
Multi Service Access Line Card

Application Note

Preliminary Draft

Rev 1.2

HCLMSP-AN/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

RXZB30
forward100

RXZB30
bottomline

MSA Application Note

Page 2 / 146

Table of Contents

1 Modification History ...4
2 Overview..4
3 Definitions, Acronyms and Abbreviations..6
4 Related Documents ...7
5 Application Mapping ..8
6 Network processor architecture...9

6.1 Data Paths ..11
7 Network processor components ..16

7.1 XP ...17
7.2 OAM Processing...17
7.3 Statistics Management ...19
7.4 TDM RX (CP 0 and CP 4)...21
7.5 IMA (CP 1 and CP 5) ..28
7.6 TDM Tx (CP 2 and CP 6)..32
7.7 TDM Recirculation (CP3)..35
7.8 IPv4 (CP 7) ...39
7.9 Segmentation (CP 8) ..45
7.10 Reassembly (CP 9)...50
7.11 IP QoS Classifier (CP 10) ...56
7.12 FR processing – switching (CP11) ...63
7.13 MPLS (CP12)..67
7.14 MLPPP (CP 13) ..74
7.15 AAL1-Tx (CP 14) ..82
7.16 AAL-1 RX (CP 15) ..85
7.17 Fabric Port ..86
7.18 Table Lookup Unit...88
7.19 Buffer Management Unit...95
7.20 Queue Management Unit ...96
7.21 Q-3 configurations for CPs, XP and FP..97
7.22 ATM TM ..99

8 HOST PROCESSOR ARCHITECTURE ...103
9 HOST PACKET I/O..104

9.1 Resources...104
9.2 Packet Reception..104
9.3 Packet Transmission ..105

10 CONSOLE COMMAND SHELL COMMANDS ..105
10.1 Application Control..105
10.2 Table Maintenance and Display ...106
10.3 Link Configuration and Status ..106
10.4 Channel configuration and Status ..107
10.5 IMA Configuration and Status...107
10.6 PPP Configuration and Status..107
10.7 FR Configuration and Status ..107
10.8 Statistics ...108

11 HOST PROCESSOR TO NETWORK PROCESSOR INTERFACE108
11.1 PPP...108
11.2 ML-PPP ..109
11.3 FR ...110
11.4 IMA..110
11.5 ATM ..111

12 IMPLEMENTATION DETAILS...111
12.1 ML-PPP ..111

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 3 / 146

12.2 Soft Queues..111
13 HOST API REFERENCE...114

13.1 Table API ..114
13.2 Link, Channel, and IMA API ...128
13.3 PPP API..131
13.4 ATM API ...135
13.5 FR API ..135
13.6 Control API ...136
13.7 NP Port API ..138
13.8 I/O API ..140
13.9 SEGMENTATION...141
13.10 REASSEMBLY ...141
13.11 MPLS ..142
13.12 TDM RECIRCULATION ...143
13.13 FR SWITCHING ...143

14 Appendix C – Optimizations done in the application ...145

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 4 / 146

1 Modification History
Rev Date Author Department Changes
1.0 06-Feb-03 HCL Technologies Networking Draft version.
1.1 14-Feb-03 HCL Technologies Networking Additional information is

added on Q-3,
Performance
calculations,
IMEM/DMEM estimates,
ATM TM, IP QoS, Host
APIs

1.2 14-Mar-03 J.Bednarek Motorola,
C-Port

Changes for draft for
SNDF CD

2 Overview
This document describers the design of a Multi Service Access (MSA) line card. The
intended audiences of this document are system architects, hardware designers,
software designers, testers and programmers of the line card based on the C-Port
network processor family.

The reader of this document is expected to have a fair understanding of the C-3e NP
architecture and the associated co-processor such as Q-3 (Traffic Management Co-
processor) with the basic understanding of C-Port Family of TDM Adapters (or Twister)
(Mt-21) used in the design of the MSA line card.

MSA line card application provides multiple services on different ports. It can be
connected to two Twister Mt-21 chips. The twister Mt-21 chip can have 32 T1/E1
interfaces supporting upto 1K channels.(note, Mt-21 can support even higher channels,
ie 2048, but in this example, we are assuming 1000 channels).

Feature Overview and Standards Support

This application supports the following features:

• 64 T1/E1 interfaces supporting 2K channels
• PPP / FR header processing and reassembly
• MLPPP segmentation and reassembly
• AAL1/5 segmentation and reassembly
• ATM Cell switching
• FR switching
• IPv4 Unicast Routing on all interfaces (PPP/ATM/FR)
• Multi-Protocol Label Switching (MPLS) on all interfaces
• Ingress / Egress packet processing for MPLS
• IP IntServ and DiffServ
• ATM Traffic Management 4.1
• MPLS QoS
• IMA

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 5 / 146

MSA line card is intended to work in a stack of MSA cards connected on the switching
fabric for communication with the other MSA cards as well as line cards that terminate
ATMs. The host module manages and maintains the statistics for the entire system. The
communication of the host with the line cards is through the PCI interface. Figure 1 helps
in understanding the intended use of the MSA line card.

PCI bus

…
…

MSA Line
card

…
…

Host
Processor card

T1 / E1
interfaces

ATM
interfaces

Switching
Fabric

ATM
over

SONET

Figure 1: MSA card within the access platform

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 6 / 146

3 Definitions, Acronyms and Abbreviations

AAL ATM Adaptation Layer
AAL-1 ATM Adaptation Layer 1
ABR Available Bit Rate
AF Assured Forwarding
ARP Address Resolution Protocol
ATM Asynchronous Transfer Mode
ATM TM ATM Traffic Management
BE Best effort
BOM Beginning of Message.
CBR Constant Bit Rate
CID Channel ID
CIDR Classless Inter Domain Routing
CPI Common Part Indicator.
CPRC Channel Processor RISC core.
CRC Cyclic Redundancy Check.
DLCI Data Link Connection Identifier
DWRR Dynamic Weighted Round Robin
EF Expedited Forwarding
EOM End of Message.
FEC Forwarding Equivalence class
FR Frame Relay
HDLC High Level Data Link Control
HEC Header Error Control.
HTK Hash Trie Key.
ICMP Internet Control Message Protocol
ICP IMA Control Protocol.
IP Internet Protocol
LCP Link Control Protocol
LLC Logical Link Control
LMI Local Management Interface
LPM Longest Prefix Match.
LSP Label switched path
MIB Management Information Block
ML/PPP Multi-Link PPP
MPLS Multi-Protocol Label Switching
MTU Maximum transmission Unit
NCP Network Control Protocol
NLPID Network Layer Protocol ID
OAM Operation, Administration and Maintenance.
PDU Protocol Data Unit.
PHB Per Hop Behavior
PPP Point to Point Protocol
QoS Quality Of Service

Abbreviation Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 7 / 146

RARP Reverse Address Resolution Protocol

RED Random Early Discard
RM Resource Management.
RR Round Robin
SDU Service Data Unit.
SNAP Subnetwork Access Protocol.
TCP Transport Control Protocol
TDM Time Division Multiplexing
TLU Table Lookup Unit.
TMC Traffic Management Co-Processor
TOS Type of Service
TTL Time To Live
UUI User-to-User Interface.
VC ATM Virtual Connection
VOP Virtual Output Port
VP ATM Virtual Path
VPCI Virtual Path Identifier/Virtual Channel Identifier
WFQ Weighted Fair queueing

4 Related Documents
This section lists down the various documents used as reference while developing this
application notes.
• MSA Line card software requirement specifications from C-Port.
• Guide to C-Ware WNI Applications, CST2.2
• ATM Cell Switch Application Guide, CST 2.1.1
• RFC 791, Internet Protocol
• RFC 1332, The PPP Internet Protocol Control Protocol (IPCP)
• RFC 1471, The Definitions of Managed Objects for the Link Control Protocol of the

Point-to-Point Protocol
• RFC 1473, The Definitions of Managed Objects for the IP Network Control Protocol

of the Point-to-Point Protocol
• RFC 1661, The Point to Point Protocol (PPP)
• RFC 1812, Requirements for IP Version 4 Routers
• RFC 1990, The PPP Multilink Protocol (MP)
• RFC 2427, Multiprotocol Interconnect over Frame Relay
• RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4
• RFC 2475, An Architecture for Differentiated Services
• RFC 2597, Assured Forwarding PHB Group

Abbreviation Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 8 / 146

• RFC 2598, An Expedited Forwarding PHB
• RFC 2702, Requirements for Traffic Engineering Over MPLS
• RFC 2684, Multi Protocol Encapsulation over ATM Adaptation Layer 5
• RFC 2697, A Single Rate Three Color Marker
• ITU I.361, B-ISDN ATM Layer Specification
• ITU I.363.1, B-ISDN ATM Adaptation Layer Specification: Type 1 AAL
• ITU I.363.5, B-ISDN ATM Adaptation Layer Specification: Type 5 AAL
• ITU I.610 B-ISDN Operation and Maintenance Principles and Functions
• ATM Forum, Inverse Multiplexing for ATM (IMA) Specification Version 1.1
• Frame Relay to ATM to 10/100 Ethernet Switch Router Application Guide, CST2.1
• C-ware Q-5 TMC API User guide Rev 00
• DiffDocQ-512003.doc - Functionality Comparison Between “Old” Q-5 TMC Design

and Projected Q-5 TMC FPGA
• RFC3034 –Use of Label Switching on Frame Relay Networks specification
• RFC 2702 – Requirements for traffic engineering over MPLS
• RFC3270 – Multi-protocol label switching support of differentiated services
• RFC 3031 – Multi-protocol label switching architecture
• RFC 3032 – MPLS label stack encoding
• Draft-ietf-mpls-ttl-04.txt - Time to Live Processing in MPLS networks.
• RFC 3035 – MPLS using LDP and ATM VC switching

5 Application Mapping
This application is comprised of many software components, each of which is divided
into smaller components. The functional partitioning of the software is depicted in figure
2 with the clustering and re-circulation information. The partitioning is designed to handle
1024 channels per cluster. C-3e NP is chosen for implementing the MSA line card as the
processing power of the NP and the T1/E1 line interfaces match and also Q-3 is used for
managing the traffic management for IP, ATM and MPLS.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 9 / 146

MPLS

MLPPP

AAL1Tx

AAL1 Rx

CP Cluster 3

FP
XP

Initialization &
Host

Communication

ATM SEG

ATM RAS

IP Classifier

FR

CP Cluster 2

TDM Rx

IMA

TDM Tx

IP

CP Cluster 1

CP Cluster 0

TDM Rx

IMA

TDM Tx

PPP ReCirc

Host
PPP State Machine
Statistics
Mgmt Access

UL-2

Twister
Mt-21

Twister
Mt-21

32 T1/E1

32 T1/E1

M-2
(if required)

C-3e

Q-3 TMC
ATM TM
MPLS TM

QMU
Queues for
traffic mgmt

Byte Level Recirculation

Figure 2: MSA line card functional mapping on C-3e NP

6 Network processor architecture
The MSA application consists of many software components. One component executes
on the host and the other components execute on the various CPs within the C-3e. Each
of the NP software components provides a subset of the features of the application.
Mapping between software components and CPs was shown in the figure 2. The data
paths between these components can be conceptualized as a group of busses. In this
context, a bus is the combined use of queues and buffer memory to forward data
between two components. The queue number is analogous to the address on the bus.
Each of the buses implies a different buffer and descriptor format (for TDM, IP, MPLS,
and so on). The traffic originating from TDM channels will be HDLC or ATM or
Transparent Chunk based on the channel configuration. HDLC traffic will further be
identified as FR traffic or PPP traffic.

A buffer and a buffer descriptor can specify the interface to a component. Table below
lists each of the components and describes their interface. A component may have

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 10 / 146

multiple interfaces and therefore multiple entries in the table. Unless specified otherwise
in the table, the port field indicates the output port and the length field indicates the
number of bytes in the buffer. The various buffer formats are described in section 7.19
and the buffer descriptor formats are described in appropriate sections.

Component Buffer Format Descriptor
format

Comments

BT_ATM,
BT_MPLS_FR,
BT_MPLS_PPP,
BT_MPLS_ATM

ATM Only header field required

BT_MPLS MPLS
BT_HDLC N/A

TDM Rx

BT_TDM_TRANSPARENT Transparent
Chunk

BT_ATM ATM Only header field requiredTDM Tx
BT_HDLC N/A

IMA Tx BT_ATM ATM Port indicates outport which
maps to IMA group; only
header field required

BT_IMA_CP,
BT_IMA_FILLER

OAM Port indicates input portIMA Rx

BT_ATM ATM Port indicates input port
BT_HDLC,
BT_PPP,
BT_MLPPP

ML-PPP Port indicates input port;
reassembly will be
performed

ML PPP

BT_IPV4,
BT_CONTEXT_STATE,
BT_NCP_xxx

TDM Only mcClass field required;
segmentation will be
performed

BT_IPV4 N/A Port indicates input port; IP
forwarding will be performed

IP

BT_HDLC, BT_PPP N/A Port indicates input port;
PPP encapsulation will be
removed and IP forwarding
performed

BT_MPLS_FR,
BT_MPLS_PPP,
BT_MPLS_ATM

MPLSFR

BT_FR FR

MPLS BT_MPLS_PPP,
BT_MPLS_FR,
BT_MPLS_IPV4,
BT_MPLS_ATM

MPLS Buffer type identifies the
egress port interface type.

Segmentation BT_IPV4 Seg EgressQueue field is
required.

Reassembly BT_ATM ATM Port indicates input port;
AAL-5 reassembly will be
performed

IP QoS BT_IPV4 TDM

AAL-1 Rx BT_TDM_TRANSPRENT
BT_ATM

TDM
ATM

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 11 / 146

AAL-1 Tx BT_TDM_TRANSPRENT
BT_ATM

TDM
ATM

UL-2 BT_ATM ATM
BT_ATM ATM Port indicates the input port;

only header field required
Host

All others N/A Port indicates the input port

6.1 Data Paths
This section explains about various data paths originating from T1/E1 interfaces, flowing
through other components in the NP and going out through T1/E1 interfaces. Two
Twisters (Mt-21) are supported in this application.

6.1.1 Data Paths for FR frames
This section describes the conceptualized data flows for FR frame received in TDM RX.
The FR chunks will be reassembled as FR frame in TDM RX, recirculated in other
component CPs and finally transmitted as FR / PPP / AAL5 chunks via TDM Tx. The
detailed flow shown in figure 3 is described as follows.

• FR frame is received as HDLC chunks in TDM RX, gets reassembled and
identified as FR frame based on the channel configuration. Then it will be
enqueued to FR queue for further FR processing.

• FR component performs the DLCI lookup. Based on lookup response, it will
enqueue the frame into IP queue or MPLS queue. For FR switching, it will modify
the FR header (with new DLCI value) and enqueue into appropriate TDM Tx
queue.

• IP component dequeues the FR frame from its queue, removes the FR header
and enqueues the IP packet into destination queue (TDM recirculation queue or
ATM Segmentation queue or MPLS queue or IP QoS queue determined by IP
lookup and port lookup result.

• MPLS removes the FR header (if it exists) from the frame, performs the label
processing and then enqueues the packet to destination queue (TDM
recirculation queue or ATM Segmentation queue or IP queue or Q-3 traffic queue
determined by MPLS lookup result.

• ATM segmentation component will segment the IP packet into AAL5 cells, inserts
the ATM header and enqueues these cells to appropriate TDM Tx queue or to Q-
3 traffic queue.

• TDM recirculation component encapsulates the packet into FR or PPP frame,
enqueues it to TDM Tx for final transmission over TDM channel.

• TDM Tx dequeues the HDLC frame(FR frame or PPP frame, No differentiation is
made between PPP and FR frame) or ATM cells from its queue. It transmits TDM
chunks of size 64 bytes. For ATM, each cell will fit into a TDM chunk. For FR or
PPP, it segments the frame into TDM chunks.

• If QoS treatment is needed, packets will be enqueued to Q-3 traffic queue from
IP QoS classifier or ATM Segmentation or MPLS components for applying
various QoS parameters. Q-3 TMC provides marking/dropping, policing and
traffic shaping for the packet based on configured traffic parameters. Q-3 TMC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 12 / 146

will enqueue the conformant packets into QMU queue. Non-conformant packets
will either be discarded or marked.

Figure 3. Data paths for FR frames

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 13 / 146

6.1.2 Data Paths for PPP frames
This section describes the data flow for PPP frames received in TDM RX. The PPP
chunks will be reassembled as PPP frame in TDM RX, recirculated in other component
CPs and finally transmitted as FR / PPP / AAL5 chunks via TDM Tx. The detailed flow
shown in figure 4 is described as follows.

• PPP frame is received as HDLC chunks in TDM RX, gets reassembled and
identified as PPP frame based on the channel configuration. Then it will be
enqueued to IP queue or MLPPP queue or MPLS queue component based on
PPP protocol field in frame.

• IP component dequeues the PPP frame from its queue, removes the PPP header
and enqueues the IP packet into destination queue (TDM recirc queue or ATM
Segmentation queue or MPLS queue or IP QoS queue determined by IP lookup
and port lookup result.

• MPLS removes the PPP header (if it exists) from frame, performs the label
processing and then enqueues the packet to destination queue (TDM recirc
queue or ATM Segmentation queue or IP queue or Q-3 traffic queue (if QoS is
needed)) determined by MPLS lookup result.

• MLPPP component dequeues from its queue, removes MLPPP encapsulation
from the frame, and reassembles MLPPP fragments and enqueues the
reassembled fragment to IP queue.

• ATM segmentation component will segment the IP packet into AAL5 cells, inserts
the ATM header and enqueues these cells to appropriate TDM Tx queue or to Q-
3 traffic queue.

• TDM recirculation component encapsulates the packet into FR or PPP frame,
enqueues it to TDM Tx for final transmission over TDM channel.

• TDM Tx dequeues the FR frame or PPP frame or AAL5 cells from its queue. It
transmits TDM chunks of size 64 bytes. For ATM, each cell will fit into a TDM
chunk. For FR or PPP, it segments the frame into TDM chunks.

If QoS treatment is needed, packets will be enqueued to Q-3 traffic queue from IP QoS
classifier or ATM Segmentation or MPLS components for applying various QoS
parameters. Q-3 TMC provides marking/dropping, policing and traffic shaping for the
packet based on configured traffic parameters. Q-3 TMC will en-queue the conformant
packets into QMU queue. Non-conformant packets will either be discarded or marked.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 14 / 146

Figure 4. Data paths for PPP frames

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 15 / 146

6.1.3 Flows for ATM cells
This section describes the data flow for ATM cells received in TDM RX. The ATM cells
will be recirculated in other component CPs and finally transmitted as FR / PPP / AAL5
chunks via TDM Tx. The detailed flow shown in figure 5 is described as follows.

• ATM cells are received as chunks in TDM RX. These will be enqueued to TDM
Tx queue (ATM switching) or FP queue.

• AAL5 cells are enqueued into reassembly queue by TDM RX that performs the
VC table lookup to send the new VPI/VCI values into the reassembly queue.

• ATM reassembly component will de-queue and reassembles the cells into AAL5
PDU. It will then be enqueued into IP queue or MPLS queue,

• IP component dequeues the reassembled AAL5 PDU from its queue, enqueues it
into destination queue (TDM recirc queue or ATM Segmentation queue or MPLS
queue or IP QoS queue (if QoS is needed)) determined by IP lookup and port
lookup result.

• MPLS performs the label processing and then enqueues the packet to
destination queue (TDM recirc queue or ATM Segmentation queue or IP queue
or Q-3 traffic queue (if QoS is needed)) determined by MPLS result entry.

• ATM segmentation component will segment the IP packet into AAL5 cells,
modifies the AAL5 header (with new VPI/VCI) and enqueues these cells to TDM
Tx queue or to Q-3 traffic queue (if QoS is needed).

• TDM recirc component encapsulates the packet into FR or PPP frame, enqueues
it to TDM Tx for final transmission over TDM channel.

• TDM Tx dequeues the FR frame or PPP frame or AAL5 cells from its queue. It
transmits TDM chunks of 64 bytes. For ATM, each cell will fit into a TDM chunk.
For FR or PPP, it segments the frame into TDM chunks.

• If QoS is needed, packets will be enqueued to Q-3 traffic queue from IP QoS
classifier or ATM Segmentation or MPLS components for applying various QoS
parameters. Q-3 TMC provides marking/dropping, policing and traffic shaping for
the packet based on configured traffic parameters. Q-3 TMC will en-queue the
conformant packets into QMU queue. Non-conformant packets will either be
discarded or marked.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 16 / 146

7 Network processor components
This section describes each of the features of the applications in detail and explains how
each component or resource within the NP is used to provide the applications’ features.
The Executive Processor RISC Core (XPRC) is a general-purpose processor that
provides management, control, and exception processing functions. The XP controls NP
boot up, configuration, and initialization of all system components.

Figure 5. Data paths for ATM Cells

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 17 / 146

The Channel Processors (CPs) are the components most closely associated with
processing data from a physical interface. There are 16 CPs organized as four clusters,
each of which contains four CPs. Each cluster performs several functions that aid in the
processing of data packets.

7.1 XP
The XP program is partitioned into distinct ‘initialization’ and ‘main’ executables. After
loading and running the initialization executable, the main executable is loaded and
overlayed on the initialization executable, reducing the IMEM used at run-time. This
partitioning scheme uses the available IMEM resource to its fullest.

7.1.1 Initialization Program
The initialization executable performs service initialization, configures system resources,
and loads the CPs. In particular, the initialization executable does the following:

• Allocates buffer pools.
• Allocates and configures queues.
• Configures the fabric port.
• Configures the PHY interfaces.
• Loads the CPs.
• Defers to the main XP executable program.

Arrays of parameter values are used to initialize the buffer pools and queues. The arrays
are made up of macros defined in the top-level configuration file (config.h).

7.1.2 Main Program
The main executable completes any necessary initialization and starts the CPs before
entering the main loop. In particular, the main executable does the following:

• Prints the application banner including version number
• Restores the offline table data. Offline table data is used to initialize the TLU

tables without host intervention for simulation purposes.
• Initializes the CRC correction table
• Starts the CPs and enables the fabric port.
• Starts some of the SDPs
• Initializes the OAM processing component.
• Initializes the host communication component
• Enters the main loop

The main loop within the XP performs processing for OAM handling described in section
“OAM processing” and host communication for updating statistics.

7.2 OAM Processing
OAM cells received by the TDM CPs are forwarded to the XP for processing. OAM
support in the application includes the following:

• Forward Performance Monitoring – Receive Monitoring

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 18 / 146

o Blocks of user cells on a limited number of VCCs (128) are monitored for
errors per flow. A BIP-16 is generated for all the cell payloads for each
block where the block size is configurable. The block size is defaulted to
128 cells.

o The receiver checks the parity on the received block data and compares
its results with the received BIP-16. The number of errors is determined
and written to a statistics counter for the indicated VC.

OAM processing uses the ATM VC table as described in section 7.18.4.

7.2.1 SDP
The TDM CPs support OAM performance monitoring. The SDP processors on the CPs
do the following:

7.2.1.1 RxSync
The RxSync processor performs the following OAM functions:

• Determines the CRC-10 for each cell received (regardless of whether the cell is
OAM or not) and forwards a pass-fail notification to the RxByte processor.

RxSync is not configurable through its control space.

7.2.1.2 RxByte
The RxByte processor performs the following OAM functions:

• Determines whether an F4/F5 OAM cell has been received and indicates this in
extract space.

• Writes cell payload overhead to extract space.
• Forwards CRC-10 pass/fail indication to the RC through extract space.
• Determines the BIP-16 value on each cell received and writes this value to

extract space.
• Determines whether a user cell has been received and writes this information to

extract space.

7.2.2 RC
The RC performs higher level processing of data packets to support OAM –FPM.

7.2.2.1 Initialization
During initialization, the 128 entry OAM PM table is initialized.

7.2.2.2 Receive
The receive thread handles incoming data packets and performs OAM specific
operations. Specifically, it does the following:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 19 / 146

• Checks whether a received cell is on a VC where OAM FPM is being performed.
This information is stored in the ATM VC table (the oamPm field). If this cell is a
user cell, it does the following:

o XORs the current value of the BIP-16 into OAM FPM table running total
for all user cells.

o Increments and masks the CurrentBlockValue (ranges from 0 to
BlockSize-1).

• If the received cell is not a user cell, then the code checks whether an OAM cell
has been received. If OAM but not of the type OAM FPM cell, the cell is
forwarded to the XP. Otherwise, it does the following:

o Compares the CurrentBip16 value with the value received in the OAM
FPM Cell. If these values are XOR-ed, the number of bits set indicates
the number of errors. The number of bits set is determined through a
lookup into a 16-byte table (where each byte in the table indicates the
number of bits set for the index) for each nibble (oamPmErrTab). The
information is used to update TotalBip16Errs counter.

7.2.3 Data Structures

7.2.3.1 OamPmTable
This OAM processor maintains OAM performance monitoring state information in the
following data structure:

Bytes 0 1 2 3
0 TotalBip16Errs CurrentBlockValue
4 CurrentBip16 blockSize
8 SeqnumExpect Pad

• totalBip16Errs – count of BIP-16 errors calculated so far
• currentBlockValue – the number of the cell in the current block
• currentBip16 – the value of the BIP-16 calculated so far
• blockSize – the block size (in cells)
• seqNumExpect – the expected sequence number to be received
• pad – unused

7.3 Statistics Management
XPRC maintains all the statistics for the MSA applications. Periodically, XP updates host
with the statistics to be available to the end user. It passes the statistics storage pointer
to the CP’s at initialization. CPs update the statistics maintained in XPs at run time. As
XPRC has only 16kB of DMEM shared across CPs, the time for XP to update the host
should depend on the amount of storage, which is needed to store the statistics.

To synchronize between CPs updating XP DMEM and XP updating host, following
implementation is used:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 20 / 146

XP maintains two banks of 8KB each in its FAR DATA section (data section
which is accessible to CPs). XP keeps shuffling the pointer between these two data
banks periodically, so that at the time of updating the host, CPs should access and
update the other bank of 8KB.

A list of TDM statistics to be maintained on a per channel basis is as follows:
• chRxChunks – Number of received chunks
• chRxPdus – Number of received PDUs
• chRxBytes – Number of received bytes
• chRxLenErrs – Number of chunks having invalid length (e.g. short chunk, long

chunk)
• chRxCrcErrs – Number of chunks having invalid CRC
• chRxBip8Errs – Number of chunks having BIP8 errors
• chRxInvalidErrs – Number of chunks having other errors
• chRxFlowChunks – Number of Flow chunks
• chRxLookupErrs – Number of chunks that caused lookup failure
• chTxChunks – Number of transmitted chunks
• chTxPdus – Number of transmitted PDUs
• chTxBytes – Number of transmitted bytes

List of IP statistics:
• IpInReceives - Total number packets received in IP module
• IpInHdrErrors - The number of input datagrams discarded due to errors in their IP

headers.
• IpForwDatagrams - Number of input datagrams forwarded
• IpOutPayloadErrors - Number of packets discarded due to payload errors
• IpOutInvalidPortErrors - Number of packets discarded because its route entry

mapped to an invalid egress port.
• IpOutNoRoutes - Number of IP datagrams discarded because no route could be

found to transmit them to their destination

The following statistics to be provided on a per VC basis (a maximum of 2048)
• AAL5 CRC Errors
• Over Sized PDUs
• AAL5InReceives

Within the 8 KB of DMEM, the following calculation of time and number of bits to be used
to hold values, is implemented:
Generally, if we assign 2 bits to store value for each statistic parameter, a total of 8Kb is
not sufficient to hold all the parameters. So some of the parameters may have to be
removed from this list of statistics (or) the statistics have to be provided using table
support. If AAL5 statistics parameters are removed, a total of 8KB is sufficient to hold all
the parameters.

Calculating time for updating the host: -
Per channel, 128 chunks to be received in one second i.e., 8K of bytes per second. If 2
bits are used for chRxChunks, then we will have to update host after every 4 chunk.
That works out to be around 30 milliseconds.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 21 / 146

7.4 TDM RX (CP 0 and CP 4)
CP0 and CP4 implement the TDM Rx components for the MSA application. The Channel
Processors are directly connected to Twister Mt-21 from outside world. The number of
channels to be supported is 2048 (1024 by each TDM Rx component). The channel may
carry ATM/FR/PPP traffic. Chunk size support in this application is 64-bytes.

7.4.1 RxSDP
The SDP receives data from Twister Mt-21 to the RC in the receive direction and from
the RC to the Twister Mt-21 in the transmit direction. The chunks that will originate from
Twister Mt-21 will be either ATM or HDLC chunks. During the initialization phase itself
the TDM interfaces will be configured as PPP or FR. Since it is not possible to
differentiate the HDLC frames as PPP or FR in the TDM RxByte, The TDM Rx CPRC
will differentiate the PPP and FR chunks based on the channel ID information filled on
the extract space. The channel ID will be stored in extract space by the RxByte
processor. The channel configuration is stored in DMEM, which is used for identifying
the protocol running on that channel. The functions provided by each of its component
processors are described below.

7.4.1.1 RxByte
The RxByte processor performs the following:

• Checks for recirculation mode.
• If it is in Non-recirculation mode, it receives the bytes from the RxSync

processor. It also writes the previously dropped chunks counter in extract space.
• Initializes the SOP and DroppedChunks registers to 0.
• Reads chunk type, channel Id and channel type into extract space.
• Reads UserValid, HDLC chunk length, HDLC UserInd (SOP/non-SOP) into

extract space for User chunks. (Chunk type will determine whether it is the user
chunk or flow chunk).

• Reads the HDLC crcInd into extract space.
• For flow chunk,

o Verifies flow control chunk valid bit
o Writes flow control chunk count to extract space.
o Indicates processing complete to the CPRC.

• For user chunk, check the channel type and determine whether it is HDLC chunk
or ATM chunk.

HDLC chunks
• For HDLC chunks, check whether the chunk is SOP or non-SOP.
• For SOP chunk,

o Write the first ten bytes after the TDM chunk header into the extract
space. The reason for writing the ten bytes into extract space is both FR
and PPP need ten bytes and eight bytes respectively to specify the
header information (if the packet is a MPLS packet).

o Set L1 done so that RxCPRC can start processing based on extract
space values.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 22 / 146

o Send remaining bytes of payload of the chunk to DMEM.
• For non-SOP TDM chunk, it sets L1 done for RxCPRC and sends remaining

bytes of payload of the chunk to DMEM.
• When data9 is received, it writes the chunk status code to extract space and

switches scope.

