

Application Note: JN-AN-1166
Smart Lamp Drivers

This Application Note provides and describes a set of NXP software drivers for use
with ‘smart lamps’. These software drivers are intended to be used in applications
that run on NXP’s range of JN51xx wireless microcontrollers, allowing a JN51xx
application to interact with the hardware driver for a lamp. The lamp can then be
incorporated in a wireless network and remotely controlled via radio links. A simple
example application is also provided, the Smart Lamp Driver Test Tool, which allows
lamps to be controlled from a wireless remote control unit (but without requiring them
to join a wireless network).

1 Overview
This Application Note is concerned with a ‘smart lamp’ which can be controlled via a radio
link from a wireless network device, such as a remote control unit or an IP gateway/router (it
may also be controlled from a pre-existing wired switch). This is illustrated in Figure 1 below.

Figure 1: Smart Lamp Overview

The smart lamp contains an NXP JN51xx wireless microcontroller to handle control
commands received over the radio. This device is connected to a lamp driver IC which
controls the Solid State Lamp (SSL).

This Application Note provides software drivers that can be used by an application on the
JN51xx device to interact with the lamp driver IC. More details of the hardware and software
architectures are provided in Section 4.

JN-AN-1166 (v1.2) 15-Jun-2015 © NXP Laboratories UK 2015 1

 Smart Lamp Drivers

2 Package Contents
This Application Note package includes the following software components:

• Software drivers (supplied as the shared header file DriverBulb.h and individual C
source files) for the supported lamp hardware drivers (ICs):

Hardware Driver Features Comment
DriverBulb_DR1175 - Supports Mono, CCTW and RGB on the DR1174

with DR1175 Lighting/Sensor Expansion Board
DriverBulb_DR1190 Asynchronous Supports SSL2108 LED Driver
DriverBulb_DR1192 Synchronous Supports SSL2108 LED Driver
DriverBulb_DR1221 Uses DR1192 with two

PWM channels
Supports CCTW. Colour Temperature PWM is a
percentage of the Level PWM period

DriverBulb_DR1223 RGBW
DriverBulb_DR1221_DIMIC Asynchronous Supports SSL52xx LED Driver

• Smart Lamp Driver Test Tool (provided as two applications – see Section 5.1).

The software drivers provide C functions that can be used in an application designed to run
on an NXP JN51xx microcontroller. The drivers are used in the following Application Notes:

Application Note Description
JN-AN-1171 ZigBee Light Link Solution Application Note
JN-AN-1189 ZigBee Home Automation Demonstration

Application Note
JN-AN-1162 JenNet-IP Smart Home Application Note

The principles of the lamp drivers are described in Section 4 and use of the Smart Lamp
Driver Test Tool is described in Section 5.

3 Abbreviations and Terminology
The following abbreviations and terms are used in this Application Note:

CCTW Colour Changeable Tunable White (white bulb with temperature control)

SSL Solid State Light (or LED)

SSB Small Signal Board (contains the JN51xx device)

LSB Large Signal Board (contains the power electronics)

LUT Look-Up Table

PWM Pulse Width Modulation

VBUS High-voltage supply of the SSL driver IC after rectification and buffering

VDD Low-voltage supply of the SSL driver IC

VADC Threshold level for the ADC for enabling/disabling the lamp in dimmer-
compatible solutions

Level Brightness as received/calculated from brightness control commands, before
any quadratic correction

2 © NXP Laboratories UK 2015 JN-AN-1166 (v1.2) 15-Jun-2015

Smart Lamp Drivers

4 Smart Lamp Drivers
A smart lamp contains two distinct circuit boards:

• Large Signal Board (LSB): This board directly controls the AC supply that powers the
lamp. It contains the hardware driver IC for the particular lamp. The software provided
with this Application Note can be used to interact with the following NXP lamp driver
ICs: SSL2108, UBA2027, UBA3070 (see Section 1).

• Small Signal Board (SSB): This board employs only DC signals and contains the
circuitry for the wireless operation (control) of the lamp. As such, the JN51xx wireless
microcontroller is located on this board.

