
Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
Freescale Semiconductor 1

Freescale Semiconductor Document Number: AN4094

Application Note

Exporting CodeWarrior IDE Build Tools
Settings into Command-Line Tools Options

by: Stanislav Slíva

1. Introduction
The purpose of this application note is to help you
convert a project created in CodeWarrior IDE into a
project that could build using CodeWarrior command-
line build tools. Unfortunately there is no automatic
conversion tool that would export IDE project.mcp file
into a make file. This document helps you to translate
settings made using IDE to equivalent command-line
options.
It also includes a section that maps each
compiler/linker/assembler settings in an IDE panel to
the corresponding command-line options.

2. Command-Line Tools (CLT)
CodeWarrior build tools may be invoked from the command-line. These command-line tools operate
almost identically to their counterparts in an Integrated Development Environment (IDE). CodeWarrior
command-line compiler (mwcceppc.exe) and assembler (mwasmeppc.exe) translate source code files into
object code files. CodeWarrior command-line linker (mwldeppc.exe) then combine one or more object
code files to produce an executable image file, ready to load and execute on the target platform. Each
command-line tool has options that you configure when you invoke the tool.
These tools are usually located here:

<CW installation directory>\PowerPC_EABI_Tool\Command_Line_Tools*.exe

Contents
1. Introduction...1
2. Command-Line Tools (CLT).............................1
3. Target Settings..2
4. Language Settings..4
5. Code Generation Settings..............................11
6. Linker Settings..16
7. MPC5674F Makefile Example.........................18

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
2 Freescale Semiconductor

3. Target Settings

3.1. Access Paths Settings Panel
Figure 1. Access Paths Settings Panel

Table 1. Command Line Options for Access Paths Settings Panel

Tool IDE Options Command-Line Options Notes
Asm.
Comp.

User Paths -cwd proj | source | explicit |
include

Controls where a search begins for #include "..." files.

Asm.
Comp.

System Paths -[no]stdinc Uses standard system include paths for #include <...>
files

Asm.
Comp.

Always Search User
Paths

-nosyspath Treats #include <...> statements the same as #include
"..." statements.

Comp. Source relative
includes

-[no]convertpaths Searches for dependent files in the same location as
the source file.
If the dependent file is not found in this location,
specified User and System paths are searched.
If this option is enabled, the Always Search User
Paths should also be enabled.

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
Freescale Semiconductor 3

3.2. EPPC Target Settings Panel
Figure 2. EPPC Target Settings Panel

Table 2. Command-Line Options for EPPC Target Settings

Tool IDE Options Command-Line Options Notes
Linker Project Type -application | -library | (-

partial | -r)
Application, Library, Partial Link

Linker File Name -o file_name File name of the project will be generated when you build
the (.mot, .elf, .map, .bin) project.

Linker
Comp.

Byte Ordering -big | -little Big Endian: The bytes are organized in decreasing order
with the last significant byte as first (B3, B2, B1, and B0).
Little Endian: The bytes are organized in the increasing
order with the least significant byte as first (B0, B1, B2, and
B3).

Linker
Comp.

Code Model -model absolute |
sda_pic_pid

Absolute Addressing: Generates non-relocatable binary
files.
SDA Based PIC/PID Addressing: Generates relocatable
binary files that use Position-Independent-Code (PIC) /
Position-Independent-Data (PID) addressing.

Linker
Comp.

Small Data -sdata[threshold] short Default value is 8.
The linker stores small data items in the Small Data
address space. The compiler can generate faster code to
access this data.

Linker
Comp.

Small Data2 -sdata2[threshold] short Default value is 8
The linker stores read-only small data items in the Small
Data2 address space. The compiler can generate faster
code to access this data.

Linker Heap Size (k) -heapsize long Default value is 1024.
The value that you enter is in kilobytes. Heaps are
associated only with applications.

Linker Stack Size (k) -stacksize long Default value is 64.
You can allocate stack and heap space based on the
amount of memory that you have on your target hardware.

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
4 Freescale Semiconductor

Tool IDE Options Command-Line Options Notes
If you allocate memory more than the available RAM, for
the heap and/or stack then, your program will not run
correctly.

Comp. Disable CW Extensions -disable_extensions on|
off

If you are exporting code libraries from CodeWarrior
software to other compilers/linkers, check the Disable CW
Extensions checkbox to disable CodeWarrior features that
may be incompatible.

