
1 Introduction
In the Freescale MC56F84xxx DSC family, part or all of
FlexNVM together with a RAM block of 1K words called
FlexRAM can be used to emulate the characteristics of an
EEPROM using a built-in filing system. Once the EEPROM is
properly configured, users can manipulate FlexRAM to write
to or read from this EEPROM. The filing system does all the
record backup work, which users can be blind to.

Refer to MC56F847xx Reference Manual or AN4689: Using
EEPROM on MC56F84xxx DSC for more information.

In MC56F82xxx DSC family, FlexNVM or FlexRAM is not
available. If EEPROM is desired, you have to emulate it on
program Flash by firmware.

This application note describes an EEPROM driver for both
MC56F84xxx and MC56F82xxx DSC family. You can use
this driver directly through the guidelines in this application
note. The application note also describes a method of
reprogramming Flash without erasing EEPROM in
CodeWarrior10.6.

As for MC56F84xxx DSC family, this driver is suitable for
both Small Data Mode and Large Data Mode since it is written
in assembly. AN4689 also provides a driver for EEPROM in
MC56F84xxx DSC family, but it only applies to Large Data
Mode. And as for MC56F82xxx DSC family, this driver uses
Flash Driver Library described in AN4860: Flash Driver

Freescale Semiconductor Document Number: AN5074

Application Note Rev 0, 01/2015

EEPROM Driver for MC56F84xxx
and MC56F82xxx DSC Family
by: Xuwei Zhou

© 2015 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 EEPROM driver description............2

2.1 Description of EEPROM driver for
MC56F84xxx family........................2

2.2 Description of EEPROM emulation
driver for MC56F82xxx family.........15

3 Updating firmware without erasing
EEPROM.. 21

4 Conclusion...27

Library for MC56F847xx and MC56F827xx DSC Family together with CRC feature to emulate EEPROM for higher
reliability.

2 EEPROM driver description
This driver is developed in order to make the EEPROM in DSC easier and efficient to use. For MC56F84xxx family, there
are APIs with byte string, word string, and longword string write&read functions and APIs with byte, word, and longword
write&read functions. For MC56F82xxx family, the driver is developed using incremental writing feature in the Erase Sector
mode. CRC is performed every time an entry is written into or read from the Flash in order to improve reliability.

2.1 Description of EEPROM driver for MC56F84xxx family

Set EEPROM_EMULATION to 0 in EepromDrv_cfg.h file to enable drivers for MC56F84xxx family. All functions are
written in assembly to fit both small and large data model as well as to increase execution efficiency. Table 1 lists all the
user-available functions for MC56F84xxx family. This driver is realized in EepromDrv.c and EepromDrv.h. The driver used
in CodeWarrior is shown in Figure 1.

Figure 1. CodeWarrior projects view showing usage of EEPROM driver for MC56F84xxx
family

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

2 Freescale Semiconductor, Inc.

Table 1. List of EEPROM drivers for MC56F84xxx family

Function Name Short Description

GetEepromInfo() Get the size of EEPROM and backup FlexNVM

DEFlashPartition() Set the size of EEPROM and backup FlexNVM

SetEEEEnable() Enable FlexRAM for EEPROM interface

SetEEEDisable() Set FlexRAM as regular RAM, no EEPROM function

EepromWriteByte() Write a byte into an address in EEPROM

EepromReadByte() Read a byte from an address in EEPROM

EepromWriteWord() Write a word into an address in EEPROM

EepromReadWord() Read a word from an address in EEPROM

EepromWriteLongWord() Write a longword into an address in EEPROM

EepromReadLongWord() Read a longword from an address in EEPROM

EepromWriteByteString() Write a string of bytes into EEPROM

EepromReadByteString() Read a string of bytes from EEPROM

EepromWriteWordString() Write a string of words into EEPROM

EepromReadWordString() Read a string of words from EEPROM

EepromWriteLongWordString() Write a string of longwords into EEPROM

EepromReadLongWordString() Read a string of longwords from EEPROM

All functions use the following data types defined in EepromDrv.h:
• UWord8 – unsigned byte. Range: [0, 255]
• UWord16 – unsigned word (two bytes). Range: [0, 216)
• UWord32 – unsigned longword (four bytes). Range: [0, 232)

The return codes are also defined in EepromDrv.h. Only the first four functions in Table 1 have return codes. See Table 2 for
the list.

Table 2. Return codes of EEPROM driver for MC56F84xxx family

Return Code Defined Value

EEPROM_FLASHDRV_SUCCESS 0

EEPROM_FLASHDRV_FAIL 1

EEPROM_FLASHDRV_ACCESS_ERROR 2

EEPROM_FLASHDRV_PROT_VIOLATION 3

You can partition FlexNVM in two parts: EEPROM backup and Data Flash. Both Program Flash and Data Flash have a small
non-volatile information registers called IFR, which are separate from the main memory array. The IFR of Data Flash has
256 bytes, two of which contain EEPROM related information:

• EEESIZE: The least significant four bits in this byte determines the amount of FlexRAM used in each of the available
EEPROM subsystems. The available values are defined in EepromDrv.h as listed in Table 3.

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 3

Table 3. Available values for
EEESIZE

Code Defined Value EEPROM Size Access Word Address of
FlexRAM in Data Memory

Map

EEESIZE_2048B 0x33 2048 bytes 0x1e000 ~ 0x1e3ff

EEESIZE_1024B 0x34 1024 bytes 0x1e000 ~ 0x1e1ff

EEESIZE_512B 0x35 512 bytes 0x1e000 ~ 0x1e0ff

EEESIZE_256B 0x36 256 bytes 0x1e000 ~ 0x1e07f

EEESIZE_128B 0x37 128 bytes 0x1e000 ~ 0x1e03f

EEESIZE_64B 0x38 64 bytes 0x1e000 ~ 0x1e01f

EEESIZE_32B 0x39 32 bytes 0x1e000 ~ 0x1e00f

EEESIZE_0B 0x3F 0 N/A

• DEPART: The least significant four bits in this byte specifies the amount of FlexNVM that is used as EEPROM
backup memory. The available values are defined in EepromDrv.h as listed in Table 4.

