

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

Order this document
by EB310/D

Motorola Semiconductor Engineering Bulletin

EB310

Using Bus Error Stack Frames to Diagnose CPU32
Released Write Faults
By Charles Melear

Austin, Texas

Introduction

This engineering bulletin describes a methodology that uses bus error
(BERR) stack frames to diagnose problems in a memory transaction in
the write unit of the CPU32.

When an instruction must perform a write to external memory, the
instruction finishes execution as soon as the instruction delivers the
address and data of the memory transaction to the write unit. Once the
transaction is handed to the write unit, the CPU will begin execution of
the next instruction.

If the memory transaction in the write unit faults – for example, is
terminated by a BERR – a bus error stack frame will be generated. The
BERR will cause the write unit to abort the write cycle. This aborted cycle
is referred to as a released write fault. The address of the current
instruction will be put into the stack frame, although the current
instruction generally is not the instruction that caused the fault.
© Motorola, Inc., 1999 EB310

For More Information On This Product,
 Go to: www.freescale.com

Engineering Bulletin

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

What to Do When a Bus Error Occurs

When the CPU32 executes an instruction that writes data to external
memory, the last part of the instruction is used to actually perform the
write. An effective address (EA) is calculated along with the data and is
then delivered to the write unit. As soon as the CPU32 has delivered the
effective address and data to the write unit, the CPU32 can begin
execution of another instruction. As long as the write unit is not needed
for a subsequent instruction, the CPU32 can continue executing new
instructions while the transaction in the write unit is pending.

The transaction in the write unit can get delayed indefinitely if the
transaction is waiting on an external DSACK that never gets asserted.
Obviously, this would be an errant condition. In the absence of some
type of bus monitor, such a condition could permanently stall the
transaction. Usually, the internal bus monitor of the CPU32 derivative is
set up to catch excessive external data transfer times. If the bus monitor
times out, a BERR will be signaled.

If a bus error occurs, the transaction in the write unit will be released,
thus the term released write fault. Once the transaction is released, the
transaction cannot be restarted.

There is no guaranteed way to recover from a released write fault. This
is because the current instruction being executed may not and probably
will not be the instruction that generated the faulted transaction in the
write unit.

The occurrence of a released write fault is determined inside the BERR
exception handler where the special status word is examined.
Depending upon the actual cause of the BERR, one of three sets of
information will be put on the stack. This information is detailed in the
figures that follow. The exception handler begins by examining bits 15
and 14 of the special status word. These bits will be %00, %01, or %10,
depending upon the type of fault that causes the BERR.

The three different types of BERR stack frames are shown in Figure 1 ,
Figure 2 , and Figure 3 . All BERR stack frames are 12 words long.
EB310

2 MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Engineering Bulletin
What to Do When a Bus Error Occurs

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STATUS REGISTER
RETURN PROGRAM COUNTER HIGH
RETURN PROGRAM COUNTER LOW
1 1 0 0 + VECTOR OFFSET
FAULTED ADDRESS HIGH
FAULTED ADDRESS LOW
DBUF HIGH
DBUF LOW
CURRENT INSTRUCTION PROGRAM COUNTER HIGH
CURRENT INSTRUCTION PROGRAM COUNTER LOW
INTERNAL TRANSFER COUNT REGISTER
0 0 + SPECIAL STATUS WORD

Figure 1. FORMAT $C — BERR Stack for Prefetches and Operands

STATUS REGISTER
RETURN PROGRAM COUNTER HIGH
RETURN PROGRAM COUNTER LOW
1 1 0 0 + VECTOR OFFSET
FAULTED ADDRESS HIGH
FAULTED ADDRESS LOW
DBUF HIGH
DBUF LOW
CURRENT INSTRUCTION PROGRAM COUNTER HIGH
CURRENT INSTRUCTION PROGRAM COUNTER LOW
INTERNAL TRANSFER COUNT REGISTER
0 1 + SPECIAL STATUS WORD