Comp.
Linker

DWARF (-g[dwarf] | -sym dwarf-
1,full) | (-gdwarf-2 | -sym
dwarf-2,full)

Use the DWARF list box to select the version of the Debug
With Arbitrary Record Format (DWARF) debugging
information format. The linker ignores debugging
information that is not in the format that you select from the
DWARF list box. (Dwarf 1, Dwarf 2)

Linker Tune Relocations -tune_relocations Tune Relocations option has the following effects:
For EABI, the 14-bit branch relocations are changed to 24-
bit branch relocations only if they cannot reach the calling
site from the original relocation.
For SDA PIC/PID, the absolute addressed references of
data from code are changed to use a small data register
instead of r0; absolute code is changed to code references
to use the PC relative relocations.

Linker
Comp.

ABI -abi eabi| … Use the ABI list box to select the Application Binary
Interface (ABI) used for function calls and structure layout.

4. Language Settings

4.1. C/C++ Language Settings Panel
Figure 3. C/C++ Language Settings Panel

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
Freescale Semiconductor 5

Table 3. Command-Line Options for Language Settings

Tool IDE Options Command-Line Options Notes
Comp. Force C++ Compilation -lang c++ | -dialect c++ When on, translates all C source files as C++ source code.

When off, the IDE uses the file name's extension to
determine whether to use the C or C++ compiler. This
setting corresponds to the
#pragma cplusplus

Comp. ISO C++ Template
Parser

-iso_templates on | off When on, follows the ISO/IEC 14882-1998 standard for
C++ to translate templates, enforcing more careful use of
the typename and template keywords. This option
corresponds to the
#pragma parse_func_templ

Comp. Use Instance Manager -inst[mgr | ance_manager]
on | off

You can control where the instance database is stored
using the
#pragma instmgr_file

Comp. Enable C++ Exceptions -Cpp_exceptions on | off When on, allows you to use the try, throw, and catch
statements specified in the ISO/IEC 14882-1998 C++
standard. Otherwise, set it off to generate smaller and
faster code. This setting corresponds to the
#pragma exceptions

Comp. Enable RTTI -RTTI on | off When on, allows the use of the C++ Runtime Type
Information (RTTI) capabilities, including the
dynamic_cast and type_id operators. This setting
corresponds to the
 #pragma RTTI

Comp. Enable bool Support -bool on | off When on, the C++ compiler recognizes the bool type and
its true and false values specified in the ISO/IEC 14882-
1998 C++ standard. This setting corresponds to the
#pragma bool

Comp. Enable wchar_t Support -wchar_t on | off When on, the C++ compiler recognizes the wchar t data
type specified in the ISO/IEC 14882-1998 C++ standard.
Turn off this option when compiling source code that
defines its own wchar_t type. This setting corresponds to
the
#pragma wchar_type

Comp EC++ Compatibility
Mode

-lang ec++ | -dialect ec++ When on, expects C++ source code files to contain
Embedded C++ source code. This setting corresponds to
the
#pragma ecplusplus

Comp. ANSI Strict -strict on | off Only recognizes source code that conforms to the ISO/IEC
9899-1990 standard for C.
You cannot enable individual extensions that are controlled
by the ANSI Strict setting.
This setting corresponds to the
#pragma ANSI_strict

Comp. ANSI Keywords Only -stdkeywords on | off Controls whether the compiler recognizes non-standard
keywords. Turn the ANSI Strict option on if you want to
write source code that strictly adheres to the ISO standard.
This setting corresponds to the
#pragma only_std_keywords

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
6 Freescale Semiconductor

Tool IDE Options Command-Line Options Notes
Comp. Expand Trigraphs -trigraphs on | off Many common character constants look like trigraph

sequences, and this extension lets you use them without
including escape characters. This setting corresponds to
the
#pragma trigraphs

Comp. Legacy for-scoping -for_scoping on | off Generates an error message when the compiler encounters
a variable scope usage that the ISO/IEC 14882-1998 C++
standard disallows. This setting corresponds to the
#pragma ARM_scoping

Comp. Require Function
Prototypes

-r[equireprotos] Turn on this option, the compiler generates an error
message if you define a previously referenced function that
does not have a prototype. This setting corresponds to the
 #pragma require_prototypes

Comp. Enable C99 Extensions -dialect | -lang c99 Recognizes ISO/IEC 9899-1999 ("C99") language features
that are supported by the CodeWarrior compiler. This
setting corresponds to the
#pragma c99

Comp. Enable GCC Extensions -gcc[ext | _extensions] on
| off

Lets you use language features of the GCC (Gnu Compiler
Collection) C compiler that are supported by CodeWarrior.
This setting corresponds to the
#pragma gcc_extensions

Comp. Enums Always Int -enum min | int Uses signed integers to represent enumerated constants.
This option corresponds to the
#pragma enumsalwaysint

