|
y

'
A

Freescale Semiconductor
Application Note

Document Number: AN3467
Rev. 0, 05/2007

Using Processor Expert with
Flexis™ Microcontrollers

by: Bruno Castelucci/ Paulo Knirsch
Field Application Engineers
Latin America Team, Brazil
Freescale Semiconductors

This application note uses Processor Expert embedded
beans and QE128 Flexis microcontrollers (MCU) to
demonstrate integrated peripheral initialization and
functionality on both an 8-bit and 32-bit QE128.
Processor Expert is a tool that helps reduce development
time for embedded software creation and markets
products faster. This document provides a basic easy to

use overview of Processor Expert.

The Freescale Controller Continuum provides stepwise
compatibility for an easy migration path, from the
ultra-low-end RS08 to our highest-performance

ColdFire® V4 devices.

CodeWarrior™ development tool helps you reuse and
speed the application development through the board

portfolio of the Controller Continuum.

Flexis™ Series of Microcontrollers is an 8-bit to 32-bit
Connection Point on the Freescale Controller
Continuum. Pin-to-pin compatibility between many
Flexis devices allows controller exchanges without
board redesign. Microcontrollers SO8 through ColdFire

© Freescale Semiconductor, Inc., 2007. All rights reserved.

Contents
............. Processor Expert and Embedded Beans2
11 Processor Expert Benefits3
1.2 What is an Embedded Bean?4

................................... QE Overview4
................................... Development7

31 ... Creating a project with Processor Expert8
32 Configuring the CPU bean11
33 Migrating CPU inside Flexis family13
34 Lab1: Timer and /015
35 ... Lab2: ADC - Analog to Digital converter27
36 ... Lab3: PWM - Pulse Width Modulation35
37 Running and Debugging the project42

................................... Conclusion44

freescale*

semiconductor

Processor Expert and Embedded Beans

V1 (CFV1) share a common set of peripherals and development tools to deliver the ultimate in migration
flexibility.

Flexis -- Is a single development tool to ease migration between 8-bit (S08) and 32-bit (CFV1). And a
common peripheral set to preserve and maximize the use of the software and hardware migration.

CodeWarrior provides a developed environment for Flexis devices that re-target your application code to
a seamless new Core (CFV1 or S08), taking you to the next step of an 8-bit to 32-bit compatibility.

1 Processor Expert and Embedded Beans

This section provides an overview of Processor Expert and embedded bean basics.

Processor Expert is an optional software plug-in for Freescale CodeWarrior development tools. Processor
Expert provides quick application object-oriented programming for embedded systems. MCU peripherals
are configured through a graphical user interface (GUI) within CodeWarrior integrated development
environment (IDE), generating the initialization and another user support code.

Figure 1 illustrates CodeWarrior IDE workspace with the enabled Processor Expert function. It shows the
project manager, bean selector, error, bean inspector, and central processor unit (CPU) Processor Expert
windows. Section 3.1 Creating a project with Processor Expert provides details on how to configure a
CodeWarrior project to include Processor Expert.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

2 Freescale Semiconductor

h o
g |

Processor Expert and Embedded Beans

{44 Freescale CodeWarrior . ;Iilil

File Edit Wiew Search Project Processor Expert Device Initialization window Help

AEEsEvserxbRAAAEEER s HER

=l ".~Bean Inspector Cpu:MC9508QE128CLH IS =lES]| . Target cPU [EpuMCasOs H =10] x| 1=~
MyProjectmcp | Bean ltemsVishiiy Help ¢ » View Rege> |[G
ITEH PLE Multiink/Cyclane Pro j Properties | Methods I Events I Build options I Used I Eommentl £
+'| Bean name Cpu iy
Files | Link Order | Targsts Process| | [cpU type MC3506GE T 28C0H v @ TJ R EERNET]
- - Clock settings
& Configurations | Initialization interrupt priority |intermipts enabled |1 @,
« % Debug GE128CLH 1 I peripheral —
(= Operating System CPU interrupts ’E
Bz CPUs Ell Enabled speed modes 'H‘.-'
S HE] High speed mode |Enakl=d u
= Bean: H+| High zpeed clock Internal Clock. | 32.768 kHz
E User Modules FHEl| Bus freq. divider Auto select ~|2 B2
& MyPraject. cimain +"| Internal buz clock 41594304 4194304 M
= Generated Modules | Fived frequency clock [I|0 016354
& External Modules B FLL mode Engaged ~|FEI
& Documentation |El| Ref. clock source|li=imnal Clock
L[Ref. clock freg, [MHD 032760 0032768 M
|El] DCO mode Autn select +| Diefault 512
|| FLL output clock freq| 16 777216 16777216 b
HE| Low speed mode Dizabled
L®| Slow speed mode Dizabled
[[signal [wCC [[ATD power st/
-, “ Bean Selector D : =101 x|
BASIC | ADVANCED | EXFERT BeanLevel HighLevelBean | e | OrChin ich | Alhabet | ssivnt | Luick belp]
- —, " & CPU -
-, ~Errors: 0, warnings: 0, | =101] = CPU External Devices
E & CPU Intemal Peripherals
& Communication
(= Converter
& Interrupts
= Meazurement 4)|
| | | 4] | 2| Fiter: | for MCISOEQETZECLH anly | Licensed A=

Figure 1. CodeWarrior Workspace

1.1 Processor Expert Benefits

Processor Expert uses an object-oriented application that builds methodology using embedded beans. The
embedded beans read the MCU hardware and register details into an intuitive software application
programmer interface (API). Embedded beans provide a software API and graphical interface to initialize
the MCU.

An expert knowledge system works in the background and checks that all the MCU settings and
configurations do not conflict with one another. The Processor Expert software APl and the expert
knowledge system enable an application developed in Processor Expert to be extremely portable among
MCU processors and Freescale MCU processors. Besides the benefit of reusing Processor Expert, other
benefits are:

» Easy to program and set-up CPU/MCU peripherals with a limited knowledge.

» Provides an interface to configure modules in real-world terms, such as baud rates.
* Provides ready-to-use hardware drivers for peripherals.

» Provides basic software solutions such as real time clock (RTC) functionality.

» Ability to create user-defined embedded beans.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 3

|
y

'
A

QE Overview

» Design-time settings verified by the expert knowledge system.
» Allows the use of external code, libraries, and modules.

1.2 What is an Embedded Bean?

Embedded beans are ready-to-use and tested building blocks for applications. Embedded beans read
embedded programming by providing a unified API across platforms and hiding the implementation
details. This characteristic makes the application portable.

The embedded beans link together functionality into properties, methods, and events. More details are
provided here:

» Properties - During the application design-time the embedded beans behavior is defined and then
compiled. These include MCU initialization settings such as speed of serial line, time period of the
periodical interrupt, or number of channels of A/D converter. Memory allocations or external
crystal speed can not change during run-time.

* Methods - The embedded beans behavior can be modified during the application runtime such as
receiving serial characters, changing the SCI baud rate, or driving/reading a pin value. When
modifying an attribute in the run time the embedded beans provide the programmer functions to
insert in the code.

» Events - These embedded beans provide function calls when important changes happen in the bean.
In this document our main purpose is to provide the basic steps with Processor Expert. Several uses of the
embedded beans are described enabling users to develop real applications with this powerful tool.

Properties, methods and events are explored demonstrating how they can be used in many types of
applications.

2 QE Overview

The MCF51QE128 and MC9S08QE128 are the first Flexis MCUs of the Freescale Controller Continuum.
These MCUs link an 8-bit and 32-bit word using a single development tool, common peripheral set and,
pin-to-pin compatibility. Some target applications for these devices are:

» Battery chargers.

» Secure boot co-processors.
» Security and alarm systems.
» Electronic power meters.

» Sensing systems.

* Handheld devices.

» Health monitors.

* Small appliances.

* Human input devices.

» Smart batteries.

* Industrial controls.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

4 Freescale Semiconductor

QE Overview

* Smoke and carbon monoxide detectors.
» Lighting controls.

e Toys.

» PC peripherals.

» Watchdog co-processors.

» Personal care appliances.

* Wireless communications.

* Remote controls.

* Wireless sensor applications.

These are some characteristics of the Flexis MCUs Freescale Controller Continuum:
 8-Bit HCS08 CPU

— Upto50.233 MHz at 3.6 V t0 2.1 V, and 20 MHz at 2.1 V to 1.8 V both across a temperature
range of -40°C to 85°C.

— An HCO8 instruction set with added background (BGND) instruction.
— Support for up to 32 interrupt/reset sources.
e 32-Bit Version 1 ColdFire CPU

— Upto50.33 MHz at 3.6 V to 2.1V, and 20 MHz at 2.1 V to 1.8 V both across a temperature
range of -40 °C to 85 °C.

— Provides 0.94 Dhrystone 2.1 million instructions per second (MIPS) per MHz performance
when running from internal RAM (0.76 DMIPS/MHz from flash).

— Implements instruction set revision C (ISA_C).
— Support for up to 30 peripheral interrupt requests and seven software interrupts.
e On-Chip Memory
— FLASH read/program/erase over a full range of operating voltage and temperature.
— Random-access memory (RAM).
— Security circuitry to prevent unauthorized access to RAM and FLASH contents.
» Power-Saving Modes
— Two very low power stop modes, one of these allows limited use of peripherals.
— Reduced power wait mode.

— Peripheral clock enable register disables clocks in modules not in use, thereby reducing
currents. This allows clocks to remain enabled to specific peripherals in stop3 mode.

— A very low power external oscillator used in stop3 mode to provide accurate clock source to
active peripherals.

— Very low power real time counter used in run, wait, and stop modes with internal and external
clock sources.

— Typical wake up time of 6 us for stop3 mode.
* Clock Source Options

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 5

|
y

'
A

QE Overview

— External oscillator (XOSC) -- is a loop control Pierce oscillator using a crystal or ceramic
resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz.

— Internal clock source (ICS) module -- contains a frequency-locked-loop (FLL) controlled by an
internal or external reference. The precision trimming of an internal reference allows 0.2%
resolution and 2% deviation over temperature and voltage. The ICS supports CPU frequencies
from 2 MHz to 50.233 MHz.

System Protection

— Watchdog computer operating properly (COP) -- is a reset with option to run from dedicated 1
kHz internal clock source or bus clock.

— Low-voltage detection with reset or interrupt, and selectable trip points.
— lllegal opcode detection with reset.
— FLASH block protection.
Development Support
— Single-wire background debug interface.
— Multiple breakpoint capability.
— Different trigger settings and trace capability.
Peripherals
— Analog to digital converter (ADC)
— 24-channel, 12-bit resolution.
— 2.5 us conversion time.
— Automatic compare function.
— 1.7 mV/°C temperature sensor
— Internal bandgap reference channel
— Operation in stop3
— Fully functional at 3.6 Vto 1.8 V.
— Analog comparator (ACMPX)

— Two analog comparators with selectable interrupt on rising, falling, either edge of the
comparator output.

— Compare option to fixed internal bandgap reference voltage.
— Outputs optionally routed to TPM module.
— Operation in stop3.
— Serial communications interface (SCIXx)
— SCI-Full duplex non-return to zero (NRZ).
— LIN master extended break generation.
— LIN slave extended break detection.
— Wake up on active edge.
— SPIx-Two serial peripheral interfaces with Full-duplex or single-wire bidirectional.
— Double-buffered transmit and receive.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor

Development

— Master or Slave mode.

— Either the MSB-first or the LSB-first shift.
— Inter-integrated circuits (11Cx)

— Two IICs.

