
1 Introduction
NOTE

The FAC execute-only operation has been
de-featured. Refer to e50117 in the errata
document for your device.

Some new Kinetis family devices include a feature that adds
access controls to the flash memory. Flash access controls
(FAC) are a configurable memory protection scheme designed
to allow end users to utilize software libraries while offering
programmable restrictions to these libraries. This allows
Freescale or third-party vendors to pre-program software
libraries into a chip and distribute parts to end customers who
can use the pre-programmed software libraries. The software
is distributed inside the chip, but does not provide end
customers the capability of reading the code from the device.

The FAC feature can be used to mark segments of the on-chip
flash memory as execute-only and/or supervisor/privileged-
only access. This document discusses usage of the FAC
feature to create execute-only regions in the flash, limitations
of the implementation, and recommendations to ensure
limitations are not exploited.

NXP Semiconductors Document Number: AN5112

Application Note Rev. 0.1, 7/2019

Using the Kinetis Flash Execute-
Only Access Control Feature

Contents

1 Introduction..1

2 How flash access controls work................................ 2

3 Marking a segment as execute-only.......2

4 Other effects of marking a region as
execute-only.. 3

5 Reasons for the inability to change an
execute-only segment back to data and code
access... 4

6 Special considerations and limitations of
flash access controls...................................4

7 References.............................. 8

8 Revision history.......................... 8

2 How flash access controls work
The flash access control feature adds new registers to the flash module. There are eight 8-bit XACC registers that define
which program flash segments are execute-only, and eight 8-bit SACC registers that define which program flash segments
are supervisor-only. Each bit in the registers corresponds to one segment of memory that can be protected. By default, all
XACC and SACC registers are 0xFF. When a bit in the XACC or SACC is cleared, it marks the corresponding flash segment
as execute-only or supervisor-only.

The size of flash memory in the device determines the number of access-controlled segments. For devices with 128 KB or
less of program flash, 32 equal sized segments are used. For devices with more than 128 KB of program flash, 64 equal sized
segments are used. Read the FTFA_FACSS and FTFA_FACSN to confirm the number and size of the segments implemented
on a particular device.

Devices with 32 segments only use the FTFA_XACCL[3:0] registers (FTFA_XACCHn values are ignored). Devices with 64
segments use all eight of the registers—both FTFA_XACCH[3:0] and FTFA_XACCL[3:0]. The eight XACC registers are
referred to as FTFA_XACCn throughout the rest of this document.

The flash memory controller (FMC) performs a cycle-by-cycle evaluation of access rights for each transaction routed to the
on-chip flash memory. During the address phase of every attempted flash transfer, the supervisor access (FTFA_SACCn) and
execute access (FTFA_XACCn) registers are examined to either allow or deny access. If a data access to an execute-only
region is attempted, the access is aborted and terminates with a bus error. The read data is also zeroed.

3 Marking a segment as execute-only
The FTFA_XACCn registers are read only. The registers get their values from locations in the program flash (P-Flash) IFR
space. There are two 64-bit locations in the P-Flash IFR--XACCA and XACCB. At reset, the XACCA and XACCB locations
are read from the IFR, and the logical AND of XACCA and XACCB is used to load the FTFA_XACCn registers. The
Program Once flash command can be used to write the XACC1 and XACC2 values in the P-Flash IFR. Refer to the device
reference manual for the program once indexes for XACCA and XACCB.

Because the XACCA and XACCB locations are ANDed, XACCB can be used to add protection for additional segments even
after XACCA has been programmed. A segment's access controls can be changed from data read and execute (XAn =1) to
execute-only (XAn =0). Having two XACC IFR locations supports two levels of vendors adding their proprietary software
libraries to a device.

In order to mark a segment as execute-only, follow these steps:

1. Program and verify library code in areas that will be marked as execute-only.
2. Use the Program Once flash command to write the XACCA value in the P-Flash IFR to mark the segment or segments

where the library code resides as execute-only.
3. If a second library also needs to be protected, deliver parts to the owner of the second library to program and verify the

second library.
4. Use the Program Once flash command to write the XACCB value in the P-Flash IFR to mark the segment or segments

where the second library resides as execute-only.
5. If there is not a second library, program the XACCB with the same value used for XACCA.