ATM chunks
• For ATM chunks, it launches lookup into ATM VPI/VCI table for user cells.

Identifies and reports OAM/RM cells. Writes the cell header to extract space also.
• Writes the ATM cell payload to extract space also.
• Sets L1 done for RxCPRC and sends remaining bytes of cell payload of the

chunk to DMEM.
• When data9 is received, it writes the chunk status code to extract space and

switches scope.
Transparent chunks

• For transparent chunks, it writes the channel id (port) to extract space.
• Set L1 done so that RxCPRC can start processing based on extract space

values.
• Sends remaining bytes of payload of the chunk to DMEM.
• When data9 is received, it writes the chunk status code to extract space and

switches scope.

7.4.2 RC (CP0 and CP4)
The TDM Rx RC performs higher level processing of chunks. The functions provided by
each of its components are described below:

7.4.2.1 Initialization
The TDM Rx component initializes the data structures and registers used by RC.
Specifically, it does the following:

• Initializes statistics and chunk reassembly control structures
• Initializes RxSDP control space, Rx DMA control blocks and ring bus Tx registers

for ATM VPI/VCI table lookups.

7.4.2.2 Chunk Processing
The Rx RC handles incoming ATM cells or HDLC frames or Transparent chunks.
Specifically, it does the following:

HDLC Rx:
• Waits for L1 done so that SDP has completed the header processing and put the

necessary information into extract space.
• Make the pointer (chRxCCBPtr) to TDM Rx Control block in DMEM. chRxCCBPtr

will depict the TDM chunks reassembly information in DMEM.
• Processes chunk based on chunk type (flow control or user) in extract space

after checking for errors.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 23 / 146

• For User chunk, differentiate the HDLC frame as PPP or FR chunks based on
the Channel ID filled in the extract space and the channel configuration
information.

FR processing
• For SOM chunk,

o Allocate new buffer for reassembling the FR chunks
o Destination queue will be the FR processing queue.
o Get the FR header information by properly interpreting the extract space.
o Write the FR header into TDM Rx channel control block (chRxCCBPtr).

• Initiate the payload transfer from DMEM to SDRAM if no error is indicated in
chunk. Update the buffer offset in TDM Rx channel control block (chRxCCBPtr)
by incrementing it with chunk length.

• For non-SOM chunks, retrieve reassembly state information (buffer handle and
buffer offset) from TDM Rx channel control block (chRxCCBPtr) and initiate the
payload transfer from DMEM to SDRAM if no error is indicated in chunk. Also,
update the buffer offset in TDM Rx channel control block (chRxCCBPtr).

• For EOM chunk, build the descriptor with buffer handle, buffer length and FR
header (DLCI value). En-queue it to the FR processing queue.

PPP processing
• For SOM chunk,

o Read the 4-byte PPP header from extract space and check for the PPP
protocol length. The PPP protocol may be of 1-byte or 2- byte. If the least
significant bit of first protocol byte is cleared, then the protocol will be of 2
bytes.

o Set the buffer type for PPP as following based on protocol field value:
� For value 0x0021, bufferType will be BT_IPV4
� For value 0x0821, bufferType will be BT_MPLS
� For value 0x003d, bufferType will be BT_MLPPP

o Read the 4-bytes MLheader from extract space for MLPPP.
o Allocate new buffer and determine destination queue based on buffer

type. The destination queues will be IP_QUEUE, MPLS_QUEUE and
MLPPP_QUEUE

o Write bufferHandle, destination queue and MLheader into TDM Rx control
block (ChRxCCBPtr). Buffer offset will be 0 for SOM.

• Initiate the payload transfer from DMEM to SDRAM if no error is indicated in
chunk. Update the buffer offset in TDM Rx channel control block (chRxCCBPtr)
by incrementing it by chunk length.

• For non-SOM chunks, retrieve reassembly state information (buffer handle and
buffer offset) from TDM Rx channel control block (chRxCCBPtr) and initiate the
payload transfer from DMEM to SDRAM if no error is indicated in chunk. Also
update the buffer offset in TDM Rx channel control block (chRxCCBPtr).

• For EOM chunk, build the queue descriptor and en-queue it to the destination
queue taken from TDM Rx channel control block (chRxCCBPtr). The port buffer

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 24 / 146

type will be filled with the concatenation of input channel Id and BT_HDLC in the
descriptor. For MPLS the inIfType_action will be filled as MPLS_PPP.

• Gives scope back to SDP.

ATM Rx:
ATM Rx component in TDM Rx CP handles ATM cells. Specifically, it does the

following:
• Waits for ATM VPI/VCI lookup to complete
• Lookup failure causes the cell to be dropped and a statistics counter is
incremented.

• Allocates new buffer and initiates payload transfer from DMEM to SDRAM.
• Builds descriptor with forwarding information from lookup response
• Waits for payload transfer to complete.
• Determines whether OAM FPM is being performed on this VC. If so:

o For user cells, read the current BIP16 value from extract space and XOR
with current value. Update OAM fields.

o For OAM FPM cells, check BIP16 and maintain count of total BIP16
errors.

• For cells other than AAL-5 or AAL-1, it launches port table lookup.
o Waits for port lookup to complete
o En-queues descriptor to egress queue or QoS queue indicated by port

lookup
• For AAL-5 cells, with the lookup response from the ATM VC table, the decision is

made if the AAL-5 PDU has to be MPLS switched.
• With last AAL-5 cell, fills the descriptor with the information required for MPLS

processing. The reassembly module forwards this information to the MPLS
processing module.

• For AAL-1 cells, build the descriptor with the following fields:
o AAL1 header from extract space
o egress port and vcIndex from the ATM VC lookup response.

• For AAL-1 cells, set the destination queue to AAL1Rx queue.
• En-queues the descriptor to the destination queue

Transparent chunk processing:

This component handles transparent TDM chunks. Specifically, it does the following
• Fetch the egress port and ATM cell header from the Rx channel control block

indexed by the channel Id.
• Allocates new buffer and initiates payload transfer from DMEM to SDRAM.
• Builds descriptor with AAL1 information (egress port, egress cell header).
• Waits for payload transfer to complete.
• En-queues the descriptor to AAL1Tx queue

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 25 / 146

7.4.3 Data Structures

7.4.3.1 Extract Space
RxByte writes information about data-grams into extract space for the RC.
typedef volatile struct {

int16u chnkType_chanId;
int8u chanType;
int8u userValid;
int8u flowChunkCnt;
int8u chunkStatus;
int8u droppedChunks;

union {
struct {

CellHeader header;
int16u bip16;
int8u encodedPti;
int8u payload[48];

}atm;

struct {
int8u userInd;
int8u crcInd;
int8u chunkLength;

int32u header1;
int32u header2;
int16u header3;

}hdlc;
} proto;

} TdmExtract;

The explanations for the above-mentioned fields will be as follows:

• chnkType_chanId – a bitmap defined as follows:
o b15 : chnkType – specifies the chunk type(user chunk or flow chunk)
o b14 -11: unused.
o b10 - 0 : chanId – specifies the input channel ID

• chanType – specifies the channel type (HDLC/ATM).
• userValid – specifies the user valid indicator.
• flowChunkCnt – specifies the flow chunk counter.
• chunkStatus – specifies the chunk status (good or bad chunk).
• droppedChunks – number of dropped chunks.
• userInd – user indicator (BOM/COM/EOM).
• crcInd – CRC indicator (for CRC16 or CRC32 calculation).
• chunkLength – specifies the chunk length.
• header1, header2, header3 – HDLC header information (could be FR or PPP)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 26 / 146

• Cell header – cell header of the ATM AAL-5 cell.
• EncodedPti – field to identify the ATM payload type.
• atmPayload – 48 bytes of AAL-5 cells.

7.4.3.2 TDM Rx Control Block

The state maintained (in DMEM) for each HDLC frame being reassembled has the
following data structure:
Note: Some of the fields of this block are replaced to maintain the egress port and ATM
cell header for every transparent channel configured.

Byte Offset 0 1 2 3
0 chBufHandle
4 chBufOffset chDestQ
16 chMlHeader

typedef struct {
BsBufHandle chBufHandle;
int16u chBufOffset;
int16u chDestQ;
int32u chMlHeader;

} TdmRxCCB;

The explanations for the above-mentioned fields will be as follows:

• chBufHandle: – specifies the handle of the reassembled buffer.
• chBufOffset: – specifies the offset in the reassembled buffer.
• chDestQ: – destination queue where the EOM chunk will be en-queued. This field

corresponds to ‘egressPort’ in the case of transparent chunks.
• chMlHeader: – ML header/FR header for PPP/FR respectively. This field

corresponds to ATM ‘cellHeader’ in the case of transparent chunks.

7.4.3.3 Descriptor Structure
The following is the data structure of the descriptor to be en-queued.

Byte Offset 0 1 2 3
0 bufHandle
4 Length Port_bufType
8 AppData
12 AppData

typedef struct {
BsBufHandle bufHandle;
int16u length;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 27 / 146

int16u port_bufType;
union {

int8u byte[8];
int16u hword[4];
int32u word[2];
AtmDescData atm;
FrDescData frameRe;
SegDescData seg;
TdmDescData tdm;
MlPppDescData mlPpp;
MplsDescData mpls;
Aal1TxDescData aal1Tx;
Aal1RxDescData aal1Rx;

} appData;
} DescriptorMsg;

The explanations for the above-mentioned fields will be as follows:

• bufHandle – specifies the handle of the reassembled buffer.
• length – specifies the chunk length.
• port_bufType – specifies the input port and buffer type of the next module.
• appData - Application specific data (FR/PPP/ATM/Transparent TDM).

7.4.3.4 Ring Bus Slots
TDM Rx CP needs to launch lookups in following tables for various packet processing:

• ATM VC Table and Port Table.

ATM VC table lookup uses these slots:
• ATM VC request slot 0
• ATM VC response slot 0

Port table lookup uses these slots:
• Port table request slot 1
• Port table response slot 4

7.4.4 TDM statistics
typedef struct {

int16u chRxChunks;
int16u chRxPdus;
int16u chRxBytes;
int16u chRxBip8Errs; // for ATM cells
int16u chRxLenErrs;
int16u chRxInvalidErrs;
int16u chRxCrcErrs;
int16u chRxFlowChunks;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 28 / 146

int16u chRxLookupErrs; //for ATM cells
int16u chTxChunks;
int16u chTxPdus;
int16u chTxBytes;

} TdmStats;

The description of each field is given below.

chRxChunks – Number of received chunks
chRxPdus – Number of received PDUs
chRxBytes – Number of received bytes
chRxLenErrs – Number of chunks having invalid length (e.g. short chunk, long chunk)
chRxCrcErrs – Number of chunks having invalid CRC
chRxBip8Errs – Number of chunks having BIP8 errors
chRxInvalidErrs – Number of chunks having other errors
chRxFlowChunks – Number of Flow chunks
chRxLookupErrs – Number of chunks that caused lookup failure
chTxChunks – Number of transmitted chunks
chTxPdus – Number of transmitted PDUs
chTxBytes – Number of transmitted bytes

7.5 IMA (CP 1 and CP 5)
CP 1 and CP5 implement the IMA processing. In the transmit direction, this processor
handles outgoing cells from other ATM processes and sends them in a round robin
fashion among several TDM links in the IMA group. It generates ICP and filler cells and
maintains the link and group state machines necessary for IMA connections. In the
receive direction, the IMA processor receives cells from the TDM links and performs
synchronization to reconstruct the ATM cell stream. It handles ICP and filler cells and
maintains the link and group state machines necessary for IMA connections. The IMA
component does not use the SDP.

7.5.1 SDP
Since IMA component does not use SDP, this section is not filled in.

7.5.2 RC
The component uses three threads to perform its task, namely, one Receive thread and
two Transmit threads.

7.5.2.1 IMA Receive
The IMA Receive thread processes cells received from the TDM links in the following
manner:

• Waits for a descriptor to be available in the IMA RX queue then de-queues it.
• Determines the IMA group and link based on the input port from the descriptor.
• For ICP cells, does the following:

o Initiates a DMA transfer of the cell payload from SDRAM to local DMEM.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 29 / 146

o If the ICP cell is a stuffed ICP cell, it is dropped.
o Run the link state machine based on link state information from the ICP

cell.
o Run the group state machine based on group state information from the

ICP cell.
o Run the frame synchronization state machine.
o If frame sync, put the ICP cell in the link differential delay queue as a filler

cell.
• For filler and user cells, if frame synchronization has been attained and the link is

active, put the cell in the link differential delay queue.
• Uses round robin to determine which link differential delay queue of the group to

service. Removes a cell from the link differential delay queue and does the
following:

o If the cell is a filler cell, it is dropped.
o If the cell is a user cell, it is en-queued to the next processing block (AAL-

1, ATM TM, etc.) determined by data in the descriptor.
• Switches to the next context.
• Loops and waits for next descriptor.

7.5.2.2 IMA Transmit Input
The IMA Transmit Input thread de-queues cells and puts them in the transmit soft
queues in the following manner:

• Waits for a descriptor to be available in the IMA Tx queue, then de-queues it.
• Determines the IMA group based on the output port from the descriptor.
• Puts the user cell in the transmit soft queue for the group
• Switches to the next context
• Loops and waits for the next descriptor.

7.5.2.3 IMA Transmit Output
The IMA Transmit Output thread runs at the group cell rate. On each tick of the group
cell rate clock, the thread does the following:

• Determines the link within the group, which should receive the next cell. This is
done in a round robin fashion among all active or usable links in the group.

• If it is time to send an ICP cell on the link, the group state ICP cell storage is
updated for the current link and the cell is transferred to an SDRAM buffer via
DMA. A descriptor is built and en-queued to the queue of the target TDM link.

• Otherwise, if the link is in the active state and a user cell is available in the
transmit soft queue for the link, the descriptor for the user cell is removed from
the soft queue and en-queued to the queue of the target TDM link.

• Otherwise, a filler cell is en-queued to the queue of the target TDM link.
• Updates link and group state for link and group on which the cell was just sent.
• Switches to the next context.
• Loops and waits for the next tick.

7.5.3 Data Structures
The IMA component uses the following data structures to maintain state and translate
data.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 30 / 146

7.5.3.1 ImaLinkState
The IMA link state structure saves state information for each of the available ATM TDM
links. The structure has the following format:

Byte Offset 0 1 2 3
0 LinkId flags rxState txState
4 feState frameSync frameOffset rxFrameSeqNum
8 txFrameSeqNum numIcpValid numIcpErrors numIcpInvalid

• linkId – the link ID number
• flags – a bitmask defined as follows:

o b7-5: unused
o b4: link ID valid – the received link ID is valid
o b3: RX failure – a receive failure has occurred
o b2: RX fault – a receive fault has occurred
o b1: Tx fault – a transmit fault has occurred
o b0: inhibit – the link is being inhibited

• rxState – value of the RX link state machine
• txState – value of the Tx link state machine
• feState – values of the far end link state machine and defects
• frameSync – value of the IMA frame synchronization state machine
• frameOffset – offset within the IMA frame at which the ICP cell should appear
• rxFrameSeqNum – the expected received frame sequence number
• txFrameSeqNum – the frame sequence number to be transmitted
• numIcpValid – number of consecutive frames with valid ICP cells used in frame

synchronization
• numIcpErrors – number of consecutive frames with ICP error cells used in frame

synchronization
• numIcpInvalid – number of consecutive frames with invalid ICP cells used in frame

synchronization

7.5.3.2 ImaGroupState
The IMA group state structure saves state information for each of the IMA groups. The
structure has the following format:

Byte Offset 0 1 2 3
0-11 icpCell
12 linkIdAlloc

16-47 linkIdToLinkMap
48 frameLen state feState
52 change rxchangenum txChangeNum numLinks
56 suffLinks flags rxOamLabel rxImaId

The explanation of fields are as given below:
• icpCell – the ICP cell to be sent by the Tx thread
• linkIdAlloc – a bitmap indicating which link IDs are in use

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 31 / 146

• linkIdToLinkMap[32] – a mapping from link ID to link state storage structure
• frameLen – length of IMA frame (32, 64, 128, or 256)
• state – group state machine state
• feState – far end group state machine state
• change – flag indicating next ICP cell transmitted will have a change in it
• rxChangeNum – received status and control sequence number
• txChangedNum – next status and control sequence number to transmit in ICP cell
• numLinks – number of active links
• suffLinks – number of active links needed to leave insufficient links state
• flags – a bitmap as follows:

o b7-1: unused
o b0: inhibit – the group is being inhibited

• rxOamLabel – the received OAM label in the ICP cell
• rxImaId – the received IMA ID in the ICP cell

7.5.3.3 ImaParams
The IMA parameters structure stores information that controls behavior of the IMA unit.
The host or other management agent may set these parameters. The structure has the
following format:

Byte Offset 0 1 2 3
0 alpha beta gamma pad

• Alpha – the number of consecutive invalid ICP cells that must be received before
frame synchronization is lost

• Beta – the number of consecutive errored ICP cells that must be received before
frame synchronization is lost

• Gamma – the number of consecutive valid ICP cells that must be received before
frame synchronization is declared

7.5.3.4 ImaPortToGroupMap
The IMA port to group map is an array of bytes MAX_TDM_CHANNELS (1024 per CP
cluster) long. The index into the array is the port number and the value of the array
elements is the group to which the port belongs. If the port does not belong to any group,
the value is IMA_INVALID_GROUP.

7.5.3.5 ImaPortToLinkMap
The IMA port to link map is an array of bytes MAX_TDM_CHANNELS long. The index
into the array is the port number and the value of the array elements is the link state
index associated with the port. This index is used to index the IMA link state structure
array.

7.5.3.6 Merge space
This information need not be provided because SDPs are not going to be used in IMA
CP.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 32 / 146

7.5.3.7 Extract Space
This information need not be provided because SDPs are not going to be used in IMA
CP.

7.5.3.8 Descriptor information
Not available

7.5.3.9 Ring Bus Slots
None

7.5.4 Issues/Enhancements
The IMA component is placed in two CPs. This is because of the DMEM size required
for IMA component.

7.6 TDM Tx (CP 2 and CP 6)
CP2 and CP6 implement the TDM Tx components for the MSA application.

7.6.1 TxSDP
The TxSDP moves data from the RC to the Mt-21 chip. The functions provided by each
of its component processors are described below.

7.6.1.1 TxByte
The TxByte processor performs the following functions as part of the TDM interface:

• Reads 4 bytes of chunk header information from merge space and transmits the
chunk header.

• Sets the chunk length counter.
• If channel type is HDLC, reads the payload bytes from DMEM and transmits

them.
• Transmits the padding bytes (zero) in the last until chunk length counter reaches

zero
• For ATM SOM chunks, reads ATM cell header from merge space adds HEC and

transmits.
• For ATM OAM cells, generates CRC-10.
• For transparent chunks, read the payload bytes from DMEM and transmits them.
• Set the merge9 with the last byte.
• Switches the scope for CPRC.

7.6.2 RC (CP2 and CP6)
The TDM Tx RC performs higher level processing of chunks. The functions provided by
each of its components are described below:

7.6.2.1 Initialization
The TDM Tx component initializes the data structures and registers used by RC.
Specifically, it does the following:

• Initializes statistics and chunk segmentation control structures

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 33 / 146

• Initializes TxSDP control space and Tx DMA control blocks

7.6.2.2 Chunk Transmit
The output thread handles outgoing cells or datagrams. Specifically, it does the
following:

• Check channels in a round robin manner for credits available
(chFlowChunksAvail).

• Get state information for current channel i.e. get the pointer chTxCCBPtr which
points to TDM Tx channel control block in DMEM. This control block will contain
the segmentation state information.

• If chFlowChunksAvail is true, check whether this channel is in the process of
segmenting the PDU into chunks i.e. transmitting the chunks of a PDU. If it is
so, the next chunk of PDU will be transmitted.

• If no segmentation is in progress, the incoming descriptor will be de-queued
from its queue. Note that the descriptor would have been en-queued by

o TDM Recirculation (CP3 - for FR or PPP encapsulation)
o FR module (CP11 - for FR switching)
o ATM segmentation (CP8)
o AAL1 Tx(CP14)
o AAL1 Rx(CP15)

• After de-queuing, the segmentation state will be updated with the values
fetched from descriptor. Segmentation state values to be updated are: Buffer
Handle, Buffer offset, length and port buffer type taken from incoming
descriptor. Offset will be filled as zero

• PortBufferType will be checked to determine the incoming module i.e. from
which module it has come (BT_ATM or BT_TRANSPARENT or others) so that
it will segment the PDU accordingly.

• If portBufferType is BT_TRANSPARENT, it is a transparent chunk from AAL1
Rx CP. It fills the merge space with chanId_chanType, chunkLength.

• If portBufferType is BT_ATM, it is an ATM cell and hence will be switched. If
portBufferType is other than BT_ATM, the frame needs to be segmented into
number of chunks based on the channel length in chTxCCBPtr.

• For segmenting into chunks, chunk length (1 - 64 bytes) will be calculated
based on offset in ChTxCCBPtr (for first chunk, the offset will be 0). Also if
chunk length is less than 64 bytes, it will set the EOM flag stating that it is the
last chunk.

• The offset in chTxCCBPtr will be incremented by chunk length for the next
chunk.

• It waits for the scope to be available from SDP.
• It fills the merge space with chanId_chanType, chunkLength and userInd.
• For ATM, fills cell header also into the merge space.
• It then waits for payload transfer of previous chunk to complete.
• It initiates the payload transfer from SDRAM to DMEM for that chunk.
• For EOM chunk, it frees the buffer associated with previous chunk and resets

the state information (in chTxCCBPtr) for the new PDU.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 34 / 146

7.6.3 Data Structures

7.6.3.1 Merge space
The RC writes information about datagrams into merge space. The data structure of
merge header looks like following.
typedef volatile struct {

int16u chanId_chanType;
int8u userChunkLength;
int8u userInd;
union {

struct {
CellHeader atmHeader;
int8u atmPayload[48];
}atm;

struct {
int8u pad1;
}hdlc;

struct {
int32u header;
int8u headerLen;
}pppRecirc;

}proto;
int8u pad[8];

} TdmMerge;

The explanations for the above-mentioned fields will be as follows:
• chanId_chanType – a bitmap defined as follows:

o b15 : unused.
o b14 - 4 : chanId – specifies the input channel ID
o b3-1 : chanType – specifies the channel Type

(ATM/HDLC/Transparent)
o b0 : unused.

• userChunkLength – chunk length (1-64 bytes)
• userInd – specifies the user chunk indicator (SOM/COM/EOM)
• atmHeader – ATM Cell header
• atmPayload – 48 bytes of ATM cells.

7.6.3.2 TDM Tx Control Block
The state maintained (in DMEM) for segmentation on each outgoing channel is stored in
the following data structure:

Byte Offset 0 1 2 3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 35 / 146

0 chBufHandle
4 chBufOffset chLength
8 ChFlowChunksAvail Pad

typedef struct {
BsBufHandle chBufHandle;
int16u chBufOffset;
int16u chLength;
int8u chFlowChunksAvail;

} TdmTxCCB;

The explanations for the above-mentioned fields will be as follows:
• ChBufHandle : specifies the Buffer handle that has to be transmitted.
• ChBufOffset : specifies the offset of the chunk in the buffer.
• chLength: specifies the chunk length.
• ChFlowChunksAvail : specifies the counts of credits available to each channel.
• Pad: unused.

7.6.3.3 Descriptor Structure
The descriptor structure for TDM Tx is same as for TDM Rx. The structure is defined in
section 7.4.3.3

7.6.4 TDM Statistics
The statistics structure for TDM Tx is same as for TDM Rx. The structure is defined in
section 7.4.4

7.7 TDM Recirculation (CP3)
CP3 is used to recirculate PPP and FR frames destined for the TDM Tx (CP2/CP6) for
transmission. Its purpose is to add the PPP header or FR header in the descriptor to the
PPP/FR frame before transmission.

7.7.1 SDP
The SDP adds the PPP or FR header to the frame. The functions provided by each of its
component processors are described below. Only RxByte and TxByte are used for this
purpose.

7.7.1.1 TxByte
The TxByte processor performs the following functions:

• Reads channel Id from merge space and transmits as first byte of the chunk.
• Read the Buftype from merge space. It will also differentiate between PPP and

FR. If Buftype is not BT_IP_FR or BT_MPLS_FR, it will be the PPP frame.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 36 / 146

• For PPP,
o Reads the PPP header length from merge space, then reads that many

bytes from the header field in merge space and transmits these.
• For FR,

o Reads the first two bytes of FR header (that contains DLCI values) from
merge space and transmits these.

o For bufferType BT_IP_FR, transmits out the control byte (0x00) and
NLPID (0xcc) byte.

o For bufferType BT_MPLS_FR, construct the LLC SNAP header
encapsulation bytes and transmit these bytes.

• Reads remaining payload from DMEM until data9 is observed.
• Switches scope.

7.7.1.2 RxByte
The RxByte processor performs the following functions:

• Receives bytes from the TxByte processor.
• The first byte of the chunk contains the channel Id. This is written to extract

space and header ready is indicated in the rxStatus register.
• All bytes are written to DMEM.
• When data9 is received, switches scope.

7.7.2 RC
The RC manages the TDM recirculation. All CPs that want to transmit PPP/FR frames,
en-queue their packets to the TDM recirculation CP3 so that the PPP/FR header is
added to the frame before transmission.

7.7.2.1 Initialization
The initialization component initializes the data structures and registers used by the RC.
Specifically, it does the following:

• Initializes statistics and chunk control structures.
• Initialize SDP control space, Tx/Rx DMA control blocks. Indicate TDM RxSDP

to run the recirculation portion of the code.

7.7.2.2 RxCPRC
The receive component handles incoming packets from the SDP. Specifically, it does the
following:

• Waits for indication of header processing completion.
• Creates descriptor with buffer handle and length.
• En-queues packets based upon the channel Id indicated in extract space.
• Allocates buffer, sets up DMA block and gives scope back to SDP.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 37 / 146

7.7.2.3 TxCPRC
The transmit component services its TDM Recirculation egress queue (all PPP or FR
traffic which needs a header inserted in the frame gets en-queued here). This CP then
passes chunks to the SDP. Specifically, it does the following:

• De-queues the packet descriptor from its TDM Recirculation egress queue. This
descriptor would have been en-queued by IP or MPLS channel processors.

• Waits for scope to be available from SDP.
• Gets channel Id (input port) and buffer type from the descriptor. Buffer type may be

one of the following.
o BT_IP_FR: if the FR frame originates from IP module
o BT_MPLS_FR: if the FR frame originates from MPLS module
o Otherwise it is the PPP frame originating from IP/MPLS module

• Determines protocol type based on buffer type.

PPP processing:
For the buffer type BT_IP_PPP and BT_MPLS_PPP,

• Determines the 4-byte PPP header including protocol, and calculates the
header length.

• Fills the channel Id, BufType, PPP header and header length into the merge
space.

FR processing:
For the buffer type BT_IP_FR and BT_MPLS_FR

• Fill the channel Id, BufType and FR header information (2-bytes containing DLCI)
from descriptor into the merge space.

• Sets up DMA engine with buffer handle from descriptor.
• Initiates payload transfer from SDRAM to DMEM and gives scope to the SDP.
• Frees buffer from previous transmit in this scope.

7.7.3 Data Structures

7.7.3.1 Merge space
The merge space structure is defined below.

For FR

Byte Offset 0 1 2 3
0 chanId_chanType userChunkLength userInd
4 BufType Fr header
12 Fr header Pad
16 Pad
20 Pad

The explanations for the above-mentioned fields will be as follows
• chanId_chanType – a bitmap defined as follows:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 38 / 146

o b15 : unused.
o b14 - 4 : chanId – specifies the input channel ID
o b3-1 : chanType – specifies the channel Type

(ATM/HDLC/Transparent)
o b0 : unused.

• UserChunkLength: specifies the length of the user chunk.
• UserInd: specifies the user chunk indicator (BOM/COM/EOM)
• BufType: specifies the type of the buffer.
• FR header: specifies the DLCI value and the congestion control information.
• Pad: unused

For PPP

Byte Offset 0 1 2 3
0 chanId_chanType userChunkLength userInd
4 BufType PPP header
12 PPP header PPPheaderLen Pad
16 Pad
20 Pad

The explanations for the above-mentioned fields will be as follows

• chanId_chanType – a bitmap defined as follows:
o b15 : unused.
o b14 - 4 : chanId – specifies the input channel ID
o b3-1 : chanType – specifies the channel Type

(ATM/HDLC/Transparent)
o b0 : unused.

• UserChunkLength: specifies the length of the user chunk.
• UserInd: specifies the user chunk indicator (BOM/COM/EOM)
• BufType: specifies the type of the buffer.
• PPP header: specifies the PPP header information.
• PPP headerLen: specifies the length of the PPP header.
• Pad: unused

7.7.3.2 Extract space
The extract space structure is defined below.

Byte Offset 0 1 2 3
0 chanId Pad

The explanations for the above-mentioned fields will be as follows
• ChanId: specifies the channel ID.
• Pad: unused.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 39 / 146

7.7.3.3 Descriptor
The descriptor structure is same as for TDM Rx. The structure is defined in section
7.4.3.3.

7.8 IPv4 (CP 7)
CP 7 implements the IPv4 (Layer 3 forwarding) component for the MSA application.

IP routing is the process of forwarding IP frames at layer 3 based upon the IP
Destination Address (IP DA). An advantage of IP routing is that it can be used between
dissimilar network media types. This application covers IP routing over ATM or Frame
Relay or PPP/MLPPP.
Assumptions and notes for use:

• IP header options will not be recognized.
• IP Fragmentation and reassembly not supported
• Lookup is launched on the IP DA.
• Application generates two types of ICMP messages, which are based on the

events that happen in the data path:
o ICMP Time exceeded
o ICMP destination unreachable

The IP address is provided to the XP via the appData parameters in the shared HCA
(Host Communication Area) structure. The XP passes this address to the CP in the
initialization descriptor. The CP uses this as the IP source address for all NP generated
ICMP messages.

7.8.1 SDP
The SDP is configured for byte level re-circulation. The SDP re-circulates the IP packet
to remove HDLC/PPP/FR encapsulation if present and validates the IP header. It also
launches the IP destination address lookup to retrieve forwarding parameters for the
datagram.

7.8.1.1 TxByte
The TxByte processor performs the following functions:

• Receives IP datagram from BMU through DMEM.
• Based on the Buffer Type, the following operations are done:

o BT_HDLC/BT_PPP/BT_FR: strips the respective headers and does IP
parsing

o BT_IP: Parses the IP header
• Sends control information about the datagram to RxByte processor, including the

buffer handle, buffer type, and input port.
• Sends the IP datagram to RxByte processor.
• Sends an end of packet byte which indicates errors if non-zero.
• Switches scope and waits for more data to be available in DMEM.