Thus, the JN51xx device on the SSB must interface to the lamp driver IC on the LSB in order
to control the operation of the lamp (according to over-air commands received by the JN51xx
device). The application on the JN51xx device incorporates the appropriate software driver
in order to interact with the lamp driver IC. This is illustrated in Figure 2 below.

Small Signal Board Large Signal Board

JN51xx
Lamp
 Driver

IC

To SSL
or CFL

Application Lamp Driver Software

Wireless
Protocol

Stack

JN51xx Integrated Peripherals API

To LSB

From
antenna

Figure 2: Hardware and Software Architecture

The purpose of the software driver is to provide the application with a standard interface to
the lamp driver IC. Each of the supplied software drivers employs the same set of C
functions for driver operations (and uses functions of the JN51xx Integrated Peripherals API
to control the hardware interface between the JN51xx device and the lamp driver IC). The
main operations of a software driver are on/off and converting the desired light level to a
PWM duty-cycle. In addition, it provides a look-up table for brightness correction, needed to
compensate for non-linearities in the lamp characteristics.

The sub-sections below provide more detailed driver information to help you to integrate one
of the supplied software drivers into your wireless lamp application for a JN51xx device.

JN-AN-1166 (v1.2) 15-Jun-2015 © NXP Laboratories UK 2015 3

 Smart Lamp Drivers

4.1 Control Operations
This section describes the main control operations of a lamp software driver. These
operations fall into the following two areas:

• On/Off control – see Section 4.1.1

• Brightness control – see Section 4.1.2

4.1.1 On/Off Control
The on/off control is implemented using a signal named ON. Its basic purpose is to enable
the VCC supply for the lamp driver IC on the LSB. The VCC supply is delivered to the IC
from the SSB and is typically in the range 14-18V.

 Note 1: The VCC supply powers the logic of the lamp driver IC but does
not provide the power for the lamp. In standby mode, the VCC supply is
disabled in order to save energy.

 Note 2: The ON signal control is not used by all lamp drivers – it is used
by all CFL drivers but by only some SSL drivers.

When the ON signal is being used, the lamp switches on when both:

• The ON signal has been asserted

• The PWM duty cycle has been set above PWM_MIN for the LED driver

When the ON signal is not being used, the on/off control of the lamp is performed solely via
the PWM signal, as described in Section 4.1.1.4.

The sub-sections below describe different aspects of on/off control that may need to be
taken into account when using one of the lamp drivers.

4.1.1.1 Power-up and Reset
Once mains power has been applied to a smart lamp, the lamp will boot. After booting, the
application in the lamp should return the lamp to the ‘on ‘ or ‘off’ state that it was in before it
was last powered down – this information will come from saved context data. The way that
the software drivers handle this is described below.

During booting, the JN51xx device will start in the RESET state in which it keeps all its DIOs
in soft pull-up - this means that there is a 50kΩ resistor between VCC and each DIO pin. As
a result, the ON signal will be pulled high and VCC will be enabled, and the lamp will be
immediately put in the ‘on’ state.

After booting, the application must determine from context data whether to return the lamp to
the on or off state. Some time will elapse between the moment that the mains power is
applied (starting the power-up) and the moment that the application determines the required
state of the lamp.

4 © NXP Laboratories UK 2015 JN-AN-1166 (v1.2) 15-Jun-2015

Smart Lamp Drivers

This provisional ‘on’ state has the following effects:

• When the final lamp state is to be ‘on’, the switch-on time is minimised since the lamp
has already been put in the ‘on’ state

• When the final light state is to be ‘off’, an initial flash of light may occur before the lamp
is put in the ‘off’ state (however, power-up without the intention to switch to the ‘on’
state is rare)

4.1.1.2 VBUS Sensing
In a dimmer-compatible solution, the brightness level of the lamp is determined by the VBUS
supply voltage of the lamp driver IC. For low dimmer settings, this voltage may be too low to
maintain a stable light output from the lamp. The ADC on the JN51xx device is used to
periodically sample this voltage for monitoring purposes. In order to prevent a flickering light
output, the ADC output is compared with two voltage thresholds (Vth_on and Vth_off) and,
consequently, the ON signal is set as follows:

• If ON is high and the ADC output falls below Vth_off then ON is set to low

• If ON is low and the ADC output rises above Vth_on then ON is set to high

The ADC sampling rate should be between 2 and 4 times per second (more frequent
sampling brings no benefit).

