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1 Introduction
The Fast Fourier Transform (FFT) is a mathematical 
technique for transforming a time-domain digital signal into 
a frequency-domain representation of the relative amplitude 
of different frequency regions in the signal. The FFT is a 
method for doing this process very efficiently. It may be 
computed using a relatively short excerpt from a signal.

The FFT is one of the most important topics in Digital Signal 
Processing. It is extremely important in the area of frequency 
(spectrum) analysis; for example, voice recognition, digital 
coding of acoustic signals for data stream reduction in the 
case of digital transmission, detection of machine vibration, 
signal filtration, solving partial differential equations, and so 
on.

This application note describes how to use the FFT in 
metering applications, especially for energy computing in 
power meters. The critical task in a metering application is 
an accurate computation of energies, which are sometimes 
referred to as billing quantities. Their computation must be 
compliant with the international standard for electronic 
meters. The remaining quantities are calculated for 
informative purposes and they are referred to as non-billing.
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2 DFT basics
For a proper understanding of the next sections, it is important to clarify what a Discrete Fourier Transform 
(DFT) is. The DFT is a specific kind of discrete transform, used in Fourier analysis. It transforms one 
function into another, which is called the frequency-domain representation of the original function 
(a function in the time domain). The input to the DFT is a finite sequence of real or complex numbers, 
making the DFT ideal for processing information stored in computers. The relationship between the DFT 
and the FFT is as follows: DFT refers to a mathematical transformation or function, regardless of how it 
is computed, whereas the FFT refers to a specific family of algorithms for computing a DFT.

The DFT of a finite-length sequence of size N is defined as follows:

Eqn. 1

Where:

• X(k) is the output of the transformation

• x(n) is the input of the transformation (the sampled input signal)

• j is the imaginary unit

Each item in Equation 1 defines a partial sinusoidal element in complex format with a kF0 frequency, 
with (2nk/N) phase, and with x(n) amplitude. Their vector summation for n = 0,1,...,N-1 (see Equation 1) 
and for the selected k-item, represents the total sinusoidal item of spectrum X(k) in complex format for 
the kF0 frequency. Note, that F0 is the frequency of the input periodic signal. In the case of non-periodic 
signals, F0 means the selected basic period of this signal for DFT computing. 

The Inverse Discrete Fourier Transform (IDFT) is given by:

Eqn. 2

Thanks to Equation 2, it is possible to compute discrete values of x(n) from the spectrum items of X(k) 
retrospectively.

In these two equations, both X(k) and x(n) can be complex, so N complex multiplications and (N-1) 
complex additions are required to compute each value of the DFT if we use Equation 1 directly. 
Computing all N values of the frequency components requires a total of N2 complex multiplications and 
N(N-1) complex additions.
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3 FFT implementation
With regards to the derived equations in Section 2, “DFT basics,” it is good to introduce the following 
substitution:

Eqn. 3

The WN
nk element in this substitution is also called the “twiddle factor.” With respect to this substitution, 

we may rewrite the equation for computing the DFT and IDFT into these formats:

Eqn. 4

Eqn. 5

To improve efficiency in computing the DFT, some properties of WN
nk are exploited. They are described 

as follows:

Symmetral property:

Eqn. 6

Periodicity property:

Eqn. 7

Recursion property:

Eqn. 8

These properties arise from the graphical representation of the twiddle factor (Equation 4) by the rotational 
vector for each nk value.

3.1 The radix-2 decimation in time FFT description

The basic idea of the FFT is to decompose the DFT of a time-domain sequence of length N into 
successively smaller DFTs whose calculations require less arithmetic operations. This is known as 
a divide-and-conquer strategy, made possible using the properties described in the previous section. 
The decomposition into shorter DFTs may be performed by splitting an N-point input data sequence x(n) 
into two N/2-point data sequences a(m) and b(m), corresponding to the even-numbered and odd-numbered 
samples of x(n), respectively, that is: 

• a(m) = x(2m), that is, samples of x(n) for n = 2m

• b(m) = x(2m + 1), that is, samples of x(n) for n = 2m + 1

where m is an integer in the range of 0 m < N/2.
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This process of splitting the time-domain sequence into even and odd samples is what gives the algorithm 
its name, “Decimation In Time (DIT)”. Thus, a(m) and b(m) are obtained by decimating x(n) by a factor 
of two; hence, the resulting FFT algorithm is also called “radix-2”. It is the simplest and most common 
form of the Cooley-Tukey algorithm [1].

Now, the N-point DFT (see Equation 1) can be expressed in terms of DFTs of the decimated sequences 
as follows:

Eqn. 9

With the substitution given by Equation 8, the Equation 9 can be expressed as:

Eqn. 10

These two summations represent the N/2-point DFTs of the sequences a(m) and b(m), respectively. 
Thus, DFT[a(m)] = A(k) for even-numbered samples, and DFT[b(m)] = B(k) for odd-numbered samples. 
Thanks to the periodicity property of the DFT (Equation 7), the outputs for N/2 k < N from a DFT of 
length N/2 are identical to the outputs for 0 k < N/2. That is, A(k + N/2) = A(k) and B(k + N/2) = B(k) for 
0k < N/2. In addition, the factor WN

k+N/2 = _WN
k thanks the to symmetral property (Equation 6). 

Thus, the whole DFT can be calculated as follows:

Eqn. 11

This result, expressing the DFT of length N recursively in terms of two DFTs of size N/2, is the core of 
the radix-2 DIT FFT. Note, that final outputs of X(k) are obtained by a +/_ combination of A(k) and 
B(k)WN

k, which is simply a size 2 DFT. These combinations can be demonstrated by a simply-oriented 
graph, sometimes called “butterfly” in this context (see Figure 1).

Figure 1. Basic butterfly computation in the DIT FFT algorithm
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The procedure of computing the discrete series of an N-point DFT into two N/2-point DFTs may be 
adopted for computing the series of N/2-point DFTs from items of N/4-point DFTs. For this purpose, each 
N/2-point sequence should be divided into two sub-sequences of even and odd items, and computing their 
DFTs consecutively. The decimation of the data sequence can be repeated again and again until the 
resulting sequence is reduced to one basic DFT.

Figure 2. Decomposition of an 8-point DFT

For illustrative purposes, Figure 2 depicts the computation of an N = 8-point DFT. We observe that 
the computation is performed in three stages (3 = log28), beginning with the computations of four 2-point 
DFTs, then two 4-point DFTs, and finally, one 8-point DFT. Generally, for an N-point FFT, the FFT 
algorithm decomposes the DFT into log2N stages, each of which consists of N/2 butterfly 
computations.The combination of the smaller DFTs to form the larger DFT for N = 8 is illustrated 
in Figure 3.
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Figure 3. 8-point radix-2 DIT FFT algorithm data flow

Each dot represents a complex addition and each arrow represents a complex multiplication, as shown in 
Figure 3. The WN

k factors in Figure 3 may be presented as a power of two (W2) at the first stage, as a power 
of four (W4) at the second stage, as a power of eight (W8) at the third stage, and so on. It is also possible 
to represent it uniformly as a power of N (WN ), where N is the size of the input sequence x(n). The context 
between both expressions is shown in Equation 8.

3.2 The radix-2 decimation in time FFT requirements

For effective and optimal decomposition of the input data sequence into even and odd sub-sequences, it is 
good to have the power-of-two input data samples (..., 64, 128, and so on).

The first step before computing the radix-2 FFT is re-ordering of the input data sequence (see also the left 
side of Figure 2 and Figure 3). This means that this algorithm needs a bit-reversed data ordering; that is, 
the MSBs become LSBs, and vice versa. Table 1 shows an example of a bit-reversal with an 8-point input 
sequence.

Table 1. Bit reversal with an 8-point input sequence

Decimal number 0 1 2 3 4 5 6 7

Binary equivalent 000 001 010 011 100 101 110 111

Bit reversed binary 000 100 010 110 001 101 011 111

Decimal equivalent 0 4 2 6 1 5 3 7

x(0)

x(4)
W8

0

x(2)

x(6)
W8

0

x(1)

x(5)
W8

0

x(3)

x(7)
W8

0 W8
2

W8
2

W8
0

W8
0

W8
0

W8
1

W8
2

W8
3

-1-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

stage 3stage 2stage 1

x(n) X(k)

k=0 k=0,1 k=0,1,2,3

W8
4k=W2

k W8
2k=W4

k W8
k



FFT-Based Algorithm for Metering Applications, Application Note, Rev. 4, 07/2015

Freescale Semiconductor, Inc. 7
 

FFT implementation

It is important to note that this FFT algorithm is of an “in-place” type, which means that the outputs of 
each butterfly throughout the computation can be placed in the same memory locations from which the 
inputs were fetched, resulting in an “in-place” algorithm that requires no extra memory to perform the FFT.

3.2.1 Window selection

The FFT computation assumes that a signal is periodic in each data block; that is, it repeats over and over 
again. Most signals aren’t periodic, and even a periodic one might have an unknown period. When the FFT 
of a non-periodic signal is computed, then the resulting frequency spectrum suffers from leakage. 
To resolve this issue, it is good to take N samples of the input signal and make them periodic. This may be 
generally performed by window functions (Barlett, Blackman, Kaiser-Bessel, and so on). Considering that 
the resulting spectrum may have a slightly different shape after the application of window functions in 
comparison to the frequency spectrum of a pure periodic signal without windowing, it is better not to use 
a special window function in a metering application too, or to use a simple rectangular window (a function 
with a coherent gain of 1.0). This requires the frequency of the input signal to be well-known. In metering 
applications, this is accomplished by measuring a period of line voltage.