The RC writes information about datagrams needing re-circulation into merge space for
TxByte processor to use in its processing. The data structure is defined in section
7.8.3.1. TxByte processor is not configurable through control space.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 40 / 146

7.8.1.2 RxByte
The RxByte processor performs the following functions:

• Waits for a receive scope to become available.
• Receives control information from TxByte processor and places it in extract

space.
• Validates the IP header including version and header length and IP checksum

and TTL field.
• If the header is valid, launches a lookup of the IP destination address
• If the header is not valid, places an error code in the header status field of extract

space and does not launch a lookup.
• If no error, TTL verification and TTL decrement operations are done and

checksum modification is done and updated accordingly
• Streams the remaining payload to DMEM and writes the payload status field of

extract space.
• Switches scope and waits for another to become available.

The RxByte processor writes information about recirculated datagrams into extract
space for the RC to use in its processing. The data structure is defined in section
7.8.3.2. RxByte is not configurable through control space.

7.8.2 RC
The IP forwarding component uses two threads to perform its task, namely, an input
thread and an output thread. The initialization code starts the two threads. Each of these
is described next.

7.8.2.1 Initialization
The IP component does the following things during its initialization:

• Creates the input and output threads.
• Initializes the IP route lookup launched by the SDP.
• Initializes both scopes by giving the SDP ownership.
• Starts the SDP in byte loop back mode.
• Jumps to the first thread.

7.8.2.2 Input Thread
The input thread handles incoming datagrams. Specifically, it does the following:

• Monitors its queue.
• De-queues an IP descriptor.
• Increments a statistics counter
• Waits for a transmit scope to be available from the SDP.
• Fills in merge space with data from the descriptor including buffer handle and

input port.
• Waits for the previous DMA transfer to complete.
• Begins the DMA transfer for the current buffer being processed.
• Switch context to the next thread.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 41 / 146

• Loops to the beginning to wait for another descriptor.

7.8.2.3 Output Thread
The output thread handles outgoing datagrams. Specifically, it does the following:

• Waits for a scope to become available from the SDP.
• Begins the DMA transfer from DMEM to the SDRAM buffer indicated in extract

space.
• Checks for header errors, and if one has occurred, drops the packet and

increments ipInHdrErrors counter. If the error is because of TTL expiry, ICMP
time expired message is sent to the source.

• Waits for the IP route lookup to complete and if the lookup fails, drops the packet
and increments ipOutNoRoutes counter. Send ICMP destination unreachable
message to the source.

• If the lookup response indicates that the packet is to be MPLS switched, then
o Fills in the information from the IP route lookup
o Destination queue = MPLS_QUEUE

Else
o Launches a lookup of the port indicated in the IP route lookup response.
o Waits for the port lookup to complete, and if the port is invalid, drops the

packets and increments ipOutInvalidPortError counter.
o Fills in a descriptor using information from the IP route and port lookups.

• Waits for the payload transfer to complete.
• Check for any payload error, if so drops the packet and increments

ipOutPayloadError counter.
• Sends the descriptor to the appropriate destination determined by the lookups.

If QoS enabled then sends the descriptor to QoS queue based on the port table
entry.

• Increments ipForwDatagrams counter
• Switches context to the next thread.
• Loops to the beginning to wait for another scope to be available.

7.8.3 Data Structures

7.8.3.1 Merge space
The RC writes information about datagrams needing recirculation into merge space for
TxByte processor to use in its processing. The data structure has the following format:

Byte Offset 0 1 2 3
0 bufHandle
4 port_bufType pad

• bufHandle – handle of the buffer being recirculated
• port_bufType – a bitmask defined as follows:

o b15-5: port – the input port on which this datagram was received

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 42 / 146

o b4-0: bufType – the type of buffer being recirculated (could be one of
BT_IPv4, BT_FR ,BT_PPP)

• pad – unused

7.8.3.2 Extract Space

RxByte writes information about re-circulated datagrams into extract space for the RC to
use in its processing. Entire IP header is moved into the extract space. The first 8 bytes
of the data structure has the following format:

Byte Offset 0 1 2 3
0 bufHandle
4 port_bufType headerError payloadError

• bufHandle – handle of the buffer being recirculated
• port_bufType – a bitmask defined as follows:

o b15-5: port – the input port on which this datagram was received
o b4-0: bufType – the type of buffer being recirculated (could be BT_IPv4)

The format of the next part of extract space

Byte Offset 0 1 2 3
8 vers_hlen tos len
12 id flags_fragOffset
16 ttl protocol cks
20 srcaddr
24 destaddr

28-44 pad

• vers_hlen – header version and length
• tos – type of service
• len – IP total length
• id – identification field
• frags_fragOffset – fragmentation flags and offset
• ttl – time to live
• protocol – IP protocol
• cks – IP header checksum
• srcaddr – IP source address
• destaddr – IP destination address
• Pad – unused

7.8.3.3 Queue Descriptor information
One queue is allocated for IP module to communicate with other CPs and XPRC. The
Queue descriptor structure is as follows:

Byte Offset 0 1 2 3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 43 / 146

0 BufHandle
4 Length Port_bufType
8 appData
12 appData

The explanation of each field is as follows:
• bufHandle – handle to the buffer this descriptor describes
• length – length of data in the buffer
• port_bufType – a bit field structure as follows:
• b15-5: port – ingress port or egress port depending on descriptor type
• b4-0: bufType – the type of buffer
• appData – application specific data as defined below:

Application specific data, it is a union of
o int8u byte[8];
o int16u hword[4];
o int32u word[2];
o AtmDescData atm;
o FrDescData frameRe;
o SegDescData seg;
o TdmDescData tdm;
o MlPppDescData mlPpp;
o MplsDescData mpls

The appData field can have different interpretations depending on the outgoing interface
type.

The ATM appData field has the following format:
Byte Offset 0 1 2 3

0 cellHeader
4 VcIndex egressQueue

The explanation of each field is as follows:
• cellHeader – the cell header (VPI/VCI) to apply at the egress
• vcIndex – the index associated with egress VPI/VCI
• egressQueue – the egress queue, necessary as the cell passes through several

processing blocks

The TDM appData field has the following format:
Byte Offset 0 1 2 3

0 McClass Flags Egress Queue

The explanation of each field is as follows:
• mcClass – MC class for ML-PPP’s use
• egressQueue – the egress queue, necessary as the packet passes through

several processing blocks

The MPLS appData field has the following format:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 44 / 146

Byte Offset 0 1 2 3
0 LabelSwap LabelPush
4 HopCount InIfType_action EgressQueue
8 AppHdrData
12 Vc Index Pad

The explanation of each field is as follows:
• LabelSwap - Label to be swapped
• LabelPush – Label to be added
• InIfType_action- MPLS action to be performed
• HopCount - count to be decremented in TTL of the shim header
• Egress queue – Queue assigned to the egress interface
• AppHdrData – ATM Cell header in case of egress ATM interface and FR header

if it is a FR interface.
• VcIndex – ATM VC index of the ATM interface if its an AAL-5
• Pad - unused

The FrameRelay appData field has the following format:

Byte Offset 0 1 2 3
0 FrHeader
4 EgressQueue pad

The explanation of each field is as follows:
• FrHeader – DLCI value
• EgressQueue – Final Queue
• Pad – unused

7.8.3.4 Counters
IP module has these counters for statistics purpose; it’s stored in XPRC’s shared
DMEM.
S.No Counter Purpose
1. ipInReceives Total number packets received in IP module
2. IpInHdrErrors The number of input datagrams discarded due to errors

in their IP headers.
3. IpForwDatagrams Number of input datagrams forwarded
4. IpOutPayloadError Number packets discarded due to payload errors
5. IpOutInvalidPortError Number of packets discarded because it route entry

mapped to egress port which is invalid (or temporarily
made as inaccessible)

6. IpOutNoRoutes Number of IP datagrams discarded because no route
could be found to transmit them to their destination

7.8.3.5 Ring Bus Slots
IPv4 uses these slots:

• IPv4 route request slot 0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 45 / 146

• IPv4 route response 0
• Port request slot 2
• Port response slot 2

7.9 Segmentation (CP 8)
CP 8 implements AAL5 segmentation module. This CP gets message descriptors with
bufType set to IPv4/MPLS.

7.9.1 SDP
The SDP is configured for byte level re-circulation. It streams the IP packet and
accumulates CRC. For AAL5 cells, it adds the necessary pad bytes to make the SDU
length a multiple of 48 and creates the trailer. It then delivers fixed size chunks of the
SDU to the CPRC. On the first chunk for an SDU, the SDP launches a port table lookup,
whose results are used by the CPRC to determine the destination queue. The SDP does
not interleave segmentations – it completely segments one SDU and delivers it to the
CPRC before proceeding to the next SDU. The SDP accumulates payload CRC for all IP
packets.

7.9.1.1 TxByte
The TxByte processor performs the following operations on every packet:

• Reads the segType, pduSize and UUI from the merge space. Sends them to
RxByte processor.

• Read all the merge space fields following it. Send them to RxByte processor.
• Initialize a counter with the negative of payload size.
• Start sending the payload bytes, incrementing the counter for each byte sent out.

Accumulate CRC for each transmitted byte. Stop when the counter hits 0xff.
• Initialize a counter with the number of pad bytes.
• Start transmitting zeroes, incrementing this counter for every zero byte

transmitted. Accumulate the CRC on each zero byte. Stop when the counter hits
0xff.

• The trailer should be sent for AAL-5 SDU. Send the UUI, CPI and payload length,
accumulating the CRC on all of them. Now send the four bytes of the CRC. This
completes the AAL5 trailer.

• Release the transmit scope and wait for data available from the RC.

TxByte gets the payload information from merge space as defined in section 7.9.3.1.
TxByte is not configurable through control space.

7.9.1.2 RxByte
The RxByte processor performs the following sequence of operations:

• Receive the segType, pduSize and uui from the TxByte and copy them to the
extract space.

• Clear the lastCell flag.
• Receive the atmEgressQueue and destQueue from the TxByte and write them to

the extract space.
• Receive the egress port from the TxByte and launch a port table lookup.
• Initialize a counter Counter1 with the negative of pduSize(0xc1).

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 46 / 146

• Stream out payload bytes to the Rx stage area. Increment Counter1 for every
byte transmitted. When Counter1 hits 0xff, hand the current scope over to the
CPRC. If the data-9 bit is seen at any time in the payload, go to the next step.
Wait for the next scope to become available and go back to the previous step.

• At the end of the payload, data the TxByte sets the Data-9 bit. When this bit is
seen, set the last cell flag to true. Copy the current value of Counter1 to the
numBytesLastPdu field and hand the current scope over to the CPRC.

• The packet segmentation is complete at this point, wait for more data to be
available from TxByte

The RxByte processor writes information about incoming cells into extract space for the
RC to use in its processing. The data structure is described in section 7.9.3.2. RxByte is
not configurable through control space

7.9.2 RC
The segmentation RC component uses two threads to perform its task, namely, an input
thread and an output thread. The initialization code starts the two threads. Each of these
is described next.

7.9.2.1 Initialization
The initialization phase in the segmentation CP does the following:

• Initializes buffer pools.
• Creates contexts for the input and output threads
• Initializes ring bus Tx message registers used by RxByte for launching port

lookup.
• Setup DMA engines and initializes the SDP scopes.
• Enables the SDPs

7.9.2.2 Input Thread
The input thread handles incoming datagrams. Specifically, it does the following:

• De-queue message descriptors from the input queue
• Reads the length of the IP packet to be segmented.
• Determines the pad size
• Calculate the number of cells that would be generated for this SDU.
• Calculates the necessary pad bytes that should be added at the end of the

packet to make its size a multiple of 48 bytes.
• Allocates a Tx scope
• Writes the IP packet buffer handle, egress port and egress queue from the IP

packet descriptor and the pad length to the merge space. Free the Tx scope,
thus starting the SDP processing on this packet.

7.9.2.3 Output Thread
The output thread handles outgoing datagrams. This logical function gets ATM cells from
the SDP and en-queues them to the appropriate destination queue. Specifically, it
carries out the following sequence of operations:

• Allocate an Rx scope and read the extract space.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 47 / 146

• Check the Rx scope to see if the ‘new_sdu’ flag is set. If set, then the SDP would
have launched a port table lookup. Read the egress queue from the extract
space.

• Wait for the port table lookup results.
o If QoS is enabled for the port, the destination queue is the QoS queue

from the port table lookup.
o If QoS is not enabled the destination queue is same as the egress queue

from the table lookup.
• Create a message descriptor with bufType set to BT_ATM. Set the buffer handle

to that of the cell delivered by the SDP and en-queue it to the destination queue.

7.9.3 Data Structures

7.9.3.1 Merge space
The RC writes information about outgoing packets to merge space for TxByte to use in
its processing. The data structure has the following format:

Byte Offset 0 1 2 3
0 SegType PduSize Uui Cpi
4 PayloadLength PadLength pad
8 CellHeader
12 EgressPort AtmEgressQueue
16 DestQueue Pad

typedef struct {
int8u segType;
int8u pduSize;
int8u uui;
int8u cpi;
int16u payloadLength;
int8u padLength;
int8u pad;
CellHeader cellHdr;
int16u egressPort;
int16u atmEgressQueue;
int16u destQueue;

} SegMergeSpace;

• segType – indicates whether the packet is to be segmented for AAL5
(SEG_AAL5)

• pduSize – specifies the size of chunks into which the packet is to be segmented
(always 48 for AAL5)

• uui – specifies the user-to-user information
• cpi – reserved, set to zero
• payloadLength – size of the IP packet
• padLength – number of zero bytes that need to be added to the payload
• pad – Reserved

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 48 / 146

• cellHdr – specifies the egress cell header to be used for AAL5
• egressPort – the destination port number
• atmEgressQueue – specifies the final queue that should be used to reach the

ATM port
• destQueue – specifies the immediate destination queue from the segmentation

CP

7.9.3.2 Extract Space
RxByte writes information about re-circulated datagrams into extract space for the RC to
use in its processing. The data structure has the following format:

Byte Offset 0 1 2 3
0 SegType PduSize Uui pad
4 atmCellHdr
8 egressPort AtmEgressQueue
12 destQueue LastCell NumBytesLastPdu

typedef struct
{

int8u segType;
int8u pduSize;
int8u uui;
int8u pad;
int32u atmCellHdr;
int16u egressPort;
int16u atmEgressQueue;
int16u destQueue;
int8u lastCell;
int8u numBytesLastPdu;

} SegExtractSpace;

• segType – indicates whether the delivered chunk is an ATM AAL-5 cell payload
• pduSize – specifies the size of the ATM cell (always 48 for ATM AAL-5 cells)
• pad –zero for ATM cells
• uui – specifies the user-to-user information that arrived with the packet being

segmented
• atmCellheader – specifies the egress cell header to be used for AAL-5.
• EgressPort – the destination port number.
• atmEgressQueue – final queue number to be used to reach the egress port
• destQueue – specifies the queue number on which the cell packet should be

transmitted
• lastCell – specifies the end of an SDU
• numBytesLast – the size of the last ATM PDU

7.9.3.3 Descriptor information
The following is the data structure of the descriptor:

Byte Offset 0 1 2 3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 49 / 146

0 bufHandle
4 Length port_bufType
8 appData

typedef struct {
BsBufHandle bufHandle;
int16u length;
int16u port_bufType; /* 15:5 - port, 4:0 - bufType */
union {

int8u byte[8];
int16u hword[4];
int32u word[2];
AtmDescData atm;
FrDescData frameRe;
SegDescData seg;
TdmDescData tdm;
MlPppDescData mlPpp;
MplsDescData mpls;

} appData;
} DescriptorMsg;

• bufHandle – reassembly buffer handle
• length – chunk length
• port_bufType – input port and buffer type of the next module
• appData - Application specific data.

The AppData in the segmentation CP is of following format:

typedef struct SegDescData_s {
CellHeader cellHeader;
int8u flags_cpsPduLen; /* 7:6 flags; 5:0 cpsPduLen */
int8u pad;
int16u egressQueue;

} SegDescData;

Byte Offset 0 1 2 3
0 CellHeader
4 Flags_cpsPduLen pad egressQueue

7.9.3.4 Ring Bus Slots
The segmentation CP launches a lookup into Port Table. It uses following slots:

• Request Slot: 0
• Response Slot: 0

7.9.4 Issues/Enhancements
None

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 50 / 146

7.10 Reassembly (CP 9)
AAL5 re-assembly module is implemented in CP 9. An incoming message descriptor can
have different buffer types distinguishing between various packet types. A buffer type of
BT_ATM indicates that it is an ATM cell descriptor and needs to be processed for AAL5
reassembly, while buffer types of BT_MPLS_FR, BT_MPLS_PPP and BT_MPLS_ATM
indicate that this is the last ATM cell of the MPLS packet and the reassembled MPLS
packet and the information contained in the descriptor has to be passed to the MPLS
processing.

7.10.1 SDP
The SDP for reassembly is configured for byte level loop back. It performs payload CRC
and initiates the DMA transaction to append the current cell packet at the end of the
SDU. On the non-last cell packet, the SDP initiates a CRC table update using the XOR
command in the non-last mode. The TLU CRC table is indexed by vcIndex. On the last
cell for a SDU, the XOR command is used CRC Rx last mode to verify the accumulated
CRC. The results come back on the ring bus and are examined by the CPRC.
Specifically, functions performed by each of the components of the SDP are described
below:

7.10.1.1 TxByte
The TxByte processor performs the following functions:

• Wait for Tx scope from the CPRC
• Initialize the CRC accumulator.
• Forward 12 bytes that may contain MPLS related information if the SDU is an

MPLS packet. The RxByte of this CP takes care to collect 12 bytes prior to
collecting any other bytes.

• Forward the rasType, eom_offset, vcCidIndex, numalignedBytes and
numUnalignedByteCount to RxByte. The rasType indicates whether it is AAL5 or
AAL5_MPLS. The VcCidIndex holds vcIndex value for AAL5. The eom field holds
the eom flag indicating whether this is the last cell of the packet.
NumUnalignedBytes will always be zero for AAL5.

• Initialize a counter Counter1 (with 0xc1) to the value of numAlignedBytes. For
AAL5, this parameter is always 48. Initialize another counter Counter2 (with
value 0xc2) numBytesPartialPayload.

• Start sending partial payload bytes from merge space, incrementing the
Counter2 for every byte. When this counter hits 0xff, all unaligned bytes would
have been sent. Accumulate the partial CRC every byte transmitted.

• Now start sending the payload bytes, incrementing Counter1 for every byte and
accumulate the CRC. Stop accumulating CRC when the counter hits 0xff.

• Send the remaining payload bytes. These are the unaligned bytes and will be
recirculated for the next packet. Hence CRC should not be computed on these
bytes.

• After sending all payload bytes, the partial CRC accumulated thus far is sent.
• At this point TxByte is done with processing the cell. It gives up the scope to the

CPRC and waits for the next cell/packet.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 51 / 146

The RC writes information about cells to be reassembled into merge space for TxByte to
use in its processing. The data structure is described in section 7.10.3.1. The TxByte
processor is not configurable through control space.

7.10.1.2 RxByte
The RxByte processor performs the following functions:

• Wait for extract scope from CPRC.
• Streams in 12 bytes, which may contain information relevant to MPLS packet

processing
• Stream the rasType, eom, vcCidIndex, pduLength and numUnalignedByteCount

to the extract space. pduLength is the aligned byte count received from the
TxByte.

• Make the scope available for CPRC, by setting L1_DONE flag.
• Start streaming payload into the Rx staging area. The CPRC will setup the DMA

to transfer it into SDRAM to the correct offset. Use a counter to determine when
the payload ends.

• Copy the last six bytes of the payload into the extract space structures for uui,
cpi, length and CRC. In case this is the last cell, the CPRC will need this
information for forwarding this packet to the IP CPRC. This information should
also go to the staging area.

• After the payload ends, the next six bytes are the accumulated CRC. Initiate a
TLU XOR command using this CRC.

• Mark the scope status flags as L2_DONE, thus giving the trailer to the CPRC.
• Wait for another scope to be available from the CPRC.

RxByte writes information about PDUs being reassembled into extract space for the RC
to use in its processing. The data structure is described in section 7.10.3.2. The RxByte
processor is not configurable through control space.

7.10.2 RC
The reassembly RC component uses two threads to perform its task, namely, an input
thread and an output thread. The initialization code starts the two threads. Each of these
is described next.

7.10.2.1 Initialization
The initialization phase in the segmentation CP does the following:

• Initializes buffer pools.
• Creates contexts for the input and output threads
• Initializes ring bus Tx message registers used by RxByte for RAS CRC Table.
• Setup DMA engines and initializes the SDP scopes.
• Enables the SDPs

7.10.2.2 Input Thread
The input thread handles incoming datagrams. Specifically, it does the following:

• De-queues input ATM cell descriptors

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 52 / 146

• Checks the buffer type of the incoming AAL-5 SDU. The Buffer Type can hold
following values:

o BT_ATM: - It indicates the packet is an AAL-5 PDU. It fills the merge
space with information required by RxByte to reassemble the ATM cells
at output thread.

o BT_MPLS_ATM: - It indicates the AAL-5 PDU is to be MPLS switched
and the egress interface in an ATM interface.

o BT_MPLS_PPP: - It indicates the AAL-5 PDU is to be MPLS switched
and the egress interface in a PPP interface.

o BT_MPLS_FR: - It indicates the AAL-5 PDU is to be MPLS switched and
the egress interface in an FR interface.

• For AAL-5 SDUs which are to be MPLS switched, there is an additional 12 bytes
of information which needs to be sent across the MPLS processing module after
the cells are reassembled. These 12 bytes of information is as follows:

o LabelSwap (2-Bytes)
o LabelPush (2-Bytes)
o Egress Port buffer type (2-Bytes)
o Hop count and MPLS action (2-Bytes)
o Egress cell header if the egress interface is an ATM interface (4-

Bytes).These bytes are streamed out by TxSDP before ant other
information.

• Starts the DMA of the packet and releases the scope for merge space.

7.10.2.3 Output Thread
The output thread handles the outgoing reassembled AAL-5 SDUs. Specifically, it
performs following activities:

• Maintains a rasList structure to track re-assembly state per VC. An array of 1024
RasList structures is maintained in DMEM. This array is indexed by the vcIndex
from the ATM VC table for the input cell’s VPI and VCI. The vcIndex for AAL5
VCCs is hence restricted to the range [0, 1023]. Each element of this array is
initialized with a valid buffer handle and offset set to zero.

• After it receives a cell for AAL-5 reassembly, it locates its state entry in the
rasList array, using the cell’s vcIndex. The buffer handle in this specifies the
SDRAM buffer at the end of which this cell needs to be appended. The offset
specifies the length of AAL-5 SDU reassembled so far. This new cell needs to be
written at the ‘offset’ location within the SDRAM buffer.

• Reads the extract space and updates the offset in the corresponding rasList
array entry.

• If the EOM Flag is set in the extract space, the current SDU has completed.
When this flag is set, the output thread performs the following operations:

o Reads the rasType if it indicates an MPLS switched SDU.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 53 / 146

o If the RAS type is RAS_MPLS_ATM, then it fills in the descriptor the 12-bytes
of information for MPLS processing module.

o Wait for CRC results from TLU: - The SDP accumulates CRC for each SDU
in a TLU table, using the XOR command in CRC mode. On the last cell, the
SDP issues the XOR command with CRC Rx last option. Upon getting this
command, the TLU first accumulates the CRC in the command and then
checks to see if the accumulated CRC indicates CRC success. It returns a
ring bus success response on CRC success and a ring bus error otherwise.

o If the response is a success, an IP message descriptor is created for the
SDU. It then waits for the SDP to deliver the aal5 trailer. The trailer contains
SDU length, the aal5 UUI and the CRC. It fills the length field in the IP
message descriptor using the length field from the trailer and dispatches the
message descriptor to the IP CPRC. It then sets the offset field in the rasList
entry to zero and allocates a new buffer for the next SDU on this VCC.

o If the response indicates a CRC failure, it means that the AAL5 SDU suffered
errors in transit and should be discarded. The offset is set to zero so that the
next SDU on this VC can reuse the current SDRAM buffer.

o The descriptor in case of valid SDUs is then queued to the appropriate
queue. For MPLS Switched SDUs, it queues it to MPLS CP, else to the IP
module.

o The maximum permitted SDU size is restricted to 2048 bytes in MSA
application. If the offset field in the rasList entry exceeds 2048, the SDU is to
be discarded. For an SDU that exceeds 2048 bytes, subsequent ATM cells
are appended in the last 48 bytes of its buffer – when the output thread finds
the offset to exceed 2048, it always copies the current cell into the last 48
bytes. When the last cell for this SDU arrives, the cell is copied into the last
48 bytes and the offset is then set to zero. This effectively discards the SDU
and makes the buffer available for the next SDU.

o Frees the scope to RxSDP

7.10.3 Data Structures

7.10.3.1 Merge space
The RC writes information about outgoing packets to merge space for TxByte to use in
its processing. The data structure has the following format:

Byte Offset 0 1 2 3
0 rasType Eom_offset vcCidIndex
4 NumAlignedBytes NumUnalignedBytes NumBytes

PartialPayload
pduLen

8 PartialPayload
12 PartialPayload
16 PartialPayload
20 PartialPayload

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 54 / 146

24 AppData
28 AppData
32 AppHdrData

typedef struct{
int8u rasType;
int8u eom_offset;
int16u vcCidIndex;
int8u numAlignedBytes;
int8u numUnAlignedBytes;
int8u numBytesPartialPayload;
int8u pduLen;
int8u partialPayload[16]; /* Partial Payload */
int16u data[4];
int32u appHdrdata;

} RasMergeSpace;;

• rasType – 0x00 for AAL5 and 0x01 for MPLS Switched AAL-5
• eom – 0x00 if this is not the last cell and 0x80 if it is the last cell of a SDU
• vcCidIndex – the VC Index
• numAligned – the number of bytes in the data stream that should be transferred

to SDRAM
• numUnAligned – the number of bytes in the data stream that will be transferred

to the extract space
• numBytesPartial – the number of unaligned bytes from the previous ATM cells
• pduLen – the size of the ATM PDU
• partialPayload[16] – the unaligned bytes from previous ATM PDU
• AppData – application specific data for MPLS switched AAL-5 SDU
• AppHdrData – the egress cell header.

7.10.3.2 Extract Space
RxByte writes information about recirculated datagrams into extract space for the RC to
use in its processing. The data structure has the following format:

Byte Offset 0 1 2 3
0 rasType Eom_offset vcCidIndex
4 PduLength NumUnalignedBytes pad
8 Uui Cpi PayloadLength
12 CRC
16 PartialPayload
20 PartialPayload
24 PartialPayload
28 PartialPayload pad
32 AppData
36 AppData

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 55 / 146

40 AppHdrData

typedef struct {
int8u rasType;
int8u eom_offset;
int16u vcCidIndex;
int8u pduLength;
int8u numUnAlignedBytes;
int8u reserved[2];
int8u uui;
int8u cpi;
int16u payloadLength;
int32u crc;
int8u partialPayload[15];
int16u descData[4];
int32u appHdrData;

} RasExtractSpace;

• rasType – 0x00 for AAL5 and 0x01 for MPLS Switched AAL-5
• eom – 0x00 if this is not the last cell and 0x80 if it is the last cell of a SDU
• vcCidIndex – VC index
• pduLength – the size of the ATM PDU
• numUnAligned – the number of unaligned bytes in the extract space
• pad – unused
• uui – user-to-user indication from the AAL5 trailer
• cpi – reserved
• payloadLength – size of the reassembled AAL5
• crc – CRC-32 from the AAL5 trailer
• partialPayload[15] – the unaligned bytes from current ATM PDU
• AppData – application specific data for MPLS switched AAL-5 SDU
• AppHdrData – the egress cell header

7.10.3.3 RasList
The RasList structure is used to track re-assembly state per VC. It is an array of 1024
structures with the following format:

Byte Offset 0 1 2 3
0 BufHandle
4 Offset

• bufHandle – the handle of the buffer in which cells are being reassembled
• Offset – the offset in the reassembly buffer at which the next cell should be

placed

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 56 / 146

7.10.3.4 Descriptor information
The following is the data structure of the descriptor, which is en-queued or de-queued:

Byte Offset 0 1 2 3
0 bufHandle
4 Length port_bufType
8 appData
12 appData

typedef struct {
BsBufHandle bufHandle;
int16u length;
int16u port_bufType; /* 15:5 - port, 4:0 - bufType */
union {

int8u byte[8];
int16u hword[4];
int32u word[2];
AtmDescData atm;
FrDescData frameRe;
SegDescData seg;
TdmDescData tdm;
MlPppDescData mlPpp;
MplsDescData mpls;

} appData;
} DescriptorMsg;

• bufHandle – reassembly buffer handle
• length – chunk length
• port_bufType – input port and buffer type of the next module
• appData - Application specific data.

7.10.3.5 Ring Bus Slots
The reassembly CP launches a TLU XOR command into RAS CRC table. It uses
following slots for the purpose:

• Request Slot 0
• Response Slot 2

7.10.4 Issues/Enhancements
None

7.11 IP QoS Classifier (CP 10)
CP10 implements the IP QoS Classifier component that provides classification for quality
of service (as specified in RFC 2474,RFC 2475, RFC 1633, RFC 2211 and RFC 2212)
that will be configured in Q-3 TMC. The QoS implemented are DiffServ and IntServ in Q-
3. This component does not use the SDP. It uses a single CPRC to perform QoS
classification for DiffServ and IntServ at all ingress queues in the system. The IP QoS
Classifier CPRC has an input QMU queue for every egress IP port. This component

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 57 / 146

uses multiple fields from the IP and TCP/UDP headers to determine the traffic category
(i.e., the flow for an IP packet) and sends it to Q-3 that will apply the appropriate marking
and shaping strategy on it. Currently, the design supports IPv4 only.

7.11.1 XP Initialization
XP initialization is mentioned in section 7.1.1.

7.11.2 Host Configurations
Host is responsible to perform the Q-3 TMC configurations as shown in figure 6. It
configures the following parameters in the Q-3 map.

