FXPS71407BPS

PSI5 compatible relative pressure sensor Rev. 3.0 — 19 May 2025

Product data sheet

General description

FXPS71407BPS is a PSI5 compatible relative pressure sensor.

Features

- Pressure range: 50.9 kPa to 126.5 kPa absolute pressure range
- Operating temperature range: -40 °C to 125 °C
- PSI5 version 2.1 compatible
 - Compatible modes: P10P-500/3L, P10P-500/4H, A10P-228/1L, P10CRC-xxx/xx, and many others
 - Programmable time slots with 1 µs resolution
 - Selectable baud rate: 125 kBd or 189 kBd
 - 10-bit data length for relative pressure
 - 16-bit data length for absolute pressure available with PSI5 Programming mode for test purposes
 - Selectable error detection: even parity, or 3-bit CRC
 - Two-wire programming mode
- · Pressure transducer and DSP
 - Redundant pressure transducers
 - Capacitance to voltage converter with anti-aliasing filter
 - Sigma delta ADC plus sinc filter
 - Selectable 370 Hz, 2-pole, or 400 Hz, 3-pole and 4-pole 800 Hz, 1000 Hz low-pass filter for absolute pressure
 - 0.16 Hz, 1-pole LPF for P₀ value
 - 10-bit ΔP/P0 output
- Pb-free 16-pin QFN 4 mm x 4 mm x 1.98 mm package
- · Developed following ISO 26262:2011 standard

Ordering information

Table 1. Ordering information

Type number	Package	ackage									
	Name	e Description									
FXPS71407BPST1		HQFN16, plastic, thermal enhanced quad flat package; no leads; 16 terminals; 0.8 mm pitch; 4 mm x 4 mm x 1.98 mm body	SOT1573-2(SC)								

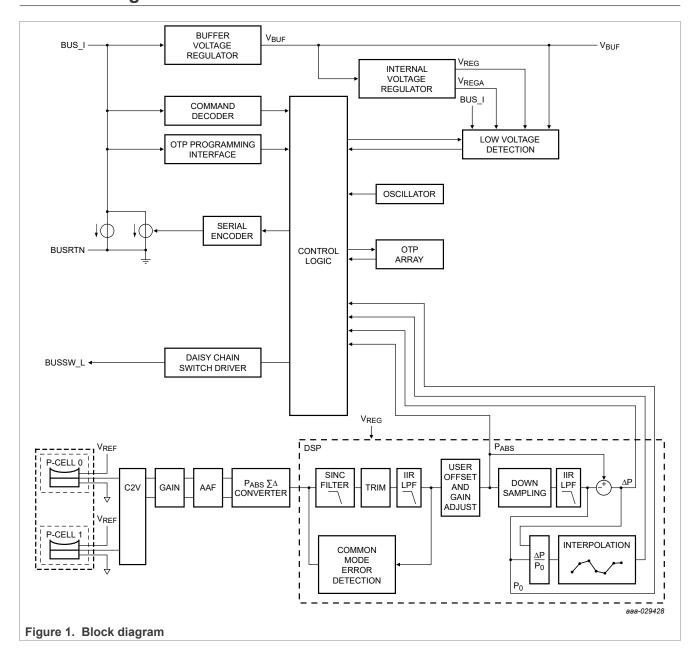

3.1 Ordering options

Table 2. Ordering options

Basic type ^[1]	Absolute pressure range	Accuracy ^[2]	Protocol
FXPS71407BPS ^[3]	50.9 kPa to 126.5 kPa	±7.0 % (PREL)	PSI5

- To order parts in tape and reel, add the T1 suffix to the part number.
- ±7.0 % PREL is guaranteed from -40 °C to 85 °C for life.
- [2] Refer to Table 79 for part number to protocol register values.

Block diagram

5 Pinning information

5.1 Pinning

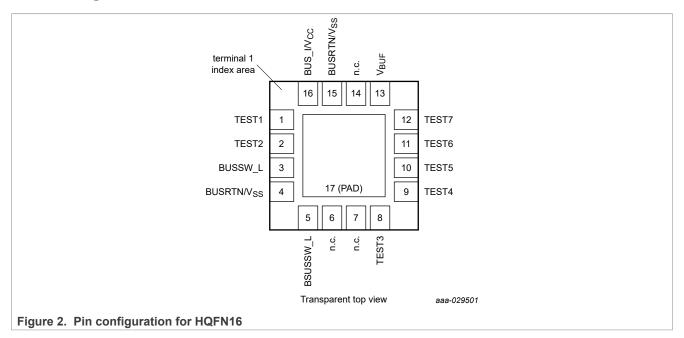


Table 3. Pin description

Symbol	Pin	Туре	Definition
TEST1	1	Supply out	It is recommended that this pin is unterminated. Optionally, this pin can be connected to BUS_I/VCC.
TEST2	2	High-side bus switch driver	It is recommended that this pin is unterminated. Optionally, this pin can be tied to V _{SS} .
BUSSW_L	3, 5	Low-side bus switch driver	In PSI5 daisy chain mode, this pin is connected to the gate of an N-channel FET that connects BUSRTN to the next slave in the daisy chain. An external pulldown resistor is required on the gate of the N-channel FET as shown in Figure 36. If unused, NXP recommends that this pin is unterminated. Optionally, this pin can be tied to V _{SS} .
BUSRTN/V _{SS}	4, 15	Supply return	These pins are the supply return nodes.
TEST7	12	Test pin	It is recommended that this pin is unterminated. Optionally, this pin can be tied to V _{SS} .
NC	6, 7, 14	No connect	These pins are not internally connected and can be left unconnected in the application.
TEST3	8	Test pin	It is recommended that this pin is unterminated. Optionally, this pin can be connected to V _{BUF} .
TEST4	9	Test pin	It is recommended that this pin is unterminated. Optionally, this pin can be connected to V _{SS} .
TEST5	10	Test pin	It is recommended that this pin is unterminated. Optionally, this pin can be connected to V _{SS} .
TEST6	11	Test pin	This pin must be left unconnected.
V _{BUF}	13	Power supply	This pin is connected to a buffer regulator for the internal circuitry. The buffer regulator supplies the internal regulators to provide immunity from EMC, and supply dropouts. An external capacitor must be connected between this pin and V _{SS} as shown in Figure 35 and Figure 36.
BUS_I/V _{CC}	16	Supply and communication	This pin is connected to the supply line and supplies power to the device. An external capacitor must be connected between this pin and BUSRTN as shown in Section 11 "Application information". This pin also modulates the response current for PSI5 communication and provides the supply for OTP programming. Note: BUS_I and VCC are the same.
PAD	17	Die attach pad	This pin is the die attach flag, and must be connected to V _{SS} . See Section 12.1 "Footprint" for die attach pad connection details.

6 Functional description

6.1 User-accessible data array

A user-accessible data array allows for each device to be customized. The array consists of an OTP factory programmable block, an OTP user-programmable block, and read-only user-programmed for data and device status. The OTP blocks incorporate independent data verification.

Table 4. User accessible data array

Address	Register	Type ^[1]				E	Bit			
			7	6	5	4	3	2	1	0
General devi	ce information	'		1		•	1	1		'
\$00	COUNT	R				COU	NT[7:0]			
\$01	DEVSTAT	R	DSP_ERR	Reserved	COMM_ERR	MEMTEMP_ ERR	SUPPLY_ERR	TESTMODE	DEVRES	DEVINIT
\$02	DEVSTAT1	R	VBUFUV_ ERR	BUSINUV_ ERR	VBUFOV_ ERR	Reserved	INTREGA_ ERR	INTREG_ERR	INTREGF_ ERR	CONT_ERR
\$03	DEVSTAT2	R	F_OTP_ERR	U_OTP_ERR	U_RW_ERR	U_W_ACTIVE	Reserved	TEMP0_ERR	Rese	erved
\$04	Reserved	R				Res	erved	1		
\$05	COMMREV	R	0	0 0 0 COMMREV[3:0]						
\$06 to \$0D	Reserved	R		Reserved						
\$0E	TEMPERATURE	R				TEM	P[7:0]			
\$0F	Reserved	R				Res	erved			
Communicat	ion									
\$10	DEVLOCK_WR	R/W	ENDINIT			Reserved			RESE	T[1:0]
\$11	WRITE_OTP_EN	R/W	UOTP_ WR_INIT						EGION[1:0]	
\$12	BUSSW_CTRL	R/W		Reserved BUSSW_CTRL[CTRL[1:0]
\$13	Reserved	R/W		Reserved						
\$14	UF_REGION_W	R/W		REGION_LOAD[3:0] 0 0						0
\$15	UF_REGION_R	R		REGION_A	CTIVE[3:0]		0	0	0	0
\$16	COMMTYPE	UF2			Reserved				COMMTYPE[2:0]]
\$17	Reserved	UF2				Res	erved			
\$18	Reserved	UF2				Res	erved			
\$19	Reserved	UF2				Res	erved			
\$1A	SOURCEID_0	UF2	SID0_EN				Reserved			
\$1B	SOURCEID_1	UF2	SID1_EN				Reserved			
\$1C to \$22	Reserved	UF2	_			Res	erved			_
\$23	CHIPTIME	UF2		Reserved		SS EN	CHIPTIME		Reserved	
\$24	Reserved	UF2			-	Res	erved			_
\$25	PSI5_CFG	UF2	SYNC PD	DAISY_CHAIN	PSI5 ILOW	DATA_EXT	EMSG_EXT	P_CRC	INIT2_EXT	ASYNC
\$26	PDCM_RSPST0_L	UF2				PDM_RS	PST0[7:0]			
\$27	PDCM_RSPST0_ H	UF2	Res	erved	Reserved			DCM_RSPST0[12	2:8]	
\$28	PDCM_RSPST1_L	UF2				PDM RS	PST1[7:0]			
\$29	PDCM_RSPST1_	UF2	Res	erved	Reserved	_		DCM_RSPST1[12	2:8]	
\$2A-\$37	Reserved	UF2				Res	erved			
\$38	PDCM_CMD_B_L	UF2				PDCM C	MD_B[7:0]			
\$39	PDCM_CMD_B_H	UF2	Reserved	Reserved	Reserved			DCM_CMD_B[12:	:8]	
\$3A-\$3F	Reserved	UF2			<u> </u>	Res	erved			
	ific information	1	l .							
\$40	DSP_CFG_U1	UF2		LPF	[3:0]			Rese	erved	
\$41	DSP_CFG_U2	UF2				Res	erved			
\$42	DSP_CFG_U3	UF2	Reserved	DATATY	PE0[1:0]	Reserved	1	PE1[1:0]	Reserved	Reserved
	1:: 0_00	1				1			1	15064

Table 4. User accessible data array...continued

Address Register Type ^[1] Bit												
			7	6	5	4	3	2	1	0		
\$43	DSP_CFG_U4	UF2	P0_RESET	Reserved	Reserved	P0_RLD	Reserved	Reserved	Reserved	Reserved		
\$44	DSP_CFG_U5	UF2		ST_CT	RL[3:0]		Reserved	Reserved	Reserved	Reserved		
\$45	Reserved	UF2	Reserved	Reserved	Rese	erved	Reserved	Reserved	Reserved	Reserved		
\$46	Reserved	UF2				Rese	erved	'				
\$47	Reserved	UF2				Rese	erved					
\$48	Reserved	UF2				Rese	erved					
\$49	Reserved	UF2				Rese	erved					
\$4A	Reserved	UF2		Reserved								
\$4B	Reserved	UF2		-		Rese	erved					
\$4C	P_CAL_ZERO_L	UF2		-		P_CAL_Z	ERO[7:0]					
\$4D	P_CAL_ZERO_H	UF2		-		P_CAL_Z	ERO[15:8]					
\$4E	Reserved	UF2		-		Rese	erved					
\$4F to \$5E	Reserved	UF2				Rese	erved					
\$5F	CRC_UF2	F	LOCK_UF2	0	0	0		CRC_L	JF2[3:0]			
\$60	DSP_STAT	R	Reserved	PABS_HIGH	PABS_LOW	Reserved	ST_INCMPLT	ST_ACTIVE	CM_ERROR	ST_ERROR		
\$61	DEVSTAT_COPY	R	DSP_ERR	Reserved	COMM_ERR	MEMTEMP_ ERR	SUPPLY_ERR	TESTMODE	DEVRES	DEVINIT		
\$62	SNSDATA0_L	R		•		SNSDATA	A0_L[7:0]		•			
\$63	SNSDATA0_H	R				SNSDATA	.0_H[15:8]					
\$64	SNSDATA1_L[7:0]	R				SNSDATA	A1_L[7:0]					
\$65	SNSDATA1_ L[15:8]	R				SNSDATA	\1_L[15:8]					
\$66	SNSDATA0_ TIME0	R		SNSDATA0_TIME[7:0]								
\$67	SNSDATA0_ TIME1	R				SNSDATA0_	_TIME[15:8]					
\$68	SNSDATA0_ TIME2	R		-		SNSDATA0_	TIME[23:16]			_		
\$69	SNSDATA0_ TIME3	R				SNSDATA0_	TIME[31:24]					
\$6A	SNSDATA0_ TIME4	R				SNSDATA0_	TIME[39:32]					
\$6B	SNSDATA0_ TIME5	R				SNSDATA0_	TIME[47:40]					
\$6C	P_MAX_L	R				P_MA	X[7:0]					
\$6D	P_MAX_H	R				P_MAX	X[15:7]					
\$6E	P_MIN_L	R				P_MII	N[7:0]					
\$6F	P_MIN_H	R				P_MIN	N[15:7]					
\$70 to \$77	Reserved	R				Rese	erved					
\$78	FRT0	R				FRT	[7:0]					
\$79	FRT1	R				FRT[15:8]					
\$7A	FRT2	R				FRT[2	23:16]					
\$7B	FRT3	R		-		FRT[3	31:24]					
\$7C	FRT4	R		_		FRT[3	39:32]					
\$7D	FRT5	R				FRT[4	17:40]					
\$7E to \$9F	Reserved	R				Rese	erved					
\$A0 to \$AE	Reserved	F		Rese	erved		Reserved	Reserved	Reserved	Reserved		
\$AF	CRC_F_A	F	LOCK_F_A REGA_BLOCKID[2:0] CRC_F_A[3:0]									
\$B0 to \$BE	Reserved	F	Reserved									
		_	LOCK_F_B REGB_BLOCKID[2:0] CRC_F_B[3:0]									
\$BF	CRC_F_B	F	LUCK_F_B	'''	_00_0001110[2	.0]			[]			
•		F	LOCK_F_B	TXI		.0]						
\$BF Traceability in \$C0		F	LOCK_F_B	Tu-		ICTYPE	EID[7:0]					

Table 4. User accessible data array...continued

Address	Register	Type ^[1]				Bit	t			
			7	6	5	4	3	2	1	0
\$C2	ICMFGID	F				ICMFGI	D[7:0]			
\$C3	Reserved	F				Reser	ved			
\$C4	PN0	F				PN0[7	7:0]			
\$C5	PN1	F				PN1[7	7:0]			
\$C6	SN0	F				SN[7	:0]			
\$C7	SN1	F				SN[1	5:8]			
\$C8	SN2	F				SN[23	:16]			
\$C9	SN3	F				SN[31	:24]			
\$CA	SN4	F		-		SN[39	:32]			
\$CB	ASICWFR#	F		-		ASICWFI	R#[7:0]			
\$CC	ASICWFR_X	F		-		ASICWFF	R_X[7:0]			
\$CD	ASICWFR_Y	F		-		ASICWFF	R_Y[7:0]			
\$CE	Reserved	F				Reser	ved			
\$CF	CRC_F_C	F	LOCK_F_C		REGC_BLOCKID[2:0]			CRC	_F_C[3:0]	
\$D0	ASICWLOT_L	F				ASICWLO	T_L[7:0]			
\$D1	ASICWLOT_H	F		-		ASICWLO	T_H[7:0]			
\$D2 to \$D9	Reserved	F				Reser	ved			
\$DA to \$DE	Reserved	F				Reser	ved			
\$DF	CRC_F_D	F	LOCK_F_D		REGD_BLOCKID[2:0]	1		CRC	_F_D[3:0]	
\$E0	USERDATA_0	UF0		l.		USERDAT	A 0[7:0]			
\$E1	USERDATA_1	UF0				USERDAT				
\$E2	USERDATA 2	UF0				USERDAT				
\$E3	USERDATA_3	UF0				USERDAT				
\$E4	USERDATA_4	UF0				USERDAT				
\$E5	USERDATA_5	UF0				USERDAT				
\$E6	USERDATA_6	UF0				USERDAT				
\$E7	USERDATA_7	UF0				USERDAT				
\$E8	USERDATA_8	UF0				USERDAT				
\$E9	USERDATA_9	UF0				USERDAT				
\$EA	USERDATA_A	UF0				USERDAT				
\$EB	USERDATA B	UF0				USERDAT				
\$EC	USERDATA_C	UF0				USERDAT	A_C[7:0]			
\$ED	USERDATA D	UF0				USERDAT				
\$EE	USERDATA_E	UF0				USERDAT				
\$EF	CRC_UF0	F	LOCK_UF0		REGE_BLOCKID[2:0]			CRC	_UF0[3:0]	
\$F0	USERDATA_10	UF1	_	I.		USERDATA	A_10[7:0]		-	
\$F1	USERDATA_11	UF1				USERDATA				
\$F2	USERDATA_12	UF1				USERDATA				
\$F3	USERDATA_13	UF1				USERDATA				
\$F4	USERDATA_14	UF1				USERDATA				
\$F5	USERDATA_15	UF1				USERDATA				
\$F6	USERDATA_16	UF1				USERDATA				
\$F7	USERDATA_17	UF1				USERDATA				
\$F8	USERDATA_18	UF1				USERDATA				
\$F9	USERDATA_19	UF1				USERDATA				
\$FA	USERDATA_1A	UF1				USERDATA				
\$FB	USERDATA_1B	UF1				USERDATA				
\$FC	USERDATA_1C	UF1				USERDATA				
\$FD	USERDATA_1D	UF1				USERDATA				
🤳	JOEL DAIA_ID					JULINDAIR	_ , 5[, .0]			

Table 4. User accessible data array...continued

Address	Register	Type ^[1]		Bit							
			7	6	5	4	3	2	1	0	
\$FE	USERDATA_1E	UF1		USERDATA_1E[7:0]							
\$FF	CRC_UF1	F	LOCK_UF1	RE	GF_BLOCKID[2	:0]		CRC_L	JF1[3:0]		

[1] Memory type codes

R — Readable register with no OTP

F — User readable register with OTP

UF0 — One time user-programmable OTP location region 0

UF1 — One time user-programmable OTP location region 1

 ${\sf UF2} - {\sf One \ time \ user-programmable \ OTP \ location \ region \ 2}$

R/W — User writable register

6.2 Register definitions

6.2.1 COUNT - rolling counter register (address \$00)

The count register is a read-only register that provides the current value of a free-running 8-bit counter derived from the primary oscillator. A 10-bit prescaler divides the primary oscillator frequency by 1000. Therefore, the value in the register increases by one count every 100 µs and the counter rolls over every 25.6 ms.

This register is readable in PSI5 diagnostic mode.

Table 5. COUNT - rolling count register - (address \$00) bit allocation

Bit	7	6	5	4	3	2	1	0		
Name	COUNT[7:0]									
Access	R	R	R	R	R	R	R	R		
Reset	0	0	0	0	0	0	0	0		

6.2.2 DEVSTATx – device status user-programmed (address \$01-\$04)

The device status user-programmed are read-only user-programmed that contain device status information.

These user-programmed are readable in PSI5 diagnostic mode.

Table 6. DEVSTAT – device status register – (address \$01) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	DSP_ERR	Reserved	COMM_ERR	MEMTEMP_ERR	SUPPLY_ERR	TESTMODE	DEVRES	DEVINIT
Access	R	R	R	R	R	R	R	R
Reset	1	Reserved	0	0	х	0	1	1

DSP_ERR - DSP error flag

The DSP error flag is set if a DSP-specific error is present in the pressure signal DSP:

DSP_ERR = DSP_STAT[PABS_HIGH] | DSP_STAT[PABS_LOW] | DSP_STAT[ST_INMCPLT] | DSP_STAT[CM_ERROR] | DSP_STAT[ST_ERROR]

COMM_ERR - communication error flag

The communication error flag is set if any bit in DEVSTAT3 is set:

COMM_ERR = OSCTRAIN_ERR

MEMTEMP_ERR – memory or temperature error flag

The memory error flag is set if any bit in DEVSTAT2 is set:

MEMTEMP_ERR = F_OTP_ERR | U_OTP_ERR | U_RW_ERR | U_W_ACTIVE | TEMP0_ERR

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

SUPPLY_ERR - supply error flag

The supply error flag is set if any bit in DEVSTAT1 is set:

SUPPLY_ERR = VBUFUV_ERR | BUSINUV_ERR | VBUFOV_ERR | INTREG_ERR | INTREGA_ERR | INTREGF_ERR | CONT_ERR

A common timer is used for all error bits in the DEVSTAT1 register. If any bit in DEVSTAT1 is set, the timer is reset to t_{UVOV RCV}. When no supply errors are present, the timer is decremented until it reaches zero.

DEVRES - device reset

The device reset bit is set following a device reset. This error is cleared by a read of the DEVSTAT register through any communication interface or on a data transmission that includes the error in the status field.

Table 7. DEVRES - device reset

DEVRES	Error condition
0	Normal operation
1	Device reset occurred

DEVINIT – device initialization

The device initialization bit is set following either a device reset or a change to the LPF in the the register: DSP_CFG_U1[7:4]. The bit is cleared once sensor data is valid for read through one of the device communication interfaces (t_{POR_DataValid}).

Table 8. DEVINIT - device initialization

DEVINIT	Condition
0	Normal operation
1	Device initialization in process

Table 9. DEVSTAT 1- device status register - (address \$02) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	VBUFUV_ERR	BUSINUV_ERR	VBUFOV_ERR	RESERVED	INTREGA_ERR	INTREG_ERR	INTREGF_ERR	CONT_ERR
Access	R	R	R	R	R	R	R	R
Reset	Х	Х	х	Х	х	Х	Х	0

If no error is present, the register contents are cleared when read twice.

VBUFUV_ERR - VBUF undervoltage error

The V_{BUF} undervoltage error bit is set if the VBUF voltage falls below the voltage specified in <u>Section 9 "Static characteristics"</u>. See <u>Section 6.4 "Voltage regulators"</u> for details on the V_{BUF} undervoltage monitor. A common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to t_{UVOV_RCV} .

Table 10. VBUFUV ERR - Vpus undervoltage error

VBUFUV_ERR	Error condition	
0	No error detected	
1	VBUF voltage low	

BUSINUV_ERR - BUS IN undervoltage error

The BUS IN undervoltage error bit is set if the BUS_IN voltage falls below the voltage specified in <u>Section 9</u> "Static characteristics". See <u>Section 6.4 "Voltage regulators"</u> for details on the BUS IN undervoltage monitor. A

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to $t_{UVOV\ RCV}$.

Table 11. BUSINUV_ERR - BUS IN undervoltage error

BUSINUV_ERR	rror condition	
0	No error detected	
1	BUS_IN voltage low	

VBUFOV_ERR – VBUF overvoltage error

The V_{BUF} overvoltage error bit is set if the VBUF voltage rises above the voltage specified in <u>Section 9 "Static characteristics"</u>. See <u>Section 6.4 "Voltage regulators"</u> for details on the V_{BUF} overvoltage monitor. A common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to t_{UVOV_RCV} .

Table 12. VBUFOV_ERR – V_{BUF} overvoltage error

VBUFUV_ERR	rror condition	
0	No error detected	
1	VBUF voltage high	

INTREGA_ERR – internal analog regulator voltage out of range error

The internal analog regulator voltage out of range error bit is set if the internal analog regulator voltage falls outside expected limits. A common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to $t_{UVOV\ RCV}$.

Table 13. INTREGA_ERR - internal analog regulator voltage out of range error

INTREGA_ERR	Error condition
0	No error detected
1	Internal analog regulator voltage out of range

INTREG_ERR - internal digital regulator voltage out of range error

The internal digital regulator voltage out of range error bit is set if the internal digital regulator voltage falls outside expected limits. A common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to t_{UVOV_RCV} .

Table 14. INTREG ERR – internal digital regulator voltage out of range error

INTREG_ERR	Error condition
0	No error detected
1	Internal digital regulator voltage out of range

INTREGF_ERR - internal OTP regulator voltage out of range error

The internal OTP regulator voltage out of range error bit is set if the internal OTP regulator voltage falls outside expected limits. A common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to $t_{UVOV\ RCV}$.

Table 15. INTREGF_ERR - internal OTP regulator voltage out of range error

INTREGF_ERR	rror condition	
0	error detected	
1	Internal OTP regulator voltage out of range	

CONT_ERR - continuity monitor error

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

The continuity monitor passes a low current through a connection around the perimeter of the device and monitors the continuity of the connection. The error bit is set if a discontinuity is detected in the connection. A common timer is used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is reset to t_{UVOV} RCV.

Table 16. CONT ERR - continuity monitor error

CONT_ERR	rror condition	
0	No error detected	
1	Error detected in the continuity of the monitor circuit	

Table 17. DEVSTAT2 - device status register - (address \$03) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	F_OTP_ERR	U_OTP_ERR	U_RW_ERR	U_W_ACTIVE	Reserved	TEMP0_ERR	Reserved	Reserved
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	Reserved	0	Reserved	Reserved

F_OTP_ERR - NXP OTP array error

The factory OTP array error bit is set if a fault is detected in the factory OTP array. This error is cleared by a read of the DEVSTAT2 register through any communication interface or on a data transmission that includes the error in the status field.

Table 18. F_OTP_ERR - NXP OTP array error

F_OTP_ERR	Frror condition	
0	No error detected	
1	Error detected in the factory OTP array	

U_OTP_ERR - user OTP array error

The user OTP array error bit is set if a fault is detected in the user OTP array. This error is cleared by a read of the DEVSTAT2 register through any communication interface or on a data transmission that includes the error in the status field.

Table 19. U_OTP_ERR - user OTP array error

U_OTP_ERR	rror condition	
0	error detected	
1	Error detected in the user OTP array	

U_RW_ERR - user read/write array error

When ENDINIT is set, an error detection is enabled for all user writable user-programmed. The error detection code is continuously calculated on the user writable user-programmed and verified against a previously calculated error detection code. If a mismatch is detected in the error detection, the U_RW_ERR bit is set. This error is cleared by a read of the DEVSTAT2 register through any communication interface or on a data transmission that includes the error in the status field.

Table 20. U_RW_ERR - user read/write array error

U_RW_ERR	Error condition
0	No error detected
1	Error detected in the user read/write array

U_W_ACTIVE – user OTP write in process status bit

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

10 / 96

The user OTP write in process status bit is set if a user initiated write to OTP is currently in process. The U W ACTIVE bit is automatically cleared once the write to OTP is complete.

Table 21. U_W_ACTIVE - user OTP write in process status bit

U_W_ACTIVE	tatus condition	
0	No OTP write in process	
1	OTP write in process	

TEMP0_ERR - temperature error

The temperature error bit is set if an over or under temperature condition exists. This error is cleared by a read of the DEVSTAT2 register through any communication interface or on a data transmission that includes the error in the status field.

Table 22. TEMP0_ERR - temperature error

TEMP0_ERR	Error condition				
0	No error detected				
1	Overtemperature or undertemperature error condition detected				

6.2.3 COMMREV - communication protocol revision register (address \$05)

The communication protocol revision register is a read-only register that contains the revision for the communication protocol used.

This register is readable in PSI5 diagnostic mode.

Table 23. COMMREV - communication protocol revision register - (address \$05) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	0	0	0	0	COMMREV[3:0]			
Access	R	R	R	R	R	R	R	R
Reset (PSI5)	0	0	0	0	0	1	1	0

Note: The response to a register write of the COMMREV register is a valid response with the register contents equal to 00h.

6.2.4 TEMPERATURE – temperature register (\$0E)

The temperature register is a read-only register that provides a temperature value for the IC. The temperature value is specified in <u>Section 9 "Static characteristics"</u>

Note: The device is only guaranteed to operate within the temperature limits specified in <u>Section 9 "Static characteristics"</u>.

This includes the performance of the temperature register values.

This register is readable in PSI5 diagnostic mode.

Table 24. TEMPERATURE – temperature register – (address \$0E) bit allocation

Bit	7	6	5	4	3	2	1	0		
Name		TEMP[7:0]								
Access	R	R	R	R	R	R	R	R		
Reset	Х	Х	Х	Х	Х	Х	Х	Х		

6.2.5 DEVLOCK_WR - lock register writes register (address \$10)

The lock register writes register is a user-programmed read/write register that contains the ENDINIT bit and reset control bits.

This register is readable and writable in PSI5 diagnostic mode.

Table 25. DEVLOCK_WR - lock register writes register - (address \$10) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	ENDINIT	Reserved	Reserved	Reserved	Reserved	Reserved	RESE	T[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

ENDINIT – end initialization bit

The ENDINIT bit is a control bit used to indicate that the user has completed all device and system level initialization tests. Once the ENDINIT bit is set, writes to all writable register bits are inhibited except for the DEVLOCK_WR register. Once set, the ENDINIT bit can only be cleared by a device reset.

When ENDINIT is set, the following occurs:

- An error detection is enabled for all user-writable user-programmed. The error detection code is continuously
 calculated on the user writable user-programmed and verified against a previously calculated error detection
 code.
- The P₀ filter is forced to its final stage.
- · Self-test is disabled and inhibited.
- Register writes are inhibited with the exception of the RESET[1:0] bits in the DEVLOCK_WR register.

In all PSI5 modes, the ENDINIT bit is automatically set when the device exits initialization phase 3.

RESET[1:0] - reset control bits

A series of three consecutive register write operations to the reset control bits will result in a device reset. To reset the device, the following register write operations must be performed in consecutive commands and in the order shown in <u>Table 26</u> or the device will not be reset.

Table 26. Register write operations

Register write to DEVLOCK_WR	RES_1	RES_0	Effect
Register Write 1	0	0	No effect
Register Write 2	1	1	No effect
Register Write 3	0	1	Device RESET

6.2.6 WRITE_OTP_EN - write OTP enable register (address \$11)

The write OTP enable register is a user-programmed read/write register that allows the user to write the contents of the user-programmed OTP array mirror user-programmed to the OTP user-programmed. This register is included in the user read/write array error detection.

This register is readable and writable in PSI5 diagnostic mode.

Table 27. WRITE_OTP_EN – write OTP enable register – (address \$11) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	UOTP_WR_INIT		Reserved UOTP_					
Access	R/W	R/W	R/W	v	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Register writes executed by the user to the user-programmed OTP array only update the mirror register contents for the OTP array, not the actual OTP user-programmed. To copy the values to the actual OTP user-

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

programmed, a write must be executed to the WRITE_OTP_EN register with the UOTP_WR_INIT bit set. The state of the UOTP_REGION[1:0] bits in the command determine which region of OTP will be written as shown in Table 28.