The detection of a signal (mains) period may be performed by a zero-crossing detection (ZCD) technique. 
Zero-crossing is the instantaneous point, at which there is no voltage present (see Figure 4a). In a line 
voltage wave, or other simple waveform, this normally occurs twice during each cycle. Counting the 
zero-crossings is a method used for frequency measurement of an input signal (the line voltage). 
For example, the ZCD circuit may be realized using an analog comparator inside the MCU, where the first 
channel is connected to the reference voltage, and the second channel is connected to the line through a 
simple voltage divider. Finally, the change in logic level from this comparator is interpreted by software 
as a zero-crossing of the mains. The time between the zero-crossings is measured using a timer in 
the software. The zero-crossings also define the start and end points of a simple rectangular FFT window 
(Figure 4a). Technically, it is not necessary to measure the frequency of an input signal by zero-crossing 
points, but it is possible to use any other two points of the input signal that may be simply recognized _ 
peak points, for example (see Figure 4b) _ with a similar result (magnitudes are the same, phases are 
uniformly shifted).



FFT-Based Algorithm for Metering Applications, Application Note, Rev. 4, 07/2015

8 Freescale Semiconductor, Inc.
 

FFT implementation

Figure 4. Zero-crossing point vs. peak point detection

It is also useful to know that this software technique for measuring the signal frequency must contain some 
kind of sophisticated algorithm for removing possible voltage spikes (see Figure 4). These spikes may 
appear in the line as a product of interference from a load (motor, contactor, and so on) and may cause false 
zero-crossings or peak detection.

In a practical implementation, it is better to measure the time between several true zero-crossings or peak 
points. Finally, an arithmetic mean must be performed to compute the correct signal frequency. 
Each period of input signals (voltage and current) is then sampled with a frequency, which is N times 
higher than the measured frequency of the line voltage, where N is the number of samples. When the 
sampling frequency is different from this, the resulting frequency spectrum may suffer from leakage.

3.3 The radix-2 decimation in time FFT conclusion

The radix-2 FFT utilizes useful algorithms to do the same thing as the DFT, but in much shorter time. 
Where the DFT needs N2 complex multiplications (see Section 2, “DFT basics”), the FFT takes only 
N/2log2N complex multiplications and N log2N complex additions. Therefore, the ratio between the 
DFT computation and the FFT computation for the same N is proportional to 2N / log2N. In cases where 
N is small, this ratio is not very significant, but when N becomes large, this ratio also becomes very large. 
Therefore, the FFT is simply a faster way to calculate the DFT.

The radix-2 FFT algorithm is generally defined as a radix-r FFT algorithm, where the N-point input 
sequence is split into r-subsequences to raise computation efficiency, for example radix-4 or radix-8. 
Thus, the radix is the size of the FFT decomposition.

Similarly, the DIT algorithm is sometimes used for Decimation In Frequency (DIF) algorithm (also called 
the Sande-Tukey algorithm), which decomposes the sequence of DFT coefficients X(k) into successively 
smaller sub-sequences. However, this application note describes only the radix-2 DIT FFT algorithm.

a b 
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4 Using FFT for power computing

4.1 Conversion between Cartesian and polar forms

The FFT implementation in power meters requires complex number computing, because the mathematical 
formulas describing the DFT or FFT in previous chapters suppose that each item in these formulas 
(in graphical format these are X(k) in Figure 3) contains a complex number.

A complex number is a number consisting of real part and imaginary part. This number can be represented 
as a point or position vector in a two-dimensional Cartesian coordinate system called the complex plane. 
The numbers are conventionally plotted using the real part as the horizontal component, and the imaginary 
part as the vertical component (see Figure 5).

Figure 5. A graphical representation of a complex number

Another way of encoding points in the complex plane, other than using the x- and y-coordinates, is to use 
the distance of a point z to O, the point whose coordinates are (0,0), and the angle of the line through 
z and O. This idea leads to the polar form of complex numbers. The absolute value (or magnitude) of 
a complex number z=x+iy is:

Eqn. 12

The argument or phase of z is defined as:

Eqn. 13

Together, r and show another way of representing complex numbers, the polar form, as the combination 
of modulus and argument, fully specify the position of a point on the plane.

4.2 Root Mean Square computing

In electrical engineering, the Root Mean Square (RMS) is a fundamental measurement of the magnitude 
of an AC signal. The RMS value assigned to an AC signal is the amount of DC required to produce 
an equivalent amount of heat in the same load. 

r z x2 y2+= =

 z arg
y
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In a complex plane, the RMS value of the current (IRMS) and the voltage (URMS) is the same as the 
summation of their magnitudes (see vector r in Figure 5) associated with each harmonic. Regarding 
Equation 12, the total RMS values of current and voltage in the frequency domain are defined as:

Eqn. 14

Eqn. 15

Where:

• IRE(k), URE(k) are real parts of kth harmonics of current and voltage

• IIM(k), UIM(k) are imaginary parts of kth harmonics of current and voltage

NOTE

Voltage offset (zero harmonic) is not included in the URMS computing. 
This simplification can be used because of the zero offset in the mains.

4.3 Complex power computing

The AC power flow has three components: real or true power (P) measured in watts (W), apparent power 
(S) measured in volt-amperes (VA), and reactive power (Q) measured in reactive volt-amperes (VAr). 
These three types of power _ active, reactive, and apparent _ relate to each other in a trigonometric form. 
This is called a power triangle (see Figure 6).

Figure 6. Power triangle

Anglein this picture is the phase of voltage relative to current. A complex power is then defined as:

Eqn. 16

Where U is a voltage vector (U = URE + jUIM) and I* is a complex conjugate current vector 
(I* = IRE 

_ jIIM), both separately for each harmonic.
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Regarding Equation 12, the length of a complex power (|S|) is actually the apparent power (VA). In terms 
of current and voltage phasors (FFT outputs), and in terms of Equation 16, the complex power in Cartesian 
form can be finally expressed as:

Eqn. 17

Where:

• IRE(k), URE(k) are real parts of kth harmonics of current and voltage

• IIM(k), UIM(k) are imaginary parts of kth harmonics of current and voltage

In terms of Equation 12 and Equation 13, both parts of the total complex power (P and Q) can also be 
expressed in polar form as:

Eqn. 18

Where:

• |I(k)|, |U(k)| are magnitudes of kth harmonics of current and voltage

• I(k), U(k) are phase shifts of kth harmonics of current and voltage (with regards to the FFT 
window origin)

Note that the inputs for these equations are Fourier items of current and voltage (in Cartesian or polar 
form). For a graphical interpretation of these items, see X(k) in Figure 3.

There are two basic simplifications used in the previous formulas:

• Thanks to the symmetry of the FFT spectrum, only N/2 items are used for complex power 
computing.

• It is expected that voltage in the mains has no DC offset. Therefore, the 0-harmonic is missing 
in both formulas, because the current values (IRE(0), IIM(0), |I(0)|) are multiplied by zero.

The magnitude of the complex power (|S|) is the apparent power (volt-ampere). In a pure sinusoidal system 
with no higher harmonics, the apparent power calculation gives the correct result. After harmonics are 
encoutered in the system, the apparent power calculation looses accuracy. In this case, it is better to use 
the total apparent power (volt-ampere). The total apparent power is defined as a product of the RMS values 
of voltage and current:
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Eqn. 19

Where:

• URMS is the RMS value of the line voltage [V]

• IRMS is the RMS value of the line current [A]

4.4 Energy computing

Both the active and reactive energies are computed from the powers (active, reactive) by accumulating 
these powers per time unit (mostly per one hour). The computing formula is then expressed as:

Eqn. 20

Where:

• Energy is the active or reactive energy increment per one computing cycle [Wh/VARh]

• Power is the instantaneous active or reactive power measured during one cycle [W/VAR]

• Frequency is the line frequency [Hz]

• 3600 is a ‘hour’ coefficient

4.5 Power factor computing

In electrical engineering, the power factor of an AC electrical power system is defined as the ratio of the 
real (active) power flowing to the load, to the apparent power in the circuit, and it is a dimensionless 
number ranging between _1 and 1.

Eqn. 21

Where:

• P is the instantaneous active (real) power [W]

• S is the instantaneous apparent power [VA]

Real power is the capacity of the circuit for performing work in a particular time. Apparent power is 
the product of the current and voltage of the circuit. Due to energy stored in the load and returned to 
the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, 
the apparent power will be greater than the real power. A negative power factor can occur when the device 
which is normally the load generates power, which then flows back towards the device which is normally 
considered the generator (see Table 2).

Stot URMS IRMS=

Energy
Power

Frequency 3600 
-------------------------------------------------=

PF
P
S
---=
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4.6 Total Harmonic Distortion computing

In electrical engineering, the Total Harmonic Distortion (THD) is the ratio of the RMS amplitude of a set 
of higher harmonic frequencies to the RMS amplitude of the first harmonic, or fundamental, frequency. 
Therefore, the THD is an indicator of the signal distortion. For voltage and current signals, the THD 
calculation formulas, using frequency components, are as follows:

Eqn. 22

Eqn. 23

Where:

• IRE(k), URE(k) are real parts of kth harmonics of current and voltage

• IIM(k), UIM(k) are imaginary parts of kth harmonics of current and voltage

The end result of previous equations is a percentage. The higher the percentage, the higher the signal 
distortion is.

5 Metering library
This section describes the metering library implementation of the FFT-based metering algorithm. 
This application note is delivered together with the metering library and test applications. The library 
comprises several functions with a unique Application Programming Interface (API) for most frequent 
power meter topologies; that is, one-phase, two-phase (Form-12S), and three-phase. The library is 
provided in object format (*.a and/or *.lib files) and the test applications in C-source code. The function 
prototypes, as well as internal data structures, are declared in the meterlibfft.h header file. A simple block 
diagram of the whole FFT computing process in a typical one-phase power meter application is depicted 
in Figure 7. For a practical implementation of this computing process into the real power meter, see 
Freescale reference designs [4], [5], or [6] in Section 7, “References.” 