— Up to 100 kbps with maximum bus loading.

— Multi-master operation.

— Programmable slave address.

— Interrupt driven byte-by-byte data transfer.

— Supports broadcast mode and 10 bit addressing.
— Timer/pulse-width modules (TPMXx)

— One 6-channel (TPM3) and two 3-channel (TPM1 and TPM2).

— Selectable input capture, output compare, buffered edge-/center- aligned PWM on each
channel.

— Real-time counter (RTC)
— 8-bit modules counter with binary or decimal based prescaler
— External clock source for precise time, time-of-day, calendar and task scheduling functions.

— Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external
components.

— Runs in all MCU modes.
* Input/Output
— 70 general purpose input/output (GPIOs), 1 input-only and 1 output-only pin.
— 16 keyboard interrupt (KBI) with selectable polarity.
— Hysteresis and configurable pull up device on all input pins.
— Configurable slew rate and drive strength on all output pins.
— SET/CLR registers on 16 pins (PTC and PTE).

— 16 bits of Rapid GPIO connected to the CPU's high-speed local bus with set, clear, and toggle
functionality (only MCF51QE128)

» Package Options
— 80-LQFP, 64-LQFP
— 48-QFN, 44-QFP, 32-LQFP (only MC9S08QE)

3 Development

This next section explains how to create a new project in CodeWarrior with Processor Expert tool. This
enables the procedure to configure the microcontroller CPU and the migration between the Flexis family
devices. The Processor Expert and the Flexis MCUs are explained using labs divided by peripherals, or
groups of peripherals. Each lab has a brief explanation of its fuctionality and a description of each
peripheral it uses. For example, the first lab will use 2 peripherals (Timer and 1/0) to make a LED blink.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 7

h o
g |

Development

3.1 Creating a project with Processor Expert

This section shows the procedure on how to create a new project for Code Warrior with the Processor
Expert tool and gives a brief explanation on how to configure the selected microcontroller CPU.

3.1.1 Creating a new project

You can create a Code Warrior project using Processor Expert with just a few Clicks.

1. When you open CodeWarrior, the Startup dialog box, shown in Figure 2, appears. Click Create
New Project, button. If the Startup dialog does not appear, go to the File menu, then click Startup
Dialog....

starup x|
H1

! Create Mew Project !

Load Example Project

Load Previous Project

Run Getting Started Tutonal

Start Uszing Codew arriar

-

e

v Dizplay on Startup

Figure 2. Startup dialog

Notice the Wizard Map on the left side of the Microcontrollers New Project window. This map has
the steps for the project creation wizard. The first step is Device and connection.

2. For the QE family of Flexis MCUs, expand Flexis and QE Family, choose one MCU, this example
uses the MC9S08QE128. See step 2 in Figure 3.

3. Choose the default connection. Click the P&E Multilink/Cyclone Pro option to build your project
for the DEMOQE128. See step 3 in Figure 3.

4. Click Next. See step 4 in Figure 3.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

8 Freescale Semiconductor

h o
g |

Development
Microcontrollers New Project x|
Wizard Map — ’ "
Select the derivative pou would ike to use: Choaze vour default connection:

Device and Connection

[-HCo8 Connections 2
F - e = o
Project Parameters (- HCS08
- (- RS08 €[Pa MultiinkiCyclone Fro
Add Additional Files ._ caldFire ¥1
Processor Expert =)- Flexis 2
=Ee] i

k- MC9S08QE128

MCIS0EQEIS

#-MCFSLQELZS Connect to PAE BOM Multiink [USE and 4|
i MCFS1QER4 parallel] ar PAE Cyclone Pra [USE, Serial
MCFS1QESA and TCF'.-"|P]_

< Back Firfisk | Cancel |

Figure 3. Microcontroller new project dialog

5. Inthe Project Parameters window type your project name in the corresponding field, this example
uses the name MyProject. See step 5 in Figure 4.

6. Click Next. See step 6 in Figure 4.

Pacrocontrollersnenprorec x
Wizard Map) 5
Fleasze choose the zet of languages to be ;
supported initially. Yiou can make multiple -
- hod P t.
Device and Connection selections. I T
e Ll I [Absolite assembly [D-Profiles bOT026 D eskiopIET Z8YPE ANYT
Add Additional Files I” Relocatable assembly
™ Set..
Processor Expert £
| e
C/C++ Optiong
PC-Lint C language support will be included in ;l
the project
= 6
< Back ' Mext » I' Finizh | Cancel |
\-——f

Figure 4. Microcontroller new project dialog

7. Click Next again. In the Add Additional files window, here you can add previous files that have
already been created.

8. In the Processor Expert window, select the Processor Expert option. See step 8 in Figure 5.
9. Click Next. See step 9 in Figure 5.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 9

Development

Microcontrollers New Project i x|

Wizard Map
Rapid Application Development
Options:

Device and Connection
Project Parameters = hone

Add Additional Files

Proceszor Expert
C/C++ Options
PC-Lint

The tool can generate initislization code and drivers A
for on-chip perpherals and alzo drivers for selected
external peripherals or softweare algorithms,

9 ;I Help |
< Back . Finizh | Cancel |

Figure 5. Microcontroller new project dialog

10. In the C/C++ Options window, click Next again, here you can choose which programming
language is used to develop your project.
11. In the PC-Lint window, click the Finish button.
12. Select the MCU package you want. This example software uses the MC9S08QE128CLH 64-pins
LQFP, this is used by the DEMOQE128 board. See Figure 6.
13. Click OKk.
i x|

Select CPU pin variants. See item's popup hint for detailed
description of the corezponding CPLU bean

1

=[S NI 0 40 i 5
I MCISOSQET28CAD0 #4-pins AFP

13

| &

Figure 6. Select CPUs Dialog

14. In the next window you need to choose if you are creating this project for debug, release or both.
For this example select only the debug option and click the Ok button. See Figure 7.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

10 Freescale Semiconductor

g |

Development

Select Configurations 10l x|
Select supported configurations - for all CPUz. The CPU bean in
"Debug" configuration iz preset for a debug mode support
[MOMOS monitor mode ar BOM support). The debug mode
support iz dizabled in the CPU bean in "Release” configuration.

Iw Diehuy
B ==

A | o |

Figure 7. Select CPUs Dialog

You created a new project!

3.2 Configuring the CPU bean

The CPU bean is automatically created when beginning a project with Processor Expert. For the Flexis
QE128, choose between the S08 8-bit MC9S08QE128 or the ColdFire V1 32-bit MCF51QE128. This
example uses the MC9S08QE128 CPU.

Figure 8 shows on the left the Processor Expert tab. Choose the CPU bean to be configured. On the right,
after the CPU bean is chosen the bean inspector window is displayed. Now configure the bean.

=l

.. Bean Inspector Cpu:MCISOBQE128CLH =18 x|
MyProject. mcp I Bean ltems Vishiity Help < = View Regs »
I v PEE Multlink /Cyclone Pro j ﬁ By & LY Properties |Meth0ds| Events | Buid options | Used | Comment
«'| Bean name Cpu
Fies | Link Order| Targets Processor Expert | | CPU bype MC3S080E12800H =
- - Clock settings
B Configuratiorss « | Initialization interrupt priority |interupts enabled |1
+ Za Debug_OE128CLH Internal peripherals
& Operating System CPU interrupts
E| Enabled speed modes
|E|| High speed mode Enabled
F+ | High speed clock Internal Clock + |32 768 kHz
EH= User Modules HEl Bug freq. divider Auto select |2
- BF MyPraject.c:main Fl# | Intemal buz clock 4194304 4134304 MHz: [16.777216¢
= Generated Modules Fl v | Fixed frequency clock [I|0.0716354
= External Modules | Ell FLL mode Engaged ~|FEl
& Documentation |El| Ref. clock source||nizimal Clock
U Ref. clock freq. [MHEL022765 0.032768 MH=: [0.0327684
|E] DCO mode Autn select «|Default (512)
|./| FLL output clock freq| 16 777216 16777216 MHz; [0.032768*
-|| Low zpeed mode Dizabled
-|| Slow zpeed mode Dizabled
BASIC | ADVANCED || EXPERT Bean Level High Level Bean]

Figure 8. Bean Inspector window - CPU Bean

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 11

Development

NOTE

Remember to always choose the Expert view at the bottom in the Bean
Inspector window. This allows to see all the available configurations for the
bean.

The Bean Inspector window allows the bean parameters to be configured. The Methods and Events code
generation can also be enabled or disabled.

In order to configure the bean parameters, select the Properties tab and modify the properties values.
Below you can find a list and description of the most important properties for the CPU MC9S08QE128
bean.

» Clock settings -- This option allows to choose an internal or external clock reference, and provides
other clock configuration settings.

» Internal peripherals -- This group contains peripheral settings. Changes may be needed for the
parameters to enable or disable the peripherals clock. Notice some peripherals clock are disabled
by default.

» Internal bus clock -- This field specifies the Internal Bus Clock used for a project. The maximum
value for the Flexis QE MCUs, is near 30 MHz.

If needed, select Methods to be created. Do this by selecting the Methods tab in the Bean Inspector
window. Click the round arrow button(g). For this bean, by default, there are no Methods created. Below
you can find some methods:

» Enablelnt -- Enables maskable interrupts

» Disablelnt -- Disables maskable interrupts

» SetWaitMode -- Sets the low power mode to Wait mode.

o SetStopMode -- Sets the low power mode to Stop mode. This method is available only if the STOP
instruction is enabled. See the STOP instruction property.

Figure 9 shows the Methods tab in the Bean Inspector window.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

12 Freescale Semiconductor

g |

Development

... Bean Inspector Cpu:MCIS0BQEL2BCLH B] |
Bean ItemsVizibiity Help < = View Begs >
Properties Methods | Events | Build opticns | Used | Carrment
| SetHighSpeed don't generate code
5| Set_owSpeed don't generate code
| SetSlowSpeed don't generate code
H | GetSpeedMode don't generate code
5| Setintect don't generate code
5| Getlntect don't generate code
| Enablelnt generate code
| Dizablelnt generate code
| GetRezetSouce don't generate code
B Setwaittode don't generate code
| SetStopkode don't generate code
5| GetlowtfoltageFlag don't generate code
5| Clearlowi oltageFlag don't generate code
| Getl owVoltage's amingFlag don't generate code
| ClearLowtoltage'w! arningFlag don't generate code
B GetPartizlPowerD ownFlag don't generate code
| ClearPartiaPowerDownFlag don't generate code
2| Getldentification don't generate code
| SetBackdoorkey don't generate code
| Delay100UJS don't generate code
BASIC | ADVAMCED | EXFERT Bean Lewvel: High Lewvel Bean o

Figure 9. Bean Inspector window - Methods for CPU Bean

Finally, set the Events configuration for this bean. Select the Events tab in the Bean Inspector window.
There are 4 events related to the CPU bean, Reset, Low Voltage Detection (LVD), Warning (LVW), and
Software Interrupt.

3.3 Migrating CPU inside Flexis family

A project created for one of the Flexis microcontrollers can be easily migrated to other microcontroller,
this means that a project initially created for an 8-bit microcontroller can be migrated to a 32-bit one, and
vice versa.

This example uses the project created in Section 3.1 Creating a project with Processor Expert, initially
created for the MC9S08QE128 and explains how to migrate it to the MCF51QE128.