NOTE
When marking segments as execute-only, it is important to program and verify the code
before configuring the XACCA or XACCB program once values. If you program the
XACCA or XACCB first, at next reset, the segment becomes execute-only and you will
not be able to program the region without performing an Erase All Blocks command to
unlock the execute-only regions for programming.

How flash access controls work

Using the Kinetis Flash Execute-Only Access Control Feature, Rev. 0.1, 7/2019

2 NXP Semiconductors

The figure below shows an example where XACCA and XACCB are used to protect two code libraries in a device with 512
KB of flash.

Flash Memory Space Library 1Library 1

63 62 61 60 59 58 57 56 55 54 53 52 51 50 48 47 46 45 44 43 44 43 41 40 39 38 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 037

XACCA - Index 0x10

XACCB - Index 0x11

8 3FFF FFFF FFFF F10

63 62 61 60 59 58 57 56 55 54 53 52 51 50 48 47 46 45 44 43 44 43 41 40 39 38 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 037

F FFFF FFFF FFF0 1EF

XACCH0 XACCH1 XACCH2 XACCH3 XACCL0 XACCL1 XACCL2 XACCL3

Library 2

0x
00

00
40

00

0x
00

00
9F

FF

0x
00

00
00

00

0x
00

07
1F

FF

0x
00

07
FF

FF

0x
00

06
1F

FF
512 K FLASH ADDRESS

8 3FFF FFFF FFF0 1000x4002_0018-0x4002_001F

Figure 1. XACCx Protection Example

4 Other effects of marking a region as execute-only
The main effect of marking a region as execute-only is, with the exception of PC-relative loads for constants, the region
cannot be read as data using the core, debug, or any of the other masters on the chip. Marking a region as execute-only has an
impact on FMC cache behavior and some flash command operations as well.

4.1 FMC cache
Normally, contents of the FMC cache are visible in the FMC register space in a number of FMC tag and data registers (exact
number of registers can vary from device to device). If any segment is marked as execute-only, the FMC cache is hidden
from the user. The tag registers become read only and cannot be written, and the data registers cannot be read or written.
Writes to the tag and data arrays are ignored and reads of the data array return 0's.

4.2 Flash command impact
The FAC functionality is intended to be used with a software library programmed into a device and never changed after the
code is marked as execute-only. For this reason, any code distributed as a pre-programmed library in execute-only areas of
flash should endure rigorous testing before distribution.

If a situation arises where the code in an execute-only region needs to be updated, it is possible, but there are restrictions on
flash programming and erase operations in execute-only regions that need to be taken into account.

4.2.1 Program commands (program longword/phrase/section/check)
If the targeted flash location is in an execute-only protected segment, program commands are not allowed unless a Read 1s
All Blocks or Erase All Blocks command completes and returns with a pass code (which means the part is fully erased). After
a Read 1s All Blocks or Erase All Blocks command completes and returns a pass code, execute-only segments are opened to

Other effects of marking a region as execute-only

Using the Kinetis Flash Execute-Only Access Control Feature, Rev. 0.1, 7/2019

NXP Semiconductors 3

program commands, including the program check command. This means that after a library has been programmed and
marked as execute-only, the only way to update that execute-only space is to erase the entire chip. Attempts to program or
program check in a protected segment when not open to program commands set the flash protection violation error flag
(FTFA_FSTAT[FPVIOL]).

In order to re-lock execute only segments after they've been updated, reset the device or execute a Read 1s All Blocks
command again. The Read 1s All Blocks would be expected to fail at this point (chip is not fully erased). This closes off the
execute-only segments from programming.

4.2.2 Erase commands (erase block/sector)
If the selected flash block or sector contains an execute-only protected segment, the Erase Block and Erase Sector commands
are not allowed unless a Read 1s All Blocks or Erase All Blocks command completes and returns with a pass code (which
means the part is fully erased). After the Read 1s All Blocks command completes and returns with a pass code, then the
execute-only segment is open to the Erase Block and Erase Sector commands. This means block and sector erase commands
cannot be used to erase just execute-only segments. The whole chip must be erased to modify execute-only segments. After
the entire chip is erased, execute-only segments can be reprogrammed. While the execute-only area is open to program
commands, it is also open to erase commands. However, the chip must be erased to get to this point anyway, so in most cases
Erase Block and Erase Sector are not useful if execute-only segments need to be modified. Attempts to run Erase Block or
Erase Sector in a protected segment when not open to the erase commands sets the flash protection violation error flag
(FTFA_FSTAT[FPVIOL]).