Table 28. Writes for OTP registers

UOTP_REGION[1]	UOTP_REGION[0]	OTP write operation
0	0	Write the current contents of the UF0 user-programmed to OTP.
0	1	Write the current contents of the UF1 user-programmed to OTP.
1	0	Write the current contents of the UF2 user-programmed to OTP.
1	1	Reserved.

The UF0 and UF1 user OTP regions as well as the NXP programmed F OTP regions share common mirror user-programmed. For this reason, writes to the OTP for each region must be completed independently according to the procedure below.

Once a region is written using the OTP Write sequence, the LOCK_Uxxx bit in the appropriate CRC_xxx register is automatically set, locking the array from future writes. Once a region is locked, an error detection is activated to detect changes to the register values. Register values in the UF2 region can be overwritten using register write commands, but no new values can be written to the OTP.

The procedure for writing to the user OTP array UF0 and UF1 regions is:

- 1. Read the appropriate CRC_UFx register and confirm the LOCK_Uxx bit is not set.
- 2. Write the desired values to the user array user-programmed for only the region to be written using the procedures in <a href="Section 6.2.8" UF_REGION_x UF region selection user-programmed (address \$14, \$15)". The user must take care to ensure that the proper data is written to each region. If a register write is executed to a new region, the base address will change to the new region. The previous data written to the register block will remain in the shared user-programmed and will be written to OTP if the Write OTP sequence is completed.
- 3. Execute a write to the WRITE_OTP_EN register with the appropriate bits set for the desired region to program.
 - Once the WRITE_OTP_EN register write is completed, a CRC is calculated for the data to be written to the region, the register values are written to OTP and the region is locked from future writes. The UOTP WR INIT bit will remain set.
- 4. Delay to TP WRITE MAX to allow the device to complete the writes to OTP.
- 5. Verify that the OTP write has successfully completed by reading back all of the OTP user-programmed using register read commands as defined in <u>Section 6.2.8 "UF_REGION_x UF region selection user-programmed</u> (address \$14, \$15)".
- 6. Repeat steps 1 through 4 for all regions to be programmed.

The procedure for writing to the user OTP array UF2 region is:

- 1. Read the CRC UF2 register and confirm the LOCK UF2 bit is not set.
- 2. Write the desired values to the user array user-programmed.
- 3. Execute a write to the WRITE_OTP_EN register with region 2 selected.

 Once the WRITE_OTP_EN register write is completed, a CRC is calculated for the data to be written to the region, the register values are written to OTP and the region is locked from future writes. The UOTP_WR_INIT bit will remain set.
- 4. Delay $t_{\text{OTP_WRITE MAX}}$ to allow the device to complete the writes to OTP.
- 5. Verify that the OTP write successfully completed by reading back all of the OTP user-programmed using register-read commands.

6.2.7 BUSSW_CTRL - bus switch control register (address \$12)

The bus switch control register is a user programmed read/write register that controls the state of the bus switch output driver. This register is included in the user read/write array error detection.

This register is readable and writable in PSI5 diagnostic mode.

Table 29. BUSSW_CTRL - bus switch control register - (address \$12) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	BUSSW_	CTRL[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

The BUSSW_CTRL bit controls the state of the BUSSW_L pin.

Table 30. State of BUSSW L pin

	<u> </u>	
BUSSW_CTRL[1]	BUSSW_CTRL[0]	BUSSW_L pin state
0	0	High-impedance: An external pullup or pulldown resistor is required if an external switch is connected
0	1	High-impedance: An external pullup or pulldown resistor is required if an external switch is connected
1	0	Active low
1	1	Active high

Note: In PSI5 DPM mode, the bus switch is activated upon receipt of the register write command. The bus switch activation may impact the current on the bus and cause corruption of the register write response.

6.2.8 UF_REGION_x - UF region selection user-programmed (address \$14, \$15)

The UF region load register is a user read/write register that contains the control bits for the UF0 and UF1 regions to be accessed. This register is included in the user read/write array error detection. The UF region active register is a read-only register that contains the status bits for the UF0 and UF1 regions to be accessed. This register is included in the user read/write array error detection.

Table 31. UF_REGION_W – UF region selection register – (address \$14) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	REGION_LOAD[3:0]				0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	0	0	0	0	0

The UF_REGION_W register is readable and writable in PSI5 diagnostic mode. The UF_REGION_R register is readable in PSI5 diagnostic mode.

Table 32. UF_REGION_R - UF region selection register - (address \$15) bit allocation

Bit	7	6	5	4	3	2	1	0
Name		REGION_A	CTIVE[3:0]		0	0	0	0
Access	R	R	R	R	R	R	R	R
Reset	1	1	1	0	0	0	0	0

The user OTP regions UF0, UF1, and F share a block of 16 user-programmed. Before reading the user-programmed via any communication interface, the user must ensure that the desired OTP user-programmed are loaded into the readable user-programmed. To ensure proper reading of the UF0, UF1, and F user-programmed, follow this procedure:

1. Write the desired address range to be read to the REGION_LOAD[3:0] bits in the UF_REGION_W register using one of the communication interfaces available via the COMMTYPE register.

Table 33. Communication interfaces available via the COMMTYPE register

REGION_LOAD	REGION_LOAD[3:0]			OTP register addresses loaded into the readable user-programmed
0	0	0	0	Not applicable
0	0	0	1	Not applicable
0010 through 1001				Reserved
1	0	1	0	Address Range \$A0 through \$AF
1	0	1	1	Address Range \$B0 through \$BF
1	1	0	0	Address Range \$C0 through \$CF
1	1	0	1	Address Range \$D0 through \$DF
1	1	1	0	Address Range \$E0 through \$EF
1	1	1	1	Address Range \$F0 through \$FF

- 2. Delay a minimum of t_{SSN_UF01} .
- 3. Optional: Execute a register read of the UF_REGION_R register and confirm the REGION_ACTIVE[3:0] bits match the values written to the REGION_LOAD[3:0] bits in the UF_REGION_W register.

Table 34. Optional communication interfaces available via the COMMTYPE register

REGION_ACTIVE[3:0]			OTP register addresses loaded into the readable user-programmed		
0	0	0	0	Load of OTP user-programmed is in process	
0	0	0	1	The contents of the shared user-programmed has been overwritten by the user	
0010 through 1	001			Not applicable	
1	0	1	0	Address range \$A0 through \$AF	
1	0	1	1	Address range \$B0 through \$BF	
1	1	0	0	Address range \$C0 through \$CF	
1	1	0	1	Address range \$D0 through \$DF	
1	1	1	0	Address range \$E0 through \$EF	
1	1	1	1	Address range \$F0 through \$FF	

- 4. Execute a register read of the desired user-programmed from the UF0, UF1, or F register section. Complete all desired register reads of the selected UF region.
- 5. Repeat steps 1 through 4 for the next desired UF region to read.

Note:

- The user must take care to ensure that the desired user-programmed are addressed. For example, if the REGION_LOAD bits are set to Ah and the user executes a read of address \$C2, the contents of user-programmed \$A2 will be transmitted. No error detection is included other than a read of the REGION_ACTIVE bits.
- For COMMTYPE options with multiple protocol options (COMMTYPE = '000 or '001'), no error detection is included other than a read of the REGION_ACTIVE bits. The user must take care to ensure that the REGION LOAD, bits are not inadvertently changed by an alternative protocol while executing register reads.

6.2.9 COMMTYPE – communication type register (address \$16)

The communication type register is a register that contains configuration information for the communication protocol. This register is included in the read/write array error detection.

Note: The value of this register must not be changed or a U_OTP_ERR Memory error will occur.

Table 35. COMMTYPE - communication type register - (address \$16) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	Reserved	Reserved		COMMTYPE[2:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	1

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

The communication type bits, COMMTYPE[2:0], configure PSI5 protocol.

6.2.10 SOURCEID_x - source identification user-programmed (address \$1A, \$1B)

The source identification user-programmed are user programmed read/write user-programmed that contain the source identification information. This register is included in the read/write array error detection.

These user-programmed are readable and writable in PSI5 diagnostic mode.

Table 36. SOURCEID_0 - source identification register - (address \$1A) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	SID0_EN		Reserved					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Table 37. SOURCEID_1 - source identification register - (address \$1B) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	SID1_EN		Reserved					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SIDx_EN - data source enable bits

The SIDx EN bits enable the data source for the associated source identification.

Table 38. SOURCEID x register values

Source ID	Source	Asynchronous mode		Synchronous mode		Daisy chain mode	
	ID enable (SIDx_EN)	Transmission time	Transmission data	Transmission time reference ^[1]	Transmitted data reference [2]	Transmission time	Transmitted data
SOURCEID_0	0	t _{ASYNC}	SNSDATA0	NA	NA	See Section 11.2.6	SNSDATA0
	1			PDCM_RSPST0	SNSDATA0	"Daisy chain mode"	
SOURCEID_1	0	NA	NA	NA	NA	NA	NA
	1			PDCM_RSPST1	SNSDATA1		

^[1] See Section 6.2.13 "PDCM_RSPSTx_x – PSI5 start time user-programmed (address \$26 to \$29)".

6.2.11 CHIPTIME - chip time and bit time register (address \$23)

The chip time and bit time register is a user-programmed read/write register that contains user-specific configuration information. This register is included in the read/write array error detection.

This register is readable and writable in PSI5 diagnostic mode.

Table 39. CHIPTIME – chip time and bit time register – (address \$23) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	SS_EN	CHIPTIME		Reserved	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SS_EN - simultaneous sampling enable

The simultaneous sampling enable bit selects between one of two data latency methods to accommodate synchronized sampling or simultaneous sampling.

^[2] See Section 6.2.17 "DSP_CFG_U3 – DSP user configuration #3 register (address \$42)".

Table 40. SS_EN data latency methods

SS_EN	Data latency
0	Synchronous sampling mode (latency relative to time slot)
1	Simultaneous sampling mode (latency relative to sync pulse)

CHIPTIME - chip time

The CHIPTIME bits set the bit time for the PSI5 response data as described in Table 41.

Table 41. Bit time for the PSI5 response data

CHIPTIME	PSI5	
	Period time	Baud rate
0	5.3 µs	189 kHz
1	8.0 µs	125 kHz

6.2.12 PSI5_CFG - PSI5 configuration register (address \$25)

The PSI5 configuration register is a user-programmable OTP register that contains PSI5 specific configuration information. This register is included in the read/write array error detection.

This register is readable and writable in PSI5 diagnostic mode.

Table 42. PSI5_CFG - PSI5 configuration register - (address \$25) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	SYNC_PD	DAISY_CHAIN	PSI5_ILOW	DATA_EXT	EMSG_EXT	P_CRC	INIT2_EXT	ASYNC
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SYNC_PD - sync pulse pulldown enable bit

The sync pulse pulldown enable bit selects if the sync pulse pulldown is enabled once a sync pulse is detected. See Section 6.2.13 for more information regarding the sync pulse pulldown.

Table 43. Sync pulse pulldown enable bit select

SYNC_PD	Sync pulse pulldown
0	Disabled
1	Enabled for all PSI5 operating modes

DAISY_CHAIN - PSI5 daisy chain selection bit

The transmission mode selection bits select the PSI5 transmission mode as shown in Table 44.

Table 44. Transmission mode selection bits select

DAISY_CHAIN		Response (PDCM_ RSTST0)	Reference	
0	Normal mode (asynchronous or parallel, synchronous)	SNSDATA0	Section 11.2.5 "Normal mode"	
1	Daisy chain mode	SNSDATA0	Section 11.2.6 "Daisy chain mode"	

PSI5 low response current selection bit (PSI5_ILOW)

The PSI5 low response current selection bit selects the low PSI5 response current specified in <u>Section 9 "Static characteristics"</u> as shown in <u>Table 45</u>.

Table 45. PSI5 low response current

PSI5_ILOW	PSI5 response current
0	Normal response current
1	Low response current

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

Document feedback

DATA_EXT - data range extension bit

The data range extension bit enables or disables extending the clipping limits for the relative pressure PSI5 data range as shown in <u>Table 46</u>.

Table 46. PSI5 relative pressure PSI5 data range

DATA_EXT	Description
0	Relative pressure data transmitted from –102 to +307 LSB as specified in <u>Section 9 "Static characteristics"</u>
1	Relative pressure data transmitted from –480 to +480 LSB as specified in Section 9 "Static characteristics"

EMSG_EXT - error message information extension bit

The error message information extension bit enables or disables additional PSI5 error message information as shown in Table 47.

Table 47. PSI5 error message information

EMSG_EXT	Description
0	All internal errors map to 1F4h, see Section 11.2.3.4 "PSI5 data field and data range values"
1	Additional PSI5 reserved codes are used for internal error distinction, see Section 11.2.3.4 "PSI5 data field and data range values"

P_CRC - PSI5 response message error detection selection bit

The response message error detection selection bit selects either even parity, or a 3-bit CRC for error detection of the PSI5 response message. See <u>Section 6.2.13 "PDCM_RSPSTx_x - PSI5 start time user-programmed</u> (address \$26 to \$29)" for details regarding response message error detection.

Table 48. PSI5 response message error detection

P_CRC	Parity or CRC
0	Parity
1	CRC

INIT2_EXT - initialization phase 2 data extension bit

The initialization phase 2 data extension bit enables or disables data transmission in data fields D33 through D48 of PSI5 initialization phase 2 as shown in <u>Table 49</u>.

Table 49. D33 through D48 of PSI5 initialization phase 2

INIT2_EXT	Description
0	D33 through D48 are not transmitted
1	D33 through D48 are transmitted as defined in Section 11.2.4.2.1 "PSI5 initialization phase 2 data transmissions"

ASYNC - asynchronous mode bit

The asynchronous mode bit enables asynchronous data transmission as described in <u>Section 6.2.13</u> only if the DAISY_CHAIN bit is not set.

6.2.13 PDCM_RSPSTx_x - PSI5 start time user-programmed (address \$26 to \$29)

The PSI5 start time user-programmed are user programmed read/write user-programmed that contain user-specific configuration information for PSI5 Synchronous mode. These user-programmed are included in the read/write array error detection.

These user-programmed are readable and writable in PSI5 diagnostic mode.

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

Table 50. PDCM_RSPSTx_x - PSI5 start time user-programmed - (address \$26 to \$29) bit allocation

							. ,			
Address	Name		Bit							
		7	6	5	4	3	2	1	0	
\$26	PDCM_RSPST0_L		PDCM_RSPST0[7:0]							
\$27	PDCM_RSPST0_H	Rese	Reserved PDCM_RSPST0[12:8]							
\$28	PDCM_RSPST1_L				PDCM_RS	SPST1[7:0]				
\$29	PDCM_RSPST0_H	Rese	Reserved PDCM_RSPST1[12:8]							
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0 0 0 0 0			0		

PDCM_RSPSTx[12:0] - periodic data collection mode response start time

The periodic data collection mode response start time user-programmed set the PSI5 Synchronous mode response start time for the associated data and SOURCEID. The value is stored in 1.0 µs increments.

Table 51. Periodic data collection mode response start time for the associated data and SOURCEID

PDCM_RSPSTx[12:0]	Periodic data collection mode response start time
0	See <u>Table 52</u> .
0 < PDCM_RSPSTx[12:0] < 20	20.0 μs
20 < PDCM_RSPSTx[12:0]	PDCM response start = PDCM_RSPST x 1.0 µs

<u>Table 52</u> shows the relationship of the SOURCEID, the transmitted data, the response start times, and the default states for each set of user-programmed. Care must be taken to prevent from programming response start times that cause data contention in the system.

Table 52. Default states for SOURCEID_x, SNSDATAxm, PCDM_REPSTx

SOURCEID register	Transmitted data	Start time user- programmed	Default start (PDCM_RSPSTx[12:0] = 00h)						
SOURCEID_0	SNSDATA0	PDCM_RSPST0[12:0]	Transmit data with a start time of 20 μs						
SOURCEID_1	SNSDATA1	PDCM_RSPST1[12:0]	Transmit data with a start time of 20 µs						

<u>Table 53</u> shows the PSI5 data transmission start times based on the values in the PDCM_RSPSTx user-programmed and the value of the ASYNC bit. Care must be taken to prevent from programming time slots that violate the PSI5 Version 1.3 specification, or time slots that will cause data contention.

Table 53. PSI5 data transmission start times

ASYNC Bit	SOURCEID register	Transmitted data	Time slot start time	Default start (PDCM_RSPSTx[12:0] = 00h)
1	SOURCEID_0	SNSDATA0	Asynchronous mode	tasync
0	SOURCEID_0	SNSDATA0	PDCM_RSPST0[12:0]	Transmit data with a start time of 20 µs.
	SOURCEID_1	SNSDATA1	PDCM_RSPST1[12:0]	Transmit data with a start time of 20 μs.

6.2.14 PDCM CMD B x - PSI5 command blocking time user-programmed (address \$38, \$39)

The PSI5 command blocking user-programmed are user programmed read/write user-programmed that contain user-specific configuration information. These user-programmed are included in the read/write array error detection.

These user-programmed are readable and writable in PSI5 diagnostic mode.

Table 54. PDCM_CMD_B_x - PSI55 command blocking time user-programmed - (address \$38, \$39) bit allocation

Address	Name		Bit							
		7	6	5	4	3	2	1	0	
\$38	PDCM_CMD_B_L		PDCM_CMD_B[7:0]							
#39	PDCM_CMD_B_H	Reserved Reserved PDCM_CMD_B[12:8]								

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

Table 54. PDCM_CMD_B_x - PSI55 command blocking time user-programmed - (address \$38, \$39) bit allocation...continued

Address	Name		Bit							
		7	6	5	4	3	2	1	0	
Access		R/W								
Reset		0	0	0	0	0	0	0	0	

The command blocking time bits set the PSI5 sync pulse blocking time in 1.0 µs increments, with zero as the default value of 450 µs. See <u>Section 11.2.2.1 "Synchronization pulse"</u> for details regarding the PSI5 sync pulse receiver and command blocking.

Care must be taken to prevent from programming command blocking times that prevent proper sync pulse decoding in the system and to ensure proper sampling of the PSI5 voltage.

Table 55. PSI5 mode sync pulse blocking time

PDCM_CMD_B[12:0]	Sync pulse blocking time
0, 1, 2, 3, 4, 5, 6, 7, 8, 9	450 μs
10 to 8191	Sync pulse blocking time = PDCM_CMD_B x 1 μs

6.2.15 WHO AM I - who am I register (address \$3E)

The Who_Am_I register is a user programmed read/write register that contains the unique product identifier. The register is readable in all modes. This register is included in the read/write array error detection.

This register is readable and writable in PSI5 diagnostic mode.

Table 56. WHO_AM_I - who am I register - (address \$3E) bit allocation

Bit	7	6	5	4	3	2	1	0			
Name		WHO_AM_[[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Factory default stored value	0	0	0	0	0	0	0	0			
Factory default read value	1	1	0	0	0	1	0	0			

The default register value is 00h. If the register value is 00h, a value of C4h is transmitted in response to a read command. For all other register values, the actual register value is transmitted in response to a read command.

Table 57. Response to a register read command

WHO_AM_I register value (hex)	Response to a register read command
00h	C4h
01h Through FFh	Actual register value

6.2.16 DSP_CFG_U1 – DSP user configuration #1 register (address \$40)

The DSP user configuration register #1 is a user-programmable read/write register that contains DSP-specific configuration information. This register is included in the read/write array error detection.

Changes to this register reset the DSP data path. The contents of the SNSDATA_x user-programmed are not guaranteed until the DSP has completed initialization as specified in <u>Section 10 "Dynamic characteristics – PSI5"</u>. Reads of the SNSDATA_x user-programmed and sensor data requests should be prevented during this time.

This register is readable and writable in PSI5 diagnostic mode.

Table 58. DSP_CFG_U1 - DSP user configuration #1 register - (address \$40) bit allocation

Bit	7	6	5	4	3	2	1	0
Name		LPF	[3:0]		Reserved	Reserved	Reserved	Reserved
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

LPF[3:0] - low-pass filter selection bits

The low-pass filter selection bits select the low-pass filter for the DSP. See <u>Section 6.6.4.3 "Low-pass filter"</u> for details regarding the low-pass filter.

Table 59. LPF[3:0] - low-pass filter selection bits

LPF[3]	LPF[2]	LPF[1]	LPF[0]	Low-pass filter type
0	0	0	0	370 Hz, 2-pole
0	0	0	1	400 Hz, 3-pole
0	0	1	0	800 Hz, 4-pole
0	0	1	1	1000 Hz, 4-pole
0	1	0	0	Reserved
0	1	0	1	Reserved
0	1	1	0	Reserved
0	1	1	1	Reserved
1	х	x	х	Reserved

6.2.17 DSP_CFG_U3 - DSP user configuration #3 register (address \$42)

The DSP user configuration register #3 is a user-programmable read/write register that contains DSP-specific configuration information. This register is included in the read/write array error detection.

Changes to this register reset the DSP data path. The contents of the SNSDATA_x user-programmed are not guaranteed until the DSP has completed initialization as specified in <u>Section 10 "Dynamic characteristics – PSI5"</u>. Reads of the SNSDATA_x user-programmed and sensor data requests should be prevented during this time.

This register is readable and writable in PSI5 diagnostic mode.

Table 60. DSP CFG U3 - DSP user configuration #3 register - (address \$42) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	Reserved	rved DATATYPE0[1:0]		Reserved	DATATYPE1[1:0]		Reserved	Reserved
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

DATATYPE0 - DSP data type 0 selection bits

The DSP data type 0 selection bits select the type of data to be included in the SNSDATA0_L and SNSDATA0 H user-programmed.

Table 61. DSP data type 0 selection bits

DATATYPE0[1]	DATATYPE0[0]	SNSDATA register contents	PSI5 data transmission						
0	0	Relative pressure	Relative pressure						
0	1	Absolute pressure (P _{ABS})	1F4h						
1	0	Filtered absolute pressure (P ₀)	1F4h						
1	1	Temperature	Temperature						

DATATYPE1 - DSP data type 1 selection bits

The DSP data type 1 selection bits select the type of data to be included in the SNSDATA1_L and SNSDATA1_H user-programmed.

Table 62. DSP data type 1 selection bits

DATATYPE1[1]	DATATYPE1[0]	SNSDATA register contents	PSI5 data transmission
0	0	Relative pressure	Relative pressure
0	1	Absolute pressure (P _{ABS})	1F4h
1	0	Filtered absolute pressure (P ₀)	1F4h
1	1	Temperature	Temperature

Note: Interpolation is not included on the DATATYPE1 output.

6.2.18 DSP_CFG_U4 - DSP user configuration #4 register (address \$43)

The DSP user configuration register #4 is a user-programmable read/write register that contains DSP-specific configuration information. This register is included in the read/write array error detection.

This register is readable and writable in PSI5 diagnostic mode.

Table 63. DSP_CFG_U4 - DSP user configuration #4 register - (address \$43) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	P0_RESET	Reserved	Reserved	P0_RLD	Reserved	Reserved	Reserved	Reserved
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

P0_RESET - Po filter reset bit

The P_0 filter reset bit provides the option restart P_0 low-pass filter fast startup at phase 0. See Section 6.6.4.4 "P0 low-pass filter and gradient filter" for details regarding the P_0 filter. If a register write to DSP_CFG_U4 occurs with the P0_RESET bit set, 1, and the bit was previously cleared, 0, the P_0 low-pass filter fast startup phase will be reset to phase 0.

Table 64. P₀ filter reset bit

P0_RESET (previous state)	P0_RESET (new state)	P ₀ filter startup
0	0	No effect
0	1	Restart the P ₀ startup at phase 0
1	0	No effect
1	1	No effect

P0_RLD - P₀ filter rate limiting bypass bit

The P_0 filter rate limiting bypass bit provides the option to bypass the P_0 filter rate limiting after the high-pass filter. See Section 6.6.4.4 "P0 low-pass filter and gradient filter" for details regarding the P_0 filter.

Table 65. P0_RLD - P₀ filter rate limiting bypass bit

	0 71
P0_RLD	P ₀ filter rate limiting
0	Enabled
1	Bypassed

6.2.19 DSP_CFG_U5 - DSP user configuration #5 register (address \$44)

The DSP user configuration register #5 is a user-programmable read/write register that contains DSP-specific configuration information. This register is included in the read/write array error detection.

This register is readable and writable in PSI5 diagnostic mode.

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

Table 66. DSP_CFG_U5 - DSP user configuration #5 register - (address \$44) bit allocation

Bit	7	6	5	4	3	2	1	0
Name		ST_CT	RL[3:0]		Reserved	Reserved	Reserved	Reserved
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

ST_CTRL[3:0] - self-test control bits

The self-test control bits select one of the various analog and digital self-test features of the device as shown in <u>Table 67</u>. The self-test control bits are not included in the read/write array error detection.

Table 67. Self-test control bits

Table 07.	Gen-test (Control Dit	3		
ST_CTRL[3]	ST_CTRL[2]	ST_CTRL[1]	ST_CTRL[0]	Function	SNS_DATAx_X contents
					16-bit data
0	0	0	0	Normal pressure signal	Sensor data as specified in Section 6.2.17 "DSP_CFG_U3 - DSP user configuration #3 register (address \$42)"
0	0	0	1	P-Cell common mode verification	Sensor data as specified in Section 6.2.17 "DSP_CFG_U3 - DSP user configuration #3 register (address \$42)"
0	0	1	0	Reserved	Reserved
0	0	1	1	Reserved	Reserved
0	1	0	0	DSP write to SNS_DATAx_X user-programmed inhibited.	0000h
0	1	0	1	DSP write to SNS_DATAx_X user-programmed inhibited.	AAAAh
0	1	1	0	DSP write to SNS_DATAx_X user-programmed inhibited.	5555h
0	1	1	1	DSP write to SNS_DATAx_X user-programmed inhibited.	FFFFh
1	0	0	0	Reserved	Reserved
1	0	0	1	Reserved	Reserved
1	0	1	0	Reserved	Reserved
1	0	1	1	Reserved	Reserved
1	1	0	0	Digital self-test 0	See Section 6.6.2.2 "Startup digital self-test verification"
1	1	0	1	Digital self-test 1	See Section 6.6.2.2 "Startup digital self-test verification"
1	1	1	0	Digital self-test 2	See Section 6.6.2.2 "Startup digital self-test verification"
1	1	1	1	Digital self-test 3	See Section 6.6.2.2 "Startup digital self-test verification"

6.2.20 P_CAL_ZERO_x - pressure calibration user-programmed (address \$4C, \$4D)

The pressure calibration user-programmed contain user-programmable values to adjust the offset of the absolute pressure.

These user-programmed can be written during initialization but are locked once the ENDINIT bit is set. Refer to Section 6.2.5 "DEVLOCK_WR – lock register writes register (address \$10)". The register is included in the read/write array error detection. Changes to this register reset the DSP data path. The contents of the SNSDATA_x user-programmed are not guaranteed until the DSP has completed initialization as specified in Section 10 "Dynamic characteristics – PSI5". Reads of the SNSDATA_x user-programmed and sensor data requests should be prevented during this time.

Table 68. P_CAL_ZERO_x - pressure calibration user-programmed - (address \$4C) bit allocation

Address	Name		Bit								
		7	6	5	4	3	2	1	0		
\$4C	P_CAL_ZERO_L		P_CAL_ZERO[7:0]								
\$4D	P_CAL_ZERO_H				P_CAL_ZE	ERO[15:8]					
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0	0		

The P_CAL_ZERO register value is a signed 16-bit value that is directly added to the internally calibrated pressure signal value as shown in Equation 1. Equation 1 applies to the values in the 16-bit SNSDATA user-

programmed. See <u>Section 6.6.4.7 "Output scaling equations"</u> for the default transfer functions for each data output type.

$$PABS_{LSR} = SNSDATA + User \quad Of fset \tag{1}$$

Note: The pressure calibration user-programmed enable range and resolution options beyond the specified values of the device. The user must take care to ensure that the value stored in this register does not result in a compressed output range or a railed output.

6.2.21 DSP_STAT – DSP-specific status register (address \$60)

The DSP status register is a read-only register that contains sensor data-specific status information.

This register is readable in PSI5 diagnostic mode.

Table 69. DSP_STAT - DSP-specific status register - (address \$60) bit allocation

Bit	7	6	5	4	3	2	1	0
Name	Reserved	PABS_HIGH	PABS_LOW	Reserved	ST_INCMPLT	ST_ACTIVE	CM_ERROR	ST_ERROR
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	1	0	0	0

PABS_HIGH - absolute pressure out of range high status bit

The absolute pressure out of range high status bit is set if the absolute pressure exceeds the absolute pressure out of range high limit specified in <u>Section 9 "Static characteristics"</u>. The PABS_HIGH bit is cleared on a read of the DSP_STAT register through any communication interface or on a data transmission that includes the error in the status field.

PABS_LOW - absolute pressure out of range low status bit

The absolute pressure out of range low status bit is set if the absolute pressure exceeds the absolute pressure out of range low limit specified in <u>Section 9 "Static characteristics"</u>. The PABS_LOW bit is cleared on a read of the DSP_STAT register through any communication interface or on a data transmission that includes the error in the status field.

ST_INCMPLT - self-test incomplete

The self-test incomplete bit is set after a device reset and is only cleared when one of the analog or digital self-test modes is enabled in the ST_CTRL register (ST_CTRL[3] = 1 | ST_CTRL[2] = 1 | ST_CTRL[1] = 1 | ST_CTRL[0] = 1) or the PSI5 internal self-test procedure has started.

Table 70. Self-test incomplete

ST_INCMPLT	Condition
0	An analog or digital self-test has been activated since the last reset.
1	No analog or digital self-test has not been activated since the last reset and the PSI5 internal self-test procedure has not completed.

ST_ACTIVE - self-test active flag

The self-test active bit is set if any self-test mode is currently active, including the PSI5 internal self-test. The self-test active bit is cleared when no self-test mode is active.

ST_ACTIVE = ST_CTRL[3] | ST_CTRL[2] | ST_CTRL[1] | ST_CTRL[0]

CM_ERROR – absolute pressure common mode error status bit

The absolute pressure common mode error status bit is set if the startup common mode self-test value exceeds predetermined limits. The CM_ERROR bit is cleared on a read of the DSP_STAT register through any

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

communication interface or on a data transmission that includes the error in the status field. See <u>Section 6.6.6</u> "Common mode error detection signal chain" for details regarding the common mode error detection.

ST ERROR - self-test error flag

The self-test error flag is set if an internal self-test fails as described in <u>Section 6.6.2 "Self-test functions"</u>. This bit can only be cleared by a device reset.

6.2.22 DEVSTAT_COPY – device status copy register (address \$61)

The device status copy register is a read-only register that contains a copy of the device status information contained in the DEVSTAT register. See Section 6.2.2 "DEVSTATx – device status user-programmed (address \$01-\$04)" for details regarding the DEVSTAT register contents.

This register is readable in PSI5 diagnostic mode. A read of the DEVSTAT_COPY register has the same effect as a read of the DEVSTAT register.