• Since total number of channels to be supported are 2K. Each channel consists of
4 traffic queues for both DiffServ and IntServ QoS treatment. i.e. the four queues
per channel will either be used by DiffServ or IntServ based on PHB in flow table.
For DiffServ it will support 2 AF queues, 1 EF queue and 1 Best effort queue per
channel. Whereas for IntServ it will support 2 guaranteed service traffic queues
and 2 controlled load service traffic queues. These traffic queues are configured
in flow table using PHB field. So total number of traffic queues to be supported =
2K *4 = 8K (for either DiffServ or IntServ)

• One Level2 scheduler (each having 4 inputs) will be configured for each channel.
So it will need 2K level2 schedulers for normal path. Discard path will also need one
scheduler. So Total number of level2 schedulers = 2K+1

• Each Level1 scheduler will consist of 1K inputs. But total number of incoming
inputs will be 2K. So total number of level1 schedulers = 2K/1K = 2

• At the top level, it is mandatory to have one level0 scheduler in Q-3 hierarchy.
• Total number of VOPs to be created will be 128 for normal path and one for
discard path. VOPs are created for every T1/E1 interface. VOPs are also created for
inter CP communication.

The IP QoS related Q-3 configuration steps are given here. The Q-3 configurations for
other C-3e components are given in section 7.21.2. The configuration steps starting from
top to bottom in Q-3 hierarchy (i.e. from level 0 scheduler to traffic queues) are
described as follows.

• Initializes the Q-3 TMC using qsTmcInitialize ().
• Creates one level0 RR scheduler with 3 input legs using qsTmcSchedCreate ().
• Creates the discard path as follows:

o Creates one level2 RR scheduler with one input leg using
qsTmcSchedCreate ().

o Creates the discard queue using qsTmcTrafficQueueCreate () and associates
it with the level2 scheduler created as above.

o Creates the VOP as 0 for discard path using qsTmcVopCreate() and
associates it with first leg of level0 scheduler.

• Creates parent buffer pool and buffer pool associated with it using
qsTmcBufferPoolCreate(). These buffer pools will be used by traffic queues.

• Creates the 2-level1 WFQ schedulers each having 1024 (1K) input legs. These
schedulers will feed the level0 RR scheduler. The maximum number of level1
schedulers (having 1K inputs) to be supported is 18 in new Q-5.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 58 / 146

• Creates the 2K-level2 WFQ schedulers each having 4 input legs that will receive
the input descriptor from four traffic queues via four scheduler queues. Each
scheduler queue is mapped with one traffic queue. This mapping is not shown in
the figure 3.0. For DiffServ treatment, the input descriptor may originate from AF
traffic queue or EF traffic queue or best effort traffic queue that will be configured
in flow table. For IntServ treatment it may originate from either guaranteed
service traffic queues or control load service queues configured for it in flow
table. These schedulers will feed the level1 WFQ scheduler. The max number of
level2 schedulers to be supported is 18K.

• The following traffic parameters will be configured in each level2 scheduler for
each traffic flow.

o For DiffServ treatment

� CBS: Committed Burst Size
� EBS; Excess Burst Size
� Increment; The number of tokens added into token buckets at

every tick
� Tc; Current token bucket size for committed bursts
� Te; Current token bucket size for excess bursts
� CIR; Committed Information Rate
� LastUpdateTime; Last time when traffic was seen on this flow

o For IntServ treatment (Guaranteed service parameters)
� Token Bucket Rate (r)
� Token Bucket size (b)
� Peak data rate (p)
� Min Policed Unit (m)
� Max Policed Unit (M)
� Rate (R)
� SlackTerm (S)

o For IntServ treatment (Controlled load service parameters)
� Token Bucket Rate (r)
� Token Bucket size (b)
� Peak data rate (p)
� Min Policed Unit (m)
� Max Policed Unit (M)

• Creates two discard blocks using qsTmcDiscardCreate() and associates these
with the discard queue as created in above step. These discard blocks are as
follows:

o Discard block1
� Type: Single token bucket (qsDiscTypeSingBucket)
� Discard parameters: 1b1Limit and 1b1Increment

o Discard block2
� Type: RED (qsDiscTypeRED).
� Discard parameters: probabilityMax

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 59 / 146

• Creates 8K traffic queues that will pass the traffic to the Q-3 hierarchy and
associates these queues with buffer as allocated above. It also associates the
queues with the discard blocks. One channel will have 4 traffic queues. Max number
of traffic queues to be supported in new Q-5 is 128K.

• The 128 different VOPs for normal path have been created in section 7.21.2. It
configures among these 128 VOPs with each of the 2K traffic paths.

• Enables the Q-3 configuration map using qsTmcEnqueueEnable().
• Communicates with XP to indicate that Q-3 configuration is done.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 60 / 146

Discard queue

QMU

2K Level2
schedulers

128 different
VOPs
(For each CP

, XP and FP)

DiffServ QoS
-2 AF queues
-1 EF queues
-1BE queues

2 Level1
schedulers
(Each having
1k inputs)

8K TQs
(4 TQs per
port)

WFQ - - - - - - -

VOP

Egress

Ingress

IP QoS
Classification

IP QoS queue

RR
Level0
scheduler
(3 inputs)

VOP VOP VOP

VOP

Token Bucket
Discard Block

WFQ WFQ WFQRR

WFQ WFQ

IntServ QoS
- Guaranteed

load queues
- Controlled

load queues

RED Discard
Block

Figure 6- Q-3 configuration map for IP DiffServ and IntServ

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 61 / 146

7.11.3 RC

7.11.3.1 Initialization
The IP QoS Classifier component does the following things during its initialization:

• Creates the input and output threads.
• Initializes the flow table lookup.
• Communicates with XP to indicate that it has enabled.
• Jumps to the ingress thread.

7.11.3.2 Ingress Thread
IP packet descriptor is de-queued from IP QoS queue. Packets coming to the IP QoS
CPRC already have the complete IP header. The first 64 bytes of the packet contain all
the protocol headers. They are DMA transferred into DMEM buffer using
bsBufferRead(). The specific header fields that should be used to determine the traffic
category (that is, the flow) for the IP packet are specified in a Multi Field (MF) mask.
They are as shown in Figure 7.

The header fields specified by the MF mask are concatenated to form up to a 14-byte
TLU lookup key. An exact match table (IP flow table) is maintained in TLU table, to
match these keys to a flow id and a DiffServ PHB.

Ingress performs the following functions:
• Dequeues the IP packet descriptor from IP QoS queue.
• Gets the port and QoS queue from the incoming descriptor enqueued by IP
component. This QoS queue denotes the Q-3 base traffic queue. IP component
would have got the QoS queue by performing port lookup and sent it into IP QoS
classifier component.

• Forms the 14-byte TLU lookup key based on the 5-tuple fields in the IP packet
header.

• Launches flow table lookup.

Figure 7- DiffServ Multi field bitmask

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 62 / 146

• Repeats the above steps for all packets that are present in IP QoS Queue.

7.11.3.3 Egress Thread
After launching a flow table lookup, the context switches from ingress thread to egress
thread, which waits for the results of the flow table lookup. It performs the following
functions.

• Waits for the flow table lookup to be completed.
• Gets the PHB and traffic queue offset based on lookup result. Flow table gives
the appropriate traffic queue offset corresponding to the QoS treatment. The QoS
treatment will be configured as DiffServ or IntServ in the flow table. In the case of
DiffServ, it will denote the AF or EF or BE. Whereas in the case of IntServ it will
denote guaranteed service or control load service.

• Determines the destination traffic queue as follows:
Destination traffic queue = QoS queue + traffic queue offset
QoS queue will be determined from incoming IP descriptor in Ingress function.

• For AF and EF, it determines the appropriate DS code point, updates it in IP
header (stored in SDRAM) using a bsBufferWrite() function and adjusts the IP
checksum accordingly.

• Enqueues the packet descriptor into destination traffic queue using
qsEnqueueExt().

7.11.4 Q-3 Functionality
IP QoS classifier component en-queues the packet into Q-3 traffic queue to apply
various QoS parameters (DiffServ or IntServ). IP component performs the port table
lookup to get the base traffic queue corresponding to the port and sends this queue
information to IP QoS classifier component if QoS treatment is needed. IP QoS classifier
then determines the destination traffic queue based on the offset in flow table and finally
enqueues the descriptor into Q-3 traffic queue. Q-3 TMC provides marking/dropping,
policing and traffic shaping for the packet based on configured traffic parameters. Q-3
TMC will enqueue the conformant packets into QMU queue via VOPs. Non-conformant
packets will either be discarded using discard path or marked as low priority. Traffic
parameters and scheduling in Q-3 is described in host configuration section 7.11.2.

7.11.5 Data Structures

7.11.5.1 Descriptor information
IP descriptor will be used as given in section 7.8.3.3.

7.11.6 Flow Table
Each entry of the flow table has the following format:

Byte Offset 0 1 2 3
0 destIp
4 srcIp

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 63 / 146

8 destPort srcPort
12 protocol egressPort maskBits phb
16 flowId queueOffset
20 pad

The description of each field is as follows:
DestIp: destination IP address of the packet
SrcIp: Source IP address of the packet
DestPort: TCP/UDP destination port of the packet
SrcPort: TCP/UDP source port of the packet
protocol: protocol (TCP/UDP) in the packet
egressPort: output port
maskBits: number of significant bits in the key
phb: per hob forwarding behavior to apply. It will denote DiffServ (AF/EF/BE)

or IntServ (Guaranteed service/Control load service).
flowId: Flow Id that defines packet flow
queueOffset: Traffic queue offset

7.11.7 Issues/Enhancements
• Since total number of channels to be supported is 2048 so egressPort field will
require 11 bits but egressPort field in flow table lookup key is of size 1-byte because
of key size limitation (max 14 byte).

7.12 FR processing – switching (CP11)
The frame relay processing for the application is distributed into two CPs (CP11 and
CP3). CP11 will perform the FR switching and CP3 will perform the FR encapsulation.
All the packets, which belong to FR, will be queued to CP11 and it decides whether the
packet needs the MPLS, IP or FR processing. The packets that originate from MPLS or
IP module, which have to pass through FR interface, need FR header insertion, which
will be carried out by CP3.

CP11 is used to re-circulate the FR frames destined for TDM Tx for transmission. Its
main functions are:
• Launch lookup based on the DLCI value from the descriptor.
• Based on the response, en-queue the packets to the appropriate queue (IP or

MPLS) if needed.
• Perform the FR switching by properly modifying the FR header with the outgoing

DLCI value.
• Properly en-queue the modified buffer to the EgressQueue.

7.12.1 SDP

The SDP is configured for byte-level re-circulation. The SDP adds the FR header to the
frame. The functions provided by each of its component processors are described
below.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 64 / 146

7.12.1.1 RxByte
The RxByte processor fills the extract space based on the descriptor information sent by
the TxByte processor and streams the modified payload to the output thread (receive
side) of the RC .The RxByte processor performs the following functions as part of the FR
recirculation:

• Waits for a receive scope to be available.
• Receives the bytes from the TxByte processor.
• The first two bytes of the payload contain the egress_queue. This is written to

the extract space. The next two bytes contain the outgoing port information
and buffer type information. This will also be written to the extract space.

• The packet length is indicated in the next two bytes. This is written to the
extract space and header ready is indicated in the rxStatus register.

• Stream the remaining payload to DMEM.
• When data9 (i.e., ninth bit is set in the incoming payload) is received switches

scope.

7.12.1.2 TxByte
The TxByte processor modifies the FR header based on the information given by the
input thread (transmit side) of RC and transmits the remaining payload data to RxByte
processor. TxByte processor performs the following functions as part of the FR re-
circulation:

• Reads the payload from DMEM until Data9 is observed.
• Reads the outgoing DLCI value from the merge space and modify the existing value

in the packet with the new value.
• Set the congestion control information fields in the FR header to zero.
• Transmit the egress_queue, port_buftype and length of the packet before the

payload data so that the RxByte receives it and places in the extract space.
• Sends the FR payload data to RxByte.
• Switches scope and waits for next packet to be available.

7.12.2 RC
The RC manages the FR re-circulation. All CPs that want to transmit FR frames, en-
queue their packets to the FR re-circulation CP so that the FR header is modified in the
frame before transmission.

7.12.2.1 Initialization
The initialization component initializes the data structures and registers used by the RC.
The following activities are done during the initialization:

• Initializes the buffer pools.
• Creates input and output threads.
• Initializes the FR table lookup slots.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 65 / 146

7.12.2.2 Input Thread
The Input thread services all the FR traffic which needs the FR header modification in
the frame is queued here. This passes the frame to SDP.

• De-queues the descriptor information.
• Launch a lookup based on the DLCI value from the descriptor. If the lookup fails,

silently drop the packet.
• While waiting for the response, process the next packet from the queue.
• Based on the egress_port (from the lookup response), en-queue the packet to IP or

MPLS queue.
• Depending on whether the packet goes to IP or MPLS build the descriptor with the

appropriate fields.
• For MPLS the fields that need to be filled in the descriptor are: port_buftype,

LabelsSwap, LabelPush, EgressQueue, HopCount, InIfType_action
• For IP only port_buftype is filled in the descriptor.
• If the packet is FR switched, fill the merge space with outgoing DLCI value (from the

lookup response) and header information.
• Initiates payload transfer from SDRAM to DMEM and switches context to the next

thread.
• Loops to the beginning to wait for another descriptor.

7.12.2.3 Output Thread

The output thread handles the incoming packets from the RxByte processor.
• Waits for the header processing completion on the RxByte processor indicated by

L1Done in the rxStatus register.
• Allocates new buffer and initiates the payload transfer from DMEM to the SDRAM.
• Creates the descriptor with buffer handle, buffer length and port_bufType

information.
• Enqueue the descriptor to the appropriate destination based on the egress_queue.
• Switches context to the next thread.
• Loops to the beginning to wait for another scope to be available.

7.12.3 Data Structures
The merge space and Extract space structures used in the FR processing are explained
below:

7.12.3.1 Merge space
The RC writes information needed for FR encapsulation and descriptor fields to be used
by Rx CPRC, into merge space. TxByte processor does FR encapsulation and sends
the descriptor fields to RxByte. The data structure has the following format:

Byte Offset 0 1 2 3

0 FrHeader
4 port_bufType Length

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 66 / 146

8 EgressQueue Pad
The explanations for the above-mentioned fields will be as follows
• FrHeader: The outgoing DLCI value.
• EgressQueue: specifies the final queue.
• port_buftype – Outgoing interface information and the buffer type
• Length – Length of the packet.
• Pad: unused.

7.12.3.2 Extract Space
RxByte processor writes descriptor information into extract space for the RC to use in its
processing. The data structure has the following format:

Byte Offset 0 1 2 3
0 EgressQueue Pad
4 port_buftype Length

The explanations for the above-mentioned fields will be as follows
• EgressQueue: specifies the final queue.
• port_buftype: Outgoing interface information and the buffer type
• Length: Length of the packet.
• Pad: unused.

7.12.3.3 Descriptor information for FR
The TDM RX module will fill the FR descriptor information to be used by the FR re-
circulation module for processing. The format of the descriptor will be as follows:

Byte Offset 0 1 2 3
0 BufHandle
4 Length PortBufType
8 FrHeader

The explanations for the above-mentioned fields will be as follows
• BufHandle: Handle of the buffer being re-circulated.
• Length: specifies the length of the buffer.
• Port_bufType: a bitmask is defined as follows:

o b15-5: port – the output port on which this datagram to be transmitted.
o b4-0: bufType – the type of buffer being re-circulated and the egress port type

(could be BT_IPV4, BT_MPLS_FR,BT_FR)
• FrHeader: specifies the DLCI value and the congestion control Information.

7.12.3.4 Ring Bus Slots
FR uses these slots

• FR Request slot 1
• FR Response slots 2,3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 67 / 146

7.12.4 Issues/Enhancements

• At present the congestion control information in the FR header is not processed.
• The two bytes address format of DLCI (10-bit) is supported now.
• FR module can be Extended to support three (16-bit DLCI) and four bytes (23-bit

DLCI) address format of DLCI.

7.13 MPLS (CP12)
CP12 implements the MPLS component for the MSA application. This component
performs MPLS lookup and operation (MPLS actions performed for label encapsulation
or label switching). The MPLS operation is done based on the MPLS entry information
(labelSwap, labelPush, MPLS action, hopCount) maintained in the different TLU tables.

The tables mentioned below maps the input frame/packet type (PPP / ATM / FR / IP) to
the TLU table in which MPLS entry is maintained.

Input frame
/packet type

TLU table CP from which
lookup

launched

Notes

PPP MPLS Table
(This is
defined in the
section
7.18.8)

MPLS CP This table is also used for POP action
(which needs additional label lookup
based on the next label in the stack)
in the case of MPLS packet over ATM
and FR

ATM ATM VC table TDM CP

FR FR Table FR CP
IP IPv4 Routing

table
IP CP This table handle MPLS ingress

packets

The top label of the MPLS packet maps to VPI/VCI for ATM cell and DLCI for FR frame.
Hence, the lookup response of ATM VC table and FR table is the MPLS entry
information.

7.13.1 SDP
The SDP is configured for byte level re-circulation. The SDP re-circulates the packet to
remove PPP/FR header, sends descriptor information to be used by Rx CPRC and to
perform MPLS operation.

7.13.1.1 TxByte
The TxByte processor, removes the PPP/FR header, sends descriptor information to
RxByte and performs MPLS operation.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 68 / 146

As MPLS operation involves addition and removal of shim header fields (LabelSwap,
LabelPush, BOS, ttl) to the packet, TxSDP is the appropriate place chosen to perform
this functionality.

The TxCPRC writes information about the MPLS data needed for MPLS operation and
the descriptor information (to be queued to the respective module based on the egress
port type) into merge space. The data structure is defined in section 7.13.3.1. TxByte is
not configurable through control space.

The detailed flow of Transmit Byte processing is described below:
• Wait for Transmit scope from the CPRC.
• Removes FR/PPP header(if any) based on the header length value set from

Transmit CPRC.
• Sends the following descriptor information in merge space to the RxByte,

o rxAlgorithm
o Port_bufType (15:5 – egress port, 4:0 – egress bufType)
o Packet header (CellHeader for ATM or DLCI for FR) and egressQueue.

• MPLS Operation is done based on the MPLS command, whose functionality is
described below:
o Get the MPLS command and TTL value from the merge space and save the

same to the temporary registers.
o Check for POP command. If the command is POP, Get the number of labels to

be removed. Remove the shim header and repeat the removal of header until the
count reaches the number of labels to be removed. Jump to check for
SWAP_PUSH command.

o Check for SWAP_PUSH command. If the command is SWAP_PUSH, Perform
the PUSH operation followed by a SWAP. For a PUSH operation, Construct
MPLS header using ‘labelPush‘ from merge space, the BOS bit with zero as the
value and the stored TTL value. Finally, Jump to SWAP operation. Else, Jump to
check for SWAP command.

o Check for SWAP command. If the command is SWAP, Send the ‘labelSwap‘
from merge space, the old BOS bit and the stored TTL value. Save the old BOS
bit and Jump to check for the presence of shim header(s). Else, Jump to check
for PUSH_PUSH command.

o Check for PUSH_PUSH command. If the command is PUSH_PUSH, Perform, a
PUSH operation and do a next PUSH by jumping to PUSH operation. Send the
‘labelPush ‘from merge space, the BOS bit with zero value and the stored ttl
value else, Jump to check for PUSH command.

o Check for PUSH command. If the command is PUSH, Send the label to be
pushed from merge space, the BOS bit (set only for the packets received from
IPv4 module) and the stored TTL value. Jump to check for the presence of shim
header(s). Else, Jump to check for the presence of shim header(s).

o Check for the presence of shim header based on the BOS bit saved during the
MPLS operation. If BOS bit is not set, (i.e. presence of one or more shim header)

o Stream the shim header until the last shim header is reached. Update the TTL
from merge space for all shim header(s). Else, Jump to check for POP_IPv4
command.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 69 / 146

o Check for POP_IPv4 command based on the Tx ALG value set to
BT_MPLS_IPv4.If POP_IPv4, update the ttl and IP checksum from the merge
space to the IP header else jump to stream the remaining payload.

• Stream the payload until the Data9 set in the last byte.
• Sends an end of packet byte with Merge9 set.
• Switches scope and waits for next packet.

7.13.1.2 RxByte
The RxByte processor, extracts the descriptor information and performs NULL Label
encapsulation for MPLS packet over ATM / FR.

The RxByte processor writes information about the descriptor into extract space for the
RxCPRC to use in its processing. The data structure is defined in section 7.13.3.2.
RxByte is not configurable through control space.

The detailed flow of RxByte processing is described below:

• Waits for a receive scope to become available.
• Receives descriptor information from TxByte and places it in extract space.
• If RxAlgorithm is set to MPLS_NULL_LABEL, the top label is passed with the NULL

label (only for MPLS packet over ATM/FR)
• Streams the remaining bytes to DMEM
• Switches scope and waits for another to become available.

7.13.2 RC
The MPLS component uses two threads to perform its task, namely, an input thread and
an output thread. The initialization code starts the two threads. Each of these is
described in the following sections.

7.13.2.1 Initialization
The MPLS component does the following things during its initialization:

• Initializes the buffer pools.
• Allocate the buffers for the receive path. There are two data scopes for handling

inbound packets. Allocate a buffer for each data scope and setup the registers for
receiving data.

• Allocate the buffers for the transmit path, which are never used. This is used to
simplify the logic of freeing buffers in the input thread.

• Creates the input and output threads
• Initializes the MPLS Table lookup to be launched from TxCPRC.
• Initializes both scopes by giving the SDP ownership.
• Enable the SDP.
• Jumps to the first thread.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 70 / 146

7.13.2.2 Input Thread
The Input thread fills the merge space with the MPLS forwarding information for MPLS
operation and the descriptor fields to be passed to RxCPRC for further processing. The
merge space information is obtained from the MPLS entry maintained in different TLU
tables. (Refer section 7.18.8)

The detailed flow of Input thread processing is described below:

• Wait for a descriptor to be present in its queue then de-queues it. The descriptor is
filled by any of the following CP components:

o TDM CP for MPLS over ATM packets.
o TDM CP for MPLS over PPP packets.
o FR CP for MPLS over FR packets.
o IP CP for IP packets entering MPLS domain.

Note: For all cases except PPP packets and POP operations, the descriptor holds the
necessary information to fill the merge space.

• Read the first 64 bytes of SDRAM buffer to get the Label Stack.
• Adjust the buffer offset pointing to the start of Label stack.
• Get the input port type. (ATM /FR/PPP/IPv4) from the descriptor.
• If the input port type is ATM/FR/IPv4, perform the following functions:

o Get the TTL from the incoming packet (If the input port type is ATM/FR, TTL is
extracted from the shim header and is extracted from IP header if the input port
type is Ipv4).

o Decrement the TTL value with the descriptor field ‘hopCount’
o Save the updated TTL value and port_buftype.
o Get the MPLS action and check for POP command.
o If POP command and Label stack is with more than one MPLS label, then set a

flag to perform additional label lookup. For all other cases, save the MPLS
information (labelSwap, labelPush, cmds, ttl, port_bufType) to be copied in
merge space.

• If the input port type is PPP or POP command (which needs additional lookup)
perform the following.

o Launch the lookup with the MPLS label in the shim Header.
o Wait for the MPLS lookup to complete and if the lookup fails, drop the packet.
o Save some of the merge space information (port_bufType, TTL) from the

lookup response.
o For POP action, repeat the MPLS Label lookup. The number of POP

operations to be performed is stored in the 3 least significant bits of the cmds
field of merge space. In addition, more than one MPLS operation like POP
and SWAP, POP and PUSH are also stored in cmds field. (Refer merge
space structure for more details)

o Based on the MPLS action, save the remaining merge space information
(cmds-MPLS command, labelSwap, labelPush).

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 71 / 146

• If the egress-port type is ATM /FR, fill the egressQueue and the header information
(Cell Header for ATM and DLCI for FR).

• Fill the txAlgorithm with egressBufType
• Fill the rxAlgorithm with MPLS_NULL_LABEL for MPLS packet destined to ATM /FR

interface.
• For the MPLS command ‘POP_IPv4_LOOKUP’, form the IP checksum adjusted for

the new TTL value.
• Fill the headerLen with the negation of packet header length.
• Waits for a transmit scope to be available from the SDP.
• Fills in merge space from the saved merge space.
• Waits for the previous DMA transfer to complete.
• Begins the DMA transfer for the current buffer being processed.
• Switch context to the next thread.
• Loops to the beginning to wait for another descriptor.

7.13.2.3 Output Thread
The output thread handles sending the descriptor to the appropriate modules based on
the egress port type (ATM /FR /PPP/IPv4).

The detailed flow of Output thread processing is described below:

• Waits for a scope to become available from the SDP.
• Fills in a descriptor using information from the extract space.
• Waits for the payload transfer to complete.
• Allocates new buffer and initiates payload transfer from DMEM to the SDRAM.
• Sends the descriptor to the appropriate destination based on the egress port

type.
• Switches context to the next thread.
• Loops to the beginning to wait for another scope to be available

7.13.3 Data Structures

7.13.3.1 Merge space
The RC writes information needed for MPLS operation and descriptor fields to be used
by Rx CPRC, into merge space. TxByte processor does MPLS operation and sends the
descriptor fields to RxByte processor. The data structure has the following format:

Byte Offset 0 1 2 3
0 Pad txAlgorithm cmds ttl
4 Label Push
8 Label Swap
12 headerLen rxAlgorithm port_bufType
16 appData
20 appData

• Pad-– unused

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 72 / 146

• TxAlgorithm – holds the egressbuftype based on which TxByte identifies the
MPLS action ‘POP_IPV4_LOOKUP’ and the necessary action is carried out (i.e.
updation of ttl and IP checksum in IP header is performed).

• cmds – MPLS command used by TxByte Processor for MPLS operation. Input
thread sets these values based on the MPLS actions (For, POP_IPv4_LOOKUP
action the POP command is set). The 3 least significant bits are used by POP
command to store the number of labels to be removed. Possible enumerated
values are shown below:

typedef enum {
MPLS_CMD_NONE = 0x00,
MPLS_CMD_ADD = 0x10,
MPLS_CMD_PUSH_PUSH = 0x08,
MPLS_CMD_SWAP = 0x20,
MPLS_CMD_SWAP_PUSH = 0x40,
MPLS_CMD_POP = 0x80

} MplsCommands;

• ttl –time to live
• labelPush –label to be added.
• labeSwap – Label to be swapped.

The above fields are used for MPLS operation in TxByte processor.

• headerLen – Length of the header (for PPP and FR) bytes to be removed. It
holds the negative value of the header length.

The descriptor fields sent to RxByte processor are mentioned below:
• rxAlgorithm – NULL label is sent for MPLS packet over ATM and FR, if this

field is set to 0x10 by MPLS Tx CPRC.
• port_bufType – a bitmask defined as follows:

o b15-5: port – the output port on which this datagram to be transmitted.
o b4-0: bufType – the type of buffer being re-circulated (could be

BT_MPLS_PPP, BT_MPLS_ATM, BT_MPLS_FR, BT_MPLS_IPv4)
• appData – application specific data as defined below

The appData field has meaning specific to the processing block to which it has been en-
queued. There are several formats for the appData field.

The segmentation appData field for ATM has the format: specified in the Section 7.4.3.3

The appData field for FR has the following format:

Byte Offset 0 1 2 3
0 frHeader
4 egressQueue pad

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 73 / 146

• frHeader – DLCI value
• egressQueue – Queue for the egress interface
• pad -unused

7.13.3.2 Extract Space
RxByte processor writes descriptor information into extract space for the RC to use in its
processing. The data structure has the following format:

Byte Offset 0 1 2 3
0 pad port_bufType
4 AppData
8 AppData

• pad – unused
• port_bufType – a bitmask defined as follows:

o b15-5: port – the output port on which this datagram to be transmitted.
o b4-0: bufType – the type of buffer being recirculated (could be

BT_MPLS_PPP, BT_MPLS_ATM, BT_MPLS_FR, BT_MPLS_IPv4)
• appData – application specific data as defined below

The appData field has meaning specific to the processing block to which it has been
enqueued. There are several formats for the appData field.
The segmentation appData field for ATM has the format specified in the section 7.9.3.3
The FrDescData appData field for FR has the format: specified in the section 7.13.3.1

7.13.3.3 Descriptor information
MPLS Descriptor is filled by the following CP components.

• TDM CP for MPLS over ATM packets.
• FR CP for MPLS over FR packets.
• TDM CP for MPLS over PPP packets.
• IP CP for IP ingress packet.

Note: For all cases except PPP packets and POP operations, the descriptor holds the
necessary information to perform MPLS operation.

Byte Offset 0 1 2 3
0 labelSwap labelPush
4 hopCount inIfType_action egressQueue
8 appHdrData
12 vcIndex Pad
16 Pad
20 Pad
24 Pad

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 74 / 146

• labelPush – Label to be added.
• labeSwap – Label to be swapped.
• hopCount – value to be decremented to the ttl.
• inIfType_action // 0-3 MPLS action 4-7 inIfType
The enumerated values for MPLS action is provided in Section 7.13.3.1. The
enumerated values for input interface type are shown below.
typedef enum {

MPLS_PPP=0x10,
MPLS_ATM=0x20,
MPLS_FR=0x30,
MPLS_IPv4=0x40

} portType;

• egressQueue – egress queue of the packet.
• appHdrData – header information (Cell Header for ATM and DLCI for FR).
• vcIndex – ndex used by AAL-5 SARs to index their tables.
• Pad –Unused.

7.13.3.4 Ring Bus Slots
MPLS uses these slots:

MPLS request slot 0
MPLS response slot 0,1

7.14 MLPPP (CP 13)
CP13 implements ML-PPP for the application. This component segments datagrams into
fragments for transport over ML-PPP bundles and provides multiple classes of service.
The component also reassembles ML-PPP fragments and forwards them to the next
processing block. This CP uses the ML-PPP remainder table discussed in section 7.18.2

7.14.1 SDP
The SDP is configured for byte re-circulation and provides byte level processing of ML
PPP fragments including header parsing and generation. RxBit, RxSync, and TxBit are
not used.

7.14.1.1 RxByte
The RxByte processor receives ML-PPP fragments from the TxByte processor and
handles them differently depending on whether segmentation or reassembly is needed.
In the reassembly direction, the RxByte processor does the following:
• Waits for and receives the reassembly operation code byte and puts it in extract

space.
• Receives control information (port, index, fragType, length) and puts it in extract

space.
• For SOM fragments, also receives the bufType and puts it in extract space.
• Indicates header processing is done.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 75 / 146

• For EOM fragments, streams all payload bytes to DMEM, switches scope, and waits
for next operation code.

