
This report applies to mask 1N03P for these products:
• MK80FN256Vxx15
• MK82FN256Vxx15
• MK81FN256Vxx15

Table 1. Errata and Information Summary

Erratum ID Erratum Title

e8992 AWIC: Early NMI wakeup not detected upon entry to stop mode from VLPR mode

e6939 Core: Interrupted loads to SP can cause erroneous behavior

e9005 Core: Store immediate overlapping exception return operation might vector to incorrect interrupt

e6940 Core: VDIV or VSQRT instructions might not complete correctly when very short ISRs are used

e50117 FAC: Execute-only access control feature has been deprecated

e9265 FTM: Incorrect match may be generated if intermediate load feature is used in toggle mode

e9457 Kinetis Flashloader/ ROM Bootloader: The peripheral auto-detect code in bootloader can falsely detect
presence of SPI host causing non-responsive bootloader

e9274 LTC: Data Size Register does not handle concurrent update requests for CCM or GCM

e9407 LTC: Writing individual bytes of PKHA RAM will cause adjacent bytes within the same 32-bit word to
be corrupted.

e7735 MCG: IREFST status bit may set before the IREFS multiplexor switches the FLL reference clock

e9650 QuadSPI: Not all QuadSPI implementations supported

e9651 QuadSPI: QuadSPI SDR clock limitation when core clock is greater than 100MHz

e9461 QuadSPI: Read data errors may occur with data learning in 4x sampling method

e9626 ROM Bootloader: Aliased QuadSPI address space is not supported by the Kinetis Bootloader
command APIs

e9627 ROM Bootloader: Cannot boot into QuadSPI DDR mode

e3981 SDHC: ADMA fails when data length in the last descriptor is less or equal to 4 bytes

e3982 SDHC: ADMA transfer error when the block size is not a multiple of four

e4624 SDHC: AutoCMD12 and R1b polling problem

e3977 SDHC: Does not support Infinite Block Transfer Mode

Table continues on the next page...

NXP Semiconductors Kinetis_K_1N03P

Mask Set Errata Rev. 09 JUL 2019

Mask Set Errata for Mask 1N03P



Table 1. Errata and Information Summary (continued)

Erratum ID Erratum Title

e4627 SDHC: Erroneous CMD CRC error and CMD Index error may occur on sending new CMD during data
transfer

e3984 SDHC: eSDHC misses SDIO interrupt when CINT is disabled

e3983 SDHC: Problem when ADMA2 last descriptor is LINK or NOP

e3978 SDHC: Software can not clear DMA interrupt status bit after read operation

e9625 System: Leakage is possible on some PORTE pins when VDD is greater than VDDIO_E

e8807 USB: In Host mode, transmission errors may occur when communicating with a Low Speed (LS)
device through a USB hub

Table 2. Revision History

Revision Changes

09 Sept 2015 Initial revision

09 JUL 2019 The following errata were added.

• e50117

The following errata were revised.

• e6940
• e9005
• e6939
• e9650

e8992: AWIC: Early NMI wakeup not detected upon entry to stop mode from VLPR
mode

Description: Upon entry into VLPS from VLPR, if NMI is asserted before the VLPS entry completes, then
the NMI does not generate a wakeup to the MCU. However, the NMI interrupt will occur after
the MCU wakes up by another wake-up event.

Workaround: There are two workarounds:

1) First transition from VLPR mode to RUN mode, and then enter into VLPS mode from RUN
mode.

2) Assert NMI signal for longer than 16 bus clock cycles.

e6939: Core: Interrupted loads to SP can cause erroneous behavior

Description: Arm Errata 752770: Interrupted loads to SP can cause erroneous behavior

Mask Set Errata for Mask 1N03P, Rev. 09 JUL 2019

2 NXP Semiconductors



This issue is more prevalent for user code written to manipulate the stack. Most compilers will
not be affected by this, but please confirm this with your compiler vendor. MQX™ and
FreeRTOS™ are not affected by this issue.