Table 2. Power factor range vs. energy flow direction

Quadrant
Power factor 

range
Powers 

sign
Load mode I to U phase shift

I 0...1 +P, +Q Motor mode with inductive load Lagging current

II -1...0 -P, +Q Inductive acting generator mode Leading current

III -1...0 -P, -Q Capacitive acting generator mode Lagging current

IV 0...1 +P, -Q Motor mode with capacitive load Leading current
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NOTE

The IAR Embedded Workbench® for ARM® (version 7.40.1) tool was used 
to obtain performance data for all library functions (see performance tables 
below). The code was compiled with full optimization of execution speed 
for the MKM34Z128 target (ARM Cortex-M0+ core) and MKM34Z256 
target (ARM Cortex-M0+ core with MMAU). The device was clocked at 
24 MHz using the Frequency-Locked Loop (FLL) module operating in FLL 
Engaged External (FEE) mode, driven by an external 32.768 kHz crystal. 
The measured execution times were recalculated to core clock cycles.

Figure 7. Block diagram of the one-phase power meter computing process based on the FFT

5.1 Core architecture and compiler support

This high-performance FFT-based metering library supports ARM Cortex-M0+ and Cortex-M4 cores. 
In addition to standard cores, the library also supports the Memory-Mapped Arithmetic Unit (MMAU), 
a hardware math module designed by Freescale to accelerate the execution of specific metering 
algorithms.

The default installation folder of the metering library is C:\Freescale\METERLIBFFT_R4_0_0. Table 3 
lists all the necessary header files, library files, and their locations, relative to the default installation folder. 
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Add these files and paths into your project workspace to successfully integrate this metering library into 
your application.

Table 3. FFT-based metering library integration

5.2 Function API summary

The following subsections describe functions API defined in the FFT-based metering library. Prototypes 
of all functions and internal data structures are declared in the meterlibfft.h header file.

5.2.1 One-phase power meter API

• void METERLIBFFT1PH_CalcMain (tMETERLIBFFT1PH_DATA *p)

FFT Calculation and Signal-Conditioning Processing Function

• long METERLIBFFT1PH_CalcVarHours (tMETERLIBFFT1PH_DATA *p, unsigned long 
*varh_i, unsigned long *varh_e, unsigned long frequency)

Reactive Energy Calculation Function

Include files and 
libraries

METERLIBFFT

Cortex-M0+ w/o MMAU Cortex-M0+ w/ MMAU Cortex-M4

include

files

iar

fraclib.h
meterlibfft.h

armcc

gcc

paths

iar

..\lib\fraclib\inc
..\lib\fraclib\inc\cm0p
..\lib\meterlibFFT\inc

..\lib\fraclib\inc
..\lib\fraclib\inc\cm0p_mmau

..\lib\fraclib\inc\cm0p_mmau\iar
..\lib\meterlibFFT\inc

..\lib\fraclib\inc
..\lib\fraclib\inc\cm4

..\lib\meterlibFFT\inc
armcc

..\lib\fraclib\inc
..\lib\fraclib\inc\cm0p_mmau

..\lib\fraclib\inc\cm0p_mmau\armcc
..\lib\meterlibFFT\inc

gcc

..\lib\fraclib\inc
..\lib\fraclib\inc\cm0p_mmau

..\lib\fraclib\inc\cm0p_mmau\gcc
..\lib\meterlibFFT\inc

library

files

iar
fraclib_cm0p_iar.a

meterlibFFT_cm0p_iar.a
fraclib_cm0p_mmau_iar.a

meterlibFFT_cm0p_mmau_iar.a
fraclib_cm4_iar.a

meterlibFFT_cm4_iar.a

armcc
fraclib_cm0p_armcc.lib

meterlibFFT_cm0p_armcc.lib
fraclib_cm0p_mmau_armcc.lib

meterlibFFT_cm0p_mmau_armcc.lib
fraclib_cm4_armcc.lib

meterlibFFT_cm4_armcc.lib

gcc
fraclib_cm0p_gcc.a

meterlibFFT_cm0p_gcc.a
fraclib_cm0p_mmau_gcc.a

meterlibFFT_cm0p_mmau_gcc.a
fraclib_cm4_gcc.a

meterlibFFT_cm4_gcc.a

paths

iar

..\lib\fraclib
..\lib\meterlibFFT

armcc

gcc
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• long METERLIBFFT1PH_CalcWattHours (tMETERLIBFFT1PH_DATA *p, unsigned long 
*wh_i, unsigned long *wh_e, unsigned long frequency)

Active Energy Calculation Function

• void METERLIBFFT1PH_GetAvrgValues (tMETERLIBFFT1PH_DATA *p, double *urms, 
double *irms, double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i)

Non-Billing (U,I,P,Q,S,PF,THD) Averaged Variables Reading Function

• void METERLIBFFT1PH_GetInstValues (tMETERLIBFFT1PH_DATA *p, double *urms, 
double *irms, double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i)

Non-Billing (U,I,P,Q,S,PF,THD) Instantaneous Variables Reading Function

• void METERLIBFFT1PH_GetMagnitudes (tMETERLIBFFT1PH_DATA *p, unsigned long 
magn_fft)

Harmonic Magnitudes Calculation Function

• void METERLIBFFT1PH_GetPhases (tMETERLIBFFT1PH_DATA *p, unsigned long ph_fft)

Harmonic Phase Shifts Calculation Function

• void METERLIBFFT1PH_InitAuxBuff (tMETERLIBFFT1PH_DATA *p, Frac24 *mag_u, 
Frac24 *mag_i, long *ph_u, long *ph_i)

Auxiliary Buffers Initialization Function

• void METERLIBFFT1PH_InitMainBuff (tMETERLIBFFT1PH_DATA *p, Frac24 *u_re, 
Frac24 *i_re, Frac24 *u_im, Frac24 *i_im, long *shift)

Main Buffers Initialization Function

• long METERLIBFFT1PH_InitParam (tMETERLIBFFT1PH_DATA *p, unsigned long 
samples, unsigned long sensor, unsigned long kwh_cnt, unsigned long kvarh_cnt, unsigned long 
en_res)

Parameters Initialization Function

• long METERLIBFFT1PH_Interpolation (tMETERLIBFFT1PH_DATA *p, unsigned long 
u_ord, unsigned long i_ord, unsigned long samples_inp)

Interpolation Function

• long METERLIBFFT1PH_SetCalibCoeff (tMETERLIBFFT1PH_DATA *p, double u_max, 
double i_max, Frac24 *i_offs, double p_offs, double q_offs)

Set Calibration Coefficients Function

5.2.2 Two-phase power meter API
• void METERLIBFFT2PH_CalcMain (tMETERLIBFFT2PH_DATA *p)

FFT Calculation and Signal-Conditioning Processing Function

• long METERLIBFFT2PH_CalcVarHours (tMETERLIBFFT2PH_DATA *p, unsigned long 
*varh_i, unsigned long *varh_e, unsigned long frequency)

Reactive Energy Calculation Function

• long METERLIBFFT2PH_CalcWattHours (tMETERLIBFFT2PH_DATA *p, unsigned long 
*wh_i, unsigned long *wh_e, unsigned long frequency)

Active Energy Calculation Function
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• void METERLIBFFT2PH_GetAvrgValuesPh1 (tMETERLIBFFT2PH_DATA *p, double 
*urms, double *irms, double *w, double *var, double *va, double *pf, double *thd_u, double 
*thd_i)

Non-Billing (U,I,P,Q,S,PF,THD) Averaged Variables Phase 1 Reading Function

• void METERLIBFFT2PH_GetAvrgValuesPh2 (tMETERLIBFFT2PH_DATA *p, double 
*urms, double *irms, double *w, double *var, double *va, double *pf, double *thd_u, double 
*thd_i)

Non-Billing (U,I,P,Q,S,PF,THD) Averaged Variables Phase 2 Reading Function

• void METERLIBFFT2PH_GetInstValuesPh1 (tMETERLIBFFT2PH_DATA *p, double *urms, 
double *irms, double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i)

Non-Billing (U,I,P,Q,S,PF,THD) Instantaneous Variables Phase 1 Reading Function

• void METERLIBFFT2PH_GetInstValuesPh2 (tMETERLIBFFT2PH_DATA *p, double *urms, 
double *irms, double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i)

Non-Billing (U,I,P,Q,S,PF,THD) Instantaneous Variables Phase 2 Reading Function

• void METERLIBFFT2PH_GetMagnitudesPh1 (tMETERLIBFFT2PH_DATA *p, unsigned 
long magn_fft)

Harmonic Magnitudes Calculation Function for the Phase 1

• void METERLIBFFT2PH_GetMagnitudesPh2 (tMETERLIBFFT2PH_DATA *p, unsigned 
long magn_fft)

Harmonic Magnitudes Calculation Function for the Phase 2

• void METERLIBFFT2PH_GetPhasesPh1 (tMETERLIBFFT2PH_DATA *p, unsigned long 
ph_fft)

Harmonic Phase Shifts Calculation Function for the Phase 1

• void METERLIBFFT2PH_GetPhasesPh2 (tMETERLIBFFT2PH_DATA *p, unsigned long 
ph_fft)

Harmonic Phase Shifts Calculation Function for the Phase 2

• void METERLIBFFT2PH_InitAuxBuffPh1 (tMETERLIBFFT2PH_DATA *p, Frac24 *mag_u, 
Frac24 *mag_i, long *ph_u, long *ph_i)

Auxiliary Buffers Initialization Function for the Phase 1

• void METERLIBFFT2PH_InitAuxBuffPh2 (tMETERLIBFFT2PH_DATA *p, Frac24 *mag_u, 
Frac24 *mag_i, long *ph_u, long *ph_i)

Auxiliary Buffers Initialization Function for the Phase 2

• void METERLIBFFT2PH_InitMainBuffPh1 (tMETERLIBFFT2PH_DATA *p, Frac24 *u_re, 
Frac24 *i_re, Frac24 *u_im, Frac24 *i_im, long *shift)

Main Buffers Initialization Function for the Phase 1

• void METERLIBFFT2PH_InitMainBuffPh2 (tMETERLIBFFT2PH_DATA *p, Frac24 *u_re, 
Frac24 *i_re, Frac24 *u_im, Frac24 *i_im, long *shift)

Main Buffers Initialization Function for the Phase 2

• long METERLIBFFT2PH_InitParam (tMETERLIBFFT2PH_DATA *p, unsigned long 
samples, unsigned long sensor, unsigned long kwh_cnt, unsigned long kvarh_cnt, unsigned long 
en_res)
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Parameters Initialization Function