Table 4. Available values for
DEPART

Code Defined Value Backup Size for EEPROM Size of Data Flash

DEPART_0K 0x0 No EEPROM backup 32K bytes

DEPART_8K 0x1 8K bytes 24K bytes

DEPART_16K 0x2 16K bytes 16K bytes

DEPART_24K 0x9 24K bytes 8K bytes

DEPART_32K 0x3 32K bytes No remainder

During the reset sequence, values of EEESIZE and DEPART determine whether FlexNVM is partitioned for EEPROM
backup. If so, EEPROM backup data is copied to the configured FlexRAM and the EEERDY flag in FTFL_FCNFG register
is set. Otherwise, FlexRAM serves as regular RAM and the RAMRDY flag in FTFL_FCNFG register is set.

EEESIZE and DEPART bytes in Data Flash IFR can be modified by Program Partition command in FTFL module only if
Data Flash IFR is already in an erased state, where the value of EEESIZE and DEPART is 0xFF. An Erase All Blocks
command or external request of triggering the Erase All command can erase IFR of both Data Flash and Program Flash. See
MC56F847xx Reference Manual for more information on FTFL commands.

There are two global variables uw16EEESize and uw16EEBackUpFlashSize in the driver, which are used to store the value of
EEESIZE and DEPART.

Refer to Table 24: Flash command timing specifications in MC56F847xx Advance Information Data Sheet for the
performance of all the functions listed in this section.

2.1.1 GetEepromInfo()

This function reads the IFR of Data Flash to get the value of EEESIZE and DEPART. Read Resource command is executed
to realize the reading and store the values to variables uw16EEESize and uw16EEBackUpFlashSize. This function should be
invoked once before EEPROM is used. The values of uw16EEESize and uw16EEBackUpFlashSize tell whether EEPROM is
configured:

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

4 Freescale Semiconductor, Inc.

• uw16EEESize == 0xFF and uw16EEBackUpFlashSize == 0xFF: No backup FlexNVM, EEPROM is not configured.
• uw16EEESize != 0xFF or uw16EEBackUpFlashSize != 0xFF: EEPROM has been configured. The least significant

four bits of this two variables reflect the size of EEPROM and backup FlexNVM.

Prototype of this function is:

UWord32 GetEepromInfo(void);

Table 5. GetEepromInfo() function return codes

Return Code Description

EEPROM_FLASHDRV_SUCCESS Successfully get the EEPROM information

EEPROM_FLASHDRV_ACCESS_ERROR Function internal error

Listing 1 on page 6 shows how to use GetEepromInfo() for EEPROM initialization.

2.1.2 DEFlashPartition()

This function configures the size of EEPROM and backup FlexNVM by programming EEESIZE and DEPART if the
EEPROM has not been configured during initialization. The Program Partition command is executed, which prepares the
FlexNVM block for use as Data Flash, EEPROM backup, or a combination of both and initializes the FlexRAM.

Once the Program Partition command is launched, EEESIZE and DEPART in Data Flash IFR are checked to see if they have
been erased. If erased, this command erases the contents of the FlexNVM memory, and the FlexNVM is partitioned for
EEPROM backup accordingly. The allocated EEPROM backup sectors are formatted for EEPROM use. Finally, the partition
codes in Table 6 are programmed into the Data Flash IFR. This command also verifies that the partition codes read back
correctly after programming. EEERDY flag in FTFL_FCNFG will set if FlexNVM is partitioned successfully for EEPROM
backup.

Prototype of this function is:

UWord32 DEFlashPartition(UWord8 EEEDataSize, UWord8 EEBackUpFlashSize);

The function parameters and return codes are listed in following tables.

Table 6. DEFlashPartition() function parameters

Parameter Name Parameter Type Description

EEEDataSize UWord8 Configure the size of EEPROM. Use the
code in Table 3.

EEBackUpFlashSize UWord8 Configure the backup Data Flash size.
Use the code in Table 4.

Table 7. DEFlashPartition() function return codes

Return Code Description

EEPROM_FLASHDRV_SUCCESS Successfully configure EEPROM

EEPROM_FLASHDRV_ACCESS_ERROR Function internal error

EEPROM_FLASHDRV_FAIL MGSTAT0 bit of FTFL_FSTAT is set, meaning any errors
have been encountered during the verify operation.

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 5

Avoid the following operations or else EEPROM_FLASHDRV_ACCESS_ERROR will occur:

• Invoke DEFlashPartition() when EEPROM has already been configured, namely, either EEESIZE != 0xFF or
DEPART != 0xFF.

• Pass the code DEPART_0K to EEBackUpFlashSize, and pass a code to EEEDataSize that allocates FlexRAM for
EEPROM.

• Pass the code EEESIZE_0B to EEEDataSize, and pass a code to EEBackUpFlashSize that allocates space for
EEPROM backup.

Listing 1. Use of GetEepromInfo() and DEFlashPartition() functions for EEPROM
initialization

#include "EepromDrv.h"
Word16 w16Stat;
void main(void)
{
 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();

 w16Stat = GetEepromInfo();

 if(((uw16EEESize&0x00ff) == 0xff) && ((uw16EEBackUpFlashSize&0x00ff) == 0xff)
 && (w16Stat == EEPROM_FLASHDRV_SUCCESS))
 {
 // Data Flash will be erased during partition
 // 256bytes of EEPROM, with 16K bytes FlexNVM as backup
 w16Stat = DEFlashPartition(EEESIZE_256B,DEPART_16K);
 }
}

2.1.3 SetEEEEnable()

This function enables FlexRAM as the interface to EEPROM. The Set FlexRAM Function command is executed and makes
the FlexRAM available for EEPROM. The existing EEPROM data from the EEPROM backup record space is copied to the
FlexRAM by flash module when the command completes, and EEERDY flag in FTFL_FCNFG is set, RAMRDY flag is
cleared. In this scenario, normal read and write access to the FlexRAM is available, but writes to the FlexRAM also invoke
EEPROM activity. Use EEPROM write and read functions provided in this application note to operate EEPROM.

Prototype of this function is:

UWord32 SetEEEEnable(void);

Table 8. SetEEEEnable() function return codes

Return Code Description

EEPROM_FLASHDRV_SUCCESS Successfully enable FlexRAM as interface to EEPROM

EEPROM_FLASHDRV_ACCESS_ERROR Function internal error

NOTE
When DEFlashPartition() is successfully executed and FlexRAM is already configured
as interface to EEPROM, it is unnecessary to invoke SetEEEEnable() right after
DEFlashPartition().