Comp.
Linker

Use Unsigned Chars -char signed | unsigned Treats char declarations as unsigned char declarations.
This option corresponds to the
#pragma unsigned_char

Comp. Pool Strings -str[ings] [no]pool If you enable this setting, the compiler collects all string
constants into a single data section in the object code it
generates. This option corresponds to the
#pragma pool_strings

Comp. Reuse Strings -str[ings] [no]reuse When on, the compiler stores only one copy of identical
string literals. When off, the compiler stores each string
literal separately. This option corresponds to the
#pragma dont_reuse_strings

Comp. IPA -ipa off | file | program Select interprocedural analysis level. This option
corresponds to the
#pragma ipa

Comp. Inline depth: Do not
Inline

-inline none | off Inlines no functions, not even C or C++ functions declared
inline. This option corresponds to the
#pragma dont_inline

Comp. Inline depth: Smart -inline on | smart Turns on inlining for functions declared with the inline
qualifier.

Comp. Inline depth: Inline level -inline level=1 | 2 | … | 8 Inlines to the depth specified by the numerical selection.
This option corresponds to the

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
Freescale Semiconductor 7

Tool IDE Options Command-Line Options Notes
#pragma inline_depth

Comp. Auto-Inline -inline auto Lets the compiler choose which functions to inline. This
option corresponds to the
#pragma auto_inline

Comp. Bottom-up Inlining -inline [no]bottomup Turn this option on, the compiler performs inline analysis
from the last function to the first function in a chain of
function calls. This setting corresponds to the
#pragma inline_bottom_up

4.2. C/C++ Preprocessor Settings Panel
Figure 4. C/C++ Preprocessor Panel Settings

Table 4. Command-Line Options for C/C++ Preprocessor Panel

Tool IDE Options Command-Line Options Notes
Comp. Right click on a file and

select preprocess
-preprocess Pre-processes the source files.

Comp. Source encoding -enc[oding] ascii |
(autodetect | multibyte |
mb) | system | (UTF[8|-8])
| (SJIS | Shift-JIS |
ShiftJIS) | (EUC[JP | -JP])
| (ISO[2022JP | -2022-
JP])

The compiler automatically detects UTF-8 (Unicode
Transformation Format) header or UCS-2/UCS-4 (Uniform
Communications Standard) encodings regardless of
setting.

Comp. Use prefix text in
precompiled header

-prefix file Prefix the specified text file or precompiled header onto all
source files.

Comp. Emit file changes -ppopt [no]break Controls whether notification of file changes (or #line
changes) appear in the output.

Comp. Emit #pragmas -ppopt [no]pragma Controls whether pragmas directives encountered in the
source text appear in the preprocessor output.

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
8 Freescale Semiconductor

Tool IDE Options Command-Line Options Notes
Comp. Show full paths -ppopt [no]full[path] Controls whether file changes show the full path or the

base filename of the file.

Comp. Keep comments -ppopt [no]comment Controls whether comments are emitted in the output.

Comp. Use #line -ppopt [no]line Controls whether file changes appear in comments (as
before) or in #line directives.

Comp. Keep white space -ppopt [no]space Controls whether whitespace is stripped out or copied into
the output. This doesn't apply when macros are expanded.

4.3. C/C++ Warnings Settings Panel
Figure 5. C/C++ Warnings Settings Panel

Table 5. Command-Line Options for C/C++ Warnings Panel
Tool IDE Options Command-Line Options Notes
Comp. Illegal Pragmas -w[arn[ings]] [no]pragmas |

[no]illpragmas
Issues a warning message if the compiler encounters an
unrecognized pragma. This option corresponds to the
#pragma warn_illpragma

Comp. Possible Errors -w[arn[ings]] [no]possible |
[no]unwanted

Issues warning messages for common, usually-unintended
logical errors. This option corresponds to the
#pragma warn_possunwant

Comp. Extended Error
Checking

-w[arn[ings]] [no]pedantic |
[no]extended

Issues warning messages for common programming
errors. This option corresponds to the
#pragma extended_errorcheck

Comp. Hidden Virtual
Functions

-w[arn[ings]] [no]hidevirtual
| [no]hidden[virtual]

Issues a warning message if you declare a non-virtual
member function that prevents a virtual function,that was
defined in a superclass, from being called. This setting
corresponds to the
#pragma warn_hidevirtual

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
Freescale Semiconductor 9

Tool IDE Options Command-Line Options Notes
Comp. Implicit Arithmetic

Conversions
-w[arn[ings]]
[no]implicit[conv]

Issues a warning message when the compiler applies
implicit conversions that may not give results you intend.
This option corresponds to the
#pragma warn_implicitconv