• long METERLIBFFT2PH_Interpolation (tMETERLIBFFT2PH_DATA *p, unsigned long 
u_ord, unsigned long i_ord, unsigned long samples_inp)

Interpolation Function

• long METERLIBFFT2PH_SetCalibCoeffPh1 (tMETERLIBFFT2PH_DATA *p, double 
u_max, double i_max, Frac24 *i_offs, double p_offs, double q_offs)

Set Calibration Coefficients Function for the phase 1

• long METERLIBFFT2PH_SetCalibCoeffPh2 (tMETERLIBFFT2PH_DATA *p, double 
u_max, double i_max, Frac24 *i_offs, double p_offs, double q_offs)

Set Calibration Coefficients Function for the phase 2

5.2.3 Three-phase power meter API
• void METERLIBFFT3PH_CalcMain (tMETERLIBFFT3PH_DATA *p)

FFT Calculation and Signal-Conditioning Processing Function

• long METERLIBFFT3PH_CalcVarHours (tMETERLIBFFT3PH_DATA *p, unsigned long 
*varh_i, unsigned long *varh_e, unsigned long frequency)

Reactive Energy Calculation Function

• long METERLIBFFT3PH_CalcWattHours (tMETERLIBFFT3PH_DATA *p, unsigned long 
*wh_i, unsigned long *wh_e, unsigned long frequency)

Active Energy Calculation Function

• void METERLIBFFT3PH_GetAvrgValuesPh1 (tMETERLIBFFT3PH_DATA *p, double 
*urms, double *irms, double *w, double *var, double *va, double *pf, double *thd_u, double 
*thd_i)

Non-Billing (U,I,P,Q,S,PF,THD) Averaged Variables Phase 1 Reading Function

• void METERLIBFFT3PH_GetAvrgValuesPh2 (tMETERLIBFFT3PH_DATA *p, double 
*urms, double *irms, double *w, double *var, double *va, double *pf, double *thd_u, double 
*thd_i)

Non-Billing (U,I,P,Q,S,PF,THD) Averaged Variables Phase 2 Reading Function

• void METERLIBFFT3PH_GetAvrgValuesPh3 (tMETERLIBFFT3PH_DATA *p, double 
*urms, double *irms, double *w, double *var, double *va, double *pf, double *thd_u, double 
*thd_i)

Non-Billing (U,I,P,Q,S,PF,THD) Averaged Variables Phase 3 Reading Function

• void METERLIBFFT3PH_GetInstValuesPh1 (tMETERLIBFFT3PH_DATA *p, double *urms, 
double *irms, double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i)

Non-Billing (U,I,P,Q,S,PF,THD) Instantaneous Variables Phase 1 Reading Function

• void METERLIBFFT3PH_GetInstValuesPh2 (tMETERLIBFFT3PH_DATA *p, double *urms, 
double *irms, double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i)

Non-Billing (U,I,P,Q,S,PF,THD) Instantaneous Variables Phase 2 Reading Function

• void METERLIBFFT3PH_GetInstValuesPh3 (tMETERLIBFFT3PH_DATA *p, double *urms, 
double *irms, double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i)
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Non-Billing (U,I,P,Q,S,PF,THD) Instantaneous Variables Phase 3 Reading Function

• void METERLIBFFT3PH_GetMagnitudesPh1 (tMETERLIBFFT3PH_DATA *p, unsigned 
long magn_fft)

Harmonic Magnitudes Calculation Function for the Phase 1

• void METERLIBFFT3PH_GetMagnitudesPh2 (tMETERLIBFFT3PH_DATA *p, unsigned 
long magn_fft)

Harmonic Magnitudes Calculation Function for the Phase 2

• void METERLIBFFT3PH_GetMagnitudesPh3 (tMETERLIBFFT3PH_DATA *p, unsigned 
long magn_fft)

Harmonic Magnitudes Calculation Function for the Phase 3

• void METERLIBFFT3PH_GetPhasesPh1 (tMETERLIBFFT3PH_DATA *p, unsigned long 
ph_fft)

Harmonic Phase Shifts Calculation Function for the Phase 1

• void METERLIBFFT3PH_GetPhasesPh2 (tMETERLIBFFT3PH_DATA *p, unsigned long 
ph_fft)

Harmonic Phase Shifts Calculation Function for the Phase 2

• void METERLIBFFT3PH_GetPhasesPh3 (tMETERLIBFFT3PH_DATA *p, unsigned long 
ph_fft)

Harmonic Phase Shifts Calculation Function for the Phase 3

• void METERLIBFFT3PH_InitAuxBuffPh1 (tMETERLIBFFT3PH_DATA *p, Frac24 *mag_u, 
Frac24 *mag_i, long *ph_u, long *ph_i)

Auxiliary Buffers Initialization Function for the Phase 1

• void METERLIBFFT3PH_InitAuxBuffPh2 (tMETERLIBFFT3PH_DATA *p, Frac24 *mag_u, 
Frac24 *mag_i, long *ph_u, long *ph_i)

Auxiliary Buffers Initialization Function for the Phase 2

• void METERLIBFFT3PH_InitAuxBuffPh3 (tMETERLIBFFT3PH_DATA *p, Frac24 *mag_u, 
Frac24 *mag_i, long *ph_u, long *ph_i)

Auxiliary Buffers Initialization Function for the Phase 3

• void METERLIBFFT3PH_InitMainBuffPh1 (tMETERLIBFFT3PH_DATA *p, Frac24 *u_re, 
Frac24 *i_re, Frac24 *u_im, Frac24 *i_im, long *shift)

Main Buffers Initialization Function for the Phase 1

• void METERLIBFFT3PH_InitMainBuffPh2 (tMETERLIBFFT3PH_DATA *p, Frac24 *u_re, 
Frac24 *i_re, Frac24 *u_im, Frac24 *i_im, long *shift)

Main Buffers Initialization Function for the Phase 2

• void METERLIBFFT3PH_InitMainBuffPh3 (tMETERLIBFFT3PH_DATA *p, Frac24 *u_re, 
Frac24 *i_re, Frac24 *u_im, Frac24 *i_im, long *shift)

Main Buffers Initialization Function for the Phase 3

• long METERLIBFFT3PH_InitParam (tMETERLIBFFT3PH_DATA *p, unsigned long 
samples, unsigned long sensor, unsigned long kwh_cnt, unsigned long kvarh_cnt, unsigned long 
en_res)
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Parameters Initialization Function

• long METERLIBFFT3PH_Interpolation (tMETERLIBFFT3PH_DATA *p, unsigned long 
u_ord, unsigned long i_ord, unsigned long samples_inp)

Interpolation Function

• long METERLIBFFT3PH_SetCalibCoeffPh1 (tMETERLIBFFT3PH_DATA *p, double 
u_max, double i_max, Frac24 *i_offs, double p_offs, double q_offs)

Set Calibration Coefficients Function for the phase 1

• long METERLIBFFT3PH_SetCalibCoeffPh2 (tMETERLIBFFT3PH_DATA *p, double 
u_max, double i_max, Frac24 *i_offs, double p_offs, double q_offs)

Set Calibration Coefficients Function for the phase 2

• long METERLIBFFT3PH_SetCalibCoeffPh3 (tMETERLIBFFT3PH_DATA *p, double 
u_max, double i_max, Frac24 *i_offs, double p_offs, double q_offs)

Set Calibration Coefficients Function for the phase 3

• long METERLIBFFT3PH_GetRotation(tMETERLIBFFT3PH_DATA *p, double *u12_ph, 
double *u13_ph, double *u23_ph)

Angle and Rotation Calculation Function

5.2.4 Common power meter API
• void METERLIBFFT_SetEnergy ( p,  whi,  whe,  varhi,  varhe)

Common Set/Clear Energy Counters Define

5.3 METERLIBFFT_CalcMain

Firstly, these functions execute the main FFT calculation processing for both voltage and current signals; 
that is, it transforms input data from the time domain into the frequency domain using the radix-2 DIT 
algorithm (see Section 3.1, “The radix-2 decimation in time FFT description”). The data are computed 
internally in the Cartesian data format.

Secondly, these functions execute the additional current signal conditioning processing, including 
software phase shift correction (if needed), and signal integration (if needed) for derivative type of current 
sensors. All this additional processing can eliminate the current sensor inaccuracies and sensor features 
using software computing in the frequency domain.

Finally, these functions execute additional postprocessing, such as scaling to engineering units and 
averaging of all non-billing values, with saving them to the internal data structure. All previous actions are 
done separately for each phase.

For a proper calculation, these functions need instantaneous voltage and current samples to be measured 
periodicaly, and saved to the “time domain” buffers during previous signal period. Both these buffers, 
addressed by u_re and i_re pointers, will be rewritten by the frequency domain real part values after the 
calculation, while the imaginary frequency domain parts of the result are saved to separate buffers set by 
u_im and i_im pointers. Pointers to all these buffers must be initialized by functions described in 
Section 5.12, “METERLIBFFT_InitParam.” The first FFT buffers’ position matches the zero harmonic, 
and so on.
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5.3.1 Syntax

#include “meterlibfft.h”

void METERLIBFFT1PH_CalcMain (tMETERLIBFFT1PH_DATA *p);

void METERLIBFFT2PH_CalcMain (tMETERLIBFFT2PH_DATA *p);

void METERLIBFFT3PH_CalcMain (tMETERLIBFFT3PH_DATA *p);

5.3.2 Arguments

5.3.3 Return

These functions do not return any arguments.

5.3.4 Calling order

All of these functions should be called periodically in a defined interval, which depends on the line 
frequency and/or the multiplied ADC sampling rate (synchronous or asynchronous processing). 
The one-shot mandatory parameter initialization must be executed before calling these functions. 
The periodic interpolation processing must (may) be done closely before calling these functions. 
The energy calculation processing should be executed closely after calling these functions.