Affects: Cortex-M4, Cortex-M4F

Fault Type: Programmer Category B

Fault Status: Present in: r0p0, r0p1 Open.

If an interrupt occurs during the data-phase of a single word load to the stack-pointer (SP/
R13), erroneous behavior can occur. In all cases, returning from the interrupt will result in the
load instruction being executed an additional time. For all instructions performing an update to
the base register, the base register will be erroneously updated on each execution, resulting in
the stack-pointer being loaded from an incorrect memory location.

The affected instructions that can result in the load transaction being repeated are:

1) LDR SP,[Rn],#imm

2) LDR SP,[Rn,#imm]!

3) LDR SP,[Rn,#imm]

4) LDR SP,[Rn]

5) LDR SP,[Rn,Rm]

The affected instructions that can result in the stack-pointer being loaded from an incorrect
memory address are:

1) LDR SP,[Rn],#imm

2) LDR SP,[Rn,#imm]!

Conditions:

1) An LDR is executed, with SP/R13 as the destination.

2) The address for the LDR is successfully issued to the memory system.

3) An interrupt is taken before the data has been returned and written to the stack-pointer.

Implications:

Unless the load is being performed to Device or Strongly-Ordered memory, there should be no
implications from the repetition of the load. In the unlikely event that the load is being
performed to Device or Strongly-Ordered memory, the repeated read can result in the final
stack-pointer value being different than had only a single load been performed.

Interruption of the two write-back forms of the instruction can result in both the base register
value and final stack-pointer value being incorrect. This can result in apparent stack corruption
and subsequent unintended modification of memory.

Workaround: Most compilers are not affected by this, so a workaround is not required.

However, for hand-written assembly code to manipulate the stack, both issues may be worked
around by replacing the direct load to the stack-pointer, with an intermediate load to a general-
purpose register followed by a move to the stack-pointer.

If repeated reads are acceptable, then the base-update issue may be worked around by
performing the stack pointer load without the base increment followed by a subsequent ADD or
SUB instruction to perform the appropriate update to the base register.

Mask Set Errata for Mask 1N03P, Rev. 09 JUL 2019

NXP Semiconductors 3



e9005: Core: Store immediate overlapping exception return operation might vector to
incorrect interrupt

Description: Arm Errata 838869: Store immediate overlapping exception return operation might vector to
incorrect interrupt

Affects: Cortex-M4, Cortex-M4F

Fault Type: Programmer Category B Rare

Fault Status: Present in: r0p0, r0p1 Open.

The Cortex-M4 includes a write buffer that permits execution to continue while a store is
waiting on the bus. Under specific timing conditions, during an exception return while this
buffer is still in use by a store instruction, a late change in selection of the next interrupt to be
taken might result in there being a mismatch between the interrupt acknowledged by the
interrupt controller and the vector fetched by the processor.

Configurations Affected

This erratum only affects systems where writeable memory locations can exhibit more than
one wait state.

Workaround: For software not using the memory protection unit, this erratum can be worked around by
setting DISDEFWBUF in the Auxiliary Control Register.

In all other cases, the erratum can be avoided by ensuring a DSB occurs between the store
and the BX instruction. For exception handlers written in C, this can be achieved by inserting
the appropriate set of intrinsics or inline assembly just before the end of the interrupt function,
for example:

ARMCC:

...

__schedule_barrier();

__asm{DSB};

__schedule_barrier();

}

GCC:

...

__asm volatile (“dsb 0xf” ::: “memory”);

}

e6940: Core: VDIV or VSQRT instructions might not complete correctly when very
short ISRs are used

Description: Arm Errata 709718: VDIV or VSQRT instructions might not complete correctly when very short
ISRs are used

Affects: Cortex-M4F

Fault Type: Programmer Category B

Fault Status: Present in: r0p0, r0p1 Open.