With your project opened in CodeWarrior, click the "Change MCU/Connection..." button. See Figure 10.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 13

h o
g |

Development

=l

MyProject.mcp l

| D PEE Mutilink/Cyclone Pro k|ﬁ g@ v By
Files | Link: Drderl Targets Processor Changle MCU,I'Connection...—|

EH= Canfigurations
« 2 Debug QE128CLH
= Operating System
B CPUs:
< i BT
= Beans
B User Modules
Ve tyProject c:main
= Generated Modules
== External Modules
= Documentation

Figure 10. Migrating CPU connection

In the Device and Connection opened window, select the new MCU to migrate. Then select the default
connection and click the Finish button. Follow the steps in Figure 11.

Device and Connection) 1[

Select the derivative pou wauld ke to use: Chooze pour default connection:
s
&-HDB i R—— _
" HC508 < PEE Mulkilink) Cyclone Pro
[+ ColdFire W1 Bl ol
=1 Flexis
=8 QE Family
L MCOS0BQE1ZE
L MCOSOBCES
..... s

; = oL Connect to PEE BDR Multiink [USE and ﬂ
L MCFS1QESE parallel] or PEE Cyclone Pro (USE. Serial
and TCRAAP).

#

¥ Do create a backup zip file

e —
¢ Back " Cancel |

Figure 11. Migrating CPU options

Wait until CodeWarrior finishes files migration. A message may pop-up asking to add a new CPU bean,
select yes in this message.

Now both CPUs are in the project window, as shown in Figure 12. Notice now the MCF51QE128 is
selected.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

14 Freescale Semiconductor

Development

1=
MyProject mcp I
|ﬂ1|}* PSE Mulink/Cyclone P | 3 1B & B

Files I Link: Dlderl Targets Processar Expert I

EH= Configurations
+ Za. Debug_OE128CLH
= Operating System
B CPUs
g §_ou 51 0E 1281 OFPAD
(@ CpuMCIS0A0E1280LK
= Beans
B User Modules
v MyProject c:main
= Generated Modules
== External Modules
= Documentation

Figure 12. CPUs available

Switching is possible between CPUs by doing the same procedure again.

The project is ready to use with the new MCU!

3.4 Lab1: Timer and 1/O

This lab uses a timer and an 1/O port to make an LED blink. The timer generates a periodic interrupt that
controls the LED state with an 1/0 port. Every time an interrupt occurs, the LED state changes.

For each peripheral, you will find a brief description, followed by the used beans description and
configurations. Then the Lab is presented, with a configuration guide line, integrating two peripherals.

3.4.1 Timer: Peripheral Description

The timer/PWM module (TPM) is a 16-bit counter. It operates as a free-running counter and module
counter. When the TPM is configured for a center-aligned PWM it also operates as an up or down counter.
The TPM counter operated in a normal up-counting mode provides the timing reference for the input
capture, output compare, and edge-aligned PWM functions. The timer counter module registers,
TPMxMODH:TPMxMODL, and controls the module value of the counter. The values 0x0000 or OXFFFF
make the counter free running. Software reads the counter value at any time without affecting the counting
sequence. Anything written to the TPMXCNT counter registers resets the counter.

The TPM has the following features:

» Each TPM can be configured for buffered, center-aligned pulse-width modulation (CPWM) on all
channels.

» Clock sources independently selectable per TPMs.

» Selectable clock sources, bus clock, fixed system clock, and external pin.
» Clock prescaler taps for division by 1, 2, 4, 8, 16, 32, 64, or 128.

» 16-bit free-running and up/down CPWM count operation.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 15

Development

16-bit modulus register to control counter range.

Timer system enable.

One interrupt per channel, plus a terminal count interrupt for each TPM module.
Channel features:

— Each channel is input capture, output compare, or buffered edge-aligned PWM.
— Rising-edge, falling-edge, or any-edge input capture trigger.

— Set, clear, or toggle output compare action.

— Selectable polarity on PWM outputs.

For more detailed and specific data, visit product documentation MC9S08QE128 and MCF51QE128 at
www.freescale.com.

3.4.2

Timer: Timerint Bean

For the LED blink application, use the TimerInt bean. This bean implements a periodic interrupt. The
Onlinterrupt event is called on periodically with a user configurable period when the bean and its events
are enabled.

Figure 13 details the Bean Selector window and the TimerInt Bean. The following steps describe how to
add the TimerInt bean to the project:

1.
2.

Create a project according to Section 3.1 Creating a project with Processor Expert.

Go to menu Processor Expert > View > Bean Selector in CodeWarrior this is the Bean Selector
window (Figure 13).

Select the tab Categories, expand the folder CPU Internal Peripherals, and the Timer folder.
Inside the Timer folder are all the beans related to the Timer.

Double-click the TimerInt bean to add it to the project.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

16

Freescale Semiconductor

www.freescale.com

Development

- pean seector il
Categories | On-Chip Frph I Alphabeti Agsistant I Guick help »
= CFU

= CPU External Devices
B 2 CPU Internal Peripherals
= Communicatian
= Converter
= Intenupts
= Measurement
(= Peripheral Initialization Beans
& Partl/0
== Timer
g @ EventCrtrl 6
g @ EventCrti32
g @ EventCrtrd
g @ FreeCntr
g @ FreelntrlE
] @ FreeCntr32
g @ Freelntrd
g (B rrG
g B P
8 @ RTishared
5 G i
g @ Tirnerek

Periodic intermupt
§ @ WAl B oo | evel: High Level Bean

B Dauble click ta insert the bean inta current project

Filter: | for MCIS020E128CLH only | Licensed 7

Figure 13. Bean Selector window - Timerint Bean

These steps describe how to configure the TimerInt bean:
1. Inthe Processor Expert tab on the left panel, in the Beans folder, the new TimerInt bean is displayed
(Figure 14).
2. Double-click the new bean, and the Bean Inspector window activates.

3. To configure the bean, select the Properties tab and modify the properties values. Below is list and
description of the most important properties for the TimerInt bean.

— Periodic Interrupt Source -- selects which hardware timer is the source for the periodic interrupt
generator. The default value is the real time counter RTCmod, in this mode the selected
hardware timer is a single 8-bit modulus counter. Select any of the available timers. If the TPM
timer is selected choose a channel for this timer.

— Interrupt Period -- defines the period of the Interrupt. Select the time wanted.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 17

b -

|
Development

4. Figure 15 shows the Methods tab in the Bean Inspector window. This window by default has no
Methods created. If needed select which Methods to create by selecting the Methods tab in the
Bean Inspector window. Click the round arrow button(£y).

B -Bean Inspector TI1:TinerInt ;IEIEI
Led_Blink_mcp l Bean ItemsVisibity Help < > Wiew Regs »
| @, P&E Multlink /Cyclone Pro j ﬁ B ¥ @ 5 Properties IMethodsl Eventsj_gommentl
| Bean name T |
Files I Link: DdeTI Targets FProcessor Expert | | Periodic interupt source [RTCrmod »|FTCmod
- - | Counter RTC RTC
=& Canfigurations E| Interrupt servicelevent |t rabled
+ Zu Debug_QE128CLH |:|./| Interrupt it ALl
(= Operating System |./| Interrupt priority redium pricrity | not supported
B CPUs ¥ Intermupt period ...| Unassigned timing
& @ Cpu:MCA5080E128CLH +| Same period in modes =
EH= Beans +"| Bean uses entire timer no
Y @ El| Initialization
EE User Modules |:|./| Enabled in init. code e
£ Led_Blink.c:main || Events enabled ininit. [yes
b Evente.c-event El| CPU clock/speed selec
B Corierated Modilss +| High speed mode Th?s bean enabled Th?s bean ?s e_nabled
B Extemal Modules + | Low speed mode Th!s bean d!sabled Th!s bean !s d!sabled
T + | Slow speed mode Thiz bean dizabled Thig bear is dizabled
BASIC | ADVANCED | EXPERT Bean Level High Level Bean v

Figure 14. Bean Inspector window - Timerint Bean

NOTE

Remember always choose the Expert mode. In this mode are all the
available configurations for the bean.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

18 Freescale Semiconductor

b -

g |

Bean Inspector TI1:TimerInt

Bean ltemns Vizbity Help < =
Properties Methods IEventsl Comment

View Begs =

Development

=101]

Enable
Dizable

don't generate code
don't generate code

D

EnableE vent

don't generate code

DizableEvent

don't generate code

SetPerodMode

don't generate code

SetPeriodTicks1E

don't generate code

SetPenodTicks32

don't generate code

SetPeriodUsS

don't generate code

SetPeriodid 5

don't generate code

SetPenodSec

don't generate code

SetPeriodReal

don't generate code

SetFregHz

don't generate code

SetFreqkHz

don't generate code

HEEE == EEEEERHRBRBRR

SetFreghiHz

don't generate code

BASIC

| ADVANCED || EXPERT

Bean Level: High Level Bean

4

Figure 15. Bean Inspector Window - Methods for Timerint Bean

5. Figure 16 shows the Events tab in the Bean Inspector window, select the tab to configure. For the
TimerInt bean there is only one event enabled, the Onlinterrupt.

Bean Inspector TI1:TimerInkt

Bean ltemzisbiity Help < >

Propetties | Methods TEv Comment

=1olx]

View Begs »

Event module name

Events

BeforeMewSpeed

dor't generate code

Onlnterrupt

don't generate code
generate code

w
B
| AfterMewSpeed
=)

+| Event procedurs name

TI_Onlnteript

«| Pricrity

zame a interrupt

BASIC

| ADVAMCED || EXPERT Bean Level High Level Bean

A

Figure 16. Bean Inspector Window - Events for Timerint Bean

6. Compile the project pressing the F7 key. Once an event is enabled, a file named Events.c is
generated by the Processor Expert. This file contains all the events enabled for all the beans in the
project. This file is under the User Modules folder in the left panel (Figure 17). The event
Onlinterrupt in the file Events.c is named T11_Onlnterrupt. The code to be executed must be placed

inside the TI1_Onlnterrupt function.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor

19

3
4

y
A

Development
EF =
Lei Hink mep I b= {} - M- B d - Path [D:\Profisssb01026\Deskiop\IE128\PE ANProjects\Led_Blinks. \Events. <>
|TD’ PAE Muliink /Cyclone Pro jﬁ By @y % MODULE Events % g
Files I Lirk: Drderl Targets Processor Expert | =
#finclude "Cpu.h”
Bl & Configuratiors #include "Events h"
« Za Debug QE128CLH SE
& Operating System e
=& CPU: xx Ewent ¢ TI1_OnInterrupt {module Ewvents)
I
Q Epu:MEISOBUET 28CLH *%E From bean i THL [Timerlnt]
£ & Beans x%x Description :
/@ TI:Timerlnt *% When a timer interrupt occurs this event is called (only
S & User Modules *3x when the bean is enabled - <"Enable": and the svents are
: : : *3% enabled — <"EnableEvent":). This event 1= enabled only if
+ B Led Blink.c:main *¥E & interrupt =ervicesevent is enabled.
PR vents ooevend] xx Paramsters : Hone
& Generated Madules S e PR ey
= Extemnal Modules o
B = Docurnentation void TIl OnlInterrupt(void) =]
<% Urite your code here ... %~
T
Lineds Col23 ||4] | Bl

Figure 17. Events.c File for Timerint Bean

3.4.3 I/O: Peripheral Description

General purpose inputs/outputs are commonly called I/Os. These pins are configured either as digital input
or output. In most cases they are multiplexed with another peripheral, meaning that an 1/0 has another
function other than the general digital input/output pin. For example, in the SO8QE128, the pin
PTA7/TPM2CH2/ADP9 can be configured as a general 1/0 (PTA7), as a TPM channel (TPM2CH2) or
even as an A/D input (ADP9).