5.3.5 Performance

Table 4. METERLIBFFT_CalcMain functions arguments

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure 

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure 

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure 

Table 5. METERLIBFFT_CalcMain functions performance for the CM0+ core

Function name
Code 

size1 [B]

1 Code size of the sine lookup table (4 KB) isn’t included

Clock cycles2

2 Valid for 64 input samples, 32 output harmonics, test vector of U and I signals contained the 1st and the 5th harmonics

Basic mode Integration mode Phase shift correction mode

METERLIBFFT1PH_CalcMain 2524 95465 98343 95465+2880*harm

METERLIBFFT2PH_CalcMain 2938 190450 196207 190450+6230*harm

METERLIBFFT3PH_CalcMain 3376 285435 295030 285435+9600*harm

Note:  harm is a total number of shifted harmonics
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Table 6. METERLIBFFT_CalcMain functions performance for the CM0+ core with MMAU

5.4 METERLIBFFT_CalcVarHours

These functions perform reactive energies (import, export) calculation for all phases altogether. 
Both energies are computed from instantaneous reactive power increment of each phase by accumulating 
these powers per time unit. While the total import reactive energy is computed from the positive reactive 
powers increments, the total export reactive energy is computed from negative reactive powers increments. 
The output energy resolution (varh_i and varh_e) depends on en_res parameter, set by the function 
described in Section 5.12, “METERLIBFFT_InitParam.”

5.4.1 Syntax

#include “meterlibfft.h”

long METERLIBFFT1PH_CalcVarHours (tMETERLIBFFT1PH_DATA *p, unsigned long *varh_i, unsigned long 
*varh_e, unsigned long frequency);

long METERLIBFFT2PH_CalcVarHours (tMETERLIBFFT2PH_DATA *p, unsigned long *varh_i, unsigned long 
*varh_e, unsigned long frequency);

long METERLIBFFT3PH_CalcVarHours (tMETERLIBFFT3PH_DATA *p, unsigned long *varh_i, unsigned long 
*varh_e, unsigned long frequency);

5.4.2 Arguments

Function name
Code 

size1 [B]

1 Code size of the sine lookup table (4 KB) isn’t included

Clock cycles2

2 Valid for 64 input samples, 32 output harmonics, test vector of U and I signals contained the 1st and the 5th harmonics

Basic mode Integration mode Phase shift correction mode

METERLIBFFT1PH_CalcMain 3094 49891 52770 49891+840*harm

METERLIBFFT2PH_CalcMain 3508 99782 105539 99782+1920*harm

METERLIBFFT3PH_CalcMain 3946 149674 158309 149674+2640*harm

Note:  harm is a total number of shifted harmonics

Table 7. METERLIBFFT_CalcVarHours functions arguments

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure

unsigned long varh_i out Pointer to the LCD import reactive energy counter

unsigned long varh_e out Pointer to the LCD export reactive energy counter

unsigned long frequency in Line frequency [mHz], for example 50000 = 50.000 Hz
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5.4.3 Return

When positive, the function returns the reactive energy LED flashing frequency resolution (in mHz) for 
the current line period (only one LED flashing per one period is allowed). This can be used for low-jitter 
pulse output generation using software and timer (patented method).

When negative, no output pulse generation is needed in the current period.

5.4.4 Calling order

All of these functions should be called periodically in a defined interval, which depends on the line 
frequency and/or the multiplied ADC sampling rate. Anyway, these functions must (may) be called closely 
after the main (FFT) calculation processing. The one-shot mandatory parameter initialization must be done 
before calling these functions.

5.4.5 Performance

5.5 METERLIBFFT_CalcWattHours

These functions execute active energies (import, export) calculation for all phases altogether. 
Both energies are computed from instantaneous active power increment of each phase by accumulating 
these powers per time unit. While the total import active energy is computed from the positive active 
power increments, the total export active energy is computed from negative active power increments. 
The output energy resolution (wh_i and wh_e) depends on en_res parameter set by the function described 
in Section 5.12, “METERLIBFFT_InitParam.”

5.5.1 Syntax

#include “meterlibfft.h”

long METERLIBFFT1PH_CalcWattHours (tMETERLIBFFT1PH_DATA *p, unsigned long *wh_i, unsigned long 
*wh_e, unsigned long frequency);

long METERLIBFFT2PH_CalcWattHours (tMETERLIBFFT2PH_DATA *p, unsigned long *wh_i, unsigned long 
*wh_e, unsigned long frequency);

long METERLIBFFT3PH_CalcWattHours (tMETERLIBFFT3PH_DATA *p, unsigned long *wh_i, unsigned long 
*wh_e, unsigned long frequency);

Table 8. METERLIBFFT_CalcVarHours functions performance

Function name
CM0+ core CM0+ core with MMAU

Code size [B] Clock cycles Code size [B] Clock cycles

METERLIBFFT1PH_CalcVarHours 292 698 292 696

METERLIBFFT2PH_CalcVarHours 372 751 372 744

METERLIBFFT3PH_CalcVarHours 490 883 490 878
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5.5.2 Arguments

5.5.3 Return

When positive, the function returns active energy LED flashing frequency resolution (in MHz) for the 
current line period (only one LED flashing per one period is allowed). This can be used for low-jitter pulse 
output generation using software and timer (patented method). When negative, no output pulse generation 
is needed in the current period.

5.5.4 Calling order

All of these functions should be called periodically in a defined interval, which depends on the line 
frequency and/or the multiplied ADC sampling rate. Anyway, these functions should be called closely 
after the main (FFT) calculation processing. The one-shot mandatory parameter initialization must be done 
before calling these functions.

5.5.5 Performance

5.6 METERLIBFFT_GetAvrgValues

These functions return all averaged non-billing values, scaled to engineering units for each phase 
separetely. These values can be used for LCD showing, remote data visualization, and so on.

5.6.1 Syntax

#include “meterlibfft.h”

Table 9. METERLIBFFT_CalcWattHours functions arguments

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure

unsigned long wh_i out Pointer to the LCD import active energy counter

unsigned long wh_e out Pointer to the LCD export active energy counter

unsigned long frequency in Line frequency [mHz], for example 50000 = 50.000 Hz

Table 10. METERLIBFFT_CalcWattHours functions performance

Function name
CM0+ core CM0+ core with MMAU

Code size [B] Clock cycles Code size [B] Clock cycles

METERLIBFFT1PH_CalcWattHours 292 698 292 696

METERLIBFFT2PH_CalcWattHours 372 751 372 744

METERLIBFFT3PH_CalcWattHours 490 883 490 878
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void METERLIBFFT1PH_GetAvrgValues (tMETERLIBFFT1PH_DATA *p, double *urms, double *irms, double 
*w, double *var, double *va, double *pf, double *thd_u, double *thd_i);

void METERLIBFFT2PH_GetAvrgValuesPh1 (tMETERLIBFFT2PH_DATA *p, double *urms, double *irms, 
double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i);

void METERLIBFFT2PH_GetAvrgValuesPh2 (tMETERLIBFFT2PH_DATA *p, double *urms, double *irms, 
double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i);

void METERLIBFFT3PH_GetAvrgValuesPh1 (tMETERLIBFFT3PH_DATA *p, double *urms, double *irms, 
double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i);

void METERLIBFFT3PH_GetAvrgValuesPh2 (tMETERLIBFFT3PH_DATA *p, double *urms, double *irms, 
double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i);

void METERLIBFFT3PH_GetAvrgValuesPh3 (tMETERLIBFFT3PH_DATA *p, double *urms, double *irms, 
double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i);

5.6.2 Arguments

5.6.3 Return

These functions do not return any arguments.

5.6.4 Calling order

Calling frequency of these functions should be in the range < 0.004 Hz _ line frequency >. In case of 
a lower calling frequency, the internal counters may overflow. In this case, the first dummy reading is 
neccessary for clearing all internal counters. In case of a higher calling frequency, all output values will 
equal zero. All output values are scaled to engineering units in a double precision form.

Table 11. METERLIBFFT_GetAvrgValues functions arguments 

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure

double urms out Pointer to the average RMS line voltage value in volts

double irms out Pointer to the average RMS line current value in amperes

double w out Pointer to the average active power (P) value in watts

double var out Pointer to the average reactive power (Q) value in volt-amperes-reactive

double va out Pointer to the average unsigned apparent power value (S) in volt-amperes

double pf out Pointer to the average power factor value (dimensionless quantity)

double thd_u out Pointer to the average THD voltage value in percent

double thd_i out Pointer to the average THD current value in percent
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5.6.5 Performance

5.7 METERLIBFFT_GetInstValues

These functions return all instantaneous non-billing values, scaled to engineering units for each phase 
separetely.

5.7.1 Syntax

#include “meterlibfft.h”

void METERLIBFFT1PH_GetInstValues (tMETERLIBFFT1PH_DATA *p, double *urms, double *irms, double 
*w, double *var, double *va, double *pf, double *thd_u, double *thd_i);

void METERLIBFFT2PH_GetInstValuesPh1 (tMETERLIBFFT2PH_DATA *p, double *urms, double *irms, 
double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i);

void METERLIBFFT2PH_GetInstValuesPh2 (tMETERLIBFFT2PH_DATA *p, double *urms, double *irms, 
double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i);

void METERLIBFFT3PH_GetInstValuesPh1 (tMETERLIBFFT3PH_DATA *p, double *urms, double *irms, 
double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i);

void METERLIBFFT3PH_GetInstValuesPh2 (tMETERLIBFFT3PH_DATA *p, double *urms, double *irms, 
double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i);

void METERLIBFFT3PH_GetInstValuesPh3 (tMETERLIBFFT3PH_DATA *p, double *urms, double *irms, 
double *w, double *var, double *va, double *pf, double *thd_u, double *thd_i);

Table 12. METERLIBFFT_GetAvrgValues functions performance

Function name
CM0+ core CM0+ core with MMAU

Code size [B] Clock cycles1

1 An average is computed every 25th cycle (two times per second)

Code size [B] Clock cycles1

METERLIBFFT1PH_GetAvrgValues 296 6764 296 6764

METERLIBFFT2PH_GetAvrgValuesPh1 296
6764

296
6764

METERLIBFFT2PH_GetAvrgValuesPh2 298 298

METERLIBFFT3PH_GetAvrgValuesPh1 296

6764

296

6764METERLIBFFT3PH_GetAvrgValuesPh2 298 298

METERLIBFFT3PH_GetAvrgValuesPh3 298 298
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5.7.2 Arguments

5.7.3 Return

These functions do not return any arguments.

