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Washing Machine Three-Phase 
AC Induction Motor Drive
Based on MC56F8013
by: Petr Stekl

Freescale Semiconductor, Inc.
The latest trend in washing machine design is to replace 
traditional drive systems with modern, electronically 
controlled, brushless drives. In the past, washing 
machine designs employed two widely used drive 
systems. The older designs use electromechanically 
controlled two-speed single phase AC induction motors. 
This kind of drive system is no longer used for new 
machines and is only found in the least expensive washer 
models. The majority of washers have universal brushed 
motors with Triode Alternating Current switch (TRIAC) 
control. However, with the advent of new electronic 
devices, these drives are becoming out-of-date. A new 
generation of washing machines will be designed with 
brushless three-phase motors. The best candidates for 
this kind of design are three-phase AC induction motors 
and permanent magnet sinusoidal motors. Both motors 
require sophisticated algorithms to perform control 
functions, and this requires microcontroller based 
solutions. DSP-based devices are preferred because of 
the real-time signal processing demands from AC motor 
control applications. This application note presents the 
AC induction motor alternative, focusing on the 
description of suitable control algorithms and its 
implementation in a real washer application.
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Drive Features
1 Drive Features
The three-phase AC induction washing machine drive responds to the new market demands for higher 
performing appliances. The aim is to provide maximum drive performance at a competitive price, served 
particularly well by Freescale Semiconductor's recently introduced 56F801x family of hybrid digital 
signal processor/microcontroller (DSP/MCU) embedded controllers. An example drive design based on 
the MC56F8013 offers the product designer plenty of computing power with advanced peripherals at a 
very good price/performance ratio. The most important features of the drive include:

• Three-phase AC induction motor
• Cost-efficient tachogenerator on motor shaft for speed sensing
• Indirect vector control algorithm
• Speed range 0 - 20000 RPM (motor speed), 0 - 2000 RPM (drum speed)
• Reconstruction of three-phase currents from DC-bus shunt resistor
• Non-recuperative braking and deceleration control
• Loss-minimizing control
• Over-current, over-voltage and under-voltage protection
• Out-of-balance detection for spin dry
• Serial RS232 control interface

It should be highlighted, the presented drive was developed with considerable unique requirements of the 
washing machine application. The drive is designed to run a very wide range of speeds, from 0 - 20000 
RPM. It is optimized to accept a wide range of loads. This feature reflects the condition of a real washer, 
required to run reliably with both an empty drum and a drum fully stacked with wet and heavy clothes. 
Another specific feature of the washer application is the ability to develop a high start-up torque for the 
motor to force the full drum to move. As the efficiency of washing depends on precise speed control of the 
washer drum, the presented drive comes with a PID speed control closed loop. Thanks to the inner closed 
current control loop, the presented drive features high dynamics to achieve top performance control. It is 
required to shorten the washing cycle as much as possible. A shortened washing cycle is achieved by using 
a non-recuperative braking algorithm to stop the drum when it finishes a high speed spin-dry; a very 
important aspect is energy efficiency. The presented drive comes with a loss-minimizing algorithm to run 
at an optimum operating point and so save on valued energy. Thanks to selected control techniques, the 
drive shows high immunity to motor parameter tolerances and to changes during its operation and 
life-time.

Emphasis was put on the design of a product capable of competing in a market as cost sensitive as white 
goods market require. Considering cost effectiveness, the drive reduces the number of current sensors. The 
number of current sensors for sensing the motor current is reduced from three to a single-shunt resistor on 
the DC-Bus. The three-phase motor currents are reconstructed from the DC-Bus current using an advanced 
reconstruction technique.
Washing Machine Three-Phase AC Induction Motor Drive, Rev. 0
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Indirect Vector Control
2 Indirect Vector Control
Indirect vector control belongs to the family of vector control techniques. Compared to direct vector 
control structures, indirect vector control does not require direct real-time calculation of rotor flux from 
motor currents and voltages. Due to this indirect vector control, it is not possible to obtain instantaneous 
values of the rotor flux space vector components. It is, however, still possible to control motor excitation 
and torque independently. In a steady state we will achieve the same performance as with direct vector 
control. In a transient state, a certain error can be observed when compared to direct control. This error, 
however, for most applications is negligible, including the washing machine drive.

The control technique algorithm was developed considering an equivalent steady state circuit, shown in 
Figure 1. 