Figure 2. FORMAT $C — BERR Stack on MOVEM Operand

STATUS REGISTER
NEXT INSTRUCTION PROGRAM COUNTER HIGH
NEXT INSTRUCTION PROGRAM COUNTER LOW
1 1 0 0 + VECTOR OFFSET
FAULTED ADDRESS HIGH
FAULTED ADDRESS LOW
PRE-EXCEPTION STATUS REGISTER
FAULTED EXECPTION FORMAT/VECTOR WORD
FAULTED INSTRUCTION PROGRAM COUNTER HIGH
FAULTED INSTRUCTION PROGRAM COUNTER LOW
INTERNAL TRANSFER COUNT REGISTER
1 0 + SPECIAL STATUS WORD

Figure 3. FORMAT $C — 4- and 6-Word BERR Stack
EB310

MOTOROLA 3
For More Information On This Product,

 Go to: www.freescale.com

Engineering Bulletin

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The example program in Figure 4 was created to deliberately cause a
BERR with the MOVE instruction at location 4114. Specifically, when the
CPU32 attempted to write to $E00000, a bus monitor timeout occurred
because no DSACK was returned to indicate a response from the
memory system.

When the BERR occurred, a BERR exception was taken. The bus error
exception vector was fetched and program execution began at the bus
error exception handler. In this case, the BERR exception handler was
an infinite loop created by having a BRA instruction simply branching
to itself.

4100 MOVE.L #$12345678,D0
4106 MOVE.L #$87654321,D1
410C ADD.L D0,D1
410E SUBI.L #$48,D1
4114 MOVE.W D0,($E00000).L
411A CMP.W D0,D1
411C MOVE.L D1,D1
411E CLR.B D0
4120 ASL.W #$4,D2
4122 BRA.W $4122

Figure 4. Program Example 1

The data in Figure 5 was placed on the stack in response to the BERR.

Stack Data

2FE4 2700 Status Register
2FE6 0000 Return Program Counter High
2FE8 411A Return Program Counter Low
2FEA C008 Vector Offset
2FEC 00E0 Faulted Address High
2FEE 0000 Faulted Address Low
2FF0 1234 Data Buffer High
2FF2 5678 Data Buffer Low
2FF4 0000 Current Instruction Pointer High
2FF6 4114 Current Instruction Pointer Low
2FF8 0000 Internal Transfer Count
2FFA 0615 Special Status Word

Figure 5. BERR Stack Frame Data for Program Example 1
EB310

4 MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Engineering Bulletin
What to Do When a Bus Error Occurs

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In normal practice, the BERR handler will examine bits 15 and 14 of the
special status word to determine the type of BERR. According to the
three stack frames previously listed, the BERR handler will know what
information is on the stack. In the present case, the special status word
at location $2FFA is $0615 (binary 0000 0110 0001 0101).

The definitions for the bits in the special status word are:

• Bit 15, TP — BERR frame type

• Bit 14, MV — MOVEM in progress

• Bit 13, 0 — Not used

• Bit 12, TR — Trace pending

• Bit 11, B1 — Breakpoint on channel 1

• Bit 10, B0 — Breakpoint on channel 0

• Bit 9, RR — Rerun write cycle after RTE

• Bit 8, RM — Faulted cycle was read-modify-write

• Bit 7, IN — Instruction

• Bit 6, RW — Faulted cycle was a read (1) or a write (0)

• Bit 5, LG — Original operand size was longword

• Bits 4 and 3, SIZ — Remaining size of faulted bus cycle

• Bits 2, 1, and 0, FUNC — Function code of faulted bus cycle

Bit 9 indicates that the faulted transaction was a released write fault.
There will be enough information on the stack to determine how to
complete the transaction. However, as previously stated, it may not be
possible to determine which instruction was responsible for starting the
memory transaction.

In the present case, bits 15 and 14 of the special status word are %00.
This indicates that this stack frame is for a prefetch or operand fetch.
Upon further examination, the location of the current instruction is
$0000 4114, and the data is in locations $2FF4 and $2FF6. The data to
be written to memory in the released write was $12345678 and is
located in locations $2FF0 and $2FF2 on the stack. The faulted address
is $0E0000 and is located in locations $2FEC and $2FEE.
EB310

MOTOROLA 5
For More Information On This Product,

 Go to: www.freescale.com

Engineering Bulletin

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In the simple example offered here, it is somewhat obvious (although not
absolute) that the MOVE.W D0,($E00000).L at location $4114 was
responsible for creating the problematic address in the write unit. The
data in D0 was $12345678 and the effective destination address was
$E0 0000.