Mask Set Errata for Mask 1N03P, Rev. 09 JUL 2019

4 NXP Semiconductors



On Cortex-M4 with FPU, the VDIV and VSQRT instructions take 14 cycles to execute. When
an interrupt is taken a VDIV or VSQRT instruction is not terminated, and completes its
execution while the interrupt stacking occurs. If lazy context save of floating point state is
enabled then the automatic stacking of the floating point context does not occur until a floating
point instruction is executed inside the interrupt service routine.

Lazy context save is enabled by default. When it is enabled, the minimum time for the first
instruction in the interrupt service routine to start executing is 12 cycles. In certain timing
conditions, and if there is only one or two instructions inside the interrupt service routine, then
the VDIV or VSQRT instruction might not write its result to the register bank or to the FPSCR.

Workaround: A workaround is only required if the floating point unit is present and enabled. A workaround is
not required if the memory system inserts one or more wait states to every stack transaction.

There are two workarounds:

1) Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the
FPCCR at address 0xE000EF34).

2) Ensure that every interrupt service routine contains more than 2 instructions in addition to
the exception return instruction.

e50117: FAC: Execute-only access control feature has been deprecated

Description: The FAC feature is no longer recommended for use.

Workaround: Do not program the XACCn registers to use the FAC feature.

e9265: FTM: Incorrect match may be generated if intermediate load feature is used in
toggle mode

Description: When a channel (n) match is used as an intermediate reload, an incorrect second match may
occur immediately following the correct match. The issue is problematic only if channel (n) is
configured for output compare with the output configured to toggle mode. In this scenario,
channel (n) toggles on the correct match and again on the incorrect match. The issue may also
occur if a certain channel has a match which is coincident with an intermediate reload point of
any other channel.

Workaround: If any channel is configured for output compare mode with the output set for toggle mode, the
intermediate reload feature must not be used.

e9457: Kinetis Flashloader/ ROM Bootloader: The peripheral auto-detect code in
bootloader can falsely detect presence of SPI host causing non-responsive
bootloader

Description: During the active peripheral detection process, the bootloader can interpret spurious data on
the SPI peripheral as valid data. The spurious data causes the bootloader to shutdown all
peripherals except the “falsely detected" SPI and enter the command phase loop using the
SPI. After the bootloader enters the command phase loop using the SPI, the other peripherals
are ignored, so the desired peripheral is no longer active.

The bootloader will not falsely detect activity on the I2C, UART, or USB interfaces, so only the
SPI interface is affected.

Mask Set Errata for Mask 1N03P, Rev. 09 JUL 2019

NXP Semiconductors 5



Workaround: Ensure that there is an external pull-up on the SPI chip-select pin or that the pin is driven high.
This will prevent the bootloader from seeing spurious data due to activity on the SPI clock pin.

e9274: LTC: Data Size Register does not handle concurrent update requests for CCM
or GCM

Description: In CCM and GCM AES modes, it is possible that if the AESA tries to decrement the data size
register, LTC0_DS, in the same cycle in which software writes the IV size, AAD size or data
size registers, then the LTC will update the data size with that value rounded up to the next 16
bytes. This will cause the AESA to become out of sync and not recognize when the last block
is being processed.

The CCM and GCM modes are the only ones that utilize the IV/AAD data type.

Workaround: There two possible workarounds for this issue.

1) Write all IV, AAD and MDATA sizes to LTC0_IVSZ, LTC0_AADSZ and LTC0_DS registers
respectively before any data is written to LTC0_IFIFO.

2) After the IV size is written and IV is written to LTC0_IFIFO in GCM mode, then poll the
LTC0_DS register until it reads 16 before the AAD or MDATA sizes are written. Likewise, after
the AAD size is written and AAD written to LTC0_IFIFO, poll the LTC0_DS register until it
reads 16 before the MDATA size is written to LTC0_DS register. The reason 16 should be
waited for instead of 0 is that in these modes AESA will stall processing until it has at least 2
blocks (32 bytes to process), or until bit 31 is written in LTC0_IVSZ or LTC0_AADSZ registers
indicating that only IV/AAD are being processed in this job. This enables special actions to be
taken in case the next block to be processed is the last one.

e9407: LTC: Writing individual bytes of PKHA RAM will cause adjacent bytes within the
same 32-bit word to be corrupted.