When a pin is configured as an 1/0 beyond the input/output configuration, each pin can be configured to
have a slew rate control, drive strength, and internal pull-ups.

An internal pull-up device can be enabled for each port pin by setting the corresponding bit in the pull-up
enable register (PTXPEN), but if the pin is configured as an output by the parallel 1/0 control logic or any
shared peripheral function then the pull-up feature is disabled. The pull-up device is also disabled if the
pin is controlled by an analog function.

Slew rate control can be enabled for each port pin by setting the corresponding bit in the slew rate register
(PTXSEn). When enabled, slew rate control limits the rate at which an output can transition in order to
reduce electromagnetic compatibility (EMC) emissions. Slew rate control has no effect on pins that are
configured as inputs.

An output pin can be selected to have high output drive strength by setting the corresponding bit in the
drive strength select register (PTxDSn). When high output drive is selected, a pin can find and consume
greater current. Every 1/O pin can be selected as high drive. Make sure that the total current source and
absorption limits for the MCU are not exceeded. Drive strength selection is intended to affect the DC
behavior of 1/0 pins, but the AC behavior is also affected. High output drive allows a pin to drive a greater
load with the same switching speed as a low output drive enabled pin, into a smaller load. Because of this,
the EMC emissions may be affected by enabling pins as high drive.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

20 Freescale Semiconductor

Development

For more detailed and specific data, visit product documentation MC9S08QE128 and MCF51QE128 at
www.freescale.com.

3.44 1/0: BitlO Bean

For the LED blink application, use the BitlO bean. This BitlO bean implements a one-bit input/output
using one pin of an 1/0O port.

First add the BitlO bean to your project and configure it in order to use it. The following steps will show
how to do that.
1. Create a project according to Section 3.1 Creating a project with Processor Expert.

2. Go to menu Processor Expert > View > Bean Selector in CodeWarrior this is the Bean Selector
window (Figure 13).

3. Select the tab Categories, expand the folder CPU Internal Peripherals, and the Port 1/0 folder.
4. Inside the Port I/O folder are all the beans related to the 1/0O (Figure 18).
5. Double-click the BitlO bean to add it to your project.

_lpix
Categories | On-Chip F‘rphl Alphabet I Assistanll Quick help >
= CPU

(= CPU External Devices
= &= CPU Internal Peripherals
(= Communication
= Converter
[Interupts
= Measurement
= Peripheral Intialization Beans
B Port 140
& QIm
§@ein

General 1-bit Input/0 utput
g @ B Bean Level: High Level Bean
g @ By Double click toingert the bean into curent project

§ M Buredi0
g @ Butel0
== Timer
&

Filter: | for MC3S080E128CLH only | Licensed 4

Figure 18. Bean Selector Window - BitlO Bean

These steps describe how to configure the BitlO bean:

1. Inthe Processor Expert tab on the left panel, in the Beans folder, the new BitlO bean is displayed
(Figure 19).
2. Double-click the new bean, and the Bean Inspector window activates.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 21

www.freescale.com

Development

teste TPMbeans mcp I

X

I []D‘ FPEE Multilink./Cyclone Pro

Files | Link Order | Targets Processor Expert |

ey &%

[El & Corfigurations
« Za Debug QE128CLH
= Operating System
El = CPUs
s Q CpuMCIS0SGLET28CLH
Bl Beans
< @
EH= User Modules
< testeT PMbeans.c:main
& Generated Modules
(= External Modules
(= Documentation

Bean Inspector Bit1:BitI0 101 =|
Bean Items ‘Visibility Help ¢ > Wiew Regs »
Properties IMethodsl Eventsl Comment
| Bean name Bit1 |
| Pirfar /0 PTO_KEIZP1_MOS12 ~|PTD1_KBI2P1_MOSI2
«'| Pir zignal
« | Pull registor autozelected pull | no pull registor
«' | Open drain puish-pull | puzh-pull
+'| Slew rate control for PTO1 |ves
+'| Dirive strength far PTDA Lo
«*| Direction Input/Dutput | Input /0 utput
1| Initialization
|:|./| Init. direction Output

|./| Init. walue 1]
| Safe mode ves
| Optimization for speed
BASIC | ADVANCED || EXPERT Bean Level High Level Bean v

Figure 19. Bean Inspector window - BitlO Bean

NOTE

Remember always choose the Expert mode. In this mode are all the
available configurations for the bean.

3. To configure the bean, select the Properties tab and modify the properties values. Below is a list
and description of the most important properties for the BitlO bean.

— Pin for 1/0 -- MCU pin used by this bean.
— Pull resistor -- Setting of the pull resistor (only for input mode). There are 6 options:

no pull resistor
— pull up resistor
— pull down resistor

— pull up or no pull resistor

— pull down or no pull resistor

— autos elected pull resistor

Slew rate control for pin -- Determines the slew rate control for the selected pin, if enabled.

Slew rate control limits the rate at which an output can transition in order to reduce EMC

emissions.

Drive strength for pin -- Determines the Drive Strength control for the selected pin. When high

drive is selected a pin is capable of sourcing and consuming greater current or driving a greater
load with the same switching speed as low drive. EMC emissions may be affected.

Direction -- Direction of the bean: input, output, input/output. The direction of the pin can be
switched in run time - see SetDir, Setlnput and SetOutput methods.

4. If needed select which Methods to create by selecting the Methods tab in the Bean Inspector
window (Figure 20). Click the round arrow button(y). For this bean, the methods that should be

used are:

— Setlnput -- Sets a pin direction to input, this is available only if the direction = input/output.
— SetOutput -- Sets a pin direction to output, this is available only if the direction = input/output.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

22

Freescale Semiconductor

Development

— GetVal -- Returns the input/output value. If the direction is input then the input value of the pin
is read and returned. If the direction is output then the last written value is returned.

— PutVal -- The specified output value is set.
— If the direction is in input, the bean saves the value to a memory or a register.
— If the direction is output, it writes the value to the pin.

— ClIrVal -- Clears the output value when set to zero. It is equivalent to the PutVal(FALSE). This
method is available only if the direction = output or input/output.

— SetVal -- Sets the output value to one. It is equivalent to the PutVal(TRUE). This method is
available only if the direction = output or input/output.

— NegVal -- Negates the output value inverting it. It is equivalent to the PutVal(!GetVal()). This
method is available only if the direction = output or input/output.

Bean Inspector Bit1:BitID = |EI|_);(J
Bean ltems Visiblity Help < = Wiew Regs >
Properties Methads |Events| LComment
| GetDir don't generate code g
| SetDir generate code
| Setlnput don't aenerate code
| SetDutput don't generate code
| Gefal generate code
| Putval generate code
& Cliv'al generate code
| Setyfal generate code
| Megyal don't generate code
BASIC | ADVANCED ||—E§<F'EF|T Bean Level High Level Bean 4

Figure 20. Bean Inspector window - Methods for BitlO Bean

5. There are no Events for this bean.

3.4.5 Lab1: LED Blink - Project configuration
This project is implemented for the DEMOQE128 Board.

For the LED blink application, use the TimerInt bean and the BitlO bean. The TimerInt bean generates an
interrupt with a 2 Hz frequency, which is a 500 ms period. The BitlO bean controls the MCU PTCO pin
connected to a LED (LEDO) on the board.

The LED state is switched with the BitlO bean method NegVal on the TimerInt, the event Oninterrupt.

Figure 21 shows the Bean Inspector window for Timerint Bean with the properties values for the LED
Blink project. The following steps describe how to configure the LED Blink project:

1. Create a project according to Section 3.1 Creating a project with Processor Expert. Create it with
the CPU configured to run with Internal Clock at the default speed.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 23

3
4

y
A

Development

2. The TimerInt bean and the BitlO bean must be added to your project. Refer to Section 3.4.2 Timer:

TimerInt Bean and Section 3.4.4 1/0O: BitlO Bean.

3. Once the TimerInt bean is inserted to the project, it appears on the left panel in the Processor Expert
tab, in the Beans folder (Figure 17).

4. Configure this bean to generate an event every 500 ms (freq = 2 Hz).

5. Double-click the TimerInt bean, and the Bean Inspector window activates.
6. In the Bean Inspector window configure the following:
— Let the Periodic interrupt source stay in its default mode (RTCmod).
— Set the Interrupt period to 500 ms.

'--.-:"-Bean Inspector TIL:TimerInkt

Bean Itemzizibiity Help < >

Properties |Melh0ds| Eventsl LComment

=18l x|

Yiew Regs »

+’| Bean name T
« | Periodic interrupt zource |RTCrod «|RTCrmod
«*| Counter RTC RTC
=] Interrupt zervicefevent |k nabled
t +| |nterupt ke Wit
«| |nterupt priority medium pricrity | not supported
« | Interrupt period =ea | hiighi 438.047 ms
«| Same period in modes yes
+’| Bean uses entire timer no
=] Initialization
': +| Enabled in init. code yes
«'| Events enabled in init. [ves

=)

| CPU clock/speed selec

+| High speed mode

This bean enabled

Thiz bean iz enabled

+| Low speed mode

This bean dizabled

Thiz bean is dizabled

+| Slow speed mode

Thiz bean dizabled

Thiz bean iz dizabled

BASIC | ADVAMCED || EXPERT BeanLevel HighLevel Bean

A

Figure 21. Bean Inspector window - TimerInt configuration on LED_BIink project

7. Configure the TimerInt bean to control the pin PTCO, and set it as an output pin.
8. Double-click the BitlO bean, and the Bean Inspector window activates.
9. Figure 22 shows the Bean Inspector window for BitlO Bean with the properties values for the LED

Blink project. In the Bean Inspector window configure the following:

— Set the Pin for 1/O value to PTCO.
— Set the Direction to Output.
10. The LED BIlink project uses the Timerint event Onlnterrupt. This event is configured by default.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

24

Freescale Semiconductor

h o
g |

Development

%.~Bean Inspector Bit1:BitI0 , -0l x|
Bean ltemsz Visibility Help < > Wiew Regs >
Properties |Meth0ds| Eventsl LComment
+’| Bean name Bit1
«'| Piry for 140 PTCO_TPM3CHO ~|FTCO_TPM3ICHD
«| Pin sighal
« | Pull resistar autozelacted pull | hio pull resistar
«| Open drain puzh-pull | push-pull
+| Slew rate control for PTCO |yes
«| Dirive strength for PTCO Lo
«| Diirection | Cutput
=] Initialization
t./ Init. direction Output

+'| Init. value 0
« | Safe mode ez
« | Optimization far speed

B&SIC | ADVANCED | EXFERT Bean Level: High Level Bean o

Figure 22. Bean Inspector window - BitlO configuration on LED_BIlink project

11. This project uses the NegVal method from the BitlO bean to invert the LED state. It is not generated
by default. To configure it, go to the Methods tab in the Bean Inspector window and click the round
arrow button () for the NegVal method. Figure 23 shows the Methods tab with the changes
proposed for the LED Blink project.

'-.,-_'"-Bean Inspector Bit1:BitID = IEI|E|
Bean ltemzizibility Help < = View Regs >
Properties Methods I Events I LCarnment
| GetDir don't generate code
| SetDir don't generate code
E | Setlnput don't generate code
E | SetDutput don't generate code
| Getfal don't generate code
| Putyal don't generate code
| Cltval don't generate code
& Setdal don't generate code
H| Negial generate code b8
BasIC | ADVANCED | EXPERT Bean Level: High Level Bean 5

Figure 23. Bean Inspector Window - BitlO Methods Configuration on LED_Blink Project

12. Now the TimerInt and BitlO beans are created.

13. Every time the TimerInt happens use the method and events of these beans to make the LED
change.

14. Compile the project pressing the F7 key.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 25

Development

15. Edit the function executed on the Onlinterrupt event. In the file Events.c there is a function named
TI1_Onlinterrupt. This file is in the User Modules folder on the left panel. The code to be executed
must be placed inside the TI1_Onlinterrupt function.

