
Freescale Semiconductor
Application Note

Document Number: AN3507
Rev. 0, 09/2007

Contents

 Introduction. 1
ColdFire TCP/IP Flash and RAM Requirements 2

2.1 ColdFire TCP/IP Configuration for Above Results. . 4
2.2 Small Footprint Results . 6
 ColdFire TCP/IP Components . 8

3.1 Example: Calculating Flash and
RAM Requirements . 8

ColdFire TCP/IP Memory Model 9
4.1 HEAP – Task Stacks . 9
4.2 HEAP – Network Buffer . 12
Conclusion. 13

Small Footprint ColdFire TCP/IP
Stack
by: Eric Gregori

Product Specialist Embedded Software
Chicago
1 Introduction
The ColdFire® TCP/IP stack is a public source stack
provided for use with the ColdFire line of processors.
The stack is very robust and highly configurable. It
supports most of the commonly used protocols, and
includes many sample applications.

This application note discusses how to configure the
TCP/IP stack for minimum flash and RAM usage. For
complete details on the ColdFire TCP/IP stack, refer to
application note AN3470. For details on the Freescale
Web Server refer to Application Note AN3455.

ColdFire TCP/IP stack features:
• Hyper text transport protocol (HTTP) server
• HTTP client
• RSS/XML client
• TCP/UDP client and servers
• Serial-to-Ethernet client and servers
• Trivial file transfer (TFTP)

1
2

3

4

5

© Freescale Semiconductor, Inc., 2007. All rights reserved.

ColdFire TCP/IP Flash and RAM Requirements
• Dynamic host configuration protocol (DHCP) or manual IP configuration
• Domain name server client (DNS)
• Transmission control protocol (TCP)
• User datagram protocol (UDP)
• Internet control messaging protocol (ICMP)
• BOOTstrap protocol (BOOTP)
• Address resolution protocol (ARP)
• Internet protocol (IP)

Figure 1. ColdFire TCP/IP Stack

2 ColdFire TCP/IP Flash and RAM Requirements
These targets are discussed fully in application note AN3470.

Table 1. Flash and RAM Requirements for Various ColdFire TCPIP Builds

Target
Flash

(bytes)
BSS+DATA

(bytes)
Stack

(bytes)

Heap
(bytes)

Total RAM
(bytes)

Stack Only 33744 2820 1024 7852 11696

UDP Client 34368 2856 1024 8870 12750

TCP Client 35344 2938 1024 8870 12832

UDP Server 34176 2856 1024 8870 12730

TCP Server 35520 3202 1024 8870 13096

TCP Serial
Server

36176 3198 1024 8870 13092

TCP Serial
Client

36256 3198 1024 8870 13092

Web Server 45264 4660 1024 9894 15578

ColdFire Hardware (FEC, PHY, Timers, A/D, GPIO, RAM, SPI, SCI, IIC)

Hardware Abstration Layer (drivers)
ifec.c , iuart.c , mii.c , m5223evb.c , tecnova_i2c.c , freescale_serial_flash.c

Scheduler / API
task.c

Timers
timeouts.c

Application
Allports.c

Packet manager
q.c , pktalloc.c

init
main.c

Heap Manager
memio.c

Menu system
menu.c , nrmenus.c

TCP/IP stack
Small Footprint ColdFire TCP/IP Stack, Rev. 0

Freescale Semiconductor2

ColdFire TCP/IP Flash and RAM Requirements
2.1 ColdFire TCP/IP Configuration for Above Results

2.1.1 ipport.h - Component Disabling to Save Flash
Comment out (disable) In_Menus