The process for closing off the execute-only space for erase commands is the same used to close off the execute only
segments from programming. To close off execute-only space from erasing, the device must be reset or a Read 1s All Blocks
command must complete with a fail result (device is no longer fully erased).

WARNING
The Erase All Blocks command is always allowed and erases segments even if they are
marked as execute-only. End user code should never use the Erase All Blocks command
on a device with one or more pre-programmed libraries that are execute-only. If the Erase
All Blocks is used, the pre-programmed library code will be lost.

5 Reasons for the inability to change an execute-only
segment back to data and code access

After a segment is marked as execute-only, there is no way to put it back to code and data access. The P-Flash IFR locations
used to load the XACCn registers are program ONCE. After XACCA and XACCB are programmed, they cannot be
modified. No flash command can be used to erase them, including the Erase All Blocks command or mass erase. After
XACC1 and XACC2 are programmed, they cannot be reprogrammed to add more execute-only segments either. Attempts to
use the Program Once command to write an IFR location that already has a non-FFFF value return an access error
(FTFA_FSTAT[ACCERR] = 1).

6 Special considerations and limitations of flash access
controls

Because the Arm® Cortex® M4 and M0+ cores do not have awareness of the flash access control, there are some important
limitations to the functionality that need to be taken into consideration. Software written for a system that is using the flash
access control needs some special considerations to ensure correct operation and protection of the execute-only software.

Reasons for the inability to change an execute-only segment back to data and code access

Using the Kinetis Flash Execute-Only Access Control Feature, Rev. 0.1, 7/2019

4 NXP Semiconductors

6.1 Debugging
The most significant limitation on the FAC functionality is that the debug port was not designed to take this functionality into
account. Flash segments marked as execute-only cannot be read directly by a debugger. However, the debugger could still
serve as a backdoor to allow someone to reverse engineer code, even if the code is not directly readable.

In order to ensure execute-only code is truly safe from being reconstructed, Freescale recommends:

• Enabling the flash security feature to disable debug access to the device (FTFA_FSEC[SEC]).
• Optionally using the FTFA_FPROTn to explicitly protect execute-only code areas.
• Optionally disable the mass erase capability to prevent accidental erasure of the code stored in execute-only segments

through a debugger (FTFA_FSEC[MEEN]).

6.1.1 How flash security and protection features interact with FAC
As described in the flash command impact sections, execute-only regions have some protection from accidental erasure and
modification. However, if an end customer used an Erase All Blocks command, the code in execute-only regions could still
be lost. The Erase All Blocks command aborts if any regions of the flash are protected by FTFA_FPROTn. Explicitly
marking execute-only regions as protected using FTFA_FPROTn can be used to make it more difficult to accidentally erase
or modify execute-only regions. In order to reprogram execute-only regions, the flash configuration field containing the
FTFA_FPROTn settings would need to be erased and reprogrammed with the protection disabled, then the part must be reset
for the new protection settings to take effect. After the chip has booted with no regions protected, the Erase All Blocks
command could be used to erase the whole chip including execute-only regions.

NOTE
The size of the region protected by FPROT bits and the size of the execute-only segments
are not always equal.

NOTE
Freescale recommends NOT protecting the first region of the flash using
FTFA_FPROTn. If the first region is protected, the only way to modify the protection
scheme later is using a mass erase from the debugger.

The mass erase command run from a debugger is not impacted by the FTFA_FPROTn settings. When security is enabled, the
FTFA_FSEC[MEEN] field can be used to disable the debugger mass erase. Enabling securty and disabling mass erase can be
used to prevent accidental erasure of the chip using a debugger. To erase or program the MCU through the debugger, the
processor would need to be unsecured using the Backdoor Key Access.