16. If needed drag-and-drop the NegVal method inside the TI1_Onlinterrupt function. The NegVal
method is inside the BitlO bean, as shown in Figure 24.

Led_Blink .mcp l

==l

[D PuE MuliirkiCyclone Po + | R 1B & B g

Fies | Link Order | Targets Processor Expett |

B Configurations
+ Za Debug QE128CLH
(= Operating System
El = CPUs
s @ Cpu:MCIS020ET28CLH
B & Beans
< (@ T11:Timerlnt
= @ BitBMO
® [GetDir
= [A] SetDir
& [Setlnput
B [SetDutput
= [Getval
= [Pubval
= M Cltfal
= [Setal
s 1 I
B User Modules
£ Led_Blink.c:main
s Events.c.event
(= Generated Modules
= Ewternal Modules
2 Documentation

=0l
b - {} - M- [~ o - Path | Di\Profileshb01 026\D esktophOE 128VPE AN'Projects'. . \Events.c 47
#% MODULE Events %/ a
Finclude "Cpu. h"
#include "Events. h"
e 3
B TSI IS0
*3% Ewvent : TI1l_OnInterrupt (module Events)
E 2
*% From bean i UPIY FTimerIng]
*% Description
*% When a timer interrupt occurs this event i= called (c
*3% when the bean is enabled - <"Enable": and the events
*% enabled — <"EnableEwvent":>). This event is enabled on.
*% a interrupt servicesevent is enabled.
*% Parameters Hone
*3% Returns : Hothing
AR e e e e e e g N e e e e e ey e e e i ey gy S S S i ey e g
*

void TI1l CnInterrupt({void)
<% Write your code here ... =~
Bitl HegVal():
¥
<% END Events %~

e 3

=% FEEFRERERERERERERERRRERRRRR R AR AR AR RS RS RS AS A AR AR AR LS
E 2

*3% Thi= file was created by UNIS Processor Ezpert 3.00 [03 %
*% for the Freescale HCS08 series of microcontrollers.

L)

*x BREFEREAEEAEAELEES SR LRSS S AL AS SR AR SR SRR R AL SRS A LRSS S LLL

Figure 24. Events.c file -TI1_Oninterrupt Function on LED_BIink Project

17. The LED BIlink project is ready.

18. To program the board, run and debug the project, refer to Section 3.7 Running and Debugging the

project.

19. Test the project on the DEMOQE128 board. Connect the board to the PC and press the debug

button as shown in Figure 25.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

26

Freescale Semiconductor

Development

T
Led_Blink_.mcp I
[D Foe Mutiik/CyooneFo. | G B B 5
Files I Lirk Dlderl Targets Processor Expert | @]

EH2 Configurations
% Debug QE128CLH
= Operating System
El= CPUs
" (@ CpuMCIS080E128CLH
El = Beans
+ @ TH:Timerlnt
« @ BirBH0
Bl User Modules
v Led_Blink.c:main

wverts.c:event
(= Generated Modules
= Extemnal Modules
= Documentation

Figure 25. Debug - LED Blink Project

3.5 Lab2: ADC - Analog to Digital converter

This lab uses an ADC channel and an 1/0 port to make the LED (switch) change its state. This depends on
the potentiometer resistance value. The ADC reads the voltage value generated by the potentiometer.
When the value is more than half, the LED is ON. When the value is less than half, the LED is OFF.

The 1/0 peripheral is explained in Section 3.2.3. For the ADC, used related beans description and
configuration there is a brief description. The Lab is then presented with a configuration guide line
integrating the peripherals beans.

3.5.1 ADC: Peripheral Description

The analog-to-digital converter (ADC) is a converter that changes an analog voltage to a digital value. The
12-bit ADC is a successful design that operates within an integrated MCU system-on-chip.
Features of the ADC module include:

» Linear approximation algorithm with 12 bits resolution.

» Up to 28 analog inputs.

* Output formatted in 12, 10 or 8-bit right-justified format.

» Single or continuous conversion and an automatic return to idle after single conversion.

» Configurable sample time and conversion speed/power.

» Conversion complete, flag and interrupt.

» Input clock selectable, up to four sources.

* Operation in wait or stop3 modes for lower noise operation.

* Asynchronous clock source for low noise operation.

» Selectable asynchronous hardware conversion trigger.

» Automatic compare with interrupt for less-than, greater-than or equal-to programmable value.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 27

Development

For more detailed and specific data, visit product documentation MC9S08QE128 and MCF51QE128 at
www.freescale.com.

3.5.2 ADC: ADC Bean

For the LED ADC application use the ADC bean. This bean implements the internal ADC peripheral
functionality. Properties of the ADC bean are defined to provide an initialization code and selectable
methods for the bean runtime API. The properties define all settings for the ADC operation mode.To use
the ADC bean, you first need to add it to your project and then configure it, the following steps will show
how to do that.

Adding an ADC bean the project:

1. Create a project according to Section 3.1 Creating a project with Processor Expert.

2. Go to menu Processor Expert > View > Bean Selector in Code Warrior and add the ADC bean
(Figure 26).

3. Select the tab Categories, expand the folder CPU Internal Peripherals, the Converter, and the ADC
folders.

4. Inside the ADC folder are all the beans related to the ADC peripheral.

5. Double-click the ADC bean to add it to your project.

'-.,-:"-Bean Selector - iy] 1|
Categories i On-Chip Prph I .t‘-‘«lphabetl Azziztant I Guick help >
= CrRU

(= CPU External Devices
Bl &= CPU Internal Peripherals

= Communication

El = Converter

e ADC
§ s
= Intempts
AJD converter

(&> Measureme Bean Level High Level Bean
= Peripheral [Double click to insert the bean into curent project

= Porit 140
&= Timer
= 5w

Filter: | for MCF510E12ELAFPES only | Licensed 4

Figure 26. Bean Selector Window - ADC Bean

These steps describe how to configure the TimerInt bean:

1. Inthe Processor Expert tab on the left panel, in the Beans folder, the new ADC bean is displayed
(Figure 27).

2. Double-click the new bean, and the Bean Inspector window activates. There you can configure the
bean parameters, and to enable/disable the Methods and Events creation.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

28 Freescale Semiconductor

Development

x| Bean Inspector AD1:ADC 101 =|
ACD_Bean_Test. mcp I Bean ltemsVisbilty Help < > Wiew Regs »
I []D. PLE Mulilink./Cyciane Fro LI ﬁ B v @ K Properties IMethodsl Eventsl Comment
| Bean name AD1 |
Files I Link Drderl Targets FProcessor Expert | | 84D converter ADC +~|aDC
- - «'| Sharing Disabled
B & Configurations B/ Interrupt service/event Enabled
« 2 Debug_E128L0FFE4 t|./|MD interrupt ado Vadc
(& Dperating System | &40 interrupt priority rediur priority w | level 3, pricrity withi level 5
B & CPUs El| A/D channels 1 +|=
8 CpuMCFS10E128L0FPES L/=[Channeld
Bl Beans |:|./| AD channel [pin] FTF7_ADP17 ~|PTF7_ADFP17
¥ @ fA011-AD |v| 8D charnel [pin] signa
== User Mo /0 converter «| 440 resolution Autozelect |12 bits
@ AL Bean Level: High Level Bean ¥ | Conversion lime ... | I nassigned timing
. Events.o-event +| Low-power mode Dizabled
= Generated Modules +| Sample time short 5
& External Maodules + | Automatic Compare Dizabled
B Documentolig 5| Internal trigger Dizabled
| Mumber of conversions 1
El| Initialization
|:|./| Enabled in init. code ves
|./| Evente enabled ininit. |yes
El| CPU clock/speed selec
+*| High speed mode Thiz bean enabled Thiz bean is enabled
+’| Low speed mode Thiz bean dizabled Thiz bean is dizabled
+'| Slow speed mode Thiz bean dizabled Thiz bean is dizabled
BASIC | ADVANCED || EXPERT Bean Level High Level Bean o

Figure 27. Bean Inspector window - ADC Bean

NOTE
Remember always choose the Expert mode. In this mode are all the
available configurations for the bean.
3. To configure the ADC bean, select the Properties tab and modify the properties values. Below is a
list and description of the most important properties for the ADC bean.

— Interrupt service/event -- If this property is set to Enabled, the bean functionality depends on
the interrupt service and does not operate if the CPU interrupts are disabled.

— A/D channels -- List of the pins used by the A/D converter. You may add/delete a pin item with
the +/- buttons, and select a pin for each item with the roll-down menu. Each item of the
channel list has the following fields:

— Channel0 -- Number of the channel.
— AJD channel -- Selected A/D channel or pin name.
— A/D resolution -- Maximum data resolution required by application 8, 10 or 12-bit.

— Conversion time -- Time of one conversion. It is necessary to type both a value and a unit. The
setting may be made with the help of the Timing dialog box. It opens when clicking on the
button (...).

— Sample time -- Select length of the sample time in units of ADC conversion clock cycles. This
selection affects the total conversion time and the A/D conversion accuracy. A longer sample
time results in better accuracy.

— Number of conversions -- Number of conversions for one measurement to calculate an average
value.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 29

3
4

y
A

Development

4. Notice there is an error in the Conversion Time field, the default value is empty this field is
mandatory. Complete this field with any value, click the "°}" button to see all the possible values.
The error should now disappear.

5. If needed select the Methods to create by selecting the Methods tab (Figure 28) in the Bean
Inspector window. Click the round arrow button (). For this bean, the methods that can be used

are:

— Start -- This method starts continuous conversion on all channels that are set in the bean
inspector. When the measurements on all channels have finished the OnEnd event may be

invoked.

— Stop -- This method stops the continuous measurement.

— MeasureChan -- This method performs measurements on one channel.

— GetValue -- Returns the last measured values for all channels. The format and width of the
value is a native format of the A/D converter.

— GetChanValue -- Returns the last measured value of the required channel. The format and

width of the value is a native format of the A/D converter.

— GetChanValuel6 -- This method returns the last measured value of the specified channel in a
16-bit word, justified to the left (even if the AD resolution is less than 16-bit). The user code

dependency on AD resolution is eliminated.