• For non-EOM fragments, streams ‘length’ bytes of payload to DMEM.
• Streams any remaining payload bytes to the ring bus Tx message register.
• When data9 is received, fills in count of remaining bytes in ring bus Tx message

register and initiate TLU write command to send the remainder bytes to the ML-PPP
remainder table.

• Switches scope and waits for next operation code.

In the segmentation direction, RxByte processor does the following:

• Waits for and receives the segmentation operation code and puts it in extract.
• Receives the port number and puts it in extract.
• Indicates header processing is done.
• Receives the ML-PPP encapsulated fragment.
• Writes the payload to DMEM.
• When data9 is received, switches scope and waits for the next operation code.

The RxByte processor communicates with the RC through extract space. Extract space
is described in section 7.14.3.1. The RxByte processor is not configurable through its
control space.

7.14.1.2 TxByte
The TxByte processor transmits ML-PPP fragments to the RxByte processor. In the
reassembly direction, the TxByte processor does the following:
• Waits for scope to be available
• Send the reassembly operation code to RxByte processor.
• Sends control information to RxByte including port, index, and fragType from merge

space.
• Removes any HDLC, PPP, or ML-PPP encapsulation from the fragment.
• For SOM fragments, parses the reassembled PPP protocol field and maps it to the

buffer type.
• Calculates the length of the fragment including for non-SOM fragments, but not

including discarded framing bytes.
• Sends the length, and if necessary send bufType to RxByte processor
• Sends any remainder bytes from merge space to RxByte processor.
• Streams the payload from DMEM to RxByte processor.
• Transmits data9 with a dummy byte to indicate end of packet.
• Switches scope and waits for scope to be available again.

In the segmentation direction, TxByte processor does the following:
• Waits for scope to be available
• Sends the segmentation operation code to RxByte processor.
• Sends the port to RxByte processor.
• Sends the HDLC/PPP/ML-PPP header from merge space to RxByte processor.
• Reads payload from DMEM and sends the number of bytes specified in merge space

to RxByte processor.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 76 / 146

• Transmits data9 with a dummy byte to indicate end of packet
• Switches scope and waits for scope to be available again.

The TxByte processor communicates with the RC through merge space. Merge space is
described in section 7.14.3.2. The TxByte processor is not configurable through its
control space.

7.14.2 RC
The RC manages the en-queuing and de-queuing of ML-PPP fragments and IP
datagrams. It also maintains state information necessary for segmentation and
reassembly. In addition, the RC schedules packets for segmentation.

7.14.2.1 Initialization
The initialization component initializes the data structures and registers used by the RC.
Specifically, it does the following:
• Initializes the buffer pools.
• Creates the contexts for the input, output, and scheduler threads.
• Initializes the ring bus Tx message registers used by RxByte processor.
• Sets up the DMA engines and initializes the SDP scopes.
• Enables the SDPs.

7.14.2.2 Input Thread
The input thread monitors the input queues and processes received descriptors
differently depending on whether segmentation or reassembly is required. In both cases,
the input thread does the following:
• Waits for queue status to indicate its queue is non-empty.
• De-queues the ML-PPP packet descriptor from the QMU queue.
• Maps the TDM port number from the descriptor to a ML-PPP bundle via the port to

ML-PPP bundle map data structure. This structure is described in section 7.14.3.3

For segmentation, the input thread de-queues IP or NCP packets and en-queues
descriptors to the soft scheduler. Specifically, it does the following:
• En-queues descriptor to MC queue based on bundle and class from descriptor. The

MC queues are soft queues as described in Section 12.2
• Adds the MC queue to the active queue list for the bundle.
• Adds the bundle to the active queue list.

For reassembly, the input thread de-queues ML-PPP fragments, possibly encapsulated
in HDLC or PPP and sends them to the SDP for re-circulation. Specifically, it does the
following:

• Retrieves the reassembly state information from DMEM, based on ML-PPP bundle
and MC class.

• If the sequence number is not in order, then it places the descriptor in a linked list.
• If the sequence number is expected,

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 77 / 146

o For non-SOM fragments, launch lookup into ML-PPP remainder table to get
remainder bytes.

o Waits for scope to be available from the SDP.
o Writes reassembly state information and a subset of the ML-PPP header to

merge space.
o Writes the remainder bytes and length to merge space, if necessary.
o Waits for the previous payload transfer to complete.
o Initiates payload transfer from SDRAM to DMEM.
o Updates reassembly state in DMEM.
o If linked list has an expected sequence number in it, repeat procedure for that

fragment.

7.14.2.3 Scheduler Thread

The scheduler thread services the MC queues for each bundle. It de-queues descriptors
and sends buffers to the SDP for segmentation. Specifically, it does the following:
• Gets the next active bundle from the active bundle list.
• Gets the next active class from the active queue list for bundle.
• Uses DRR to determine from which class to send a fragment.
• Retrieves segmentation state for the bundle and class from DMEM.
• If no segmentation in progress, de-queues from the class queue of the ML queue

table.
• Waits for scope to be available from the SDP
• Increments sequence number for this bundle and class.
• Determines which link of the bundle should receive the fragment.
• Fills in merge space with ML header.
• Waits for previous payload transfer to complete and frees buffer if it was an EOM.
• Initiates payload transfer from SDRAM to DMEM.
• Updates segmentation state in DMEM.

7.14.2.4 Output Thread
The output thread waits for a receive scope to be available for the SDP and then
processes the ML-PPP fragment differently depending on the operation code in extract
space. For segmentation, the output thread receives ML-PPP fragments from the SDP
and en-queues them to their destination queue. Specifically, it does the following:
• Waits for scope to be available from the SDP
• Initializes a payload transfer from DMEM to SDRAM.
• Waits for the payload transfer to complete.
• Returns the scope to the SDP
• Builds a descriptor and en-queues it to the destination queue based on the port field

in extract space.
• The descriptor format is specified in section 7.4.3.3.
• Allocates a new buffer for the next time.

For reassembly, the output thread receives ML-PPP fragments from the SDP and
coordinates their transfer to the correct location in SDRAM. When reassembly is

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 78 / 146

complete, the thread en-queues a descriptor to a destination queue based on the
protocol of the reassembled frame. Specifically the thread does the following:
• Waits for scope to be available from the SDP
• Updates reassembly state information
• Initializes payload transfer with buffer and offset specified in extract space.
• Waits for the payload transfer to complete.
• Returns the scope to the SDP.
• For EOM fragments, builds a descriptor and en-queues it to the destination queue

based on the buffer type in extract space.
• Allocates a new buffer, if necessary, for next time.

Because the RX DMA engine and supported hardware is optimized to transfer 64B
chunks of data, sometimes it is necessary to initiate two payload transfers. The first will
be from a non-64B aligned offset and used the WrCB to transfer payload bytes from
DMEM to SDRAM, once this is complete; the normal transfer using the Rx control block
is initiated.

7.14.3 Data Structures

7.14.3.1 Extract Space
When reassembling, RxByte processor writes information about the fragments into
extract space for the RC to use in its processing. The data structure has the following
format:

Byte Offset 0 1 2 3
0 opCode Port Index fragType
4 length bufType pad

• opCode – indicates reassembly
• port – port on which fragment was received
• index – concatenation of ML bundle and MC class
• fragType – type of fragment indicated in ML header (SOM, EOM, COM, FOM)
• length – number of payload bytes to write to DMEM (only valid for non-EOM

fragments)
• bufType – the buffer type of the reassembled PPP frame (only valid for SOM

fragments)
• pad – unused

When segmenting, RxByte processor writes information about fragments to extract
space for the RC to use in its processing. The data structure has the following format:

Byte Offset 0 1 2 3
0 opCode port pad

• opCode – indicates segmentation
• port – port on which the fragment was received

7.14.3.2 Merge Space
When reassembling, the RC writes information about ML-PPP fragments to merge
space for TxByte processor to use in its processing. The data structure has the following
format:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 79 / 146

Byte Offset 0 1 2 3
0 opcode port index fragType
4 length shortseq pad
12 Remainder [0..3]
16 Remainder [4..7]
20 Remainder [8..11]
24 remainder[12..14] pad

• opCode – indicates reassembly
• port – port on which fragment was received
• index – concatenation of ML bundle and MC class
• fragType – type of fragment indicated in ML header (SOM, EOM, COM, FOM)
• length – number of payload bytes in the fragment
• shortSeq – boolean indicating if this fragment uses short sequence numbers
• pad – unused
• remainder[15] – remainder bytes to be sent before payload
• remainderLen – number of remainder byte present in merge space

When reassembling, the RC writes information about ML-PPP fragments to merge
space for TxByte processor to use in its processing. The data structure has the following
format:

Byte Offset 0 1 2 3
0 opCode port length
4 headerLen header[0..1]
8 header[2..5]
12 header[6..9]

• opCode – indicates segmentation
• port – port on which packet was received
• length – negated length of payload bytes to send in fragment
• headerLen – negated length of the header to prepend to fragment
• header[10] – header to prepend to fragment

7.14.3.3 MlPppPortBundleMap
This data structure is an array of bytes. The length of the array is equal to the number of
TDM ports in the application. The index into the array is the TDM port number and the
value of each array element is the bundle number to which the TDM port belongs. A
value of 0xff indicates the port is not a member of a ML-PPP bundle. This structure is
initialized and modified by the host. There can be at most 256 MLPPP bundles.

7.14.3.4 MlPppBundlePortList
This data structure is an array of bytes. The length of the array is equal to the number of
TDM ports in the application. The elements of the array are the list of TDM ports in each
bundle. For example array elements 0 through 7 might be the channels belonging to ML-
PPP bundle 0, elements 8 through 11 might be the channels belonging to ML-PPP

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 80 / 146

bundle 1, and so on. The index for each bundle is stored in the MlPppBundleParams
structure. This structure is initialized and modified by the host.

7.14.3.5 MlPppQuantums
This data structure is a two dimensional array of bytes. One dimension is the maximum
number of ML-PPP bundles in the application and the other is the number of MC classes
in the application. The elements of the array are the quantums used by the DRR
algorithm executed in the scheduler thread. This structure is initialized and modified by
the host.

7.14.3.6 MlPppBundleParams
This data structure is an array with the following format:

Byte Offset 0 1 2 3
0 flags numClasses mrru
4 firstPort numPorts pad

• flags – indicates valid bundle and which NCP are up
• numClasses – number of MC classes supported by the bundle
• mrru – maximum received reconstructed unit for the bundle
• firstPort – index into the MlPppBundlePortList for the first port of the bundle
• numPorts – number of ports that are in the bundle
• pad – unused

The index into the array is the ML-PPP bundle number. The host initializes and modifies
this structure.

7.14.3.7 MlPppActiveList
This structure maintains a list of active entities. One structure maintains a list of active
bundles. Another array of structures maintains a list of active class queues (that is, non-
empty queues) for each bundle. This structure has the following format:

Byte Offset 0 1 2 3
0 listHi
4 listLo
8 map len

• listHi – 8 most recent entities added to the active list
• listLo – 8 least recent entities added to the active list
• map – a bitmap indicating which entities are in the list
• len – number of active entities in the list

There may be up to 16 active entities. The entities maintained in the list are numbered 0
to 15. The entity to be serviced next is specified by the least significant nibble of listLo.
When an entity is added to the list, it is placed at the nibble specified by len when {listHi,
listLo} is considered as a 64-bit word. len is then incremented.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 81 / 146

7.14.3.8 MlPppQueueHandles
This data structure is a two dimensional array of soft queue handles as described in
Section 12.2. One dimension is the maximum number of ML-PPP bundles in the
application and the other is the number of MC classes in the application.

7.14.3.9 MlPppRasState
This data structure is a two dimensional array with the following format:

Byte Offset 0 1 2 3

0 bufHandle
4 Offset port lock_bufType
8 nextSequence

• bufHandle – reassembly buffer handle
• offset – buffer offset at which next fragment should be placed
• port – port on which fragment was received
• lock _bufType – a bitmap as follows

o − b7: lock – bit indicating if reassembly is in progress for this bundle and
class

o − b6-0: bufType – enum indicating the type of buffer being reassembled
• next_sequence – a bitmap as follows

o − b31-24: next – pointer to structure in the linked list
o − b23-0: sequence – expected sequence number

One dimension is the maximum number of ML-PPP bundles in the application and the
other is the number of MC classes in the application.

7.14.3.10 MlPppSegState
This data structure is a two dimensional array with the following format:

Byte Offset 0 1 2 3
0 bufHandle
4 length proto
8 offset counter
12 sequence

• bufHandle – segmentation buffer handle
• length – length of buffer
• proto – PPP protocol field for the buffer type
• offset – buffer offset from where the next fragment should come
• counter – DRR defecit counter
• sequence – next sequence number to transmit
One dimension is the maximum number of ML-PPP bundles in the application and the
other is the number of MC classes in the application.

7.14.3.11 MlPppLinkedList
This data structure is an array with the following format:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 82 / 146

Byte Offset 0 1 2 3
0 bufHandle
4 length port next
8 fragType_Sequence

• bufHandle – fragment buffer handle
• length – length of buffer
• port – port on which this fragment was received
• next – pointer to next structure in linked list, 0 if none
• fragType_sequence – a bitmap as follows

o b31-24: fragType – fragment type (SOM, EOM, COM, FOM)
o b23-0: sequence – sequence number of fragment

There are a fixed amount of structures that are allocated and de-allocated as elements
are added and removed from the linked list. All bundles and classes shared this “heap”
of linked list memory.

7.15 AAL1-Tx (CP 14)
CP 14 implements the AAL-1 Tx component. The AAL-1 component uses the
transparent mode support in the TDM interface adapter to access the raw TDM
timeslots. The TDM CPRCs provide the ATM interface on which TDM circuit traffic is
sent as AAL-1 SDUs.

This component supports up to 410 channels of TDM circuits, with each circuit providing
a maximum traffic of 256 KBps (the equivalent of all the timeslots in an E1). Therefore,
the maximum CES throughput supported is 107MBps.

This component gets transparent TDM chunks from the TDM Rx CPRCs. The AAL-1 Tx
module is responsible for creating 48 byte AAL-1 SDUs that will be transmitted in the
payload of ATM cells. It consists of two CPRC functions, namely, aal1TxIn and
aal1TxOut that run in independent CPRC contexts. The SDP is not used for AAL-1.

TDM chunk sizes do not come in multiples of the AAL-1 structure size and the structure
size does not have to be a multiple of the cell payload size of 48 bytes. Structures can
begin and end on non-16 byte boundaries in the SDRAM. During cell assembly, this
requires AAL-1 Tx to maintain the unaligned portion of the SDU payload in DMEM.

7.15.1 RC

7.15.1.1 AAL1TxIn
The AAL-1 header includes a CRC-3 over the 4 bit CSI-SN field and a parity bit over the
7 bits of CSI-SN-CRC. As there can be only 16 possible 4 bit CSI-SN values, the CRC-3
values are calculated offline and stored in a DMEM lookup table. Similarly, as there can
be only 128 combinations of CSI-SN-CRC, a 128 entry parity lookup table is kept in
DMEM.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 83 / 146

Aal1TxIn maintains a 16 byte aligned, launchPad area of 64 bytes in DMEM. The
unaligned bytes and chunk payload are written to the launchPad. When all chunk
processing is complete, the launchPad is DMA written to the SDRAM.
To perform its processing, Aal1TxIn does the following things:
• Dequeue a chunk descriptor from the input queue.
• Fetch the Tx state from the state array using the channel id(input port) of the de-

queued descriptor. If the tdmSn field in the descriptor does not equal the nextSn
field, some chunks have been dropped. Determine the number of chunks dropped
and hence the number of TDM data bytes dropped.

• Increment the nextSn field modulo 8.
• If the residual time stamp field is not zero, record it. This will have to be sent on odd

numbered AAL1 SDU headers.
• Start a DMA read of the chunk payload into DMEM, by issuing a bsBufferRead call.
• If the offset is zero, a new AAL1 SDU should be started in a new ATM cell. Use the

nextAal1Sn field to create the AAL1 header and increment it modulo 8. If nextAal1Sn
equals zero, clear the pointerSent field. Copy the header field at the beginning of the
launch pad.

• If a new cell is being created, check if the pointer field in the AAL-1 header should be
sent on this cell. If nextAal1Sn is an even number (including 0), the pointerSent flag
is not set and the structSpill field is less than 48, insert the AAL-1 pointer field with
the pointer containing the structSpill value plus one. Use the DMEM based parity
table to get the pointer parity bit. If nextAal1Sn is equal to 6 and the structSpill is
greater than 48, insert a pointer field with the dummy pointer value of 127. Copy the
pointer byte into the launch pad. If the pointer was set in this step set the pointerSent
flag.

• If this is not the beginning of a new cell, there can be unaligned bytes from the
previous chunk. Copy them into the launch pad.

• If it was determined that certain chunks were lost, insert zeros in the launch pad to
account for the number of lost bytes.

• By now the DMA read should have completed. Copy as many bytes of chunk
payload as can fit in the 47 byte SDU payload in the launch pad. Update the offset
field by the number of bytes copied. If this chunk does not complete the cell, extract
the unaligned bytes and copy them into the state table entry.

• Launch a DMA write from the launch pad area into the SDRAM. If a complete cell
has been assembled, launch a port table lookup and context switch to aal1TxOut
context.

• After transmitting a cell, if there are still some bytes left from the chunk, a new cell
has to be started. Update the structSpill field to reflect the number of bytes from the
structure that will spill over into the next cell. Perform another DMA read and create a
new cell with the remaining chunk bytes.

• Loop to the top of the thread.

7.15.1.2 AAL1TxOut
This thread is responsible for en-queuing a completed ATM cell to its destination. It waits
for the results from the port table TLU lookup launched by aal1TxIn. If the RTS is not
zero, this context puts it on the SDUs in a cycle, as specified by I.363. It creates a cell

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 84 / 146

descriptor and based on the lookup results en-queues the cell descriptor to the ATM TM
CPRC or to TDM Tx CPRC.

7.15.2 Data Structures

The AAL-1 Tx component uses the following data structures to maintain state.

7.15.2.1 Aal1TxState

The following structure is used by aal1Tx to track SDU assembly state in DMEM. An
array of these structures, indexed by the channel Id is maintained in DMEM. The offset
field gives the position in the buffer, where the next chunk should be written. The number
of unaligned bytes is equal to the offset mod 16. These bytes should be appended to the
start of the next chunk so that it lines up to a 16-byte boundary. The structure has the
following format:

Byte Offset 0 1 2 3
0 sduBufHandle pointerSent_nextSn Offset
4 structSpill unalignedBytes[0:12]

8 unalignedBytes[3:6]
12 unalignedBytes[7:10]
16 unalignedBytes[11:14]

• sduBufHandle – contains the handle to SDRAM buffer where the payload is being
assembled

• nextSn – next sequence number expected for this channel
• offset – the offset within the buffer where the next chunk will be written
• pointerSent_ nextAal1Sn – a bitmap defined as follows
•

o b 7 :pointerSent – boolean value specifies whether an AAL1 pointer has been
sent in this cycle

o b 6-4 :unused.
• structSpill – field specifies the number of payload bytes before start of the next

structure
• unalignedBytes[0..15] – the unaligned bytes to be appended to the start of the next

chunk

7.15.2.2 Descriptor information
AAL1 Tx Descriptor is filled by the TDM Rx CPs, has the following format :

Byte Offset 0 1 2 3
0 CellHeader

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 85 / 146

4 egressPort tdmSn pad

The explanation of each field is as follows :
• cellHeader – the cell header (VPI/VCI) to be added to form ATM AAL1 cell.
• egressPort –TDM egress port through which ATM AAL1 cell is transmitted.
• tdmSn – sequence count value of the transparent TDM chunk.

7.16 AAL-1 RX (CP 15)
CP 15 implements the AAL-1 RX component. The AAL-1 component uses the
transparent mode support in the TDM interface adapter to access the raw TDM
timeslots. The TDM CPRCs provide the ATM interface on which TDM circuit traffic is
sent AAL-1 SDUs.
This component supports up to 410 channels of TDM circuits, with each circuit providing
a maximum traffic of 256 KBps (the equivalent of all the timeslots in an E1). Therefore,
the maximum CES throughput supported is 107MBps. Maximum number of VCCs that
can be supported is 410.

7.16.1 RC

7.16.1.1 AAL1Rx
This module is responsible for receiving ATM cells with AAL-1 payloads and creating
TDM chunks out of them for clear channel transport. Aal1Rx maintains a 16 byte aligned
launch pad area of 64 bytes in DMEM. The unaligned bytes and the ATM cell payload
are written to the launch pad. The launch pad is DMA written to the SDRAM when a
complete cell payload has been assembled or when a chunk has been completely
processed.

The following sequence of steps are executed by AAL1 Rx:
• De-queue a cell descriptor from the input queue. Read the VC index from the

descriptor and fetch the state table entry corresponding to the index.
• Launch a DMA read to fetch the cell payload bytes into DMEM.
• The first byte of the payload is contained in the STF field of the cell descriptor. For

AAL1 this field is the AAL-1 header. Extract the CSI and SN fields from this header.
Using the DMEM based CRC tables verify that the CRC and the parity are correct.

• If the parity or CRC are incorrect, check if they can be corrected as specified in
I.363.1. If they cannot, discard the cell and loop to the top of the thread.

• Validate the SN field. If it is invalid, drop the cell and loop to the top of the thread.
• If the offset field in the state entry is zero, a new chunk needs to be started.
• The DMA read should have been completed by now. If a new chunk is not being

started, copy the unaligned bytes into the launch pad area. Copy as many bytes from
payload as necessary to fill up the chunk. Create a chunk descriptor and transmit the
chunk to the TDM Tx CPRC.

• If the SN field is an odd number, extract the CSI bit and accumulate it in the RTS.
When SN is equal to 7, check the accumulated RTS. If it is non zero, send it out to
the TDM Tx CPRC with the next chunk descriptor and clear it. The TDM Tx CPRC
forwards it to the MT-21, which applies the appropriate timing correction.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 86 / 146

• If there are more bytes left in AAL-1 SDU payload, start a new chunk and copy the
remaining bytes. If the chunk is completed, transmit it to the TDM Tx CPRC. Repeat
this till the entire AAL-1 SDU payload has been exhausted.

• Loop to the top of the thread.

7.16.2 Data Structures
The AAL-1 RX component uses the following data structures to maintain state.

7.16.2.1 Aal1RxState
The following structure is used to track the conversion from AAL-1 SDU payloads to
chunks. An array of Aal1RxState structures is kept in DMEM. This array contains one
entry per AAL-1 VCC and is indexed by the VC index from the ATM VC table.

Byte Offset 0 1 2 3
0 chunkBufHandle offset nextChunkSn
4 nextAAL1Sn unalignedBytes[0:2]
8 unalignedBytes[3:6]
12 unalignedBytes[7:10]
16 unalignedBytes[11:14]

• chunkBufHandle – SDRAM buffer where the chunk is being accumulated
• offset – offset in the chunk, where the next cell payload should be written
• nextChunkSn – sequence number to be used on next chunk
• nextAAL1Sn – sequence number expected on the next AAL-1 SDU on this VC
• unalignedBytes[15] – the unaligned bytes to be appended to the start of the next cell

7.16.2.2 Descriptor information
AAL1 Rx Descriptor is filled by the TDM Rx CPs has the following format :

Byte Offset 0 1 2 3
0 vcIndex egressPort
4 aal1Hdr pad

The explanation of each field is as follows:
• vcIndex – the index associated with egress VPI/VCI
• egressPort –TDM egress port through which transparent chunks are transmitted
• aal1Hdr –AAL1 header extracted from the ATM AAL1 cell

7.17 Fabric Port
The fabric port implements the Utopia Level 2 interface. This port handles only ATM
cells. Cells received on the interface are typically forwarded to other ATM processing
blocks based on VPI/VCI lookup. The Fabric Port sends cells received from other ATM
processing blocks to the UL-2 interface.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 87 / 146

7.17.1 FpTx
The FpTx component de-queues descriptors and sends utopia cells to the UL-2 adapter.
The micro-code uses information in the descriptor to construct the ATM header then
transmit it. The Hardware then transmits the buffer contents specified by the buffer
handle in the descriptor. Specifically, FpTx does the following:

• Sends the 4-byte ATM header provided by the descriptor
• Asserts the EOM bit in the PTI byte, if necessary
• Sends the 48-bytes of payload
• Switches to the next scope

FpTx microcode may also assist with segmentation. FpTx assumes that the PDU length
is a multiple of 48 bytes, which will be the case for any PDU sent by the segmentation
cluster. If the PTI field indicates EOM, then FpTx will segment the PDU and mark the
PTI EOM bit appropriately in the last cell. Otherwise, FpTx sends the cell with the PTI
indicating no EOM. FpTx receives information through merge space about the PDU to
be sent.

7.17.2 FpRx
The FpRx component receives ATM-like cells from the UL-2 adapter, validates them,
and forwards descriptors to the next ATM processing block. Every cell is considered an
independent PDU and marked as FOM. The HW splits the cell into header (8 bytes) and
payload (48 bytes). The lower four bytes of the header overlap are the same as the first
four bytes of the payload. The micro-code parses the ATM header and launches a
lookup of the VPI/VCI. If the lookup fails, the cell is dropped by the Fabric Port
hardware.Otherwise, the ATM header, the STF header and lookup response data are
copied into the descriptor, the HW moves the payload into a buffer, and the descriptor is
placed in the queue specified by the lookup response. In particular, FpRx does the
following:

• Writes the ATM header to extract space
• Writes the VPI/VCI into the TLU Tx message slot
• Sets the flow ID to a constant (0)
• Sets the segment type to first and only message (FOM)
• Sets the PDU size to a constant (52)
• Launches the VPI/VCI lookup
• Switches to the next scope

Because the FpRx is not able to preserve much state information, it is incapable of
determining when the first cell of an AAL-5 PDU is received. For this reason, the FP is
not able to perform the reassembly operation and so each cell is treated independently.
FpRx uses extract space to store information about the incoming segment.

7.17.3 DBE
The descriptor build engine (DBE) component uses the data put into extract space by
the FpRx and the results of the TLU to build a descriptor that will be queued to the next
block for further processing. The DBE microcode fills in the descriptor data structure
when the TLU signals that the lookup has completed. If the lookup fails the DBE will drop
the incoming cell.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 88 / 146

7.17.4 Data Structures

7.17.4.1 Merge space
The FpTx hardware copies the descriptor data from the payload bus to merge space
after a de-queue operation. The data structure has the following format:

Byte Offset 0 1 2 3
0 bufHandle
4 Length port_bufType
8 CellHeader
12 Appdata

• bufHandle – the handle to the buffer containing cell payload
• length – length of the payload in the buffer
• port_bufType – unused by the FP
• cellHeader – the cellHeader to be prepended to outgoing cells, PTI indicates

EOM if segmentation is desired
• appData – unused by the FP

7.17.4.2 Extract Space

The FpRx hardware fills in extract space before passing control to the DBE. Extract
space has the following format:

Byte Offset 0 1 2 3
0 cellHeader

cellHeader – the cell header from the received cell

7.18 Table Lookup Unit
The table lookup unit provides lookup table management. The TLU stores its table
information in external SRAM that is managed by TLU’s SRAM controller. The
application creates multiple tables in the TLU for data path forwarding and state memory
support. The tables are summarized below and described in more detail in subsequent
sections.

Table Name Table Type Table ID Key Size(b) Entry Size (B)
Port Table Data 0 11 8

MLPPP
Remainder Table

Data 1 10 16

IPV4 Route Table LPM 2 32 16
ATM VC Table HTK 4 48 16

Reassembly CRC
Table

Data 6 11 4

Diffserv Flow
Table

HTK 7 112 8

MPLS Lookup
Table

Data 10 16 16

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 89 / 146

FR DLCI Table HTK 11 21 16
The table fields and lookup key construction are defined in the appropriate sections
where this lookup is launched.

7.18.1 Port Table
When the ingress processor launches a lookup to make a forwarding decision, the
response usually returns the port number and layer 2 addresses. In order to map the
port to a queue and determine if processing other than simple forwarding is needed, the
ingress process must also launch a lookup in the port table. The port table is a data table
with a 32-bit key, only 12 of which are significant. The key (or index) is equal to the port
number of interest.

Each entry of the table has the following format:

Byte Offset 0 1 2 3
0 PortType Flags egressQueue
4 QosQueue pad

The description of each field is as follows:
• portType – the type of egress port, ATM,PPP,FR, Transparent chunk
• flags – a bitmap as follows

o b7: Valid – flag indicating whether or not the port is valid
o b6: QoS – flag indicating whether QoS must be performed on this port
o b4-0: reserved for future use

• egressQueue – the egress queue of the packet or cell
• qosQueue – the queue of the QoS processor for this packet

7.18.2 MLPPP REM Table
When ML-PPP reassembly takes place, buffer writes cannot always be accomplished in
multiples of 16B. In this case, the bytes left over that do not fill a 16B DMA line are
stored in the ML-PPP remainder table along with a count. These bytes will be fetched
and proceed the data from the next fragment being reassembled.
Each entry of the table has the following format:

Byte Offset 0 1 2 3
0 Remainder [0..3]
4 Remainder [4..7]
8 Remainder [8..11]
12 Remainder [12..14] remainderLen

The description of each field is as follows:
• remainder – the remaining bytes that could not fill a 16B line
• remainderLen – the number of remaining bytes in the entry

7.18.3 IP V4 Routing Table
The IPv4 routing table is a longest prefix match table with a 32-bit key. The key is equal
to the IP destination address.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 90 / 146

Each entry of the table has the following format:

Byte Offset 0 1 2 3
0 Port Type MaskBits
4 AppData
8 AppData
12 Pad

The description of each field is as follows:
• port – the egress port number
• type – the type of route entry (internal, local, gateway, etc.), unused
• maskBits – the number of significant bytes in the key
• appData – application specific data, usually contains L2 address, see below
• pad – unused

The appData field can have different interpretations depending on the egress. For
example, an ATM egress would have a VPI/VCI.