During power-up (as described in Section 4.1.1.1), in order to prevent an initial flash of light
when the final lamp state is to be on and to give the VBUS sensing circuit time to stabilise,
the ADC sampling must start 2 seconds after power-up.

In products that are not dimmer-compatible, the ADC performs a different function.

4.1.1.3 Bleeder Control
In order to achieve a stable light output when used in with dimmable lamp, the SSL driver
may need to always draw a minimum of current throughout a 50/60Hz mains cycle. This is in
addition to the need to detect that the VBUS voltage is high enough, as described in Section
4.1.1.2.

4.1.1.4 Switch-off
For a switch-off initiated by a remote command, the ON signal should be pulled LOW and
PWM duty-cycle must be set to its minimum value (respecting the polarity). When present in
the design, the BLEEDER signal must be de-asserted.

For a switch-off due to a mains interruption, nothing useful can be done because the driver
IC will stop sooner than the software can take any action (the light will switch off quickly).

4.1.2 Brightness Control
The sub-sections below describe two aspects of brightness control that may need to be
taken into account when using one of the lamp drivers.

4.1.2.1 PWM Substitute for On/Off Control
As mentioned earlier, no explicit ON signal is used in some lamp drivers. In these cases, the
PWM signal replaces the ON signal. At the same time, the PWM signal determines the
brightness level. The lamp is switched off by setting the minimum brightness (keep PWM low
for positive polarity; keep PWM high for negative logic).

JN-AN-1166 (v1.2) 15-Jun-2015 © NXP Laboratories UK 2015 5

 Smart Lamp Drivers

4.1.2.2 Filtered PWM Brightness Control
Some drivers require a DC control voltage to set the brightness level. In this case, the PWM
signal from the JN51xx DIO is first low-pass filtered, typically using a roll-off frequency in the
range 4-10Hz. The polarity for all DC-controlled drivers is positive.

4.1.3 Mains Synchronization
The DR1192 and DR1221 (not DIMIC) drivers employ a mains synchronisation scheme. A
potential divider provides a control voltage (half-wave rectified sine) on the comparator’s
positive input. When the voltage falls below Vref, an interrupt is generated. The timing
difference between successive interrupts is measured by a hardware counter and is used to
calculate the value of the PWM timer period. In effect, a frequency-multiplier PLL is
implemented whereby the PWM frequency is eight times the mains frequency.

SYSCON ISR

 SYNC CLOCK

Vref

20 ms

SYSCON ISR

PWM DRIVE

PWM TIMER
COUNT

0 15

0

15

 SYNC TIMER
COUNT

15 15 15 15

Disable Interrupts Enable Interrupts

Dynamically Generate
this events timing

Figure 3: Synchronisation Technique

6 © NXP Laboratories UK 2015 JN-AN-1166 (v1.2) 15-Jun-2015

Smart Lamp Drivers

Figure 4: Synchronisation Performance

4.1.4 Anti-Flicker
The supply load on the JN51xx device is variable as the device changes between Receive
and Transmit (i.e. rebroadcasting). In certain SSB/LSB system configurations, these current
drops cause flicker. To compensate, four resistors are driven from outputs which make the
load constant. The following two illustrations show the current profile before and after the
implementation of the anti-flicker function.

Figure 5: Current Profile without Anti-Flicker (Yellow Trace)

JN-AN-1166 (v1.2) 15-Jun-2015 © NXP Laboratories UK 2015 7

 Smart Lamp Drivers

Figure 6: Current Profile with Anti-Flicker

The anti-flicker system runs the bulb in radio high-power mode so that the Tx/Rx state is
available on DIO2 and DIO3. These pins are configured to generate interrupts, allowing a
‘Software NOR’ logic function to be realised. The above oscilloscope trace illustrates this;
the red trace is high only when both the purple and green traces are low. The radio is off
during this period, resulting in a current drop. However, by driving 3mA on each of four DIOs,
the drop is almost cancelled out, thereby eliminating rebroadcast flicker.

