
Freescale Semiconductor
Application Note

Document Number: AN4268
Rev. 1, 08/2012

Contents

Introduction . 1
System concept . 2
BLDC sensorless control . 2

3.1 Brushless DC motor . 2
3.2 Principles of six-step BLDC motor control 3
3.3 States of BLDC drive. 7
MPC5604P controller board configuration. 8

4.1 FlexPWM. 9
4.2 CTU . 10
4.3 eTIMER . 11
Software implementation . 12

5.1 Introduction . 12
5.2 Application flow . 13
5.3 Speed evaluation and control 14
5.4 Zero-cross detection . 16
5.5 Current limitation controller 16
5.6 State machine . 16
5.7 Library functions . 20
5.8 Setting the software parameters for a specific

motor . 20
6 FreeMASTER user interface . 20

6.1 Application start . 20
Conclusion. 21
References . 21
Revision history . 22

Three-phase Sensorless BLDC
Motor Control Kit with the
Qorivva MPC5604P
by: Petr Konvicny

Rožnov pod Radhoštem, Czech Republic
1 Introduction
This application note describes the design of a
three-phase brushless DC (BLDC) motor control drive
using a sensorless algorithm. The design is targeted at
automotive applications. This cost-effective solution is
based on the MPC5604P device, dedicated for
automotive motor control.

The system is designed to drive a three-phase BLDC
motor without a positional feedback sensor. Application
features include:

• Three-phase BLDC sensorless speed control

• Back-EMF (BEMF) sensing

• Application control user interface using the
FreeMASTER debugging tool

• Maximal motor current limitation

1
2
3

4

5

7
8
9

© Freescale Semiconductor, Inc., 2012. All rights reserved.

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc56xx-mcus/ultra-reliable-mpc560xp-mcu-for-automotive-industrial-safety-applications:MPC560xP?utm_medium=AN-2021

System concept
2 System concept
The system is designed to drive a three-phase BLDC motor. The application meets the following
performance specifications:

• Targeted at the MPC5604P microcontroller (refer to the dedicated reference manual for the
MPC5604P, found at www.freescale.com)

• Running on the MPC5604P control drive board (refer to the dedicated user manual for the
MPC5604P controller board)

• Control technique incorporating:

— Sensorless control of a three-phase BLDC motor

— Zero-crossing technique

— Closed-loop speed control

— Closed-loop current control

— Starting up with alignment

— BEMF voltage sensing

— 50 µs sampling period with the FreeMASTER recorder

• FreeMASTER software control interface (motor start/stop, speed set-up)

• FreeMASTER software monitor

• DC bus over-voltage, under-voltage, over-current, and overload protection

3 BLDC sensorless control

3.1 Brushless DC motor
The BLDC motor is a rotating electric machine with a classic three-phase stator. As in an induction motor,
the rotor has surface-mounted permanent magnets. There are no brushes on the rotor and the commutation
is performed electronically at a certain rotor position. The displacement of the magnets on the rotor creates
a trapezoidal BEMF shape, which means that a DC voltage with a rectangular shape (see Figure 1) can be
used to create a rotational field with low torque ripples. The motor can have more than one pole pair per
phase. The pole pair per phase defines the ratio between the electrical revolution and the mechanical
revolution. The rectangular shape of the applied voltage ensures the simplicity of control and drive.
However, the rotor position must be known at certain angles in order to align the applied voltage with the
BEMF. The best efficiency is achieved when BEMF and commutation events are aligned, in which case
the motor behaves as a DC motor.
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor2

BLDC sensorless control
Figure 1. Three-phase voltage system for a BLDC motor

The main task for sensorless control of a BLDC motor is the estimation of rotor position. For rotor position
estimation, this application uses a technique based on BEMF sensing.

• Speed range from 5–10% up to 100% of nominal speed

• The BEMF must be high enough

• Based on the BEMF zero-crossing method

• Other advanced BEMF estimation techniques:

— System observers

— Measurement of a non-conductive phase with multi-sampling

The following sections discuss the concept of zero-crossing, as well as the methods and conditions for its
correct evaluation.