Description: In LTC containing PKHA, the PKHA RAM is written from a 32-bit interface. Normally, each
write consists of 4 bytes of data to be written. However, for writes of only 1-3 bytes, the non-
written bytes within the same word will be overwritten with incorrect data.

Workaround: Always write all 32-bits of any word within PKHA RAM. If modifying an individual byte within a
word of PKHA RAM is required, first read the full word, merge in the byte(s) to be written, then
write back the entire new word.

e7735: MCG: IREFST status bit may set before the IREFS multiplexor switches the FLL
reference clock

Description: When transitioning from MCG clock modes FBE or FEE to either FBI or FEI, the
MCG_S[IREFST] bit will set to 1 before the IREFS clock multiplexor has actually selected the
slow IRC as the reference clock. The delay before the multiplexor actually switches is:

2 cycles of the slow IRC + 2 cycles of OSCERCLK

In the majority of cases this has no effect on the operation of the device.

Mask Set Errata for Mask 1N03P, Rev. 09 JUL 2019

6 NXP Semiconductors



Workaround: In the majority of applications no workaround is required. If there is a requirement to know
when the IREFS clock multiplexor has actually switched, and OSCERCLK is no longer being
used by the FLL, then wait the equivalent time of:

2 cycles of the slow IRC + 2 cycles of OSCERCLK

after MCG_S[IREFST] has been set to 1.

e9650: QuadSPI: Not all QuadSPI implementations supported

Description: The following QuadSPI implementation is not supported:

- two separate QuadSPI/Dual Die flash in DDR mode with DQS.

Workaround: Use one of the following QuadSPI implementations which are supported:

- two separate QuadSPI/Dual Die flash in SDR or DDR mode without DQS

- Spansion HyperFlash™ NOR memory

- Octal Flash (SDR or DDR)

- Single Die Flash (SDR or DDR)

e9651: QuadSPI: QuadSPI SDR clock limitation when core clock is greater than
100MHz

Description: The MCGPLL 2x clock cannot be used as the QuadSPI source clock (selected by
QuadSPIx_SOCCR[QSPISRC]) when the MCGPLL clock is over 100MHz and
QuadSPIx_SOCCR[SCLKCFG] is non-zero.

This means that when running the core clock at above 100MHz, the QuadSPI SDR clock
cannot be 100MHz because it requires the use of the MCGPLL 2x clock to derive that
QuadSPI clock speed.

Workaround: To run the QuadSPI SDR clock at 100MHz, the MCGPLL/core clock will also need to run at
100MHz.

If the core clock is run above 100MHz, the SDR clock can be generated by dividing the
MCGPLL clock by 2, meaning that a 75MHz maximum SDR clock speed is possible with the
core clock at 150MHz.

e9461: QuadSPI: Read data errors may occur with data learning in 4x sampling method

Description: Data learning using 4x Sampling method may select a sampling point which is marginal. A
marginal sampling point occurs when the sampling point is located on the edge of the valid
sampling window. A marginal sampling point may return a positive comparison of the data
learning pattern but small variations in voltage and temperature during the same read
transaction may result in data errors, since the sampling point is not properly located inside the
valid sampling window.

Workaround: There are two options:

Mask Set Errata for Mask 1N03P, Rev. 09 JUL 2019

NXP Semiconductors 7



• Internal DQS method allows to perform data learning as described on the Reference
Manual.

• If 4x Sampling method is used, data learning should not be used and a fixed sampling
point must be selected.

e9626: ROM Bootloader: Aliased QuadSPI address space is not supported by the
Kinetis Bootloader command APIs

Description: The Kinetis ROM Bootloader does not recognize QuadSPI alias space, starting at
0x0400_0000, as a valid address space. This means that API commands used to program
data into this space will not succeed, and attempts to boot directly to an address in the alias
space will return status error code ‘kStatus_OutOfRange'.

Workaround: To program the alias memory space, use the normal QuadSPI address space starting at
address 0x6800_0000.