4.1.5 Level Correction
Some drivers contain a non-linear conversion function. This is to compensate for the non-
linear nature of the eye and the LEDs. In the DR1192 and DIMIC drivers, this can be ignored
by defining LINEAR_MODE=TRUE. The DIMIC device can support the correction curve in
hardware and so the software correction may not be required.

8 © NXP Laboratories UK 2015 JN-AN-1166 (v1.2) 15-Jun-2015

Smart Lamp Drivers

4.2 Driver Software Functions
The following functions are available in all the lamp software drivers and can be used by the
JN51xx application to interface to the lamp driver IC:

• DriverBulb_vInit()

• DriverBulb_vOn()

• DriverBulb_vOff()

• DriverBulb_vSetLevel()

• DriverBulb_bReady()

• DriverBulb_bOn()

• DriverBulb_i16Analogue()

• DriverBulb_vTick()

• DriverBulb_bFailed()
The above functions are provided in the shared header file DriverBulb.h, which must be
included in the JN51xx application. The functions are described in the sub-sections below
and their relationship to the hardware interface is illustrated in Figure 7.

DriverBulb_vInit

DriverBulb_bReady

DriverBulb_vSetLevel

DriverBulb_vOn

DriverBulb_vOff

DriverBulb_bOn

DriverBulb_vTick

DriverBulb_i16Analogue

DriverBulb_bFailed

A
P

P
LI

C
A

TI
O

N
 IN

TE
R

FA
C

E

Look-up
Table

Duty Cycle
Mapper

Mains
Sync

VBUS
Monitor

Driver Hardware
Initialisation

Sequencer

PWM

SYNC

Latch
ON

Anti-
Flicker

DIMMER
BLEED

ANTI
FLICKER

Driver Function Blocks

Delay/Direct
Overdrive

In
te

gr
at

ed
 P

er
ip

he
ra

ls
 A

P
I

R
eg

is
te

r
A

cc
es

s

PWM_Sync

Figure 7: Software and Hardware Interfaces

The above diagram shows all possible driver components. Dependent on the particular
driver, some or all of the components are used to control the lamp. For instance, the
synchronous SSL driver does not use VBUS monitoring but does use the ‘mains sync’
functionality.

JN-AN-1166 (v1.2) 15-Jun-2015 © NXP Laboratories UK 2015 9

 Smart Lamp Drivers

4.2.1 DriverBulb_vInit

void DriverBulb_vInit(void);

This function initialises the DIOs used by the driver and switches on the lamp. The JN51xx
ADC is enabled and the function waits until the bus voltage is sufficiently high before
switching on the lamp.

4.2.2 DriverBulb_vOn

void DriverBulb_vOn(void);

This function switches on the lamp. The way that the function does this is dependent on the
LSB and driver implementation. It will do either of the following, depending on whether the
ON signal is used:

• If the ON signal is used, it will assert the DIO

• Otherwise, it will restore the previous PWM duty-cycle

4.2.3 DriverBulb_vOff

void DriverBulb_vOff(void);

This function switches off the lamp. The way that the function does this is dependent on the
LSB and driver implementation. It will do either of the following, depending on whether the
ON signal is used:

• If the ON signal is used, it will de-assert the DIO

• Otherwise, it will set the PWM duty-cycle to 0% (positive PWM logic) or 100%
(negative PWM logic), which is a special value representing the ‘off’ state

4.2.4 DriverBulb_vSetLevel

void DriverBulb_vSetLevel(uint8 u8Level);

This function sets the brightness level of the lamp to the specified value (u8Level) in the
range 0-255, which is translated into a PWM duty-cycle:

• Some drivers divide the specified value by two and then index into a quadratic look-up
table which remaps the value

• Other drivers have 128 linear steps between the #defines PWM_MIN and PWM_MAX,
and maps the specified level to one of these values

In each case, the new value is scaled to a duty-cycle percentage and written to a JN51xx
timer.