3.2 Principles of six-step BLDC motor control
The three-phase BLDC motor is operated in a two-phase model; that is, the two phases that produce the
highest torque are energized while the third phase is off. Which two phases are energized depends on the
rotor position. The energized phases change every 60° (electrical degrees) as shown in Figure 1. The figure
also shows ideal BEMF waveforms. The third phase can be used to observe the BEMF voltage to recognize
the correct commutation event, as described later. Current commutation is done by a six-step inverter as
shown in the simplified form in Figure 2. Figure 1 and Table 1 show the switching sequence and current
direction.

30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 0°

Phase A

Phase B

Phase C

Voltage

Electrical
angle

ef A

ef B

ef C

sector 1 2 3 4 5 6
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor 3

BLDC sensorless control
Figure 2. Power stage and motor topology

To explain and simulate the idea of BEMF sensing techniques, this document provides a simplified
mathematical model founded on the basic circuit topology (see Figure 2). The voltage for a three-phase
BLDC motor is supplied by a typical three-phase power stage designed using IGBT or MOSFET switches.
The power stage switches are controlled by the MCU’s on-chip FlexPWM module, which creates the
desired control patterns. The goal of the model is to find out the dependency between the motor
characteristics and switching angle. The switching angle is the angular difference between a real switching
event and the ideal one. The motor drive model consists of a three-phase power stage and a BL DC motor.
The power for the system is provided by a DC bus voltage source UDCB. Six semiconductor switches
(SA/B/C/T/B) deliver the rectangular voltage waveforms to the motor (see Figure 1). The semiconductor
switches and diodes are simulated as ideal devices. The natural voltage level of the whole model is
referenced to half of the DC bus voltage, which simplifies the mathematical expressions.

Table 1. Six-step switching sequence

Rotor
position

Sector
number

Switch
closed

Phase current

A B C

0–60° 1 SAT SBB + — off

60–120° 2 SAT SCB + off —

120–180° 3 SBT SCB off + —

180–240° 4 SBT SAB — + off

240–300° 5 SCT SAB — off +

300–360° 6 SCT SBB off — +
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor4

BLDC sensorless control
3.2.1 BEMF zero-crossing detection

Figure 1 shows the motor phase winding voltage waveforms for the right commutation. As we can see, the
right commutation event should be in the middle of two BEMF zero-crossings. So, the BEMF
zero-crossing signal can simply be used as a rotor position feedback to estimate the right commutation time
point.

Figure 3. Zero-crossing detection and commutation diagram

The e1x signals in Figure 1 are the BEMF voltages. These are the UiX voltages in Figure 3.

This technique is established on the fact that only two phases of a motor are energized and third non-fed
phase can be used to sense the BEMF voltage.

The following conditions are met:

Eqn. 1

SAb SBt PWMswitching

uN uDCB ri– L
di
dt
-----– uiB–=

uN ri L
di
dt
----- uiA–+=

uN
uDCB

2

uiB uiA+

2
---------------------–=
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor 5

BLDC sensorless control
The voltage uC can be calculated:

Eqn. 2

The voltage uiC is null at zero-crossing, so the resultant form is:

Eqn. 3

3.2.1.1 BEMF measurement

Figure 4 and Figure 5 show the BEMF sensing circuit which is realized on the power stage and controller
board side. Each phase voltage is adjusted into the ADC converter range as is shown in Figure 4. The user
can set up the three-phase voltage input ranges easily by the divider ratio.

Figure 4. Back-EMF sensing circuit—dividers

Figure 5. Back-EMF sensing circuit—low pass filters

uiA uiB uiC+ + 0=

uN
uDCB

2

uC
2

------+=

uC uN uiC+=

uC
3
2
---uiC

uDCB
2

-------------+=

uC
uDCB

2
-------------=
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor6

BLDC sensorless control
3.3 States of BLDC drive
In order to start and run the BLDC motor, the control algorithm has to go through the following states:

• Alignment (initial position setting)

• Start-up (forced commutation)

• Run (sensorless running with BEMF acquisition and zero-crossing detection)

3.3.1 Alignment

As mentioned previously, the main task for sensorless control of a BLDC motor is the position estimation.
Before starting the motor, however, the rotor position is not known. The main aim of the alignment state
is to align the rotor to a known position. This known position is necessary to start rotation in the proper
direction and to generate a maximal torque during startup. During alignment, all three phases are powered.
Phase A is connected to the positive DC bus voltage, and Phases B and C are connected to the negative
DC bus voltage. The alignment time depends on the mechanical constant of the motor, including load, and
also on the applied motor current. In this state, the motor current (torque) is controlled by the PI controller
on every PWM reload event.