'-.:"-Bean Inspector AD1:ADC ;|_g|5|
Bean [temsVisibiity Help ¢ > YWiew Regs »
Froperties Methods Igventsl Cornrment
E| Enable don't generate code
E| Dizable don't generate code
| EnableEvent don't generate code
E| DizableEvent daon't generate code
| Start don't generate code
| Stop dor't generate code

|E| Measure generate code
B MeazureChan don't generate code
| EnablelntChanT rigger dar't generate code
B Getalue don't generate code
B GetChanvalus don't generate code
E| GetYalued don't generate code
B GetChanyalued don't generate code

B Get/alus1h generate code
E| GetChanvaluel1k don't generate code
| EnabledsynchroClock don't generate code
H | DizableAsynchroClock dor't generate code
| EnablefutaCompare don't generate code
| DizableAutaCompare daor't generate code

BASIC | ADVAMCED || ExFERT Bean Level High Level Bean i

Figure 28. Bean Inspector window - Methods for ADC Bean

6. Set the Events configuration for this bean. Select the Events tab (Figure 29) in the Bean Inspector
window. For the ADC bean the event OnEnd is very important. Once this event is enabled, every
time the ADC completes a conversion, an event occurs.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

30

Freescale Semiconductor

g |

Development

'-.,-_'"-Bean Inspector AD1:ADC = |EI|5|
Bean ItemsVisibiity Help ¢ > Yiew Begs »
Properties | Methods Events IEommenll
+'| Event module name Events |
= | BeforeNew5peed don't generate code
2| AfterNewSpeed don't generate code
2| OnEnd generate code
t «| Event procedure name AD1_OnEnd

«"| Pricrity zame as interupt |3
BASIC | ADVANCED || EXPERT Bean Level High Level Bean o

Figure 29. Bean Inspector Window - Events for ADC Bean

7. Compile the project pressing the F7 key.

8. Edit the function executed on the OnEnd event. In the file Events.c there is a function named

AD1_OnEnd. This file is in the User Modules folder on the left panel. The code to be executed
must be placed inside the AD1_OnEnd function (Figure 30).

x|

E—— ioixi
ALD-bean Teslmcp I b -} - M- [F - O - Path [DProfies\b01 0264y Documents\CD_Bear Test\CODE\Events o &
[v Pre MuliinkCyclore Po + | {5 D) & B g L —— =
*3 Event AD1_OnEnd (module Ewents) ;I
Files | Link Order| Targsts Processer Expert | =
*3% From bean AD1 [ADC]
= Configurati *E Description
= o IQLE;a‘I:nS E126L0FPE4 *3¥ This event is called after the measurement (which
" 2 Debug | a *3% consists of ¢l or more conversions:) is~<are finished.
(= Operating System *3% The event i= available only when the <Interrupt
B CPUs *%x 5 Sefvice/ev;nt> rroperty is enabled.
HE i
& « (@ CpuMCFS10E128L0FPS4 85 b ot
[l Beans %% ===
< @ 201:4DC = :
SE User Modules void AD1_ OnEnd({woid)
+ B AC0_Bear_Testcimain ##% Write your code here ... =~

« B ey il
= Generated Modules
(= External Modules
& Documentation

<% END Ewents *~

Pt

= FEAEALLEEEELLEEEE A S SRS S A A A A AR R R
HE

*3% Thi= file was created by UNIS Processor Expert 3.00 [03.89]

*E for the Fresscale ColdFireVl seriss of microcontrollers.
*E

Line 47 Cals [[4]

Figure 30. Events.c File for ADC Bean

3.5.3

Lab2: LED ADC - Project configuration

This project is implemented for the DEMOQE128 Board.

For the LED ADC application, use the ADC bean and the BitlO bean. The ADC reads the voltage value
generated by the potentiometer. It is connected to the port PTAO and if the value is more than half of the
maximum value read by the potentiometer, the LED (PTCO) is ON. If the read value is less than half, the

LED is OFF.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor

31

A 4
4\

Development

Figure 31 shows the Bean Inspector window for ADC Bean with the properties values for the LED ADC
project. The following steps describe how to configure the LED Blink project:

1.

Create a project according to Section 3.1 Creating a project with Processor Expert. Create it with
the CPU configured to run with the Internal Clock at the default speed.

The ADC bean and the BitlO bean must be added to your project. Refer to Section 3.5.2 ADC:
ADC Bean and Section 3.4.4 1/0: BitlO Bean.

Once the ADC bean is inserted to the project, it appears on the left panel in the Processor Expert
tab, in the Beans folder.

Configure this bean to generate conversions with the PTAO port voltage value.
Double-click the ADC bean, and the Bean Inspector window activates.

In the Bean Inspector window configure the following:

— Select the PTAOQ in the A/D channel field.

— Select the value 5.484 ps in the field Conversion Time by clicking the "..." button.

— In the Methods tab, enable the "Start" method by clicking the round arrow button ().

i."~Bean Inspector AD1:ADC i] 4

Bean ltemsVisibility Help <« >

Wiew Regs >

Properties |Meth0ds| Eventsl LComment

+’| Bean name AD7
+| A0 converter ADC »|ADC
«| Sharing Dizabled
El| Interrupt zervicefevent Enabled
|:./ A7D interrupt " ade Wado
+| /0 interupt priority mediumn priorty + | lewvel 3. priority within level 5
Bl A/D channels 1 +[-
L=[Channelo

« | &40 channel [pit]
« | &40 channel [pit] signa

PTAD KEBIPO_TPMICHO £ =|PTAD_KBITPO_TRM1CHOD £

+| 84D resolution Autozelect |12 bits

+| Conwvergion time 5.484 ps = Jhigh: 5750 ps

« | Low-power mode Dizabled

«| Sample time zhort | Total conv. time: high: 11.99
«| Automatic Compare Dizabled

=) Internal trigger Dizabled

+"| Number of conversions 1

E| Initialization

':-/ Enabled in init. code ez

%

Events: enabled in init.

yes

Bl CPU clock/speed selec
+| High zpeed mode Thiz bean enabled Thiz bean iz enabled
«| Low speed mode This bean disabled This bean is dizabled
«| Slow speed mode Thiz bean dizabled Thiz bean iz dizabled

BASIC | ADVANCED || EXPERT

Bean Level: High Level Bean -

Figure 31. Bean Inspector Window - ADC Configuration on LED_ADC Project

7. The LED ADC project uses the ADC event OnEnd. This event is configured by default.
8. Configure the BitlO bean to control the pin PTCO, and set it as an output pin.

9. Double-click the BitlO bean, and the Bean Inspector window activates (Figure 32).

10. In the Bean Inspector window configure the following:

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

32

Freescale Semiconductor

11.

12.

13.
14.

15.
16.
17.
18.

Development

— Set the Pin for I/0O value to PTCO. This pin is multiplexed with other peripherals, its name has
also the KBI, TPM and AD functions.

— Set the Direction to Output.

. ~Bean Inspector Bit1:BitI0 i =100 x|
Bean ltemsz Visibility Help < > Wiew Regs >
Properties |Meth0ds| Eventsl LComment
+’| Bean name Bit1
«'| Piry for 140 PTCO_TPM3ICHO ~|FTCO_TPM3ICHD
« | Piry zignal |
« | Pull resistar |autazelzcted pull | hio pull resistar
«| Open drain puzh-pull | push-pull
+| Slew rate control for PTCO |yes
«| Dirive strength for PTCO Lo
«| Diirection | Cutput
=] Initialization
tc/ Init. direction Dutput
+'| Init. value 0
«| S afe mode |z
« | Optimization far ispeed
B&SIC | ADVANCED | EXFERT Bean Level: High Level Bean o

Figure 32. Bean Inspector Window - BitlO Configuration on LED_ADC Project

Integrate the ADC and BitlO beans created in order to make the LED state change. The LED state
changes every time the value read from the ADC varies.

Edit the function executed on the OnEnd event. In the file Events.c find a function named OnEnd.
This file is under the User Modules folder on the left panel. The code to be executed when the
interrupt generated by the ADC bean occurs, must be placed inside the OnEnd function.

Use the AD1_GetValuel6 method to get the value from the ADC.

Write a small code that compares the value from the ADC with half of the maximum value. Use
the AD1_GetValuel6 method, this method always returns values between 0x0000 and OxFFFF.
The half value is OX7FFF. To use the AD1_GetValuel6 method, pass a parameter with a pointer to
the place where the ADC value is stored for future use. In this example create a word type variable
(16-bits) named AD_Result.

Use an if...then...else statement to compare the value.

Use the BitlO methods Bitl_ClrVal() and Bitl_SetVal() to turn the LED ON and OFF.
The code created must be placed inside the OnEnd function.

The final code is shown in Figure 33.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 33

}{—

Development

NN ol
bh-{} - M- - - F'ath:|D:&Prnfiles‘\bmDEB\Desktop\GE128‘\PE AMWProjectshLED_ADCAVCODENEwents.c &f
*3% Description : E%
*¥% Thi= event i= called after the measurement {(which :ﬂ
*¥% conzists of <1 or more conversion=:) iz are finished.
% The event i= awvailable only when the <Interrupt
*3 zervicesevent > property is snabled.
% Paramsters : Hone
*¥% FEeturns : Hothing

¥ ST ESESESESSSSESSSSESSSSSSESSSSSSSSSSSSSSSSSSSSSSSSSS=SSSSSS=SSSSS=S=S===S
*.
vold AD1 OnEnd({wvoid)
{
word AD Result
% Nlrite your code here ... *7
AD1 GetValusle(&AD Result):
if (AD Result » 0x7FFF) {
Bitl ClrVali):

lelse{
Bitl SetVal();
H

¥

% END Events #*/
P
Line 42 Cal12 | [4] A P
Figure 33. Events.c file -OnEnd Function on LED_ADC Project

19. By configuring the OnEnd event, the LED is controlled when the ADC finishes a conversion. The
final step is to start the ADC conversions.

20. This project uses the continuous conversion mode. Every time an ADC conversion ends, another
one begins. To start the ADC conversions in continuous mode, use the ADC Bean Start method.
Place this method in the beginning of the code, inside the main() function.

21. The main() function is inside the LED_ADC.c file.
22. Add the Start method inside the main() function, before the infinite loop for(;;){}.
23. This code is shown in Figure 34.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

34 Freescale Semiconductor

Development

{ GLED_ADC.cC i O] x
) =10

b} - M- [+ o - Path [D:\Profles\h 026D esktop\GE1285PE AN\Projects\LED_ADCAMCODENLED_ADC <3

#include "Bitl.h" a
Include shared modules. which are used for whole project =7 A
#include "FE Tvpes. h"

#include "FE Error h"

#include "FE Const h"

#include "I0 Map h"

void main(woid)
<% Write vour local wvariable definition here =~

~#*%% Processor Expert internal initialization. DON'T REMCOVE THIS CODE!I!D!
PE low_level_init():
s%%% End of Processor Expert internal initialization.

% Write your code here *-
7% For examnple: for{::) { } =~

AD1_Start():

s%%%¥ Don't write any code pass this line, or it will be deleted during ¢
<#%% Processor Expert end of main routine. DOH'T MODIFY THIS CODE! LD sexs
i gl IR L.
<%%%¥ Processor Expert end of main routine., DOH'T WRITE CODE BELOW! |1

b s=x%% End of main routine. DO NOT MODIFY THIS TEXTI | s

% END LED_ADC =~
Line 48 Col16 || 4] | v oz
Figure 34. LED_ADC.c File -main Function on LED_ADC Project

24. The LED ADC project is ready.

25. To program the board, run and debug the project, refer to Section 3.7 Running and Debugging the
project.

26. Test the project on the DEMOQEZ128 board. Change the potentiometer to see the LEDO turn ON
and OFF.

3.6 Lab3: PWM - Pulse Width Modulation

This lab uses a PWM to control the brightness of the LED. The PWM duty-cycle is controlled by a
potentiometer. Applying a voltage in an ADC channel, the ADC converts this value to digital to control
the PWM duty-cycle.

The PWM uses a TPM timer. The peripheral has been explained in Section 3.2.1. The PWM bean is
explained with details in the next section. This lab also uses an ADC to read the potentiometer position
value. The ADC peripheral and the ADC bean are explained in Section 3.3.1.

For more detailed and specific data, visit product documentation MC9S08QE128 and MCF51QE128 at
www.freescale.com.