Net_ Stats

DNS_ Client

DHCP_ Client

NPDEBUG

#define INCLUDE_ARP 1 /* use Ethernet ARP */

#define FULL_ICMP 1 /* use all ICMP || ping only */

#define OMIT_IPV4 1 /* not IPV4, use with MINI_IP */

#define MINI_IP 1 /* Use Nichelite mini-IP layer */

#define MINI_TCP 1 /* Use Nichelite mini-TCP layer */

#define MINI_PING 1 /* Build Light Weight Ping App for Niche Lite */

#define BSDISH_RECV 1 /* Include a BSD recv()-like routine with mini_tcp */

#define BSDISH_SEND 1 /* Include a BSD send()-like routine with mini_tcp */

#define NB_CONNECT 1 /* support Non-Blocking connects (TCP, PPP, et al) */

#define MUTE_WARNS 1 /* gen extra code to suppress compiler warnings */

//#define IN_MENUS 1 /* support for InterNiche menu system */

//#define NET_STATS 1 /* include statistics printfs */

#define QUEUE_CHECKING 1 /* include code to check critical queues */

#define INICHE_TASKS 1 /* InterNiche multitasking system */

#define MEM_BLOCKS 1 /* list memory heap stats */

#ifdef TFTP_PROJECT 1

#define TFTP_CLIENT 1 /* include TFTP client code */

#define VFS_FILES 1 /* include Virtual File System */

#endif 1

// EMG #define
TFTP_SERVER

1 /* include TFTP server code */

// #define DNS_CLIENT 1 /* include DNS client code */

#define INICHE_TIMERS 1 /* Provide Interval timers */

// EMG - To enable DHCP, uncomment the line below

//#define DHCP_CLIENT 1 /* include DHCP client code */

// EMG #define
INCLUDE_NVPARMS

1 /* non-volatile (NV) parameters logic */
Small Footprint ColdFire TCP/IP Stack, Rev. 0

Freescale Semiconductor 3

ColdFire TCP/IP Flash and RAM Requirements
2.1.2 ipport.h – Decrease the Number of Network Buffers to Save RAM

2.1.3 main.c – Set the Network Buffer Sizes

2.1.4 *lcf File (Link Command File) – Set System Stack Size

//#define NPDEBUG 1 /* turn on debugging dprintf()s */

// EMG #define
USE_MEMDEV

1 /* Psuedo VFS files mem and null */

#define NATIVE_PRINTF 1 /* use target build environment's printf function */

#define NATIVE_SPRINTF 1 /* use target build environment's printf function */

#define PRINTF_STDARG 1 /* build ...printf() using stdarg.h */

//#define TK_STDIN_DEVICE 1 /* Include stdin (uart) console code */

#define BLOCKING_APPS 1 /* applications block rather than poll */

#define INCLUDE_TCP 1 /* this link will include NetPort TCP w/MIB */

/* define number and sizes of free buffers */

#define NUMBIGBUFS 4 //4 * 1552 bytes = 6208 bytes

#define NUMLILBUFS 3 // 3 * 200 bytes = 600 bytes

/* FEC buffer descriptors */

#define NUM_RXBDS 1 // # of bigbufs - 3

#define NUM_TXBDS 2

 bigbufsiz = 1536 + 16; // 1552 bytes / buffer

 lilbufsiz = 200; // 200 bytes / buffer

 ___SP_END = .;

 . = . + (0x400);// 1024 bytes // 1024 bytes

 ___SP_INIT = .;
Small Footprint ColdFire TCP/IP Stack, Rev. 0

Freescale Semiconductor4

ColdFire TCP/IP Flash and RAM Requirements
2.1.5 osport.h – Set Task Stack Size

2.1.6 Specific Applications Task Size

//***
// Declare Task Object
//***
TK_OBJECT(to_emgtcpsrv);
TK_ENTRY(tk_emgtcpsrv);
struct inet_taskinfo emg_tcp_task = {

&to_emgtcpsrv,
 "EMG TCP server",
 tk_emgtcpsrv,
 NET_PRIORITY,
 0x400

};

/* task stack sizes */

#define NET_STACK_SIZE 2048 // Not used

#define APP_STACK_SIZE 1024 // Application task’s stack size

#define CLOCK_STACK_SIZE 512 // Clock task’s stack size

#define IO_STACK_SIZE 1024 // STDIN task’s stack size – TK_STDIN_TASK
Small Footprint ColdFire TCP/IP Stack, Rev. 0

Freescale Semiconductor 5

ColdFire TCP/IP Flash and RAM Requirements
2.2 Small Footprint Results
Using the configuration from Figure 1, the TCP/IP stack was instrumented to show HEAP usage.