2.1.4 SetEEEDisable()

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

6 Freescale Semiconductor, Inc.

This function sets FlexRAM as traditional RAM, but not the interface to EEPROM. The Set FlexRAM Function command is
executed with making the FlexRAM available as traditional RAM. The entire FlexRAM is written with ones by flash module
when the command completes, and RAMRDY flag in FTFL_FCNFG is set, EEERDY flag is cleared. In this scenario, normal
read and write access to the FlexRAM is available.

Prototype of this function is:

UWord32 SetEEEDisable(void);

Table 9. SetEEEDisable() function return codes

Return Code Description

EEPROM_FLASHDRV_SUCCESS Successfully set FlexRAM as traditional RAM

EEPROM_FLASHDRV_ACCESS_ERROR Function internal error

NOTE
When FlexRAM is configured as traditional RAM, use LDM to access it because the start
word address of FlexRAM is 0x1E000, which is beyond 16 bits. Or use the inline
functions in EepromDrv.h to access FlexRAM, which are suitable for both SDM and
LDM.

Listing 2 on page 7 shows how to use SetEEEEnable() and SetEEEDisable() to change the role of FlexRAM

Listing 2. Use of SetEEEEnable() and SetEEEDisable() to change the role of FlexRAM.
#include "EepromDrv.h"
UWord8 uw8Data;
void main(void)
{
 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 /*
 /* EEPROM initialization */
 // FlexNVM partition...

 EepromWriteByte(EEPROM_BASE_ADDR_BYTE, 0x12);//Write data 0x12 to the first byte cell of
 //EEPROM
 SetEEEDisable(); // Set FlexRAM as traditional RAM

 /*
 Inline functions below can be used:
 UWord32 FlexRAM_ReadLongword(register UWord32 dwAddress);
 void FlexRAM_WriteLongword(register UWord32 dwAddress, register UWord32 dwData);
 UWord16 FlexRAM_ReadWord(register UWord32 dwAddress);
 void FlexRAM_WriteWord(register UWord32 dwAddress, register UWord16 dwData);
 UWord8 FlexRAM_ReadByte(register UWord32 dwAddress);
 void FlexRAM_WriteByte(register UWord32 dwAddress, register UWord8 dwData);
 */
 // Use FlexRAM for other operations...

 SetEEEEnable(); // Set FlexRAM as interface to EEPROM.
 EepromReadByte(EEPROM_BASE_ADDR_BYTE,&uw8Data); //Read the first byte cell of EEPROM and
 //store the data to uw8Data,the value is
 //still 0x12

}

2.1.5 EepromWriteByte()

When EEPROM has been properly configured, use this function to write a byte (8-bit) to the desired address in EEPROM.

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 7

Prototype of this function is:

void EepromWriteByte(UWord32 byteAddr,UWord8 data);

Table 10. EepromWriteByte() function parameters

Parameter Name Parameter
Type

Description

byteAddr UWord32 The address of EEPROM

data UWord8 The byte data that tends to be written into EEPROM

For instance, if EEPROM size is configured to be 64 bytes using constant EEESIZE_64B, the available EEPROM byte
address range is 0x3C000~0x3C03F. There’s a macro definition in Eeprom.h:

#define EEPROM_BASE_ADDR_BYTE 0x3c000

You can use EEPROM_BASE_ADDR_BYTE as the base address when EEPROM is accessed in bytes.

2.1.6 EepromReadByte()

This function is to read a byte from a specified byte address in EEPROM.

Prototype of this function is:

void EepromReadByte(UWord32 byteAddr,UWord8 *data);

Table 11. EepromReadByte() function parameters

Parameter Name Parameter Type Description

byteAddr UWord32 The address of EEPROM

data UWord8* A byte pointer. The read out byte is
stored to the place where this pointer
points

Listing 2 on page 7 also shows how to use EepromWriteByte() and EepromReadByte() to write a byte to and read a byte from
EEPROM.

2.1.7 EepromWriteByteString()

This function writes a string of bytes data to EEPROM.

Prototype of this function is:

void EepromWriteByteString(UWord32 byteAddr,UWord8* data, UWord16 length);

Table 12. EepromWriteByteString() function parameters

Parameter Name Parameter Type Description

byteAddr UWord32 The start address of EEPROM that data
string is written to

Table continues on the next page...

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

8 Freescale Semiconductor, Inc.

Table 12. EepromWriteByteString() function parameters (continued)

Parameter Name Parameter Type Description

data UWord8* The byte pointer that points to a byte
data string which is to be written into
EEPROM

length UWord16 Length of the string in unit of bytes

2.1.8 EepromReadByteString()

This function reads a string of bytes data out of EEPROM from a specified start byte address.

Prototype of this function is:

void EepromReadByteString(UWord32 byteAddr,UWord8* data, UWord16 length);

Table 13. EepromReadByteString() function parameters

Parameter Name Parameter Type Description

byteAddr UWord32 The start address of EEPROM that data
string is read out of

data UWord8* The byte pointer that points to a byte
data string, to which the read out byte
string is stored

length UWord16 Length of the string in unit of bytes

Listing 3 on page 9 shows how to use EepromWriteByteString() and EepromReadByteString() to access EEPROM.

Listing 3. Use of EepromWriteByteString() and EepromReadByteString() to access
EEPROM

#include "EepromDrv.h"
UWord8 uw8Num[32];
UWord8 uw8NumRd[32];
Word16 w16Stat;
void main(void)
{
 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 Word8 i;

 /* EEPROM initialization, 32 bytes of EEPROM with 16K bytes of FlexNVM backup */
 w16Stat = GetEepromInfo();

 if(((uw16EEESize&0x00ff) == 0xff) && ((uw16EEBackUpFlashSize&0x00ff) == 0xff)
 && (w16Stat == EEPROM_FLASHDRV_SUCCESS))
 {
 // Data Flash will be erased during partition
 // 32 bytes of EEPROM, with 16K bytes FlexNVM as backup
 w16Stat = DEFlashPartition(EEESIZE_32B,DEPART_16K);
 }

 for(i=0;i<32;i++)
 {
 uw8Num[i] += i;
 }
 /* 32 bytes in uw8Num[0]~uw8Num[31] are written into EEPROM sequentially */

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 9

 EepromWriteByteString(EEPROM_BASE_ADDR_BYTE,uw8Num,32);
 /* The data residing in EEPROM_BASE_ADDR_BYTE to (EEPROM_BASE_ADDR_BYTE+31) of EEPROM
 Are read out and stored in uw8NumRd[0]~uw8NumRd[31] */
 EepromReadByteString(EEPROM_BASE_ADDR_BYTE,uw8NumRd,32);

}

2.1.9 EepromWriteWord()

In contrast to EepromWriteByte() function, a 16-bit word data is written into EEPROM. The difference lies in the address of
EEPROM. For instance, if EEPROM size is configured to be 64 bytes using constant EEESIZE_64B, the available EEPROM
word address range is 0x1E000~0x1E01F.