Table 71. DEVSTAT_COPY - device status copy register - (address \$61) bit allocation

Bit	7	6	5	4	3	2	1	0				
Name	DSP_ERR	Reserved	COMM_ERR	MEMTEMP_ERR	SUPPLY_ERR	TESTMODE	DEVRES	DEVINIT				
Access	R	R	R	R	R	R	R	R				
Reset		Refer to Section 6.2.2 "DEVSTATx – device status user-programmed (address \$01-\$04)"										

6.2.23 SNSDATA0_L, SNSDATA0_H - sensor data #0 user-programmed (address \$62, \$63)

The sensor data #0 user-programmed are read-only user-programmed that contain the 16-bit sensor data. The data type for the sensor data #0 user-programmed is selected by the DATATYPE0 bits in the DSP_CFG_U3 register. See Section 6.2.17 "DSP_CFG_U3 – DSP user configuration #3 register (address \$42)". See Section 6.6.4.7 "Output scaling equations" for details regarding the 16-bit sensor data.

These user-programmed are readable in PSI5 diagnostic mode.

Table 72. SNSDATA0_L, SNSDATA0_H – sensor data #0 user-programmed – (address \$62, \$63) bit allocation

Address	Name				В	it					
		7	7 6 5 4 3 2 1 0								
\$62	SNSDATA0_L		SNSDATAO_L[7:0]								
\$63	SNSDATA0_H				SNSDATA	.0_H[15:8]					
Access		R	R R R R R R								
Reset		0	0 0 0 0 0 0 0								

6.2.24 SNSDATA1 L, SNSDATA1 H - sensor data #1 user-programmed (address \$64, \$65)

The sensor data #1 user-programmed are read-only user-programmed that contain the 16-bit sensor data. The data type for the sensor data #1 user-programmed is selected by the DATATYPE0 bits in the DSP_CFG_U3 register. See Section 6.2.17 "DSP_CFG_U3 - DSP user configuration #3 register (address \$42)". See Section 6.6.4.7 "Output scaling equations" for details regarding the 16-bit sensor data.

These user-programmed are readable in PSI5 diagnostic mode.

Table 73. SNSDATA0_L, SNSDATA0_H – sensor data #0 user-programmed – (address \$62, \$63) bit allocation

Address	Name				В	it					
		7	7 6 5 4 3 2 1 0								
\$64	SNSDATA1_L		SNSDATA1_L[7:0]								
\$65	SNSDATA1_H				SNSDATA	.1_H[15:8]					
Access		R	R R R R R R								
Reset		0 0 0 0 0 0						0			

6.2.25 SNSDATA0_TIMEx - sensor data 0 timestamp (address \$66 to \$69, \$6A, \$6B)

The sensor data 0 timestamp user-programmed are read-only user-programmed that contain a 48-bit timestamp.

These user-programmed are readable in PSI5 diagnostic mode.

Table 74. SNSDATA0 TIMEx - sensor data 0 timestamp - (address \$66 to \$69, \$6A, \$6B) bit allocation

Table 14. StrobAtAs_Timex School data & timestamp (address \$60, \$60, \$60, \$60, \$60, \$60, \$60, \$60,										
Address	Name				В	Bit				
		7	6	5	4	3	2	1	0	
\$66	SNSDATA0_ TIME0				SNSDATAC	D_TIME[7:0]				
\$67	SNSDATA0_ TIME1		SNSDATA0_TIME[15:8]							
\$68	SNSDATA0_ TIME2		SNSDATA0_TIME[23:16]							
\$69	SNSDATA0_ TIME3				SNSDATA0_	_TIME[31:24]				
\$6A	SNSDATA0_ TIME4				SNSDATA0_	_TIME[39:32]				
\$6B	SNSDATA0_ TIME5		SNSDATA0_TIME[47:40]							
Access		R	R	R	R	R	R	R	R	
Reset		0 0 0 0 0 0 0 0								

6.2.26 P_MAX, P_MIN – minimum and maximum absolute pressure value user-programmed (address \$6C to \$6F)

The minimum and maximum absolute pressure value user-programmed are read-only user-programmed that contain a sample by sample continuously updated minimum and maximum 16-bit absolute pressure value. The value is reset to 0000h on a write to a DSP_CFG_Ux register that changes the value of the LPF[3:0], DATATYPE0[1:0], DATATYPE1[1:0], or ST_CTRL[3:0].

These user-programmed are readable in PSI5 diagnostic mode.

Table 75. P_MAX_x - maximum absolute pressure value register - (address \$6C, \$6D) bit allocation

Address	Name				В	it					
		7	7 6 5 4 3 2 1 0								
\$6C	P_MAX_L		P_MAX[7:0]								
\$6D	P_MAX_H				P_MAX	K[15:7]					
Access		R	R R R R R R								
Reset	0 0 0 0 0 0					0					

Table 76. P_MIN_x - maximum absolute pressure value register - (address \$6E, \$6F) bit allocation

Address	Name		Bit									
		7	7 6 5 4 3 2 1 0									
\$6E	P_MIN_L		P_MIN[7:0]									
\$6F	P_MIN_H				P_MIN	I[15:7]						
Access		R	R R R R R R									
Reset		0 0 0 0 0 0					0	0				

6.2.27 FRTx – free-running timer user-programmed (address \$78, \$79, \$7A to \$7D)

The free-running timer user-programmed are read-only user-programmed that contain a 48-bit free running timer. The free-running timer is clocked by the main oscillator frequency and increments every 100 ns.

These user-programmed are readable in PSI5 diagnostic mode.

Table 77. FRTx – free-running timer user-programmed (address \$78, \$79, \$7A to \$7D) bit allocation

Address	Name				В	it				
		7	6	5	4	3	2	1	0	
\$78	FRT0				FRT	[7:0]				
\$79	FRT1		FRT[15:8]							
\$7A	FRT2		FRT[23:16]							
\$7B	FRT3				FRT	31:24]				
\$7C	FRT4				FRT	39:32]				
\$7D	FRT5				FRT[4	47:40]				
Access		R	R R R R R R							
Reset		0 0 0 0 0 0 0 0						0		

6.2.28 PNx – Part number user-programmed (address \$C4, \$C5)

The part number user-programmed are factory programmed OTP user-programmed that include the numeric portion of the device part number. These user-programmed are included in the factory programmed OTP array error detection.

These user-programmed are readable in PSI5 diagnostic mode when ENDINIT is not set. See <u>Section 6.2.8</u> "<u>UF_REGION_x – UF region selection user-programmed (address \$14, \$15)</u>" for details on the register read process for these user-programmed.

Table 78. PNx - Part number user-programmed - (address \$C4, \$C5) bit allocation

Address	Name				В	it					
		7	7 6 5 4 3 2 1 0								
\$C4	PN0		PN0[7:0]								
\$C5	PN1				PN1	[7:0]					
Access		R	R R R R R R								
Reset		0000 0001									

Table 79. Part number user-programmed protocol

PN1[7:0] value (hex)	PN0[7:0] value (hex)	Protocol
14h	01h	PSI5

6.2.29 SNx – device serial number user-programmed (address \$C6 to \$C9, \$CA)

The serial number user-programmed are factory programmed OTP user-programmed that include the unique serial number of the device. Serial numbers begin at 1 for all produced devices in each lot and are sequentially

assigned. Lot numbers begin at 1 and are sequentially assigned. No lot will contain more devices than can be uniquely identified by the 14-bit serial number. Depending on lot size and quantities, all possible lot numbers and serial numbers may not be assigned. These user-programmed are included in the factory programmed OTP array error detection.

These user-programmed are readable in PSI5 diagnostic mode when ENDINIT is not set. See <u>Section 6.2.8</u> "<u>UF_REGION_x – UF region selection user-programmed (address \$14, \$15)</u>" for details on the register read process for these user-programmed.

Table 80. SNx - device serial number user-programmed - (address \$C6 to \$C9, \$CA) bit allocation

Address	Name		<u> </u>		В	it				
		7	6	5	4	3	2	1	0	
\$C6	SN0				SN[7:0]				
\$C7	SN1		SN[15:8]							
\$C8	SN2		SN[23:16]							
\$C9	SN3				SN[3	1:24]				
\$CA	SN4				SN[3:	9:32]				
Access		R	R R R R R R							
Reset		N/A N/A N/A N/A N/A N/A						N/A		

6.2.30 ASIC wafer ID user-programmed (address \$CB to \$CD, \$D0, \$D1)

The ASIC wafer ID user-programmed are factory programmed OTP user-programmed that include the wafer number, and wafer x and y coordinates for the device ASIC. These user-programmed are included in the factory programmed OTP array error detection.

These user-programmed are readable in PSI5 diagnostic mode when ENDINIT is not set. See <u>Section 6.2.8</u> "<u>UF_REGION_x – UF region selection user-programmed (address \$14, \$15)"</u> for details on the register read process for these user-programmed.

Table 81. ASICWFR# - ASIC wafer ID register - (address \$CB) bit allocation

Bit	7	6	5	4	3	2	1	0
Name		ASICWFR#[7:0]						
Access	R	R	R	R	R	R	R	R
Reset	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 82. ASICWFR_x – ASIC wafer x, y coordinates ID user-programmed – (address \$CC, \$CD) bit allocation

Address	Name		Bit						
		7	6	5	4	3	2	1	0
\$CC	ASICWFR_X		ASICWFR_X[7:0]						
\$CD	ASICWFR_Y				ASICWF	R_X[7:0]			
Access		R	R	R	R	R	R	R	R
Reset		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 83. ASICWLOT_x - ASIC wafer lot ID user-programmed - (address \$D0, \$D1) bit allocation

		. ,		or brogramm	(000 +20, +2	., ын анова		
Address	Name		Bit						
		7	6	5	4	3	2	1	0
\$D0	ASICWLOT_L		ASICWLOT_L[7:0]						
\$D1	ASICWLOT_H				ASICWLO	DT_H[7:0]			
Access		R	R R R R R R					R	
Reset		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

Document feedback

6.2.31 USERDATA_0 to USERDATA_E – user data user-programmed (address \$E0 to \$E9, \$EA to \$EE)

User data user-programmed are user-programmable OTP user-programmed that contain user-specific information. These user-programmed are included in the user programmed OTP array error detection.

These user-programmed are readable and writable in PSI5 diagnostic mode when ENDINIT is not set. See <u>Section 6.2.8 "UF_REGION_x - UF region selection user-programmed (address \$14, \$15)"</u> for details on the register read process for these user-programmed.

Table 84. USERDATA_X - user data user-programmed (address \$E0 to \$E9, \$EA to \$EE) bit allocation

Address	Name				В	it				
		7	6	5	4	3	2	1	0	
\$E0	USERDATA_0			•	USERDA	TA_0[7:0]				
\$E1	USERDATA_1		USERDATA_1[7:0]							
\$E2	USERDATA_2		USERDATA_2[7:0]							
\$E3	USERDATA_3				USERDA	TA_3[7:0]				
\$E4	USERDATA_4				USERDA	TA_4[7:0]				
\$E5	USERDATA_5				USERDA	TA_5[7:0]				
\$E6	USERDATA_6				USERDA	TA_6[7:0]				
\$E7	USERDATA_7				USERDA	TA_7[7:0]				
\$E8	USERDATA_8				USERDA	TA_8[7:0]				
\$E9	USERDATA_9				USERDA	TA_9[7:0]				
\$EA	USERDATA_A				USERDA	TA_A[7:0]				
\$EB	USERDATA_B				USERDA	TA_B[7:0]				
\$CB	USERDATA_C				USERDA	TA_C[7:0]				
\$ED	USERDATA_D				USERDA	TA_D[7:0]				
\$EE	USERDATAEE		USERDATA_E[7:0]							
Access	·	RW RW RW RW RW RW							R/W	
Reset		0 0 0 0 0 0						0		

6.2.31.1 PSI5 initialization phase 2 data transmissions of user data

The values of the user data user-programmed are transmitted in initialization phase 2 as shown in <u>Table 85</u>. See <u>Section 11.2.4.2.1 "PSI5 initialization phase 2 data transmissions"</u> for details on the PSI5 initialization phase 2 transmissions.

Table 85. Phase 2 USERDATA_X – user data user-programmed (address \$E0 to \$E9, \$EA to \$EE) bit allocation

Address	Name				В	it				
		7	6	5	4	3	2	1	0	
\$E0	USERDATA_0		Rese	rved			F1:	D1		
\$E1	USERDATA_1		F3:	D5			F3:	: D4		
\$E2	USERDATA_2		F4:	D7		F4: D6				
\$E3	USERDATA_3		F5:	D9		F5: D8				
\$E4	USERDATA_4		F6:	D11		F6: D10				
\$E5	USERDATA_5		F7:	D13			F7:	D12		
\$E6	USERDATA_6		F9:	D32		F7: D14				
\$E7	USERDATA_7		F8:	D16		F8: D15				
\$E8	USERDATA_8		F8:	D18		F8: D17				
\$E9	USERDATA_9		Rese	rved			Rese	erved		
\$EA	USERDATA_A	Reserved				Reserved				
\$EB	USERDATA_B		Rese	rved		Reserved				
\$EC	USERDATA_C		Rese	rved		Reserved				

Table 85. Phase 2 USERDATA_X – user data user-programmed (address \$E0 to \$E9, \$EA to \$EE) bit allocation...continued

Address	Name		Bit							
		7	6	5	4	3	2	1	0	
\$ED	USERDATA_D		Reserved			Reserved				
\$EE	USERDATA_E		Rese	erved		Reserved				
Access										
Reset		0	0	0	0	0	0	0	0	

6.2.32 USERDATA_10 to USERDATA_1E – user data user-programmed (address \$F0 to \$F9, \$FA to \$FE)

User data user-programmed are user-programmable OTP user-programmed that contain user-specific information. These user-programmed are included in the user programmed OTP array error detection.

These user-programmed are readable and writable in PSI5 diagnostic mode when ENDINIT is not set. See <u>Section 6.2.8 "UF_REGION_x - UF region selection user-programmed (address \$14, \$15)"</u> for details on the register read process for these user-programmed.

Table 86. USERDATA_10 to USERDATA_1E – user data user-programmed (address \$F0 to \$F9, \$FA to \$FE) – bit allocation

Address	Name				В	it			
		7	6	5	4	3	2	1	0
\$F0	USERDATA_10			1	USERDAT	A_10[7:0]			
\$F1	USERDATA_11		USERDATA_11[7:0]						
\$F2	USERDATA_12				USERDAT	A_12[7:0]			
\$F3	USERDATA_13				USERDAT	A_13[7:0]			
\$F4	USERDATA_14				USERDAT	A_14[7:0]			
\$F5	USERDATA_15				USERDAT	A_15[7:0]			
\$F6	USERDATA_16				USERDAT	A_16[7:0]			
\$F7	USERDATA_17				USERDAT	A_17[7:0]			
\$F8	USERDATA_18				USERDAT	A_18[7:0]			
\$F9	USERDATA_19				USERDAT	A_19[7:0]			
\$FA	USERDATA_1A				USERDAT	A_1A[7:0]			
\$FB	USERDATA_1B				USERDAT	A_1B[7:0]			
\$FC	USERDATA_1C				USERDAT	A_1C[7:0]			
\$FD	USERDATA_1D		USERDATA_1D[7:0]						
\$FE	USERDATA_1E		USERDATA_1E[7:0]						
Access		RW RW RW RW RW RW RW						R/W	
Reset		0 0 0 0 0 0 0					0		

6.2.33 CRC_UF2, CRC_F_A to CRC_F_F – lock and CRC user-programmed (address \$5F, \$AF to \$FF)

The lock and CRC user-programmed are automatically programmed OTP user-programmed that include the lock bit, the block identifier, and the block OTP array CRC use for error detection.

These user-programmed are automatically programmed when the corresponding data array is programmed to OTP using the write OTP enable register as documented in <u>Section 6.2.6 "WRITE_OTP_EN – write OTP enable register</u> (address \$11)".

Table 87. CRC_UF2, CRC_F_A to CRC_F_F – lock and CRC user-programmed – (address \$5F, \$AF to \$FF) bit allocation

Address	Name				В	it			
Address	Name	7	6	5	4	3	2	1	0
\$5F	CRC_UF2	LOCK_UF2	0	0	0	CRC_UF2[3:0]			
Reset		0	0	0	0	0 0 0		0	0
\$AF	CRC_F_A	LOCK_F_A	RI	EGA_BLOCKID[2:	0]		CRC_F	_A[3:0]	
Reset		1	0	0	1		Va	ries	
\$BF	CRC_F_B	LOCK_F_B	RI	EGB_BLOCKID[2:	0]	CRC_F_B[3:0]			
Reset		1	0	1	0	Varies			
\$CF	CRC_F_C	LOCK_F_C	RI	EGC_BLOCKID[2:	0]		CRC_F	C[3:0]	
Reset		1	0	1	1		Va	ries	
\$DF	CRC_F_D	LOCK_F_D	RI	EGD_BLOCKID[2:	0]		CRC_F	_D[3:0]	
Reset		1	1	0	0		Va	ries	
\$EF	CRC_F_E	LOCK_F_E	RI	EGE_BLOCKID[2:	0]	CRC_F_E[3:0]			
Reset	1	0	0	0	0	0 0 0 0		0	
\$FF	CRC_F_F	LOCK_F_F	RI	EGF_BLOCKID[2:	0]	CRC_F_F[3:0]			
Reset		0	0	0	0	0	0	0	0

<u>Table 88</u> shows the state of the lock bits, the block identifiers, and the CRC for each register block before and after programming.

Table 88. Register block before and after programming

Register block address	Lock bit bit[7]		Block identifier bit[6:4]		CRC bit[3:0]		
audiess	Before programming	After programming	Before programming	After programming	Before programming	After programming	
UF2	0	1	000	000	0000	Varies	
\$Ax	0	1	N/A	001	N/A	Varies	
\$Bx	0	1	N/A	010	N/A	Varies	
\$Cx	0	1	N/A	011	N/A	Varies	
\$Dx	0	1	N/A	100	N/A	Varies	
\$Ex	0	1	000	101	0000	Varies	
\$Fx	0	1	000	110	0000	Varies	

6.2.34 Reserved user-programmed

A register read command to a reserved register or a register with reserved bits will result in a valid response. The data for reserved bits may be 0 or 1.

A register write command to a reserved register or a register with reserved bits will execute and result in a valid response. The data for the reserved bits may be 0 or 1. A write to the reserved bits must always be '0' for normal device operation and performance.

6.2.35 Invalid register addresses

A register read command to a register address outside the addresses listed in <u>Section 6.1 "User-accessible</u> data array" will result in a valid response. The data for the user-programmed will be 00h.

A register write command to a register address outside the addresses listed in <u>Section 6.1 "User-accessible data array"</u> will not execute, but will result in a valid response. The data for the user-programmed will be 00h.

A register write command to a read-only register will not execute, but will result in a valid response. The data for the user-programmed will be the current contents of the register.

6.3 OTP and read/write register array CRC verification

6.3.1 NXP OTP user-programmed

The following user-programmed are internal OTP user-programmed. These user-programmed are verified by the OTP ECC as well as an independent 4-bit CRC for each 16 byte block.

Table 89. Internal OTP user-programmed

Memory type codes	
F	User-readable register with OTP

6.3.2 User OTP only user-programmed

The following user-programmed are internal OTP user-programmed. These user-programmed are verified by the OTP ECC as well as a 4-bit CRC for each 16 byte block. The CRC verification uses a generator polynomial of $g(x) = X^4 + X^3 + 1$, with a seed value = 0000. The bits are fed into the CRC calculation from right to left (MSB first) and from top to bottom (lowest address first) in the register map.

Table 90. User OTP only user-programmed

Memory type codes	
UF0	One-time user-programmable OTP Region 0
UF1	One-time user-programmable OTP Region 1

6.3.3 OTP modifiable user-programmed

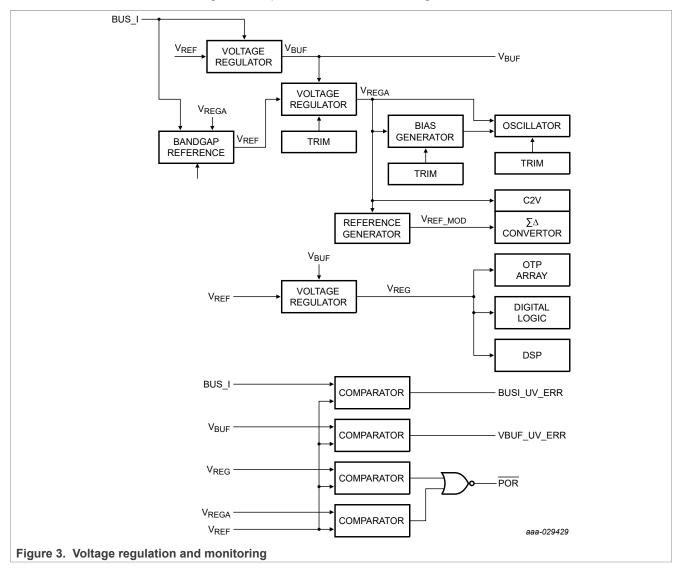
The following user-programmed are user read/write user-programmed as well as OTP user-programmed with writable mirror user-programmed. The OTP user-programmed are verified by the OTP ECC as well as an independent 4-bit CRC stored in the CRC_UF2 register.

The values read from OTP can be overwritten while ENDINIT is not set. Once ENDINIT is set, the writable user-programmed (all user-programmed in the R/W and UF2 regions with the exception of the DEVLOCK_WR register) are verified by an additional continuous 4-bit CRC that is calculated on the entire array. The CRC verification uses a generator polynomial of $g(x) = X^4 + X^3 + 1$, with a seed value = 0000. The bits are fed into the CRC calculation from right to left (MSB first) and from top to bottom (lowest address first) in the register map.

Table 91. Registers verified by the OTP CRC

	•
Memory type codes	
UF2	One-time user-programmable OTP Region 3 with modifiable mirror user-programmed

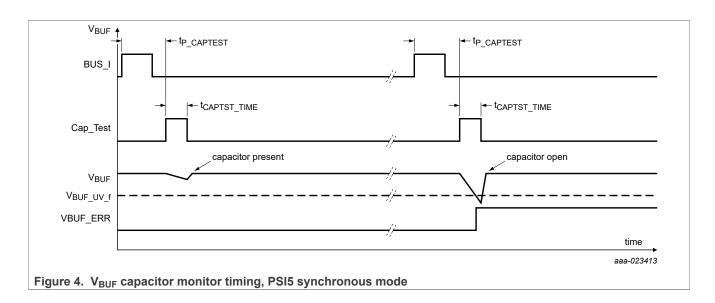
Table 92. Registers verified by the ENDINIT calculated CRC

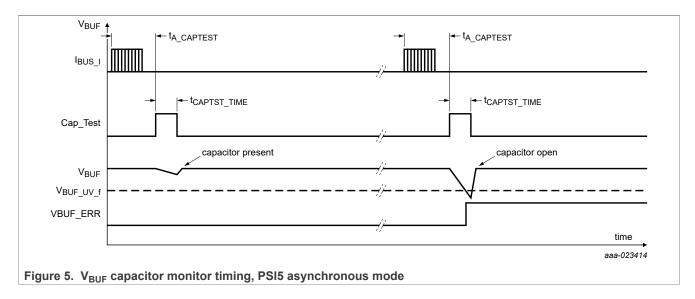

Memory type codes					
UF2 One-time user-programmable OTP Region 3 with modifiable mirror user-programmed					
R/W	User-writable register, with the exception of the DEVLOCK_WR register				

6.4 Voltage regulators

The device derives its internal supply voltage from the V_{CC}/BUS_I and V_{SS} pins. The internal regulators are supplied by a buffer regulator (V_{BUF}) to provide immunity from EMC, and supply dropouts on BUS_I. An external filter capacitor is required for V_{BUF} .

The voltage regulator module includes voltage monitoring circuitry that holds the device in reset following power on until the internal voltages have increased above the undervoltage detection thresholds. The voltage monitor

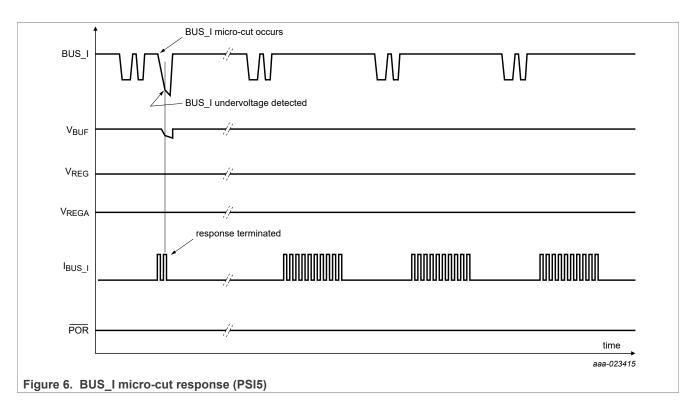

asserts internal reset when the external supply or internally regulated voltages fall below the undervoltage detection thresholds. A reference generator provides a reference voltage for the $\Sigma\Delta$ converter.



6.4.1 V_{BUF} regulator capacitor and capacitor monitor

The buffer regulator requires an external capacitor between the V_{BUF} pin and the V_{SS} pin. Table 3 shows the recommended types and values for each of these capacitors. A monitor circuit is incorporated to ensure predictable operation if the connection to the external V_{BUF} capacitor becomes open. If the external capacitor is not present, the regulator voltage will fall below the threshold specified in Section 9 "Static characteristics" causing the VBUF ERR bit to be set in the DEVSTAT1 register.

The V_{BUF} capacitor is tested synchronous to the protocol transmissions as shown in Figure 4, and Figure 5.



6.4.2 BUS_I, V_{BUF}, V_{REG}, V_{REGA}, undervoltage monitor

A circuit is incorporated to monitor the BUS_I supply voltage and the internally regulated voltages, V_{BUF} , V_{REG} , and V_{REGA} . If any of the voltages fall below the specified undervoltage thresholds in <u>Section 9 "Static characteristics"</u>, the device reacts as follows:

If any supply falls below the specified threshold, PSI5 transmissions are terminated for the present response. Once the supply returns above the threshold, the device will resume responses as specified in Section 6.2.2 "DEVSTATx - device status user-programmed (address \$01-\$04)".

See Figure 6 for an example of a supply line interruption during a PSI5 response.

6.5 Internal oscillator

The device includes a factory trimmed oscillator as specified in Section 10 "Dynamic characteristics – PSI5".

6.6 Pressure sensor signal path

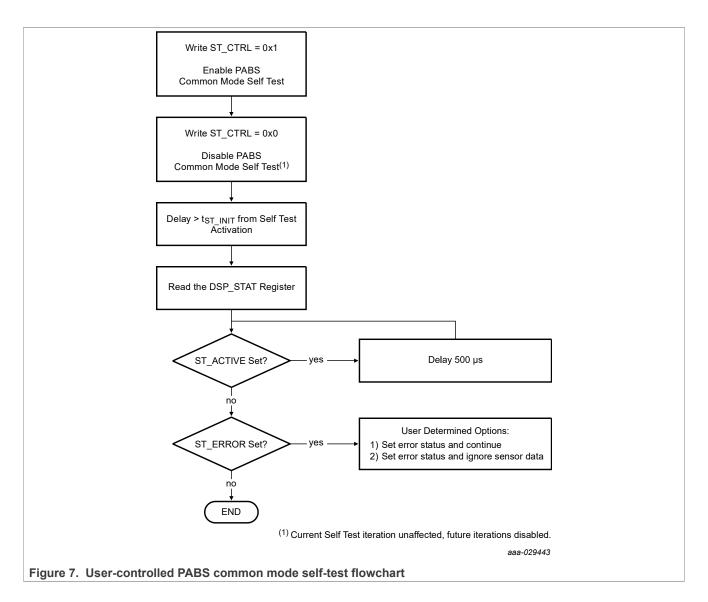
6.6.1 Transducer

See <u>Section 9 "Static characteristics"</u> and <u>Section 10 "Dynamic characteristics – PSI5"</u> for transducer parameters.

6.6.2 Self-test functions

The device includes analog and digital self-test functions to verify the functionality of the transducer and the signal chain. The self-test functions are selected by writing to the ST_CTRL[3:0] bits in the DSP_CFG_U5 register. The ST_CTRL bits select the desired self-test connection as described below.

Once the ENDINIT bit is set, the ST_CTRL bits are forced to 0000. Future writes to the ST_CTRL bits are disabled until a device reset.


6.6.2.1 Startup P_{ABS} common mode verification

When the P_{ABS} common mode self-test is selected, the ST_ACTIVE bit is set, the ST_ERROR is cleared, and the device begins an internal measurement of the common mode signal of the P-cells and compares the result against a predetermined limit. If the result exceeds the limit, the ST_ERROR bit is set.

The P_{ABS} common mode self-test will repeat continuously every t_{ST_INIT} when the ST_CTRL bits are set to the specified value. Once the test is disabled, the ST_ERROR bit will be updated with the final test result within t_{ST_INIT} of disabling the test. The ST_ACTIVE bit will remain set until the final test result is reported. Figure 7 is an example of a user controlled self-test procedure:

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

6.6.2.2 Startup digital self-test verification

Four unique fixed values can be forced at the output of the sinc filter by writing to the ST_CTRL bits as shown in Table 93. The digital self-test values result in a constant value at the output of the signal chain. After a specified period of time, the SNS_DATAx register value can be verified against the values in Table 93. The values listed in Table 93 are only valid if the P_{ABS} signal is selected by the associated DATATYPEx bits. When any of these self-test functions are selected, the ST_ACTIVE bit is set. These signals can only be selected when the ENDINIT bit is not set.

Table 93. Startup digital self-test verification

ST_CTRL[3:0]				Function	SNS_DATAx register co	SNS_DATAx register contents	
					Absolute pressure	Relative pressure	
1	1	0	0	Digital self-test #1	8171h	0001h	
1	1	0	1	Digital self-test #2	6C95h	0001h	
1	1	1	0	Digital self-test #3	807Ah	0001h	
1	1	1	1	Digital self-test #4	78ACh	0001h	

FXPS71407BPS

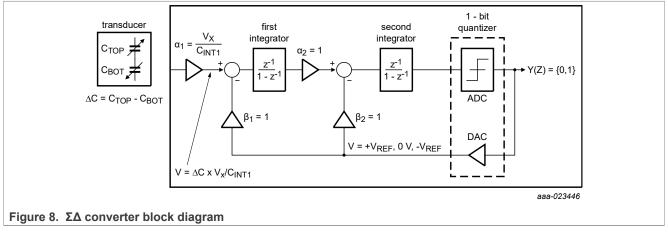
All information provided in this document is subject to legal disclaimers.

6.6.2.3 Startup sense data fixed value verification

Four unique fixed values can be forced to the SNS_DATAX_x user-programmed by writing to the ST_CTRL bits as shown in <u>Table 94</u>. When any of these values are selected, the ST_ACTIVE bit is set. These signals can only be selected when the ENDINIT bit is not set.