To begin executing code from the aliased space, the bootloader must first jump to the normal
QuadSPI address space starting at 0x6800_0000, or to internal Flash address space, and then
the code located in that address space should then jump to an address in the aliased space.

e9627: ROM Bootloader: Cannot boot into QuadSPI DDR mode

Description: Certain fields required to configure QuadSPI for DDR mode are not able to be set by the ROM
Bootloader. Thus a workaround is required for the application image for the ROM to boot into
DDR mode.

Workaround: When writing an application image to QuadSPI, a piece of code must first be loaded and
executed from RAM to configure QuadSPI DDR mode before using the ROM Bootloader to
write the image to QuadSPI. When booting from QuadSPI, the QuadSPI configuration block
must be located in internal Flash memory and the application must start executing from
internal Flash in order to configure QuadSPI DDR mode before jumping to a QuadSPI
address. The KBLQSPIUG has more information on this setup.

e3981: SDHC: ADMA fails when data length in the last descriptor is less or equal to 4
bytes

Description: A possible data corruption or incorrect bus transactions on the internal AHB bus, causing
possible system corruption or a stall, can occur under the combination of the following
conditions:

1. ADMA2 or ADMA1 type descriptor

2. TRANS descriptor with END flag

3. Data length is less than or equal to 4 bytes (the length field of the corresponding descriptor
is set to 1, 2, 3, or 4) and the ADMA transfers one 32-bit word on the bus

4. Block Count Enable mode

Workaround: The software should avoid setting ADMA type last descriptor (TRANS descriptor with END
flag) to data length less than or equal to 4 bytes. In ADMA1 mode, if needed, a last NOP
descriptor can be appended to the descriptors list. In ADMA2 mode this workaround is not
feasible due to ERR003983.

Mask Set Errata for Mask 1N03P, Rev. 09 JUL 2019

8 NXP Semiconductors



e3982: SDHC: ADMA transfer error when the block size is not a multiple of four

Description: Issue in eSDHC ADMA mode operation. The eSDHC read transfer is not completed when
block size is not a multiple of 4 in transfer mode ADMA1 or ADMA2. The eSDHC DMA
controller is stuck waiting for the IRQSTAT[TC] bit in the interrupt status register.

The following examples trigger this issue:

1. Working with an SD card while setting ADMA1 mode in the eSDHC

2. Performing partial block read

3. Writing one block of length 0x200

4. Reading two blocks of length 0x22 each. Reading from the address where the write
operation is performed. Start address is 0x512 aligned. Watermark is set as one word during
read. This read is performed using only one ADMA1 descriptor in which the total size of the
transfer is programmed as 0x44 (2 blocks of 0x22).

Workaround: When the ADMA1 or ADMA2 mode is used and the block size is not a multiple of 4, the block
size should be rounded to the next multiple of 4 bytes via software. In case of write, the
software should add the corresponding number of bytes at each block end, before the write is
initialized. In case of read, the software should remove the dummy bytes after the read is
completed.

For example, if the original block length is 22 bytes, and there are several blocks to transfer,
the software should set the block size to 24. The following data is written/stored in the external
memory:

4 Bytes valid data

4 Bytes valid data

4 Bytes valid data

4 Bytes valid data

4 Bytes valid data

2 Bytes valid data + 2 Byte dummy data

4 Bytes valid data

4 Bytes valid data

4 Bytes valid data

4 Bytes valid data

4 Bytes valid data

2 Bytes valid data + 2 Byte dummy data

In this example, 48 (24 × 2) bytes are transferred instead of 44 bytes. The software should
remove the dummy data.

Mask Set Errata for Mask 1N03P, Rev. 09 JUL 2019

NXP Semiconductors 9



e4624: SDHC: AutoCMD12 and R1b polling problem

Description: Occurs when a pending command which issues busy is completed. For a command with R1b
response, the proper software sequence is to poll the DLA for R1b commands to determine
busy state completion. The DLA polling is not working properly for the ESDHC module and
thus the DLA bit in PRSSTAT register cannot be polled to wait for busy state completion. This
is relevant for all eSDHC ports (eSDHC1-4 ports).