Figure 2. Instrumented TCP Client Boot
Small Footprint ColdFire TCP/IP Stack, Rev. 0

Freescale Semiconductor6

ColdFire TCP/IP Flash and RAM Requirements
init task: 40, 1024
— The init task function creates the first task, (the network task) and assigns that task the system

stack. This function allocates 40 bytes from the HEAP for the task control block. The 1024
bytes is the size of the system task and is not allocated from the HEAP.

new task: 40, 512
— The clock task is the first task to be started. It has a 512 byte call stack. The 40 byte TCB and

the 512 bytes for the call stack are allocated out of the HEAP.

new task: 40, 1024
— The application task allocates 1024 byte for its call stack from the HEAP. It also requires a

TCB.

NETBUF: 58

BUFFER: 1552
— At this point, all the tasks are up and running. The TCP/IP stack starts allocating its network

buffers from the HEAP. NETBUF is a structure used to manage the network buffers. The
NETBUF structure is allocated from the HEAP. The buffer in this case is a big buffer. There
are four big buffers. Each big buffer requires 1610 bytes of HEAP space.

NETBUF: 58

BUFFER: 200
— The little buffers are only 200 bytes. Each little buffer also requires a network buffer to be

allocated. Each little buffer requires 258 bytes of HEAP space.

Results:
• Call Stacks + overhead = (3 * 40) + 1024 + 512 = 1656 bytes
• Buffers + overhead = (7 * 58) + (4 * 1552) + (3 * 200) = 7214 bytes

Total heap required (1024 byte application stack) = 8870.

Total heap required (2048 byte application stack) = 9894.
Small Footprint ColdFire TCP/IP Stack, Rev. 0

Freescale Semiconductor 7

 ColdFire TCP/IP Components
3 ColdFire TCP/IP Components
The flash and RAM sizes in Figure 1 are for only TCP or UDP projects. The ColdFire TCP/IP stack
includes additional protocols or features to enable embedded network devices. These additional protocols
or features (DHCP, DNS, and the console) are discussed fully in the application note AN3470. These
additional protocols or features are enabled or disabled by a set of defines in the file ipport.h.

The base stack (no applications) uses: 33744 bytes of flash and 2820 bytes of BSS RAM. Adding features
like the ones specified above, increases the flash and RAM footprint. Most of the base stacks RAM
requirements come from the HEAP.

3.1 Example: Calculating Flash and RAM Requirements
TCP client with DHCP and DNS enabled:

Base FLASH = 35344 (from table in section 1)
DHCP adder = 6907
DNS adder = 2715
Total Flash Required = 35344 + 6907 + 2715 = 44966 bytes
Base RAM = 12832 (from table in section 1)
DHCP adder = 117
DNS adder = 51
Total RAM Required = 12832 + 117 + 51 = 13000 bytes

Table 2. Stack Component, Features FLASH and RAM Adders

Component Description
Flash Adder

(Bytes)
RAM Adder

(Bytes)

NET_STATS statistics printfs 15200 442

DNS_CLIENT DNS client 2715 51

DHCP_CLIENT DHCP client 6907 117

NPDEBUG debugging dprintf()s 3408 32

TK_STDIN_DEVICE
IN_MENUS

Stdin (uart) console and menu
system

8272 600
Small Footprint ColdFire TCP/IP Stack, Rev. 0

Freescale Semiconductor8

ColdFire TCP/IP Memory Model
4 ColdFire TCP/IP Memory Model

Figure 3. ColdFire TCP/IP RAM Memory Model

A ColdFire TCP/IP project uses three types of RAM. The BSS or DATA_RAM is assigned by the linker.
This RAM contains the global variables, and is considered static. The system stack is defined by the linker,
explicitly specified in the projects *.lcf file. The system stack size is hard-coded in the *.lcf file. The
system stack is the call stack used by the ColdFire out of reset, and used by the ColdFire TCP/IP stack for
its network task.