Table 94. Startup sense data fixed value verification

ST_CTR	L[3:0]			Function	SNS_DATAx register contents
0	1 0 DSP write to SNS_DATAx_X user-programmed inhibited.		0000h		
0	0 1 DSP write to SNS_DATAx_X user-programmed inhibited.		AAAAh		
0	DSP write to SNS_DATAx_X user-programmed inhibited.		DSP write to SNS_DATAx_X user-programmed inhibited.	5555h	
0	DSP write to SNS_DATAX_X user-programmed inhibited.		DSP write to SNS_DATAx_X user-programmed inhibited.	FFFFh	


6.6.2.4 PSI5 automatic startup self-test procedure

During PSI5 Initialization, the P_{ABS} common mode self-test, and digital self-test are run automatically. The test starts t_{PSI5ST_START} after POR. One iteration of the self-test is complete within t_{ST_INIT} . If the self-test fails, the self-test is repeated up to ST_RPT times. Once the test passes, or the maximum number of repeats has occurred, the ST_ACTIVE bit is cleared. If the test passes, the ST_ERROR bit is cleared. Otherwise, the ST_ERROR bit is set in the DSP_STAT register, the device will exit PSI5 initialization with a self-test error and transmit the self-test error message instead of sensor data. In this case, the ST_ERROR bit can only be cleared by a device reset.

After the self-test, the P0 filter startup is reset to the first phase and the filter is initialized for t_{ST_P0INIT}.

6.6.3 ΣΔ converter

A second order sigma-delta modulator converts the transducer differential capacitance to a data stream that is input to the DSP. A simplified block diagram is shown in <u>Figure 8</u>.

The sigma-delta modulator operates at a frequency of 1 MHz, with the following transfer function:

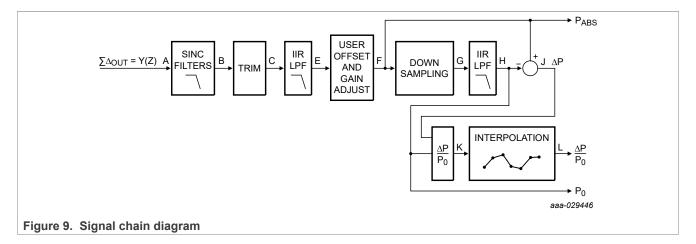
$$H(Z) = \frac{\alpha_1}{Z^2} \tag{2}$$

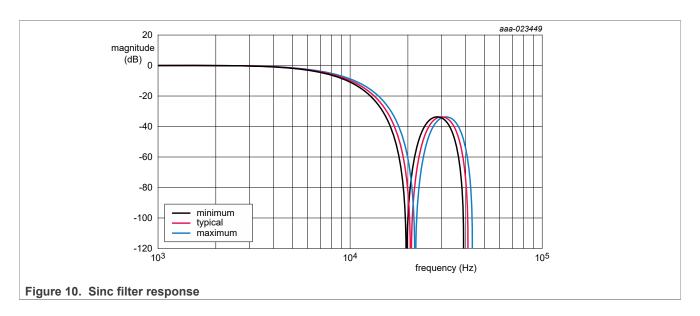
6.6.4 Digital signal processor

A digital signal processor (DSP) is used to perform signal filtering and compensation. A diagram illustrating the signal processing flow within the DSP is shown in <u>Figure 9</u>.

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.




Table 95. Digital signal processor details

Ref	Description	Sample time (µs)	Data width (bits)	Sign (bits)	Over range (bits)	Signal width (bits)	Signal margin (bits)	Typical block latency	Reference
Α	ΣΔ	1	1	1	NA	1	NA	2.5 µs	Section 6.6.3 "ΣΔ converter"
В	SINC filters	48	23	1	NA	21	NA	48 µs	Section 6.6.4.1 "Decimation sinc filter"
С	Trim	48	32	1	2	18	11	NA	Section 6.6.4.2 "Signal trim and compensation"
Е	Low-pass filter (P _{ABS})	48	32	1	2	18	11	Filter dependent	
F	User offset and gain adjust	48	32	1	2	18	11	NA	Section 6.2.20 "P_CAL_ZERO_x – pressure calibration user- programmed (address \$4C, \$4D)"
G	Down sample	384	32	1	NA	31	NA	NA	Section 6.6.4.4 "P0 low- pass filter and gradient filter"
Н	P ₀ low-pass filter	384	32	1	2	11	2	NA	Section 6.6.4.4 "P0 low- pass filter and gradient filter"
J	ΔΡ	48	32	1	2	11	2	NA	Section 6.6.4.5 "ΔP/P0 calculation"
K	ΔΡ/Ρ ₀	48	26	1	2	11	2	NA	Section 6.6.4.5 "ΔP/P0 calculation"
L	Interpolation (ΔP/P ₀ Only)	3	24	1	1	18	3	tsigchainxx	Section 6.6.4.6 "Data interpolation"

6.6.4.1 Decimation sinc filter

The output of the $\Sigma\Delta$ modulator is decimated and converted to a parallel value by one third order sinc filter with a decimation ratio of 48.

$$H(Z) = \left(\frac{1}{48^3}\right) \times \left(\frac{1-Z^{-48}}{1-Z^{-1}}\right)^3$$
 (3)

6.6.4.2 Signal trim and compensation

The device includes digital trim to compensate for sensor offset, sensitivity, and nonlinearity over temperature. The following equation is used for the trim compensation:

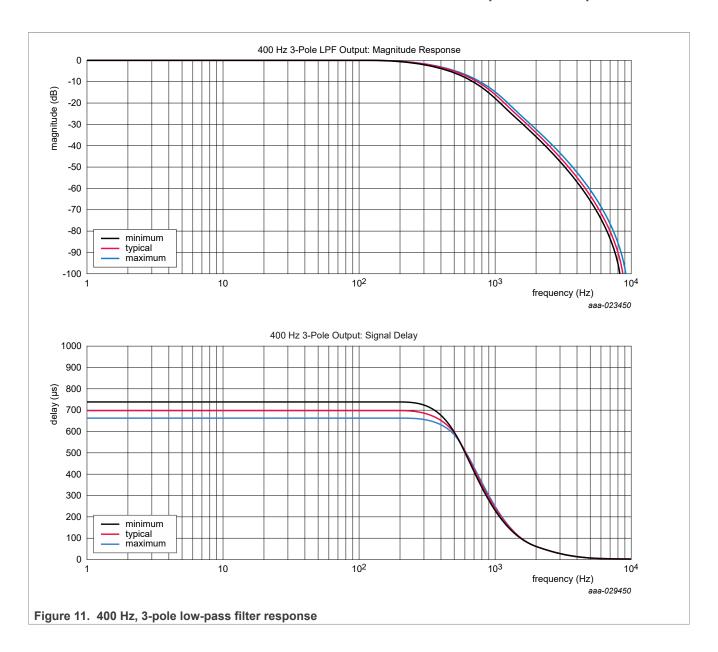
$$Trim_{OUT} = P_0 + P_P \cdot Trim_{ln} + P_{PP} \cdot Trim_{ln}^2 + P_{PPP} \cdot Trim_{ln}^3 + P_t \cdot (T - T_{25}) + P_{tt} \cdot (T - T_{25})^2 + P_{pt} \cdot Trim_{ln} \cdot (T - T_{25})$$
(4)

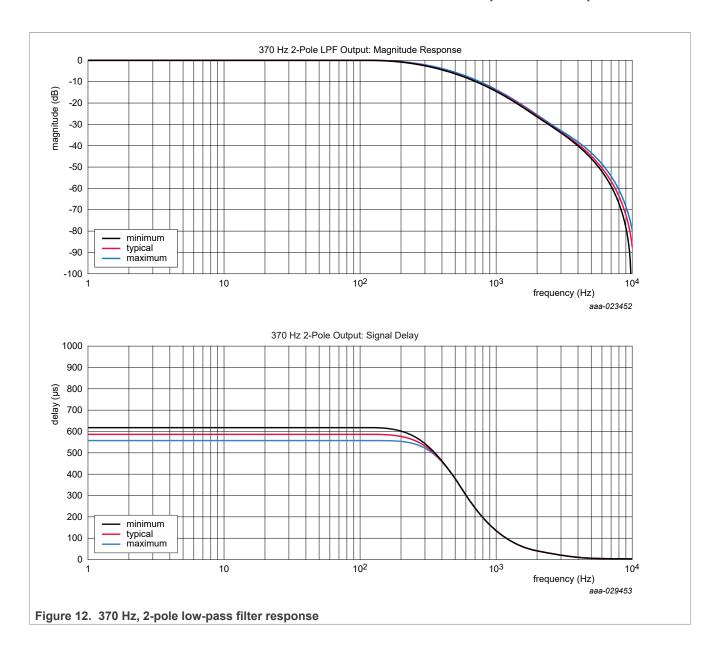
Table 96. Signal trim and compensation

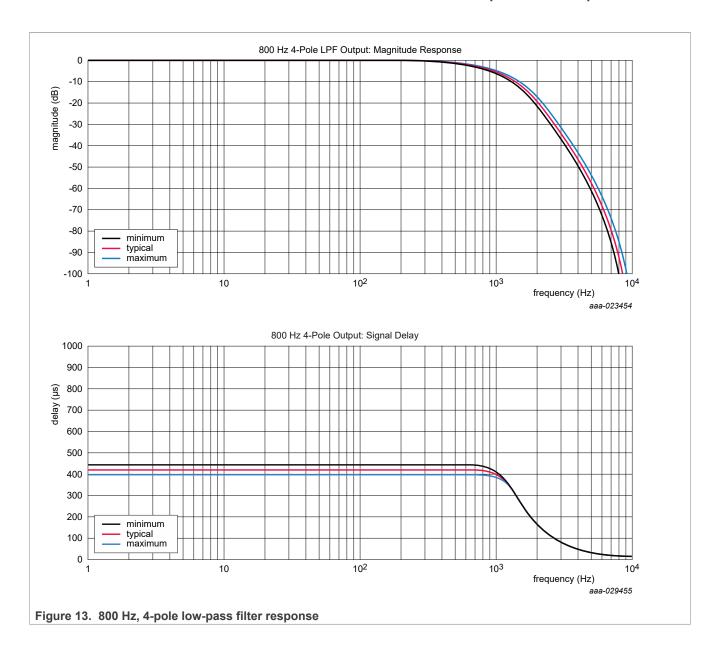
Variable name	Description
P ₀	Offset compensation
P _P	Sensitivity compensation
P _{PP}	Linearity compensation
P _{PPP}	Third order compensation
Pt	Offset compensation with first order temperature compensation
Ptt	Offset compensation with second order temperature compensation
P _{Pt}	Sensitivity compensation with first order temperature compensation
Т	Temperature sensor digital output value
T ₂₅	Temperature sensor output value stored at the ambient test insertion
Trim _{In}	Output of the sinc filter
Trim _{Out}	Output of the trim block

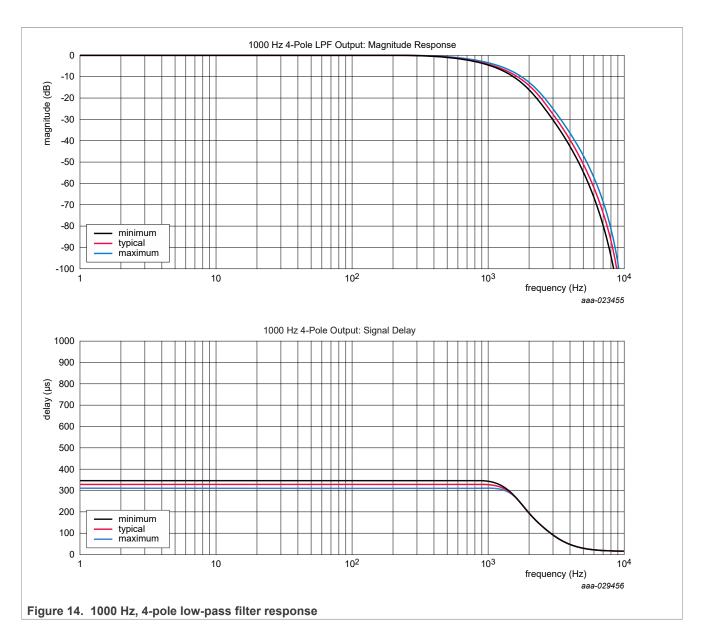
6.6.4.3 Low-pass filter

Data from the sinc filter is processed by an infinite impulse response (IIR) low-pass filter.

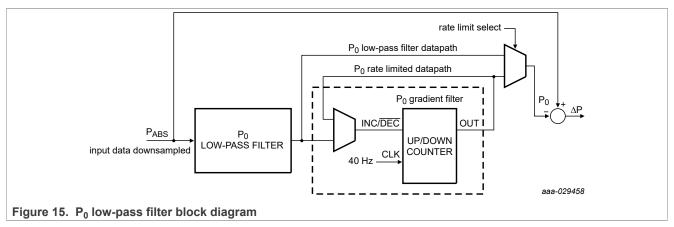

$$H(z) = a_0 \cdot \frac{(n_{11} \cdot z^0) + (n_{12} \cdot z^{-1}) + (n_{13} \cdot z^{-2})}{(d_{11} \cdot z^0) + (d_{12} \cdot z^{-1}) + (d_{13} \cdot z^{-2})} \cdot \frac{(n_{21} \cdot z^0) + (n_{22} \cdot z^{-1}) + (n_{23} \cdot z^{-2})}{(d_{21} \cdot z^0) + (d_{22} \cdot z^{-1}) + (d_{23} \cdot z^{-2})}$$
(5)


The filter coefficients are selected with the LPF[3:0] bits in the DSP_CFG_U1 user-programmed.


The filter selection options are listed in <u>Section 6.2.16 "DSP_CFG_U1 – DSP user configuration #1 register (address \$40)"</u>. Response parameters for the low-pass filter are specified in <u>Section 10 "Dynamic characteristics – PSI5"</u>. Filter characteristics for the highest sample rate are illustrated in the following figures.


Table 97. Low-pass filter options

Filter number	Typical -3 dB frequency	Filter order	Filter coeffic	ients (24-bit)			Group delay (µs)	Typical attenuation @ 1000 Hz (dB)
0	370 Hz	2	a ₀	0.017940729763385	_	_	585.6	14.1
			n ₁₁	0.24999999999997	d ₁₁	1		
			n ₁₂	0.49999999999994	d ₁₂	-1.763648824568436		
			n ₁₃	0.250000000000003	d ₁₃	0.781589554331821		
			n ₂₁	1	d ₂₁	1		
			n ₂₂	0	d ₂₂	0		
			n ₂₃	0	d ₂₃	0		
I	400 Hz	3	a ₀	0.148157329921697	_	_	697.4	16.7
			n ₁₁	0.013516264115488	d ₁₁	1		
			n ₁₂	0.013519651938257	d ₁₂	-0.851842670078304		
			n ₁₃	0	d ₁₃	0		
			n ₂₁	0.250031330983387	d ₂₁	1		
			n ₂₂	0.499999992148175	d ₂₂	-1.749563460775225		
			n ₂₃	0.249968676868576	d ₂₃	0.776599376828971		
2	800 Hz	4	a ₀	0.088642612609670	Ī-	_	418	4.95
			n ₁₁	0.029638050039039	d ₁₁	1		
			n ₁₂	0.059333280736160	d ₁₂	-1.422792640957290		
			n ₁₃	0.029695285913601	d ₁₃	0.511435253566960		
			n ₂₁	0.250241278804809	d ₂₁	1		
			n ₂₂	0.499999767379068	d ₂₂	-1.503329908017845		
			n ₂₃	0.249758953816089	d ₂₃	0.621996524706640		
1	1000 Hz	4	a ₀	0.129604264748411	_	_	333	2.99
			n ₁₁	0.043719804402508	d ₁₁	1		
			n ₁₂	0.087543281056143	d ₁₂	-1.300502656562698		
			n ₁₃	0.043823599710731	d ₁₃	0.430106921311110		
			n ₂₁	0.250296586927511	d ₂₁	1		
			n ₂₂	0.499999648540934	d ₂₂	-1.379959571988366		
			n ₂₃	0.249703764531484	d ₂₃	0.555046257157745		



6.6.4.4 P₀ low-pass filter and gradient filter

The device provides a low-pass filter to provide an average absolute pressure value called P_0 . A block diagram of the P_0 filter is shown in Figure 15.

Equation 6 applies to the low-pass filter block shown in Figure 15.

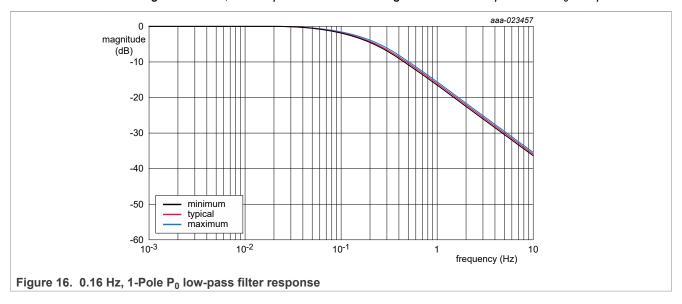
$$\frac{n_0}{1 - (d_1 \cdot z^{-1})} \tag{6}$$

The transfer function of the offset low-pass filter is:

$$H(z) = a_0 \times \frac{n_0 + (n_1 \cdot z^{-1})}{d_0 + (d_1 \cdot z^{-1})}$$
 (7)

Response parameters are specified in <u>Section 7 "Limiting values"</u> and the P₀ low-pass filter coefficients are specified in <u>Table 98</u>.

During startup, multiple phases of the P₀ low-pass filter are used to allow for fast convergence of the absolute pressure value during initialization. The rate limiting is also bypassed regardless of the state of the P0_RLD bit in the DSP_CFG_U4 register. The low-pass filter details and timing for the startup phases is shown in Table 98.

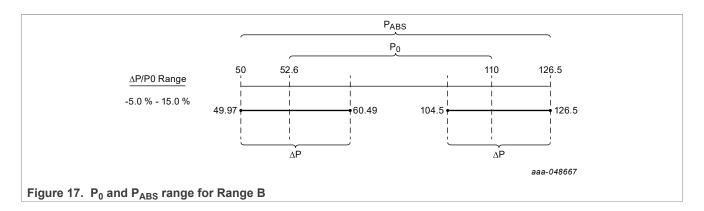

Table 98. Low-pass filter details and timing for the startup phases

P ₀ LPF startup phase	Time from reset to start of phase (ms)	Sample time (us)	Coefficients (24	-bit)			LPF corner frequency (-3 dB) (Hz)	Time constant (τ) (ms)	Rate limiting
0	0	384	a0	0.333703567338226			163.8	0.9714	Bypassed
			n0	0.5	n1	0.5			
			d0	1.0	d1	-0.666296432661774			
1	4.096	384	a0	0.094245715384814			40.96	3.886	Bypassed
			n0	0.5	n1	0.500000000000001			
			d0	1.0	d1	-0.905754284615186]		
2	8.192	384	a0	0.024406235232995			10.24	15.54	Bypassed
			n0	0.5	n1	0.49999999999995]		
			d0	1.0	d1	-0.975593764767005]		
3	24.58	384	a0	0.006157625397102			2.560	62.17	Bypassed
			n0	0.5	n1	0.5]		
			d0	1.0	d1	-0.993842374602898			
4	90.11	384	a0	0.001542964638922			0.6400	248.7	Bypassed
			n0	0.5	n1	0.5	1		
			d0	1.0	d1	-0.998457035361078	1		

Table 98. Low-pass filter details and timing for the startup phases...continued

P ₀ LPF startup phase	Time from reset to start of phase (ms)	Sample time (us)	Coefficients (24-	bit)			LPF corner frequency (-3 dB) (Hz)	Time constant (τ) (ms)	Rate limiting
5	352.3	384	a0	0.000385964411427			0.1600	994.7	Controlled by
			n0	0.49999988079071	n1	0.49999988079071			P0_RLD
			d0	0.000385964411427	d1	-0.999614035588573			
6	1401	384	a0	0.000385964411427			0.1600	994.7	Controlled by
			n0	0.49999988079071	n1	0.49999988079071]		P0_RLD
			d0	1.0	d1	-0.999614035588573	1		
Self-test Active	Output Frozen								

Note: When rate limiting is disabled, the output of the rate limiting is set to the output of the P_0 low-pass filter.



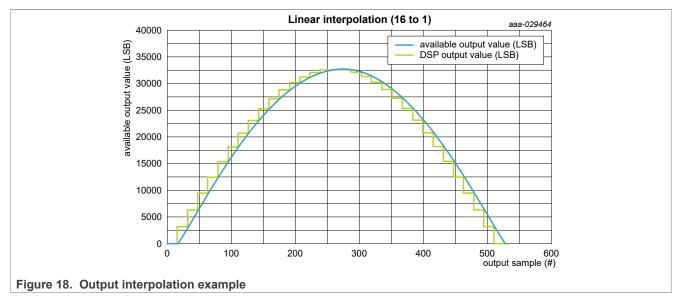
6.6.4.5 $\Delta P/P_0$ calculation

The device includes a $\Delta P/P_0$ calculation based on Equation 8:

$$\Delta P / P_0 = \frac{P_{ABS} - P_0}{P_0} \tag{8}$$

The $\Delta P/P_0$ output data equations for all ranges are in <u>Section 6.6.4.7 "Output scaling equations"</u>. The range of the ambient pressure, absolute pressure for each $\Delta P/P_0$ range is shown in <u>Section 6.6.4.5 " $\Delta P/P_0$ calculation"</u>.

6.6.4.6 Data interpolation


The device includes 16 to 1 linear data interpolation to minimize the system sample jitter. Each result produced by the digital signal processing chain is delayed one sample time. Transmitted data is interpolated from the two previous samples, resulting in a latency of one sample time, and a maximum signal jitter of 1/16 of the sample time. The device uses the following equation for calculating the interpolation:

$$DataInterpOut_{i} = DataInterpOut_{i-1} + \frac{DSPOut_{Current} - DataInterpOut_{i-1}}{16 - (i-1)}$$

$$(9)$$

$$DataInterpOut_{0} = DSPOut_{Previous}$$
 (10)

An example of the output interpolation is shown in Figure 18.

6.6.4.7 Output scaling equations

6.6.4.7.1 Absolute pressure scaling equation

Equation 11 is used to convert absolute pressure readings with the variables as specified in Table 99.

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

Note: The specified values apply only if the P_CAL_ZERO value is set to 0000h.

$$PABS_{kPa} = \frac{PABS_{LSB} - PABSOFF_{LSB}}{PABS_{SENSE}} \tag{11}$$

Where:

PABS_{kPa} = The absolute pressure output in kPa PABS_{LSB} = The absolute pressure output in LSB

PABSOFF_{LSB} = The absolute pressure output value at 0 kPa in LSB
PABS_{SENSE} = The expected absolute pressure sensitivity in LSB/kPa.

Table 99. Absolute pressure readings variables

Data reading	PABSOff _{LSB} (LSB)	PABS _{SENSE} (LSB/kPa)
Absolute pressure reading variables — Range B		
16-bit register read	23318	107.1
12-bit PSI5 sensor data (Initialization Phase 3)	-2677	53.53
P Zero calibration user-programmed	0	107.1

6.6.4.7.2 Relative pressure scaling equation

Equation 12 is used to convert relative pressure readings with the variables as specified in Table 100.

Note: The specified values apply only if the P_CAL_ZERO value is set to 0000h.

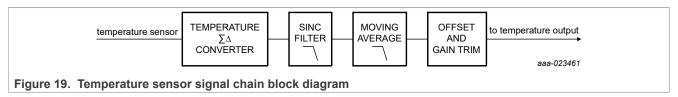
$$PREL_{PERCENT} = \frac{PREL_{LSB} - PRELO_{LSB}}{PREL_{SENSE}} \tag{12}$$

Where:

PREL_{PERCENT} = The relative pressure output in percent
PREL_{LSB} = The relative pressure output in LSB

PRELO_{LSB} = The expected relative pressure output in LSB at constant pressure

PREL_{SENSE} = The expected relative pressure sensitivity in LSB/%


Table 100. Relative pressure readings variables

Data reading	PRELO _{LSB} (LSB)	PREL _{SENSE} (LSB/%)
16-bit register read	30144	240
10-bit PSI5 data	-328	30

6.6.5 Temperature sensor

6.6.5.1 Temperature sensor signal chain

The device includes a temperature sensor for signal compensation and user readability. A simplified block diagram is shown in <u>Figure 19</u>. Temperature sensor parameters are specified in <u>Section 9 "Static characteristics"</u> and <u>Section 10 "Dynamic characteristics – PSI5"</u>.

6.6.5.2 Temperature sensor output scaling equations

Equation 13 is used to convert temperature readings with the variables as specified in Table 101:

$$T_{DEGC} = \frac{T_{LSB} - T0_{LSB}}{T_{SENSE}} \tag{13}$$

Where:

 T_{DEGC} = The temperature output in degrees C

 T_{LSB} = The temperature output in LSB

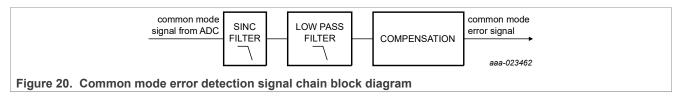

T0_{LSB} = The expected temperature output in LSB at 0 °C
T_{SENSE} = The expected temperature sensitivity in LSB/C

Table 101. Conversion variables

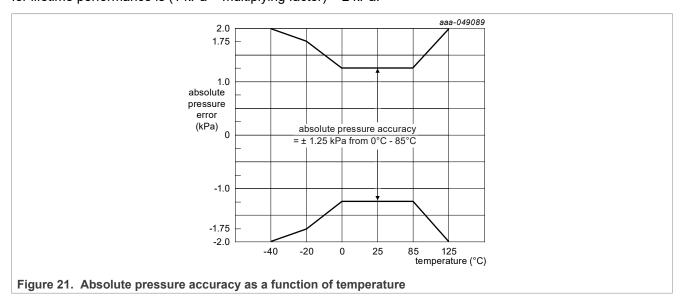
Data reading	T0 _{LSB} (LSB)	T _{SENSE} (LSB/C)
8-bit register read	68	1
16-bit register read	17408	256
10-bit PSI5 data	-27	1

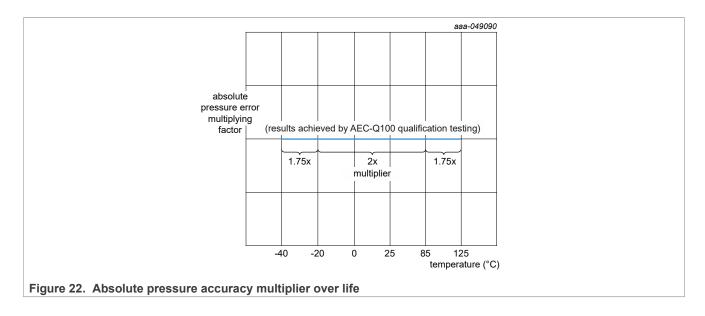
6.6.6 Common mode error detection signal chain

The device includes a startup pressure transducer common mode error detection. A simplified block diagram is shown in <u>Figure 20</u>. The startup common mode self-test is conducted as described in <u>Section 6.6.2.1 "Startup PABS common mode verification"</u>.

6.7 Pressure sensor accuracy (drift over temperature and life)

The absolute pressure accuracy is specified in Figure 21 and Figure 22.


FXPS71407BPS


All information provided in this document is subject to legal disclaimers.

<u>Figure 21</u> shows the absolute pressure drift over the entire specified temperature range. The absolute pressure drift over temperature is guaranteed by production testing.

<u>Figure 22</u> shows a multiplying factor that accounts for the life time drift of the pressure sensor. The results in <u>Figure 22</u> have been obtained by qualification testing to conform to the AEC-Q100^[3] standards.

As an example, at room temperature, the worst case drift that the pressure sensor might have after accounting for lifetime performance is (1 kPa × multiplying factor) = 2 kPa.

Limiting values

Limiting values specify the absolute minimum and maximum ratings of the product, beyond which the product may be damaged or the lifetime may be reduced.

Table 102. Limiting values

Tubic 10	Z. Ellilling values			1	
Symbol	Parameter	Conditions		Value	Unit
BUS_I _{REV}	Supply voltage (BUS_I/V _{CC})	Reverse current externally limited to ≤ 160 mA, t ≤ 80 ms	[1]	-0.7	V
BUS_I _{MAX}		Continuous	[1]	+20.0	V
VBUFMAX	V _{BUF}		[1]	-0.3 to +7.0	V
VIOMAX	BUSSW_L		[1]	-0.3 to V _{BUF} + 0.3	V
I _{SUPMAX}	BUS_I/V _{CC} and BUS_O continuous current		[1]	200	mA
g _{shock}	Unpowered shock (six sides, 0.5 ms duration)		[2]	±2000	g
g _{shock}	Unpowered shock (six sides, 0.5 ms duration)		[3]	±5000	g
h _{DROP}	Drop shock (to concrete, tile or steel surface, 10 drops, any orientation)		[2]	1.2	m
V _{ESD}	Electrostatic discharge (per AEC-Q100), external pins	BUS_I/V _{CC} , BUSRTN, HBM (100 pF, 1.5 kΩ)	[2]	±4000	V
V _{ESD}	Electrostatic discharge (per AEC-Q100)	HBM (100 pF, 1.5 kΩ)	[2]	±2000	V
V _{ESD}	_	CDM (R = 0 Ω)	[2]	±750	V
T _{stg}	Temperature range	Storage	[2]	-40 to +125	°C
TJ	_	Junction	[4]	-40 to +150	°C
РМАХ	Maximum absolute pressure	Continuous (Pressure applied for 1 hour continuously at room temperature and no bias)	[2]	420	kPa
PBURST	1	Burst (tested at 100 ms)	[2]	420	kPa
P _{MIN}	Minimum absolute pressure	Continuous	[2]	15	kPa
f _{SEAL}	Pressure sealing force applied to top face of package		[2]	10	N
θ_{JA}	Thermal resistance		[4] [5]	120	°C/W

- Functionality verified by characterization.
- Parameter verified by qualification testing.
- Parameter verified by functional evaluation.
- [3] Functionality verified by modeling, simulation and/or design verification.
- [5] Thermal resistance provided with device mounted to a two-layer, 1.6 mm FR-4 PCB as documented in AN1902 with one signal layer and one ground

Recommended operating conditions

Table 103. Operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{PSI5}	PSI5 supply voltage (excluding sync pulse)		4.2	_	16.0	٧
V _{BUS_I_UV}	Supply voltage (undervoltage)		V _{BUS_I_UV_F}	_	V _{PSI5_min}	٧
V _{PP}	Programming voltage	Applied to BUS_I, (I _{PP} \leq 5 mA, T _A = 29 °C)	9.0	10.0	11.0	٧
V _{BUS_I_ESD}	ESD operating voltage (no device reset, C _{BUS_IN} = 220 pF)	Maximum ±15 kV air discharge, 330 pF, $^{[2]}$ [3] 2.0 kΩ	_	_	10.0	V
T _A	Operating temperature range	Production tested operating temperature range [1]	-20 (T _L)	_	+85 (T _H)	°C
T _A		Guaranteed operating temperature range [4]	-40 (T _L)	_	+125 (T _H)	°C
V _{CC_RAMP_SAT}	Supply power on ramp rate	[2]	0.00001	_	10	V/µs

- Parameter verified by final test.
- Parameter verified by functional evaluation.
- Functionality verified by modeling, simulation and/or design verification.
- Parameter verified by qualification testing.