All of these controls bits are located in flash locations 0x0400 - 0x040F. Sector erasing and reprogramming these protections
is possible if access is gained through the debug port or bootloader. Refer to Using Kinetis Security and Protection Features
(document AN4507) for more information.

6.2 Execute-only code is visible to other execute-only segments
The ARM instruction set architecture relies heavily on PC-relative loads. These operations, which look like ordinary data
reads, must be allowed to execute-only spaces. The flash access control logic analyzes all accesses to flash memory and
allows only instruction fetches and PC-relative loads originating from execute-only code to access execute-only regions. The
logic treats all execute-only regions equally; therefore, any segment marked as execute-only can access any other execute-
only segment using PC-relative accesses.

Special considerations and limitations of flash access controls

Using the Kinetis Flash Execute-Only Access Control Feature, Rev. 0.1, 7/2019

NXP Semiconductors 5

For single pre-loads where only one set of software libraries is being loaded into a part, both levels of access control must be
programmed to protect the pre-loaded code. This can be done by writing XACCA with the same value as XACCB. This
prevents the end user from loading new code onto the chip, marking it as execute-only, and using that code to read out code
from the original execute-only regions.

Correct usage of XACCA and XACCB to protect a single library load:

Flash segments marked as execute-only by both XACCA and XACCB

Incorrect usage of XACCA to protect a single library load:

Flash segments marked as execute-only by XACCA

Flash segments marked as execute-only by XACCB

Flash Memory
Space

Flash Memory
Space Library 1

Library 1 Library 1

Library 1
Code added

later that could
read library1

Figure 2. Protecting a Single Library

If two pre-loads of libraries are going to be used, then when the second library is loaded, the first library could be seen. For
example, company A loads one library into the device and programs XACC1 to mark segments as execute-only, and sends
the part to company B. Company B loads a second software library into the part and writes XACC2 to mark the segments for
the second library as execute-only. Company B must be a trusted entity because they could access company A’s software
library. Cooperation should already be established between the companies to determine who secures the device and provides
some system-level functionality. NDAs and legal agreements to protect the software libraries should be put in place to protect
both companies while working together.

Correct usage of XACCA and XACCB to protect a two library loads:

Flash segments marked as execute-only by XACCA

Flash segments marked as execute-only by XACCB

Flash Memory
Space Library 1 Library 1Library 2

Figure 3. Protecting Two Libraries

Special considerations and limitations of flash access controls

Using the Kinetis Flash Execute-Only Access Control Feature, Rev. 0.1, 7/2019

6 NXP Semiconductors

6.3 Entry into execute-only code on the Arm Cortex-M4 core
There is not a determinate method of detecting PC-relative loads on the Arm Cortex-M4 core. In order to keep execute-only
space protected, a delay happens during transitions from nonexecute-only to execute-only space before state information
shows the core is in execute-only space. During the delay period, PC-relative loads from the execute-only space are not
allowed. If a PC-relative data load from an execute-only segment happens during this time, it triggers an access error (the
same as if the execute-only segment were read from a code and data flash region).

In order to avoid unwanted access errors, the entry point into execute-only code should be controlled:
• Execute-only functions that can be called from non-exeute-only code should not include a PC-relative load in the first

six instructions. The simplest way to implement this is to add six NOP instructions at the beginning of execute-only
functions. It is important to ensure the compiler does not optimize out these NOP instructions.

• Execute-only functions that are only called from other execute-only functions (functions that are not exposed in the
library's API) do not need a special entry sequence.

• All interrupts should be routed through a special piece of execute-only code. If a single default handler is going to be
used for all interrupts, the default handler should start with six NOP instructions (or other instructions that do not
perform any PC-relative loads from execute-only space). After the safe entry to execute-only space, the handler can
jump to the specific handler code for the associated interrupt. When the interrupt specific handler returns to the default
handler, another six NOPs (or other non PC-relative load instructions) should be executed. At this point the default
handler has met the requirements for entry into execute-only space, so it can return normally. This way if the
interrupted code is in execute-only space, the interrupt handler follows the same entry point rules as normal execute-
only function entry points.