There is a macro definition in Eeprom.h:

#define EEPROM_BASE_ADDR_WORD 0x1e000

You can use EEPROM_BASE_ADDR_WORD as the base address when EEPROM is accessed in words.

Prototype of this function is:

void EepromWriteWord(UWord32 wordAddr,UWord16 data);

Table 14. EepromWriteByte() function parameters

Parameter Name Parameter Type Description

wordAddr UWord32 The address of EEPROM

data UWord16 The word data that tends to be written
into EEPROM

NOTE
Byte address EEPROM_BASE_ADDR_BYTE and (EEPROM_BASE_ADDR_BYTE
+1) actually refer to the least significant byte and most significant byte of word address
EEPROM_BASE_ADDR_WORD. The rest can be done in the same manner to
understand the relationship between byte address and word address.

2.1.10 EepromReadWord()

This function is to read a word from a specified word address in EEPROM.

Prototype of this function is:

void EepromReadWord(UWord32 wordAddr,UWord16 *data);

Table 15. EepromReadByte() function parameters

Parameter Name Parameter Type Description

wordAddr UWord32 The address of EEPROM

data UWord16* A word pointer. The read out word is
stored to the place where this pointer
points

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

10 Freescale Semiconductor, Inc.

Listing 4 on page 11 shows how to use EepromWriteWord() and EepromReadWord() to write a word to and read a word
from EEPROM.

Listing 4. Use of EepromWriteWord() and EepromReadWord() to access EEPROM
#include "EepromDrv.h"
UWord16 uw16Num;
UWord16 uw16NumRd;
Word16 w16Stat;
void main(void)
{
 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();

 /* EEPROM initialization, 32 bytes of EEPROM with 16K bytes of FlexNVM backup */
 w16Stat = GetEepromInfo();

 if(((uw16EEESize&0x00ff) == 0xff) && ((uw16EEBackUpFlashSize&0x00ff) == 0xff)
 && (w16Stat == EEPROM_FLASHDRV_SUCCESS))
 {
 // Data Flash will be erased during partition
 // 32 bytes of EEPROM, with 16K bytes FlexNVM as backup
 w16Stat = DEFlashPartition(EEESIZE_32B,DEPART_16K);
 }

 uw16Num = 0x4567;

 EepromWriteWord(EEPROM_BASE_ADDR_WORD+2,uw16Num);// write 0x4567 to address of 0x1e002
 EepromReadWord(EEPROM_BASE_ADDR_WORD+2,&uw16NumRd);// read the word data in 0x1e002 out to
 // variable uw16NumRd

}

2.1.11 EepromWriteWordString()

This function writes a string of words data to EEPROM.

Prototype of this function is:

void EepromWriteWordString(UWord32 wordAddr,UWord16* data, UWord16 length);

Table 16. EepromWriteWordString() function parameters

Parameter Name Parameter Type Description

wordAddr UWord32 The start word address of EEPROM that
data string is written to

data UWord16* The word pointer that points to a word
data string which is to be written into
EEPROM

length UWord16 Length of the string in unit of words

2.1.12 EepromReadWordString()

This function reads a string of words data out of EEPROM from a specified start word address.

Prototype of this function is:

void EepromReadWordString(UWord32 wordAddr,UWord16* data, UWord16 length);

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 11

Table 17. EepromReadWordString() function parameters

Parameter Name Parameter Type Description

wordAddr UWord32 The start word address of EEPROM that
data string is read out of

data UWord16* The word pointer that points to a word
data string, to which the read out word
string is stored

length UWord16 Length of the string in unit of words

Listing 5 on page 12 shows how to use EepromWriteWordString() and EepromReadWordString() to access EEPROM.

Listing 5. Use of EepromWriteWordString() and EepromReadWordString() to access
EEPROM

#include "EepromDrv.h"
UWord16 uw16Num[32];
UWord16 uw16NumRd[32];
Word16 w16Stat;
void main(void)
{
 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 Word8 i;

 /* EEPROM initialization, 64 bytes of EEPROM with 16K bytes of FlexNVM backup */
 w16Stat = GetEepromInfo();

 if(((uw16EEESize&0x00ff) == 0xff) && ((uw16EEBackUpFlashSize&0x00ff) == 0xff)
 && (w16Stat == EEPROM_FLASHDRV_SUCCESS))
 {
 // Data Flash will be erased during partition
 // 64 bytes of EEPROM, with 16K bytes FlexNVM as backup
 w16Stat = DEFlashPartition(EEESIZE_64B,DEPART_16K);
 }

 for(i=0;i<32;i++)
 {
 uw16Num[i] += i;
 }
 /* 32 words in uw16Num[0]~uw16Num[31] are written into EEPROM sequentially */
 EepromWriteWordString(EEPROM_BASE_ADDR_WORD,uw16Num,32);
 /* The data residing in EEPROM_BASE_ADDR_WORD to (EEPROM_BASE_ADDR_WORD+31) of EEPROM
 Are read out and stored in uw16NumRd[0]~uw16NumRd[31] */
 EepromReadWordString(EEPROM_BASE_ADDR_WORD,uw16NumRd,32);

}

2.1.13 EepromWriteLongWord()

In contrast to EepromWriteByte() function, a 32-bit long word data is written into EEPROM. The difference lies in the
address of EEPROM. For instance, if EEPROM size is configured to be 64 bytes using constant EEESIZE_64B, which means
the space can hold up to 16 long words. The available EEPROM long word addresses in sequence is:

0x1E000, 0x1E002, 0x1E004, 0x1E006, 0x1E008, 0x1E00A, 0x1E00C, 0x1E00E

0x1E010, 0x1E012, 0x1E014, 0x1E016, 0x1E018, 0x1E01A, 0x1E01C, 0x1E01E

Notice, the address for long word access in EEPROM should be an even number.

Prototype of this function is:

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

12 Freescale Semiconductor, Inc.

void EepromWriteLongWord(UWord32 wordAddr,UWord32 data);

Table 18. EepromWriteLongWord() function parameters

Parameter Name Parameter Type Description

wordAddr UWord32 The long word address of EEPROM. It
must be even.

data UWord32 The long word data that tends to be
written into EEPROM

2.1.14 EepromReadLongWord()

This function is to read a long word from a specified long word address in EEPROM.