The ATM appData field has the following format:

Byte Offset 0 1 2 3
0 EgressCellHeader
4 EgressQueue pad

The description of each field is as follows:
• EgressCellHeader – the cell header (VPI/VCI) to use at the egress
• EgressQueue - TrafficQueue mapped to Q-3 for applying ATM TM
• pad – unused

The MPLS appData field has the following format:

Byte Offset 0 1 2 3
0 LabelPush LabelSwap
4 Action Hop_count EgressBufType Pad

The description of each field is as follows:
• labelSwap – Label to be swapped.
• labelPush - Label to be added
• action – MPLS action to be performed. The supported MPLS actions are listed in

section 7.18.8
• hopCount – count to be decremented in TTL of the shim header
• EgressBufType – a bitmask defined as follows:

o b 15-5: port – the output port on which this datagram to be transmitted.
o b 4-0: bufType – the type of buffer at the egress being recirculated and the

egress port type.
• Pad – unused

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 91 / 146

The FR appData field has the following format:

Byte Offset 0 1 2 3
0 egressFrHeader
4 Pad

The description of each field is as follows:
• egressFrHeader – the FR header to use at the egress.
• Pad – unused

7.18.4 ATM VC Table
Every ATM cell that enters the application has its VPI/VCI looked up in the ATM VC
table to determine if the cell is on a valid VC and how to process it. The ATM VPI/VCI
table is a HTK table with a 48-bit key. The key is constructed as follows:

47 44 43 36 35 20 19 16 15 0
0 VPI VCI 0 Port

Each entry of the table has the following format:

Byte Offset 0 1 2 3
0 Flags_egressPort VcIndex
4 EgressCellHeader
8 EgressQueue Port_bufType
12 DestQueue OamPM pad

The description of each field is as follows:
• egressCellHeader – the ATM cell header (not including HEC) to be applied to the cell

at the egress
• vcIndex – the VC index used by AAL-5 SARs to index their state tables
• flags_egressPort – a bitmap as follows:

o b15: AAL1 VC – flag indicating the VC is an AAL-1 type VC
o b14: AAL5 VC – flag indicating the VC is an AAL-5 type VC
o b13: MPLS VC – flag indicating the VC is an MPLS VC.
o b12-11: reserved for future use
o b10-0: egressPort – the egress port from which the cell must exit

• egressQueue – the egress queue of the ATM cell, this is necessary for the FP which
can launch only one lookup. This also represents the trafficQueue, to be used if QoS
is enabled for this egress port

• port_bufType – the egress port and buffer type packaged in a way the FP can use
• destQueue – the queue of the next ATM processing block, this is necessary for the

FP which cannot act on TLU response data
• oamPm – MSB indicates OAM processing required on this VC, remaining bits are

index into local OAM table

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 92 / 146

• pad – unused

For MPLS switched ATM AAL-5 PDUs, following table entry is used:

Byte Offset 0 1 2 3
0 Flags_egressPort VcIndex
4 LabelPush LabelSwap
8 EgressQueue HopCount_action egress_bufType
12 appData

The description of MPLS related fields are as follows:
• LabelPush – Label to be swapped
• LabelSwap – Label to be added
• HopCount_action – One Byte containing MPLS action to be performed and the hop

count to be decremented in TTL of the shim header. The supported MPLS actions
are listed in section 7.18.8

• AppData – Application Specific data. If the egress interface is FR, it is FR header. In
case of ATM egress interface, it ATM cell header.

7.18.5 RAS CRC Table
The reassembly CRC table stores the partial CRC result calculated during reassembly.
The key is the VC index retrieved from the ATM VC table. Each entry of the table has
the following format:

Byte Offset 0 1 2 3
0 Pad CrcLength
4 CrcPartial

The description of each field is as follows:
• pad – unused
• crcLength – number of cells whose CRC has been calculated so far
• crcPartial – partial CRC value calculated so far

7.18.6 Diff Serv Flow Table
The DiffServ flow table is a HTK table with a 112-bit key. The key is constructed as
follows:
111 80 79 64 63 32 31 16 15 8 7 0

IP dest Addr L4 Dest
Port

Ip Src Addr L4 Src Port Proto Port In

Each entry of the table has the following format:

Byte Offset 0 1 2 3
0 MaskBits Phb FlowId

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 93 / 146

QoSQueueoffset Flags Pad

The description of each field is as follows:
• maskBits – number of significant bits in the key
• phb – per hob forwarding behavior to apply
• flowId – Classifier Flow ID
• QoSQueueOffset – the offset of the QoS queue from the base queue obtained from

port table lookup
• Flags – The drop flags to be applied for this flow.
• pad – unused

7.18.7 FR DLCI Table
FR table is HTK table with 32-bit key. The key is formed by the concatenation of 10-bit
DLCI value and 11-bit interface ID. Currently the two-byte address format is used to for
DLCI (10-bit).

Bits: 20 10 Bits: 9 0
Interface ID DLCI

The format of each entry in the FR table
Byte Offset 0 1 2 3
0 Label (both push and swap labels)
4 Action HopCount port_bufType
8 EgressQueue flags_egressPort
The explanations for the above-mentioned fields will be as follows

• Label - specifies the labels that are to swapped and pushed for MPLS. In case of
FR switching the lower 16-bits specify the DLCI value.

• Action - specifies the MPLS action to be performed. The actions that are
supported:

typedef enum {
MPLS_ACTION_NONE,

MPLS_ACTION_POP,
MPLS_ACTION_SWAP,
MPLS_ACTION_SWAP_PUSH,
MPLS_ACTION_FORWARD,
MPLS_ACTION_ADD,
MPLS_ACTION_PUSH_PUSH,
MPLS_ACTION_POP_IPv4_LOOKUP

} mplsActions;
• HopCount -Count to be decremented in TTL of the shim header
• Port_bufType -a bitmask is defined as follows:

� b15-5: port – the output port on which this datagram to be
transmitted.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 94 / 146

� b4-0: bufType – the type of buffer being re-circulated and the
egress port type (could be BT_MPLS_PPP, BT_MPLS_ATM,
BT_MPLS_FR, BT_MPLS_IPv4)

• EgressQueue -specifies the final queue
• Flags_egressPort - specifies the next queue that the packet needs to be sent.

7.18.8 MPLS Table

MPLS table maps the input MPLS label to the MPLS action to be performed in MPLS
CP. This is a data table with a 32-bit key, only 16 of which are significant. MPLS label is
the key (or index) to this table. It is used by MPLS packet(s) over PPP and for pop action
(which needs additional label lookup based on the next label in the stack) in the case of
MPLS packet over ATM and FR.

Each entry of the table has the following format:

Byte Offset 0 1 2 3
0 labelSwap labelPush
4 Action hopCount port_bufType
8 egressQueue Pad
12 appHdrData

• labelSwap – Label to be swapped.
• labelPush - Label to be added.
• action – mpls action to be performed. The following MPLS actions are

supported.

typedef enum {
MPLS_ACTION_NONE,
MPLS_ACTION_POP,
MPLS_ACTION_SWAP,
MPLS_ACTION_SWAP_PUSH,
MPLS_ACTION_FORWARD,
MPLS_ACTION_ADD,
MPLS_ACTION_PUSH_PUSH,
MPLS_ACTION_POP_IPv4_LOOKUP

} mplsActions;

Based on the MPLS action the MPLS command (cmds in merge space) is set. There
can be more than one POP operations and also POP can combine with PUSH/SWAP
actions. For “POP_IPv4_LOOKUP” MPLS action, the command is set for POP and the
packet is forwarded to IPv4 module.

• hopCount – count to be decremented in ttl of the shim header
• port_bufType – a bitmask defined as follows:

o b15-5: port – the output port on which this datagram to be
transmitted.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 95 / 146

o b4-0: bufType – the type of buffer being recirculated and the
egress port type (could be BT_MPLS_PPP, BT_MPLS_ATM,
BT_MPLS_FR, BT_MPLS_IPv4)

• egressQueue – the egressQueue of the packet (represents the Traffic Queue if
QoS treatment has to be given)

•
• pad - unused
• appHdrData – CellHeader if ATM as the egress port type or DLCI if FR as the

egress port type.

7.19 Buffer Management Unit

Application allocated number of buffer pools. These pools are allocated and initialized by
XP. List of pools are:

Buffer Pool
Owner

Number of
pools

Number of
buffers

Buffer Size Buffer Use

TDM 1 1024 4096 IP datagrams,
PPP packets,
ML-PPP
fragments

TDM 1 512 64 ATM cells
IMA 1 128 64 ATM cells
ML-PPP 1 256 256 ML-PPP class
ML-PPP 1 256 2048 ML-PPP

reassembly
buffer

MPLS 1 256 2048
Segmentation 1 384 64 ATM cells from

AAL-5
segmentation

Reassembly 1 384 2048 IP datagrams
from AAL-5
reassembly

AAL –1 Rx 1 776 64 TDM chunks
AAL – 1 Tx 1 776 64 ATM cells
UL-2 1 1024 64 ATM cells
Host 1 128 2048 IP datagrams,

ATM cells

There are several formats for the data in a BMU buffer. Various formats support
communication between different application components. The formats are specified by
an enumeration that is typically included in the buffer descriptor. The enumeration and a
descriptor of each buffer type is listed:

Buffer Type Buffer Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 96 / 146

BT_UNKNOWN Contents of the buffer are unknown
BT_IPv4 IPv4 datagram
BT_MLPPP ML-PPP fragment including ML-PPP header, but no PPP

or HDLC encapsulation
BT_PPP PPP encapsulated data packet
BT_HDLC HDLC encapsulated PPP frame
BT_ATM ATM cell payload; length will be 48
BT_IMA_CP IMA control protocol payload; length will be 48
BT_TDM_TRANSPARENT Transparent TDM data used with AAL-1
BT_FR FrameRelay data
BT_MPLS MPLS data
BT_MPLS_PPP MPLS switched AAL-5 SDUs with egress port as PPP

interface
BT_MPLS_ATM MPLS switched AAL-5 SDUs with egress port as PPP

interface
BT_MPLS_Ipv4 MPLS switched datagrams with IP egress processing

required
BT_MPLS_FR MPLS switched AAL-5 SDUs with egress port as FR

interface
BT_LAST Place holder to define limit of buffer type enumeration

7.20 Queue Management Unit
The information provided in this section is the mapping of queues, which are used by
different Channel processors. The QMU is configured to use 32 byte descriptors. The
number of Queues allocated to each application block will be as follows:

Queue owner Number of queues Queue use
TDM0 32 TDM Tx processing.
TDM1 32 TDM Tx processing.
TDM Recirculation 2 Recirculation of PPP and

FR frames.
IMA0 1 IMA Rx processing.
IMA1 1 IMA Rx processing.
IP 1 IP forwarding assistance for

TDM channels.
Segmentation 1 AAL-5 segmentation.
Reassembly 1 AAL-5 reassembly.
IP QoS 16 IP Qos for the TDM ports.
FR 1 FR Tx processing.
MPLS 1 MPLS Tx processing.
ML-PPP 1 ML-PPP segmentation and

reassembly.
AAL-1 1 AAL-1 Tx processing.
XP 5 ATM control and host.
FP (UL-2) 32 UL-2 egress.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 97 / 146

Communications between the afore mentioned application blocks running on different
Channel processors is accomplished by the source CP en-queuing a descriptor to the
queue associated with the destination CP. All the QMU queues, including the inter
module communication queues are mapped to Q-3 VOPs. Channel processors use
extended en-queue mechanism for enqueuing packets to Q-3.

7.21 Q-3 configurations for CPs, XP and FP

7.21.1 XP Initialization
XP initialization component does the following:

• Initializes the system services. Queuing services will be initialized in external
mode using qsExtendedInitialize() with descriptor size 32 bytes.

• Waits for the host message for completion of Q-3 TMC configuration.
• Configures the 128 VOPs (5 for XP, 32 for FP and remaining for CPs) using
qsQueueCreate() and qsQueueConfig() functions. The VOPs will denote the QMU
queues for dequeing the descriptor by other C-3e components (XP, FP and CPs).
For information about number of VOPs for each component see the queue
assignment information in Section 7.20

• Performs other initializations as mentioned in Section 7.1.1.

7.21.2 Host Configurations
Host is responsible to perform the Q-3 TMC configurations as shown in figure 8. It
configures the following parameters in the Q-3 map.

• The total number of QMU queues assigned for CPs, XP and FP are 128 (See
queue assignment in Section 7.20). One QMU queue will be mapped to one Q-3
traffic queue. So total number of Q-3 traffic queues to be configured will be 128.

• One Level2 scheduler having one input leg will be configured for each traffic
queue. So it will need 128 level2 schedulers for normal forwarding path in Q-3.

• Since Q-3 is used to forward the descriptor from traffic queue all the way to C-3e
QMU via Q-3 hierarchy, there will be no discard path to be configured.

• One level1 scheduler having 128 input legs will be required. Max number of input
legs in level1 scheduler will be 1K.

• At the top level, it is mandatory to have one level0 scheduler in Q-3 hierarchy. It
will be configured to have one input leg.

• Number of VOPs to be configured will depend on the number of QMU queues.
So 128 VOPs will be configured.

The steps for host configuration starting from top to bottom in Q-3 hierarchy (i.e. from
level 0 scheduler to traffic queues) are described as follows.

• Initializes the Q-3 TMC using qsTmcInitialize ().
• Creates one level0 RR scheduler with one input using qsTmcSchedCreate ().
• Creates parent buffer pool and buffer pool associated with it using

qsTmcBufferPoolCreate(). These buffer pools will be used by traffic queues.
• Creates one level1 RR scheduler with 128 inputs. This scheduler will feed the

level0 RR scheduler.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 98 / 146

• Creates the 128-level2 schedulers each having one input legs that will receive
the input descriptor from traffic queues configured for CPs, XP and FP. These
schedulers will feed the level1 RR scheduler. The total number of level2
schedulers to be supported is 18K.

• Creates 128 traffic queues that will pass the traffic to the Q-3 hierarchy. Total
number of traffic queues to be supported is 64K.

• Creates the 128 VOPs using qsTmcVopCreate(). These VOPs are mapped to
128 QMU queues of C-3e. CPs, XP and FP in C-3e will use these VOPs to dequeue
the traffic. The total number of VOPs to be supported is 512.

• Enables the Q-3 configuration map using qsTmcEnqueueEnable().
• Communicates with XP to indicate that Q-3 configuration is done.

7.21.3 RC
Each component’s RC will enqueue the descriptor to its configured Traffic queue using
qsEnqueueExt() and dequeue it from its configured VOP using qsDequeue().

7.21.4 Assumptions
• As per “Functionality comparison document between old Q-5 and
projected Q-5 TMC FPGA”, new Q-5 can have up to 256 discard configurations.
It is assumed that discard configuration refers to discard block. So two discard
blocks (token bucket discard blocks and RED discard block) will be configured for
each of 8K traffic flows having one discard queue for IP QoS. Similarly one token
bucket discard block will be configured for all 8K traffic flows for ATM TM.

• 3 Levels of scheduler Level 0, Level 1 and Level 2, each supporting SP,
RR and WFQ algorithms will be supported.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 99 / 146

QMU

128 Level2
schedulers
(One input
for each)

128 different
VOPs
(For CPs, XP
and FP)

128 TQs
(for CPs, XP
and FP)

RR - - - - - - -

VOP

CPs, XP and FP

Level1
scheduler
(128 inputs)

VOP VOP VOP

No
Discard
Block

RR RR RR

RR

- - - - - - -

RR

Level0
scheduler
(One input)

7.22 ATM TM
ATM traffic management is supported using Q-3 Traffic Management Coprocessor
(TMC).

Assumption:
Application supports maximum of 4 VCs per channel.
Q-3 supports the following features:

• Single Leaky Bucket policing per traffic flow.

Figure 8 - Q-3 configuration map for CPs, XP and FP

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 100 / 146

• 3 levels of scheduler Level 0, Level 1 and Level 2 supporting SP,RR and WFQ
algorithms.

7.22.1 Initialization of TMC

XP initialization:
In C3e to support external Queuing (i.e Q-3) Queuing services are initialized to support
extended mode queuing. This is achieved by calling qsExtendedInitialize function in XP
with descriptor size as 32 and mode as 2 to represent extended mode.

Host initialization:
TMC is initialized by host by calling qsTmcInitialize function.

Enabling Process:
The host enables TMC by calling qsTmcEnable function after configuring TMC. XP
enables QMU by calling qsEnable() call after host enables TMC.

For more detailed information refer Section 7.21

7.22.2 Host Configuration
Host does the Q-3 TMC configuration as shown in figure 10 for ATM TM. It configures
following parameters in the Q-3 map.

• For each TDM channel, 4 Traffic queues are configured (1 for each VC’s). Since
2K channels are supported in this application,
Total number of TrafficQueues for ATM TM = 2K * 4 = 8K

• Single Leaky Bucket algorithm is applied on a per traffic queue basis and 1
Discard Traffic Queue is associated with all this discard block having VOP=0
(Allowing XP to read the discarded packets)

• For each channel, one Level 2 scheduler (WFQ) is configured with 4 inputs (4
VCs Traffic Queues of a channel)
Total number of Level 2 Schedulers (WFQ) for ATM TM = 2K

• 1 RR Level 2 scheduler is configured for Discard queue.
• VOP is defined at level 2 leg. One VOP for every TDM T1/E1 interface. The

channels configured for first TDM T1/E1 interface will have VOP corresponding
to the first TDM T1/E1’s VOP and similarly for other channels
Total number of VOPs = 64 (1 for every TDM T1/E1 interface) + 1 (for Discard
Queue)

• Level 1 scheduler is configured for RR with each supporting 1K inputs
Total number of Level 1 Schedulers (RR) for ATM TM = 2

• Level 0 scheduler is configured for RR.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 101 / 146

RR

Discard queue

2K Level2
schedulers
(Each having
4 inputs)

1 Traffic Queue
for a VC. Max
of 4 VCs per
channel.

QMU

2 Level1
schedulers
(Each having
1k inputs)

8K
Scheduler
Queues

WFQ - - - - - - -

VOP

RR
Level0
scheduler
(3 inputs)

VOP VOP VOP

VOP

Single Leaky
Bucket
Algorithm

WFQ WFQ WFQ

WFQ WFQ

Traffic Queues of
Channel 1 (max of 4
VC’s possible – so 4
TQs)

Traffic Queues
of Channel 2K

- - - - - - -

Figure 9 Q-3 ATM TM Traffic flow

7.22.3 ATM TM Traffic Flow

7.22.3.1 Input
AAL-5 segmentation module / AAL-1 Tx module / Tdm Rx module are the modules that
sends the descriptor to ATM TM Traffic Queue. These modules perform
PortTableLookup. Based on the PortTableLookup response, the corresponding module
sends the descriptor to corresponding ATM TM (Traffic Queue) queue if QoS is
supported for that port.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 102 / 146

Input to Q-3 for ATM TM from AAL – 5 segmentation module:
AAL-5 segmentation module receives data from IP/MPLS module. IP/MPLS module
provides following fields corresponding to ATM specific information in the descriptor:

• egressCellHeader – the cell header (VPI/VCI) for ATM encapsulation
• egressQueue – Traffic queue (mapped to Q-3) for applying QoS

AAL-5 segmentation module sends the descriptor to this Traffic Queue if QoS is enabled
for that port (based on the port lookup) otherwise it sends the descriptor to whatever
egressQueue assigned for that port (obtained from the PortTableLookup response).

Input to Q-3 for ATM TM from AAL-1 Tx:
AAL-1 Tx module does PortTableLookup. Based on the Port table lookup response, it
gets the VPI/VCI pair and the Traffic Queue information apart from other information.
AAL-1 Tx module sends the descriptor to the TraffcQueue if QoS is enabled for that port
otherwise it sends the descriptor to whatever egressQueue assigned for that port (got
from the PortTableLookup response).

Input to Q-3 for ATM TM from TDM Rx
TDM Rx identifies the packet type as ATM/PPP/FR. After identifying that the packet is
ATM, VC table lookup is launched. It gets the TrafficQueue information from VC table
lookup response apart from other information. If the packet has to be ATM switched, it
does a portable lookup. It sends the descriptor to Traffic Queue if QoS is enabled for that
port (Information got from PortTableLookup response) otherwise it sends the descriptor
to whatever egressQueue(non-QoS queue) assigned for that port (got from the
PortTableLookup response).

For more detailed information refer appropriate modules (IP,MPLS, ATM AAL-5
segmentation, AAL-1 Tx and TDM Rx).

7.22.3.2 Policing
GCRA is applied to ATM TM traffic queues on a per traffic flow basis. It’s mapped to
Single Leaky Bucket algorithm. Configurable parameters are:

• Limit; – Leaky bucket 1 limit in nanoseconds.
• Increment; – Leaky bucket 1 Increment in nanoseconds
• Support for Early packet discard

One Discard queue is associated for all the ATM TM traffic queues and it is assigned
VOP= 0 to allow XP to read the discarded packets.

7.22.3.3 Scheduling
There are three levels of Schedulers in Q-3: Level 2, Level 1 and level 0. For ATM TM in
Level 2, WFQ schedulers (one for each TDM channel) are used based on priority values.
Each VC Traffic queue can be configured for CBR/rtVBR/nrtVBR/UBR based on the
priority value set. A TDM channel can have maximum of 4 VCs.The priority value set for
these VC traffic queues are:

VCs Traffic Queue configured for CBR – Highest priority

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 103 / 146

VCs Traffic Queue configured for rtVBR
VCs Traffic Queue configured for nrtVBR
VCs Traffic Queue configured for UBR – Lowest priority

If all the VCs are configured for the same type then equal priority is set for all the VCs
Traffic Queues of a channel.
VOP is associated to each TDM channel’s queue at level 2. It corresponds to TDM
T1/E1 interface queue of QMU. Then from RR Level 1 scheduler it goes to RR Level 0
scheduler and then to C3e’s QMU queue.

7.22.4 Issues/Enhancements
Issue

• Lack of Q-3 specification.
• Traffic Management done only for egress port.
• Currently TrafficQueue mapping for a VC is through either IP’s destination

address (part of IP lookup)/ MPLS label (part of MPLS lookup)/ egress port (part
of port lookup)/VPI- VCI (part of VC lookup)

8 HOST PROCESSOR ARCHITECTURE

The MSA Line Card host component uses an object oriented (OO) design .It is layered
on top of the host services layer and utilizes the provided host services API’s wherever
possible when interacting with the NP. Direct calls to NP driver functions may be
necessary for implementation of certain functions.

Wherever applicable, the host components use the OS abstraction layer (OSAL)
services for timers, queues, tasks, threads, etc. to allow porting to other RTOS’s and
also to support native host simulation for development and regression testing.

Host provide the implementation of PPP Link control protocol(as per RFC1661) and IPv4
Network control protocol (as per RFC1332).The processing code is derived from the
publicly available Linux PPP driver (pppd)version 2.4.1 which supports multi-link PPP.

The following activities performed at Host:

• Creation and Initialization of TLU tables.
• Creation of pipes needed for packet I/O and PPP LCP/NCP
• Initializes all peripheral hardware (C-Port Family TDM Channel Adapter, C-Port

Family UL2
Interface Adapter) and sets a default configuration.

• Initializes any required on-chip structures in appropriate DMEM.
• Provides needed info to chip code via HCA (for example, tableID’s).
• Spawns all necessary host tasks (receive, PppMgr, statistics, Command Console).

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 104 / 146

• Configuration and statistics gathering of TLU Tables.
• Configuration and statistics gathering of Link /channel (PPP/ATM/FR)
• Configuration and statistics gathering of ports (TDM/FP)

9 HOST PACKET I/O
Processes running on the host can send and receive packets/cells via the NP using the
provided Host services. These services interact with code running on the NP that
performs the actual packet/cell transfer between the host and the NP and in the case of
transmission perform the actual queuing of the packet to the appropriate output port.

9.1 Resources
These resources are used by the host to perform packet input/output.
• Bi-directional DMA Pipe between host and NP
• Dedicated host transmit BMU buffer pool

9.2 Packet Reception
This section describes packet flow from the ingress, through the NP, to the host.

9.2.1 Network Processor
Traffic intended for the host is processed identically to traffic destined for forwarding to
other NP ports except the QMU descriptor for the host packet is placed in a specially
designated "host RX" queue by the receiving CP. This could either be as the normal
result of a TLU lookup or as the result of the CP matching against a certain field within
the packet.

The "host RX" queue is serviced by the XP. When the XP detects the queue is non-
empty, it dequeues the descriptor and from the data contained within it, it creates a

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 105 / 146

structure that it sends to the host to inform it of a received packet via the host services
Pipe mechanism. This structure contains the packet type, length, and BMU BufferHandle
of the data.

9.2.2 Host
A dedicated receive task on the host checks the status of the DMA pipe and upon finding
an entry, sets up a DMA operation on the NP to move the data from the NP’s BMU
buffer to a buffer residing in host memory. When the DMA operation completes, the
receive task upcalls based on the packet type. The host also initiates a BMU buffer free
operation for the packet’s buffer on the NP using the doXpRequest mechanism
(currently a direct call to the dcpMgr object).

9.3 Packet Transmission
This section describes packet flow from the host, through the NP, and to the egress.

9.3.1 Host
A process running on the host that wants to transmit a packet calls the sendPacket ()
function with a buffer pointer, buffer length, port handle, and packet type. The
sendPacket function will initiate a DMA operation (controlled by the NP) to move the
packet from host memory to a BMU buffer allocated from the host’s dedicated transmit
pool. When the DMA has completed, the host will place a structure describing the packet
(currently the same one used on packet reception) in the DMA pipe to inform the NP that
there is something to transmit. The host uses the doXpRequest mechanism to interrupt
the XP to do the actual notification.

9.3.2 Network Processor
Based on the host structure read from the DMA Pipe, the XP will construct a QMU
descriptor for the host packet and then queue it based on the port. The XP will also
allocate a new buffer from the host’s pool and give it to the host via the response to the
doXpRequest transmit command for use by the host’s next transmit. The BMU buffer
from the current transmit will be returned to the host’s pool via the normal buffer freeing
following transmission.

10 CONSOLE COMMAND SHELL COMMANDS

This section defines the commands that are available at the console.

10.1 Application Control
This command is used to control the application at startup. Execute this command, after
loading the application package.

• start – after a packload, initializes host and NP to default settings and releases the
XP.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 106 / 146

10.2 Table Maintenance and Display
Tables used in MSA application are created and initialized by the Host. For each table in
the application, the following operations will be supported:

• getEntry Table {key} – gets the entry corresponding to the provided key
• deleteEntry Table {key} – deletes the entry corresponding to the provided key
• setEntry Table {key} {entry info} – adds/modfies the entry corresponding to

the provided key
• display Table – displays the entire table
• flush Table – flushes the entire table

In each of the above commands, the italicized “Table” part of the command is replaced
with the name of the table. The following tables are supported:
• Atm
• Port
• IPv4Route
• IPv4Flow
• MPLS
• FR

Having a command set for each table type allows the “help” facility for each command to
show only the required key and entry parameters for that particular table type. The
alternate approach of having the table type as a parameter would require that all
possible key and entry types be displayed in the “help”.

For the case of MPLS entrie(s) maintained in different tables (IPv4Route/ATM/FR), the
above said table operations are performed based on the flag field set for MPLS in the
entry.

10.3 Link Configuration and Status
These commands allow the individual links (multiple T-1/E-1’s) to be configured for line
protocol, either “clear channel” operation (default) or channelized. If “clear channel” is
selected, the link is then configured for either ATM (default) or PPP or FR . Attempts to
configure links not supported by the PIM in use will not be allowed. Attempting to remove
a channelized link before all the sub-channels have been removed will not be allowed.
Attempting to remove a non-channelized link that is part of an IMA group will not be
allowed.The user will be returned an error status if the attempted configuration causes
the maximum number of permitted logical channels to be exceeded.

• configLink {linkIndex} {T1|E1} [Clear|Channelized] [ATM|PPP|FR] -
configures a link

• removeLink {linkIndex} – removes the link
• showLink {linkIndex} – displays the link configuration

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 107 / 146

10.4 Channel configura tion and Status
These commands configure the individual channels on links that have been configured
for channelized operation for either ATM (default) or PPP or FR operation.

• configChannel {linkIndex} {channelIndex} {ATM|PPP|FR }– configure the
channel

• removeChannel {linkIndex} {channelIndex} – removes the channel
• showChannel {linkIndex} {channelIndex} – displays the channel configuration

An error status is returned if the attempted configuration causes the maximum number of
permitted logical channels to be exceeded.

10.5 IMA Configuration and Status
These commands allow IMA bundles to be configured on clear channel links that have
been configured for ATM.

• createImaGroup {baseLinkIndex} – creates the IMA group with the first link
• addImaLink {groupIndex} {linkIndex} – adds link to an existing IMA group
• removeImaLink {groupIndex} {linkIndex} – removes link from an existing IMA

group
• removeImaGroup {groupIndex} – removes the IMA group
• showIma – shows all configured IMA groups

10.6 PPP Configuration and Status
These commands allow for the configuration of PPP parameters on clear channel links
and individual channels configured for PPP operation.

• configPpp {linkIndex} {channelIndex} {PppParameter}
{PppParameterValue} – configures the PPP channel with one of the following
parameters:

o multilink
o mru
o mrru

• showPpp {linkIndex} {channelIndex} – displays the PPP configuration on the
specified

channel

The default PPP configuration is:

• multilink enabled with 4 classes
• MRU size = 1500
• MRRU size = 1500

10.7 FR Configuration and Status
These commands allow for the configuration of FR parameters on clear channel links
and individual channels configured for FR operation.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 108 / 146

• configFr {linkIndex} {channelIndex} {FrParameter} (FrParameterValue}
• – configures the FR channel with one of the following parameters:

o mru
• showFr {linkIndex} {channelIndex} – displays the FR configuration on the

specified channel

The default FR configuration is:

• MRU size = 4096

10.8 Statistics

These commands displays statistics gathered from various ports.

10.8.1 ATM statistics
The below command display the statistics gathered from the ATM ports.
• getAtmStats {linkIndex} {channelIndex} – displays the statistics for the

specified ATM TDM channel

10.8.2 PPP statistics
The below command display the statistics gathered from the PPP ports.
• getPppStats {linkIndex} {channelIndex} – displays the statistics for the

specified PPP TDM channel

10.8.3 FR statistics
The below command display the statistics gathered from the FR ports.

• getFrStats {linkIndex} {channelIndex} – displays the statistics for the
specified FR TDM channel.

11 HOST PROCESSOR TO NETWORK PROCESSOR
INTERFACE

This section details the control structures residing in the various NP DMEM’s that the
host component must initialize and maintain. These structures are exported in the NP
source code so that the host can acquire the DMEM address from the package file.

11.1 PPP
The following data structures relate to the PPP components running on both the host
and network processors.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 109 / 146

11.1.1 PPP Link Parameters
This structure holds parameters specific to each PPP link that has been negotiated by
LCP or NCP.