NOTE
The Arm Cortex-M0+ architecture allows for a determinate method of detecting PC-
relative loads. On Kinetis devices with an Arm Cortex-M0+ core and flash access control
functionality, the entry points into execute-only code do NOT need to be controlled, so
the information in this section does not apply for Cortex-M0+ processors.

6.4 Vector table on Arm Cortex-M4 devices
On devices with a Arm Cortex-M4 core, if a default handler is being used for all interrupt vectors, the CPU's vector table can
be left in flash memory and there is no need to modify it at run time to add customer interrupts. Instead, a separate handler
jump table needs to be used to keep track of the interrupt specific handler the default handler needs to call. Implementation
can vary, but in most cases there would be a default version of the jump table stored in flash. At startup, the table can be
copied to RAM so that additional interrupt handlers can be registered while the application is running.

NOTE
To allow the core to fetch vectors from the vector table, the first segment of flash should
NOT be marked as execute-only.

6.5 Flash programming
If debugger access is disabled, end customers are unable to use EzPort or a debugger to program their own code onto the
device. Instead, flash programming capabilities need to be provided and pre-programmed into the part (the flash
programming capability can also be in an execute-only area). The MCU bootloader software can be included to allow
customers to program their own code into the part. See www.nxp.com/mcuboot for more information on the MCU
bootloader.

Special considerations and limitations of flash access controls

Using the Kinetis Flash Execute-Only Access Control Feature, Rev. 0.1, 7/2019

NXP Semiconductors 7

http://www.nxp.com/mcuboot

The flash programming/bootloader code should be configured to execute by default (the initial PC value in the vector table
should point to the flash programming/bootloader routines). This is required to allow the end customer to load their code on a
new device they have not touched before. It is recommended to leave the flash programming/bootloader code on the device
(do not allow end user to overwrite the flash programming software). This means the bootloader code runs by default. The
bootloader can use a timeout, sample a pin, or use another mechanism to determine when it should attempt to branch to the
user code. In order for the bootloader to branch to the user code, there should be a predefined start address for the user code
configured in the bootloader and in the end user application.

7 References
For additional information, refer to the following:

• Reference manual for your specific Kinetis family device: www.nxp.com/kinetis
• MCU bootloader: www.nxp.com/mcuboot
• Using Kinetis Security and Protection Features (document AN4507)

8 Revision history
This table provides a revision history for this application note.

Table 1. Document revision history

Rev.

number

Date Description

0 04/2015 Initial public release

0.1 07/2019 Added de-featured note

References

Using the Kinetis Flash Execute-Only Access Control Feature, Rev. 0.1, 7/2019

8 NXP Semiconductors

http://www.nxp.com/kinetis
http://www.nxp.com/mcuboot

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use

NXP products. There are no express or implied copyright licenses granted hereunder to design or

fabricate any integrated circuits based on the information in this document. NXP reserves the right to

make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any

particular purpose, nor does NXP assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets

and/or specifications can and do vary in different applications, and actual performance may vary over

time. All operating parameters, including “typicals,” must be validated for each customer application

by customerʼs technical experts. NXP does not convey any license under its patent rights nor the

rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified

vulnerabilities. Customers are responsible for the design and operation of their applications and

products to reduce the effect of these vulnerabilities on customer's applications and products, and

NXP accepts no liability for any vulnerability that is discovered. Customers should implement

appropriate design and operating safeguards to minimize the risks associated with their applications

and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,

the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS

are trademarks of NXP B.V. All other product or service names are the property of their respective

owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,

CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,

RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of

patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

© 2015–2019 NXP B.V.

Document Number AN5112
Revision 0.1, 7/2019

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Introduction
	How flash access controls work
	Marking a segment as execute-only
	Other effects of marking a region as execute-only
	FMC cache
	Flash command impact
	Program commands (program longword/phrase/section/check)
	Erase commands (erase block/sector)

	Reasons for the inability to change an execute-only segment back to data and code access
	Special considerations and limitations of flash access controls
	Debugging
	How flash security and protection features interact with FAC

	Execute-only code is visible to other execute-only segments
	Entry into execute-only code on the Arm Cortex-M4 core
	Vector table on Arm Cortex-M4 devices
	Flash programming

	References
	Revision history