5.7.4 Calling order

These functions can be called anytime, with the best time being after the main (FFT) calculation 
processing. All output values are scaled to engineering units in a double precision form.

5.7.5 Performance

Table 13. METERLIBFFT_GetInstValues functions arguments

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure

double urms out Pointer to the instantaneous RMS line voltage value in volts

double irms out Pointer to the instantaneous RMS line current value in amperes

double w out Pointer to the instantaneous active power (P) value in watts

double var out Pointer to the instantaneous reactive power (Q) value 
in volt-amperes-reactive

double va out Pointer to the instantaneous unsigned apparent power value (S) 
in volt-amperes

double pf out Pointer to the instantaneous power factor value (dimensionless quantity)

double thd_u out Pointer to the instantaneous THD voltage value per cent

double thd_i out Pointer to the instantaneous THD current value per cent

Table 14. METERLIBFFT_GetInstValues functions performance

Function name
CM0+ core CM0+ core with MMAU

Code size [B] Clock cycles Code size [B] Clock cycles

METERLIBFFT1PH_GetInstValues 232 5925 232 5925

METERLIBFFT2PH_GetInstValuesPh1 232
5925

232
5925

METERLIBFFT2PH_GetInstValuesPh2 234 234

METERLIBFFT3PH_GetInstValuesPh1 232

5949

232

5925METERLIBFFT3PH_GetInstValuesPh2 234 234

METERLIBFFT3PH_GetInstValuesPh3 234 234
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5.8 METERLIBFFT_GetMagnitudes

These functions convert voltage and current data (computed by the function described in Section 5.3, 
“METERLIBFFT_CalcMain”) from Cartesian data form to polar data form, and return voltage and current 
harmonic magnitudes for each phase separately. These values can be used for additional postprocessing 
and visualization. Voltage and current magnitudes are available at the two buffers addressed by mag_u and 
mag_i pointers (initialized by functions described in Section 5.10, “METERLIBFFT_InitAuxBuff”). 
The first buffer position matches the zero harmonic, and so on.

5.8.1 Syntax

#include “meterlibfft.h”

void METERLIBFFT1PH_GetMagnitudes (tMETERLIBFFT1PH_DATA *p, unsigned long magn_fft);

void METERLIBFFT2PH_GetMagnitudesPh1 (tMETERLIBFFT2PH_DATA *p, unsigned long magn_fft);

void METERLIBFFT2PH_GetMagnitudesPh2 (tMETERLIBFFT2PH_DATA *p, unsigned long magn_fft);

void METERLIBFFT3PH_GetMagnitudesPh1 (tMETERLIBFFT3PH_DATA *p, unsigned long magn_fft);

void METERLIBFFT3PH_GetMagnitudesPh2 (tMETERLIBFFT3PH_DATA *p, unsigned long magn_fft);

void METERLIBFFT3PH_GetMagnitudesPh3 (tMETERLIBFFT3PH_DATA *p, unsigned long magn_fft);

5.8.2 Arguments

5.8.3 Return

These functions do not return any arguments.

5.8.4 Calling order

These functions may be called after the main (FFT) calculation processing. The one-shot mandatory and 
auxiliary parameter initialization must be done before calling these functions.

Table 15. METERLIBFFT_GetMagnitudes functions arguments

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure

unsigned long magn_fft in Number of required harmonic magnitudes in the range of < 1 _ half of 
the input samples >
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5.8.5 Performance

5.9 METERLIBFFT_GetPhases

These functions convert voltage and current data (computed by the function described in Section 5.3, 
“METERLIBFFT_CalcMain”) from Cartesian data form to polar data form and return voltage and current 
harmonic phase shifts for each phase separately. These values can be used for additional postprocessing 
and visualization. Voltage and current phase shifts are available at the two buffers addressed by ph_u and 
ph_i pointers (initialized by functions described in Section 5.10, “METERLIBFFT_InitAuxBuff“). 
The first buffer position matches the zero-harmonic, and so on.

5.9.1 Syntax

#include “meterlibfft.h”

void METERLIBFFT1PH_GetPhases (tMETERLIBFFT1PH_DATA *p, unsigned long ph_fft);

void METERLIBFFT2PH_GetPhasesPh1 (tMETERLIBFFT2PH_DATA *p, unsigned long ph_fft);

void METERLIBFFT2PH_GetPhasesPh2 (tMETERLIBFFT2PH_DATA *p, unsigned long ph_fft);

void METERLIBFFT3PH_GetPhasesPh1 (tMETERLIBFFT3PH_DATA *p, unsigned long ph_fft);

void METERLIBFFT3PH_GetPhasesPh2 (tMETERLIBFFT3PH_DATA *p, unsigned long ph_fft);

void METERLIBFFT3PH_GetPhasesPh3 (tMETERLIBFFT3PH_DATA *p, unsigned long ph_fft);

Table 16. METERLIBFFT_GetMagnitudes functions performance

Function name
CM0+ core CM0+ core with MMAU

Code size [B] Clock cycles1

1 Valid for 32 harmonic magnitudes

Code size [B] Clock cycles1

METERLIBFFT1PH_GetMagnitudes 234 17702 444 3142

METERLIBFFT2PH_GetMagnitudesPh1 234
17702

444
3142

METERLIBFFT2PH_GetMagnitudesPh2 236 446

METERLIBFFT3PH_GetMagnitudesPh1 234

17702

444

3142METERLIBFFT3PH_GetMagnitudesPh2 236 446

METERLIBFFT3PH_GetMagnitudesPh3 240 450
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5.9.2 Arguments

5.9.3 Return

These functions do not return any arguments.

5.9.4 Calling order

This function may be called after the main (FFT) calculation processing. The one-shot mandatory and 
auxiliary parameter initialization must be performed before calling these functions.

5.9.5 Performance

5.10 METERLIBFFT_InitAuxBuff

These functions are used to initialize the pointers to the voltage and current magnitudes and phase shifts 
buffers. This initialization is performed separately for each particular phase. As these buffers don’t have 
to be used for the main FFT computing, these initializations are only auxiliary, and should be performed 
if additional harmonic magnitudes and phase shifts computing is required. These computations are 
performed by functions described in Section 5.8, “METERLIBFFT_GetMagnitudes” and Section 5.9, 
“METERLIBFFT_GetPhases.” The position of the first buffers matches the zero harmonic, and so on. 
The length of these buffers is optional, but their maximal length cannot exceed the number of FFT 

Table 17. METERLIBFFT_GetPhases functions arguments

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure

unsigned long ph_fft in Number of required harmonic phase shifts in the range < 1 _ half of the 
input samples >

Table 18. METERLIBFFT_GetPhases functions performance

Function name
CM0+ core CM0+ core with MMAU

Code size1 [B]

1 Code size of the arctangent lookup table (8 KB) isn’t included

Clock cycles2

2 Valid for 32 harmonic phase shifts

Code size1 [B] Clock cycles2

METERLIBFFT1PH_GetPhases 346 15591 338 6188

METERLIBFFT2PH_GetPhasesPh1 346
15591

338
6188

METERLIBFFT2PH_GetPhasesPh2 348 340

METERLIBFFT3PH_GetPhasesPh1 346

15639

338

6188METERLIBFFT3PH_GetPhasesPh2 348 340

METERLIBFFT3PH_GetPhasesPh3 352 344
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harmonics (half of the input samples set by samples parameter in Section 5.12, 
“METERLIBFFT_InitParam”).

5.10.1 Syntax

#include “meterlibfft.h”

void METERLIBFFT1PH_InitAuxBuff (tMETERLIBFFT1PH_DATA *p, Frac24 *mag_u, Frac24 *mag_i, long 
*ph_u, long *ph_i);

void METERLIBFFT2PH_InitAuxBuffPh1(tMETERLIBFFT2PH_DATA *p, Frac24 *mag_u, Frac24 *mag_i, long 
*ph_u, long *ph_i);

void METERLIBFFT2PH_InitAuxBuffPh2(tMETERLIBFFT2PH_DATA *p, Frac24 *mag_u, Frac24 *mag_i, long 
*ph_u, long *ph_i);

void METERLIBFFT3PH_InitAuxBuffPh1(tMETERLIBFFT3PH_DATA *p, Frac24 *mag_u, Frac24 *mag_i, long 
*ph_u, long *ph_i);

void METERLIBFFT3PH_InitAuxBuffPh2(tMETERLIBFFT3PH_DATA *p, Frac24 *mag_u, Frac24 *mag_i, long 
*ph_u, long *ph_i);

void METERLIBFFT3PH_InitAuxBuffPh3(tMETERLIBFFT3PH_DATA *p, Frac24 *mag_u, Frac24 *mag_i, long 
*ph_u, long *ph_i);

5.10.2 Arguments

5.10.3 Return

These functions do not return any arguments.

5.10.4 Calling order

These functions should be called in the initialization section only.

Table 19. METERLIBFFT_InitAuxBuff functions arguments

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure

Frac24 mag_u out Pointer to the harmonic magnitudes voltage buffer in Q0.23 data 
format

Frac24 mag_i out Pointer to the harmonic magnitudes current buffer in Q0.23 data 
format

long ph_u out Pointer to the harmonic phase shifts voltage buffer in 0.001°, 
for example 45000 = 45.000°

long ph_i out Pointer to the harmonic phase shifts current buffer in 0.001°, 
for example 45000 = 45.000°
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5.10.5 Performance

5.11 METERLIBFFT_InitMainBuff

These functions are used to initialize pointers to three types of buffers: input time-domain buffers, output 
frequency-domain buffers, and phase-shift correction buffer. The position of first buffers matches the 
zero harmonic, and so on. All these initializations are performed separately for each particular phase.