The HEAP is managed by the ColdFire TCP/IP stack. The HEAP is also used by the TCP/IP stack for
network buffers, task stacks, and the temporary storage of misc.structures.

4.1 HEAP – Task Stacks
If the RTOS is enabled, it provides a dynamic mode of operation for the stack. Tasks can be created and
destroyed at runtime. As a task is created a new stack is created for the task by allocating RAM from the
HEAP. If the task is destroyed, the RAM allocated for the tasks stack is returned to the heap. This way your
application is dynamic. Using the RTOS may be more RAM efficient.

If a task is created, memory is allocated from the RAM (via the HEAP) for the new tasks stack. The size
of each stack is static, determined at compile time. The stack size must be chosen so that it’s big enough
to accommodate not only the task needs, but any interrupts used by the system.

With the RTOS enabled each task has a task control block (TCB). The TCBs are linked together in a linked
list. The TCB structure is declared in task.h. This simple RTOS does not support task priorities. The
scheduler simply increments to the next TCB in the list executing the task pointed to by the TCB if the task
is ready to execute and not sleeping. The RTOS is also non-preemptive, task switching occurs only when
a task gives up control. A task gives up control by calling tk_block() or goes to sleep (tk_sleep()).

DATA_RAM
(Init data)

BSS
(Static vars)

RAM Start-_DATA_RAM

System stack
(size set in*.lef)

Stack start

HEAP
(manage by TCP/IP stack)

Task stacks
Network buffers
Misc.structures

HEAP start

RAM end
Small Footprint ColdFire TCP/IP Stack, Rev. 0

Freescale Semiconductor 9

ColdFire TCP/IP Memory Model
Figure 4. ColdFire TCP/IP Memory Allocation

Tk_block()

Tk_block()

Tk_block()

All stacks
are
allocated
out of the
heap
(RAM)

Via the
stack
memory
manager

TCB1
Stack *
Stack size
Next TCB

TCB2
Stack *
Stack size
Next TCB

TCB1
Stack *
Stack size
Next TCB

TCB1
Stack *
Stack size
Next TCB

Task 1
stack

Task 2
stack

Task 3
stack

Task 4
stack

Unused

Unused

Unused

Unused

Static
Task1()

Static
Task2()

Static
Task3()

Static
Task4()
Small Footprint ColdFire TCP/IP Stack, Rev. 0

Freescale Semiconductor10

ColdFire TCP/IP Memory Model
4.2 HEAP – Network Buffer
The TCP/IP stack uses RAM for packet storage. Packets are stored in buffers managed by a dedicated
buffer queue, not the HEAP manager. The module pktalloc.c contains the packet buffer memory manager.

There are two categories of packet buffers, based on the size of the buffer:
• bigbufsiz is declared in pktalloc.c. It determines the size of the big buffers.
• lilbufsiz is declared in pktalloc.c. It determines the size of the small buffers.

Ethernet receive operations use only the big buffers. Transmit operations use either big buffers or small
buffers depending on how big the packet is. The receive operation must use only big buffers, because the
size of the packet received is not known until the whole packet is received. Bigbufsiz is set to be larger
than any packet that is to be received.

When the stack wants to send a packet, it calls pk_alloc (length). This length equals the desired packet
length. Pk_alloc() uses either a big buffer or small buffer depending on the desired packet size. This is done
for RAM efficiency. Make sure for TCP applications that the lilbufsiz is greater then the size of a ACK
packet (60 bytes with ether header).