3.6.1 Timer: PWM Bean

For the PWM _Lab application, use the PWM bean. This bean implements a PWM that generates a signal
with a variable duty and fixed frequency.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 35

Development

To use the PWM bean, first add it to your project and then configure it. The following steps will show how
to add a PWM bean to the project:

1. Create a project according to Section 3.1 Creating a project with Processor Expert.

2. Go to menu Processor Expert > View > Bean Selector in Code Warrior and add the PWM bean
(Figure 35).

3. Select the tab Categories, expand the folder CPU Internal Peripherals, and the Timer folder.

4. Double-click the PWM bean to add it to your project.

il
Categories I On-Chip Frph I Alphabetl .fi.ssistantl Quick help »
(= Canverter |

= Intenupts

= Measurement
(= Peripheral Initialization Beans
= Port 1/0
== Timer
g @ EventCrtrl &
g @ EwentCrti32
g @ EventCritrd
g @ FreeCntr
g @ FreeCntrlG
g @ FreeCntr32
g @ FreeCntrd
§ (B rrG
5O
§ @ RTishared
g @ Timerlnt
g @ TimerQut
g @ WwatchDog
= 5w -

Filter: | for MCFS10E128LOFPE4 anly | Licensed 7

Figure 35. Bean Selector Window - PWM Bean

These steps describe how to configure the PWM bean.

1. The PWM bean is displayed in the Processor Expert tab on the left panel, in the Beans folder
(Figure 36).

2. Double-click the created bean. The Bean Inspector window activates. There you can configure the
bean parameters, to enable/disable the Methods and Events created.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

36 Freescale Semiconductor

Development

FH| --.:‘--Bean Inspector PWM1:P¥M =131 x|
PWM_Bean _Test.mcp I Bean ltemsVisbiity Help < > Wiew Regs »
I []D. PLE Muliink/Cycione Fro LI ﬁ i Q’ @ 5‘ Properties |Meth0ds| EventsJ Eommentl
| Bean name EE |
Files | Link Order | Targets Processor Expet | | PrusM or PPG device TPM1D +|TPH1D
- - «'| Duty compare
=& Configurations «'| Output pin PTAD KBITPO TPMI1CHO £ «|PTAD_KBITPO TPM1CHO £
« Za Debug E128L0OFPE4 | Dutput pin signal
(& Operating System | Counter TP TPM1
== CPUs (=N} pt service/event Enabled
< Q Cpu:MCFE10ET28LOFPEL « | [nterpt
B Beans « | Interrupt an duty
¥ @ SRR =Y +| Interrupt overflow Wtpml ol Wrprnd owf
& User Madules « | Interrupt priority medium priority | level B, priority within lesel 1
s Pftd_Bean_ Test.cimain ¥ | Period <. | Unassigned timing
& Events cevent ¥ | Starting pulse width ... | Unazsigned timing
= Generated Madules v| Aligned Left
= External Modules v Inltlal.polant}l = lawy
B B iantation | Iterations before action/eve|1
«'| S5ame period in modes [z}
«'| Bean uzes entire timer ho
El| Initialization
|:|./| Enabled in init. code yes
|./| Events enabled inint. |yes
El| CPU clock/speed selec
+| High speed mode Thiz bean enabled Thiz bean iz enabled
+| Low speed mode Thiz bean dizabled Thiz bean iz disabled
+| Slow speed mode Thiz bean dizabled Thiz bean iz disabled
BASIC | ADWVANCED || EXPERT Bean Level High Level Bean v

Figure 36. Bean Inspector Window - PWM Bean

NOTE

Remember always choose the Expert mode. In this mode are all the
available configurations for the bean.

3. To configure the PWM bean. Select the Properties tab and modify the properties values. Below is
a list and description of the most important properties for the PWM bean.

— PWM or PPG device -- Pulse Width Modulation compare device or Programmable Pulse
Generation period compare/reload device.

— OQutput pin -- Pin used for output of the generated signal.

— Prescaler -- Prescaler selected for the timer.

— Period - Period of the output signal. It is necessary to specify both a value and a unit. The setting
can be made with the help of the Timing dialog box that opens when clicking on the button (...).

— Starting pulse width -- Starting pulse width specifies the length of time the output signal spends
in the active level during the output cycle. The active level is defined in the Initial polarity. It
is necessary to specify both a value and a unit (see Timing Setting Syntax WHERE). The
setting can be made with the help of the Timing dialog box that opens when clicking on the
button (...).

— Initial polarity -- Initial polarity of the output signal: 0 = Low, 1 = High. It is possible to change
it at runtime using methods: ClrValue and SetValue.

4. Configure the Period and Starting Pulse Width fields. Complete these fields with values, click the
(...) button to see all the possible values.

5. Select which Methods to create by selecting the Methods tab (Figure 37) in the Bean Inspector
window. Click the round arrow button (). For this bean, the methods that used are:

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 37

g |

Development

— Enable -- Starts the signal generation.
— Disable -- Stops the signal generation and events calling.
— SetRatiol6 -- This method sets a new duty-cycle ratio. Ratio is expressed as a 16-bit unsigned
integer number. 0 - FFFF value is proportional to ratio 0 - 100%.
NOTE
Calculated duty depends on the timer possibilities and on the selected
period.
— SetDutyUS -- This method sets the new duty value of the output signal. The duty is expressed
in microseconds as a 16-bit unsigned integer number.
— SetValue -- Sets the output pin value. This method only works when the timer is disabled.
— ClIrValue -- Clears the output pin value. This method only works when the timer is disabled.

'-.,-_'"-Bean Inspector PWM1:PWM ;|g|5|
Bean ItemsVisibiity Help ¢ > Yiew Regs »
FProperties Methods I Events | Cornrment
& Enable don't generate code Y
B Dizable don't generate code
B EnableE vent don't generate code
B DizableEvent don't generate code
| SetRatioB don't generate code
2| SetRatiolB generate code
B SetDutyTicks1E don't generate code
B SetDuwTicks32 don't generate code
& SetDutyll5 generate code
5| SetDutyhdS generate code
B SetDutySec don't generate code
B SetDutyResl don't generate code
B Setalus don't generate code
B Cltvalue don't generate code
| SetDutytdode don't generate code

BASIC | ADWAMCED || EXPERT Bean Level High Level Bean o

Figure 37. Bean Inspector Window - Methods for PWM Bean

6. Set the events configuration for this bean. Select the Events tab in the Bean Inspector window
(Figure 38). For the PWM bean the event OnEnd is very important. Once this event is enabled, the
PWM completes a cycle.

'-.::"-Bean Inspector PWMI1:PWM -1al x|
Bean ltemsYisibility Help < > iew Regs > |
Froperties | Methods Events I Cornrment
+’| Event module name Events
| BeforeNewS5peed don't generate code
| AflterNewSpeed don't generate code
2| OnEnd aeherate code
|: «'| Event procedure name Pbdl_OnEnd

«"| Priority zame as interupt

BASIC | ADWANCED || EXPERT Bean Level High Level Bean

4

Figure 38. Bean Inspector Window - Events for PWM Bean

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor

Development

Compile the project by pressing the F7 key.

Edit the function executed on the OnEnd event. In the file Events.c there is a function named
PWM1_OnEnd. This file is in the User Modules folder on the left panel. The code to be executed
must be placed inside the PWM1_OnEnd function (Figure 39).

B T
ENMZuean Lestmep I b {} - - [~ o - Path [D:\Profies\b01 026 Diesktop\GET 284PE AN\Projects\FwM_Bea. \Eventsc (>
| [ID‘ PEE Multilink /Cyclone Pro j ﬁ i Q’ @ E(*#3% Event : PUM1_OnEnd {module Events) gl
*3% e
Files | Link Order| Targsts FPracessar Expert | xx From bean : PUM1 [PWM] |
*¥ Description :
B Corfigarat *3% This event is called when the specified number of cycles
= . IgLE;a‘;Dns E126L0FPE4 *3% has been generated. (Only when the bean is enabled -
+ %o Debug 0 % ¢Enable: and the events are enabled - <EnableEvent:). The
(= Operating Systern *3% event iz available only when the peripheral supports an
=B CPUs *#3% interrupt. that i=s generated at the end of the PUH period.
@ CpuMCFE10E1 26L0FPS4 - EZﬁﬁ;erS Egrt‘ﬁing
=& Beans L R e o N o T
) Py 1P x4 -
216 User Modules j{mld FUH1_ OnEnd({wvoid}
4 FsM_Bean__Test.cxmain % Write yvour code here ... =~
P@EERE enits coevent
= Generated Modules —
= External Modules <% END Events %
& Documentation
Line 1 ol |[4] | Bz

3.6.2

Figure 39. Events.c file for PWM Bean

Lab3: PWM Lab - Project configuration

This project is implemented for the DEMOQE128 Board.

Use the ADC bean and the PWM bean for the PWM Lab application. The ADC bean reads the voltage
value generated by the potentiometer connected to the port. The PWM bean generates a PWM wave which
its duty-cycle is controlled by the ADC read value. The PWM output controls a LED. The LED brightness
changes according to the PWM duty-cycle applied.

The following steps describe how to configure the LED Blink project:

1.

Create a project according to Section 3.1 Creating a project with Processor Expert. Create it with
the CPU configured to run with the Internal Clock at the default speed.

The ADC bean and PWM bean must be added to the project. Refer to Section 3.5.3 Lab2: LED
ADC - Project configuration and Section 3.6.1 Timer: PWM Bean.

Once the ADC bean is displayed on the left panel in the Processor Expert tab, in the Beans folder
(Figure 40).

Configure this bean to make conversions with the PTAO port voltage value.
Double-click the Timerint bean and the Bean Inspector window activates.

In the Bean Inspector window configure the following:

— Select the PTAO in the A/D channel field.

— Select the value 5.484 us in the field Conversion Time by clicking the (*..."") button.

Figure 40 shows the Bean Inspector window for the ADC Bean with the properties values of the
PWM_Lab project.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 39

3
4

4
A

Development

i.~Bean Inspector AD1:ADC

{0l x|
Bean lternzVizibiity Help <« = View Regs >

Properties |Methods| Eventsl Comment

«'| Bean name AN
«| 840 converter ADC ~|aDC
« | Sharing Dizabled
=l Interupt servicefevent Enabled
':-/ 87D intermupt adc Yade
o | 240 inkerrupt pricrity mediuim pricrity w | level 3, priority within lewel 5
El| 47D channels 1 +|—
L&E| Channeln

+ | &/0 channel [pin]
| &/0 channel [pin] signa

PTAD_KEITPO_TPM1CHO ¢ | PTAQ_KBITPO_TPMICHD_¢

« | &40 resolution Autozelect |12 bits
«| Converzion time 5484 ps = high: 5750 ps
«| Low-power mode Dizabled
+| Sample time short + | Total conee. time: high: 11.93
«| Automatic Compare Dizabled
=l Internal trigger Dizabled
«*| Number of conversions 1
=) Initialization
':./ Enabled in init. code yes
«'| Eventz enabled ininit. [ves
Bl| CPU clock/speed selec

«| High zpeed mode

This bean enabled

Thiz bean iz enabled

10.

11.
12.

+'| Low speed mode Thiz bean dizabled Thiz bean iz dizabled
+| Slow speed mode This bean disabled This bean is dizabled
BASIC | ADVANCED || EXPERT Bean Level High Level Bean 4

Figure 40. Bean Inspector Window - ADC Configuration on PWM Lab Project

The PWM_Lab project uses the ADC Event OnEnd.
The ADC bean is inserted and configured. The PWM bean is configured.
The PWM bean is displayed on the left panel, in the Processor Expert tab, in the Beans folder.