Figure 1. Induction Motor Equivalent Circuit

The equivalent circuit is valid in the steady state only. A full description of the induction motor model 
gives a set of motor equations (Equation 1 - Equation 9) expressed in a rotational d,q-reference frame.
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Indirect Vector Control
If you are looking for more theory on the field oriented control of a three-phase ac induction motor, please 
refer to [1]. For a glossary of the symbols used, please, refer to Section 9.

The assumption in the indirect vector control algorithm is the rotor flux space-vector size and position are 
defined by the applied motor voltage and current. Based on the induction motor model, we are able to draw 
a space-vector diagram; see Figure 2. As can be seen in the space-vector diagram, the position and size of 
the rotor flux is fully determined by the voltage and current vectors for the given motor. Indirect vector 
control uses this fact to control the space-vector quantities of the motor.

The indirect vector control algorithm for an induction motor implemented in the presented design is based 
on the following assumptions:

• the instantaneous stator voltage vector amplitude is calculated with high accuracy corresponding 
to the actual motor operating point

• having a precise stator voltage generated on the motor, a good estimation of the motor 
magnetizing flux is achieved

• the stator current of the motor is set by the PI controller to maintain the required value given by 
the quadrature and direct components

• if points 1-3 are satisfied, a direct-axis component of the stator current is obtained, the same as 
required by the control

• if the stator current amplitude Is and direct-axis component Isd are kept at the required values, the 
quadrature-axis component of the stator current is Isq

The above mentioned principles of the control technique can be understood easily with the help of the 
induction motor vector diagram in Figure 2. The diagram displays the relations between the stator voltage 
(Us), stator current (Is), and the rotor, stator and magnetizing flux (Ψr,Ψs,Ψm).

Figure 2. Induction Motor Space-Vector Diagram
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Control Algorithm Overview
3 Control Algorithm Overview
Tough requirements placed on a washing machine drive call for a high-performance control algorithm. 
Good candidates for this job are vector control techniques. The presented algorithm is based on the 
implementation of the indirect vector control technique. The control structure overview is illustrated in 
Figure 3. Similarly, as with other vector control oriented techniques, the implemented algorithm is able to 
control the excitation and torque of the induction motor separately. The idea of indirect vector control is 
based on the indirect control of motor flux through the control of motor voltage and current. The torque 
command for the control algorithm is taken from the PID speed controller. The reference for motor flux is 
set by the Loss Optimization block for speeds below the nominal. For speeds and voltages above the 
nominal, the Field-Weakening block takes over the setting of the flux reference. The aim of the control is 
the regulation of the motor (washer drum) speed. The speed command value is set by high level control, 
i.e. the washing programmer.

To achieve the goal of the induction motor control, the algorithm utilizes a set of feedback signals. The 
essential feedback signals are as follows: DC-bus voltage, three-phase stator current reconstructed from 
DC-bus current, motor speed. For correct operation, the presented control structure requires a speed sensor 
on the motor shaft. For this purpose a tachogenerator is used.

Figure 3. Control Algorithm Overview
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Control Algorithm Overview
3.1 Motor Model Block
The block diagram of the control algorithm (Figure 3) illustrates the stator voltage amplitude evaluated by 
the Motor Model block. The precise stator voltage amplitude is calculated based on the motor model 
equations (Equation 10, Equation 11, Equation 12) from the required quadrature and direct components of 
the stator current, required rotor flux, actual motor slip and stator frequency. 

Figure 4. Motor Model Block
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Control Algorithm Overview
resistance Rs is also acceptable at non-zero speeds due to much higher component of BEMF voltage. At 
zero speeds negative influence of stator resistance change can be easily compensated at startup.

3.2 Rotor Flux Model
The Rotor Flux Model block defines the relation between the direct-axis component of the stator current 
and the rotor magnetizing flux vector amplitude. The rotor flux model respects the rotor flux time-constant 
as well as the non-linear magnetizing curve of the real induction machine. The block solves the differential 
equation (Equation 15).

Figure 5. Rotor Flux Model Block

The block has one input variable: the direct-axis component of the stator current (Isd) and one output 
variable: the actual value of the rotor-flux vector (Ψrw); see Figure 5.

Eqn. 17

The algorithm of solving the Equation 15 is graphically depicted in Figure 6.

Figure 6. Rotor Flux Algorithm

3.3 Space Vector Modulation
A motor voltage evaluated in the Motor Model Block is generated by the three-phase voltage source 
inverter and applied to the stator of the motor. The voltage source inverter converts the DC-Bus voltage to 

Flux ModelFlux Model
ΨrwIsdw

Ψr R∫ r
Isd magCurveInv Ψr( )–( )dt⋅=

Rr ∫
+

-

magCurveInv

Isd Ψrw
Washing Machine Three-Phase AC Induction Motor Drive, Rev. 0

Freescale Semiconductor 7



Control Algorithm Overview
AC voltage of the required amplitude and frequency. Typical three-phase inverter topology is illustrated 
in Figure 7.