Byte Offset 0 1 2 3
0 flags segSize mru

• flags: a bitmap as follows:
o b7: port valid
o b6: IPv4 NCP up
o b5: unused
o b4: MPLS NCP up
o b3: Address and control field compression
o b2: protocol field compression
o b1-b0: unused

• segSize: ML-PPP segment size to send on this link
• mru: maximum received unit size that can be received on this link

11.2 ML-PPP
The following data structures relate to the ML-PPP components running on both the host
and network processors.

11.2.1 ML Bundle Parameters
This structure holds parameters specific to each ML-PPP bundle that have been
negotiated by LCP.

Byte Offset 0 1 2 3
0 flags Pad mru
4 firstPort NumPorts pad

• flags: a bitmap as follows:
o b7: bundle valid
o b6: IPv4 NCP up
o b5: unused
o b4: MPLS NCP up
o bb3: short sequence number
o b2-b0: unused

• mrru: maximum receive reconstructed unit
• firstPort: index of first PPP link in ML bundle channel list
• numPorts: number of links in bundle
• pad: unused

11.2.2 TDM Channel to ML Bundle Map
This structure is a byte array, MAX_TDM_CHANNELS long. The index into the array is
the TDM channel (PPP link) and the value of the array at that index is the ML bundle to
which the TDM channel belongs. A value of 0xFF indicates the channel does not belong
to a bundle.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 110 / 146

11.2.3 ML Bundle Channel List
This structure is a byte array, MAX_TDM_CHANNELS long. A contiguous block of
elements in the array indicates the TDM channels (PPP links), which belong to a
particular ML bundle. FirstPort and numPort fields of the ML bundle parameter structure
define the size and location of the block.

11.3 FR
The following data structures relate to the FR components running on both the host and
network
processors.

11.3.1 FR Link Parameters
This structure holds parameters specific to each FR link.

Byte Offset 0 1 2 3
0 flags mru pad

• flags: a bitmap as follows:
o b7: port valid
o b6-b0: unused

• mru: maximum received unit size that can be received on this link

11.4 IMA

The following data structures relate to the IMA components running on both the host and
network processors.

11.4.1 IMA Group Parameters
This structure holds parameters specific to each IMA group that has been configured.

Byte Offset 0 1 2 3
0 flags firstPort numPorts

• flags: a bitmap as follows:
o b7: group valid
o b6-b0: unused

• firstPort: index of first ATM link in IMA group channel list
• numPorts: number of links in group
• pad: unused

11.4.2 TDM channel to IMA Group Map
This structure is a byte array, MAX_TDM_CHANNELS long. The index into the array is
the TDM channel (ATM link) and the value of the array at that index is the IMA group to
which the TDM channel belongs. A value of 0xFF indicates the channel does not belong
to a bundle.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 111 / 146

11.4.3 IMA Group Channel List
This structure is a byte array, MAX_TDM_CHANNELS long. A contiguous block of
elements in the array indicates the TDM channels (ATM links), which belong to a
particular IMA group. The size and location of the block is defined by firstPort and
numPort fields of the IMA group parameter structure.

11.5 ATM
The following data structures relate to the ATM components running on both the host
and network
processors.

11.5.1 OAM Performance Monitoring Channel Map
This is a byte array, MAX_TDM_CHANNELS long. The index into the array is the TDM
channel (ATM link) and the value of the array is a Boolean value indicating whether or
not PM is to be performed on the channel.

12 IMPLEMENTATION DETAILS
This section covers some general implementation details as well as limitations, caveats,
and other general information about the design of the applications.

12.1 ML-PPP
This section lists some of the details of the ML-PPP implementation.

• All ML-PPP negotiations (LCP options) are handled by the host. LCP and NCP
packets pass
transparently through the NP as they travel between host and peer.

• Fragmentation is always performed (which is permissible). Each member can specify
the amount of payload to put into a fragment. This number must be a multiple of
16(default is 64).

• Both short and long sequence number header formats are supported.
• Self-Describing-Padding (which is optional) is not supported.
• Sequencing is handled by means of a linked list with a finite number of elements,

limited by DMEM.Bundles with many links (> 16) may experience packet loss when
fragments arrive out of order.

• Minimal attempt to detect lost fragments is made in the ML-PPP code. Packet loss
can be
detected by IP or UDP length, header, or checksum errors.

12.2 Soft Queues
Traffic management and quality of service (QoS) enforcing applications require a large
number of queues.These queues typically are used as FIFO buffers rather than for inter-
processor communication. Without an external hardware queuing-engine like the Q-5, it
is possible to run out of QMU buffers when implementing traffic management/QoS for
multiple channels/ports/flows/label-switched paths. This document proposes a design for

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 112 / 146

a software based queuing component that will use BMU buffers to hold queue data and
DMEM based structures to maintain FIFO ordering. These queues (hereafter referred to
as soft queues) provide the FIFO buffer paradigm requires by QoS applications.

12.2.1 BMU buffer structure
A large BMU buffer, whose size either 1K or 2K or 4K depending on the maximum
required queue depth is allocated. This buffer is logically partitioned into either 16byte or
32 byte slots. A packet descriptor is expected to occupy one slot. As all slots are aligned
to 16byte boundaries, they can be read from and written to by DMA using bsBufferRead
and bsBufferWrite API calls. This array is slots, is treated as a circular FIFO by
maintaining the following data-structure in DMEM:

struct SoftQHandle
{
int16u btag; // All the buffers used for soft queues are allocated from the same pool ID.
int8u front;
int8u rear;
};
This structure needs 4 bytes of DMEM capacity per queue. It is a design constraint to
keep the size of this structure to a minimum, as there are hundreds of soft queues per
processor and QoS applications typically share DMEM with other applications in a
cluster.

All the buffers used by soft queue component will be allocated from a single pool-id.
Hence it is sufficient tosimply store the btag number in each queue handle. The pool-id
will be stored in a global variable and will be private to the soft queue component.

The front and rear members of the above structure hold slot numbers for the descriptors
at the head and tail of the circular buffer of slots. The physical location of slots is
calculated by multiplying the slot number by 16 or more efficiently by left shifting the slot
number four times. An empty queue is indicated by front being equal to rear. When the
queue is full, front will be equal to (rear + 1)%#slots.

12.2.2 Soft Queue API
This section enumerates the soft queue API and describes their function signature and
implementation.

Function void sqInitialize (int16u poolId, int16u maxQueueDepth)
Parameters • poolId – pool-id of the pool to be used for soft queues. Typically this

would be created by the XP.
maxQueueDepth – the buffer size for the pool-id. It can be one of the three
numbers: 1024, 2048 or 4096.

Returns void
Implementation • Invoke bsBufPoolInitialize ()

• Store pool-id and maxQueueDepth in global variables.

Function int8u sqCreate (SoftQueueHandle* qHandle)
Parameters qHandle – a pointer to a valid soft-queue-handle structure

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 113 / 146

Returns success on successful soft-queue creation and fail when out of buffers in the
allocated pool

Implementation • Allocate a pool from global pool-id. If cannot allocate return failure
• Fill in the btag information in the handle and set front and rear members

to 0xff
• Return success

Function int8u sqEnqueueStart (SoftQueueHandle* qHandle, int32u* desc)
Parameters • qHandle – a pointer to a valid soft-queue-handle structure returned from a

call to sqCreate
• desc – a valid pointer to a 16 byte aligned packet descriptor

Returns success on successful en-queue and fail when the fifo is full
Implementation • If front == (rear + 1)%maxSlots then return failure

• Do a bsBufferWrite of 16 bytes from desc to the offset (front << 4). Do not
wait for the write tocomplete

• rear: = (rear+1)%maxSlots and return success

Function int8u sqEnqueueComplete (SoftQueueHandle* qHandle)
Parameters qHandle – a pointer to a valid soft-queue-handle structure returned from a call

to sqCreate
Returns success if the bsBufferWrite, initiated by the enqueue has completed and

failure otherwise
Implementation Invoke a bsBufferWriteComplete on the bufferhandle in the queue handle and

return the result

Function int8u sqDequeueStart (SoftQueueHandle* qHandle, int32u* desc)
Parameters • qHandle – a pointer to a valid soft-queue-handle structure

• desc – a valid pointer to a 16 byte aligned packet descriptor in DMEM
Returns success on successful de-queue and fail when the fifo is empty

Implementation • If rear == front return NULL
• Do a bsBufferRead of 16 bytes from offset (rear << 4) to desc
• front: = (front + 1)%maxSlots
• Return success

Function int8u sqDequeueComplete (SoftQueueHandle* qHandle)
Parameters qHandle – a pointer to a valid soft-queue-handle structure returned from a call

to sqCreate
Returns success if the bsBufferRead, initiated by the en-queue has completed and

failure otherwise
Implementation Invoke a bsBufferReadComplete on the buffer handle in the queue handle

and return the result

Function int8u sqDestroy (SoftQueueHandle* qHandle)
Parameters qHandle – a pointer to a valid soft-queue-handle structure returned from a call

to sqCreate
Returns success on successful destroy and failure if qHandle is invalid

Implementation De-allocate the buffer associated with this queue and return the result

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 114 / 146

12.2.3 Issues and enhancements

12.2.3.1 Support for Larger Queue Depths
The front and rear pointers are 8 bits wide and can hence point only up to the 255th slot.
With a slot size of 16 bytes and 255 slots the maximum buffer size possible is 4K bytes.
Increasing pointer size again leads to increase in DMEM requirements. Larger depths
will also be possible with wider slot sizes as described in the previous paragraph.

12.2.3.2 Using Soft Queues for IPC
Soft queues are intended for single processor usage only. They can be logically
extended for interprocessor communication by sharing and protecting the soft queue
handle. However this configuration is not supported as of now.

12.2.3.3 Support for Non-FIFO Operations
With this design, it is possible to implement alternative strategies like head drop instead
of normal tail drop. Such enhancements can be made as and when necessary.

13 HOST API REFERENCE

13.1 Table API
This section lists the functions and data types available on the host for table
maintenance.

13.1.1 Port Table API
This API allows an application to maintain the port table. This table stores parameters for
each of the ports. For more information, see Section 7.18.1

13.1.1.1 Data Types

1.1.1.1.1. PortTableInfo

Usage The definition for the fields of this structure are as follows:
• int16u channel – the logical channel index of the port (key)
• int8u portType – the type of port (entry)
• int8u flags – flags associated with this port (entry)
• int16u egressQueue – the egress queue for this port (entry)
• int16u qosQueue – the QOS queue for this port (entry)

Description This structure contains fields that contain the necessary information to form a
key for this table and also contains fields that correspond to those of this
table’s entry type.

Type struct

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 115 / 146

13.1.1.2 Functions

1.1.1.1.2. getPortTable
Function int getPortTable(int npIndex, PortTableInfo* info)

Description This function attempts to get the entry data in the Port Table for the key
specified.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for generating a key and returning the lookup

results
Returns 0 – operation was successful and the info structure contains valid data

1 – operation was not successful (lookup failed)

1.1.1.1.3. getNextPortTable
Function int getNextPortTable(int npIndex, PortTableInfo* info)

Description This function is used to “walk” the Port table returning the key and entry data for the
next valid entry.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for generating a key and returning the lookup results

Returns 0 – operation was successful and the info structure contains valid data
1 – operation was not successful (no more valid entries)

Implementation The “next” entry is determined by an index assigned to the entry by Table Services
when it was created.

1.1.1.1.4. setPortTable
Function int setPortTable(int npIndex, PortTableInfo* info)

Description This function is used to add or modify an entry in the Port Table.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key and containing the entry data
Returns 0 – operation was successful

1 – operation was not successful
Implementation The entry is looked up first and if it is “found”, a table modify is performed otherwise a

table add is performed.

1.1.1.1.5. deletePortTable
Function int deletePortTable(int npIndex, PortTableInfo* info)

Description This function removes an entry from the Port Table.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key
Returns 0 – operation was successful

1 – operation was not successful

1.1.1.1.6. flushPortTable
Function int flushPortTable(int npIndex, int& flushCount)

Description This function removes all entries from the Port Table
Parameters • npIndex – index of the NP for the operation

• flushCount – used to return the number of table entries that were removed
Returns 0 – operation was successful (flushCount is valid)

1 – operation was not successful

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 116 / 146

13.1.2 IPv4 Route Table API
This API allows an application to maintain the IPv4 Route Table. This table stores
forwarding information for IPv4 and UDP datagrams. For more information, See Section
7.18.3.

13.1.2.1 Data Types

1.1.1.1.7. AtmFwd
Description This structure contains fields that contain the necessary information to

correctly forward a packet or cell to an ATM port.
Type Struct

Usage The definition for the fields of this structure are as follows:
• int32u egressCellHeader – ATM cell header to be used
• int16u egressQueue –trafficQueue mapped to Q-3 for applying ATM TM

1.1.1.1.8. MplsFwd
Description This structure contains fields that contain the necessary information to perform

MPLS forwarding to ingress packet or cell.
Type Struct

Usage The definition for the fields of this structure are as follows:
• int16u labelPush1 –Label to be added.
• int16u labelPush2 –Second Label to be added for the MPLS action

PUSH_PUSH.
• int8u action –MPLS action to be performed.
• int8u hopCount –count value to be decremented from TTL.
• int8u egressBufType –buffer type of the egress interface.

1.1.1.1.9. FrFwd
Description This structure contains fields that contain the necessary information to

correctly forward a packet or cell to a FR port
Type Struct

Usage The definition for the fields of this structure are as follows:
• int32u egressFrHeader – 31-16: DLCI value of the FR header.

1.1.1.1.10. IpAddr
Description This structure contains the representation of an Ipv4 Network Address.

Type Union
Usage The definition for the fields of this union are as follows:

• int32u full – access to entire address
• int8u bytes [4] – allow access to individual bytes

1.1.1.1.11. IpV4RouteInfo
Description This structure contains fields that contain the necessary information to form a

key for this table and also contains fields that correspond to those of this
table’s entry type (ATM/MPLS/FR).

Type struct

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 117 / 146

Usage The definition for the fields of this structure are as follows:
• IpAddr address – IPv4 Network Layer address (key)
• IpAddr mask – IPv4 Net Mask (key)
• int16u port – egress port.
• int8u flag – if “0” configured for IP route, if non-zero configured for MPLS

route.
• int8u maskBits – the number of significant bytes in the key
• union {
int32u word [2] – provide word access
int16u hword[4] – provide half-word access
int8u byte[8] – provide byte access
AtmFwd atmFwd – ATM Port forwarding information
MplsFwd mplsFwd – MPLS forwarding information
FrFwd frFwd – FR forwarding information
} appData;
• int32u appHdrData – Egress Cell header (valid for MPLS entry only)
• int16u qosQueue – Qos Queue value (valid for MPLS entry only).

13.1.2.2 Functions

1.1.1.1.12. getIpV4RouteTable
Function int getIPv4RouteTable(int npIndex, IPv4RouteInfo* info)

Description This function attempts to get the entry data in the Ipv4 RouteTable for the key
specified.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for generating a key and returning the lookup

results
Returns 0 – operation was successful and the info structure contains valid data

1 – operation was not successful (lookup failed)

1.1.1.1.13. getNextIpV4RouteTable
Function int getNextIPv4RouteTable(int npIndex, IPv4RouteInfo* info)

Description This function is used to “walk” the IPv4 Route Table returning the key and entry data
for the next.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for generating a key and returning the lookup results

Returns 0 – operation was successful and the info structure contains valid data
1 – operation was not successful (no more valid entries)

Implementation The “next” entry is determined by an index assigned to the entry by Table Services
when it was created.

1.1.1.1.14. setIpV4RouteTable
Function int settIPv4RouteTable(int npIndex, IPv4RouteInfo* info)

Description This function is used to add or modify an entry in the IPv4 Route Table.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key and containing the entry data
Returns 0 – operation was successful

1 – operation was not successful
Implementation The entry is looked up first and if it is “found”, a table modify is performed otherwise a

table add is performed.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 118 / 146

1.1.1.1.15. deleteIpV4RouteTable
Function int deleteIPv4RouteTable(int npIndex, IPv4RouteInfo* info)

Description This function removes an entry from the IPv4 Route Table
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key
Returns 0 – operation was successful

1 – operation was not successful

1.1.1.1.16. flushIpV4RouteTable
Function int flushIPv4RouteTable(int npIndex, int& flushCount)

Description This function removes all entries from the IPv4 Route Table.
Parameters • npIndex – index of the NP for the operation

• flushCount – used to return the number of table entries that were removed
Returns 0 – operation was successful (flushCount is valid)

1 – operation was not successful

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 119 / 146

13.1.3 ATM VC Table API

This API allows an application to maintain the ATM VC Table. This table stores
connection information for ATM virtual circuits and MPLS entry if VPI/VCI maps to the
MPLS Label. For more information, see section 7.18.4.

13.1.3.1 Data Types

1.1.1.1.17. AtmEntryInfo
Description This structure contains fields that contain the necessary information to form a

key for this table and also contains fields that correspond to those of this
table’s entry type.

Type Struct
Usage The definition for the fields of this structure are as follows:

• int16u gfcVpiVciHi – GFC, VPI, and upper byte of VCI header fields (key)
• int16u vciLoPtiClp – VCI lower byte, PTI< and CLP header fields (key)
• int16u port – port index (key)

For ATM VC entry the following fields are used,

• int16u flags_egressPort – flag and egress port, bits 15:11 are flags, 10:0 is
the port

• int16u vcIndex – VC index used by AAL5 SAR to index their state tables.
• int32u egressCellHeader – egress port cell header,
• int16u egressQueue –The egress queue of the ATM cell, this is

necessary for the FP which can launch only one lookup. This also
represents the trafficQueue, to be used if QoS is enabled for this
egress port

• int16u port_bufType – the egress port and buffer type packaged in a
way the FP can use

• int16u destQueue – the queue of the next ATM processing block, this
is necessary for the FP which cannot act on TLU response data

For ATM MPLS entry the following fields are used,

• int16u flags_egressPort – flags and egress port, bits 15:11 are flags, 10:0
is the port

• int16u vcIndex – VC index used by AAL5 SAR to index their state tables.
• int16u labelSwap – Label to be swapped or added (for PUSH_PUSH

action)
• int16u labelPush – Label to be added
• int16u egressQueue – egress queue
• int8u hopCount _action – MPLS action to be performed (4bits) and the

count to be decremented in TTL of the shim header(4bits).
• int8u egressBufType – the type of buffer being recirculated and the egress

port type (could be BT_MPLS_PPP, BT_MPLS_ATM, BT_MPLS_FR,
BT_MPLS_IPv4)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 120 / 146

• int32u appHdrData – CellHeader if ATM as the egress port type or DLCI if
FR as the egress port type.

13.1.3.2 Functions

1.1.1.1.18. getAtmVcTable
Function int getAtmVcTable(int npIndex, AtmEntryInfo* info)

Description This function attempts to get the entry data in the ATM VC/MPLS Table for the
key specified.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for generating a key and returning the lookup

results
Returns 0 – operation was successful and the info structure contains valid data

1 – operation was not successful (lookup failed)

1.1.1.1.19. getNextAtmVcTable
Function int getNextAtmVcTable(int npIndex, AtmEntryInfo* info)

Description This function is used to “walk” the ATM VC/MPLS table returning the key and entry
data for the next valid entry.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for generating a key and returning the lookup results

Returns 0 – operation was successful and the info structure contains valid data
1 – operation was not successful (no more valid entries)

Implementation The “next” entry is determined by an index assigned to the entry by Table Services
when it was created.

1.1.1.1.20. setAtmVcTable
Function Int setAtmVcTable(int npIndex, AtmEntryInfo* info)

Description This function is used to add or modify an entry in the ATM VC Table.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key and containing the entry data
Returns 0 – operation was successful

1 – operation was not successful
Implementation The entry is looked up first and if it is “found”, a table modify is performed otherwise a

table add is performed.

1.1.1.1.21. deleteAtmVcTable
Function int deleteAtmVcTable(int npIndex, AtmEntryInfo* info)

Description This function removes an entry from the ATM VC Table.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key
Returns 0 – operation was successful

1 – operation was not successful

1.1.1.1.22. flushAtmVcTable
Function int flushAtmVcTable(int npIndex, int& flushCount)

Description This function removes all entries from the ATM VC Table
Parameters • npIndex – index of the NP for the operation

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 121 / 146

• flushCount – used to return the number of table entries that were removed
Returns 0 – operation was successful (flushCount is valid)

1 – operation was not successful

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 122 / 146

13.1.4 Diffserv Flow Table API
This API allows an application to maintain the DiffServ Flow Table. This table stores the
per-hop behavior for IPv4 flows. For more information, see section 7.18.6.

13.1.4.1 Data Types

1.1.1.1.23. DiffServFlowInfo
Description This structure contains fields that contain the necessary information to form a

key for this table and also contains fields that correspond to those of this
table’s entry type.

Type Struct
Usage The definition for the fields of this structure are as follows:

• int16u ipDestAddrHi – high bytes of destination IPv4 Network Address
(key)

• int16u ipDestAddrLo – low bytes of destination IPv4 Network Address
(key)

• int16u destPort – destination UDP port (key)
• int32u ipSrcAddr – source IPv4 Network Address (key)
• int16u srcPort – source UDP port (key)
• int8u protocol – protocol (key)
• int8u egressPort – egress port (key)
• int8u maskBits – mask bits
• int8u phb – per hop behavior
• int16u flowId – flow ID
• int16u qosQueueOffset – used for Q3 based QOS
• int8u flags – bit 0: 1 –send ;0 –Drop

13.1.4.2 Functions

1.1.1.1.24. getDiffServFlowTable
Function int getDiffServFlowTable(int npIndex, DiffServFlowInfo* info)

Description This function attempts to get the entry data in the DiffServ Flow Table for the
key specified.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for generating a key and returning the lookup

results
Returns 0 – operation was successful and the info structure contains valid data

1 – operation was not successful (lookup failed)

1.1.1.1.25. getNextDiffServFlowTable
Function int getNextDiffServFlowTable(int npIndex, DiffServFlowInfo* info)

Description This function is used to “walk” the DiffServ Flow table returning the key and entry data
for the next valid entry.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for generating a key and returning the lookup results

Returns 0 – operation was successful and the info structure contains valid data

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 123 / 146

1 – operation was not successful (no more valid entries)
Implementation The “next” entry is determined by an index assigned to the entry by Table Services

when it was created.

1.1.1.1.26. setDiffServFlowTable
Function Int setDiffServFlowTable(int npIndex, DiffServFlowInfo* info)

Description This function is used to add or modify an entry in the DiffServ Flow Table.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key and containing the entry data
Returns 0 – operation was successful

1 – operation was not successful
Implementation The entry is looked up first and if it is “found”, a table modify is performed otherwise a

table add is performed.

1.1.1.1.27. deleteDiffServFlowTable
Function int deleteDiffServFlowTable(int npIndex, DiffServFlowInfo* info)

Description This function removes an entry from the DiffServ Flow Table.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key
Returns 0 – operation was successful

1 – operation was not successful

1.1.1.1.28. flushDiffServFlowTable
Function int flushDiffServFlowTable(int npIndex, int& flushCount)

Description This function removes all entries from the DiffServ Flow Table
Parameters • npIndex – index of the NP for the operation

• flushCount – used to return the number of table entries that were removed
Returns 0 – operation was successful (flushCount is valid)

1 – operation was not successful

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 124 / 146

13.1.5 MPLS Table API
This API allows an application to maintain the MPLS Table. This table stores MPLS
processing information for PPP frames and also for POP action (which needs additional
label lookup based on the next label in the stack) in the case of MPLS packet over ATM
and FR. For more information, see section 7.18.8.

13.1.5.1 Data Types

1.1.1.1.29. MplsEntryInfo
Description This structure contains fields that contain the necessary information to form a

key for this table and also contains fields that correspond to those of this
table’s entry type.

Type Struct
Usage The definition for the fields of this structure are as follows:

• int16u keyLabel – Label which forms the index (key) to MPLS table.

MPLS entry fields are mentioned below :
• int16u labelSwap – Label to be swapped or added (for PUSH_PUSH

action)
• int16u labelPush – Label to be added.
• int8u action – MPLS action to be performed
• int8u hopCount - count to be decremented in TTL of the shim header
• int16u port_bufType – a bitmask defined as follows:

b15-5: port – the output port on which this datagram to be
transmitted.
b4-0: bufType – the type of buffer being recirculated and the
egress port type (could be BT_MPLS_PPP, BT_MPLS_ATM,
BT_MPLS_FR, BT_MPLS_IPv4)

• int16u egressQueue – the egress queue for the egress port.
• int16u pad -unused
• int32u appHdrData – egressCellHeader for ATM or egressFrHeader for

FR

13.1.5.2 Functions

1.1.1.1.30. geMplsTable
Function int getMplsTable(int npIndex, MplsEntryInfo * info)

Description This function attempts to get the entry data in the MPLS Table for the key
specified.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for generating a key and returning the lookup

results
Returns 0 – operation was successful and the info structure contains valid data

1 – operation was not successful (lookup failed)

1.1.1.1.31. getNextMplsTable

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 125 / 146

Function int getNextMplsTable(int npIndex, MplsEntryInfo * info)
Description This function is used to “walk” the MPLS Table returning the key and entry data for the

next.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key and returning the lookup results
Returns 0 – operation was successful and the info structure contains valid data

1 – operation was not successful (no more valid entries)
Implementation The “next” entry is determined by an index assigned to the entry by Table Services

when it was created.

1.1.1.1.32. setMplsTable
Function int setMplsTable(int npIndex, MplsEntryInfo * info)

Description This function is used to add or modify an entry in the MPLS Table.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key and containing the entry data
Returns 0 – operation was successful

1 – operation was not successful
Implementation The entry is looked up first and if it is “found”, a table modify is performed otherwise a

table add is performed.

1.1.1.1.33. deleteMplsTable
Function Int deleteMplsTable(int npIndex, MplsEntryInfo * info)

Description This function removes an entry from the MPLS Table
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key
Returns 0 – operation was successful

1 – operation was not successful

1.1.1.1.34. flushMplsTable
Function Int flushMplsTable(int npIndex, int& flushCount)

Description This function removes all entries from the MPLS Table.
Parameters • npIndex – index of the NP for the operation

• flushCount – used to return the number of table entries that were removed
Returns 0 – operation was successful (flushCount is valid)

1 – operation was not successful

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 126 / 146

13.1.6 FR Table API
This API allows an application to maintain the FR Table. This table stores MPLS
processing information for PPP frames and also for POP action (which needs additional
label lookup based on the next label in the stack) in the case of MPLS packet over ATM
and FR. For more information, see section 7.18.7.

13.1.6.1 Data Types

1.1.1.1.35. FrEntryInfo
Description This structure contains fields that contain the necessary information to form a

key for this table and also contains fields that correspond to those of this
table’s entry type.

Type Struct
Usage The definition for the fields of this structure are as follows:

• int32u interfaceID_DLCI – 20:10 interfaceID (11bits), 9:0 DLCI (10).
FR entry field is listed below:
• int16u FrHeader -specifies the DLCI value and the congestion

control information.

MPLS entry fields are listed below:

• int16u labelSwap – Label to be swapped or added (for PUSH_PUSH
action)

• int16u labelPush – Label to be added.
• int8u action – MPLS action to be performed
• int8u hopCount - count to be decremented in TTL of the shim header
• int16u port_bufType – a bitmask defined as follows:

b15-5: port – the output port on which this datagram to be
transmitted.
b4-0: bufType – the type of buffer being recirculated and the
egress port type (could be BT_MPLS_PPP, BT_MPLS_ATM,
BT_MPLS_FR, BT_MPLS_IPv4)

• int16u egressQueue – the egress queue for the egress port (entry).
• int8u flags – bit 0: value 1 - MPLS entry, value 0-FR entry.

13.1.6.2 Functions

1.1.1.1.36. getFrTable
Function int getFrTable (int npIndex, FrEntryInfo* info)

Description This function attempts to get the entry data in the FR Table for the key
specified.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for generating a key and returning the lookup

results
Returns 0 – operation was successful and the info structure contains valid data

1 – operation was not successful (lookup failed)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 127 / 146

1.1.1.1.37. getNextFrTable
Function int getNextFrTable (int npIndex, FrEntryInfo* info)

Description This function is used to “walk” the FR Table returning the key and entry data for the
next.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for generating a key and returning the lookup results

Returns 0 – operation was successful and the info structure contains valid data
1 – operation was not successful (no more valid entries)

Implementation The “next” entry is determined by an index assigned to the entry by Table Services
when it was created.

1.1.1.1.38. setFrTable
Function int setFrTable (int npIndex, FrEntryInfo* info)

Description This function is used to add or modify an entry in the FR Table.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key and containing the entry data
Returns 0 – operation was successful

1 – operation was not successful
Implementation The entry is looked up first and if it is “found”, a table modify is performed otherwise a

table add is performed.

1.1.1.1.39. deleteFrTable
Function Int deleteFrTable (int npIndex, FrEntryInfo* info)

Description This function removes an entry from the FR Table
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for generating a key
Returns 0 – operation was successful

1 – operation was not successful

1.1.1.1.40. flushFrTable
Function Int flushFrTable(int npIndex, int& flushCount)

Description This function removes all entries from the FR Table.
Parameters • npIndex – index of the NP for the operation

• flushCount – used to return the number of table entries that were removed
Returns 0 – operation was successful (flushCount is valid)

1 – operation was not successful

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 128 / 146

13.2 Link, Channel, and IMA API
This section lists the API available on the host for maintaining links, channels, and IMA
groups at the TDM interface.

13.2.1 Data Types

13.2.1.1 MsaLinkType
Description This structure contains an enumeration of the supported link types.

Type Enum
Usage • MSA_LINK_NULL – null type

• MSA _LINK_T1 – T1 link
• MSA _LINK_E1 – E1 link
• MSA _LINK_LAST – last value

13.2.1.2 LinkChannelInfo
Description This structure contains fields that contain the necessary information to

describe a T1/E1 link and DS0 sub-channels.
Type Struct

Usage The definition for the fields of this structure are as follows:
• int8u linkIndex – index of the desired link
• int8u channelIndex – index of the desired channel
• int8u ifType – if “0” configured for ATM, 1 for PPP and 2 for FR
• int8u clearChannel – if non-zero, configured for Clear Channel
• int activeChannelCount – number of active sub-channels
• MsaLinkType linkType – link type
• int logChannel – logical channel index (used to return the allocated logical

channel when a link or channel is created)

13.2.2 Functions

13.2.2.1 addLink
Function int addLink(int npIndex, LinkChannelInfo* info)

Description This function is used to add a new link configuration.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for configuring the link
Returns 0 – operation was successful

1 – operation was not successful

13.2.2.2 removeLink
Function int removeLink(int npIndex, LinkChannelInfo* info)

Description This function is used to remove an existing link.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for specifying the link to be removed
Returns 0 – operation was successful

1 – operation was not successful

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 129 / 146

Implementation The link must not have any configured sub-channels or be part of an IMA group.