10 © NXP Laboratories UK 2015 JN-AN-1166 (v1.2) 15-Jun-2015

Smart Lamp Drivers

4.2.5 DriverBulb_bReady

bool_t DriverBulb_bReady(void);

This function determines whether the supply voltage is sufficiently high to allow the lamp to
be switched on. It can only be used with dimmer-compatible drivers (e.g. SSL2108) and can
be optionally used by the application to determine whether the lamp is ready to be switched
on.

The function returns TRUE if the bus voltage is greater than the pre-defined value or FALSE
otherwise. The non-dimmer-compatible drivers always return TRUE.

4.2.6 DriverBulb_bOn

bool_t DriverBulb_bOn(void);

This function determines whether the lamp is ‘on’. It can be optionally used by the
application to check whether an ‘on’ command was successful.

4.2.7 DriverBulb_i16Analogue

int16 DriverBulb_i16Analogue(uint8 u8Adc, uint16 u16AdcRead);

This function is used by the application to provide an ADC value to the driver and should be
called every 250ms. The supplied value represents the VBUS voltage level. The ADC value
(u16AdcRead) and the identifier of the relevant ADC input (u8Adc) must be specified. The
ADC input must be one of the following (depending on the driver):

• E_AHI_ADC_SRC_ADC_1 (ADC1 input)

• E_AHI_ADC_SRC_ADC_4 (ADC4 input)

The function returns the measured voltage in Volts.

4.2.8 DriverBulb_vTick

void DriverBulb_vTick(void);

This function is used by the application to provide a periodic 10ms tick to any driver that
requires a background task to be performed. The function must be called for all drivers but
may not be used.

JN-AN-1166 (v1.2) 15-Jun-2015 © NXP Laboratories UK 2015 11

 Smart Lamp Drivers

4.2.9 DriverBulb_bFailed

bool_t DriverBulb_bFailed(void);

This function is used by the application to determine if a lamp has failed. This functionality is
not currently implemented and the function always returns FALSE.

5 Smart Lamp Driver Test Tool
The Smart Lamp Driver Test Tool can be used to test the supplied software drivers by
controlling smart lamps from a wireless remote control unit without forming a wireless
network. The required hardware is as follows:

• From the NXP JN516x-EK001 Evaluation Kit, a Carrier Board (DR1174) fitted with an
LCD Expansion Board (DR1215) is used as the remote control unit. The Carrier Board
is also fitted with a JN5168 module.

• A smart lamp can be any lamp which incorporates a JN516x device, and which
requires one of the supplied NXP lamp drivers:.

The remote control unit is used to control all lamps within radio range of the unit. The user
can switch the lamps on/off as well as vary their brightness up/down. If testing only one
lamp, the temperature of the lamp is displayed on the LCD screen of the remote control unit.

5.1 Software Overview and Programming
The Smart Lamp Driver Test Tool is supplied as pre-built binary files, which must be
programmed into Flash memory using the BeyondStudio for NXP Installation and User
Guide (JN-UG-3098).

5.1.1 Remote Control Unit Software
The file Smart_Remote_JN5168_DEVKIT4.bin must be programmed into the Flash
memory of a JN5168 device on the Carrier Board of the remote control unit.

5.1.2 Lamp Software
There are several binary files for the lamps and the correct one must be used, according to
the relevant microcontroller and driver types. The lamp binary filenames are prefixed with
Smart_Lamp followed by the microcontroller type and then the driver type - for example:

Smart_Lamp_JN5168_DR1175.bin
The above binary file is built for the JN5168 microcontroller and for the DR1175 platform.

5.2 Using the Smart Lamp Driver Test Tool
To use the Smart Lamp Driver Test Tool:

1. First cycle the power to each lamp to restart the microcontroller. The lamp is now ready
to receive commands from the remote control unit.

2. Now power up the remote control unit (e.g. fit batteries to the Carrier Board).

Once the remote control unit is up and running, the LCD screen will display labels that
indicate the functionality of the four switches SW1-SW4 under the screen. This is illustrated
in the photograph below.