Both the input voltage and current time-domain buffers, where the ADC values are saved after the 
sampling, are united with the output frequency-domain buffers, where the real FFT parts of the result will 
be saved after the computation. Therefore, the input time-domain data are rewritten by the real parts of 
the FFT result, while the imaginary parts of the FFT result are saved to the separate buffers. The length of 
time-domain buffers depends on the maximum input samples number, while the buffer length for 
frequency domain buffers is always power-of-two (set by samples parameter in the function described 
in Section 5.12, “METERLIBFFT_InitParam”). These functions also initialize the pointer to the U_I 
phase-shift correction buffer for software phase-shift correction in the frequency domain. The parasitic 
current sensor phase shifts are saved separately for each harmonic. These phase shifts can be compensated 
for by the function described in Section 5.3, “METERLIBFFT_CalcMain.” If the software phase shift 
correction is not required, this pointer must be set to NULL. 

5.11.1 Syntax

#include “meterlibfft.h”

void METERLIBFFT1PH_InitMainBuff (tMETERLIBFFT1PH_DATA *p, Frac24 *u_re, Frac24 *i_re, Frac24 
*u_im, Frac24 *i_im, long *shift);

void METERLIBFFT2PH_InitMainBuffPh1 (tMETERLIBFFT2PH_DATA *p, Frac24 *u_re, Frac24 *i_re, 
Frac24 *u_im, Frac24 *i_im, long *shift);

void METERLIBFFT2PH_InitMainBuffPh2 (tMETERLIBFFT2PH_DATA *p, Frac24 *u_re, Frac24 *i_re, 
Frac24 *u_im, Frac24 *i_im, long *shift);

void METERLIBFFT3PH_InitMainBuffPh1 (tMETERLIBFFT3PH_DATA *p, Frac24 *u_re, Frac24 *i_re, 
Frac24 *u_im, Frac24 *i_im, long *shift);

void METERLIBFFT3PH_InitMainBuffPh2 (tMETERLIBFFT3PH_DATA *p, Frac24 *u_re, Frac24 *i_re, 
Frac24 *u_im, Frac24 *i_im, long *shift);

Table 20. METERLIBFFT_InitAuxBuff functions performance

Function name
CM0+ core CM0+ core with MMAU

Code size [B] Clock cycles Code size [B] Clock cycles

METERLIBFFT1PH_InitAuxBuff 12 32 30

METERLIBFFT2PH_InitAuxBuffPh1 12
32

12
30

METERLIBFFT2PH_InitAuxBuffPh2 22 22

METERLIBFFT3PH_InitAuxBuffPh1 12

32

12

30METERLIBFFT3PH_InitAuxBuffPh2 22 22

METERLIBFFT3PH_InitAuxBuffPh3 22 22
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void METERLIBFFT3PH_InitMainBuffPh3 (tMETERLIBFFT3PH_DATA *p, Frac24 *u_re, Frac24 *i_re, 
Frac24 *u_im, Frac24 *i_im, long *shift);

5.11.2 Arguments

5.11.3 Return

These functions do not return any arguments.

5.11.4 Calling order

As most of these buffers are used for main FFT computing (performed by function described in 
Section 5.3, “METERLIBFFT_CalcMain”), these initializations are mandatory and must be performed in 
the initialization section.

5.11.5 Performance

Table 21. METERLIBFFT_InitMainBuff functions arguments 

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure

Frac24 u_re in / out Pointer to the input time-domain voltage buffer united with the output 
frequency-domain voltage buffer (real part) in Q0.23 data format

Frac24 i_re in / out Pointer to the input time-domain current buffer united with the output 
frequency-domain current buffer (real part) in Q0.23 data format

Frac24 u_im out Pointer to the frequency-domain voltage buffer (imaginary part) in Q0.23 
data format

Frac24 i_im out Pointer to the frequency-domain current buffer (imaginary part) in Q0.23 
data format

long shift in Pointer to the U_I phase-shift correction buffer in 0.001°, for example 
4500 = 4.500°. Set to NULL, if correction is not required.

Table 22. METERLIBFFT_InitMainBuff functions performance

Function name
CM0+ core CM0+ core with MMAU

Code size [B] Clock cycles Code size [B] Clock cycles

METERLIBFFT1PH_InitMainBuff 26 57 26 55

METERLIBFFT2PH_InitMainBuffPh1 26
57

26
55

METERLIBFFT2PH_InitMainBuffPh2 28 28

METERLIBFFT3PH_InitMainBuffPh1 26

57

26

55METERLIBFFT3PH_InitMainBuffPh2 28 28

METERLIBFFT3PH_InitMainBuffPh3 30 30
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5.12 METERLIBFFT_InitParam

These functions are used for initialization of parameters. All these initializations are valid for all phases 
together. Proper initialization is very important for receiving correct outputs from other functions.

5.12.1 Syntax

#include “meterlibfft.h”

long METERLIBFFT1PH_InitParam (tMETERLIBFFT1PH_DATA *p, unsigned long samples, unsigned long 
sensor, unsigned long kwh_cnt, unsigned long kvarh_cnt, unsigned long en_res);

long METERLIBFFT2PH_InitParam (tMETERLIBFFT2PH_DATA *p, unsigned long samples, unsigned long 
sensor, unsigned long kwh_cnt, unsigned long kvarh_cnt, unsigned long en_res);

long METERLIBFFT3PH_InitParam (tMETERLIBFFT3PH_DATA *p, unsigned long samples, unsigned long 
sensor, unsigned long kwh_cnt, unsigned long kvarh_cnt, unsigned long en_res);

5.12.2 Arguments

Table 23. METERLIBFFT_InitParam functions arguments

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure

unsigned long samples in Number of the required FFT samples _ see Table 24

unsigned long sensor in Current sensor type _ see Table 25

unsigned long kwh_cnt in Active energy impulse number _ see Table 26

unsigned long kvarh_cnt in Reactive energy impulse number _ see Table 26

unsigned long en_res in Active / reactive energy resolution _ see Table 27

Table 24. Number of input samples defines

Define name Description

SAMPLES8 8 input samples, 4 output harmonics

SAMPLES16 16 input samples, 8 output harmonics

SAMPLES32 32 input samples, 16 output harmonics

SAMPLES64 64 input samples, 32 output harmonics

SAMPLES128 128 input samples, 64 output harmonics

SAMPLES256 256 input samples, 128 output harmonics

SAMPLES512 512 input samples, 256 output harmonics
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5.12.3 Return

These functions return one of the following error codes:

• FFT_ERROR (positive) _ some of the input parameters are not right, the function output is not 
valid

• FFT_OK (zero) _ all input parameters are right, the function output is valid

5.12.4 Calling order

These mandatory functions must be called primarily in the initialization section, or after changing some of 
its parameters during the program execution.

Table 25. Current sensor type defines

Define name Description

SENS_DERIV Derivative type of the current sensor (Rogowski Coil)

SENS_PROP Proportional type of the current sensor (shunt, Current Transformer)

Table 26. Impulse number defines 

Define name Description Define name Description

IMP200 200 imp / kWh or 200 imp / kVARh IMP5000 5000 imp / kWh or 5000 imp / kVARh

IMP250 250 imp / kWh or 250 imp / kVARh IMP10000 10000 imp / kWh or 10000 imp / kVARh

IMP500 500 imp / kWh or 500 imp / kVARh IMP12500 12500 imp / kWh or 12500 imp / kVARh

IMP1000 1000 imp / kWh or 1000 imp / kVARh IMP20000 20000 imp / kWh or 20000 imp / kVARh

IMP1250 1250 imp / kWh or 1250 imp / kVARh IMP25000 25000 imp / kWh or 25000 imp / kVARh

IMP2000 2000 imp / kWh or 2000 imp / kVARh IMP50000 50000 imp / kWh or 50000 imp / kVARh

IMP2500 2500 imp / kWh or 2500 imp / kVARh IMP100000 100000 imp / kWh or 100000 imp / kVARh

Table 27. Energy resolution defines

Define name Description

EN_RES1 Energy resolution is 1 Wh / VARh, max. range is 4294.967 MWh / MVARh, supports Impulse numbers <= 1000

EN_RES10 Energy resolution is 0.1 Wh / VARh, max. range is 429.4967 MWh / MVARh, supports Impulse numbers 
<= 10000

EN_RES100 Energy resolution is 0.01 Wh / VARh, max. range is 42.94967 MWh / MVARh, supports all Impulse numbers
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5.12.5 Performance

5.13 METERLIBFFT_Interpolation

These functions are used to interpolate the original input curve, given by unsigned integer samples, to the 
curve given by power-of-two samples, required by the FFT function [7]. These functions support both 
oversampling and undersampling.

5.13.1 Syntax

#include “meterlibfft.h”

long METERLIBFFT1PH_Interpolation (tMETERLIBFFT1PH_DATA *p, unsigned long u_ord, unsigned long 
i_ord, unsigned long samples_inp);

long METERLIBFFT2PH_Interpolation (tMETERLIBFFT2PH_DATA *p, unsigned long u_ord, unsigned long 
i_ord, unsigned long samples_inp);

long METERLIBFFT3PH_Interpolation (tMETERLIBFFT3PH_DATA *p, unsigned long u_ord, unsigned long 
i_ord, unsigned long samples_inp);

5.13.2 Arguments

Table 30. Interpolation order defines

Table 28. METERLIBFFT_InitParam functions performance

Function name
CM0+ core CM0+ core with MMAU

Code size [B] Clock cycles Code size [B] Clock cycles

METERLIBFFT1PH_InitParam 1380 787 1380 782

METERLIBFFT2PH_InitParam 1414 837 1414 830

METERLIBFFT3PH_InitParam 1440 849 1440 847

Table 29. METERLIBFFT_Interpolation functions arguments

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure

unsigned long u_ord in Voltage interpolation order _ see Table 30

unsigned long i_ord in Current interpolation order _ see Table 30

unsigned long samples_inp in Input samples number, can be higher or lower than required by 
power-of-two FFT samples

Define name Description

ORD1 The 1st order (linear) interpolation

ORD2 The 2nd order (quadratic) interpolation

ORD3 The 3rd order (cubic) interpolation
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5.13.3 Return

These functions return one of the following error codes valid only for undersampling use, for input samples 
lower than FFT samples (set by samples parameter in Section 5.12, “METERLIBFFT_InitParam”):

• FFT_ERROR (positive) _ FFT samples are higher than input samples, and FFT samples are higher 
than 128.