Figure 7. Three-Phase Voltage Source Inverter
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Figure 8. There are six non-zero vectors, U0, U60, U120, U180, U240, U300, and two zero vectors, O000 and 
O111, defined in α,β coordinates.

Figure 8. Basic Space Vectors and Voltage Vector Projection
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Control Algorithm Overview
SVM is a technique used as a direct bridge between vector control (voltage space vector) and PWM. The 
SVM technique consists of three steps:

• sector identification
• space voltage vector decomposition into directions of sector base vectors Ux, Ux±60
• PWM duty cycle calculation

The principle of SVM is the application of the voltage vectors UXXX and OXXX for certain instances in 
such a way the “mean vector” of the PWM period TPWM is equal to the desired voltage vector. The 
implemented SVM technique fully utilizes the DC-Bus voltage for generation of the output stator voltage. 
The maximum amplitude of the output phase voltage is . For more 
information on space vector modulation technique, please, refer to [1].

The DC-Bus voltage level is not constant. Its level can vary with different power line conditions. Also, if 
the DC-Bus is supplied from a rectified single-phase AC supply, the DC-Bus voltage contains a voltage 
ripple, potentially several tens of volts. The DC-Bus voltage ripples can create distortion to the generated 
sinusoidal output. Therefore, a “DC-Bus Ripple Elimination” algorithm is implemented, removing the 
distortion from the output voltage. The algorithm is shown in Figure 9.

Figure 9. DC-Bus Ripple Elimination
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Control Algorithm Overview
control of the quadrature axis component of the stator current. The feedback quantity of the PI controller 
is, anyway, an amplitude (size) of the space vector of the stator current Is. The direct-axis (flux-producing) 
component Isd of the stator current is controlled via the change in the stator voltage applied to the motor, 
evaluated in the Motor Model Block (Section 3.1). 

The block diagram in Figure 10 illustrates the controller algorithm takes the required direct-axis (Isdw) and 
required quadrature axis (Isqw) components of the stator current as reference values. Having the current 
components, the amplitude (Isw) of the required stator current space vector is evaluated according to the 
equation:

Eqn. 18

The amplitude of the required stator current (Isw) is compared to the feedback of the actual stator current 
amplitude sensed on the motor (Is). 

Figure 10. Current Controller Loop
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Control Algorithm Overview
Figure 11. Single Shunt Current Sensing Approach

To improve dynamic behavior of the current control loop, there is an additional feed forward implemented. 
The instantaneous rotor slip is evaluated from the required quadrature axis component of the stator current 
(Isqw). The feed forward algorithm is evaluated according to:

Eqn. 19

The constant KM is a motor dependent constant. It can be evaluated from the particular motor parameters. 
The constant KM can be evaluated according to this formula:

Eqn. 20

Because the estimated motor parameters can be slightly different from the real ones, the application can 
be run in a calibration mode to achieve the best approximation of KM.

3.5 Torque Producing Component Estimation Block
The indirect field oriented control algorithm does not evaluate the stator current components in the 
rotational reference frame (d,q). Therefore, the position of the space vector of the rotor magnetizing flux 
is not required to be evaluated. This brings the advantage of lower demands on the microcontroller 
computational resources. Also, because of high sensitivity of the rotor flux model to motor parameters, it 
makes the control of the motor torque algorithm less dependent on swinging motor parameters. Because 
the quadrature axis component of the stator current (Isq) is one of the input quantities for stator voltage 
evaluation, it is necessary to estimate this quantity with help of known quantities. For estimation, use the 
same dependency between rotor the slip frequency and the quadrature axis component of the stator current, 
as in the case of feed forward (Equation 19). The formula can be trasnformed in the following way:
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Control Algorithm Overview
The diagram of the quadrature axis component estimation block is illustrated in Figure 12. It has two input 
variables: 

• actual value of the rotor slip frequency (fslip)
• required size (amplitude) of the rotor magnetizing flux space vector

Figure 12. Torque producing Estimation Block

Output from the quadrature axis component estimation block is taken as an input to the Motor Model Block 
(see Figure 3).