Workaround: Poll bit 24 in PRSSTAT register (DLSL[0] bit) to check that wait busy state is over.

e3977: SDHC: Does not support Infinite Block Transfer Mode

Description: The eSDHC does not support infinite data transfers, if the Block Count register is set to one,
even when block count enable is not set.

Workaround: The following software workaround can be used instead of the infinite block mode:

1. Set BCEN bit to one and enable block count

2. Set the BLKCNT to the maximum value in Block Attributes Register (BLKATTR) (0xFFFFfor
65535 blocks)

e4627: SDHC: Erroneous CMD CRC error and CMD Index error may occur on sending
new CMD during data transfer

Description: When sending new, non data CMD during data transfer between the eSDHC and EMMC card,
the module may return an erroneous CMD CRC error and CMD Index error. This occurs when
the CMD response has arrived at the moment the FIFO clock is stopped. The following bits
after the start bit of the response are wrongly interpreted as index, generating the CRC and
Index errors.

The data transfer itself is not impacted.

The rate of occurrence of the issue is very small, as there is a need for the following
combination of conditions to occur at the same cycle:

• The FIFO clock is stopped due to FIFO full or FIFO empty

• The CMD response start bit is received

Workaround: The recommendation is to not set FIFO watermark level to a too small value in order to reduce
frequency of clock pauses.

The problem is identified by receiving the CMD CRC error and CMD Index error. Once this
issue occurs, one can send the same CMD again until operation is successful.

e3984: SDHC: eSDHC misses SDIO interrupt when CINT is disabled

Description: An issue is identified when interfacing the SDIO card. There is a case where an SDIO interrupt
from the card is not recognized by the hardware, resulting in a hang.

Mask Set Errata for Mask 1N03P, Rev. 09 JUL 2019

10 NXP Semiconductors



If the SDIO card lowers the DAT1 line (which indicates an interrupt) when the SDIO interrupt is
disabled in the eSDHC registers (that is, CINTEN bits in IRQSTATEN and IRQSIGEN are set
to zero), then, after the SDIO interrupt is enabled (by setting the CINTEN bits in IRQSTATEN
and IRQSIGEN registers), the eSDHC does not sense that the DAT1 line is low. Therefore, it
fails to set the CINT interrupt in IRQSTAT even if DAT1 is low.

Generally, CINTEN bit is disabled in interrupt service.

The SDIO interrupt service steps are as follows:

1. Clear CINTEN bit in IRQSTATEN and IRQSIGEN.

2. Reset the interrupt factors in the SDIO card and write 1 to clear the CINT interrupt in
IRQSTAT.

3. Re-enable CINTEN bit in IRQSTATEN and IRQSIGEN.

If a new SDIO interrupt from the card occurs between step 2 and step 3, the eSDHC skips it.

Workaround: The workaround interrupt service steps are as follows:

1. Clear CINTEN bit in IRQSTATEN and IRQSIGEN.

2. Reset the interrupt factors in the SDIO card and write 1 to clear CINT interrupt in IRQSTAT.

3. Clear and then set D3CD bit in the PROCTL register. Clearing D3CD bit sets the reverse
signal of DAT1 to low, even if DAT1 is low. After D3CD bit is re-enabled, the eSDHC can catch
the posedge of the reversed DAT1 signal, if the DAT1 line is still low.

4. Re-enable CINTEN bit in IRQSTATEN and IRQSIGEN.

e3983: SDHC: Problem when ADMA2 last descriptor is LINK or NOP

Description: ADMA2 mode in the eSDHC is used for transfers to/from the SD card. There are three types of
ADMA2 descriptors: TRANS, LINK or NOP. The eSDHC has a problem when the last
descriptor (which has the End bit ‘1’) is a LINK descriptor or a NOP descriptor.