3.3.2 Start-up

In the start-up state, the motor commutation is controlled in an open-loop without any rotor position
feedback. The commutation period is controlled with a linear open-loop starting ramp. The open-loop start
should to be a short state at a very low speed where the BEMF is too small, so the zero-crossing events
cannot be reliably detected.

3.3.3 Run

The running sensorless mode includes the BEMF acquisition with zero-crossing detection for the
commutation control. The motor speed is controlled using zero-crossing period feedback to the speed PI
regulator. The motor current is measured and filtered during commutation event and used as feedback into
the current controller. Its output limits the speed controller output to achieve the maximal motor current in
the required range.
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor 7

MPC5604P controller board configuration
Figure 6. Speed control with torque limitation

4 MPC5604P controller board configuration
The BLDC sensorless application framework is designed to meet the following technical specification:

• MPC5604P controller board is used (refer to the dedicated user manual for the MPC5604P
controller board)

• Three-phase low voltage power stage with an MC33937 pre-driver is used

• PWM output frequency = 20 kHz

• Current loop sampling period 50 us

• Speed loop sampling period 2.5 ms

• Three-phase BEMF voltage measurement using three dividers each per inverter leg. Phase voltage
is routed to ADC0 and ADC1 as follows:

— Phase A BEMF: ADC0/1—CH11

— Phase B BEMF: ADC0/1—CH12

— Phase C BEMF: ADC0/1—CH13

• DC bus voltage measurement routed to ADC1 as follows:

— DC bus voltage: ADC1—CH0

• DC bus current measurement routed to ADC1 as follows:

— DC bus current: ADC1—CH2

The MPC5604P device includes special modules (FlexPWM, CTU, ADC, and eTIMER) dedicated for
motor control applications. These modules are directly interconnected and can be set-up in-line with any
type of application or requirements. Figure 7 shows module interconnection. The modules are described
below and a detailed description can be found in the MPC5604P reference manual.
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor8

MPC5604P controller board configuration
Figure 7. MPC5604P motor control peripherals modules connection

4.1 FlexPWM
The MPC5604P device includes two PLLs. PLL1 is used to generate the motor clock time domain of
120MHz. The Clock Generation Module generates the reference clock MC_PLL_CLK for all the motor
control modules (FlexPWM, CTU, ADC0 and 1, eTimer0 and 1).

The FlexPWM sub-module 0 is configured to run as a master and to generate the Master Reload Signal
(MRS) and counter synchronization signal (master sync) for other submodules. The MRS signal is
generated at every occurrence of sub-module 0, VAL1 compare, that is, a full cycle reload. All double
buffered registers are updated on occurrence of a MRS, therefore, the update of a new PWM duty cycles
is done every PWM periods.

The application uses center-aligned PWMs. The VAL0 register defines the centre of the period and is set
to zero and the INIT register to the negative value of VAL1. Suppose that the PWM clock frequency is
120MHz, the required PWM output 20kHz, then the VAL1, VAL0 and INIT registers are set as follows:

• VAL1 = (120000000 20000) 2 = 3000 = 0x0BB8hex

• VAL0 = 0

• INIT = –VAL1 = –3000 = 0xF448hex

The duty cycle is given by setting the value of the registers VAL2 and VAL3. The VAL2 register value is
the negative of VAL3.