3.6 Stator Loss Optimization Block
The aim of the Stator Loss Optimization Block (see Figure 13) is to minimize power losses in the induction 
motor. Power losses in a motor are defined by the stator current flowing to the motor. For every motor load 
it is possible to find an optimal point, at which the losses are minimal and the motor is operating with 
highest efficiency. The stator current of the induction motor has two components - torque producing 
component and a magnetizing flux producing component. The motor torque is a proportional product of 
those components as indicated by following formula:

Eqn. 22

Common field-oriented control techniques keep the motor flux constant at its nominal value. The required 
torque is then set by only controlling of the torque producing component. In conditions of a low load this 
approach is not efficient. A motor flux maintained at its nominal value generates additional losses in the 
stator windings. 

Figure 13. Stator Winding Loss Optimization Block
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Control Algorithm Overview
Eqn. 23

Considering Equation 9, Equation 7 and Equation 23 a condition of minimum losses in the stator windings 
is achieved.

Eqn. 24

For the motor torque, the following formula can be evaluated based on Equation 9:

Eqn. 25

For the steady state it holds:

Eqn. 26

Combining Equation 24, Equation 25 and Equation 26 a formula results, used to evaluate the optimal 
magnetizing flux for a given motor torque:

Eqn. 27

Equation 27 is evaluated within the Stator Loss Optimization Block. It sets the optimal magnetization flux 
level for the actual motor torque to minimize losses in the stator windings. The internal structure of the 
block is illustrated in Figure 14.

Figure 14. Internal Structure of Stator Loss Optimization Block
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Control Algorithm Overview
Optimal slip control is a common technique used for scalar control algorithms where flux and torque 
producing components of the stator cannot be controlled independently. In vector oriented control 
structures we can use a more sophisticated way of optimization based on a motor model using Equation 27. 
This is also the case of our control structure.

3.7 Field-Weakening Control Block
The Field-Weakening Control Block controls the motor magnetizing flux for speeds exceeding the 
nominal speed of the motor. The basic task is to maintain the motor magnetizing flux at a level to prevent 
it, exceeding the nominal motor voltage. 

Figure 15. Field-Weakening Control

The block has three input quantities:
• actual stator voltage (voltage_stator)
• actual stator frequency (f_stator)
• maximum flux producing component of the stator current evaluated in the loss optimization block 

(Isdmax) 

Output from the field-weakening block is the required level of the flux producing component of the stator 
current (Isdw). The internal structure of the field-weakening algorithm is illustrated in Figure 16.

Figure 16. Internal Structure of Field-Weakening Block
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Control Algorithm Overview
The field-weakening algorithm first evaluates a maximum rotor flux (Ψr_max) value not exceeding the 
voltage limit. It is calculated according to the following formula:

Eqn. 29

Where the DC-Bus voltage is high enough to generate a mean PWM output voltage higher, or equal to the 
motor nominal voltage (volatge_limit), the Ustator assigned as equal to voltage_limit. Where 
the DC-Bus voltage is low and the PWM output is saturated, the Ustator is assigned as equal to the 
maximum stator voltage (voltage_stator), and can be generated by a saturated PWM. The result is 
a value setting the maximum rotor flux (Ψr_max), and cannot be exceeded. From the magnetizing curve 
table, a corresponding direct axis component of the stator current is evaluated. This axis component is 
limited to the Isdmax value. Isdmax is evaluated by the stator winding loss optimization algorithm, setting 
the magnetization flux level to minimize power losses in the stator windings.

3.8 Speed Control Loop
The washing machine drum rotational speed is controlled in a speed control loop. The speed signal is 
sensed by means of a tachogenerator mounted directly on the induction motor shaft. The algorithm 
evaluates the period of the output tachogenerator voltage signal. Actual speed is evaluated from the signal 
period. Actual motor speed is subtracted from the required speed command, and the regulation error makes 
an input to the speed controller. The speed controller is implemented as a PID. Output from the controller 
sets the required value of the motor torque. When the washer drum moves, the wet clothes inside the drum 
bump around, generating high torques ripples to the motor. To eliminate those ripples and keep the drum 
speed as stable as possible, a PID controller is used where the derivative components improve the 
controller response to the torque ripples. The speed control loop is depicted in Figure 17.

Figure 17. Speed Control Loop
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Washing Machine Drive Operating Modes
3.9 Quadrature Component Evaluation Block
The output of the speed PID controller sets the required motor torque. Having the torque command, the 
quadrature axis component of the stator current (Isqw) can be evaluated. It is performed in the 
“Torque to Isq” block (see Figure 18). 

Figure 18. Quadrature Component Evaluation Block

Inputs to the control block are the required motor torque (torque_required) and required rotor 
magnetizing flux space vector amplitude (Ψrw).