13.2.2.3 getLink
Function int getLink(int npIndex, LinkChannelInfo* info)

Description This function is used to get the configuration of the specified link.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for specifying the link and returning the
configuration

Returns 0 – operation was successful
1 – operation was not successful

13.2.2.4 getNextLink
Function int getNextLink(int npIndex, LinkChannelInfo* info)

Description This function is used to “walk” all active links and return their configuration.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for returning the link configuration
Returns 0 – operation was successful

1 – operation was not successful (no more active links)
Implementation The links are traversed in ascending link index order.

13.2.2.5 addChannel
Function int addChannel(int npIndex, LinkChannelInfo* info)

Description This function is used to add a new sub-channel to an existing link.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for specifying the link and channel.
Returns 0 – operation was successful

1 – operation was not successful
Implementation The link must be configured for non-clear channel operation.

13.2.2.6 removeChannel
Function int removeChannel(int npIndex, LinkChannelInfo* info)

Description This function is used to remove an existing sub-channel from a link.
Parameters • npIndex – index of the NP for the operation

• info – structure to be used for specifying the link and channel.
Returns 0 – operation was successful

1 – operation was not successful

13.2.2.7 getChannel
Function int getChannel(int npIndex, LinkChannelInfo* info)

Description This function is used to get the configuration of an existing sub-channel on a
link.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for specifying the link and channel

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 130 / 146

Returns 0 – operation was successful
1 – operation was not successful

13.2.2.8 getNextChannel
Function int getNextChannel(int npIndex, LinkChannelInfo* info)

Description This function is used to get the configuration of the “next” active sub-channel
in a link

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for specifying the link and channel

Returns 0 – operation was successful
1 – operation was not successful (no more active channels)

13.2.2.9 getLogChannel
Function int getLogChannel(int npIndex, int logChannelIndex, LinkChannelInfo* info)

Description This function is used to get the link/channel information corresponding to a
particular logical channel.

Parameters • npIndex – index of the NP for the operation
• logChannelIndex – index of the logical channel
• info – structure to be used for returning the link/channel info if successful

Returns 0 – operation was successful
1 – operation was not successful (logical channel not in use)

13.2.2.10 getNextLogChannel
Function int getNextLogChannel(int npIndex, LinkChannelInfo* info)

Description This function is used to get the configuration of the “next” active logical
channel.

Parameters • npIndex – index of the NP for the operation
• info – structure to be used for returning the link/channel info if successful

Returns 0 – operation was successful
1 – operation was not successful (no more active channels)

13.2.2.11 addImaGroup
Function int addImaGroup(int npIndex, int baseLinkIndex, int& imaGroupIndex)

Description This function is used to create a new IMA Group
Parameters • npIndex – index of the NP for the operation

• baseLinkIndex – first link to be placed in the new IMA group
• imaGroupIndex – returned value of new IMA Group index if successful

Returns 0 – operation was successful
1 – operation was not successful (base link not configured correctly)

13.2.2.12 addImaLink
Function int addImaLink(int npIndex, int imaGroupIndex, int linkIndex)

Description This function is used to add a link to an existing IMA Group
Parameters • npIndex – index of the NP for the operation

• imaGroupIndex – existing IMA group to be added to
• linkIndex – index of link to be added

Returns 0 – operation was successful
1 – operation was not successful (link not configured correctly)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 131 / 146

13.2.2.13 removeImaLink
Function int removeImaLink(int npIndex, int imaGroupIndex, int linkIndex)

Description This function is used to remove a link from an existing IMA Group
Parameters • npIndex – index of the NP for the operation

• imaGroupIndex – existing IMA group to be removed from
• linkIndex – index of link to be removed

Returns 0 – operation was successful
1 – operation was not successful (link not a member of the group)

13.2.2.14 removeImaGroup
Function int removeImaGroup(int npIndex, int imaGroupIndex)

Description This function is used to remove an existing IMA Group
Parameters • npIndex – index of the NP for the operation

• imaGroupIndex – existing IMA group to be removed
Returns 0 – operation was successful

1 – operation was not successful (not all links have been removed first)

13.3 PPP API
This section lists the API available on the host for configuring and maintaining PPP links.

13.3.1 Data Types

13.3.1.1 MsaPppParam
Description This structure contains an enumeration of the supported PPP parameters.

Type enum
Usage The definition for the fields of this structure are as follows:

• LCP_OPT_MRU – LCP MRU size option
• LCP_VAL_MRU – LCP MRU value
• LCP_OPT_ASYNC – LCP async map option (not supported)
• LCP_OPT_UPAP – LCP PAP option (not supported)
• LCP_OPT_CHAP – LCP CHAP option (not supported)
• LCP_OPT_MAGIC – LCP magic number option
• LCP_OPT_PCOMP – LCP Protocol Field compression option
• LCP_OPT_ACCOMP – LCP Address/Control Field compression option
• LCP_OPT_LQR – LCP Link Quality Reporting Option (not supported)
• LCP_OPT_CBCP – LCP Callback Option (not supported)
• LCP_OPT_MRRU – LCP MRRU Option
• LCP_VAL_MRRU – LCP MRRU value
• LCP_OPT_SSN – LCP Send Short Sequence Number Option
• LCP_OPT_EPD – LCP Endpoint Discriminator Option
• LCP_PASSIVE – keep LCP active if no responses are heard
• LCP_SILENT – let the other end start LCP negotiation first
• LCP_RESTART – restart (vs. exit) after LCP closes
• IPCP_OPT_ADDR – IPCP IP Address negotiation option
• IPCP_OPT_VJ – IPCP Van Jacobsen compression option
• IPCP_REQ_ADDR – IPCP request peer to send its IP address
• IPCP_OLD_VJ – IPCP use old (short) form of VJ option
• IPCP_OLD_ADDRS – IPCP use old (IP-Addresses) option

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 132 / 146

• IPCP_ACCEPT_LOCAL – IPCP accept peer's value for our address
• IPCP_ACCEPT_REMOTE – IPCP accept peer's value for his address
• IPCP_REQ_DNS1 – IPCP Ask peer to send primary DNS address
• IPCP_REQ_DNS2 – IPCP Ask peer to send secondary DNS address
• IPCP_COMP_PROT – IPCP Compression Protocol Value
• IPCP_MAX_SLOT – IPCP Max Slot Index value

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 133 / 146

13.3.2 LCP API
This API allows an application to configure the LCP parameters of a PPP link.

13.3.2.1 getPppLcpParam
Function int getPppLcpParam(int npIndex, int tdmChannel, MsaPppParam param,

int32u* value)
Description This function is used to get the specified LCP parameter from the specified

PPP link
Parameters • npIndex – index of the NP for the operation

• tdmChannel – logical TDM channel of the desired PPP link
• param – the parameter to get
• *value – the returned value of the parameter if successful

Returns 0 – operation was successful
1 – operation was not successful

13.3.2.2 setPppLcpParam
Function int setPppLcpParam(int npIndex, int tdmChannel, MsaPppParam param,

int32u* value)
Description This function is used to set the specified LCP parameter on the specified PPP

link
Parameters • npIndex – index of the NP for the operation

• tdmChannel – logical TDM channel of the desired PPP link
• param – the parameter to set
• value – the value of the parameter

Returns 0 – operation was successful
1 – operation was not successful

13.3.2.3 getPppLcpStats
Function int getPppLcpStats(int npIndex, int tdmChannel, void* statBuffer)

Description This function is used to get the LCP statistics from the specified PPP link
Parameters • npIndex – index of the NP for the operation

• tdmChannel – logical TDM channel of the desired PPP link
• statBuffer – user buffer to hold returned statistics

Returns 0 – operation was successful
1 – operation was not successful

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 134 / 146

13.3.3 IPCP API
This API allows an application to configure the IPv4 CP parameters of a PPP link.

13.3.3.1 getPppIpCpParam
Function int getPppIpCpParam(int npIndex, int tdmChannel, MsaPppParam param,

int32u* value)
Description This function is used to get the specified IPCP parameter from the specified

PPP link
Parameters • npIndex – index of the NP for the operation

• tdmChannel – logical TDM channel of the desired PPP link
• param – the parameter to get
• value – the returned value of the parameter if successful

Returns 0 – operation was successful
1 – operation was not successful

13.3.3.2 setPppIpCpParam
Function int setPppIpCpParam(int npIndex, int tdmChannel, MsaPppParam param,

int32u* value)
Description This function is used to set the specified IPCP parameter on the specified PPP

link
Parameters • npIndex – index of the NP for the operation

• tdmChannel – logical TDM channel of the desired PPP link
• param – the parameter to set
• value – the value of the parameter

Returns 0 – operation was successful
1 – operation was not successful

13.3.3.3 getPppIpCpStats
Function int getPppIpCpStats(int npIndex, int tdmChannel, void* statBuffer)

Description This function is used to get the IPCP statistics from the specified PPP link
Parameters • npIndex – index of the NP for the operation

• tdmChannel – logical TDM channel of the desired PPP link
• statBuffer – user buffer to hold returned statisatics

Returns 0 – operation was successful
1 – operation was not successful

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 135 / 146

13.4 ATM API
This section lists the API available on the host for configuring and maintaining ATM links.

13.4.1 getAtmPortStats
Function int getAtmStats(int npIndex, int tdmChannel, void* statBuffer)

Description This function is used to get the ATM port statistics from the specified ATM
Link.

Parameters • npIndex – index of the NP for the operation
• tdmChannel – logical TDM channel of the desired PPP link
• statBuffer – user buffer to hold returned statisatics

Returns 0 – operation was successful
1 – operation was not successful

13.5 FR API
This section lists the API available on the host for configuring and maintaining FR links.

13.5.1 Data Types

13.5.1.1 MsaFrParam
Description This structure contains an enumeration of the supported FR parameters.

Type enum
Usage The definition for the fields of this structure are as follows:

• mru - maximum received unit size that can be received on this link.

13.5.1.2 getFrPortParam
Function int getFrParam(int npIndex, int tdmChannel, MsaFrParam param, int32u*

value)
Description This function is used to get the specified FR parameter from the FR Link
Parameters • npIndex – index of the NP for the operation

• tdmChannel – logical TDM channel of the desired PPP link
• param – the parameter to get
• value – the returned value of the parameter if successful

Returns 0 – operation was successful
1 – operation was not successful

13.5.1.3 setFrPortParam
Function int setFrParam(int npIndex, int tdmChannel, MsaFrParam param, int32u*

value)
Description This function is used to set the specified FR parameter on the FR Link
Parameters • npIndex – index of the NP for the operation

• tdmChannel – logical TDM channel of the desired PPP link
• param – the parameter to set
• value – the value of the parameter

Returns 0 – operation was successful
1 – operation was not successful

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 136 / 146

13.5.1.4 getFrPortStats
Function int getFrStats(int npIndex, int tdmChannel, void* statBuffer)

Description This function is used to get the FR port statistics from the specified FR Link.
Parameters • npIndex – index of the NP for the operation

• tdmChannel – logical TDM channel of the desired PPP link
• statBuffer – user buffer to hold returned statisatics

Returns 0 – operation was successful
1 – operation was not successful

13.6 Control API
This section lists the API available on the host for control the applications and
processing their outputs.

13.6.1 Functions

13.6.1.1 startMsaLineCard
Function int startMsaLineCard(int32u npIndex,

int8u fabricId,
int(*rxIP)(int,int32u,void*,int16u,int8u*),
int(*rxMPLS)(int,int32u,void*,int16u,int8u*),
int(*rxPPP)(int,int32u,void*,int16u,int8u*),
int(*rxATM)(int,int32u,void*,int16u,int8u*),
int(*rxFR)(int,int32u,void*,int16u,int8u*),
int defaultConfig))

Description This function is used to start the MSA Line Card application
Parameters • npIndex – index of the NP for the operation

• fabricId – fabricId
• rxIP – IP upcall function pointer
• rxMPLS - MPLS upcall function pointer
• rxPPP – PPP upcall function pointer
• rxATM – ATM upcalll function pointer
• rxFR – FR upcalll function pointer
• defaultConfig – if set, a default link/channel configuration and table contents are

loaded
Returns 0 – operation was successful

1 – operation was not successful
Implementation NULL pointers are allowed for the upcalls. The rxPPP upcall is not currently used.

13.6.1.2 registerIpUpcall
Function int registerIpUpcall(int32u npIndex, int(*rxIP)(int,int32u,void*,int16u,int8u*))

Description This function is used to register an IP upcall function once the application has
been started.

Parameters • npIndex – index of the NP for the operation
• rxIP – IP upcall function pointer

Returns 0 – operation was successful
1 – operation was not successful (an upcall was previously registered and not
de-registered)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 137 / 146

13.6.1.3 registerMplsUpcall
Function int registerMplsUpcall(int32u npIndex,

int(*rxMPLS)(int,int32u,void*,int16u,int8u*))
Description This function is used to register an MPLS upcall function once the application

has been started.
Parameters • npIndex – index of the NP for the operation

• rxMPLS – MPLS upcall function pointer
Returns 0 – operation was successful

1 – operation was not successful (an upcall was previously registered and not
de-registered)

13.6.1.4 registerPppUpcall
Function int registerPppUpcall(int32u npIndex,

int(*rxPPP)(int,int32u,void*,int16u,int8u*))
Description This function is used to register a PPP upcall function once the application has

been started.
Parameters • npIndex – index of the NP for the operation

• rxPPP – PPP upcall function pointer
Returns 0 – operation was successful

1 – operation was not successful (an upcall was previously registered and not
de-registered)

13.6.1.5 registerAtmUpcall
Function int registerAtmUpcall(int32u npIndex,

int(*rxATM)(int,int32u,void*,int16u,int8u*))
Description This function is used to register an ATM upcall function once the application

has been started.
Parameters • npIndex – index of the NP for the operation

• rxATM – ATM upcall function pointer
Returns 0 – operation was successful

1 – operation was not successful (an upcall was previously registered and not
de-registered)

13.6.1.6 registerFrUpcall
Function int registerFrUpcall(int32u npIndex, int(*rxFR)(int,int32u,void*,int16u,int8u*))

Description This function is used to register an FR upcall function once the application has
been started.

Parameters • npIndex – index of the NP for the operation
• rxFR – FR upcall function pointer

Returns 0 – operation was successful
1 – operation was not successful (an upcall was previously registered and not
de-registered)

13.6.1.7 deregisterIpUpcall
Function int deregisterIpUpcall(int32u npIndex)

Description This function is used to de-register an IP upcall function once the application
has been started.

Parameters • npIndex – index of the NP for the operation
Returns 0 – operation was successful

1 – operation was not successful

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 138 / 146

13.6.1.8 deregisterMplsUpcall

Function
int deregisterMplsUpcall(int32u npIndex)

Description
This function is used to de-register an MPLS upcall function once the
application has been started.

Parameters
• npIndex – index of the NP for the operation

Returns
0 – operation was successful
1 – operation was not successful

13.6.1.9 deregisterPppUpcall
Function int deregisterPppUpcall(int32u npIndex)

Description This function is used to de-register a PPP upcall function once the application
has been started.

Parameters • npIndex – index of the NP for the operation
Returns 0 – operation was successful

1 – operation was not successful

13.6.1.10 deregisterAtmUpcall
Function int deregisterAtmUpcall(int32u npIndex)

Description This function is used to de-register an ATM upcall function once the
application has been started.

Parameters • npIndex – index of the NP for the operation
Returns 0 – operation was successful

1 – operation was not successful

13.6.1.11 deregisterFrUpcall
Function int deregisterFrUpcall(int32u npIndex)

Description This function is used to de-register an FR upcall function once the application
has been started.

Parameters • npIndex – index of the NP for the operation
Returns 0 – operation was successful

1 – operation was not successful

13.7 NP Port API
This section lists the API available on the host to configure the NP network interfaces
(ports) and get the interface statistics.

13.7.1 Data Types

13.7.1.1 MsaPortParam
Description This structure contains an enumeration of the supported NP Port parameters.

Type Enum
Usage The definition for the fields of this structure are as follows:

• TDM_CHUNK_SIZE – 32/ 64 bytes.

13.7.2 TDM API
This API allows an application to configure the TDM network interfaces on the NP.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 139 / 146

13.7.2.1 getTdmPortParam
Function int getTdmPortParam(int npIndex, MsaPortParam param, int32u* value)

Description This function is used to get the specified TDM parameter from the TDM port
Parameters • npIndex – index of the NP for the operation

• param – the parameter to get
• value – the returned value of the parameter if successful

Returns 0 – operation was successful
1 – operation was not successful

13.7.2.2 setTdmPortParam
Function int setTdmPortParam(int npIndex, MsaPortParam param, int32u* value)

Description This function is used to set the specified TDM parameter on the TDM port
Parameters • npIndex – index of the NP for the operation

• param – the parameter to set
• value – the value of the parameter to set

Returns
0 – operation was successful
1 – operation was not successful

13.7.2.3 getTdmPortStats
Function int getTdmPortStats(int npIndex, void* statBuffer)

Description This function is used to get the TDM port statistics.
Parameters • npIndex – index of the NP for the operation

• statBuffer – user buffer to hold returned statistics
Returns 0 – operation was successful

1 – operation was not successful

13.7.3 Fabric API
This API allows an application to configure the fabric port interface on the NP.

13.7.3.1 getFabricPortParam
Function int getFabricPortParam(int npIndex, MsaPortParam param, int32u* value)

Description This function is used to get the specified parameter from the Fabric port
Parameters • npIndex – index of the NP for the operation

• param – the parameter to get
• value – the returned value of the parameter if successful

Returns 0 – operation was successful
1 – operation was not successful

Implementation No Fabric parameters are currently defined

13.7.3.2 setFabricPortParam
Function int setAtmPortParam(int npIndex, MsaPortParam param, int32u* value)

Description This function is used to set the specified parameter on the Fabric port
Parameters • npIndex – index of the NP for the operation

• param – the parameter to set
• value – the value of the parameter to set

Returns 0 – operation was successful
1 – operation was not successful

Implementation No Fabric parameters are currently defined

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 140 / 146

13.7.3.3 getFabricPortStats
Function int getFabricPortStats(int npIndex, void* statBuffer)

Description This function is used to get the Fabric port statistics.
Parameters • npIndex – index of the NP for the operation

• statBuffer – user buffer to hold returned statistics
Returns 0 – operation was successful

1 – operation was not successful

13.8 I/O API
This section lists the API available on the host to perform send and receive packets to
and from the NP.

13.8.1 Data Types

13.8.1.1 MsaPktType
Description This structure contains an enumeration of the supported packet formats.

Type Enum
Usage The definition for the fields of this structure are as follows:

• MSA _PKT_PPP_LCP – PPP LCP
• MSA _PKT_PPP_IPCP – PPP IPCP
• MSA_PKT_PPP_IPV4 – PPP IPv4
• MSA _PKT_PPP_MLPP – PPP Multilink
• MSA_PKT_PPP_MPLS – PPP MPLS
• MSA _PKT_ATM – ATM
• MSA_PKT_ATM_OAM – ATM OA&M
• MSA _PKT_ATM _MPLS– ATM MPLS
• MSA _PKT_FR – FR
• MSA _PKT_FR_IPV4 – FR IPv4
• MSA_PKT_FR_MPLS – FR MPLS

13.8.2 Functions

13.8.2.1 sendPacket
Function int sendPacket(int npIndex,

int portIndex,
int32u packetLength,
void* thePacket,
MsaPktType packetType)

Description This function is used to send a packet or cell residing in a user buffer out a
given NP port or logical TDM channel.

Parameters • npIndex – index of the NP for the operation
• portIndex – index of the desired port
• packetLength – length of the packet in bytes
• thePacket – user buffer to hold returned statistics

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 141 / 146

packetType – type of packet to send
Returns 0 – operation was successful

1 – operation was not successful

Appendix A –

13.9 SEGMENTATION
The performance data for the segmentation module is captured using a packet that flows
from the PPP interface to the ATM interface. In this setup, the packets flow from the PPP
to ATM, the TDM chunks (IP packet) received on the PPP interface will be segmented
into ATM cells as follows:

TDM chunk(s) ATM cells
1 2
2 3
3 4
4 6

The following table specifies the number of cycles executed corresponding to varying
number of TDM chunks with different sizes. The packet flow used for measuring the
performance data for Segmentation is PPP – IP – ATM. IP packet received on the PPP
interface is segmented into ATM cells and sent via the ATM interface. The packet used
for testing the packet flow contains the UDP, IP and PPP headers. The payload data
size (including the IP and UDP headers) of the packet received on the segmentation
module is specified in this column.

Packet flow and Number
of TDM chunks.

Payload Data Size Number of cycles

PPP – IP – ATM (1 TDM
chunk)

60 727

PPP – IP – ATM (2 TDM
chunks)

124 883

PPP – IP – ATM (3 TDM
chunks)

188 1111

PPP – IP – ATM (4 TDM
chunks)

252 1423

13.10 REASSEMBLY

The performance data for the Reassembly module is captured using a packet that flows
from the ATM interface to the PPP interface. The packet flow used for measuring the
performance data for Reassembly: ATM – MPLS – PPP. MPLS packet received on the
ATM interface will be reassembled on the RAS module and will be sent to the MPLS
module for label processing. The number of cycles executed for reassembling the

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 142 / 146

varying number of TDM chunks (1 to 4) with different payload sizes on the RAS module
will be specified on the following table. The packet used for testing the packet flow
contains the MPLS, UDP, IP and ATM headers. The payload data size (including the
MPLS, IP and UDP headers) of the packet received on the Reassembly module is
specified in this column.

Packet flow and Number
of TDM chunks.

Payload Data Size Number of cycles

ATM – MPLS – PPP (1
TDM chunk)

40 518

ATM – MPLS – PPP (2
TDM chunks)

88 898

ATM – MPLS – PPP (3
TDM chunks)

136 1298

ATM – MPLS – PPP (4
TDM chunks)

184 1698

13.11 MPLS

The performance data for the MPLS module is captured using a packet that flows from
the PPP to PPP interface through the MPLS module. The packet flow used for
measuring the performance data for MPLS: PPP – MPLS – PPP. MPLS packet received
on the PPP interface will be reassembled on the RAS module and will be sent to the
MPLS module for label processing. The number of cycles executed for processing the
different MPLS actions with different payload sizes on the MPLS module will be specified
on the following table. Using this packet flow, the performance is measured for different
MPLS actions on the MPLS module. The packet used for testing the packet flow
contains the MPLS, UDP, IP and PPP headers. The payload data size (including the IP
and UDP headers) of the packet received on the MPLS module is specified in this
column.

MPLS Actions Payload Data Size Number of cycles
Pop a label 60 788
Pop 3 labels 60 1128
Swap a label 60 808

Swap and Push a label 60 808
Push 2 labels 60 800
Push a label 60 788

Pop and swap 60 972
Pop and Push 60 964

MPLS lookup response waiting time for the pop and swap actions.

MPLS Actions Payload Data Size Waiting time
Pop 60 136

Swap 60 140

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 143 / 146

13.12 TDM RECIRCULATION

The performance data for the TDM Recirculation module is captured using a packet that
flows from the PPP to PPP interface through the recirculation module. The packet flow
used for measuring the performance data for TDM Recirculation: PPP – IP – PPP. IP
packet received on the PPP interface will be sent to the IP module for processing and
will be sent to the TDM Recirculation module for PPP header insertion and finally
transmitted via the PPP interface. The packet used for testing the packet flow contains
the UDP, IP and PPP headers. The payload data size (including the IP and UDP
headers) of the packet received on the Recirculation module is specified in this column.

Packet flow and Number
of TDM chunks.

Payload Data Size Number of cycles

PPP – IP – PPP (1 TDM
chunk)

60 286

PPP – IP – PPP (2 TDM
chunks)

124 373

PPP – IP – PPP (3 TDM
chunks)

188 479

PPP – IP – PPP (4 TDM
chunks)

252 554

13.13 FR SWITCHING

The performance data for the FR Switching module is captured using a packet that flows
from the PPP to PPP interface through the FR switching module. The packet flow used
for measuring the performance data for FR switching: PPP – FR – PPP. FR packet
received on the PPP interface will be sent to the FR module for DLCI based switching
and transmitted via the PPP interface. The packet used for testing the packet flow
contains the UDP, IP and PPP headers. The payload data size (including the IP and
UDP headers) of the packet received on the FR switching module is specified in this
column.

Packet flow and Number
of TDM chunks.

Payload Data Size Number of cycles

PPP – FR – PPP (1 TDM
chunk)

60 397

PPP – FR – PPP (2 TDM
chunks)

124 484

PPP – FR – PPP (3 TDM
chunks)

188 590

PPP – FR – PPP (4 TDM
chunks)

252 665

FR lookup response waiting time DLCI based switching.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 144 / 146

Packet flow and Number
of TDM chunks.

Payload Data Size Waiting time

PPP – FR – PPP (1 TDM
chunk)

60 111 cycles.

IMEM Consumption

CP Percentage In KB
TDM Rx 36 11.52
TDM Tx 25 8

TDM Recirc 29 9.28
IP 25 8

Seg 35 11.2
Ras 42 13.44

IP QoS classifier 46 14.72
MPLS 36 11.52

MLPPP 44 14.08
FR 11.04
XP 52 24.96

DMEM Consumption

Cluster wise consumption

Cluster0 98 % (47.04 KB)
It major includes RxCCB blocks and TxCCB blocks. (For 1K channels)

Cluster 1 90% (43.2 KB)
It also includes RxCCB blocks and TxCCB blocks. (For 1K channels)

Cluster 2 96 % (46.08 KB)

Cluster 3 86 % (41.28 KB)
CP consumption

In CP-14 (AAL1 Tx), CP converts Transparent chunk to ATM AAL-1 cell. It maintains
SDUs state information in its local DMEM for each configured transparent channel.
For each channel, 20 bytes of state information is maintained. Hence, to support 410
channels, 8K DMEM is needed from its 12k DMEM.

In CP-15 (AAL1 Rx), CPRC converts ATM AAL-1 cell to transparent TDM chunk. It
maintains state information in its local DMEM for each configured ATM VCC. For each
VCC, 20 bytes of state information is maintained. Hence, to support 410 VCCs, 8K
DMEM is needed from its 12k DMEM.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 145 / 146

IMA Group is valid only to the physical TDM links (i.e. T1/E1 TDM links). An IMA Group
should have atleast 2 TDM links and can have at the maximum of 32 links.

In MSA line card application, there are 2 IMA CPs. Each IMA CP will handle 32 E1/T1
links.

For an IMA CP, the maximum number of links and IMA groups supported are:
Maximum number of links = 32
Maximum number of IMA groups = 16

IMA CP maintains 12 bytes of Link state for every ATM TDM links and 60 bytes of IMA
group state for every IMA group.

DMEM for maintaining all link states
= Link state bytes x max. Number of links
= 12 x 32 = 384 bytes

DMEM for maintaining max IMA groups
= IMA group state bytes x max. Number of IMA groups
= 60 x 16 =960 bytes

DMEM usage = 384 +960 = 1344 bytes = 1.313 KB for an IMA CP

Note: DMEM usage for all the above 3 CP components is computed based on the data
structures used to maintain table(s) in DMEM.

14 Appendix C – Optimizations done in the application

Reason for allocation of different CPs for TDM Rx and TDM Tx
MSA application configures two CPs for receive and transmit processing of TDM chunks,
respectively. The requirement for having Rx and Tx in different CPs arose from the
amount of DMEM required to support 1024 channels per cluster.

For receive processing of TDM chunks, 12-Bytes of information is required on a per-
channel basis. Similarly, 9-Bytes of information is required for transmit processing. Refer
to TdmRxCCB in section 7.4.3.2 and TdmTxCCB in section 7.6.3.2. With 1024 channels
per twister, a total of 21KB (12K for TDM Rx control block and 9K for TDM Tx control
block) of memory is required which is beyond the available DMEM with one CP. To cater
to this restriction, receive and transmit processing of TDM chunks are done at two CPs.

Alternate solution to this restriction would have been to access XPRC DMEM for the
TDM control block information of the channel. However, the XPRC DMEM is being used
to maintain statistics collected from CPs to make it available to the Host processor.

Reason for providing separate CP for Frame Relay processing
When a HDLC frame is received from the TDM links, it is not possible to classify the
packet as PPP/FR in TDM Rx Byte processor itself. This is because, the protocol
running on the channel is configurable on per channel basis and this information is

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MSA Application Note

Page 146 / 146

available only to TDM Rx CPRC. So the packet is seen as HDLC frame in TDM Rx Byte
processor. RxByte processor extracts initial 10 bytes to the extract space. In TDM Rx
CPRC, the packet is classified as PPP/FR. In the case of FR, DLCI lookup needs to be
launched. If this happens, since the lookup is launched from Rx CPRC, the utilization of
the TDM Rx CPRC is affected because of the round-trip time for the TLU lookup. This is
the reason for creating a separate FR CP, which handles the FR specific processing.
Another reason would be modularity achieved by the proper segregation of the FR
processing.

Reason for doing FR DLCI lookup FR input thread
In the case of FR packets, DLCI lookup is launched in CPRC itself. This is because if the
lookup is launched from Rx SDP, The utilization of the re-circulation CP for FR is
affected because it does the FR DLCI lookup alone and the FR encapsulation
(modification of existing FR header information) cannot be done in the same CP.

Reason for doing MPLS label lookup in MPLS Input thread

Currently MPLS lookup is launched in MPLS Input thread itself. This is because the label
related processing could be completed in the receive-thread itself and MPLS
encapsulation can be completed in the TxSDP. So when the packet reaches the output
thread, it will have the complete packet, which can be sent to appropriate interface’s
queue.
Reason for supporting 410 channels for transparent chunks
Transparent chunk is converted to ATM AAL-1 cell by AAL-1 Tx CP.It maintains SDUs
state information in its local DMEM for each configured transparent channel. For each
channel, 20 bytes of state information is maintained. Hence, for supporting 410
channels, 8K DMEM is utilized from its 12k DMEM.

Reason for supporting 410 ATM VCCs for ATM AAL-1 cells
ATM AAL-1 cell is converted to transparent TDM chunk by AAL-1 Rx CP.It maintains
state information in its local DMEM for each configured ATM VCC.For each VCC, 20
bytes of state information is maintained. Hence, for supporting 410 VCCs, 8K DMEM is
utilized from its 12k DMEM.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

RXZB30
disclaimer