Master Reload
OUT_TRIG0_0
OUT_TRIG0_1
OUT_TRIG0_2
OUT_TRIG0_3

OUT_TRIG1_0
OUT_TRIG1_1
OUT_TRIG1_2
OUT_TRIG1_3

PWMX0
PWMX1
PWMX2
PWMX3

PWMA0
PWMB0
PWMA1
PWMB1

PWMA2
PWMB2
PWMA3
PWMB3

FAULT0
FAULT1
FAULT2
FAULT3

EXT_SYNC EXT_FORCE

CLOCK

FlexPWM

External pins

External pins
PWM_REL
PWM_ODD_0
PWM_ODD_1
PWM_ODD_2
PWM_ODD_3

PWM_EVEN_0
PWM_EVEN_1
PWM_EVEN_2
PWM_EVEN_3
RPWM_0
RPWM_1
RPWM_2
RPWM_3

TRIGGER_0
ADC_CMD_0

NEXT_CMD_0
FIFO_0

EXT_TRG

ETIMER0_TRG
ETIMER1_TRG

CTU

ETIMER0_IN
ETIMER1_IN

EXT_IN

ADC0

ADC1TRIGGER_1
ADC_CMD_1

NEXT_CMD_1
FIFO_1

External pins

External pins
CHANNEL_0
CHANNEL_1
CHANNEL_2
CHANNEL_3
CHANNEL_4
CHANNEL_5

eTIMER0

AUX_1
AUX_2

AUX_0

CHANNEL_0
CHANNEL_1
CHANNEL_2
CHANNEL_3
CHANNEL_4
CHANNEL_5

eTIMER1

AUX_1
AUX_2

AUX_0

FR_CA_TX

FlexRay

SCK

DSPI1

External pins

(Jpp_ind_injection_trg)

(Jpp_ind_injection_trg)
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor 9

MPC5604P controller board configuration
• VAL3 = (DC × PERIOD) 2 = (0.1 × 6000)2 = 300 = 0x012Chex

• VAL2 = –VAL3 = –300 = 0xFED4hex

4.2 CTU
The Cross Triggering Unit (CTU) works in triggered mode. The MRS from the flexPWM submodule0 is
selected from the Input Selection Register (TGSISR) to reload the TGS Counter register with the value of
the TGS Counter Reload Register (TGSCRR). The TGS is able to generate up to eight events. Each trigger
can be delayed from an MRS occurrence, the delay is set in the TGS Compare registers.

The MRS signal is generated every PWM period, the counter can count up to 6000DEC, the INIT value is
zero.

The application uses only one trigger event for measuring the BEMF, DC bus voltage, and DC bus current.

• T0CR = 180DEC

The T0CR value is set up with respect to the real delays in the system as shown. The minimal delay value
is given by the dead-time value for a rising edge, the power transistor turn-on delay, the rise time and
settling time of the BEMF RC filter.

The CTU Scheduler subUnit (SU) generates the trigger event according to the occurred trigger event. The
following trigger event is generated:

• ADC command output

T0CR generates an ADC command event output, with the command offset initially set to two. This is used
as the synchronization signal to the ADC (ADC commands 2–13 for BEMF voltages, DC bus voltage and
DC bus current measurement)
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor10

MPC5604P controller board configuration
Figure 8. CTU ADC Command List configuration

The ADC Commands List Control Register (CLCRx) sets the assignment to an ADC command or to a
stream of commands. The index pointer to the ADC command list, T0_INDEX, is updated according to
the sector in which the actual commutation step resides, calculated by the actual zero-cross event of the
six-step control algorithm. There are six sectors within the output voltage hexagon of the inverter per one
electrical revolution, therefore you have a six different ADC commands. In each sector, ADC0/1 converts
the BEMF voltage, DC bus voltage and DC bus current.

4.3 eTIMER
The eTimer module0.channel 1 generates, through OFLAG output, a forced signal for the FlexPWM
module, which changes the PWM output with regards to the new motor commutation state, as shown in
Figure 7. The time base for the counter is derived from MC_PLL_CLK. The prescaler register divides the
MC_PLL_CLK by 128. The time base for commutation events is:

fCOMM = (120000000 128) = 937500 Hz

The value of the COMP1 register defines the time of the next commutation event. The eTimer output
(OFLAG) is set at the compare occurrence, and generates an external forced signal for the FlexPWM
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor 11

Software implementation
module. The external forced signal updates the PWM outputs in-step with the preloaded state according
to the newly applied sector pattern.

5 Software implementation

5.1 Introduction
This section describes the software design of the BLDC sensorless algorithm. The Figure 9 shows the
application block diagram.