In this case, the eSDHC completes the transfers associated with this descriptor set, whereas it
does not even start the transfers associated with the new data command. For example, if a
WRITE transfer operation is performed on the card using ADMA2, and the last descriptor of
the WRITE descriptor set is a LINK descriptor, then the WRITE is successfully finished. Now, if
a READ transfer is programmed from the SD card using ADMA2, then this transfer does not go
through.

Workaround: Software workaround is to always program TRANS descriptor as the last descriptor.

e3978: SDHC: Software can not clear DMA interrupt status bit after read operation

Description: After DMA read operation, if the SDHC System Clock is automatically gated off, the DINT
status can not be cleared by software.

Workaround: Set HCKEN bit before starting DMA read operation, to disable SDHC System Clock auto-
gating feature; after the DINT and TC bit received when read operation is done, clear HCKEN
bit to re-enable the SDHC System Clock auto-gating feature.

Mask Set Errata for Mask 1N03P, Rev. 09 JUL 2019

NXP Semiconductors 11



e9625: System: Leakage is possible on some PORTE pins when VDD is greater than
VDDIO_E

Description: There is current leakage observed from VDD to ground on a particular PORTE pin if all of the
following conditions are met:

1) VDD is greater than VDDIO_E.

2) The pin is set as an input or as bidirectional (as in the case of a QuadSPI data pin).

3) The pin is being driven to a VDDIO_E level (logic high).

Only the following 8 pins are affected: PTE1, PTE2, PTE4, PTE6, PTE9, PTE10, PTE17, and
PTE18.

Workaround: 1) Setting VDD equal to VDDIO_E avoids this issue.

2) If VDD is greater than VDDIO_E, then when possible, an affected pin should be pulled to
ground either by an internal or external pull-down. This is particularly important before entering
low power modes to avoid unnecessary leakage.

e8807: USB: In Host mode, transmission errors may occur when communicating with a
Low Speed (LS) device through a USB hub

Description: In Host mode, if the required 48 MHz USB clock is not derived from the same clock source
used by the core, transmission errors may occur when communicating with a Low Speed (LS)
device through a USB hub. A typical example that causes this issue is when an external 48
MHz clock is used for the USB module via the USB_CLKIN pin, and a separate external clock
on XTAL/EXTAL is used to generate the system/core clock.

This issue does not occur when in USB Device mode or if the LS device is not connected
through a USB hub.

Workaround: In Host mode, ensure the 48 MHz USB clock is derived from the same clock source that the
system clock uses. The two clocks, while they do not need to be the same frequency, both
need to come from the same source so that they are in sync. For example, generate the 48
MHz USB clock by dividing down the PLL clock used by the core/system via the
SIM_CLKDIV2[USBFRAC] and SIM_CLKDIV2[USBDIV] bit fields.

Mask Set Errata for Mask 1N03P, Rev. 09 JUL 2019

12 NXP Semiconductors



How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use

NXP products. There are no express or implied copyright licenses granted hereunder to design or

fabricate any integrated circuits based on the information in this document. NXP reserves the right to

make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any

particular purpose, nor does NXP assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets

and/or specifications can and do vary in different applications, and actual performance may vary over

time. All operating parameters, including “typicals,” must be validated for each customer application

by customerʼs technical experts. NXP does not convey any license under its patent rights nor the

rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified

vulnerabilities. Customers are responsible for the design and operation of their applications and

products to reduce the effect of these vulnerabilities on customer's applications and products, and

NXP accepts no liability for any vulnerability that is discovered. Customers should implement

appropriate design and operating safeguards to minimize the risks associated with their applications

and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,

the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS

are trademarks of NXP B.V. All other product or service names are the property of their respective

owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,

CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,

RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of

patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

© 2019 NXP B.V.

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Known Errata
	e8992
	e6939
	e9005
	e6940
	e50117
	e9265
	e9457
	e9274
	e9407
	e7735
	e9650
	e9651
	e9461
	e9626
	e9627
	e3981
	e3982
	e4624
	e3977
	e4627
	e3984
	e3983
	e3978
	e9625
	e8807