Comp. Float to Integer -w[arn[ings]]
[no]impl_float2int

Issues a warning message for implicit conversions from
floating point values to integer values. This option
corresponds to the
#pragma warn_impl_f2i_conv

Comp. Signed / Unsigned -w[arn[ings]]
[no]impl_signedunsigned

Issues a warning message for implicit conversions from a
signed or unsigned integer value to an unsigned or signed
value, respectively. This option corresponds to the
#pragma warn_impl_s2u_conv

Comp. Integer to Float -w[arn[ings]]
[no]impl_int2float

Issues a warning message for implicit conversions from
integer to floating-point values. This option corresponds to
the
#pragma warn_impl_i2f_conv

Comp. Pointer / Integral
Conversions

-w[arn[ings]] [no]ptrintconv Issues a warning message for implicit conversions from
pointer values to integer values and vice versa. This option
corresponds to the
#pragma warn_any_ptr_int_conv
#pragma warn_ptr_int_conv

Comp. Unused Variables -w[arn[ings]] [no]unusedvar Issues a warning message for local variables that are not
referred to in a function.
This option corresponds to the
#pragma warn_unusedvar

Comp. Unused Arguments -w[arn[ings]] [no]unusedarg Issues a warning message for function arguments that are
not referred to in a function. This option corresponds to the
#pragma warn_unusedarg

Comp. Missing 'return'
Statements

-w[arn[ings]]
[no]missingreturn

Issues a warning message if a function that is defined to
return a value has no return statement. This setting
corresponds to the
#pragma warn_missingreturn

Comp. Expression Has No Side
Effect

-w[arn[ings]]
[no]unusedexpr

Issues a warning message if a statement does not change
the program's state. This option corresponds to the
#pragma warn_no_side_effect

Comp. Extra Commas -w[arn[ings]]
[no]extracomma |
[no]comma

Issues a warning message if a list in an enumeration
terminates with a comma. This option corresponds to the
#pragma warn_extracomma

Comp. Inconsistent 'class' /
'struct' Usage

-w[arn[ings]] [no]structclass Issues a warning message if the class and struct keywords
are used interchangeably in the definition and declaration
of the same identifier in C++ source code. This option
corresponds to the
#pragma warn_structclass

Comp. Empty Declarations -w[arn[ings]]
[no]empty[decl]

Issues a warning message if a declaration has no variable
name. This setting corresponds to the
#pragma warn_emptydecl

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
10 Freescale Semiconductor

Tool IDE Options Command-Line Options Notes
Comp. Include File

Capitalization
-w[arn[ings]] [no]filecaps Issues a warning message if the name of the file specified

in a #include "file" directive uses different letter case from a
file on disk. This option corresponds to the
#pragma warn_filenamecaps

Comp. Check System Includes -w[arn[ings]] [no]sysfilecaps Issues a warning message if the name of the file specified
in a #include <file> directive uses different letter case from
a file on disk. This option corresponds to the
#pragma warn_filenamecaps_system

Comp. Pad Bytes Added * -w[arn[ings]] [no]padding Issues a warning message when the compiler adjusts the
alignment of components in a data structure. This option
corresponds to the
#pragma warn_padding

Comp. Undefined Macro In #if * -w[arn[ings]]
[no]undef[macro]

Issues a warning message if an undefined macro appears
in #if and #elif directives. This option corresponds to the
#pragma warn_undefmacro

Comp. None-Inlined Functions
*

 -w[arn[ings]] [no]notinlined Issues a warning message if a call to a function defined
with the inline, __inline__, or __inline keywords could not
be replaced with the function body. This option
corresponds to the
#pragma warn_notinlined

Comp. Treat All Warnings As
Errors

 -w[arn[ings]] [no]err[or] |
[no]iserr[or]

Issues warning messages as error messages. This option
corresponds to the
#pragma warning_errors

4.4. C/C++ Assembler Settings Panel
Figure 6. C/C++ Assembler Settings Panel

Table 6. Command-Line Options for C/C++ Assembler Settings Panel
Tool IDE Options Command-Line Options Notes
Asm Labels Must End With ':' -[no]colons If enabled, assembler labels must end with a “:”.

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
Freescale Semiconductor 11

Tool IDE Options Command-Line Options Notes
Asm Directives Begin With '.' -[no]period If enabled, assembler labels must end with “:”.

Asm Case Sensitive Identifiers -[no]case If enabled, assembler identifiers are case sensitive.

Asm Allow Space In Operand
Field

-[no]space If enabled, assembler allows space in operand field.

Asm GNU Compatible Syntax -[no]gccdep[ends] If set, write dependency file with name and location based
on output file.