Figure 9. System block diagram
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor12

Software implementation
The application is optimized for using MPC5604P motor control peripherals to achieve small core impact.
The motor control peripherals (FlexPWM, CTU, eTimer, ADC modules) are internally linked/set up
together to work independently from the core and to achieve deterministic sampling of analogue quantities
and precise commutation of the stator field. The software part of the application consists of different blocks
which will be described below. The entire application behavior is scalable by the FreeMASTER tool from
a PC.

5.2 Application flow
The application is interrupt driven running in real time. The main tasks of the motor control application
are periodically running in one interrupt service routine, driven by the CTU-ADC command interrupt
request every 50us. This includes both the fast current and slower speed control loops. The commutation
of the motor stator flux is provided in the second interrupt service routine driven by an eTimer0.Channel
1 interrupt event. All tasks apart from the commutation function are executed in order, as described in the
application state machine shown in Figure 12, and the application flow charts Figure 10 and Figure 11.

Figure 10. Main task flow

This type of application requires precise and deterministic sampling of analogue quantities, and to execute
all motor control functions the state machine routines are called within a periodic interrupt routine. In
reference to the state machine, the interrupt has to be set-up and allowed at the end of the RESET state,
where all peripheral settings also have to be done. Consequently, the RESET state is called before the main
loop, as shown in Figure 10. The background loop handles non-critical tasks, such as the FreeMASTER
communication polling and the MOSFET pre-driver fault service routine.
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor 13

Software implementation
Figure 11. CTU-ADC ISR routine flow chart

5.3 Speed evaluation and control
The application uses eTIMER0.channel1 to achieve a precise commutation of a BLDC motor as described
below.

When the zero-cross event is recognized the eTimer0.channel1.COMP1 register is filled by a new
calculated value of the next commutation time. When a counter matches the COMP1 register value, the
OFLAG signal forces the flexPWM module with a new set-up without any delay or CPU load.

5.3.1 Speed evaluation

The speed is calculated in the Slow Control Loop which is part of the BLDC_Fast_ISR routine. The
zero-cross detection algorithm provides the actual commutation period duration for each commutation
event. These variables are referred to the eTIMER0.channel1. The eTIMER0.channel1 clock is set up to
937500 Hz. So, to calculate the real time commutation period, we can write:

Eqn. 4

Eqn. 5

TREAL T T CLK=

TCLK
1
fCLK
-----------=
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor14

Software implementation
Eqn. 6

where:

• TREAL is the real commutation period

• TCLK is the period of the eTIMER0.channel1

• T is the value measured in the eTIMER0.channel1 increments

• fCLK is the eTIMER0.channel1 clock rate

If we know the commutation period, we can calculate the period of one electrical revolution:

Eqn. 7

where:

• TELREV is the real period of one electrical revolution

• N is number of commutations in one electrical period

To calculate the period of one mechanical revolution, the result of Equation 7 must be multiplied by the
number of pole pairs:

Eqn. 8

and finally we can calculate the mechanical speed in revolutions per minute:

Eqn. 9

If the clock rate is 937500Hz, the number of commutations per electrical revolution is 6, and the number
of pole-pairs is 4, we can get the constant:

Eqn. 10

Therefore, the speed is calculated as:

Eqn. 11

where c is the mechanical speed constant, that is 14.0625 × 106.

To achieve a better resolution, the mechanical speed is multiplied by 1000.

5.3.2 Speed controller

The motor speed PI controller is called in every speed control loop, which is slower than the current control
loop. The KP and KI constants are calculated from either the motor or the whole mechanical system

TREAL
T
fCLK
-----------=

Telrev TREAL N
T N
fCLK
-------------==

Tmechrev Telrev p
T N p
fCLK

----------------------==

mech
60

Tmechrev

60 fCLK
T N p
-----------------------==

c
60 fCLK
N p

-----------------------=

mech
c
T
---=
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor 15

Software implementation
parameters. The speed loop bandwidth was chosen as 20Hz and attenuation as 1. Unfortunately, the
parameters of the LINIX motor were unknown prior the test, therefore the constants of the PI controller
have been set experimentally.