RX buffers must be large enough to accept a full size ethernet packet. The macro MAX_ETH_PKT
defined in fecport.h sets the maximum packet size that can be received or transmitted by the fast Ethernet
controller (FEC). Bigbufsiz must be larger then MAX_ETH_PKT. The FEC requires that the packet buffer
be on a 16 byte boundary, so we add 16 bytes to the buff size to accommodate alignment.

bigbufsiz >= MAX_ETH_PKT + 16
lilbufsiz must be greater then TCP ACK packet size (60)

The number of buffers is a trade off between performance and available RAM. The stack allocates packet
buffer RAM from its HEAP during initialization. The packets buffer RAM is never returned to the HEAP.
Packet buffers are managed by a separate and independent memory manager (pktalloc.c). The primary
things to consider while determining the number of buffers are network performance requirements and
traffic, even if the embedded application does not require heavy Ethernet traffic. If there is heavy traffic
on the network connection more buffers are required. Although the FEC filters Ethernet addresses, the
broadcast addresses from ARP requests are passed to the stack, using packet buffers. A small number of
packet buffers could affect broadcast packets on stack performance. It is important that any changes to the
number of big buffers be tested in a network environment similar to the environment where the final device
will be used.

TCPTV_MSL defines the amount of time a TCP connection waits in the CLOSE-WAIT state. If a socket
is closed, it does not close immediately. It waits TCPTV_MSL * 2 seconds before actually closing and
releasing the packet buffers. In an environment where the connection is often opened and closed, and
waiting too long to free up, a packet buffer from a previously closed connection can result, while all the
packet buffers being locked up waiting for TCPTV_MSL timeout.

TCP_MSS or TCP maximum segment size sets the maximum number of data bytes a TCP segment can
hold. This value must be smaller then bigbufsiz. In fact, the MSS must be less then the bigbufsiz – TCP
header – IP header – Ethernet header. If sending large amounts of data, the higher the TCP_MSS the better,
within the limits mentioned above. The total data sent is broken up into (total data size) /TCP_MSS TCP
Small Footprint ColdFire TCP/IP Stack, Rev. 0

Freescale Semiconductor 11

ColdFire TCP/IP Memory Model
segments. The more segments, the more overhead to ACK the segments, resulting in a decrease in
performance.

Figure 5. Packet Buffer Usage

HARDWARE
 (FEC)

TCP/IP STACK
 (pktalloc.c)

TxBDs [0]

TxBDs [1]
NUM_TXBDS

RxBDs [0]

RxBDs [1]
NUM_RXBDS

lilbuff

lilbuff
lilbufs

lilbufsiz

bigbuff

bigbuff

bigbuff

bigbuff

bigbufsiz

bigbufs

Buffers are allocated from HEAP

pk_alloc()

pk_alloc()
Small Footprint ColdFire TCP/IP Stack, Rev. 0

Freescale Semiconductor12

Conclusion
5 Conclusion
Using the information in this application note the user can significantly reduce the flash and RAM
requirements for the ColdFire TCP/IP stack.
Small Footprint ColdFire TCP/IP Stack, Rev. 0

Freescale Semiconductor 13

Document Number: AN3507
Rev. 0
09/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 ColdFire TCP/IP Flash and RAM Requirements
	2.1 ColdFire TCP/IP Configuration for Above Results
	2.1.1 ipport.h - Component Disabling to Save Flash
	2.1.2 ipport.h - Decrease the Number of Network Buffers to Save RAM
	2.1.3 main.c - Set the Network Buffer Sizes
	2.1.4 *lcf File (Link Command File) - Set System Stack Size
	2.1.5 osport.h - Set Task Stack Size
	2.1.6 Specific Applications Task Size

	2.2 Small Footprint Results

	3 ColdFire TCP/IP Components
	3.1 Example: Calculating Flash and RAM Requirements

	4 ColdFire TCP/IP Memory Model
	4.1 HEAP - Task Stacks
	4.2 HEAP - Network Buffer

	5 Conclusion