12 © NXP Laboratories UK 2015 JN-AN-1166 (v1.2) 15-Jun-2015

Smart Lamp Drivers

The four switches have the following functionality:

• SW1 switches on all lamps within radio range

• SW2 switches off all lamps within radio range

• SW3 increases the brightness of all lamps within radio range until the button is
released or the maximum brightness is achieved

• SW4 decreases the brightness of all lamps within radio range until the button is
released or the minimum brightness is achieved

The LCD screen also displays bulb (lamp) temperature, which is refreshed every 5 seconds.
If controlling multiple lamps, it is not possible to know to which lamp this temperature
corresponds. Each lamp being tested will report its temperature but only one temperature
will be displayed (and not identified).

Therefore, if controlling multiple lamps, you may wish to remove the temperature feature and
re-build the applications. To do this, comment out or delete the following line in the remote
control and lamp makefiles:

CFLAGS+=-DDEBUG_TCL

You can re-build the applications as described in Section 5.5.

JN-AN-1166 (v1.2) 15-Jun-2015 © NXP Laboratories UK 2015 13

 Smart Lamp Drivers

5.3 Development Resources and Installation
In order to develop/modify the software provided with this Application Note, build it and load
it into a JN516x device, you will need the JN516x software tools and libraries described in
this section. This developer’s software is available free-of-charge via the NXP Wireless
Connectivity TechZone and is provided in two installers.

BeyondStudio for NXP (JN-SW-4141)
This installer contains the toolchain that you will use in creating an application, including:

• ‘Beyond Studio for NXP’ IDE (Integrated Development Environment)

• Integrated JN51xx compiler

• Integrated JN516x Flash Programmer

JN516x Software Developer’s Kit (JN-SW-41xx)
This installer includes the following software and APIs:

• Stack software for relevant wireless network protocol (e.g. ZigBee PRO)

• Application Programming Interfaces (APIs) for relevant wireless network protocol

• JN516x Integrated Peripherals API

This application can be used with any of the NXP JN516x SDKs with a part number of the
form JN-SW-41xx. The makefiles in the project relate to the JN516x ZigBee Home
Automation/Light Link SDK (JN-SW-4168).

For full details of the toolchain and installation instructions for the toolchain and SDK, refer to
the BeyondStudio for NXP Installation and User Guide (JN-UG-3098).

5.4 Compatibility
The software provided with this Application Note is intended to be used with the following
evaluation kits and SDK (Software Developer’s Kit) versions:

Product Type Part Number Version
Evaluation Kits JN516x-EK001 -
SDK Libraries JN-SW-4168

or
JN-SW-4163

v1270

v1168
SDK Toolchain JN-SW-4141 v1217

14 © NXP Laboratories UK 2015 JN-AN-1166 (v1.2) 15-Jun-2015

Smart Lamp Drivers

5.5 Building and Loading the Application
A source (.c) file is also supplied corresponding to each of the application binaries for the
Smart Lamp Driver Test Tool. This allows the applications to be modified and re-built using
the ‘BeyondStudio for NXP’ IDE or the supplied makefiles.

• The remote control unit application can be built for the JN5168 device only

• The lamp application is built for the JN5168 device by default

In order to build the supplied software, the application’s folder must be placed in the
workspace folder of the SDK installation:

C:\NXP\bstudio_nxp\workspace
The workspace folder is automatically created when you first start BeyondStudio.

The applications can be built from the command line using the makefiles or from
BeyondStudio for NXP – makefiles and Eclipse-based project files are supplied.

• To build using makefiles, refer to Section 5.5.1.

• To build using BeyondStudio for NXP, refer to Section 5.5.2.

5.5.1 Using Makefiles
This section describes how to use the supplied makefiles to build the applications. Each
application has its own Build directory, which contains the makefiles for the application.

To build an application and load it into a JN516x board, follow the instructions below:

1. Ensure that the project directory is located in

<BeyondStudio for NXP installation root>\workspace

2. Start an MSYS shell by following the Windows Start menu path:
All Programs > NXP > MSYS Shell

3. Navigate to the Build directory for the application to be built and follow the instructions
below for your chip type:

 For JN5168:
 At the command prompt, enter:
 make clean all

 Note that for the JN5168, you can alternatively enter the above command from the top
level of the project directory, which will build the binaries for all applications.