5.4 Zero-cross detection
The zero-cross algorithm is executed in each BLDC_Fast_ISR routine. The CTU module triggers stator
flux sector related analogue quantities, such as the actual DC-BUS and related phase BEMF voltage, the
DC bus current, and time of measurement. Figure 1 shows the behavior of the BEMF voltage for each
sector. The relevant zero-cross function is called with respect to the actual stator flux sector.

The zero-cross event occurs when the phase BEMF voltage crosses the UDCBUS 2, and basically it is half
of the actual commutation period. When this occurs, the next commutation event is calculated from actual
zero-cross time and actual zero-cross period. The result is loaded into the eTimer0.channel1 compare
register to achieve precise commutation of the stator flux. The algorithm also stores the motor current and
the actual zero-cross period. These values are used for speed and motor current calculations.

5.5 Current limitation controller
The motor current limitation controller is called in every fast control loop. The parameters of the armature
current PI controller are calculated assuming the armature current loop bandwidth and attenuation and
motor physical constants.

5.6 State machine
The application state machine is implemented using a two-dimensional array of pointers to a function
variable called state_table[][](), with the first parameter describing the current application event and the
second parameter describing the actual application state. These two parameters select a particular pointer
to a state machine function, which causes a function call whenever state_table[][]() is called.
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor16

Software implementation
Figure 12. Application state machine

The application state machine consist of the following eight states, selected using the variable table state
defined as AppStates:

• RESET state = 0

• INIT state = 1

• FAULT state = 2

• READY state = 3

• CALIB state = 4

• ALIGN state = 5

• RUN state = 6

• START state = 7

To signalize/initiate a change of the state, the fifteen application events are defined and selected using the
variable event defined as AppEvents:

• e_reset - event = 0

• e_reset_done - event = 1

• e_fault - event = 2

• e_fault_clear - event = 3

• e_init_done - event = 4

• e_ready - event = 5
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor 17

Software implementation
• e_app_on - event = 6

• e_calib - event = 7

• e_calib_done - event = 8

• e_align - event = 9

• e_align_done - event = 10

• e_run - event = 11

• e_app_off - event = 12

• e_start - event = 13

• e_start_done - event = 14

5.6.1 RESET state

State RESET is the first state which is executed after the MCU exits the power on reset state and enters
into the main() function. It is executed only once at the start of the main function to provide system
variables and all peripherals settings. Before configuring all peripherals, all interrupts are disabled and
enabled at the RESET state end, with respect to interrupt driven application as described before. This
routine also includes initialization and setting of the MC33905 system basis chip which provides the power
supply for the MPC5604P controller board and the MC33937 MOSFET pre-driver. Both routines use SPI
peripheral and must be called after the DSPI and SIU config routines.

5.6.2 INIT state

State INIT is similar to the RESET routine one pass routine, which allows users to set up application
variables, and at the end the transition event is set to the READY state if there isn’t any fault event. It is
executed directly after the RESET state or after a RUN state when an application is stopped.

Transition to the FAULT state is performed automatically when a fault occurs.

Transition to the READY state is performed automatically at the end of the INIT routine.

5.6.3 FAULT state

The application goes to this state immediately when a fault is detected. The system allows all states to pass
into the FAULT state by setting event=e_fault.

5.6.4 READY state

This state is used as an application initial state. The application only checks fault inputs and the application
switch status to enable an application.

Transition to the RESET state is performed by setting the variable event to event=e_reset, which is done
automatically when the user sets switchAppReset true using FreeMASTER.

Transition to the INIT state is performed by setting the variable event to event=e_app_on, which is done
automatically on the rising edge of switchAppOnOff=true using FreeMASTER. Its value can also be
changed by switching on the external switch on the MPC5604P controller board.
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor18

Software implementation
5.6.5 CALIB state

The CALIB state provides calibration of the analogue quantities used by the sensorless motor control
algorithm. The analogue offsets are calibrated for all six voltage vectors applied to the three-phase bridge.
When the calibration is done for all six sectors (voltage vectors), the alignmentTimer, svmsector and
torqueRequired variables are initialized and the PWM_Alignment() function is called to set the PWM
output. The variable event is set automatically to event=e_calib_done, this enables transition to the
Alignment state.

Transition to the FAULT state is performed automatically when a fault occurs.