Asm Generate Listing File -list A listing file contains file source along with line numbers,
relocation information, and macro expansions.

Asm Prefix File -prefix file The Prefix File text box specifies a prefix file that is
automatically included in all assembly files in the project.

5. Code Generation Settings

5.1. Global Optimization Settings Panel
Figure 7. Global Optimization Settings Panel

Table 7. Command-Line Options for Global Optimization Settings

Tool IDE Options Command-Line Options Notes
Comp. Faster Execution Speed -opt speed or -Op Optimize object code for speed (but code size is usually

large).
This option corresponds to the
#pragma optimize_for_size on

Comp. Smaller Code Size -opt space or -Os This option is selected when you want to optimize size (but
speed slowly).
This option corresponds to the
#pragma optimize_for_size off

Comp. Optimization off -opt off or -O0 Global Register Allocation Only For Temporary Values.

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
12 Freescale Semiconductor

Tool IDE Options Command-Line Options Notes
This option corresponds to the
#pragma optimization_level 0

Comp. Level 1 -opt l=1 or -O1 O0 + Dead Code Elimination + Branch and Arithmetic
Optimizations + Peephole Optimization.
This option corresponds to the
#pragma optimization_level 1

Comp. Level 2 -opt l=2 or -O2 O1 + Common Subexpression
Elimination + Copy and Expression Propagation + Stack
Frame Compression + Stack Alignment + Fast Floating-
Point to Integer Conversions.
This option corresponds to the
#pragma optimization_level 2

Comp. Level 3 -opt l=3 or -O3 O2 + Dead Store Elimination + Live Range Splitting +
Loop-Invariant Code Motion + Loop Transformations +
Loop Unrolling + Strength Reduction + Loop Vectorization
+ Lifetime-Based Register Allocation + Instruction
Scheduling.
This option corresponds to the
#pragma optimization_level 3

Comp. Level 4 -opt l=4 or -O4 O3 + more comprehensive optimizations from levels 1 and
2.
This option corresponds to the
#pragma optimization_level 4

5.2. EPPC Processor Settings Panel
Figure 8. EPPC Processor Settings Panel

Table 8. Command-Line Options for EPPC Processor Settings

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
Freescale Semiconductor 13

Tool IDE Options Command-Line Options Notes
Comp. Struct Alignment -align power[pc] | 68K … The value for this option should always be PowerPC to

conform to the PowerPC EABI and interoperate with third-
party object code. Other settings may lead to reduced
performance or alignment violation exceptions.

Comp. Function Alignment -func_align 4..128 If the core is capable of fetching multiple instructions at a
time, you may achieve slightly better performance by
aligning functions to the width of the fetch. This option
corresponds to the
#pragma function_align

Asm.
Comp.
Linker

Processor -proc Zen | generic… Use the Processor list box to specify the target processor.
For MPC55xx/MPC56xx the Processor value should be
Zen.

Comp.
Linker

Floating Point -fp none
none|off
soft[ware]
hard[ware]
efpu|spfp
dpfp
spfp_only

This selection specifies how the compiler handles floating-
point operations in your code. The Runtime and MSL
libraries must match with the option used.

Comp. Vector Support -vector on|off…
-spe_vector
-spe_addl_vector
-spe2_vector

If you want to allow vector instructions for your processor,
select a vector type that your processor supports.
Currently, only the Altivec and SPE vector units are
supported.

Comp. Make Strings ReadOnly -rostr | -readonlystrings Make string constants read-only. This option corresponds
to the
#pragma readonly_strings

Comp Linker Merges String
Constants

-str nopool This option instructs the compiler not to pool the identical
string constants, so that linker will do the work to deadstrip
the unreferenced string.

Comp. Pool Data -pool[data] on | off Instruct the compiler to organize some of the data in the
large data sections of .data , .bss, and .rodata so that the
program can access it more quickly.

Comp. Linker Merges FP
Constants

-flag merge_float_consts -
str nopool

This allows the linker to merge the floating-point constants
automatically. This option corresponds to the
#pragma fp_constants_merge

Comp. Use Common Section -common on | off If on the compiler places global uninitialized data in the
common section.