9 Static characteristics

Table 104. Static characteristics

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

$'_{BUS_I_L_min} \le (V_{BUS_}$	$I - V_{SS} \le V_{BUS_I_H_max}, I_L \le I_A \le I_H, \Delta I \le 25$	*C/min, unless otnerwise specified					
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Supply and I/O					•		'
I _{q_4}	Quiescent supply current	V _{BUS_I} = 4 V	[1]	4.0	_	8.0	mA
I _{q_20}		V _{BUS_I} = 20 V	[1]	4.0	_	8.0	mA
I _{R PSI5}	Response current	PSI5 normal	[1]	I _a + 22.0	I _a + 26.0	I _a + 30.0	mA
I _{R_PSI5_Low}		PSI5 low	[1]	I _a + 11.0	I _q + 13.0	I _q + 15.0	mA
t _{INRUSH 60}	In-rush current: maximum time at peak	In-rush current = 60 mA	[2]	_	_	75	μs
t _{INRUSH_30}	current (C _{VBUF} = 1 μF)	In-rush current = 30 mA (limited by Master)	[2]	_	_	200	μs
V _{BUF}	Internally regulated voltage (V _{BUF} , V _{BUS_I} = 4 V, V _{BUS_I} = 20 V)		[1]	2.85	3.00	3.15	V
V _{BUS_I_UV_F}	Low voltage detection threshold	BUS I falling	[1]	3.85	3.95	4.00	V
V _{BUF_UV_F}		V _{BUF} falling	[1]	2.64	2.74	2.84	V
C _{VBUF}	V _{BUF} external capacitor	Capacitance	[2]	100	1000	2000	nF
ESR	VBOF OXIGINAL SUPUSION	ESR (including interconnect resistance)	[2]	0	1000	200	mΩ
	DOLE aumahmanimatian mulaa	· · · · · · · · · · · · · · · · · · ·	[1]	-			V
ΔV _{SYNC}	PSI5 synchronization pulse	V _{PSI5_min} ≤ (V _{BUS_I} – V _{SS}) ≤ BUS_I _{MAX} DC sync pulse detection threshold		V _{PSI5} + 1.0	V _{PSI5} + 1.5	V _{PSI5} + 2.0	
I _{SYNC_PD}	PSI5 sync pulse pulldown current		[2]	_	I _{RESP_PSI5}		mA
V _{BUSSW_L_OH}	Bus switch output high voltage	BUSSW_L/INT, I _{Load} = -100 μA	[1]	V _{BUF} – 0.35	-	V _{BUF}	V
V _{BUSSW_L_OL}	Bus switch output low voltage	BUSSW_L/INT, I _{Load} = 100 μA	[1]	-	-	0.1	V
emperature senso	or signal chain						
T _{RANGE}	Temperature measurement range		[2]	-50	_	+160	°C
T ₂₅	Temperature output at 29 °C		[3]	83	93	103	LSB
T _{RANGE}	Range of output (8-bit)	Unsigned temperature	[2]	0	_	255	LSB
T _{SENSE}	Temperature output sensitivity (8-bit)		[3]		1.00		LSB/°0
T _{ACC}	Temperature output accuracy (8-bit)		[4]	-10		+10	°C
T _{RMS}	Temperature output noise RMS (8-bit)	Standard deviation of 50 readings $f_{Samp} = 8 \text{ kHz}$	[1]	_	-	+2	LSB
Absolute pressure	sensor signal chain — P0 range B						
P _{ABS_B}	Absolute pressure range	Maximum operating range	[1]	50.9	T_	126.5	kPa
P _{0_B}		Rated operating range: range at which ΔP/ P ₀ is valid	[2]	53.6	_	110	kPa
P _{SENS_B_D}	Absolute pressure output sensitivity	P_CAL_ZERO = 0h 12-bit @ 0 Hz, tested @ P _{ABS} = 100 kPa ± 10 % and 110 kPa ± 10 %	[1]	_	53.53	_	LSB/kl
P _{ACC_B_LoT1}	Absolute pressure accuracy	V _{CC} = 5.0 V -40 °C ≤ T _A < 0 °C	[1] [5]	-2.0	_	+2.0	kPa
P _{ACC_B_LoT2}		V _{CC} = 5.0 V -20 °C ≤ T _A < 0 °C	[1] [5]	-1.75	_	+1.75	kPa
P _{ACC_B_Typ}		V _{CC} = 5.0 V 0 °C ≤ T _A ≤ 85 °C	[1] [5]	-1.25	_	+1.25	kPa
P _{ACC_B_HiT}		V _{CC} = 5.0 V 85 °C < T _A ≤ 125 °C	[1] [5]	-2.0	_	+2.0	kPa
P _{OFF_B_D12}	Absolute pressure output	at 100 kPa P_CAL_ZERO = 0h 12-bit	[3]	_	2676	_	LSB
P _{OFF_B_D16}		at 100 kPa P_CAL_ZERO = 0h 16-bit SNSDATAx register value	[2]	_	34024	_	LSB
PABS_B _{DNL}	Absolute pressure nonlinearity	Absolute pressure DNL, 12-bit (monotonic with no missing codes)	[3]	_	_	+1	LSB
PABS_B _{INL}	Absolute pressure nonlinearity	Absolute pressure INL, 12-bit (least squares BFSL)	[3]	_	_	+20	LSB
PABS_B _{RMS}	Absolute pressure noise RMS	12-bit standard deviation of 50 readings, f _{Samp} =	[3]	_	_	+2	LSB

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

Table 104. Static characteristics...continued

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
PABS_B _{Peak}	Absolute pressure noise peak	12-bit max. deviation from mean, 50 readings, f _{Samp} = 8 kHz, LPF = 370 Hz, 2-Pole	[3]	-8	_	+8	LSB
P_B _g	Sensitivity to Z-axis acceleration	Tested @ ±2000 g, t > 0.1 ms	[2]	<u> </u>		3.5	Pa/g
P _{P-cell_B_Clip}	Absolute pressure range, transducer		[6]	20	_	200	kPa
P _{ADC_B_Clip}	Absolute pressure σδ and Sinc filter clipping limit		[6]	30	_	180	kPa
lative pressure	sensor signal chain ^[7] — P0 range B						
PSC _{PSI5}	Relative pressure digital power supply coupling	$C_{BUF} = 1 \ \mu f, \ 10\text{-bit}, \ PSI5$ $1 \ kHz \le f_n \le 10 \ kHz, \ BUS_I = 8.0 \ V \pm 2.0 \ V$ (represents PSI5 sync pulse)	[2]	_	_	1	LSB
PSC _{SATH}		$\begin{split} &C_{BUF} = 1~\mu f,~10\text{-bit},~PSI5\\ &1~MHz \le f_n \le 100~MHz,~BUS_I = 6.0~V \pm 50\\ &mV~(represents~response~harmonics) \end{split}$	[2]	_	_	1	LSB
R _{SENS_B}	Relative pressure sensitivity	P_CAL_ZERO = 0h 10-bit (±7 %)	[6]	19.01	20.48	21.89	LSB/%
PREL_B _{DNL}	Relative Pressure Nonlinearity	Relative pressure differential nonlinearity, 10-bit (no missing codes)	[6]	_	_	+1.0	LSB
PREL_B _{INL}		Relative pressure integral nonlinearity, 10-bit (least squares bfsl)	[2]	_	_	+10.0	LSB
DP_B _{OFFP}	Relative pressure offset for constant pressure	ΔP/P ₀ = 0, P_CAL_ZERO = 0h 10-bit mean value of 50 readings, f _{Samp} = 8 kHz, PSI5	[2]	-0.5	0	0.5	LSB
DP_B _{OFF16}	Relative pressure offset for constant pressure	ΔP/P ₀ = 0,P_CAL_ZERO = 0h 16-bit SNSDATAx register value, mean value of 50 readings, f _{Samp} = 8 kHz	[2]	_	0	-	LSB
PREL_B _{RMS}	Relative pressure RMS Noise	ΔP/P ₀ = 0, 10-bit standard deviation of 50 readings, f _{Samp} = 8 kHz	[2]	_	_	1	LSB
PREL_B _{Peak}	Relative pressure noise peak	10-bit, measured at Δ P/P ₀ = 0 max. deviation from mean, 50 readings, f_{Samp} = 8 kHz	[2]	-4	_	+4	LSB
DP_B	Relative pressure output full-scale range	PSI5 data with DATA_EXT = 0	[2] [8]	-102	_	+307	LSB
DP B		PSI5 data with DATA EXT=1	[2] [8]	-480	_	+480	LSB

- Parameter verified by final test. [1]
- Parameter verified by functional evaluation.
- [2] [3] [4] [5] [6] Functionality verified by characterization.
- Parameter verified by qualification.

 See Section 6.7 for accuracy over temperature and life, including nonlinearity, full scale = PABS range. Functionality verified by modeling, simulation and/or design verification.
- The relative pressure sensor signal chain section of this table refers to DATA_EXT = 0
- See <u>Table 107</u>, PSI5 data values for DATA_EXT = 0 and DATA_EXT = 1.

10 Dynamic characteristics - PSI5

Table 105. Dynamic characteristics

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}\text{C/min, unless otherwise specified}$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
PSI5							
t _{PSI5_INIT1}	Initialization timing	Phase 1	[1] [1]	_	133	_	ms
t _{PSI5_INIT2_10s}		Phase 2 (10-bit, synchronous mode, k = 4, t _{S-S} = 500 µs)	[1]	_	256 * t _{S-S}	_	s
t _{PSI5_INIT2_10a}		Phase 2 (10-bit, asynchronous mode, k = 8)	[1]	_	512 * t _{ASYNC}	_	s
tPSI5_INIT3_10s		Phase 3 (10-bit, synchronous mode, $t_{S-S} = 500 \ \mu s$)	[1]	_	6 * t _{S-S}	_	s
t _{PSI5_INIT3_10a}		Phase 3 (10-bit, asynchronous mode)	[1]	_	6 * t _{ASYNC}	_	s
t _{PSI5ST_START}		PSI5 self-test start time	[1]	_	50	_	ms
t _{ST_INIT}		PSI5 self-test time	[1]	_	64	_	ms
t _{ST_P0INIT}		PSI5 post self-test P0 initialization time	[1]	_	128	_	ms
ST_RPT		Self-test repetitions	[1]	0	_	8	
t _{PME}		Programming mode entry window	[1]	_	127	_	ms
t _{RS_PM}	Synchronization pulse	Reset to first sync pulse (Program mode entry)	[1]	6	_	_	ms
t _{RS}		Reset to first sync pulse (Normal mode)	[1]	t _{PSI5_INIT1}	_	_	s
t _{S-S}		Sync pulse period	[1]	175	<u> </u>	_	μs
t _{SYNC}		Sync pulse width	[1]	9	_	_	μs
t _{SYNC_LPF}		Sync pulse reference LPF time constant	[1]	120	280	_	μs
t _{SYNC_LPF_RST_ST}		Sync pulse reference discharge start time	[1]	_	9.0	_	μs
t _{SYNC_LPF_RST}		Sync pulse reference discharge activation time	[1]	_	154	_	μs
t _{SYNC_OFF_500}		Sync pulse detection disable time (PDCM_CMD_B = 0)	[1]	_	450	_	μs
t _{SYNC_OFF_250}		PME sync pulse detection disable time	[1]	_	225	_	μs
t _{A_SYNC_DLY}		Analog delay of sync pulse detection	[1]	50	_	600	μs
t _{PD_DLY}		Sync pulse pulldown function delay time	[1]	_	9.0	_	μs
t _{PD_ON}		Sync pulse pulldown function activates time	[1]	_	16	_	μs
t _{SYNC_JIT}		Sync pulse detection jitter	[1]	0	_	0.5	μs
t _{BIT_Standard}	Data transmission single bit time	PSI5 standard bit rate	[1]	_	8.00	_	μs
t _{BIT_HI}		PSI5 high bit rate	[1]	_	5.30	_	μs
tsLEW1_RESP	Response current transmission	No external components Response slew time: 4.0 mA to 20.0 mA, 20.0 mA to 4.0 mA	[1]	350	400	500	ns
t _{Bittrans_LowBaud}	Position of bit transition	All except 5.3 µs	[1]	49	50	51	%
t _{Bittrans_HighBaud}		5.3 µs	[1]	49	_	51	%
t _{ASYNC}	Asynchronous response time		[1]	_	228	_	μs

Table 105. Dynamic characteristics...continued

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

	Parameter	Conditions	Min	Тур	Max	Unit
Symbol	Time slots	Min programmed time slot: PDCM		20	- ITIGA	
t _{TIMESLOTx_MIN}	Time sides	RSPSTx < 0014h			_	μs
t _{TIMESLOTx_MAX}		RSPSTx = 1FFFh		8191	_	μs
t _{TIMESLOT_DFLT}		Default time slot (PDCM_RSPSTx = 0000h)		20	_	μs
t _{TIMESLOTx_RES}		Time slot resolution [1		1.0	_	µs/LSB
t _{TIMESLOT_DC0}		Sync pulse to daisy chain default time slot 0	_	46.5	_	μs
t _{TIMESLOT_DC1_L}		Sync pulse to daisy chain default time slot 1 (low)	-	192	_	μs
t _{TIMESLOT_DC2_L}		Sync pulse to daisy chain default time slot 2 (low)	_	350	_	μs
t _{TIMESLOT_DC1_H}		Sync pulse to daisy chain default time slot 1 (high)	-	150	_	μs
t _{TIMESLOT_DC2_H}		Sync pulse to daisy chain default time slot 2 (high)	_	260	_	μs
t _{TIMESLOT_DC3_H}		Sync pulse to daisy chain default time slot 3 (high)	-	380	_	μs
$t_{\sf TIMESLOT_DCP}$		Sync pulse to daisy chain programming time slot	_	46.5	_	μs
t _{LAT_PSI5}	PSI5 data latency	[2	0	_	1.00	μs
t _{BUS_SW}	Bus switch output activation time	C = 50 pF [1] From last bit of SetAdr response to 80 % of VBUS_SW_OH	_	_	300	μs
t _{S-S_PM}	Diagnostic and programming mode sync pulse period	The user must provide a sync pulse period within this range to guarantee DPM communications	245	250	255	μs
t _{S-S_DC}	Daisy chain mode sync pulse period	The user must provide a sync pulse period within this range to guarantee communications	490	500	510	μs
	OTD negation timeing	Time to program one OTP user region [1	_		40	
totp_write_max	OTP program timing	Time to program one OTP user region	1-	-	10	ms
totp_write_max Signal chain	OTP program uming	Time to program one OTP user region	· -	_	10	ms
	Signal chain sample time	Time to program one OTP user region .		48	-	μs
Signal chain		Time to program one off dash region		48 370		
Signal chain t _{SigChain}	Signal chain sample time	[2				μs
Signal chain $t_{SigChain}$ f_{c0}	Signal chain sample time	Filter option #0, 2-pole		370		μs Hz
Signal chain tsigChain fc0 fc1	Signal chain sample time	Filter option #0, 2-pole [1] Filter option #1, 3-pole [1]	- - -	370 400	- - -	μs Hz Hz
Signal chain tsigchain fc0 fc1 fc2	Signal chain sample time	2		370 400 800		μs Hz Hz Hz
Signal chain tsigChain fc0 fc1 fc2 fc3 t0CSAMP0 (Design	Signal chain sample time P _{ABS} low-pass filter cut-off frequency	[2 [[[[[[[[[[[[370 400 800 1000		μs Hz Hz Hz
Signal chain t _{SigChain} f _{c0} f _{c1} f _{c2} f _{c3} t _{0CSAMP0} (Design data available)	Signal chain sample time PABS low-pass filter cut-off frequency Po low-pass filter sample time	[2		370 400 800 1000 384		μs Hz Hz Hz Hz μs
$\begin{array}{l} \textbf{Signal chain} \\ \textbf{t}_{\text{SigChain}} \\ \textbf{f}_{\text{c0}} \\ \textbf{f}_{\text{c1}} \\ \textbf{f}_{\text{c2}} \\ \textbf{f}_{\text{c3}} \\ \textbf{t}_{\text{OCSAMP0}} \text{(Design data available)} \\ \textbf{f}_{\text{OCO}} \end{array}$	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency	[2 [[[[[[[[[[[[[370 400 800 1000 384 163.8		μs Hz Hz Hz Hz Hz Hz Hz
Signal chain $t_{SigChain}$ f_{c0} f_{c1} f_{c2} f_{c3} $t_{OCSAMP0} (Design data available)$ f_{OC0} t_{OC0}	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase	[2 [[[[[[[[[[[[[370 400 800 1000 384 163.8 4.096		μs Hz Hz Hz Hz Hz Hz Hz ms
Signal chain $t_{SigChain}$ f_{c0} f_{c1} f_{c2} f_{c3} $t_{OCSAMP0} (Design data available)$ f_{OC0} t_{OC0} $t_{OCSAMP1}$	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time	[2 Filter option #0, 2-pole [1 Filter option #1, 3-pole [1 Filter option #2, 4-pole [1 Filter option #3, 4-pole [1 Phase 0 [1 [2 Phase 0 [1] [2 Phase 1 [2 Phase 1 Phase 1 Phase 1 [2 Phase 1 P		370 400 800 1000 384 163.8 4.096		μs Hz Hz Hz Hz Hz Hz Hz μs
Signal chain $t_{SigChain}$ f_{c0} f_{c1} f_{c2} f_{c3} $t_{OCSAMP0} (Design data available)$ f_{OC0} t_{OC0} $t_{OCSAMP1}$ f_{OC1}	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency	2		370 400 800 1000 384 163.8 4.096 384 40.96		μs Hz Hz Hz Hz Hz μs Hz μs Hz Hz
Signal chain tsigChain fc0 fc1 fc2 fc3 tocsAMP0 (Design data available) foc0 tocs tocs tocs tocs tocs tocs tocs toc	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase	[2		370 400 800 1000 384 163.8 4.096 384 40.96 4.096		μs Hz Hz Hz Hz μs Hz μs Hz μs Hz ms
Signal chain tsigChain fc0 fc1 fc2 fc3 t0cSAMP0 (Design data available) foc0 toc0 toc0 t0cSAMP1 foc1 tocSAMP1	Signal chain sample time Pabs low-pass filter cut-off frequency Po low-pass filter sample time Po low-pass filter cut-off frequency Po low-pass filter time in phase Po low-pass filter sample time Po low-pass filter cut-off frequency Po low-pass filter cut-off frequency Po low-pass filter sample time Po low-pass filter time in phase Po low-pass filter sample time	[2		370 400 800 1000 384 163.8 4.096 384 40.96 4.096 384		μs Hz Hz Hz Hz μs Hz μs Hz μs μs μs μs μs
Signal chain tsigChain fc0 fc1 fc2 fc3 t0cSAMP0 (Design data available) foc0 t0c0 t0cSAMP1 foc1 t0c1 t0c1 t0c2	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter sample time	[2 Filter option #0, 2-pole		370 400 800 1000 384 163.8 4.096 384 40.96 4.096 384 10.24		μs Hz Hz Hz Hz μs Hz μs Hz μs Hz μs Hz μs Hz μs Hz
Signal chain tsigChain fc0 fc1 fc2 fc3 tocsAMP0 (Design data available) foc0 toco tocsAMP1 foc1 toc1 tocsAMP1 foc2 tocsAMP2 foc2 tocsAMP2 tocsAMP2 foc2	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter sample time	[2		370 400 800 1000 384 163.8 4.096 384 40.96 4.096 384 10.24 16.388		μs Hz Hz Hz Hz Hz μs Hz μs Hz ms μs Hz ms μs Hz ms
Signal chain tsigChain fo0 fo1 fo2 fo3 tocsAMP0 (Design data available) foc0 tocsAMP1 foc1 toc1 tocsAMP2 foc2 tocsAMP2 tocsAMP2	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter sample time P ₀ low-pass filter sample time	[2		370 400 800 1000 384 163.8 4.096 384 40.96 4.096 384 10.24 16.388 384		μs Hz Hz Hz Hz Hz Hz μs Hz ms μs Hz ms μs Hz ms μs μs
Signal chain tsigChain fc0 fc1 fc2 fc3 t0cSAMP0 (Design data available) foc0 t0c0 t0cSAMP1 foc1 t0c1 t0cSAMP2 foc2 t0cSAMP2 foc2 t0cSAMP2 foc3	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter sample time	Filter option #0, 2-pole [1] Filter option #1, 3-pole [1] Filter option #2, 4-pole [1] Filter option #3, 4-pole [1] Phase 0 [1] [2] Phase 0 [1] [2] Phase 1 [1] [2] Phase 1, 1-pole [1] [2] Phase 2 [1] [2] Phase 2 [1] [2] Phase 2 [1] [2] Phase 2 [1] [2] Phase 3 [1] [2] Phase 3 [1] [2]		370 400 800 1000 384 163.8 4.096 384 40.96 4.096 384 10.24 16.388 384 2.560		μs Hz Hz Hz Hz Hz μs Hz μs Hz ms μs Hz ms μs Hz hz Hz hz
Signal chain tsigChain fc0 fc1 fc2 fc3 t0CSAMP0 (Design data available) foc0 t0CSAMP1 foc1 t0CSAMP2 t0CSAMP2 t0CSAMP2 t0CSAMP3 foc3 t0CSAMP3 foc3 t0CSAMP4	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase	[2 Filter option #0, 2-pole		370 400 800 1000 384 163.8 4.096 384 40.96 4.096 384 10.24 16.388 384 2.560 65.53		μs Hz Hz Hz Hz μs Hz μs Hz ms μs Hz ms μs Hz ms μs Hz ms
Signal chain tsigChain fc0 fc1 fc2 fc3 tocsampo (Design data available) foc0 toco tocsamp1 foc1 toc1 toc2 toc3 tocsamp2 tocsamp3 foc3 tocsamp3 foc3 tocsamp4 foc4	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter time in phase	[2 Filter option #0, 2-pole [1 Filter option #1, 3-pole [1 Filter option #2, 4-pole [1 Filter option #3, 4-pole		370 400 800 1000 384 163.8 4.096 384 40.96 4.096 384 10.24 16.388 384 2.560 65.53 384		μs Hz Hz Hz Hz μs Hz μs Hz ms μs Hz ms μs Hz ms μs Hz ms
Signal chain tsigChain fc0 fc1 fc2 fc3 tocsAMP0 (Design data available) foc0 toco tocsAMP1 foc1 tocsAMP2 foc2 tocsAMP2 tocsAMP3 foc3 tocsAMP3 foc3 tocsAMP4 foc4 toc4	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter sample time	[2 Filter option #0, 2-pole [1 Filter option #1, 3-pole [1 Filter option #2, 4-pole [1 Filter option #3, 4-pole [1 Filter option #3, 4-pole [1 Phase 0 [1 [2 Phase 0 [1 [2 Phase 1, 1-pole [1 [2 Phase 1, 1-pole [1 [2 Phase 2, 1-pole [1 [2 Phase 2, 1-pole [1 [2 Phase 3, 1-pole [1 [2 Phase 4, 1-pole [1 [2 [[2		370 400 800 1000 384 163.8 4.096 384 40.96 4.096 384 10.24 16.388 384 2.560 65.53 384 0.6400		µs Hz Hz Hz Hz Hz μs Hz ms µs Hz
Signal chain tsigChain fc0 fc1 fc2 fc3 tocsampo (Design data available) foc0 toco tocsamp1 foc1 toc1 toc2 toc3 tocsamp2 tocsamp3 foc3 tocsamp3 foc3 tocsamp4 foc4	Signal chain sample time P _{ABS} low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter time in phase P ₀ low-pass filter sample time P ₀ low-pass filter cut-off frequency P ₀ low-pass filter sample time P ₀ low-pass filter sample time P ₀ low-pass filter sample time P ₀ low-pass filter sample time	[2 Filter option #0, 2-pole [1 Filter option #1, 3-pole [1 Filter option #2, 4-pole [1 Filter option #3, 4-pole [1 Filter option #3, 4-pole [1 Phase 0 [1 [2 Phase 0 [1] [2 Phase 1 [1] [2 Phase 1, 1-pole [1] [2 Phase 1 [1] [2 Phase 2 [1] [2 Phase 2 [1] [2 Phase 2 [1] [2 Phase 3 [1] [2 Phase 3 [1] [2 Phase 3 [1] [2 Phase 4 [370 400 800 1000 384 163.8 4.096 384 40.96 4.096 384 10.24 16.388 384 2.560 65.53 384 0.6400 262.19		μs Hz Hz Hz Hz Hz μs Hz μs Hz ms

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

Table 105. Dynamic characteristics...continued

 $V_{BUS_I_L_min} \leq (V_{BUS_I} - V_{SS}) \leq V_{BUS_I_H_max}, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ ^{\circ}C/min, \ unless \ otherwise \ specified$

	* 33/ - * BU3_I_H_IIIAX; * L = * A = * H; = 1 = 20					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{0CSAMP6}	P ₀ low-pass filter sample time	Phase 6 [1]	2] _	384	_	μs
f _{OC6}	P ₀ low-pass filter cut-off frequency	Phase 6, 1-pole [1]	2] _	0.1600	_	Hz
t _{RD_Rate}	P0 global filter gradient (Section 6.6.4.4 "P0 low-pass filter and gradient filter") (typical = 400 Pa/s) Rate limiting output update time	[1]	2]	0.025	_	s
OFF _{Step}	P0 global filter gradient (Section 6.6.4.4 "P0 low-pass filter and gradient filter") (typical = 400 Pa/s) Rate limiting output step size (12-bit)	[1]	2]	0.5		LSB
t _{SigDelay} (Design data only)	Signal delay	Sinc filter to output delay, excluding the PABS and P ₀ LPF	2]	_	128	μѕ
t _{INTERP}	Interpolation	[1]	2] _	3	_	μs
t _{LAT_INTERP} (GBD)	Interpolation latency	[1]	2] _	t _{SigChain}	_	μs
t _{ST_INIT}	P _{ABS} startup common mode verification test time	[1]	2] _	65	70	ms
t _{ST_Resp_1000_4}	Self-test response time	Digital self-test activation/deactivation to [1] final value LPF = 1000 Hz, 4-pole	2]	12	15	ms
t _{ST_Resp_370_2}	Self-test response time: digital self-test	Digital self-test activation/deactivation to final value LPF = 370 Hz, 2-pole	2]	25	30	ms
t _{ST_FP_Resp}	Fixed pattern response time	Self-test activation/deactivation	1] _	_	100	μs
f _{PCELL}	Sensing element resonant frequency		2] —	_	_	kHz
f _{Package}	Package resonance frequency		100	_	_	kHz
Supply and support	t circuitry					
t _{VCC_POR}	Reset recovery	Excluding V _{BUS_1} voltage ramp time VCC = VCCMIN to POR release	1]	_	1	ms
t _{POR_PSI5}		Excluding V _{BUS_I} voltage ramp time POR to PSI5 initialization phase 1 start (Section 11.2.4 "Initialization")		_	6	ms
t _{POR_DataValid}		POR to sensor data valid		_	30	ms
t _{RANGE_DataValid}		DSP setting change to sensor data valid	1] _	_	6	ms
t _{SOFT_RESET_PSI}	Soft reset activation time	Command/response complete to reset	1]	_	50	μs
fOSC		[1]	3.300	10.000	10.500	MHz
t _{SET}	Quiescent current settling time	Power applied to Iq = I _{IDLE} +/- 2 mA	1]	_	4	ms
t _{BUS_I_MICROCUT}	BUS_I micro-cut survival time	BUS_I disconnect without reset, C _{BUF} = 1	1] 30	_		
		μF, bus with 1 slave				ms
t _{BUS_I_RESET}	BUS_I micro-cut reset time	μ F, bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 1 μ F, bus with 1 slave	11	_	1000	ms
tBUS_I_RESET	BUS_I micro-cut reset time BUS_I micro-cut survival time	μ F, bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 1 μ F, bus with 1 slave BUS_I disconnect without reset, C_{BUF} = 100 nF, Bus with 1 slave	1] 0.5		1000	
		μF, bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 1 μF, bus with 1 slave BUS_I disconnect without reset, C _{BUF} = 100 nF, Bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 100 nF, bus with 1 slave	11 — 11 0.5		1000	ms
t _{BUS_I_MICROCUT}	BUS_I micro-cut survival time	μF, bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 1 μF, bus with 1 slave BUS_I disconnect without reset, C _{BUF} = 100 nF, Bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 100 nF, bus with 1 slave	1] 0.5		_	ms ms
tBUS_I_MICROCUT	BUS_I micro-cut survival time BUS_I micro-cut reset time	μF, bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 1 μF, bus with 1 slave BUS_I disconnect without reset, C _{BUF} = 100 nF, Bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 100 nF, bus with 1 slave BUS_I disconnect without reset, C _{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 0 nF, bus with 1 slave	11 0.5		_	ms ms
tBus_i_microcut tBus_i_reset tBus_i_microcut	BUS_I micro-cut survival time BUS_I micro-cut reset time BUS_I micro-cut survival time	$μ$ F, bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 1 $μ$ F, bus with 1 slave BUS_I disconnect without reset, C_{BUF} = 100 nF, Bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 100 nF, bus with 1 slave BUS_I disconnect without reset, C_{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 0 nF, bus with 1 slave BUS_I $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$	11 — 11 — 11 O.5 11 — 11 O.5 11 — 11 — 11 — 11 — 11 —	_	1000	ms ms ms
tbus_i_microcut tbus_i_reset tbus_i_microcut tbus_i_reset	BUS_I micro-cut survival time BUS_I micro-cut reset time BUS_I micro-cut survival time BUS_I micro-cut reset time	$μ$ F, bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 1 $μ$ F, bus with 1 slave BUS_I disconnect without reset, C_{BUF} = 100 nF, Bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 100 nF, bus with 1 slave BUS_I disconnect without reset, C_{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 0 nF, bus with 1 slave BUS_I $< V_{BUS_LUV_F}$ to V_{RESP} deactivation $V_{BUF} < V_{BUF_LUV_F}$ to V_{RESP} deactivation	1)	-	1000 — 1000	ms ms ms ms
tBUS_I_MICROCUT tBUS_I_RESET tBUS_I_MICROCUT tBUS_I_RESET	BUS_I micro-cut survival time BUS_I micro-cut reset time BUS_I micro-cut survival time BUS_I micro-cut reset time BUS_I micro-cut reset time	μF, bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 1 μF, bus with 1 slave BUS_I disconnect without reset, C _{BUF} = 100 nF, Bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 100 nF, bus with 1 slave BUS_I disconnect without reset, C _{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 0 nF, bus with 1 slave	1)	_ 	1000 - 1000 5	ms ms ms ms ms µs
tBUS_I_MICROCUT tBUS_I_RESET tBUS_I_MICROCUT tBUS_I_RESET tBUS_I_POR	BUS_I micro-cut survival time BUS_I micro-cut reset time BUS_I micro-cut survival time BUS_I micro-cut reset time BUS_I undervoltage detection delay V _{BUF} undervoltage detection delay	μF, bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 1 μF, bus with 1 slave BUS_I disconnect without reset, C _{BUF} = 100 nF, Bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 100 nF, bus with 1 slave BUS_I disconnect without reset, C _{BUF} = 0 nF, bus with 1 slave BUS_I disconnect without reset, C _{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C _{BUF} = 0 nF, bus with 1 slave BUS_I < V _{BUS_LUV_F} to I _{RESP} deactivation V _{BUF} < V _{BUF_UV_F} to I _{RESP} deactivation PSI5 synchronous command start to capacitor test	11	- - -	1000 — 1000 5 5 5	ms ms ms ms ms us us us us us us
tBUS_I_MICROCUT tBUS_I_RESET tBUS_I_MICROCUT tBUS_I_RESET tBUS_I_POR tVBUF_POR tUVOV_RCV	BUS_I micro-cut survival time BUS_I micro-cut reset time BUS_I micro-cut survival time BUS_I micro-cut reset time BUS_I undervoltage detection delay V_BUF_undervoltage detection delay Undervoltage/overvoltage recovery delay	$μ$ F, bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 1 $μ$ F, bus with 1 slave BUS_I disconnect without reset, C_{BUF} = 100 nF, Bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 100 nF, bus with 1 slave BUS_I disconnect without reset, C_{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 0 nF, bus with 1 slave BUS_I disconnect time to reset, C_{BUF} = 0 nF, bus with 1 slave BUS_I < $V_{BUS_L_UV_F}$ to I_{RESP} deactivation $V_{BUF} < V_{BUF_UV_F}$ to I_{RESP} deactivation PSI5 synchronous command start to capacitor test PSI5 asynchronous response start to capacitor test	1)	 100	1000 — 1000 5 5 5	ms ms ms ms ms us us us us us us

[1] Parameter verified by functional evaluation.