Transition to the INIT state is performed by setting the variable event to event=e_app_off, which is done
automatically on the falling edge of switchAppOnOff=false using FreeMASTER, or a second way how to
change its value is to switch off the external switch on the MPC5604P controller board.

5.6.6 ALIGN state

The ALIGN state provides the motor rotor alignment process as it has been shown in Section 3.3.1,
“Alignment.” The user can set up the variable ALIGNMENT_TIME and the propriety motor current
depending on the minimal mechanical system behavior (mechanical system inertia, motor time constants,
and so on) time to assure the correct motor rotor position. The alignment current is controlled via the PI
regulator, updated every PWM cycle. The required alignment current can be adjusted by the
torqueRequired variable. When the counter alignmentTimer reaches zero, switchAlignDone is set to true
and variables used for the next state are initialized, and the variable event is automatically set to
event=e_align_done. This enables transition to the START state.

Transition to the FAULT state is performed automatically when a fault occurs.

Transition to the INIT state is performed by setting event to event=e_app_off, which is done automatically
on the falling edge of switchAppOnOff=false using FreeMASTER or the second way how to change its
value is to switch off the external switch on the MPC5604P controller board.

5.6.7 START state

The START state provides the start rotor rotation sequence as has been shown in Section 3.3.2, “Start-up.”
The motor current PI controller function Ureq=GFLIB_ControllerPIpAW(torque_err,
&i_controllerParams1) is called every PWM cycle. Its parameters (Proportional gain, Integral gain, Lower
and Upper Limits) can be set in the i_controllerParams1 structure. The PI controller function is part of the
MPC5604P Motor Control Library and its detailed description is shown in the MPC5604P_MCLib
manual.

Transition to the FAULT state is performed automatically when a fault occurs.

Transition to the INIT state is performed by setting the variable event to event=e_app_off, which is done
automatically on the falling edge of switchAppOnOff=false using FreeMASTER, or a second way to
change its value is to switch off the external switch on the MPC5604P controller board.
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor 19

FreeMASTER user interface
5.6.8 RUN state

The RUN state provides the motor speed and current regulation sequence as it has been described in
Section 3.3.3, “Run.” The zero-cross detection function ZCdetection[svmSector]() is called every PWM
cycle to manage the correct motor commutation process. In the slow control loop performed every 1 msec,
the speed and current control loops are performed.

Transition to the FAULT state is performed automatically when a fault occurs.

Transition to the INIT state is performed by setting the variable event to event=e_app_off, which is done
automatically on the falling edge of switchAppOnOff=false using FreeMASTER. Its value may also be
changed by switching off the external switch on the MPC5604P controller board.

5.7 Library functions
The application source code uses the new Freescale Motor Control Library for the MPC560xP family of
microcontrollers, which can be found at www.freescale.com/AutoMCLib. The library contains three
independent library blocks: GFLIB, GDFLIB, GMCLIB. GFLIB includes basic mathematical functions
(such as sine, cosine, LUT, ramp, and so on). Advance filter functions are part of the General Digital Filters
Library and standard motor control algorithms are part of the General Motor Control Library.

5.8 Setting the software parameters for a specific motor
The default software parameter settings have been calculated and tuned for a hardware setup with the
LINIX 45ZWN24-90 motor.

All application parameters dedicated to the motor or application ratings (max. voltage, velocity, and so on)
are defined in the BLDC_appconfig.h file and commented to help the user modify the parameters
according to their own specific requirements.

All hardware-specific parameters dedicated to the hardware boards and processor (pin assignment, clock
setting, peripheral settings, and so on) are defined in the MPC5604P_appconfig.h file.

6 FreeMASTER user interface
The FreeMASTER debugging tool is used to control the application and monitor variables during run time.

Communication with the host PC occurs via USB. However, because FreeMASTER supports RS232
communication, there must be a driver for the physical USB interface CP2102 installed on the host PC that
creates a virtual COM port from the USB. The driver can be installed from www.silabs.com.

The application configures the LINflex module of the MPC5604P for a communication speed of
19200bps. Therefore, FreeMASTER also has to be set to this speed.