Prototype of this function is:

EepromReadLongWord(UWord32 wordAddr,UWord32 *data);

Table 19. EepromReadByte() function parameters

Parameter Name Parameter Type Description

wordAddr UWord32 The long word address of EEPROM. It
must be even.

data UWord32* A long word pointer. The read out long
word is stored to the place where this
pointer points

Listing 6 on page 13 shows how to use EepromWriteLongWord() and EepromReadLongWord() to write a long word to and
read a long word from EEPROM.

Listing 6. Use of EepromWriteLongWord() and EepromReadLongWord() to access
EEPROM

#include "EepromDrv.h"
UWord32 uw32Num,uw32Num1;
UWord32 uw32NumRd,uw32NumRd1;
Word16 w16Stat;
void main(void)
{
 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();

 /* EEPROM initialization, 32 bytes of EEPROM with 16K bytes of FlexNVM backup */
 w16Stat = GetEepromInfo();

 if(((uw16EEESize&0x00ff) == 0xff) && ((uw16EEBackUpFlashSize&0x00ff) == 0xff)
 && (w16Stat == EEPROM_FLASHDRV_SUCCESS))
 {
 // Data Flash will be erased during partition
 // 32 bytes of EEPROM, with 16K bytes FlexNVM as backup
 w16Stat = DEFlashPartition(EEESIZE_32B,DEPART_16K);
 }

 uw32Num = 0x11223344;
 uw32Num1 = 0x55667788;

 EepromWriteLongWord(EEPROM_BASE_ADDR_WORD,uw32Num);// write 0x11223344 to address of
 // 0x1e000

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 13

 EepromWriteLongWord(EEPROM_BASE_ADDR_WORD+2,uw32Num1);// write 0x55667788 to address of
 // 0x1e002

 EepromReadLongWord(EEPROM_BASE_ADDR_WORD,&uw32NumRd);// read the word data in 0x1e000 out
 // to variable uw32NumRd

 EepromReadLongWord(EEPROM_BASE_ADDR_WORD+2,&uw32NumRd1);// read the word data in 0x1e002
 // out to variable uw32NumRd1

}

2.1.15 EepromWriteLongWordString()

This function writes a string of long words data to EEPROM. Be sure the start address is an even address.

Prototype of this function is:

void EepromWriteLongWordString(UWord32 wordAddr,UWord32* data, UWord16 length);

Table 20. EepromWriteLongWordString() function parameters

Parameter Name Parameter Type Description

wordAddr UWord32 The start long word address of EEPROM
that data string is written to. It must be
even.

data UWord32* The long word pointer that points to a
long word data string which is to be
written into EEPROM

length UWord16 Length of the string in unit of long words

2.1.16 EepromReadLongWordString()

This function reads a string of long words data out of EEPROM from a specified start long word address, which should be an
even address.

Prototype of this function is:

void EepromReadLongWordString(UWord32 wordAddr,UWord32* data, UWord16 length);

Table 21. EepromReadLongWordString() function parameters

Parameter Name Parameter Type Description

wordAddr UWord32 The start long word address of EEPROM
that data string is read out of. It must be
even.

data UWord32* The long word pointer that points to a
long word data string, to which the read
out long word string is stored

length UWord16 Length of the string in unit of long words

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

14 Freescale Semiconductor, Inc.

Listing 7 on page 15 shows how to use EepromWriteLongWordString() and EepromReadLongWordString() to access
EEPROM.

Listing 7. Use of EepromWriteLongWordString() and EepromReadLongWordString() to
access EEPROM

#include "EepromDrv.h"
UWord32 uw32Num[16];
UWord32 uw32NumRd[16];
Word16 w16Stat;
void main(void)
{
 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 Word8 i;

 /* EEPROM initialization, 64 bytes of EEPROM with 16K bytes of FlexNVM backup */
 w16Stat = GetEepromInfo();

 if(((uw16EEESize&0x00ff) == 0xff) && ((uw16EEBackUpFlashSize&0x00ff) == 0xff)
 && (w16Stat == EEPROM_FLASHDRV_SUCCESS))
 {
 // Data Flash will be erased during partition
 // 64 bytes of EEPROM, with 16K bytes FlexNVM as backup
 w16Stat = DEFlashPartition(EEESIZE_64B,DEPART_16K);
 }

 for(i=0;i<16;i++)
 {
 uw16Num[i] += i;
 }
 /* 16 long words in uw32Num[0]~uw32Num[15] are written into EEPROM sequentially */
 EepromWriteLongWordString(EEPROM_BASE_ADDR_WORD,uw32Num,16);
 /* The long word data residing in EEPROM_BASE_ADDR_WORD to (EEPROM_BASE_ADDR_WORD+30) of
 EEPROM are read out and stored in uw32NumRd[0]~uw32NumRd[15] */
 EepromReadLongWordString(EEPROM_BASE_ADDR_WORD,uw32NumRd,16);

}

2.2 Description of EEPROM emulation driver for MC56F82xxx
family

The Flash Driver Library described in AN4860 is used here to emulate EEPROM, so the related source files should be
integrated in the IDE as well as EepromDrv.c, EepromDrv.h and EepromDrv_cfg.h. The driver used in CodeWarrior is
shown in Figure 2. Several settings are necessary to use this driver:

In EepromDrv_cfg.h:

• Set EEPROM_EMULATION to 1 to enable drivers for MC56F82xxx family.

In FlashDrv_cfg.h:

• Set FLASHDRV_FLSHCNT to 1.
• Configure the size of Flash by setting FLASHDRV_PRIMARY_START, FLASHDRV_PRIMARY_END and

FLASHDRV_PRIMARY_SECTOR_SIZE properly. FLASHDRV_PRIMARY_SECTOR_SIZE is always 0x200 for
MC56F82xxx family, but FLASHDRV_PRIMARY_END may be different for different parts.

• Set FLASHDRV_IWRT_ENABLE to 1 to enable incremental flash writing feature.
• Set FLASHDRV_IWRT_ERASE_ALL” to 0 to make sure only a sector is erased once the memory that emulates

EEPROM is full.