In more complex programs, it may not be possible to determine which
instruction caused the errant transaction which was delivered to the write
unit.

The current instruction program counter high/low points to the MOVE
instruction at $4114. In this case, this is the instruction that generated
the errant transaction delivered to the write unit. The return program
counter points to the instruction following the MOVE at $411A.

The same program was run with the same initial conditions except that
the number of wait states for the RAM where the program and the stack
memory was located was changed from zero wait states to 13 wait
states.

Now, the stack data is:

2708 Status Register
0000 Return Program Counter High
411e Return Program Counter Low
c008 Vector Offset
00E0 Faulted Address High
0000 Faulted Address Low
1234 Data Buffer High
5678 Data Buffer Low
0000 Current Instruction Pointer High
411C Current Instruction Pointer Low
0000 Internal Transfer Count
0215 Special Status Word

Figure 6. BERR Stack Frame Data for Programming Example 1
Using 13 Wait States

The important differences between this and the first example are:

• The return program counter is $0000411E instead of $0000411A.

• The current instruction program counter is $0000411C instead of
$00004114.
EB310

6 MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Engineering Bulletin
What to Do When a Bus Error Occurs

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This shows that wait states can affect the number of instructions that get
executed between the time that the memory transaction is delivered to
the write unit and when the BERR actually occurs. By increasing the
number of wait states from 0 to 13, the CPU32 was able to run additional
instructions before the BERR occurred from the memory transaction in
the write unit.

A significant number of instructions get executed between the instruction
generating the memory transaction and the occurrence of the BERR for
the faulted transaction.

Consider this program:

4100 MOVE.L #$12345678,D0
4106 MOVE.L #$87654321,D1
410C ADD.L D0,D1
410E SUBI.L #$48,D1
4114 MOVE.W D0,($E00000).L
411A BRA $4400
........
........
4400 ADD.L D0,D1
4402 SUB.L D2,D3
4404 MOVE.L #$5A5A5A5A,D2
440A MOVE.L #$A5A5A5A5,D3

Figure 7. Programming Example 2

Depending upon the number of wait states per memory transaction and
the number of cycles allowed before a bus monitor timeout, the BERR
stack frame for Figure 7 would be identical to the stack frame in
Figure 6 except that the address of the current instruction pointer and
the return program counter would be different. If the return program
counter contained $0000 4404, it would be impossible to determine that
the instruction at location $0000 4114 is the instruction that is ultimately
responsible for the BERR. In fact, the same is true for Figure 6 , that is,
it is not absolute that the instruction at $0000 4114 is the offending
instruction.

However, for debugging purposes, the use of BERR stack frames can
yield significant clues as to where problematic areas of a program are
located. For instance, many times the offending address and data in the
write unit can be generated only by a few (or possibly one) instructions.
When mechanical problems, such as worn sockets or cold solder joints,
are causing problems, generally, the return program counter will not
show any repeatable pattern. Thus, the data in many stack frames will
all be different.
EB310

MOTOROLA 7
For More Information On This Product,

 Go to: www.freescale.com

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Engineering Bulletin

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217.

1-800-441-2447 or 1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Motorola Japan Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-Ku, Tokyo, Japan, 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, New Territories, Hong Kong, 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/

Conclusion

From the data in the BERR stack frame, it is possible to reconstruct an
errant memory access. A BERR handler routine can attempt to retry (or
modify and then retry) the memory transaction.

It is generally not possible to determine absolutely which instruction
generated the memory transaction that caused the BERR generated by
a released write fault.

By studying BERR stack frames, the location and cause of
programming/hardware problems can be localized and sometimes
pinpointed to certain areas.

Once the user is proficient in using BERR stack frames, the same
knowledge can be used to determine other types of problems. For
instance, faults in interrupt routines can cause stack overflows, which
many times will result in a BERR. Software errors that cause invalid
effective address calculations can also result in a memory transaction
that will cause a bus error. Because the BERR stack frames give the
faulted memory address and data, etc., effective program and hardware
debugging can be implemented to locate problematic areas.
EB310/D

© Motorola, Inc., 1999

Mfax is a trademark of Motorola, Inc.

For More Information On This Product,

 Go to: www.freescale.com

	Introduction
	What to Do When a Bus Error Occurs
	Conclusion