6.1 Application start
• Install the USB driver to create a virtual COM port for emulating RS232 communication (“CP210x

USB to UART Bridge VCP Drivers” from Silicon Labs at the following link:
http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor20

Conclusion
• Connect a USB cable to the MPC5604P controller board and to the host PC

• Connect the power supply to the power-stage. The controller board is supplied from the power
stage. The BLDC motor used is designed for 24V phase voltage.

• Start the FreeMASTER project located in
\FreeMASTER_control\MPC5604P_SensorlessBLDC.pmp

• Enable communication by pressing the Stop button in the toolbar in FreeMASTER, or by pressing
Ctrl + K

• Successful communication is signalized in the status bar. If communication isn’t established, check
the USB connection between the PC and the MPC5604P controller board and the communication
port and speed. The communication port and speed can be set up in menu Project\Options (or by
pressing Ctrl + T). The communication speed has to be set to 19200Bd.

• If no actual faults are present in the system, all LED-like indicators shall be dark red. If there is a
fault present, identify the source of the fault and remove it. Successful removal is signalized by the
switching off of the respective LED-like indicator.

• Click on the APP ON button or switch over the ON/OFF switch on the MPC5604P controller board
to run the application. The BLDC motor starts running. You are able to change the mechanical
speed by writing to the desiredSpeed variable.

7 Conclusion
The described design shows simplicity and efficiency in use of the MPC5604P microcontroller for BLDC
motor control, and introduces it as an appropriate candidate for different low-cost applications in the
automotive area.

8 References
Document number Title Location

MPC560XPRM MPC5604P Microcontroller Reference Manual www.freescale.com

MC33937 Three Phase Field Effect Transistor Pre-driver Data Sheet

— 3-phase BLDC Sensorless Motor Control Development Kit with
MPC5604P

www.freescale.com/
AutoMCDevKits

MPC5604PMCBUM MPC5604P Controller Board User Manual

3PHLVPSUM 3-phase Low Voltage Power Stage

MCLIB_MPC560XP_
V0.94_FIX_LIB

Automotive Math and Motor Control Library Set for Qorivva
MPC560xP with 32-bit fixed-point

or single precision floating point arithmetic

www.freescale.com/AutoMCLib

— FreeMASTER Run-Time Debugging Tool www.freescale.com/FREEMASTER
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor 21

Revision history
9 Revision history
Revision

(Date)
Description

0
(02/2011)

Initial release.

01

(04/2012)

1 No substantive changes were made to the content of this document; therefore, the revision number was
not incremented.

On the front page, added SafeAssure branding.
On the font page, added Qorivva branding to title.
On the back page, applied new back page format.

1
(05/2012)

In “Library functions” section, added link to the library product summary page.
Three-phase Sensorless BLDC Motor Control Kit with the Qorivva MPC5604P, Rev. 1

Freescale Semiconductor22

Document Number: AN4268
Rev. 1
08/2012

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,

Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,

QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,

CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC

Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are

trademarks of Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners. The Power Architecture and Power.org

word marks and the Power and Power.org logos and related marks are

trademarks and service marks licensed by Power.org.

© 2012 Freescale Semiconductor, Inc.

	1 Introduction
	2 System concept
	3 BLDC sensorless control
	3.1 Brushless DC motor
	3.2 Principles of six-step BLDC motor control
	3.2.1 BEMF zero-crossing detection
	3.2.1.1 BEMF measurement

	3.3 States of BLDC drive
	3.3.1 Alignment
	3.3.2 Start-up
	3.3.3 Run

	4 MPC5604P controller board configuration
	4.1 FlexPWM
	4.2 CTU
	4.3 eTIMER

	5 Software implementation
	5.1 Introduction
	5.2 Application flow
	5.3 Speed evaluation and control
	5.3.1 Speed evaluation
	5.3.2 Speed controller

	5.4 Zero-cross detection
	5.5 Current limitation controller
	5.6 State machine
	5.6.1 RESET state
	5.6.2 INIT state
	5.6.3 FAULT state
	5.6.4 READY state
	5.6.5 CALIB state
	5.6.6 ALIGN state
	5.6.7 START state
	5.6.8 RUN state

	5.7 Library functions
	5.8 Setting the software parameters for a specific motor

	6 FreeMASTER user interface
	6.1 Application start

	7 Conclusion
	8 References
	9 Revision history