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 15

• Set FLASHDRV_COPY2RAM to 1 to make sure flash command executing functions are running in RAM.
• Set a reasonable number to FLASHDRV_IWRT_SECT_CNT, which decides how many sectors are used to emulate

EEPROM. Make sure at least two sectors are used, or else there will be no backup, which is not quite safe in case of
sudden power off. Three sectors are used in the example project.

Modify the linker file according to AN4860.

Figure 2. CodeWarrior projects view showing usage of EEPROM driver for MC56F82xxx
family

In FlashDrv_Cfg.h file, there is a variable type definition:

typedef struct
{
 unsigned int dwEntryNum[200]; // user defined variables
 int dwCrcSum;
} FLASHDRV_IWRT_DATA_T, *LPFLASHDRV_IWRT_DATA_T;

The unsigned int dwEntryNum [200] can be substituted with any other variables according to your specific applications, any
variable type will do, but make sure the size does not exceed 512 words. " intdwCrcSum;" must be kept unchanged because
the driver uses this variable to store the CRC-16 code.

The EEPROM emulation is based on entry incremental writing feature with Erase Sector mode, refer to AN4860 for details.
The structure of an entry is defined in FlashDrv.c:

typedef struct
{
 unsigned long int dwMark; // Identificator of entry
 FLASHDRV_IWRT_DATA_T entry; // User-defined incremental writing data structure
} FLASHDRV_IWRT_ENTRY_T, *LPFLASHDRV_IWRT_ENTRY_T;

A global entry variable is also defined in “FlashDrv.c”:

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

16 Freescale Semiconductor, Inc.

FLASHDRV_IWRT_ENTRY_T FLASHDRV_IWRT_ENTRY = {0, FLASHDRV_IWRT_DATA_INIT};

A pointer is defined to point to this entry variable:

FLASHDRV_IWRT_DATA_T *FLASHDRV_IWRT_DATA = &(FLASHDRV_IWRT_ENTRY.entry);

From user’s perspective, there are two ways to access the user defined data in the entry. For example:
• FLASHDRV_IWRT_DATA->dwEntryNum [2]
• FLASHDRV_IWRT_ENTRY.entry.dwEntryNum [2]

Table 22. List of EEPROM emulation drivers for MC56F82xxx family

Function Name Short Description

Crc_Init() Enable the clock of CRC module. Inline function.

EepromDrv_Init() Alias of FlashDrv_Init().

Crc_Calculation() Calculate the crc-16 code of string of bytes

EepromDrv_Write() Write an entry into EEPROM. Crc-16 code is calculated and
written into EEPROM as part of the entry.

EepromDrv_Read() Read the old entry out of EEPROM and store it to
FLASHDRV_IWRT_ENTRY.entry. Crc-16 is checked.

2.2.1 Crc_Init()

This is an inline function that enables clock of CRC module in MC56F82xxx family.

#define Crc_Init() (UD_SIM_PCE2|=0x0020)

The CRC generator module uses the 16-bit CRC-CCITT polynomial, x16+x12+x5+ 1 to generate a CRC code for error
detection.

2.2.2 Crc_Calculation()

This function calculates the CRC code for a string of bytes using the CRC module described in Section 2.2.1. Crc_Init() must
be invoked before calculation.

Prototype of this function is:

UWord16 Crc_Calculation(UWord8 *pbData, UWord16 w16Cnt);

The returned 16-bit data is the CRC code.

Table 23. Crc_Calculation() function parameters

Parameter Name Parameter Type Description

pbData UWord8* The byte pointer that points to a string of
bytes which need CRC

w16Cnt UWord16 Length of the string in unit of bytes

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 17

This function is invoked in EepromDrv_Write() and EepromDrv_Read(). You can use this function to calculate the CRC of
other data because it is a general purpose function. Listing 8 on page 18 shows how to use it.

Listing 8. Use of Crc_Calculation() and to calculate CRC code for a string of bytes
#include "EepromDrv.h"
UWord8 uw8Data[12];
UWord16 uw16Crc;
void main(void)
{
 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();

 Word16 i;

 Crc_Init(); // Enable CRC clock

 for(i=0; i<12; i++)
 {
 uw8Data[i] = i;
 }

 uw16Crc = Crc_Calculation(uw8Data,12);

}

2.2.3 EepromDrv_Write()

As described in the section Description of EEPROM emulation driver for MC56F82xxx family, a pointer called
FLASHDRV_IWRT_DATA points to a structure variable FLASHDRV_IWRT_ENTRY.entry, which is composed of two parts:
user defined data structure variables and a 16-bit CRC code dwCrcSum. In the example given in Description of EEPROM
emulation driver for MC56F82xxx family, user-defined variable is an array of 200 words.

In the function of EepromDrv_Write(), firstly, a CRC code is calculated based on user defined variables in
FLASHDRV_IWRT_ENTRY.entry, and stored in FLASHDRV_IWRT_ENTRY.entry.dwCrcSum. Secondly, write the whole
FLASHDRV_IWRT_ENTRY.entry including CRC code to flash.

Prototype of this function is:

UWord8 EepromDrv_Write(void);

Table 24. EepromDrv_Write() function return codes

Return Code Description

EEPROM_FLASHDRV_SUCCESS Successfully write the entry to flash

EEPROM_FLASHDRV_ACCESS_ERROR Function internal error

EEPROM_FLASHDRV_FAIL MGSTAT0 bit of FTFL_FSTAT is set, meaning any errors
have been encountered during the verify operation.

EEPROM_FLASHDRV_PROT_VIOLATION Protection violation

The source code of this function is as below:

UWord8 EepromDrv_Write(void)
{
 Word16 w16Tmp;
 UWord8* pbData;
 UWord8 ucResult;
 w16Tmp = sizeof(FLASHDRV_IWRT_DATA_T); // in unit of bytes
 w16Tmp -= 2; // get the length of data string in unit of bytes
 pbData = (UWord8*)FLASHDRV_IWRT_DATA;

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

18 Freescale Semiconductor, Inc.

 FLASHDRV_IWRT_DATA->dwCrcSum = Crc_Calculation(pbData, w16Tmp); // get the crc
 // code
 ucResult = FlashDrv_IncWrite(); // write the data string and crc code into flash

 return ucResult;
}

2.2.4 EepromDrv_Read()

This function reads out the defined backup entry from flash and store it to FLASHDRV_IWRT_ENTRY.entry, including the
CRC code. Then it calculates the CRC code of all data in FLASHDRV_IWRT_ENTRY.entry. The CRC code should be zero if
the data is not corrupted.