Comp. Use LMW & STMW -use_lmw_stmw on | off LMW / STMW (Load / Store Multiple Word) is a single
PowerPC instruction that loads/stores a group of registers;
The compiler sometimes uses these instructions in a
function's prologue and epilogue to save and restore
volatile registers.
This option corresponds to the
#pragma use_lmw_stmw

Comp. Inlined Assembler Is
Volatile

-[no]volatileasm Check to have the compiler treat all asm blocks (including
inline asm blocks) as if the volatile keyword was present.
This prevents the asm block from being optimized. This
option corresponds to the

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
14 Freescale Semiconductor

Tool IDE Options Command-Line Options Notes
#pragma volatileasm

Comp. Instruction Scheduling -schedule on | off If on (checked), scheduling of instructions is optimized for
the specific processor you are targeting (determined by
which processor is selected in the Processor list box)
Enabling the Instruction Scheduling can make source-level
debugging more difficult. This option corresponds to the
#pragma schedule

Comp. Peephole Optimization -opt [no]peep[hole] Enables peephole optimization.This option corresponds to
the
#pragma peephole

Comp. Profiler Information -profile on | off Generates calls to a function entry and exit for use with a
profiler. This option corresponds to the
#pragma profile

Comp. Relax HW IEEE -[no]relax_ieee The Relax HW IEEE checkbox is available only if you
select Hardware from the Floating Point list box.

Comp. Use Fused Multi-
Add/Sub

-fp_contract | -maf on | off Turn this option on to generate PowerPC Fused Multi-
Add/Sub instructions, which result in smaller and faster
floating-point code.

Comp. Generate FSEL
Instruction

-use_fsel on | off Turn this option on to generate the faster executing FSEL
instruction. The FSEL option allows the compiler to
optimize the pattern x = (condition ? y : z), where x and y
are floating-point values.

Comp. Assume Ordered
Compares

-[no-]ordered-fp-compares Enables the compiler to ignore issues with unordered
numbers, such as NAN, while comparing floating point
values.

Comp. Generate VRSAVE
Instructions

-vector [no]vrsave The VRSAVE register indicates to the operating system,
which vector registers to save and reload when a context
switch happens.

Comp. Altivec Structure Moves -[no]altivec_move_block Controls the use of Altivec instructions to optimize block
moves.

Comp. Generate ISEL
Instruction

-use_isel on | off Do not turn on this option if the Power Architecture
processor of your target platform does not implement the
Freescale ISEL APU.

Asm.
Comp.
Linker

Generate VLE
Instructions

-vle Prompts the assembler, compiler and linker to generate
and lay out Variable Length Encoded (VLE). This option
sets the -processor Zen option

Comp. Translate PPC Asm to
VLE Asm

-ppc_asm_to_vle Sets the -processor Zen and enables VLE code generation
in C/C++ files.

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
Freescale Semiconductor 15

5.3. EPPC Disassembler Settings Panel
Figure 9. EPPC Disassembler Settings Panel

Table 9. Command-Line Options for EPPC Disassembler Settings
Tool IDE Options Command-Line Options Notes

Linker Show Headers -show [no]headers Disassembled file lists any ELF header information in the
disassembled output.

Linker Show Symbol Table -show [no]tables Disassembler lists the symbol table for the disassembled
module.

Linker Show Code Modules -show [no]code | -show
[no]text

Disassembler provides ELF code sections in the
disassembled output for a module.

Linker Use Extended
Mnemonics

-show [no]extended Disassembler lists the extended mnemonics for each
instruction for the disassembled module

Linker Show Source Code -show [no]source Interleave the code disassembly with c/c++ source

Linker Only Show Operands
and Mnemonics

-show only|none Disassembler lists the offset for any functions in the
disassembled module.

Linker Show Data Modules -show [no]data Disassembler provides ELF data sections (such as .rodata
and .bss) in the disassembled output for a module.

Linker Disassemble Exception
Tables

-show [no]xtables Disassembler shows exception tables.

Linker Show DWARF Info -show [no]debug | -show
[no]dwarf

Disassembler includes DWARF symbol information in the
disassembled output.

Linker Relocate DWARF Info -[no]relocate This option lets you relocate object and function addresses
in the DWARF information (rela.text and .rela.debug)

Linker Verbose Info -v[erbose] Disassembler shows additional information about certain
types of information in the ELF file.

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
16 Freescale Semiconductor

6. Linker Settings

6.1. EPPC Linker Settings Panel
Figure 10. EPPC Linker Settings Panel

Table 10. Command-Line Options for EPPC Linker Settings

IDE Options Tool Command-Line Options Notes
Linker Link Mode -linkmode lessram |

normal | moreram
Linking requires enough RAM space to hold all of the input
files and the numerous structures that the linker uses for
housekeeping. The housekeeping allocations occur before
the linker writes the output file to the disk.

Linker Generate DWARF Info -sym off | on Instructs the linker to generate debugging information. The
debugger information is included within the linked ELF file.

Linker Generate DWARF Info:
Use Full Path Names

 -sym full[path] To avoid problems while having the debugger locate your
source code, clear the Use Full Path Names checkbox when
building and debugging on different machines or platforms.