• FFT_OK (zero) _ undersampling ratio is correct.

5.13.4 Calling order

These functions should be used only if interpolation processing is required [7]. In this case, these functions 
should be called periodically in a defined interval, which depends on the line frequency and/or the 
multiplied ADC sampling rate. These functions should be called closely before the main (FFT) calculation 
processing. The one-shot mandatory parameter initialization must be performed before calling these 
functions. Apart from other things, this parameter initialization function sets the number of required FFT 
points, and also initializes all pointers to the input buffers used by the interpolation functions.

NOTE

The original values in the input buffers (ADC values) will be rewritten by 
the new (interpolated) values after these functions are performed.

5.13.5 Performance

Table 32. METERLIBFFT_Interpolation functions performance for the CM0+ core with MMAU

Table 31. METERLIBFFT_Interpolation functions performance for the CM0+ core

Function name
Code size [B] Stack size 

[B]1

1 Due to the undersampling use case (input samples < FFT samples)

Clock cycles2

2 Number of input samples = 120, number of required FFT points = 64, the same interpolation order for both channels

1st order 2nd order 3rd order 1st order 2nd order 3rd order

METERLIBFFT1PH_Interpolation 506 842 1654
512

12521 35260 76996

METERLIBFFT2PH_Interpolation 586 922 1734 24946 70519 153991

METERLIBFFT3PH_Interpolation 682 1018 1830 37418 106019 231227

Function name
Code size [B] Stack size 

[B]1

1 Due to the undersampling use case (input samples < FFT samples)

Clock cycles2

2 Number of input samples = 120, number of required FFT points = 64, the same interpolation order for both channels

1st order 2nd order 3rd order 1st order 2nd order 3rd order

METERLIBFFT1PH_Interpolation 940 1116 1560
512

7388 15543 28304

METERLIBFFT2PH_Interpolation 1020 1196 1640 14728 30942 56607

METERLIBFFT3PH_Interpolation 1116 1292 1736 22067 46533 84911
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5.14 METERLIBFFT_SetCalibCoeff

These functions are used to set up all voltage and current calibration coefficients (gain factors). 
The absolute value of these coefficients depends on hardware topology (sensor, AFE). Therefore, the final 
calculation precision of some library functions strictly depends on proper settings of these coefficients. 
These coefficients should be interpreted as maximum peak voltage or current value valid for maximum 
AFE range (24-bit AFE range). If the current offset correction is not used, this offset pointer should be 
assigned to NULL (non-true IRMS computing in this case).

5.14.1 Syntax

#include “meterlibfft.h”

long METERLIBFFT1PH_SetCalibCoeff (tMETERLIBFFT1PH_DATA *p, double u_max, double i_max, Frac24 
*i_offs, double p_offs, double q_offs);

long METERLIBFFT2PH_SetCalibCoeffPh1 (tMETERLIBFFT2PH_DATA *p, double u_max, double i_max, 
Frac24 *i_offs, double p_offs, double q_offs);

long METERLIBFFT2PH_SetCalibCoeffPh2 (tMETERLIBFFT2PH_DATA *p, double u_max, double i_max, 
Frac24 *i_offs, double p_offs, double q_offs);

long METERLIBFFT3PH_SetCalibCoeffPh1 (tMETERLIBFFT3PH_DATA *p, double u_max, double i_max, 
Frac24 *i_offs, double p_offs, double q_offs);

long METERLIBFFT3PH_SetCalibCoeffPh2 (tMETERLIBFFT3PH_DATA *p, double u_max, double i_max, 
Frac24 *i_offs, double p_offs, double q_offs);

long METERLIBFFT3PH_SetCalibCoeffPh3 (tMETERLIBFFT3PH_DATA *p, double u_max, double i_max, 
Frac24 *i_offs, double p_offs, double q_offs);

5.14.2 Arguments
Table 33. METERLIBFFT_SetCalibCoeff functions arguments 

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure.

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure.

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure.

double u_max in Peak line voltage [V] valid for AFE full-scale range.

double i_max in Peak line current [A] valid for AFE full-scale range.

Frac24 i_offs in Pointer to the current offset in Q0.23 data format. Use NULL, if offset 
doesn’t have to be included in the IRMS computing.

double p_offs in Active power (P) offset correction value in Watts. Use zero, if P-offset 
doesn’t have to be included in the active power computing.

double q_offs in Reactive power (Q) offset correction value in Volt-Amperes-reactive. 
Use zero, if Q-offset doesn’t have to be included in the reactive power 
computing.



FFT-Based Algorithm for Metering Applications, Application Note, Rev. 4, 07/2015

Freescale Semiconductor, Inc. 39
 

Metering library

5.14.3 Return

These functions return one of the following codes:

• FFT_ERROR (positive) – some of the input parameters are too large, overflow may occur; the right 
coefficients values should be kept as (u_max*i_max) < (231/10000)

• FFT_OK (zero) _ all input parameters are correct

5.14.4 Calling order

These mandatory functions must be called in the initialization section primarily. They may be called also 
during or after the hardware calibration processing.

5.14.5 Performance

5.15 METERLIBFFT_SetEnergy

This macro sets all energy counters and clears all reminders. There is only one macro performing the same 
actions for all types of metering topologies (one-phase, two-phase, three-phase). The energy resolution 
depends on en_res parameter, set by the function described in Section 5.12, “METERLIBFFT_InitParam.”

5.15.1 Syntax

#include “meterlibfft.h”

METERLIBFFT_SetEnergy( p,  whi,  whe,  varhi,  varhe);

Table 34. METERLIBFFT_SetCalibCoeff functions performance

Function name
CM0+ core CM0+ core with MMAU

Code size [B] Clock cycles Code size [B] Clock cycles

METERLIBFFT1PH_SetCalibCoeff 146 2130 146 2130

METERLIBFFT2PH_SetCalibCoeffPh1
146 2130 146 2130

METERLIBFFT2PH_SetCalibCoeffPh2

METERLIBFFT3PH_SetCalibCoeffPh1

146 2130 146 2130METERLIBFFT3PH_SetCalibCoeffPh2

METERLIBFFT3PH_SetCalibCoeffPh3
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5.15.2 Arguments

5.15.3 Return

This macro does not return any arguments.

5.15.4 Calling order

This macro should be used mainly in the initialization section.

5.16 METERLIBFFT_GetRotation

This function computes the phase angle between each individual phases (phase 2 to phase 1, phase 3 to 
phase 1, phase 3 to phase 2) and also returns the sense of rotation (forward, reverse). This is a specific 
function for the three-phase mains only.

5.16.1 Syntax

#include “meterlibfft.h”

long METERLIBFFT3PH_GetRotation(tMETERLIBFFT3PH_DATA *p, double *u12_ph, double *u13_ph, double 
*u23_ph);

5.16.2 Arguments

5.16.3 Return

The function returns one of the following output states:

Table 35. METERLIBFFT_SetEnergy macro arguments

Type Name Direction Description

tMETERLIBFFT1PH_DATA,
tMETERLIBFFT2PH_DATA,
tMETERLIBFFT3PH_DATA

p in Pointer to one of the metering library data structures

unsigned long whi in Import active energy value (see Table 27 for the value resolution)

unsigned long whe in Export active energy value (see Table 27 for the value resolution)

unsigned long varhi in Import reactive energy value (see Table 27 for the value resolution)

unsigned long varhe in Export reactive energy value (see Table 27 for the value resolution)

Table 36. METERLIBFFT3PH_GetRotation function arguments

Type Name Direction Description

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure.

double u12_ph out Pointer to the phase 2 to the phase 1 angle in degree.

double u13_ph out Pointer to the phase 3 to the phase 1 angle in degree.

double u23_ph out Pointer to the phase 3 to the phase 2 angle in degree.
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• ROT_FORWARD (positive) _ clockwise (or forward) sense of rotation, that is 1-2-3, 2-3-1, or 
3-1-2.

• ROT_REVERSE (negative) _ counter-clockwise (or reverse) sense of rotation, that is 2-1-3, 1-3-2, 
or 3-2-1.

• ROT_UNKNOWN (zero) – sense of rotation cannot be recognized due to phase losing.

5.16.4 Calling order

This function may be called after the main (FFT) calculation processing. The one-shot mandatory 
parameter initialization must be done before calling this function.

5.16.5 Performance

6 Summary
This application note describes how to compute basic metering values in a metering application using 
the FFT. The presented algorithm is simple and highly accurate, it can be easily integrated into electronic 
meters, and requires only instantaneous phase voltage and current samples to be provided to their inputs. 
It has been designed for devices featuring sigma-delta or SAR converters, which have a fixed or adjustable 
measurement sample rate. The performance of the FFT-based metering library has been tested in several 
power meter reference designs [5] [6] with high accuracy for high-current dynamic ranges.

The computing technique based on FFT has the folllowing advantages and disadvantages in metering 
applications:

Advantages of realization:

• The same precision for both the active and reactive energies (due to using one computing formula).

• Four-quadrant active and reactive energy measurement.

• Frequency analysis of the mains, ability to compute the total harmonic distortion (THD).

• Offset removal, because the zero-harmonic can be missing for power computing.

Disadvantages of realization:

• Additional interpolation processing is needed when using fixed sample rate (sigma-delta ADCs).

• Higher computational power of the MCU (a 32-bit MAC unit is required).

Table 37. METERLIBFFT3PH_GetRotation function performance

Function name
CM0+ core CM0+ core with MMAU

Code size1 [B]

1 Code size of the arctangent lookup table (8 KB) isn’t included.

Clock cycles Code size1 [B] Clock cycles

METERLIBFFT3PH_GetRotation 532 3982 524 2926
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