Prototype of this function is:

UWord8 EepromDrv_Read(UWord16 uw16EntryAge);

Table 25. EepromDrv_Read() function parameters

Parameter Name Parameter Type Description

uw16EntryAge UWord16 A number indicating which entry is to be
read out. 0 means the latest entry.

Table 26. EepromDrv_Read() function return codes

Return Code Description

EEPROM_FLASHDRV_SUCCESS Successfully read the entry

EEPROM_FLASHDRV_ACCESS_ERROR Invalid parameter. E.g. uw16EntryAge is too big and there’s
no valid entry.

EEPROM_CRC_ERROR The CRC code of the read out entry is not zero.

The source code of the EepromDrv_Read() function is as below:

UWord8 EepromDrv_Read(UWord16 uw16EntryAge)
{
 Word16 w16Tmp,w16Crc;
 UWord8* pbData;
 UWord8 ucResult;
 ucResult = FlashDrv_GetEntry(uw16EntryAge); // read the latest entry

 if(ucResult == FLASHDRV_ACCESS_ERROR)
 {
 return EEPROM_FLASHDRV_ACCESS_ERROR;
 }
 else
 {
 w16Tmp = sizeof(FLASHDRV_IWRT_DATA_T); // in unit of bytes
 w16Tmp -= 2; // get the length of data string in unit of bytes
 pbData = (UWord8*)FLASHDRV_IWRT_DATA;

 // get the crc check code of data string and the stored crc result
 Crc_Calculation(pbData, w16Tmp);
 UD_CRC_CRCL = (FLASHDRV_IWRT_DATA->dwCrcSum >> 8) & 0x00ff;
 UD_CRC_CRCL = (FLASHDRV_IWRT_DATA->dwCrcSum) & 0x00ff;
 w16Crc = ((UD_CRC_CRCH<<8)|UD_CRC_CRCL);

 // crc check should be zero

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 19

 if(w16Crc == 0)
 {
 return EEPROM_FLASHDRV_SUCCESS;
 }
 else
 {
 return EEPROM_CRC_ERROR;
 }
 }
}

Listing 9 on page 20 shows how to use this driver to emulate EEPROM on MC56F82748. For example, if the user has 4
words, 3 long words and 2 bytes to be stored in EEPROM, the configuration in header file FlashDrv_cfg.h is as below:

/* Number of flash memories
 * - This is either one (MC56F827xx devices) or two (MC56F847xx devices) */

#define FLASHDRV_FLSHCNT 1
/* Primary flash parameters - program address space */
#define FLASHDRV_PRIMARY_START 0x00000000 UL // Word addresses
#define FLASHDRV_PRIMARY_END 0x00007FFFUL

#define FLASHDRV_PRIMARY_SECTOR_SIZE 0x0200UL // Sector size (1kB)

#define FLASHDRV_COPY2RAM 1
/* Incremental flash writing
 * - This option enables incremental writing of fix-sized entries into
 * flash memory area, designated by user. */
#define FLASHDRV_IWRT_ENABLE 1

/* -Number of dedicated sectors for incremental writing */
#define FLASHDRV_IWRT_SECT_CNT 3
/* Size of memory to delete when memory is full
 * -This option determines whether erase an entire memory area (option is
 * enabled) or single sector (option is disabled) once the memory is full. */
#define FLASHDRV_IWRT_ERASE_ALL 0

/* This structure contains the data, that will be stored, using incremental
 * writing */
typedef struct
{
 // user defined variables
 unsigned int uw16Num1;
 unsigned int uw16Num2;
 unsigned int uw16Num3;
 unsigned int uw16Num4;
 unsigned long uw32Num1;
 unsigned long uw32Num2;
 unsigned long uw32Num3;
 unsigned char uw8Num1;
 unsigned char uw8Num2;

 int dwCrcSum; // this variable is used by the driver, keep it.
} FLASHDRV_IWRT_DATA_T, *LPFLASHDRV_IWRT_DATA_T;

In this configuration, three sectors ranging from 0x7A00~0x7FFF are used as EEPROM backup.

Listing 9. Use of EEPROM emulation driver on MC56F82748
#include "EepromDrv.h"
UWord8 uw8Status;
UWord16 uw16Data[4];
UWord32 uw32Data[3];
UWord8 uw8Data[2];
void main(void)
{
 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();

 Crc_Init(); // Enable CRC clock

EEPROM driver description

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

20 Freescale Semiconductor, Inc.

 EepromDrv_Init(); // Flash increasing write initialization

 /* Update variable uw16Data[0]~ uw16Data[3],uw32Data[0]~uw32Data[2]
 and uw8Data[0]~ uw8Data[1] */
 // ...

 /* Put the data into entry variable */
 FLASHDRV_IWRT_DATA->uw16Num1 = uw16Data[0];
 FLASHDRV_IWRT_DATA->uw16Num2 = uw16Data[1];
 FLASHDRV_IWRT_DATA->uw16Num3 = uw16Data[2];
 FLASHDRV_IWRT_DATA->uw16Num4 = uw16Data[3];
 FLASHDRV_IWRT_DATA->uw32Num1 = uw32Data[0];
 FLASHDRV_IWRT_DATA->uw32Num2 = uw32Data[1];
 FLASHDRV_IWRT_DATA->uw32Num3 = uw32Data[2];
 FLASHDRV_IWRT_DATA->uw8Num1 = uw8Data[0];
 FLASHDRV_IWRT_DATA->uw8Num2 = uw8Data[1];

 /* Store the data to EEPROM */
 uw8Status = EepromDrv_Write();

 /* Read out the data from EEPROM */
 /*
 FLASHDRV_IWRT_DATA->uw16Num1,
 FLASHDRV_IWRT_DATA->uw16Num2,
 FLASHDRV_IWRT_DATA->uw16Num3,
 FLASHDRV_IWRT_DATA->uw16Num4,
 FLASHDRV_IWRT_DATA->uw32Num1,
 FLASHDRV_IWRT_DATA->uw32Num2,
 FLASHDRV_IWRT_DATA->uw32Num3,
 FLASHDRV_IWRT_DATA->uw8Num1,
 FLASHDRV_IWRT_DATA->uw8Num2 are updated after reading

 */
 uw8Status = EepromDrv_Read(0);

 /* Use the saved data */
 uw16Data[0] = FLASHDRV_IWRT_DATA->uw16Num1;
 uw16Data[1] = FLASHDRV_IWRT_DATA->uw16Num2;
 uw16Data[2] = FLASHDRV_IWRT_DATA->uw16Num3;
 uw16Data[3] = FLASHDRV_IWRT_DATA->uw16Num4;
 uw32Data[0] = FLASHDRV_IWRT_DATA->uw32Num1;
 uw32Data[1] = FLASHDRV_IWRT_DATA->uw32Num2;
 uw32Data[2] = FLASHDRV_IWRT_DATA->uw32Num3;
 uw8Data[0] = FLASHDRV_IWRT_DATA->uw8Num1;
 uw8Data[1] = FLASHDRV_IWRT_DATA->uw8Num2;

}

3 Updating firmware without erasing EEPROM
It is available to update firmware without erasing EEPROM using CodeWarrior10.x.

