architecture specific library 

 

  



 

 

© 2019 NXP Semiconductors B.V.  23 

8.4 DIAB Compiler/Linker/Assembler Options 

Table 8.10 DIAB Compiler Options 

Option Description 

-tARMCORTEXM4LV / 

-tARMCORTEXM0PLS 

Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

-mthumb Selects generating code that executes in Thumb 
state. 

-Xdialect-c99 Use C99 standard 

-D<cpu_define> Define a preprocessor symbol for MCU 

-g Add debug information to the executable 

-O Optimize 

-Xstop-on-warning Treat warnings as errors 

 

Table 8.11 DIAB Assembler Options 

Option Description 

-tARMCORTEXM4LV / 

-tARMCORTEXM0PLS 

Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

-mthumb Selects generating code that executes in Thumb 
state. 

-Xpreprocess-assembly Preprocess assembly files 

-DSTART_FROM_FLASH Mandatory when flash target is used 

 

Table 8.12 DIAB Linker Options 

Option Description 

-tARMCORTEXM4LV / 

-tARMCORTEXM0PLS 

Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

-Xremove-unused-sections Removes unused code sections 

-lc Link the standard C library to the project in order to 
support elementary operations that are used by the 
drivers  

-lm Link the standard math library to the project in order 
to support elementary math operations that are 
used by the drivers 

<linker_file.dld> Use the specified linker file 

-e Reset_Handler Make the symbol Reset_Handler be treated as a 
root symbol and the start label of the 

application 

-m6 > <map_file> Produce a linker map 

 

  



 

 

© 2019 NXP Semiconductors B.V.  24 

8.5 ARMC Compiler/Linker/Assembler Options 

Table 8.13 ARMC Compiler Options 

Option Description 

--target=arm-arm-none-eabi Select arm-none-eabi as target architecture 

--cpu=cortex-m4 / --cpu=cortex-m0plus Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

-mthumb Selects generating code that executes in Thumb 
state. 

-O1 Optimize 

-fshort-enums Allocate to an enum type only as many bytes as it 
needs for the declared range of possible values. 

-fdata-sections Place data item into its own section in the output 
file 

-std=c99 Use C99 standard 

-g Generate debug information 

-D<cpu_define> Define a preprocessor symbol for MCU 

-mfloat-abi=hard / -mfloat-abi=soft Use FPU instructions / Use software FP 

-pedantic Issue all the warnings demanded by strict ISO C 

-Weverything Produce warnings for unused variables 

-Werror Treat warnings as errors 

-Wno-switch-enum Do not issue warnings for enum values that are not 
explicitly treated in switch statements 

-Wno-cast-align Do not issue warnings for cast statements that 
increase the required alignment 

-Wno-cast-qual Do not issue warnings for cast statements that are 
discarding const qualifier. 

-Wno-covered-switch-default Do not issue warnings for “default” switch case 
being present when all enum values are covered in 
a switch 

-Wno-reserved-id-macro Do not issue warnings when macros starting with 
double underscore (e.g. __IO) are present in the 
code. 

-Wno-padded Do not issue warnings when padding is added. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

© 2019 NXP Semiconductors B.V.  25 

Table 8.14 ARMC Assembler Options 

Option Description 

--target=arm-arm-none-eabi Select arm-none-eabi as target architecture 

--cpu=cortex-m4 / --cpu=cortex-m0plus Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

-mfloat-abi=hard / -mfloat-abi=soft Use FPU instructions / Use software FP 

--cpreproc Instructs the assembler to call armcc to preprocess 
the input file before assembling it 

--cpreproc_opts Enables the assembler to pass options to the 
compiler when using the C preprocessor 

-DSTART_FROM_FLASH Mandatory define when flash target is used 

 

Table 8.15 ARMC Linker Options 

Option Description 

--target=arm-arm-none-eabi Select arm-none-eabi as target architecture 

--cpu=cortex-m4 / --cpu=cortex-m0plus Selects target processor: Arm Cortex M4 / Arm 
Cortex M0+ 

--entry Reset_Handler Make the symbol Reset_Handler be treated as a 
root symbol and the start label of the 

application 

--scatter “<scatter_file>” Use the specified scatter file 

--datacompressor off Turn off compression for data sections 

--map Produce a map file 

--list=<map_file> Assign a file for the map 

--symbols Save the symbol information in the map file 

 

Note: The symbol <linker_file> must be replaced with the corresponding path and linker file name per 
device, memory model and target compiler.  

E.g. C:\NXP\S32_SDK\platform\devices\S32K144\linker\gcc\S32K144_64_flash.ld - for S32K144, 64 KB 
of SRAM and Flash target on GCC. 

Symbol <map_file> shall be replaced with the desired map file name.  

Symbol <cpu_define> shall be replaced with CPU_S32K144HFT0VLLT for S32K144, CPU_S32K148 for 
S32K148, CPU_S32K142 for S32K142 and CPU_S32K146 for S32K146.  

  



 

 

© 2019 NXP Semiconductors B.V.  26 

9. Acronyms 
 

Acronym  Description  

EAR  Early Access Release  

JRE Java Runtime Environment 

EVB Evaluation board 

PAL Peripheral Abstraction Layer  

RTOS  Real Time Operating System  

PEx Processor Expert Configurator 

PD  Peripheral Driver 

RTM Ready to Manufacture 

S32DS  S32 Design Studio IDE 

SDK  Software Development Kit  

SOC  System-on-Chip  

sCST Structural Core Self Test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

© 2019 NXP Semiconductors B.V.  27 

10. Version Tracking 
 

Date  
(dd-Mmm-YYYY) 

Version Comments Author 

30-Oct-2015 1.0 First version for EAR 0.8.0 
Vlad Baragan-

Stroe 

18-Dec-2015 1.1 Added patch 1  
Vlad Baragan-

Stroe 

01-Apr-2016 2.0 
Added drivers, new in release section, updated 
examples, known limitations for EAR 0.8.1 

Vlad Baragan-
Stroe 

27-Oct-2016 3.0 

Updated new in this release section, known limitations 
and examples description for EAR 0.8.2 release. 

Added “Compiler options” section. 

Updated header, footer and front page with new logos 

Rares Vasile 

21-Dec-2016 4.0 Updated Release Notes for 0.9.0 BETA release Rares Vasile 

23-Mar-2017 5.0 Updated Release Notes for 1.0.0 RTM release Rares Vasile 

04-May-2017 6.0 Updated Release Notes for 0.8.3 EAR release Rares Vasile 

10-May-2017 6.1 
Updated Release Notes for 0.8.3 EAR release - 
Added drivers, new in release section, updated 
examples, known limitations for EAR 0.8.3 

Cezar Dobromir 

27-Jun-2017 7.0 Updated for EAR 0.8.4 release Rares Vasile 

31-Aug-2017 8.0 Updated for EAR 0.8.5 release Rares Vasile 

27-Nov-2017 9.0 Updated for EAR 0.8.6 release Rares Vasile 

3-May-2018 10.0 Updated for BETA 1.9.0 release Rares Vasile 

26-Jun-2018 11.0 Updated for RTM 2.0.0 release Rares Vasile 

21-Aug-2018 12.0 Updated for BETA 2.9.0 release Rares Vasile 

21-Nov-2018 13.0 Updated for BETA 2.9.2 release Vlad Lionte 

21-Feb-2019 14.0 Updated for RTM 3.0.0 release Vlad Lionte 

 