71407BPS All information provided in this document is subject to legal disclaimers.

[2] Functionality verified by modeling, simulation and/or design verification.

11 Application information

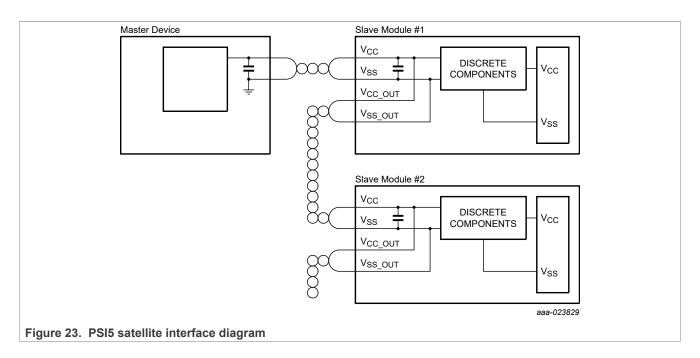
Note: A gel is used to provide media protection against corrosive elements that may otherwise damage metal bond wires and/or IC surfaces. Highly pressurized gas molecules may permeate through the gel and occupy boundaries between material surfaces within the sensor package. When decompression occurs, the gas molecules may collect, form bubbles and possibly result in delamination of the gel from the material it protects. If a bubble is located on the pressure transducer surface, or on the bond wires, the sensor measurement may shift from its calibrated transfer function. In some cases, these temporary shifts could be outside the tolerances listed in the data sheet. In rare cases, the bubble may bend the bond wires and result in a permanent shift.

11.1 Media compatibility – pressure sensors only

For more information regarding media compatibility, contact your local sales representative.

Note:

The devices contain a gel that protects the pressure transducer and its inter-die connection wires from corrosion, that might otherwise result in catastrophic failure modes. NXP has observed that direct exposure to materials with the same or nearly-the-same solubility can potentially result in a corruption of the protective gel. A corruption can be less than catastrophic in nature, however may result in an offset of the pressure measurement from its factory calibrated value. An offset can potentially be larger than the allowed tolerances published in this data sheet.

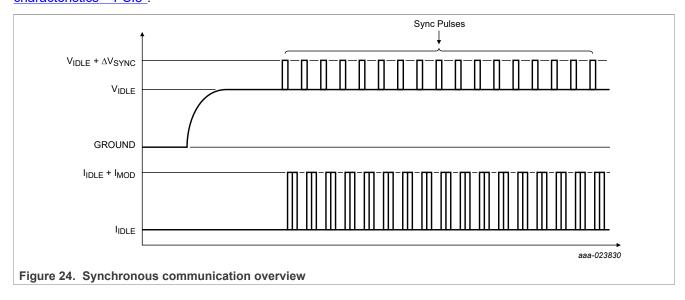

Further, NXP does not recommend direct exposure to strong acid or strong base compounds as they can potentially result in a similar corruption as described above, or may result in a dissolution of the protective gel and/or the metal lid adhesive and/or the plastic device body. Such a dissolution can be catastrophic in nature, damaging the transducer surfaces and/or internal wire bonds and/or the control die surfaces. A potential dissolution may result in a similar offset, or cause the device to indicate overflow/underflow status, or may cause the device to cease operating in the worst case.

For a list of compounds known to generate out-of-tolerance offsets and/or catastrophic device failure, please contact an NXP sales representative.

11.2 PSI5 protocol

11.2.1 Communication interface overview

The communication interface between a master device and this slave device in PSI5 mode is established via a PSI5 compatible two-wire interface, with parallel or serial (daisy chain) connections to the satellite modules. Figure 23 shows one possible system configuration for multiple satellite modules in parallel.

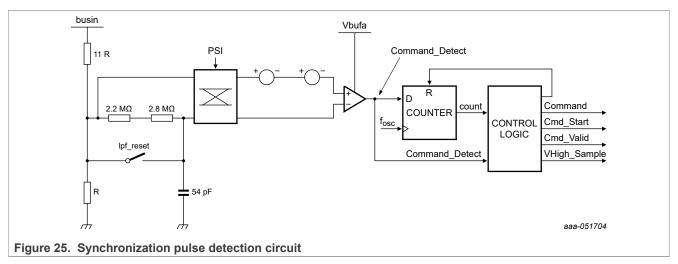


11.2.2 Data transmission physical layer

This device uses a two-wire interface for both its power supply (V_{CC}), and data transmission. The PSI5 master supplies a preregulated voltage to this device. Data transmissions and synchronization control from the PSI5 master to this device are accomplished via modulation of the supply voltage. Data transmissions from this device to the PSI5 master are accomplished via modulation of the current on the power supply line.

11.2.2.1 Synchronization pulse

The PSI5 master modulates the supply voltage in the positive direction to provide synchronization of the satellite sensor data. Upon reception of a synchronization pulse, the device delays a specified period of time, called a time slot, before transmitting sensor data. For more details regarding time slots, refer to Section 6.2.13
"PDCM_RSPSTx_x - PSI5 start time user-programmed (address \$26 to \$29)" and <a href="Section 10" "Dynamic characteristics - PSI5".

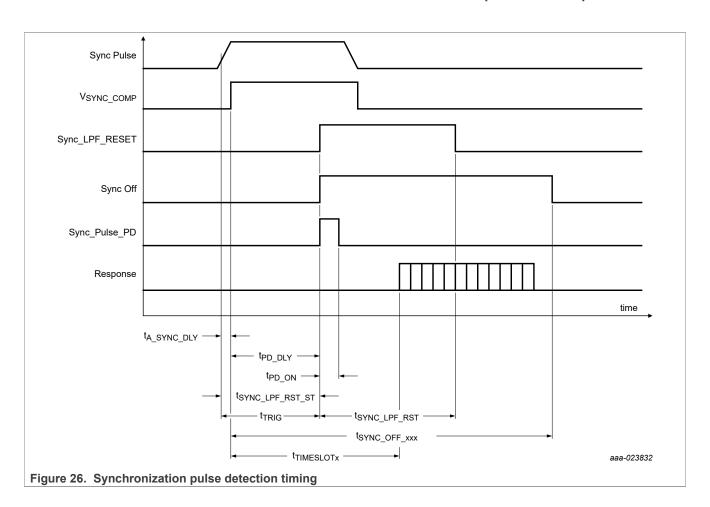

FXPS71407BPS

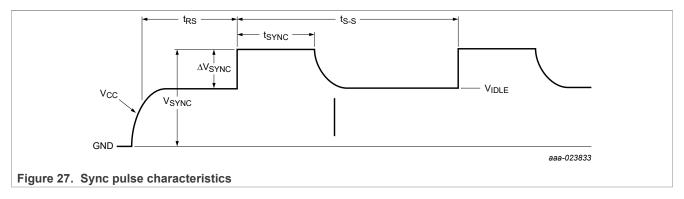
All information provided in this document is subject to legal disclaimers

11.2.2.1.1 Synchronization pulse detection

The synchronization (sync) pulse detection block generates a valid synchronization pulse signal following the detection of an externally generated sync pulse. This signal resets the sync pulse time reference (t_{TRIG}), and initiates the timers associated with response messages.

The supply voltage can vary throughout the specified range, so the external sync pulses may have different absolute voltage levels. Therefore, the sync pulse detection threshold (V_{CC_SYNC}) is dependent not only on the sync pulse absolute voltage, but also on the supply voltage. <u>Figure 25</u> shows a block diagram of the sync pulse detection circuit.


The start of a sync pulse is detected when the comparator output is set. The comparator output is input into a counter, and the counter is updated at a fixed frequency. At a fixed time after the initial sync pulse detection, the counter is compared against a limit (the minimum value of t_{SYNC}). If the counter is above the limit, a valid sync pulse is detected.

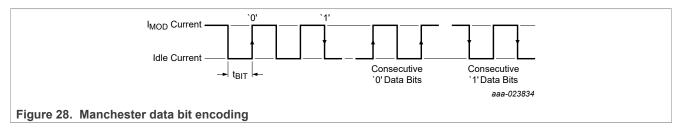

If the sync pulse is valid, the following occur:

- 1. The valid sync pulse detection signal is set.
- The detection counter is reset and disabled for t_{SYNC_OFF} (referenced from t_{TRIG}). t_{SYNC_OFF} can be programmed by the user via the PDCM_CMD_B_x user-programmed. See <u>Section 6.2.14</u>
 <u>"PDCM_CMD_B_x PSI5 command blocking time user-programmed (address \$38, \$39)"</u> for details on the programmable option and <u>Section 10 "Dynamic characteristics PSI5"</u> for timing specifications for each option.
- 3. The sync pulse detection low-pass filter is reset for a specified time (t_{SYNC LPF RESET)}.

If the sync pulse is invalid, all timers are reset, and the detector becomes sensitive for the very next f_{SYNC_DET} sample.

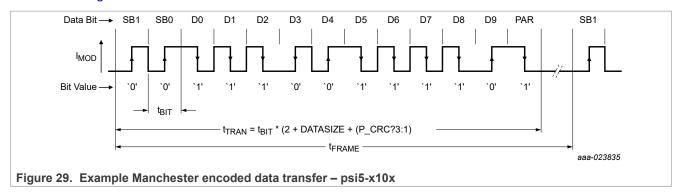
The output of the comparator is monitored at the SampCLK frequency. Once the comparator output goes high, all of the internal timers are started, so that the t_{TRIG} jitter is minimized.

11.2.2.1.2 Synchronization pulse pulldown function


The device includes an optional sync pulse pulldown function for systems in that the master device does not include an active pulldown function. The device uses the modulation current pulldown circuit, which sinks $I_{MOD} - I_{IDLE}$ additional current from the BUS_I pin. The pulldown current is activated after t_{PD_DLY} (referenced to t_{TRIG}), and is activated for t_{PD_ON} .

The sync pulse pulldown function is disabled in programming mode, in initialization phase 1, and in daisy chain mode until the run command is received.

11.2.3 Data transmission data link layer


11.2.3.1 Bit encoding

The device outputs data by modulation of the V_{CC} current using Manchester encoding. Data is stored in a transition occurring in the middle of the bit time. The signal idles at the normal quiescent supply current. A logic low is defined as an increase in current at the middle of a bit time. A logic high is defined as a decrease in current at the middle of a bit time. There is always a transition in the middle of the bit time. If consecutive '1' or '0' data are transmitted, There will also be a transition at the start of a bit time.

11.2.3.2 PSI5 data transmission

PSI5 data transmission frames are composed of two start bits, a 10-bit data word, and error detection bit(s). Data words are transmitted least significant bit (LSB) first. A typical Manchester encoded transmission frame is illustrated in Figure 29.

11.2.3.3 Error detection

Error detection of the transmitted data is accomplished via either a parity bit, or a 3-bit CRC. The type of error detection used is selected by the P_CRC bit in the PSI5_CFG register.

11.2.3.3.1 Parity error detection

When parity error detection is selected, even parity is employed. The number of logic '1' bits in the transmitted message must be an even number.

11.2.3.3.2 3-bit CRC error detection

When CRC error detection is selected, a 3-bit CRC is appended to each response message. The 3-bit CRC uses a generator polynomial of $g(x) = x^3 + x + 1$, with a nondirect seed value = '111'. Message data from the transmitted message is read into the CRC calculator LSB first, and the data is augmented with three '0's. Start bits are not used in the CRC calculation. <u>Table 106</u> shows some example CRC calculation values for 10-bit data transmissions.

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

Table 106. PSI5 3-bit CRC calculation examples

Data tran	smitted										CRC	CRC		
Hex	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	C2	C1	C0	
000h	0	0	0	0	0	0	0	0	0	0	1	1	0	
0CCh	0	0	1	1	0	0	1	1	0	0	0	1	1	
151h	0	1	0	1	0	1	0	0	0	1	0	0	0	
1E0h	0	1	1	1	1	0	0	0	0	0	0	1	1	
1F4h	0	1	1	1	1	1	0	1	0	0	0	1	0	
220h	1	0	0	0	1	0	0	0	0	0	1	0	0	
275h	1	0	0	1	1	1	0	1	0	1	1	1	1	
333h	1	1	0	0	1	1	0	0	1	1	0	0	1	
3FFh	1	1	1	1	1	1	1	1	1	1	1	0	0	

11.2.3.4 PSI5 data field and data range values

<u>Table 107</u> shows the details for each data range.

Table 107. PSI5 data values

10-bit dat value, DATA_EX		10-bit dat				Description	P ₀ data transmissions in
Decimal	Hex	Decimal	Binary	Hex	Description (EMSG_EXT = 1 in PSI5_CFG)	(EMSG_EXT = 0 in PSI5_CFG)	initialization phase 3
+511	1FFh	+511	_	1FFh	Reserved	Reserved	_
+510	1FEh	+510	_	1FEh			
+509	1FDh	+509	_	1FDh			
+508	1FCh	+508	_	1FCh			
+507	1FBh	+507	_	1FBh			
+506	1FAh	+506	_	1FAh			
+505	1F9h	+505	_	1F9h			
+504	1F8h	+504	_	1F8h			
+503	1F7h	+503	_	1F7h			
+502	1F6h	+502	_	1F6h			
+501	1F5h	+501	_	1F5h			
+500	1F4h	+500	_	1F4h		Sensor defect error	_
+499	1F3h	+499	_	1F3h		Reserved	_
+498	1F2h	+498	_	1F2h			
+497	1F1h	+497	_	1F1h			
+496	1F0h	+496	_	1F0h			
+495	1EFh	+495	_	1EFh	Communication error (OSCTRAIN_ERR bit)	Reserved (error mapped to 1F4h)	_
+494	1EEh	+494	_	1EEh	Test mode enabled (TESTMODE bit set)		
+493	1EDh	+493	_	1EDh	P _{ABS} out of range error (PABS_HIGH, PABS_LOW or PABS_MISMATCH bit set)		
+492	1ECh	+492	_	1ECh	Temperature error (TEMP0_ERR bit set)		
+491	1EBh	+491	_	1EBh	Memory error (F_OTP_ERR, U_OTP_ERR or U_RW_ERR set)		
+490	1EAh	+490	_	1EAh	Sensor self-test error (ST_ERROR bit set)	Sensor self-test error	_
+489	1E9h	+489	_	1E9h	Reserved	Reserved	_
+488	1E8h	+488	_	1E8h	Sensor busy	Sensor busy	_
+487	1E7h	+487	_	1E7h	Sensor ready	Sensor ready	_
+486	1E6h	+486	_	1E6h	Sensor ready, but unlocked	Sensor ready, but unlocked	_
+485	1E5h	+485	_	1E5h	Reserved	Reserved	
+484	1E4h	+484	_	1E4h			
+483	1E3h	+483	_	1E3h			

Table 107. PSI5 data values...continued

10-bit dat value, DATA_EX		10-bit dat				Description	P ₀ data transmissions in
Decimal	Hex	Decimal	Binary	Hex	Description (EMSG_EXT = 1 in PSI5_CFG)	(EMSG_EXT = 0 in PSI5_CFG)	initialization phase 3
+482	1E2h	+482	_	1E2h	Bidirectional communication: RC error	Bidirectional communication: RC error	_
+481	1E1h	+481	_	1E1h	Bidirectional communication: RC OK	Bidirectional communication: RC OK	_
+308 to +480	134h to 1E0h		_		Unused Unused		_
+307	133h	+480	_	1E0h	Maximum positive sensor value	Maximum positive sensor value	_
			_		Positive sensor values	nsor values Positive sensor values	
+3	03h	+3	_	03h			
+2	02h	+2	_	02h			
+1	01h	+1	_	01h			
0	0	0	_	0	Zero ^[1]	Zero	_
-1	3FFh	-1	_	3FFh	Negative sensor values Negative sensor values		_
-2	3FEh	-2	_	3FEh			
-3	3FDh	-3	_	3FDh			
			_				_
-102	39Ah	-480	_	220h	Maximum negative sensor value	Maximum negative sensor value	_
-103 to -480	399h to 220h		_		Unused	Unused	_
-481	21Fh	-481	1000011111	21Fh	Initialization data codes		P ₀ : D2:D0, in 3 LSBs
					10-bit status data nibble 1 to 16 (0000 to 1111) (Dx)		P ₀ : D5:D3, in 3 LSBs
-496	210h	-496	1000010000	210h			
-497	20Fh	-497	1000001111	20Fh	Initialization data IDs		P ₀ : D8:D6, in 3 LSBs
					Block ID 1 to 16 (10-bit mode) (IDx)		P ₀ : D11:D9, in 3 LSBs
-512	200h	-512	1000000000	200h			

^[1] Not equivalent to $\Delta P/P0 = 0$.

11.2.4 Initialization

Following power up, the device proceeds through an initialization process that is divided into three phases:

- Initialization phase 1: No data transmissions occur
- Initialization phase 2: Sensor self-test and transmission of configuration information
- Initialization phase 3: Transmission of the sensor busy and/or sensor ready/sensor defect messages followed by the P₀ value

Once initialization is completed the device begins normal mode operation, which continues as long as the supply voltage remains within the specified limits.

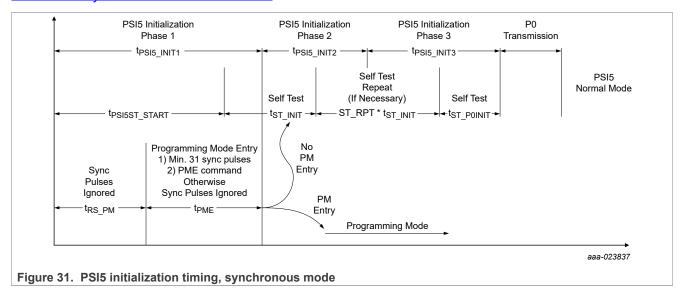
In asynchronous mode, initialization data is transmitted for source ID 0 only.

In synchronous mode, initialization data is transmitted for each enabled source ID.

In daisy chain mode, initialization data is transmitted in the source ID 0 time slot as defined by the sensor address as documented in <u>Section 11.2.6 "Daisy chain mode"</u>.

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.



During PSI5 initialization, the device completes an internal initialization process consisting of the following:

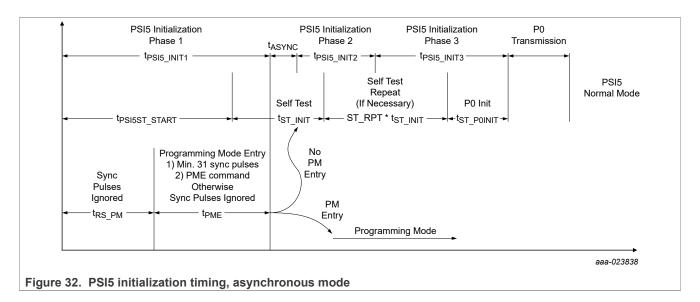

- · Power on reset
- Device initialization
- · Program mode entry verification
- P₀ filter initialization
- Self-test

Figure 31 and Figure 32 show the PSI5 initialization timing, the P0 out of range error is delayed by an internal counter (2 s). The delay is included as an additional mitigation to avoid any unwanted 'out-of-range event' due to a small transient change in P0 around the thresholds. The counter is reset at the start of phase 0, and is not reset depending on the P0 value and continues for 2 seconds. P0 value is compared to the threshold after the counter stops and an error message is transmitted if it is out of range. During normal operation (after the initialization) an error message is transmitted immediately when P0 goes out-of-range.

<u>Figure 31</u> shows the timing for internal and external initialization in synchronous mode. <u>Figure 32</u> shows the timing for internal and external initialization in asynchronous mode. Timing parameters are specified in <u>Section 10 "Dynamic characteristics – PSI5"</u>.

FXPS71407BPS

11.2.4.1 PSI5 initialization phase 1

During PSI5 initialization phase 1, the device begins internal initialization and self-checks, but transmits no data. Initialization begins with the sequence below, shown in <u>Section 11.2.4 "Initialization"</u>:

- Internal delay to ensure that analog circuitry has stabilized (t_{POR_PSI5})
- P0 filter initialization begins (t_{PSI5ST START})
- Monitor for the programming mode entry sequence (t_{PME})
- If the programming mode entry sequence is not detected, the device enters initialization phase 2 (t_{PSI5 INIT2})

11.2.4.2 PSI5 initialization phase 2

During PSI5 initialization phase 2, the device continues its internal self-checks and transmits the PSI5 initialization phase 2 data. Initialization data is transmitted using the initialization data codes and IDs specified in <u>Section 11.2.3.4 "PSI5 data field and data range values"</u>, and in the order shown in <u>Section 11.2.4.2 "PSI5 initialization phase 2"</u>.

Table 108. PSI5 initialization phase 2 data transmission order

D1					D2							D32								
ID1 ₁	D1 ₁	ID1 ₂	D1 ₂		ID1 _k	D1 _k	ID2 ₁	D2 ₁	ID2 ₂	D2 ₂	 ID2 _k	D2 _k		ID32 ₁	D32 ₁	ID32 ₂	D32 ₂		ID32 _k	D32 _k
Repeat	Repeat k times					Repeat	k times	;				Repeat k times								

The initialization phase 2 time is calculated using Equation 14.

$$t_{Phase2} = Trans_{Nibble} \times k \times (DataFields) \times t_{S-S}$$
 (14)

Where:

- Trans_{Nibble} = # of transmissions per data nibble
- 2:1 for ID, and 1 for data
- k = The repetition rate for the data fields
- DataFields = 32 data fields or 48 data fields (if INIT2 EXT is set)
- t_{S-S} = Sync pulse period

FXPS71407BPS

All information provided in this document is subject to legal disclaimers

11.2.4.2.1 PSI5 initialization phase 2 data transmissions

In PSI5 initialization phase 2, the device transmits a sequence of sensor specific configuration and serial number information. The transmission data is in conformance with the PSI5 specification^[1], and AKLV29^[2]. The data content and transmission format is shown in <u>Table 109</u> and <u>Table 110</u>. <u>Table 110</u> shows the phase 2 timing for different operating modes. Times are calculated using <u>Equation 14</u> in <u>Section 11.2.4.2 "PSI5 initialization phase 2"</u>.

Table 109. Initialization phase 2 time

Operating mode	Repetition rate (k)	# of transmissions	Nominal phase 2 time
Asynchronous mode (228 µs)	8	512	116.7 ms
Synchronous mode (500 µs)	4	256	128.0 ms

Table 110. PSI5 initialization phase 2 data

PSI5 V1.2 field ID #	PSI5 V1.2 nibble ID #	Page address	PSI5 nibble address	Register address	Description	Value
F1	D1	0	0000	USERDATA_0[3:0]	User-specific data	User
F2	D2, D3		0001, 0010	NA	Number of data blocks: 32: INIT2_EXT=0, 48: INIT2_EXT=1	0010 0000 or 0011 0000
F3	D4, D5		0011, 0100	USERDATA_1[3:0], USERDATA_1[7:4]	User-specific data	User
F4	D6, D7		0101, 0110	USERDATA_2[3:0], USERDATA_2[7:4]	User-specific data	User
F5	D8		0111	USERDATA_3[3:0]	User-specific data	User
	D9		1000	USERDATA_3[7:4]	User-specific data	User
F6	D10		1001	USERDATA_4[3:0]	User-specific data	User
	D11		1010	USERDATA_4[7:4]	User-specific data	User
F7	D12		1011	USERDATA_5[3:0]	User-specific data	User
	D13		1100	USERDATA_5[7:4]	User-specific data	User
	D14		1101	USERDATA_6[3:0]	User-specific data	User
F8	D15		1110	USERDATA_7[3:0]	User-specific data	User
	D16		1111	USERDATA_7[7:4]	User-specific data	User
	D17	1	0000	USERDATA_8[3:0]	User-specific data	User
	D18		0001	USERDATA_8[7:4]	User-specific data	User
F9	D19		0010	SN4[7:4]	Device serial number	Factory
	D20		0011	SN4[3:0]	Device serial number	Factory
	D21		0100	SN3[7:4]	Device serial number	Factory
	D22		0101	SN3[3:0]	Device serial number	Factory
	D23		0110	SN2[7:4]	Device serial number	Factory
	D24		0111	SN2[3:0]	Device serial number	Factory
	D25		1000	SN1[7:4]	Device serial number	Factory
	D26		1001	SN1[3:0]	Device serial number	Factory
	D27		1010	SN0[7:4]	Device serial number	Factory
	D28		1011	SN0[3:0]	Device serial number	Factory
	D29		1100	PN1[3:0]	Device Part Number	Factory
	D30		1101	PN0[7:4]	Device Part Number	Factory
	D31		1110	PN0[3:0]	Device Part Number	Factory
	D32		1111	USERDATA_6[7:4]	User-specific data	User

Table 110. PSI5 initialization phase 2 data...continued

PSI5 V1.2 field ID #	PSI5 V1.2 nibble ID #	Page address	PSI5 nibble address	Register address	Description	Value
F10	D33	2	0000	Reserved	Reserved	Varies
	D34		0001	Reserved	Reserved	Varies
	D35	1	0010	Reserved	Reserved	Varies
	D36	1	0011	Reserved	Reserved	Varies
	D37	1	0100	Reserved	Reserved	Varies
	D38	1	0101	Reserved	Reserved	Varies
	D39		0110	Reserved	Reserved	Varies
	D40	1	0111	Reserved	Reserved	Varies
	D41		1000	Reserved	Reserved	Varies
	D42		1001	Reserved	Reserved	Varies
	D43		1010	Reserved	Reserved	Varies
	D44		1011	Reserved	Reserved	Varies
	D45		1100	Reserved	Reserved	Varies
	D46	1	1101	Reserved	Reserved	Varies
	D47	1	1110	Reserved	Reserved	Varies
	D48	1	1111	Reserved	Reserved	Varies

Note: Constant values are transmitted for all fields marked as reserved.

11.2.4.3 Internal self-test

Once initialization phase 1 completes, the device begins its internal self-test as described in <u>Section 6.6.2 "Self-test functions"</u>.

11.2.4.4 Initialization phase 3

During PSI5 initialization phase 3, the device completes its internal self-checks, and transmits a combination of sensor busy or sensor ready messages as defined in <u>Table 107</u>. The number of sensor busy messages transmitted in initialization phase 3 varies depending on the mode of operation, and the number of self-test repetitions. Self-test is repeated on failure up to ST_RPT times to provide immunity to misuse inputs during initialization. Self-test terminates successfully after one successful self-test sequence.

Once internal self-test is completed, the device transmits two sensor ready commands.

After the sensor ready messages are transmitted, the device transmits the P0 absolute pressure value using the initialization codes shown in <u>Section 11.2.3.4 "PSI5 data field and data range values"</u>. The P0 data to be transmitted is latched at the end of the transmission of the second sensor ready message. The initialization phase 3 response transmissions are listed here:

• P0 transmission #0:

0	0	P0, D11	P0, D10	P0, D9					
• P0 transmission #1:									
0	1	P0, D8	P0, D7	P0, D6					
• P0 transmission #2:									
1	0	P0, D5	P0, D4	P0, D3					

P0 transmission #3:

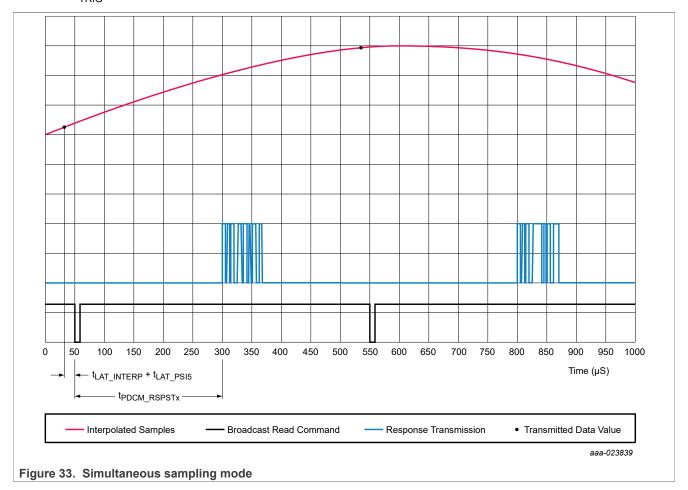
S71407BPS All information provided in this document is subject to legal disclaimers.

1 P0, D2 P0, D1 P0, D0

In all modes, the ENDINIT bit is automatically set when the device exits initialization phase 3.

11.2.5 Normal mode

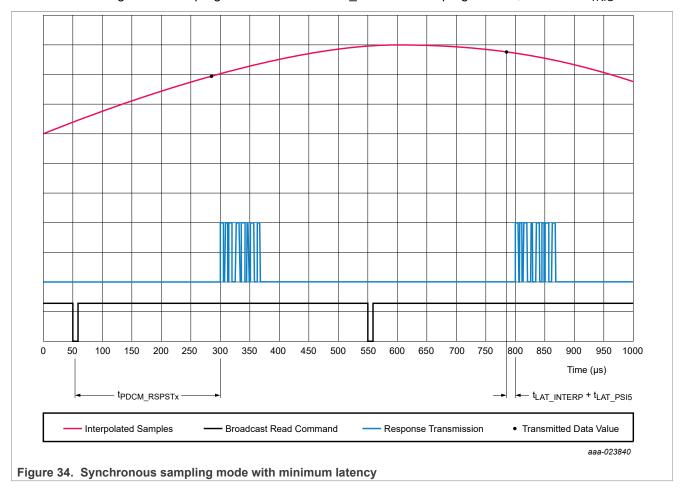
11.2.5.1 Asynchronous mode


The device can be programmed to respond in asynchronous mode as specified in <u>Section 6.2.13</u> "PDCM RSPSTx x – PSI5 start time user-programmed (address \$26 to \$29)".