• For MC56F84xxx family, EEPROM backup is stored in FlexNVM which ranges from 0x68000 to 0x6BFFF in
program memory map. Avoid erasing this part of flash during programming.

• For MC56F82xxx family, EEPROM backup is stored in the top several sectors of program flash. Three sectors are used
in Listing 9 on page 20 , which ranges from 0x7A00 to 0x7FFF in program memory map. Avoid erasing these sectors
during programming.

A restricted range flash programming method in CodeWarrior 10.6 is introduced as below. Take MC56F84789 for example:
1. From the CodeWarrior IDE menu bar, select Window > Show View > Other. The Show View dialog box appears.
2. Expand the Debug tree control and select Target Tasks.

Updating firmware without erasing EEPROM

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 21

Figure 3. Show View dialog
3. Click OK.

The Target Tasks view appears

Figure 4. Target Tasks view
4. Right-click on Root, select Import from the context menu.

Updating firmware without erasing EEPROM

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

22 Freescale Semiconductor, Inc.

Figure 5. Context menu
5. Navigate to the pre-defined tasks folder at <CW MCU install>\MCU\bin\plugins\support\TargetTask

\Flash_Programmer\ and select the desired .xml file. In this case, MC56F84789.xml is chosen.

Figure 6. Choose MC56F84789.xml file
6. Double-click on the task's name. A tab of DSC Flash Programmer Task appears.

Updating firmware without erasing EEPROM

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 23

Figure 7. Flash programmer task editor window displaying stored actions
7. Uncheck the Erase and Blank Check actions. Also, Uncheck the Program and Verify actions from the launch

configuration in MC56F84789_X_FLASH.

Updating firmware without erasing EEPROM

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

24 Freescale Semiconductor, Inc.

Figure 8. Only keep program and verify actions for MC56F84789_P_FLASH
8. Double-click on the checked Program action. In the pop-up dialog, check Erase sectors before program option.

Check Restrict to Addresses in this Range option. Specify the address range. The memory out of this range will not
change. Click Update Program Action button to update the settings of this action.

Figure 9. Add Program/Verify Action dialog for Program Action
9. Double-click on the checked Verify action. In the pop-up dialog, check Restrict to Addresses in this Range option

and specify the same address range as used in Program action.
10. Click Update Verify Action button to update the settings of this action.

Updating firmware without erasing EEPROM

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 25

Figure 10. Add Program/Verify Action dialog for Verify Action
11. Right-click on the task name in Target Tasks view, and select Change Run Configuration.

Figure 11. Change run configuration
12. The Run Configuration dialog appears. Select a run Configuration from the available configurations of the opened

projects. Click OK

Updating firmware without erasing EEPROM

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

26 Freescale Semiconductor, Inc.

Figure 12. Run configuration dialog
13. Click Execute button to execute the actions.

Figure 13. Execute the actions

Through the steps 1-13 above, only Program Flash is programmed, while FlexNVM remains the same. EEPROM is not
affected in this way.

For MC56F82xxx family, since the last few sectors of Program Flash are used as backup for emulated EEPROM, change the
addresses range in Figure 9 and Figure 10 accordingly. In Listing 9 on page 20 , since 0x7A00~0x7FFF are used as
EEPROM backup, the addresses range in Figure 9 and Figure 10 should be changed to 0x0000~0x79FF to avoid erasing the
contents in EEPROM.

4 Conclusion
There are three files in the EEPROM driver: EepromDrv.c, EepromDrv.h and EepromDrv_cfg.h. There’s only one macro in
EepromDrv_cfg.h which is used to define whether the driver is for MC56F84xxx family or MC56F82xxx family.

• Set EEPROM_EMULATION to 0 in EepromDrv_cfg.h file to enable drivers for MC56F84xxx family. Description of
EEPROM driver for MC56F84xxx family shows the configuration of the driver.

• Set EEPROM_EMULATION to 1 in EepromDrv_cfg.h file to enable drivers for MC56F82xxx family. Meanwhile, the
FDL driver described in AN4860 should also be included in the project, as shown in Figure 2. The configuration of
FDL is described in Description of EEPROM emulation driver for MC56F82xxx family. Remember to modify the
linker file as indicated in AN4860.

Conclusion

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

Freescale Semiconductor, Inc. 27

For MC56F84xxx family, a build-in filing system performs the EEPROM characteristics automatically, so the performance is
more sophisticated. For MC56F82xxx family, there’s no such system, so FDL is used to emulate EEPROM, together with
CRC-16 function and incremental entry writing feature, the reliability and flash cycling endurance is also improved.

Conclusion

EEPROM Driver for MC56F84xxx and MC56F82xxx DSC Family, Rev 0, 01/2015

28 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and Processor Expert are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
ARM is the registered trademark of ARM Limited. The Power
Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by
Power.org.

© 2015, Freescale Semiconductor, Inc.

Document Number AN5074
Revision 0, 01/2015

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	EEPROM driver description
	Description of EEPROM driver for MC56F84xxx family
	GetEepromInfo()
	DEFlashPartition()
	SetEEEEnable()
	SetEEEDisable()
	EepromWriteByte()
	EepromReadByte()
	EepromWriteByteString()
	EepromReadByteString()
	EepromWriteWord()
	EepromReadWord()
	EepromWriteWordString()
	EepromReadWordString()
	EepromWriteLongWord()
	EepromReadLongWord()
	EepromWriteLongWordString()
	EepromReadLongWordString()

	Description of EEPROM emulation driver for MC56F82xxx family
	Crc_Init()
	Crc_Calculation()
	EepromDrv_Write()
	EepromDrv_Read()

	Updating firmware without erasing EEPROM
	Conclusion