Configure this bean to control the pin PTCO, this pin is associated with TPM3 Channel 0 (TPM30).
Also, configure the PWM period to 10 ms and the initial value to 0.

Double-click the PWM bean and the Bean Inspector window is activated.
In the Bean Inspector window configure the following (Figure 41):

— Select the PWM or PPG device as TPM30 in order to select the Channel connected to the pin
PTCO.

— Set the Period value to 10 ms.
— Set the Starting Pulse Width to 0.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

40

Freescale Semiconductor

Development

.. Bean Inspector PYWM1:PWM 1 =10l x|
Bean ItemsVisibiity Help ¢ > Yiew Begs »
Properties IMelhodsl Eventsl Conrient
+’| Bean name Fadibd 1
+'| Pl or PPG device TPM30 | TPh30
+| Duty compare
+'| Output pin PTCO_RGPIOS_TPM3ICHO -|PTCO RGPIOS TPM3CHO
« | Dutput pity signal
«’| Counter TPK3 TPM3
= Interrupt servicelfevent Enabled

«| |nterupt Wtpmachi Wtprm3chO

«| Interupt on duty

«| Interupt averflaw it prn dowt Wtprn3ovf

«| |nterupt priorty rnediurm pricrity | level 1, prioity within level 1

/| Period 10 mz ... high: 10.000 ms
+| Starting pulse width m | high: O ms
«| Aligned Left
«| Initial polarity o
+’| Iterations before action/eve|1
+'| Same period in modes o
+’| Bean uses entire timer no
| Initialization
|:./ Enabled in init. code =

«'| Events enabled in init. [yes
E|| CPU clock/speed selec
+"| High speed mode Thig bean enabled Thiz bean iz enabled
«| Low zpeed mode Thiz bean dizabled Thiz bean iz dizabled
«| Slow zpeed mode Thiz bean dizabled Thiz bean iz dizabled
BASIC | ADVANCED | ExXPERT Bean Level High Level Bean v

Figure 41. Bean Inspector Window - PWM Configuration on PWM Lab Project

13. The PWM_Lab project uses the PWM Event OnEnd. This event is configured by default.

14. Integrate the PWM and ADC beans created, in order to make the LED brightness change. This
depends on the value read from ADC. Edit the two functions executed on the OnEnd event of the
ADC and PWM. In the file Events.c find two functions named OnEnd, one is ADC1_OnEnd and
the other PWM1_OnEnd. This file is in the User Modules folder on the left panel. The
ADC1_OnEnd event occurs when an ADC conversion is finished, and the PWM21_OnEnd occurs
when a PWM cycle ends. In this application, every 10 ms.

15. Configure the PWM1_OnEnd event to start an ADC read, and the ADC1_OnEnd to set the
duty-cycle with the value.

16. Use the AD1 Measure to start a read in the ADC.

17. Use the AD1_GetValuel6 method to get the read value from the ADC.
18. Use the PWML1_SetRatiol6 to set the PWM duty-cycle.

19. Create a word variable to store the ADC read value.

20. The final code is shown in Figure 42.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 41

Development

*3%
*3%
EX3
I
Bk

}

A
%3k
3
*%k
3%
*3%
xR
*3%
*3%
£ 3
*3%
%3
*3E
*.

¥

Line 72

b {3 - M- [~ ' - Path | D\Profiles\ 01026\ DissktophGE 1285PE ANSProjects\PwM_Bea.. \Events.c <>

interrupt. that is gensrated at the end of the PWM pericd.
Paramsters : Hone
Feturns= . Hothing

void PUH1 OnEnd{woid)
{
AD1_Measure(0):

/% rite your code here ... =/

Event ;o ADL OnEnd (module Events)

From bean o ADL [ADC]

Description :
Thi= event i= called after the measzurement (which
con=ists of <1 or more conversions:) is<are finished.
The event iz awvailable only when the <Interrupt
zervicesevent: property iz enabled.

Paramsters : None

Eeturns : Hothing

void AD1_OnEnd(woid)

1
word AD Result:
7% Jrite your code here ... =/
AD1_GetValuslb (&AD Result):

FiIM1l_SetRaticle(AD Result);

7% END Events #*-

=0l x|

=
=l

-

Colan | 4] | vz

Figure 42. Events.c file -OnEnd Functions on PWM_Lab Project

21. The PWM Lab project is ready.

22. To program the board, run and debug the project. Refer to Section 3.7 Running and Debugging the

project.

23. Test the project on the DEMOQEZ128. Change the potentiometer to see the LEDO brightness

change.

3.7 Running and Debugging the project

This section explains how to run the project on the board and the basic debug functions. Once a project is
created click the Debug button in the project tab inside CodeWarrior. The Connection Manager window
opens (Figure 43). This window presents the Interface for connection with the board, in case that the board

is connected to the PC, its description is shown in the field Port.

Check if the board is correctly connected and click the Connect button.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

42

Freescale Semiconductor

P&E MCF51xx Connection Manager - ¥0.20

Please select connection interface. port. and settings in order to connect to
target.

r~Connection port and Interface Type

X

Add LPT Port

Interface: |USB HCS08/HCS512/CR Multiink, - USE Fort O
Refrezh List

Paort: |USB'I : DEMOGET 25 [PESONT338) _‘J

Interface Detected : Firmware Yersion Socket Programming Adapter Settings ... I

i Target CPL Infarmation

CPU: ColdFire Processor - Autodetect
MCU rezet line; MCU %altage:

—Reszet Delay

[~ Delay after Reset and befare communicating to target for I 0 miliseconds [decimal).

Cyclone Pro Power Belay Control [Moltage - Power-Out Jack)

v Uze Cpclone Pra relays Regulator Dutput oltage Power Down Delay I 250 ms

[~ Pawer off target upon software exit IE'J' vl Power Up Delay I 250 s

EQl:lnnec:t I Hotsync | Abort |

W Shaow thiz dialog before attempting to contact target [Othenwize anly dizplay on Emar

Figure 43. Connection Manager Window

Development

A message asking to erase the Flash might pop-up, click ok to erase the flash and program it with the

project.

After the MCU is erased and re-programed, the True-Time Simulator & Real-Time Debugger window
opens (Figure 44). In this window, debug your software. There are some windows inside the main window,
like the corresponding code in Assembly, variables values, full memory map, CPU register values and
command log lines, in these windows see the actual execution point of the code.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor

43

Conclusion

=10 |
File Wiew Run CFMultlinkCyclonePro Component Source Window Help
D@ 2[=(e] 2w o)== 2|
O TR [essemi ol
D:\Profileshb010265\DeskiophDE 1284PE AN\Projects’, Labs'PwiM_Lab\CODENPWM_Lab.c |Line: 39 main
A% Write your local wariable definition here */ d 06 5 000000498 : O0=0000042
0616 ERAL.S *+0 ; Ox00000681
/%% Processor Expert internal initialization. DON'T EEMOVE THIS CODE!!! 06ls CLE.BE oo
T 06ld TSR Ox0000065C ; 0x0000065!
Set Breakpoint
FraaEnd. o Proci oI, 0820 RT3
Run To Cursar 0622 TRAPF
4% Write your coi Show Breakpaints... ui 0624 SUBQ.L #4,47
/% For example: | ShowLocation 0526 LEL (A7) 40 b
Sef Tri Add A LI—I 2 7
A%%F Don't write £ r!gger ot 111 be deleted during co ——
/%% Drocessor Ei DSt Trigger Address B MODIFY THIS CODE!!! #%%/ = =] Register i o] 9]
L S S v| | |[CeidFire | [Auto
Trace Setup
- = po | ol oL | o oz | o D3 ii
o 1ol x
?‘_’e” Trlfg:rlsztt'”gs et 2l D4 |[DABDE77E DS [F2C4Dl4E DS |C7FFESEA D7
AR a0 [@ooood AL | SBC A2 |EEAFFDIF A3
main |} Set Markpaint 24 |55324p6a a5 | soooDa A6 E0091C A7
_startup (] Shaw Markpaints. ., PC 610 SR 2714 x
4 Moz
- Sek Program Counker
) 1o x] e
—————————— OpenSourceFile... — —
I | Auo [Symb [Global [Ao
S (e 00000080 00 00 04 10 00 00 04 10 ...a.... |
GO ToLNE G 00000088 00 00 04 10 00 00 04 10 =
e CHE goooooso 00 00 04 10 00 00 04 10
Er P otaiite Chrl ooooooss 00 00 04 10 00 00 04 10
00o0000&0 00 00 04 10 00 00 04 10 ;I
- Folding —
Boatus - 1ol 1o x|
I dEEEE, ["Auto [Spmb [Local Breakpoint -
MMarks STARTED
RUNHNING
ToolTips
i g
KNS H 4
For Help, press F1 Automatic (triggers, breakpoints, watchpoints, and trace possible) |MCF51QE128 [RUNNING 4

Figure 44. Real-Time Debugger Window

In order to debug the code, use the following commands: Run(:l), Single Step (il), Step Over (El),
Step Out (ﬁl)' Assembly Step(il), Halt(il) and Reset Target(gl).

Place Breakpoints in the code to better debug it. To do this right-click the code wanted and select the Set

Breakpoint option.

4

Conclusion

The costs of development using MCUs are increasingly affected by the software content of the

development projects and the complexity of modern MCUs. Part of these costs are often reflected in the
learning curve associated with new development tools. This additional cost is important enough for
developers to reject the most suitable MCU for an application. It would take too much effort and time to
learn a new set of tools. Software engineers need a high-performance development environment designed
to use all of the capabilities of the MCU architecture, while simultaneously minimizing the underlying
complexity. It is critical that MCU software development tools provide the same level of ease-of-use and
extensibility as mainstream microprocessor tools, in order to minimize the new product introduction cycle.
CodeWarrior development tools, with Processor Expert, provide an integrated suite of development tools.
These tools are designed to work together to dramatically simplify applications software development.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

44 Freescale Semiconductor

PR 4

Conclusion

Together, the Freescale Flexis MCUs, CodeWarrior development tools and Processor Expert take users to
a new level of MCU-based development. Users can easily develop and migrate their applications between
the 8-bit and 32-bit devices seamlessly.

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 45

-

Conclusion

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

46 Freescale Semiconductor

Conclusion

Using Processor Expert with FlexisTM Microcontrollers, Rev. 0

Freescale Semiconductor 47

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

Document Number: AN3467
Rev. 0
05/2007

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

freescale"

semiconductor

http://www.freescale.com
http://www.freescale.com/epp

	1 Processor Expert and Embedded Beans
	1.1 Processor Expert Benefits
	1.2 What is an Embedded Bean?

	2 QE Overview
	3 Development
	3.1 Creating a project with Processor Expert
	3.1.1 Creating a new project

	3.2 Configuring the CPU bean
	3.3 Migrating CPU inside Flexis family
	3.4 Lab1: Timer and I/O
	3.4.1 Timer: Peripheral Description
	3.4.2 Timer: TimerInt Bean
	3.4.3 I/O: Peripheral Description
	3.4.4 I/O: BitIO Bean
	3.4.5 Lab1: LED Blink - Project configuration

	3.5 Lab2: ADC - Analog to Digital converter
	3.5.1 ADC: Peripheral Description
	3.5.2 ADC: ADC Bean
	3.5.3 Lab2: LED ADC - Project configuration

	3.6 Lab3: PWM - Pulse Width Modulation
	3.6.1 Timer: PWM Bean
	3.6.2 Lab3: PWM Lab - Project configuration

	3.7 Running and Debugging the project

	4 Conclusion