Linker Generate Link Map -map [filename] Generates link map file.

Linker Generate Link Map: List
Closure

-[no]listclosure If enabled all the functions invoked by the starting point of the
program are listed in the link map.

Linker Generate Link Map: List
Unused Objects

-[no]unused | -
[no]mapunused

If enabled the linker includes unused objects in the link map.
This setting is useful in cases where you may discover that an
object you expect to be used is not in use.

Linker Generate Link Map: List
DWARF Objects

-[no]listdwarf If enabled list dwarf objects in map file.

Linker Suppress Warning
Messages

-w[arn[ings]] off | on If on then linker do not to display warnings in the CodeWarrior
message window.

Linker Heap Address -heapaddr addr_value Specifies the location in memory where the program heap
resides. The heap is used if your program calls malloc or new.
If you do not call malloc or new, consider setting Heap Size
(k) to 0 to maximize the memory available for code, data, and
the stack.

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
Freescale Semiconductor 17

Tool IDE Options Command-Line Options Notes
Linker Stack Address -stackaddr addr_value Specifies the location in memory where the program stack

resides. Since the stack grows downward, it is common to
place the stack as high as possible.

Linker Use Linker Command
File

 -lcf filename Select/enable to have the segment addresses specified in a
linker command file.

Linker Code Address -codeaddr addr_value Specifies the location in memory where the executable code
resides.

Linker Data Address -dataaddr addr_value Specifies the location in memory where the global data of the
program resides.
Data must reside in RAM.
If not checked/disabled, the linker calculates the data address
to begin immediately following the read-only code and data
(.text, .rodata, extab and extabindex).

Linker Small Data -sdataaddr addr_value Specifies the location in memory where the small data section
resides.
All types of data must reside in RAM.
If not checked/disabled, the linker calculates the small data
address to begin immediately following the .data section.

Linker Small Data2 -sdata2addr addr_value Specifies the location in memory where the small data2
section resides.
If not checked/disabled, the linker calculates the small data2
address to begin immediately following the .sbss section.

Linker Generate ROM Image:
RAM Buffer Address

-rambuffer addr_value The CodeWarrior flash programmer does not use a separate
RAM buffer. As a result, if you use the CodeWarrior Flash
Programmer (or any other flash programmer that does not
use a RAM buffer), the RAM Buffer Address must be equal to
the ROM Image Address.

Linker Generate ROM Image:
ROM Image Address

-romaddr addr_value Set address for ROM image.

Linker Generate S-Record File -srec [filename] Generate an S-Record file based on the application object
image. This file has the same name as the executable file, but
with a .mot extension. The linker generates S3 type S-
Records.

Linker Sort S-Record -sortsrec Sort S-record in ascending address order

Linker Max Length -sreclength max_length The default value is 26.
Specifies length of S-record line.

Linker EOL Character -sreceol mac | dos | unix Sets end-of-line separator for S-record file.

Linker Entry Point -m[ain] symbol This is the starting point of the program
The default function is bootstrap or glue code that sets up the
PowerPC EABI environment before your code executes. This
function is in the __start.c file.
The default value is __start.

6.2. EPPC Linker Options Settings Panel
Figure 11. EPPC Linker Options Settings Panel

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
18 Freescale Semiconductor

Table 11. Command-Line Options for EPPC Linker Options Settings
Tools IDE Option Command-Line Option Notes
Linker Code Merging -code_merging off | all |

safe
Select code merging optimization.

Linker Aggressive Merging -code_mering aggressive Don't check if the functions addresses are used.

Linker VLE Enhance Merging -[no]vle_enhance_merging VLE enhance code merging optimization.

Linker Far to Near Addressing -[no]nofar_near_addressing Far to near addressing optimization.

Linker VLE Shorten Branches -[no]vle_bl_opt VLE shorten BL optimization.

7. MPC5674F Makefile Example
Listing 1. Sample Makefile for MPC5674F

#==

Makefile: Sample makefile for MPC5674F to work with Freescale CodeWarrior v2.x

#==

Note: This Makefile uses GNU make features and was tested using Cygwin

tools. Visit http://www.cygwin.com to obtain these tools.

#==

#!!!! Update this to the root of your CodeWarrior installation !!!!