In asynchronous mode, the device transmits data at a fixed rate (t_{ASYNC}) and will not respond to normal sync pulses. However, during initialization phase 1, the device will monitor sync pulses to decode the programming mode entry command and allow entry into programming mode.

11.2.5.2 Simultaneous sampling mode

The device can be programmed to respond in simultaneous sampling mode by programming the SS_EN bit to simultaneous sampling mode.


In simultaneous sampling mode, the most recent interpolated sensor data sample is latched at t_{TRIG} (rising edge of sync pulse) and transmitted starting at the time programmed in the PDCM_RSPSTx user-programmed, relative to t_{TRIG} .

11.2.5.3 Synchronous sampling mode with minimum latency

The device can be programmed to respond in synchronous sampling mode with minimum latency by programming the SS_EN bit to synchronous sampling mode.

In synchronous sampling mode, the most recent interpolated sensor data sample is latched at the time programmed in the PDCM_RSPSTx user-programmed, relative to t_{TRIG} (rising edge of sync pulse). The data is transmitted starting at the time programmed in the PDCM_RSPSTx user-programmed, relative to t_{TRIG} .

11.2.6 Daisy chain mode

The device can be programmed to operate in daisy chain mode by setting the DAISY_CHAIN bit in the PSI5_CFG register. Daisy chain mode can be programmed to operate in either simultaneous sampling mode, or synchronous sampling mode by setting the SS_EN bit to the desired operating mode. In simultaneous sampling mode, the most recent interpolated sensor data sample is latched at t_{TRIG} (rising edge of sync pulse). In synchronous sampling mode, the most recent interpolated sensor data sample is latched at the time programmed in the PDCM_RSPSTx user-programmed, relative to t_{TRIG} (rising edge of sync pulse).

When programmed to operate in daisy chain mode, the device follow this procedure:

- After a power on delay of t_{RS_PM}, the device waits for a PSI5 set address command defined in <u>Table 112</u> and <u>Table 113</u>.
 - The set address command must be preceded by at least 31 consecutive sync pulses. All other commands
 must be preceded by either 31 consecutive sync pulses or five consecutive missing sync pulses.

FXPS71407BPS

- The daisy chain programming command and response formats are defined in <u>Section 11.2.8.2 "PSI5</u> programming mode <u>data link layer"</u> using a sync pulse period of t_{s-s_DC}. The response settings are defined in <u>Table 113</u>, with the exception of the time slot.
- The response to the PSI5 set address command and all other valid commands uses the address-based time slot specified in <u>Table 114</u>.
- If a framing error or CRC error is detected on a received command, the device does not respond.
- After receiving a valid address and completing the response, the device will decode and respond to all
 <u>Table 114</u> commands sent to the sensor address it is set to. All responses will be transmitted in the address based time slot specified in <u>Table 114</u>.
- When the run mode command is received, the device responds to the command using the address-based time slot(s) specified in <u>Table 114</u>. The device then ignores all commands and proceeds through initialization phase 2 and initialization phase 3 in response to sync pulses. The following response format is used, regardless of the state of the relevant bits in the device configuration user-programmed:

Table 111. Frame parameter to reference

Parameter	Reference	Value
Time Slot	Section 6.2.13 "PDCM_RSPSTx_x – PSI5 start time user-programmed (address \$26 to \$29)"	Address-based time slot specified in <u>Table 114</u>
Data Size	_	10-bit
Error Checking	Section 6.2.12 "PSI5_CFG – PSI5 configuration register (address \$25)"	Error checking controlled by P_CRC bit
Baud Rate	Section 6.2.11 "CHIPTIME – chip time and bit time register (address \$23)"	Baud rate controlled by the CHIPTIME bit

• Upon completion of initialization phase 3, the ENDINIT bit is set, the device enters normal mode and responds to all sync pulses with sensor data using the format above.

Table 112. Daisy chain programming commands and responses

CMD SAC Type A2	SAdr			FC			- Command	Response (OK)	
	A2	A1	A0	F2	F1	F0	Command	RC	RD1
Short	0	0	0	A2	A1	A0	Set sensor address (daisy chain)	ОК	SAdr
Short	1	1	1	0	0	0	Broadcast message – run mode	ОК	000h
Short	SAdr <> 1 SAdr <> 6			0	0	0	Activate low-side bus switch BUSSW_CTRL[1:0] = '11	ОК	000h
Short	SAdr <> 1 SAdr <> 6			1	1	1	Activate high-side bus switch BUSSW_CTRL[1:0] = '10'	ОК	111h
Short	SAdr <> 1 SAdr <> 6			A2	A1	A0	Set sensor address (daisy chain)	ОК	SAdr

Table 113. Daisy chain programming response code definitions

, , , , , , , , , , , , , , , , , , ,						
Response code	Definition	Value				
RC = OK	Command message received properly 1E1h					
RC = Error	Error during transmission of command message 1E2h					
SAdr	Programmed sensor address, prepended with 0 s	Varies				

Table 114. Valid daisy chain addresses

Sensor address (SAdr)			Description	Default time slot	
A2	A1	A0	Description	Default time slot	
0	0	0	Unprogrammed sensor	N/A	
0	0	1	Sensor address 1	t _{TIMESLOT_DC0}	
0	1	0	Sensor address 2	t _{TIMESLOT_DC1_L}	
0	1	1	Sensor address 3	t _{TIMESLOT_DC2_L}	

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

Table 114. Valid daisy chain addresses...continued

Sensor address (SAdr)			Description	Default time slot	
A2	A1	A0	Description	Default time 310t	
1	0	0	Sensor address 4	t _{TIMESLOT_DC1_H}	
1	0	1	Sensor address 5	t _{TIMESLOT_DC2_H}	
1	1	0	Sensor address 6	t _{TIMESLOT_DC3_H}	
1	1	1	N/A	N/A	

Note:

- Writes to sensor address 7 are ignored.
- If a successful programming mode entry command is received prior to a set address, daisy chain mode is disabled.

11.2.7 Error handling

11.2.7.1 Daisy chain error handling

Table 115 shows the effect of internal failure modes on the daisy chain initialization procedure.

Table 115. Daisy chain error handling

and the same of th				
Error condition	Effect on daisy chain			
Supply error	Daisy chain commands Ignored. The device will not participate in daisy chain			
Communication error	No effect. The device will participate in daisy chain as programmed.			
Test mode enabled	Daisy chain commands ignored. The device will not participate in daisy chain			
PABS out of range and/or mismatch error	No effect. The device will participate in daisy chain as programmed.			
Temperature error	No effect. The device will participate in daisy chain as programmed.			
Memory error	No effect. The device will participate in daisy chain as programmed.			
Self-test error	No effect. The device will participate in daisy chain as programmed.			
Device not locked	No effect. The device will participate in daisy chain as programmed.			

11.2.7.2 Initialization phase 2 error handling

<u>Table 116</u> shows the effect of internal failure modes on the initialization phase 2 transmissions. Some errors occurring in initialization phase 2 will prevent entry into initialization phase 3. Once the error is no longer present, the device will complete initialization phase 2 as necessary and then transition to initialization phase 3.

Table 116. Initialization phase 2 error handling

Error condition	Effect on initialization phase 2	
Supply error	Temporary, sync pulses ignored	
Communication error	No effect	
Test mode enabled	No effect	
PABS out of range and/or mismatch error	No effect	
Temperature error	No effect. The device will attempt to transmit initialization phase 2 data.	
Memory error	No effect. The device will attempt to transmit initialization phase 2 data.	
Self-test error	No effect	
Device not locked	No effect	

11.2.7.3 Initialization phase 3 error handling

<u>Table 117</u> shows the effect of internal failure modes on initialization procedures. Some errors occurring in initialization phase 3 will prevent entry into run mode until the error is no longer present. Once the error is no longer present, one or more sensor ready commands will be transmitted before entering run mode.

Table 117. Initialization phase 3 error handling

Error condition Effect on initialization phase 3				
Supply error	Temporary, sync pulses Ignored			
Communication error No effect				
Test mode enabled	No effect			
PABS out of range and/or mismatch error	No effect			
Temperature error	No effect. The device will attempt to transmit initialization phase 3 data.			
Memory error	No effect. The device will attempt to transmit initialization phase 3 data.			
Self-test error	No effect			
Device not locked	Sensor ready replaced with sensor ready, but not locked transmission (UF2 region is unprogrammed)			

11.2.7.4 Normal mode error handling

11.2.7.4.1 Standard error reporting

<u>Table 118</u> summarizes the error reporting in normal mode if the PSI5 error extension option is disabled. A single error transmission clears the device status allowing for temporary error conditions to be cleared once the error condition is removed.

Table 118. Standard error reporting

Error condition	Error code	Error priority	Error response
Supply error	NA		Temporary (normal transmissions continue once condition is removed)
Communication error	1F4h	6	
Test mode enabled	1F4h	2	
PABS out of range error	1F4h	5	
Temperature error	1F4h	4	
Memory error	1F4h	3	Latched until reset
Self-test error	1F4h	1	Latched until reset
Device not locked	NA		NA

11.2.7.4.2 PSI5 error extension option

If the PSI5 error extension option is enabled, additional error reporting is available as shown in <u>Table 119</u>. A single error transmission clears the device status allowing for temporary error conditions to be cleared once the error condition is removed.

Table 119. PSI5 error extension option

table 113. 1 013 error extension option				
Error condition	Error code	Error priority	Error response	
Supply error	NA		Temporary (normal transmissions continue once condition is removed)	
Communication error	1EFh	6		
Test mode enabled	1EEh	2		
PABS out of range error	1EDh	5		
Temperature error	1ECh	4		

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

Table 119. PSI5 error extension option...continued

Error condition	Error code	Error priority	Error response
Memory error	1EBh	3	Latched until reset
Self-test error	1EAh	1	Latched until reset
Device not locked	NA		NA

11.2.8 PSI5 diagnostic and programming mode

PSI5 programming mode is a synchronous communication mode that allows for bidirectional communication with the device. Programming mode is intended for factory programming of the OTP array and reading of diagnostic information. It is not intended for use in normal operation.

11.2.8.1 PSI5 programming mode entry

The device enters programming mode if and only if the following sequence occurs:

- At least 31 sync pulses are detected, directly preceding the programming mode entry short command during the programming mode entry window shown in Section 11.2.4 "Initialization".
 - The window timing is defined in Section 10 "Dynamic characteristics PSI5" (t_{PMF}).
 - The sync pulses and programming mode entry command must be received with a sync pulse period of t_{S-}
 S PM

If the programming mode entry requirement is not met:

- Programming mode entry is blocked until the device is reset.
- The device proceeds with PSI5 initialization phase 2 and PSI5 initialization phase 3.
- The device enters normal mode, and responds as programmed to normal sync pulses.

If the programming mode entry requirement is met:

- Normal transmissions to sync pulses are terminated.
- The device will detect commands if the start condition is met as described in <u>Section 11.2.8.2.2 "PSI5</u> programming mode command message format".
- The device responds only to valid PSI5 short and XLong commands addressed to sensor address '001', as defined in Section 11.2.8.3 "PSI5 programming mode command and response summary".

11.2.8.2 PSI5 programming mode – data link layer

11.2.8.2.1 PSI5 programming mode – command bit encoding

Commands messages are transmitted via the modulation of the supply voltage. The presence of a sync pulse is a logic '1' and the absence of a sync pulse is a logic '0'. Sync pulses are expected at a rate of t_{S-S-PM} .

11.2.8.2.2 PSI5 programming mode – command message format

Command message data frames consist of a start condition, three start bits (S[2:0]), a 3-bit sensor address (SAdr[2:0]), a 3-bit function code (FC[2:0]), an optional register address (RAdr[7:0]), an optional data field (D[7:0]), and a 3-bit CRC (C[2:0]. The start condition consists of one of the following:

- 1. A minimum of five consecutive logic '0's (with no sync bits)
- 2. A minimum of 31 consecutive logic '1's (this includes logic '1's transmitted for the previous response)

The command message format is shown in Table 120.

FXPS71407BPS

Table 120. Programming mode via PSI5 command data format

				9		9											-													
Start	bits		Sens addr			Fund	ction	code	Regi	ster a	ddres	ss					Data								CRC			Respo	nse	
S2	S1	S0	SA0	SA1	SA2	FC0	FC1	FC2	RA0	RA1	RA2	RA3	RA4	RA5	RA6	RA7	D0	D1	D2	D3	D4	D5	D6	D7	C2	C1	C0	RC	RD1	RD0
0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	\$3FF	\$3FF	\$3FF
									CRC																					
									Data to be written to register (optional)																					
																Regi	ster A	ddres	s (opti	ional)										
	Function codes (See Section 11.2.8.3 "PSI5 programming mode command and response summary")																													
Sensor address – Fixed at 001																														
Start	Sensor address – Fixed at 001 tart bit sequence = 010																													

Bit stuffing is necessary to maintain a synchronized timebase between the command master and the device. A logic '1' sync bit is added every foruth bit in the command message to ensure that there will never be more than three logic '0' bits in a row.

Table 121. Programming mode via PSI5 XLong command data format with sync bits

:	Start	bits	;		Sens				Fund	tion c	ode		Regi	ster ac	ddress	;							Dat	a										CRO	0			Resp	onse	
;	32	31	S0	Sy	SA0	SA1	SA2	Sy	FC0	FC1	FC2	Sy	RA0	RA1	RA2	Sy	RA3	RA4	RA5	Sy	RA6	RA7	D0	Sy	D1	D2	D3	Sy	D4	D5	D6	Sy	D7	C2	C1	Sy	C0	RC	RD1	RD0
() .	1	0	1	1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	0	\$1E2	\$3FF	\$3FF

Once a command is received and verified, the device expects two to three consecutive sync pulses (depending upon the command message lengths described below). There is no delay restriction between the command and the first sync pulse for the response. Once the first sync pulse for the response is received, each successive response sync pulse must be received within the programming mode sync pulse period specified (t_{S-S_PM}) or a framing error may occur.

For each of these sync pulses, The device will respond with the following settings:

Table 122. Programming mode via PSI5 response message settings

Parameter	Value
Time slot	t _{TIMESLOT_DC0}
Data size	10-bit data
Error checking	Even parity
Baud rate	125 kBd
Sync pulse pulldown	Disabled

11.2.8.2.3 Short frame command and response format

Short frames are the simplest type of command message. No data is transmitted in a short frame command. Only specific instructions are performed in response to short frame commands. The short frame format is shown in <u>Table 123</u>. Short frame commands and responses are defined in <u>Section 11.2.8.3 "PSI5 programming mode command and response summary".</u>

The device only supports a short command for programming mode entry.

Table 123. Programming mode via PSI5 short frame command and response format

		_														
Start bits	5			Sensor a	ddress			Function	code			CRC			Response	
S2	S1	S0	Sy	SA0	SA1	SA2	Sy	FC0	FC1	FC2	Sy	C2	C1	C0	RC	RD1
0	1	0	1	1	0	0	1	0	0	1	1	0	0	0	\$1E2	\$3FF

11.2.8.2.4 Long frame command and response format

Long frames allow for the transmission of data nibbles for register writes. The device can provide register data in response to a read or write request. The long frame format is shown in <u>Table 124</u>. Long frame commands and responses are defined in <u>Section 11.2.8.3 "PSI5 programming mode command and response summary"</u>.

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

The device does not support the long frame command.

Table 124. Programming mode via PSI5 long frame command and response format

Star	bits			Sense	or addı	ress		Funct	tion co	de		Regis	ter ad	dress						Data					CRC				Respo	onse	
S2	S1	S0	Sy	SA0	SA1	SA2	Sy	FC0	FC1	FC2	Sy	RA0	RA1	RA2	Sy	RA3	RA4	RA5	Sy	D0	D1	D2	Sy	D3	C2	C1	Sy	C0	RC	RD1	RD0
0	1	0	1	1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	1	1	1	1	1	0	0	1	0	\$1E2	\$3FF	\$3FF

11.2.8.2.5 Extra long frame command and response format

Extra long frames allow for the transmission of address and data bytes for register reads and writes. The device can provide register data in response to a read or write request. The extra long frame format is shown in <u>Table 125</u>. Extra long frame commands and responses are defined in <u>Section 11.2.8.3 "PSI5 programming mode command and response summary"</u>.

The device supports register read and register write extra long commands.

Table 125. Programming mode via PSI5 extra long command and response format

s	tart b	its			Sens	or addı	ress		Fund	ction c	ode		Regi	ster ac	ddress	;							Data	a									С	RC			Res	oonse	
s	2 S1	S	00	Sy	SA0	SA1	SA2	Sy	FC0	FC1	FC2	Sy	RA0	RA1	RA2	Sy	RA3	RA4	RA5	Sy	RA6	RA7	D0	Sy	D1	D2	D3	Sy	D4	D5 [06 8	Sy D	7 C	2 C	1 S	у С	0 RC	RD1	RD0
0	1	0		1	1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1 1	1 1	C	0	1	0	\$1E2	\$3FF	\$3FF

11.2.8.2.6 Command message CRC

Programming mode command error checking is accomplished by a 3-bit CRC. The 3-bit CRC is calculated using all message bits except start bits and sync bits. The CRC verification uses a generator polynomial of $g(x) = x^3 + x + 1$, with a nondirect seed value = '111'. The message data is provided to the CRC calculator in the order received (LSB first, SAdr, FC, RAdr, Data), and then augmented with three '0's. <u>Table 106</u> shows examples of CRC calculation values for 10-bit data transmissions.

The calculated CRC is then compared against the received 3-bit CRC (received MSB first). If a CRC mismatch is detected, the device responds with a CRC Error response as defined in Section 11.2.8.4 "Programming mode via PSI5 error response summary".

11.2.8.2.7 Command sync pulse blanking time

In programming mode and programming mode entry, the device employs a fixed sync pulse blanking time of $t_{SYNC\ OFF\ 250}$ regardless of the state of the PDCM_CMD_B register value.

11.2.8.2.8 Command timeout

In the event that the device does not detect a sync pulse within a 4-bit window time, the command reception will be terminated and the device will respond to the next sync pulse with a short frame framing error response as defined in <u>Section 11.2.8.4</u> "<u>Programming mode via PSI5 error response summary</u>".

11.2.8.3 PSI5 programming mode command and response summary

Table 126. Programming mode via PSI5 commands and responses

RD1 RD0
nse
onse
ErrN 000h
ErrN 000h
no

Table 127. Programming mode via PSI5 response code definitions

Response Code	Definition	Value
RC = OK	Command message received properly	1E1h
RC = Error	Error during transmission of command message	1E2h
RData	Byte contents of register located at address RA7:RA1 with RA0 = 0	Varies
RData + 1	Byte contents of register located at address RA7:RA1 with RA0 = 1	Varies
WData	Byte contents of register located at address RA7:RA0	Varies

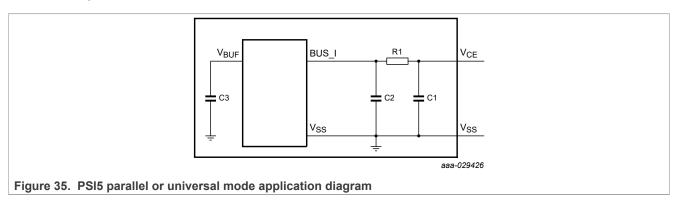
11.2.8.4 Programming mode via PSI5 error response summary

Table 128. Error response summary

ErrN	Mnemonic	Description	Supported
0000	General	General error	No
0001	Framing	Framing error (four consecutive zeroes)	Yes
0010	CRC	CRC error on received message	Yes
0011	Address	Sensor address not supported	No (Invalid address is ignored)
0100	FC	Function code not supported	No (N/A)
0101	Reserved	Reserved	No
0110			
0111			
1000	Reserved	Reserved	No
1001			
1010			
1011			
1100			
1101			
1110			
1111			

ErrN is transmitted in the four LSBs of RD1. All other bits in the response data field are set to '0'.

11.2.9 PSI5 OTP programming procedure


1. Enter programming mode.

FXPS71407BPS

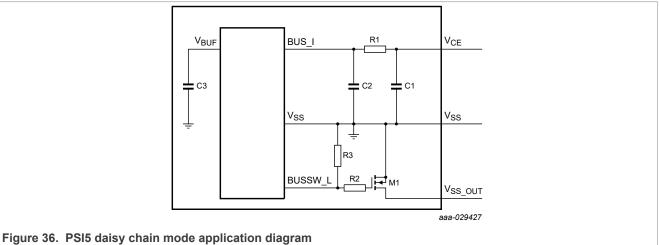
All information provided in this document is subject to legal disclaimers.

- 2. Set $V_{CC} = V_{PP}$
- 3. Load desired data into the desired user-programmed using PSI5 write commands.
- 4. Write the necessary OTP program sequence to the WRITE_OTP_EN register for the desired OTP region to be written.
- 5. Delay t_{PROG_TIME} after the completion of the write OTP program to allow for completion of the OTP writes.
- 6. To confirm that no errors occurred during the OTP writes, read the DEVSTAT1 register.
- 7. Read back the register values that were written and compare to the desired values to confirm successful OTP writes.

11.3 PSI5 parallel or universal mode

Table 129. External component recommendations

Notes:


- The total bus capacitance must not exceed the values specified in the PSI5 standard 11.
- R1 must be sized to handle both the programming current at the maximum rated temperature for programming and the operating current at the maximum rated temperature for operation.
- · If the high baud rate is used, it is recommended to reduce the value of C2. The actual value will depend on the bus configuration and number of slaves.

Ref	Туре	Typical value description	Component value selection and range	Comment
R1	General purpose	10 Ω, 5 %, 200 PPM	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing.	V _{CC} filtering and signal damping
			For proper device function, the minimum value can be 0 Ω . The maximum value is determined by the minimum bus voltage provided at the module pin and the minimum operating voltage of the device. To meet the minimum PSI5 operating voltage at the module pin, the maximum resistance including all tolerances is $20.5~\Omega$. If the low response current is used, the maximum resistance including all tolerances is $33.3~\Omega$.	
C1	Ceramic	2.2 nF, 10 %, 50 V minimum, X7R	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing	V _{CC} power supply decoupling and signal damping. For optimal EMC performance, this component is to be placed as close to the BUS_I and BUSRTN connector pins as possible.
C2	Ceramic	15 nF, 10 %, 50 V minimum, X7R	_	V _{CC} power supply decoupling. For optimal EMC performance, this component is to be placed as close to the BUS_I and BUSRTN pins as possible.
C3	Ceramic	0.47 μF, 10 %, 10 V minimum, X7R	The optimal value of this component should be determined based on the system level micro-cut immunity requirement. To achieve the specified power supply rejection, the minimum value including all tolerances is 0.22 μF. The maximum specified value including all tolerances is 2 μF.	For optimal EMC performance, this component is to be placed as close to the V _{BUF} and BUSRTN pins as possible.

FXPS71407BPS

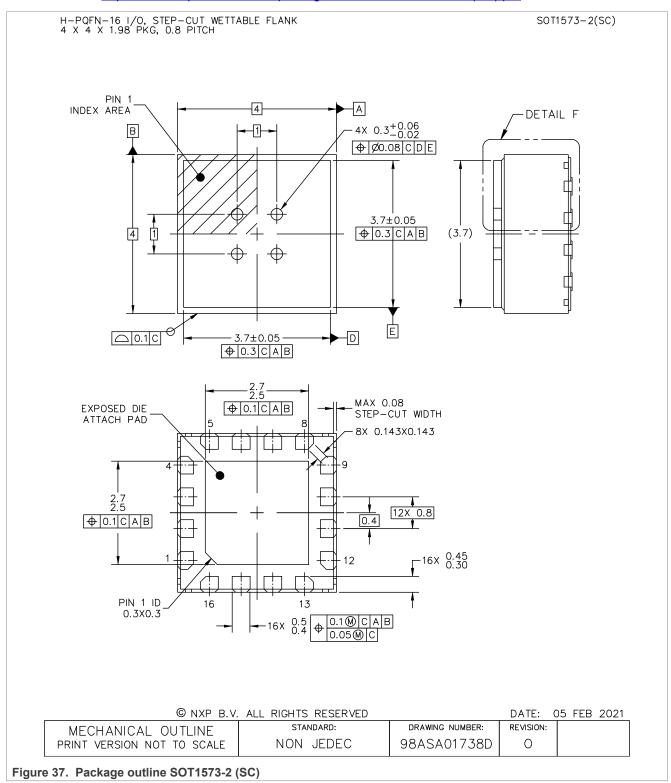
All information provided in this document is subject to legal disclaimers.

11.4 PSI5 daisy chain mode

Table 130. External component recommendations

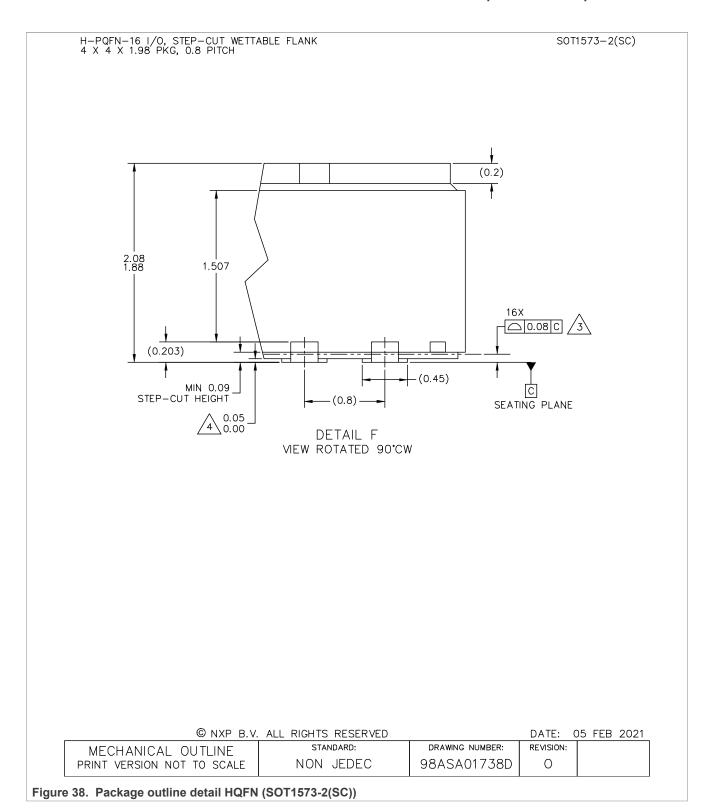
Notes:

- R1 must be sized to handle both the programming current at the maximum rated temperature for programming and the operating current at the maximum rated temperature for operation.
- If the high baud rate is used, it is recommended to reduce the value of C2. The actual value will depend on the bus configuration and number of slaves.


Ref	Type	Typical value description	Component value selection and range	Comment
R1	General purpose	10 Ω, 5 %, 200 PPM	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing. For proper device function, the minimum value can be 0 Ω . The maximum value is determined by the minimum bus voltage provided at the module pin and the minimum operating voltage of the device. To meet the minimum PSI5 operating voltage at the module pin, the maximum resistance including all tolerances is $20.5~\Omega$. If the low response current is used, the maximum resistance including all tolerances is $33.3~\Omega$.	V _{CC} filtering and signal damping
R2	General purpose	20 kΩ, 5 %, 200 PPM	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing	Gate resistor for external low side daisy chain FET
R3	General purpose	100 kΩ, 5 %, 200 PPM	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing	Gate pulldown resistor for external low side daisy chain FET
C1	Ceramic	2.2 nF, 10 %, 50 V minimum, X7R	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing	V _{CC} power supply decoupling and signal damping. For optimal EMC performance, this component is to be placed as close to the BUS_I and BUSRTN connector pins as possible.
C2	Ceramic	15 nF, 10 %, 50 V minimum, X7R	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing	V _{CC} power supply decoupling. For optimal EMC performance, this component is to be placed as close to the BUS_I and BUSRTN pins as possible.
C3	Ceramic	0.47 μF, 10 %, 10 V minimum, X7R	The optimal value of this component should be determined based on the system level micro-cut immunity requirement. To achieve the specified power supply rejection, the minimum value including all tolerances is 0.22 µF. The maximum specified value including all tolerances is 2 µF.	For optimal EMC performance, this component is to be placed as close to the V _{BUF} and BUSRTN pins as possible.
M1	N-channel MOSFET	NTR4501NT1G, or similar	The optimal value of this component should be determined by the system level communication, EMC, and ESD testing	Low-side daisy chain transistor

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.


12 Package information

Consult the most recently issued drawing before initiating or completing a design. The drawings are available for download at https://www.nxp.com/docs/en/package-information/SOT1573-2(SC).pdf.

Table 131. SOT1573-2(SC) hole dimensions

Lid parameters	
# of holes	4
Hole diameter (mm)	0.3
Air hole upper tolerance (mm)	0.06
Air hole lower tolerance (mm)	0.02
Lid radius angle (mm)	0.25
Material hardness	½ H

FXPS71407BPS

H-PQFN-16 I/O, STEP-CUT WETTABLE FLANK 4 X 4 X 1.98 PKG, 0.8 PITCH

SOT1573-2(SC)

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. COPLANARITY APPLIES TO LEADS AND DIE ATTACH PAD.
- A DIMENSION APPLIES ONLY FOR TERMINALS.
- 5. MIN METAL GAP SHOULD BE 0.2 MM.

© NXP B.V.	ALL RIGHTS RESERVED		DATE:	05 FEB 2021
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	
PRINT VERSION NOT TO SCALE	NON JEDEC	98ASA01738D	0	

Figure 39. Package outline notes HQFN (SOT1573-2(SC))

12.1 Footprint

Reference NXP application note [5] AN1902 for the latest revision.

All information provided in this document is subject to legal disclaimers.

