

Industrial Ethernet Protocol Stack: EtherCAT

EtherCAT (Ethernet for Control Automation Technology) is a high-performance Ethernet-based fieldbus system developed by Beckhoff, based on IEC61158.

As part of a suite of robust, certifiable industrial ethernet protocols on a common software architecture, NXP offers EtherCAT
SubDevice protocol software for selected NXP SoCs. An example implementation an IO device using the EtherCAT fieldbus is available as a binary image for evaluation on the i.MX
RT1180 evaluation kit. A combination source code/compiled object library is available for integration in an EtherCAT-based end-product based on i.MX RT1180. This software includes a comprehensive set of examples, such as CSP Mode DS402.

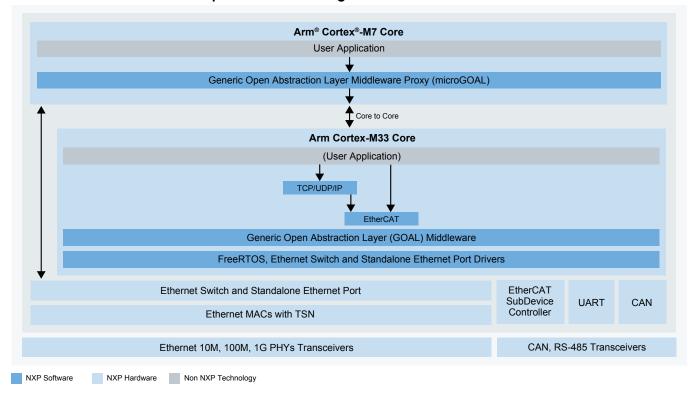
Benefits of NXP's EtherCAT protocol stack

- Provides a complete EtherCAT IO device reference implementation
- · Requires no external RAM
- Handles network protocol on the real-time Arm®
 Cortex®-M33 core, with inter-core communication to the high-speed real-time Arm Cortex-M7 application core
- Offers low resource consumption (memory and power)
- Ensures excellent conditions for conformance testing
- Integrates with NXP's Industrial Communications Creator (ICC) tool to simplify protocol data structure configuration
- Part of the Industrial Protocol Suite, underpinned by the GOAL Framework, enabling easier application migration across multiple protocols and NXP SoCs

MCUXpresso Developer Experience

Designed to simplify and accelerate embedded system development and optimization, the MCUXpresso ecosystem delivers high-quality, comprehensive enablement for NXP's general-purpose, crossover, and wireless-enabled Arm Cortex-M-based MCUs. It supports easy migration and scalability across MCU families, helping developers streamline workflows and reduce time-to-market.

NXP's EtherCAT protocol stack features


CANopen over EtherCAT (CoE) with rich options:

- CoE Object Dictionary
- CoE SDO Communication
- SDO Expedited transfer
- Multiple other SDO management capabilities
- · CoE Emergency Producer

File Access over EtherCAT (FoE)

· Supports e.g. firmware update over EtherCAT

EtherCAT industrial Ethernet protocol block diagram

Ethernet over EtherCAT (EoE)

Supports devices requiring standard ethernet access over the EtherCAT Fieldbus

Other features

- Transmit and Receive PDOs with dynamic PDO mapping
- · Clock distribution
- · Sync managers
- EEPROM PDI access and emulation

FreeRTOS implementation

NXP enhancements

- Hardware-independent and hardware-dependent components communicate via message queues
- The application interacts only with the hardwareindependent layer, simplifying migration to other protocols and NXP SoCs
- Incoming communication from other devices is validated by the stack before reaching the user application

 Evaluation binary images and the Industrial Communications Explorer tool are available on nxp. com

Getting started with EtherCAT:

- Download the <u>i.MX RT1180 EtherCAT binary</u> evaluation image.
- 2. Download the <u>Industrial Communication Explorer</u> evaluation tool.
- 3. Access the <u>Industrial Networking Protocols</u>
 <u>Knowledge Base</u> on NXP Community for installation and evaluation instructions.

Additional resources:

- 1. i.MX RT1180 evaluation kit
- 2. <u>EtherCAT training</u>: i.MX RT1180 setup, integration and industrial networking
- 3. NXP support and technical community