 For JN5164:
 At the command prompt, enter:
 make JENNIC_CHIP=JN5164 clean all

 For JN5161:
 At the command prompt, enter:
 make JENNIC_CHIP=JN5161 clean all

 In all the above cases, the binary file will be created in the Build directory, the resulting
filename indicating the chip type (e.g. 5168) for which the application was built.

4. Load the resulting binary file into the board. You can do this from the command line
using the JN51xx Production Flash Programmer (described in the JN51xx Production
Flash Programmer User Guide (JN-UG-3099)).

JN-AN-1166 (v1.2) 15-Jun-2015 © NXP Laboratories UK 2015 15

 Smart Lamp Drivers

5.5.2 Using BeyondStudio for NXP
This section describes how to use BeyondStudio for NXP to build the demonstration
application.

To build the application and load it into JN516x boards, follow the instructions below:

1. Ensure that the project directory is located in

<BeyondStudio for NXP installation root>\workspace

2. Start the BeyondStudio for NXP and import the relevant project as follows:

a) In BeyondStudio, follow the menu path File>Import to display the Import dialogue
box.

b) In the dialogue box, expand General, select Existing Projects into Workspace
and click Next.

c) Enable Select root directory and browse to the workspace directory.

d) In the Projects box, select the project to be imported and click Finish.

3. Build an application. To do this, ensure that the project is highlighted in the left panel of

BeyondStudio and use the drop-down list associated with the hammer icon in the
toolbar to select the relevant build configuration – once selected, the application will
automatically build. Repeat this to build the other applications.

 The binary files will be created in the relevant Build directories for the applications.

4. Load the resulting binary files into the board. You can do this using the integrated Flash
programmer, as described in the BeyondStudio for NXP Installation and User Guide
(JN-UG-3098).

16 © NXP Laboratories UK 2015 JN-AN-1166 (v1.2) 15-Jun-2015

Smart Lamp Drivers

Revision History
Version Notes

1.0 First release
1.1 Title of Application Note changed and lamp driver information added, including synchronisation and

anti-flicker features
1.2 Updated for JN516x SDKs based on ‘BeyondStudio for NXP’ and latest software organisation

Important Notice
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any
products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

JN-AN-1166 (v1.2) 15-Jun-2015 © NXP Laboratories UK 2015 17

http://www.nxp.com/

	1 Overview
	2 Package Contents
	3 Abbreviations and Terminology
	4 Smart Lamp Drivers
	4.1 Control Operations
	4.1.1 On/Off Control
	4.1.1.1 Power-up and Reset
	4.1.1.2 VBUS Sensing
	4.1.1.3 Bleeder Control
	4.1.1.4 Switch-off

	4.1.2 Brightness Control
	4.1.2.1 PWM Substitute for On/Off Control
	4.1.2.2 Filtered PWM Brightness Control

	4.1.3 Mains Synchronization
	4.1.4 Anti-Flicker
	4.1.5 Level Correction

	4.2 Driver Software Functions
	4.2.1 DriverBulb_vInit
	4.2.2 DriverBulb_vOn
	4.2.3 DriverBulb_vOff
	4.2.4 DriverBulb_vSetLevel
	4.2.5 DriverBulb_bReady
	4.2.6 DriverBulb_bOn
	4.2.7 DriverBulb_i16Analogue
	4.2.8 DriverBulb_vTick
	4.2.9 DriverBulb_bFailed

	5 Smart Lamp Driver Test Tool
	5.1 Software Overview and Programming
	5.1.1 Remote Control Unit Software
	5.1.2 Lamp Software

	5.2 Using the Smart Lamp Driver Test Tool
	5.3 Development Resources and Installation
	5.4 Compatibility
	5.5 Building and Loading the Application
	5.5.1 Using Makefiles
	5.5.2 Using BeyondStudio for NXP