CWROOT=c:/CW_MPC55xx

CW=$(CWROOT)/PowerPC_EABI_Tools/Command_Line_Tools

LIBROOT=$(CWROOT)/PowerPC_EABI_Support

MSLDIR = $(LIBROOT)/MSL/MSL_C/PPC_EABI/Lib

RTMDIR = $(LIBROOT)/Runtime/Lib

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
Freescale Semiconductor 19

MSL library selected

MSLLIB = MSL_C.PPCEABI.bare.V.UC.a

Runtime library selected (should match with MSL lib)

RTMLIB = Runtime.PPCEABI.V.UC.a

CC = $(CW)/mwcceppc

AS = $(CW)/mwasmeppc

LD = $(CW)/mwldeppc

Defautl to Flash target...

ifndef TARGET

TARGET=Flash

endif

Note that we will build the RAM and FLASH versions with debug information

INCLUDES = -I- -ir $(CWROOT)/PowerPC_EABI_Support

common linker and compiler options

CLOPTS = -proc Zen -char unsigned -fp SPFP -gdwarf-2 -sdata 71 -sdata2 127

Compiler specific options

COPTS = $(CLOPTS) -c -DVLE_IS_ON=1 -vle -ppc_asm_to_vle -O4 -opt speed -pragma "schedule

750" -spe_vector -spe_addl_vector -RTTI off -wchar_t off -cpp_exceptions off -align powerpc -

use_lmw_stmw on -use_isel on -cwd include $(INCLUDES) -msgstyle GCC -ppopt BREAK, pragma -w

unwanted

assembler specific options

AOPTS = -c -gdwarf-2 -proc Zen $(INCLUDES)

linker specific options

LOPTS = $(CLOPTS) -lr $(MSLDIR) -lr $(RTMDIR) -srec -map -code_merging all,aggressive -

far_near_addressing -vle_enhance_merging -vle_bl_opt

EXECUTABLE-RAM = test_RAM

EXECUTABLE-FLASH = test_Flash

The output will be placed in...

O=bin

Common objects...

OBJS = $(O)/main.o $(O)/MPC5674F_HWInit.o $(O)/IntcInterrupts.o $(O)/Exceptions.o

$(O)/__ppc_eabi_init.o

Options for the Flash target...

ifeq ($(TARGET),Flash)

LOPTS += -romaddr 0x00020000 -rambuffer 0x00020000

COPTS += -DROM_VERSION=1

TARG = $(O)/$(EXECUTABLE-FLASH).elf

LCF = LCF/MPC5674F.lcf

OBJS += $(O)/MPC55xx_init.o

EXTRA = @echo "Use make clean; make TARGET=RAM to produce the RAM version"

Exporting CodeWarrior IDE Build Tools Settings into Command-Line Tools Options Application Note
20 Freescale Semiconductor

Options for the RAM target...

else

TARG = $(O)/$(EXECUTABLE-RAM).elf

LCF = LCF/MPC5674F_DEBUG.lcf

OBJS += $(O)/MPC55xx_init_debug.o

EXTRA = @echo "Use make clean; make TARGET=Flash to produce the Flash version"

endif

.SUFFIXES: .c .s

$(O)/%.o : Sources/%.c

 $(CC) $(COPTS) -o $@ $<

$(O)/%.o : Sources/%.s

 $(AS) $(AOPTS) -o $@ $<

default: bindir $(TARG)

$(O)/$(EXECUTABLE-RAM).elf: $(OBJS)

 $(LD) -lcf $(LCF) $(LOPTS) -l$(RTMLIB) -l$(MSLLIB) $^ -o $@

 @echo ""

 $(EXTRA)

$(O)/$(EXECUTABLE-FLASH).elf: $(OBJS)

 $(LD) -lcf $(LCF) $(LOPTS) -l$(RTMLIB) -l$(MSLLIB) $^ -o $@

 @echo ""

 $(EXTRA)

Create the directory if it doesn't exist

.PHONY: bindir

bindir:

 @test -d $(O) || mkdir -p $(O)

clean:
 @rm -rf $(O)

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN4094

13 April 2010

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for
any other application in which the failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

Freescale, the Freescale logo, and CodeWarrior are trademarks of Freescale Semiconductor, Inc., Reg.
U.S. Pat. & Tm. Off. The Power Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by Power.org. All other product or
service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2010. All rights reserved.

	1. Introduction
	2. Command-Line Tools (CLT)
	3. Target Settings
	3.1. Access Paths Settings Panel
	3.2. EPPC Target Settings Panel

	4. Language Settings
	4.1. C/C++ Language Settings Panel
	4.2. C/C++ Preprocessor Settings Panel
	4.3. C/C++ Warnings Settings Panel
	4.4. C/C++ Assembler Settings Panel

	5. Code Generation Settings
	5.1. Global Optimization Settings Panel
	5.2. EPPC Processor Settings Panel
	5.3. EPPC Disassembler Settings Panel

	6. Linker Settings
	6.1. EPPC Linker Settings Panel
	6.2. EPPC Linker Options Settings Panel

	7. MPC5674F Makefile Example