13 Soldering

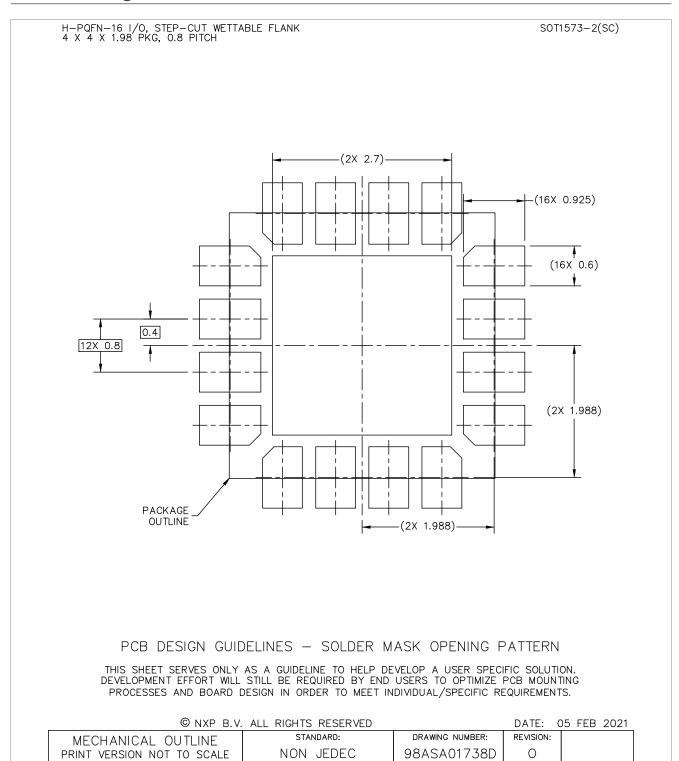


Figure 40. SOT1573-2(SC) PCB design guidelines - Solder mask opening pattern

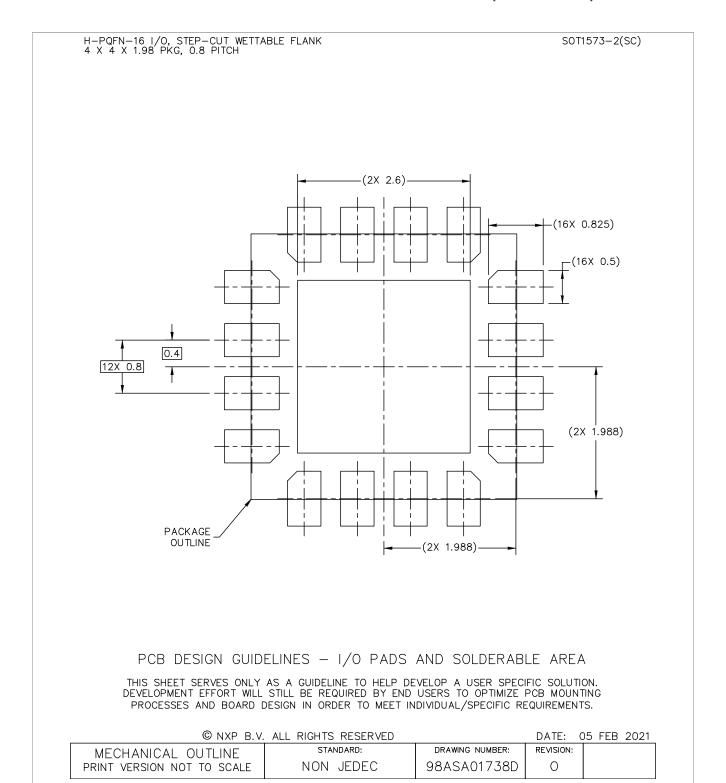
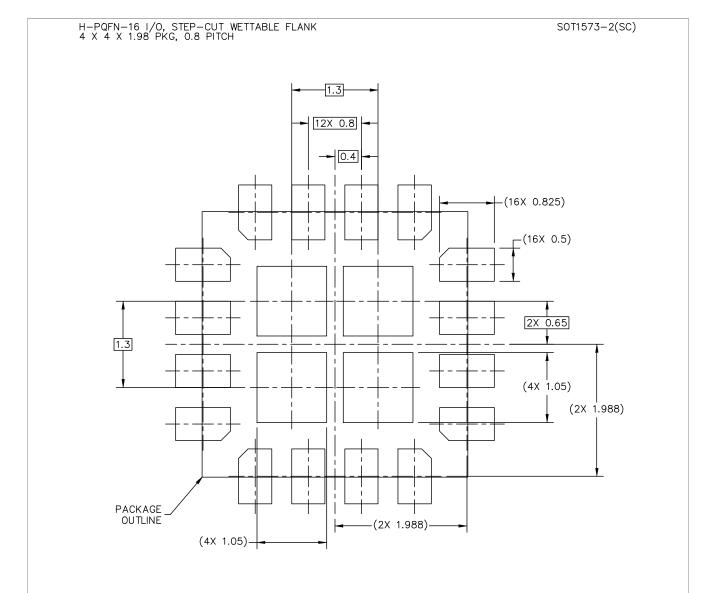



Figure 41. SOT1573-2(SC) PCB design guidelines - I/O pads and solderable area

RECOMMENDED STENCIL THICKNESS 0.125 OR 0.15

PCB DESIGN GUIDELINES - SOLDER PASTE STENCIL

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

© NXP B.V.	ALL RIGHTS RESERVED		DATE: (05 FEB 2021
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	
PRINT VERSION NOT TO SCALE	NON JEDEC	98ASA01738D	0	

Figure 42. SOT1573-2(SC) PCB design guidelines - Solder paste stencil

14 Mounting recommendations

The package should be mounted with the pressure port pointing away from sources of debris that might otherwise plug the sensor.

A plugged port exhibits no change in pressure and can be cross checked in the user software.

Refer to NXP application note AN1902^[5] for proper printed-circuit board attributes and recommendations.

15 References

- [1] PSI5 Technical Specification version 2.1, dated October 8, 2012
- [2] AKLV29 V1.30
- [3] AEC-Q100, Revision G, AEC-Q006
- [4] ISO16750, Environmental conditions, and testing for electrical and electronic equipment Parts 1, 3, 4 and 5
- [5] AN1902, Assembly guidelines for QFN (quad flat no-lead) and SON (small outline no-lead) packages https://www.nxp.com/docs/en/application-note/AN1902.pdf

16 Revision history

Table 132. Revision history

Document ID	Release date	Description
FXPS71407BPS v.3.0	19 May 2025	 Global editing for style and grammar. Updated Revision history style and structure. Updated Legal information. Update document title to "PSI5 compatible relative pressure sensor" from "PSI5 compatible absolute and relative pressure sensor". Updated Section 1. Section 2: Added bullets beginning "16-bit data length" and "Developed following" Updated Figure 2. Updated Table 3 Symbols and Definitions. Table 4: - Updated Address "\$10" Bit "3" to "Reserved" from "SUP_ERR_DIS" Updated Address "\$11" Bit "3" and "2" to "Reserved" from "EX_COMMTYPE" and "EX_PADDR". Updated Address "\$18" Register and all Bit values to "Reserved". Updated Address "\$18" Bit "6" through "0" to "Reserved". Updated Address "\$1B" Bit "3" through "0" to "Reserved". Updated Address "\$1C to \$22" from "\$1C to \$21". Deleted former row Address "\$22". Updated Address "\$23" Bit "3" to "CHIPTIME" and "2" through "0" to "Reserved". Updated Register and Bit for Address "\$46", "\$47", "\$48", and "\$49" to "Reserved".

Table 132. Revision history

Table 132. Revision history

Document ID	Release date	Description			
		Deleted Table 41, titled "PDCM field sizes"			
		• <u>Section 6.2.11</u> :			
		- Table 39:			
		Updated Bit "3" to "CHIPTIME" and "2" through "0" to "Reserved".			
		 Deleted "In PSI5 mode," from sentence after subhead "CHIPTIME - chip time". 			
		 <u>Table 41</u>: Combined cells for values "0" and "1". Table 63 			
		 Changed Name of Bit "2" to "Reserved" from "INT_OUT". Deleted subhead "INT_OUT - interrupt pin configuration", text, and Table 71, titled "INT_OUT - interrupt pin configuration" 			
		- Updated <u>Table 41</u> .			
		 <u>Section 6.2.12</u>: Deleted "In PSI5 mode," from sentences after subhead "SYNC_PD – sync pulse pulldown enable bit" and all subsequent subheads in the section. 			
		Table 78: Changed Reset of all Bit entries to "0000 0001" from "N/A".			
		• Section 6.2.31.1: Deleted "In PSI5 mode," from first sentence.			
		• Section 6.6.2.4: Deleted "" from first sentence.			
		Table 99: Deleted row "16-bit SPI sensor data" and "Interrupt threshold user-programmed".			
		• Table 102:			
		 Changed Parameter for Symbol "BUS_I_{REV}"/"BUS_I_{MAX}" to "Supply voltage (BUS_I/V_{CC}" from "Supply voltage (BUS_I/V_{CC}, BUS_O, BUSSW_H)". 			
		– Changed Conditions for " V_{ESD} " to "BUS_I/ V_{CC} , BUSRTN, HBM (100 pF, 1.5 kΩ)" from "BUS_I/ V_{CC} , BUS_O, BUSRTN, HBM (100 pF, 1.5 kΩ)".			
		• <u>Table 104</u> :			
		 Deleted rows "I_{BUSSW_H_OL}", "V_{BUSSW_H_OL}", "P_{ABS_B_DRng}", and "P_{ABS_B_DErr}" 			
		 Moved row "PSC_{PSI5}" and "PSC_{SATH}" under "Relative pressure sensor signal chain - P0 range B" sub-section. 			
		 Updated Parameter text from to "Relative" to "Absolute"; updated Conditions text to "10-bit" from "1.bit"; 			
		• <u>Table 105</u>			
		 Updated Symbol "t_{ST_Resp_370_2}" from "t_{ST_Resp_370_3}" Deleted "All modes," from Conditions for Symbol "t_{VCC_POR}", "t_{POR_PSI5}", "t_{POR_DataValid}", and "t_{RANGE_DataValid}". Deleted "PSI5" from Conditions for Symbol "t_{SOFT_RESET_PSI}" 			
		 Deleted "(validation only)" from Symbol "t_{CAPTST_TIME}". Section 11.2.3.4: 			
		 Deleted sentence beginning "The PSI5 data field" Table 107: Changed Symbol "+500" Description (EMSG_EX = 1 in PSI5_CFG) to "Reserved" from "Sensor defect error". 			
		Table 111: - "Data Size" Reference changed to "—" from link; Value			
		changed to "10-bit" from "Data size controlled by the PDC MFORMAT bits".			

Table 132. Revision history...continued

Document ID	Release date	Description
		 "Error Checking" Value changed to "Error checking controlled by P_CRC bit" from "Even parity".
		• Table 118: Error code entries changed to "1F4h" from "1EFh", "1EEh", "1EDh", "1ECh", "1EBh", and "1EAh".
		<u>Table 131</u> : Updated column name to "Lid parameters", deleted column "POR lid" and column title "New lid".
FXPS71407BPS v.2.2	29 November 2023	<u>Section 3, Table 1</u> , corrected part number typographic error revising "FXPS7140BPST1" to "FXPS7140 7 BPST1".
FXPS71407BPS v.2.1	05 October 2023	Product
FXPS71407BPS v.2	01 June 2023	Objective
FXPS71407BPS v.1.1	29 November 2022	Objective
FXPS71407BPS v.1	24 October 2022	Initial version

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

FXPS71407BPS

All information provided in this document is subject to legal disclaimers.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

This NXP product has been qualified for use in automotive applications. It has been developed in accordance with ISO 26262, and has been ASIL classified accordingly. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal

Suitability for use in automotive applications (functional safety)

injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V

Tables

Tab. 1.	Ordering information1	Tab. 36.	SOURCEID_0 – source identification	
Tab. 2.	Ordering options2		register - (address \$1A) bit allocation	16
Tab. 3.	Pin description3	Tab. 37.	SOURCEID_1 – source identification	
Tab. 4.	User accessible data array4		register – (address \$1B) bit allocation	16
Tab. 5.	COUNT – rolling count register – (address	Tab. 38.	SOURCEID_x register values	
	\$00) bit allocation7	Tab. 39.	CHIPTIME – chip time and bit time register	
Tab. 6.	DEVSTAT – device status register –		- (address \$23) bit allocation	16
	(address \$01) bit allocation7	Tab. 40.	SS_EN data latency methods	
Tab. 7.	DEVRES – device reset8	Tab. 41.	Bit time for the PSI5 response data	
Tab. 8.	DEVINIT – device initialization8	Tab. 42.	PSI5_CFG – PSI5 configuration register –	
Tab. 9.	DEVSTAT 1– device status register –	100. 12.	(address \$25) bit allocation	17
Idb. J.	(address \$02) bit allocation8	Tab. 43.	Sync pulse pulldown enable bit select	
Tab. 10.	VBUFUV ERR – VBUF undervoltage error8	Tab. 44.	Transmission mode selection bits select	
Tab. 11.	BUSINUV_ERR – BUS IN undervoltage	Tab. 45.	PSI5 low response current	
T-1- 40	error	Tab. 46.	PSI5 relative pressure PSI5 data range	
Tab. 12.	VBUFOV_ERR – VBUF overvoltage error 9	Tab. 47.	PSI5 error message information	
Tab. 13.	INTREGA_ERR – internal analog regulator	Tab. 48.	PSI5 response message error detection	18
	voltage out of range error9	Tab. 49.	D33 through D48 of PSI5 initialization	
Tab. 14.	INTREG_ERR – internal digital regulator		phase 2	18
	voltage out of range error9	Tab. 50.	PDCM_RSPSTx_x - PSI5 start time user-	
Tab. 15.	INTREGF_ERR – internal OTP regulator		programmed – (address \$26 to \$29) bit	
	voltage out of range error9		allocation	19
Tab. 16.	CONT_ERR – continuity monitor error10	Tab. 51.	Periodic data collection mode response	
Tab. 17.	DEVSTAT2 – device status register –		start time for the associated data and	
	(address \$03) bit allocation10		SOURCEID	19
Tab. 18.	F_OTP_ERR - NXP OTP array error10	Tab. 52.	Default states for SOURCEID_x,	
Tab. 19.	U_OTP_ERR – user OTP array error10		SNSDATAxm, PCDM_REPSTx	19
Tab. 20.	U_RW_ERR – user read/write array error 10	Tab. 53.	PSI5 data transmission start times	
Tab. 21.	U_W_ACTIVE – user OTP write in process	Tab. 54.	PDCM_CMD_B_x - PSI55 command	
	status bit11	-	blocking time user-programmed – (address	
Tab. 22.	TEMP0_ERR – temperature error11		\$38, \$39) bit allocation	19
Tab. 23.	COMMREV – communication protocol	Tab. 55.	PSI5 mode sync pulse blocking time	
145. 20.	revision register – (address \$05) bit	Tab. 56.	WHO_AM_I – who am I register – (address	0
	allocation	145. 00.	\$3E) bit allocation	20
Tab. 24.	TEMPERATURE – temperature register –	Tab. 57.	Response to a register read command	
100. 2 1 .	(address \$0E) bit allocation11	Tab. 58.	DSP_CFG_U1 – DSP user configuration	20
Tab. 25.		1ab. 56.		21
1ab. 25.	DEVLOCK_WR – lock register writes	Tab EO	#1 register – (address \$40) bit allocation	
T-b 00	register – (address \$10) bit allocation	Tab. 59.	LPF[3:0] – low-pass filter selection bits	∠ ۱
Tab. 26.	Register write operations	Tab. 60.	DSP_CFG_U3 – DSP user configuration	04
Tab. 27.	WRITE_OTP_EN – write OTP enable	T-1- 04	#3 register – (address \$42) bit allocation	
T-1- 00	register – (address \$11) bit allocation	Tab. 61.		
Tab. 28.	Writes for OTP registers	Tab. 62.	DSP data type 1 selection bits	22
Tab. 29.	BUSSW_CTRL – bus switch control	Tab. 63.	DSP_CFG_U4 – DSP user configuration	
	register – (address \$12) bit allocation 14		#4 register – (address \$43) bit allocation	
Tab. 30.	State of BUSSW_L pin14	Tab. 64.	P0 filter reset bit	
Tab. 31.	UF_REGION_W – UF region selection	Tab. 65.	P0_RLD – P0 filter rate limiting bypass bit	22
	register – (address \$14) bit allocation14	Tab. 66.	DSP_CFG_U5 – DSP user configuration	
Tab. 32.	UF_REGION_R – UF region selection		#5 register – (address \$44) bit allocation	
	register – (address \$15) bit allocation 14	Tab. 67.	Self-test control bits	23
Tab. 33.	Communication interfaces available via the	Tab. 68.	P_CAL_ZERO_x – pressure calibration	
	COMMTYPE register15		user-programmed – (address \$4C) bit	
Tab. 34.	Optional communication interfaces		allocation	23
	available via the COMMTYPE register15	Tab. 69.	DSP_STAT - DSP-specific status register -	
Tab. 35.	COMMTYPE – communication type		(address \$60) bit allocation	24
	register – (address \$16) bit allocation 15	Tab. 70.	Self-test incomplete	
	• ,		•	

FXPS71407BPS

Tab. 71.	DEVSTAT_COPY – device status copy		Tab. 93.	Startup digital self-test verification	
	register – (address \$61) bit allocation	25	Tab. 94.	Startup sense data fixed value verification	37
Tab. 72.	SNSDATA0_L, SNSDATA0_H – sensor		Tab. 95.	Digital signal processor details	38
	data #0 user-programmed – (address \$62,		Tab. 96.	Signal trim and compensation	39
	\$63) bit allocation	25	Tab. 97.	Low-pass filter options	40
Tab. 73.	SNSDATA0_L, SNSDATA0_H - sensor		Tab. 98.	Low-pass filter details and timing for the	
	data #0 user-programmed – (address \$62,			startup phases	45
	\$63) bit allocation	26	Tab. 99.	Absolute pressure readings variables	48
Tab. 74.	SNSDATA0_TIMEx – sensor data 0		Tab. 100.	Relative pressure readings variables	
	timestamp – (address \$66 to \$69, \$6A,			Conversion variables	
	\$6B) bit allocation	26		Limiting values	
Tab. 75.	P_MAX_x – maximum absolute pressure			Operating conditions	
	value register – (address \$6C, \$6D) bit			Static characteristics	
	allocation	26		Dynamic characteristics	
Tab. 76.	P_MIN_x – maximum absolute pressure			PSI5 3-bit CRC calculation examples	
	value register – (address \$6E, \$6F) bit			PSI5 data values	
	allocation	27		PSI5 initialization phase 2 data	
Tab. 77.	FRTx – free-running timer user-		145. 100.	transmission order	65
10D. 77.	programmed (address \$78, \$79, \$7A to		Tah 109	Initialization phase 2 time	
	\$7D) bit allocation	27		PSI5 initialization phase 2 data	
Tab. 78.	PNx – Part number user-programmed –	21		Frame parameter to reference	
1ab. 70.	(address \$C4, \$C5) bit allocation	27		Daisy chain programming commands and	10
Tab. 79.	Part number user-programmed protocol		140. 112.	responses	70
Tab. 79.	SNx – device serial number user-	21	Tah 113	Daisy chain programming response code	10
1ab. 00.	programmed – (address \$C6 to \$C9, \$CA)		1ab. 115.	definitions	70
	, -	20	Tab 111		
Tab. 81.	bit allocation	20		Valid daisy chain addresses	
1ab. 61.	ASICWFR# – ASIC wafer ID register –	20		Daisy chain error handling	
Tab 02	(address \$CB) bit allocation	20		Initialization phase 2 error handling	
Tab. 82.	ASICWFR_x – ASIC wafer x, y coordinates			Initialization phase 3 error handling	
	ID user-programmed – (address \$CC,	00		Standard error reporting	
T 1 00	\$CD) bit allocation	28		PSI5 error extension option	72
Tab. 83.	ASICWLOT_x – ASIC wafer lot ID user-		Tab. 120.	Programming mode via PSI5 command	_,
	programmed – (address \$D0, \$D1) bit	00	T 1 101	data format	/4
T 1 04	allocation	28	lab. 121.	Programming mode via PSI5 XLong	_,
Tab. 84.	USERDATA_X – user data user-		T	command data format with sync bits	/4
	programmed (address \$E0 to \$E9, \$EA to		lab. 122.	Programming mode via PSI5 response	
	\$EE) bit allocation	29		message settings	74
Tab. 85.	Phase 2 USERDATA_X – user data user-		Tab. 123.	Programming mode via PSI5 short frame	
	programmed (address \$E0 to \$E9, \$EA to			command and response format	74
	\$EE) bit allocation	29	Tab. 124.	Programming mode via PSI5 long frame	
Tab. 86.	USERDATA_10 to USERDATA_1E – user			command and response format	75
	data user-programmed (address \$F0 to		Tab. 125.	Programming mode via PSI5 extra long	
	\$F9, \$FA to \$FE) – bit allocation	30		command and response format	75
Tab. 87.	CRC_UF2, CRC_F_A to CRC_F_F – lock		Tab. 126.	Programming mode via PSI5 commands	
	and CRC user-programmed – (address			and responses	76
	\$5F, \$AF to \$FF) bit allocation	31	Tab. 127.	Programming mode via PSI5 response	
Tab. 88.	Register block before and after			code definitions	76
	programming		Tab. 128.	Error response summary	76
Tab. 89.	Internal OTP user-programmed	32	Tab. 129.	External component recommendations	77
Tab. 90.	User OTP only user-programmed		Tab. 130.	External component recommendations	78
Tab. 91.	Registers verified by the OTP CRC	32	Tab. 131.	SOT1573-2(SC) hole dimensions	80
Tab. 92.	Registers verified by the ENDINIT		Tab. 132.	Revision history	86
	calculated CRC	32			
Figur	es				
Fig. 1.	Block diagram	2	Fig. 3.	Voltage regulation and monitoring	33
Fig. 2.	Pin configuration for HQFN16		J	5 5	
J		-			

NXP Semiconductors

FXPS71407BPS

Fig. 4.	VBUF capacitor monitor timing, PSI5		Fig. 25.	Synchronization pulse detection circuit	59
	synchronous mode	34	Fig. 26.	Synchronization pulse detection timing	60
Fig. 5.	VBUF capacitor monitor timing, PSI5		Fig. 27.	Sync pulse characteristics	
	asynchronous mode	34	Fig. 28.	Manchester data bit encoding	61
Fig. 6.	BUS_I micro-cut response (PSI5)	35	Fig. 29.	Example Manchester encoded data	
Fig. 7.	User-controlled PABS common mode self-			transfer – psi5-x10x	61
	test flowchart	36	Fig. 30.	PSI5 sensor 10-bit initialization	64
Fig. 8.	ΣΔ converter block diagram	37	Fig. 31.	PSI5 initialization timing, synchronous	
Fig. 9.	Signal chain diagram	38		mode	64
Fig. 10.	Sinc filter response	39	Fig. 32.	PSI5 initialization timing, asynchronous	
Fig. 11.	400 Hz, 3-pole low-pass filter response	41		mode	
Fig. 12.	370 Hz, 2-pole low-pass filter response	42	Fig. 33.	Simultaneous sampling mode	68
Fig. 13.	800 Hz, 4-pole low-pass filter response	43	Fig. 34.	Synchronous sampling mode with minimum	
Fig. 14.	1000 Hz, 4-pole low-pass filter response	44		latency	69
Fig. 15.	P0 low-pass filter block diagram		Fig. 35.	PSI5 parallel or universal mode application	
Fig. 16.	0.16 Hz, 1-Pole P0 low-pass filter response	46		diagram	77
Fig. 17.	P0 and PABS range for Range B	47	Fig. 36.	PSI5 daisy chain mode application diagram	78
Fig. 18.	Output interpolation example	47	Fig. 37.	Package outline SOT1573-2 (SC)	79
Fig. 19.	Temperature sensor signal chain block		Fig. 38.	Package outline detail HQFN	
	diagram	49		(SOT1573-2(SC))	81
Fig. 20.	Common mode error detection signal chain		Fig. 39.	Package outline notes HQFN	
	block diagram	49		(SOT1573-2(SC))	82
Fig. 21.	Absolute pressure accuracy as a function		Fig. 40.	SOT1573-2(SC) PCB design guidelines -	
	of temperature	50		Solder mask opening pattern	83
Fig. 22.	Absolute pressure accuracy multiplier over		Fig. 41.	SOT1573-2(SC) PCB design guidelines - I/	
	life			O pads and solderable area	84
Fig. 23.	PSI5 satellite interface diagram		Fig. 42.	SOT1573-2(SC) PCB design guidelines -	
Fig. 24.	Synchronous communication overview	58		Solder paste stencil	85

Contents

1	General description	1	6.2.23	SNSDATA0_L, SNSDATA0_H - sensor	
2	Features			data #0 user-programmed (address \$62,	
3	Ordering information			\$63)	25
3.1	Ordering options		6.2.24	SNSDATA1_L, SNSDATA1_H – sensor	
4	Block diagram			data #1 user-programmed (address \$64,	
5	Pinning information			\$65)	25
5.1	Pinning		6.2.25	SNSDATA0 TIMEx – sensor data 0	
6	Functional description		0.2.20	timestamp (address \$66 to \$69, \$6A, \$6B)	26
6.1	User-accessible data array		6.2.26	P_MAX, P_MIN – minimum and maximum	
6.2	Register definitions		0.2.20	absolute pressure value user-programmed	
6.2.1	COUNT – rolling counter register (address	'		(address \$6C to \$6F)	26
0.2.1	\$00)	7	6.2.27	FRTx – free-running timer user-	20
6.2.2	DEVSTATx – device status user-		0.2.21	programmed (address \$78, \$79, \$7A to	
0.2.2	programmed (address \$01-\$04)	7		\$7D)	27
6.2.3	COMMREV – communication protocol	/	6.2.28	PNx – Part number user-programmed	∠1
0.2.3		11	0.2.20		27
604	revision register (address \$05)	. 1 1	6 2 20	(address \$C4, \$C5)	∠1
6.2.4	TEMPERATURE – temperature register	4.4	6.2.29	SNx – device serial number user-	0-
0.0.5	(\$0E)	. 11	0.0.00	programmed (address \$C6 to \$C9, \$CA)	21
6.2.5	DEVLOCK_WR – lock register writes	40	6.2.30	ASIC wafer ID user-programmed (address	00
0.0.0	register (address \$10)	. 12	0.0.04	\$CB to \$CD, \$D0, \$D1)	28
6.2.6	WRITE_OTP_EN – write OTP enable		6.2.31	USERDATA_0 to USERDATA_E – user	
	register (address \$11)	12		data user-programmed (address \$E0 to	
6.2.7	BUSSW_CTRL – bus switch control			\$E9, \$EA to \$EE)	29
	register (address \$12)	. 14	6.2.31.1	PSI5 initialization phase 2 data	
6.2.8	UF_REGION_x – UF region selection user-			transmissions of user data	29
	programmed (address \$14, \$15)	. 14	6.2.32	USERDATA_10 to USERDATA_1E – user	
6.2.9	COMMTYPE – communication type register			data user-programmed (address \$F0 to	
	(address \$16)	. 15		\$F9, \$FA to \$FE)	30
6.2.10	SOURCEID_x – source identification user-		6.2.33	CRC_UF2, CRC_F_A to CRC_F_F – lock	
	programmed (address \$1A, \$1B)	. 16		and CRC user-programmed (address \$5F,	
6.2.11	CHIPTIME – chip time and bit time register			\$AF to \$FF)	30
	(address \$23)	. 16	6.2.34	Reserved user-programmed	
6.2.12	PSI5_CFG – PSI5 configuration register		6.2.35	Invalid register addresses	
	(address \$25)	. 17	6.3	OTP and read/write register array CRC	
6.2.13	PDCM_RSPSTx_x – PSI5 start time user-			verification	32
	programmed (address \$26 to \$29)	. 18	6.3.1	NXP OTP user-programmed	
6.2.14	PDCM_CMD_B_x - PSI5 command	_	6.3.2	User OTP only user-programmed	
0.2.11	blocking time user-programmed (address		6.3.3	OTP modifiable user-programmed	
	\$38, \$39)	19	6.4	Voltage regulators	
6.2.15	WHO_AM_I – who am I register (address	. 10	6.4.1	VBUF regulator capacitor and capacitor	02
0.2.10	\$3E)	20	0.4.1	monitor	33
6.2.16	DSP_CFG_U1 – DSP user configuration #1	. 20	6.4.2	BUS I, VBUF, VREG, VREGA,	00
0.2.10	register (address \$40)	20	0.4.2	undervoltage monitor	3/
6.2.17	DSP CFG U3 – DSP user configuration #3	. 20	6.5	Internal oscillator	
0.2.17		04			
0.040	register (address \$42)	. 21	6.6	Pressure sensor signal path	
6.2.18	DSP_CFG_U4 – DSP user configuration #4	00	6.6.1	Transducer	
0.0.40	register (address \$43)	. 22	6.6.2	Self-test functions	
6.2.19	DSP_CFG_U5 – DSP user configuration #5		6.6.2.1	Startup PABS common mode verification	
0.0.00	register (address \$44)	. 22	6.6.2.2	Startup digital self-test verification	
6.2.20	P_CAL_ZERO_x – pressure calibration		6.6.2.3	Startup sense data fixed value verification	
	user-programmed (address \$4C, \$4D)	. 23	6.6.2.4	PSI5 automatic startup self-test procedure	
6.2.21	DSP_STAT – DSP-specific status register		6.6.3	ΣΔ converter	
	(address \$60)	. 24	6.6.4	Digital signal processor	37
6.2.22	DEVSTAT_COPY – device status copy		6.6.4.1	Decimation sinc filter	
	register (address \$61)	. 25	6.6.4.2	Signal trim and compensation	39
			6.6.4.3	Low-pass filter	

NXP Semiconductors

FXPS71407BPS

PSI5 compatible relative pressure sensor

6.6.4.4	P0 low-pass filter and gradient filter 44	ŀ
6.6.4.5	ΔP/P0 calculation46	6
6.6.4.6	Data interpolation47	7
6.6.4.7	Output scaling equations47	7
6.6.5	Temperature sensor49	
6.6.5.1	Temperature sensor signal chain49)
6.6.5.2	Temperature sensor output scaling	
	equations49	
6.6.6	Common mode error detection signal chain 49)
6.7	Pressure sensor accuracy (drift over	
	temperature and life)49)
7	Limiting values51	
8	Recommended operating conditions51	
9	Static characteristics52	2
10	Dynamic characteristics - PSI554	ŀ
11	Application information 57	7
11.1	Media compatibility - pressure sensors only 57	
11.2	PSI5 protocol57	
11.2.1	Communication interface overview57	7
11.2.2	Data transmission physical layer58	
11.2.2.1	Synchronization pulse58	3
11.2.3	Data transmission data link layer61	
11.2.3.1	Bit encoding61	
11.2.3.2	PSI5 data transmission61	
11.2.3.3	Error detection61	
11.2.3.4	PSI5 data field and data range values62	2
11.2.4	Initialization63	
11.2.4.1	PSI5 initialization phase 165	5
11.2.4.2	PSI5 initialization phase 265	
11.2.4.3	Internal self-test67	
11.2.4.4	Initialization phase 367	
11.2.5	Normal mode68	
11.2.5.1	Asynchronous mode68	
11.2.5.2	Simultaneous sampling mode68	3
11.2.5.3	Synchronous sampling mode with minimum	
	latency69)
11.2.6	Daisy chain mode69)
11.2.7	Error handling71	
11.2.7.1	Daisy chain error handling71	
11.2.7.2	Initialization phase 2 error handling71	
11.2.7.3	Initialization phase 3 error handling72	2
11.2.7.4	Normal mode error handling72	2
11.2.8	PSI5 diagnostic and programming mode73	3
11.2.8.1	PSI5 programming mode entry73	3
11.2.8.2	PSI5 programming mode – data link layer73	3
11.2.8.3	PSI5 programming mode command and	
	response summary76	ì
11.2.8.4	Programming mode via PSI5 error	
	response summary76	j
11.2.9	PSI5 OTP programming procedure	;
11.3	PSI5 parallel or universal mode77	
11.4	PSI5 daisy chain mode78	
12	Package information 79	
12.1	Footprint82	
13	Soldering 83	
14	Mounting recommendations86	

References	86
	86
	90

15

16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.