Output from the block is the required value of the quadrature axis component (Isqw), serving as an input to 
the current control loop.

The quadrature axis component is evaluated considering Equation 9, therefore defining the relation 
between the motor torque (T) and the torque producing component (Isq). To obtain a torque producing 
component, Equation 9 is expressed in the following form:

Eqn. 30

The above equation is evaluated within the control block. Together with the direct axis component of the 
stator current it defines the required operating point of the controlled induction motor.

4 Washing Machine Drive Operating Modes
The washing machine drive runs typically in three different modes of operation. These operating modes 
are:

• tumble-wash
• out-of-balance detection and load displacement
• spin-dry

A typical speed profile of a washing machine cycle is illustrated in Figure 19. The speeds referred to 
further in the section relate to a washer drum speed.

Torque
to Isqw

Isqw

Ψrw

torque_required

isqw
Trequired

3
2
---ppΨrw

--------------------=
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Washing Machine Drive Operating Modes
Figure 19. Speed Profile of the Washing Cycle

The tumble-wash phase is typical with low drum speeds reversing the direction of the drum rotation every 
few turns. Because there are short intervals of rotation, it is necessary to reach a stable rotational speed for 
the drum in under two seconds from standstill. This requirement necessitates a high torque be applied to 
the washer drum to make it move. A high generated torque is one of the key requirements in this operating 
mode. The speed of the drum for a tumble wash is typically 30 - 45 RPM. The exact speed depends on the 
type of clothes being washed and is determined by the washing program. The drum speed is low and the 
clothes are lifted up within the drum, falling down when they reach the highest point. Wet and heavy 
clothes are periodically bumped in the drum, generating high torque ripples to the motor. The control 
algorithm of the drive needs to have enough dynamics to eliminate those ripples. Error in the speed should 
not exceed limits of ± 2 RPM. These requirements can be satisfied where there is a PID controller for a 
speed control loop and an inner PI current control loop.

The out-of-balance detection and load displacement phase is performed every time before the washer goes 
into a spin-dry. The clothes in the drum must be properly balanced to minimize centrifugal forces causing 
a waggling of the washer. In the first step, the actual imbalance of the clothes in the washer drum is 
detected. The speed of the drum is increased by a ramp up to the value at which the clothes become 
centrifuged to inner side of the drum. The algorithm performs an integration of the motor torque ripple per 
one cycle. The integral value estimates the size of the load imbalance. If the imbalance is lower than the 
safety limit, it starts ramping the speed and goes into a dry-spin. If the imbalance is higher than the safety 
limit, the speed of the drum is decreased and the direction of rotation is reversed. The algorithm performs 
a new load displacement at the reversed speed. At the end of a load displacement interval the rotation is 
reversed, and out-of-balance detection is executed again. The out-of-balance detection and load 
displacement sequence is performed until an equal distribution of the drum load is achieved. Then a 
spin-dry is started.

The spin-dry phase is entered if the load imbalance is within safety limits. The drum speed is ramped 
steeply until it reaches the require spinning speed. The spinning speed differs for particular machines and 
washing program. With the presented control it can reach up to 2000 RPM. Once reached, the drum speed 
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User Control Interface
is kept constant during the spin-dry interval. When finished, the algorithm performs a non-recuperative 
braking. Applying a braking torque, the drum can be stopped faster, thus the washing cycle can be made 
shorter. The non-recuperative braking generates a braking torque with an energy being dissipated in the 
motor windings. It is not loaded back to the DC-Bus capacitor. No braking resistor is required in this case 
and the hardware design of the power circuit can be significantly simplified.

5 User Control Interface
The washer machine drive demonstration is controlled via serial communication protocol (RS232). The 
application variables can be monitored in real time and drive parameters can be easily modified. 

The washer application behavior is controlled through a set of control and status registers and variables. 
The master application can set a command for the required motor speed and its direction. The status and 
control word provides an interface to control the drive operating point. The actual drive status can be 
identified as well. It is possible to monitor a wide range of motor quantities on-line. Some of these 
quantities are:

• washer drum speed
• motor torque
• motor voltage and current
• DC-Bus voltage
• magnetizing flux
• direct and quadrature axis components of the stator current
• motor slip frequency
• fault status of the application

6 Washer Drive Parameters Tuning
The washer drive application is designed to make the tuning of a particular motor parameters very easy. It 
is possible to modify an application for a new motor in a couple of minutes. All the application parameters 
are simply accessible through a single parameter file. It is possible to modify all the hardware dependent 
constants (current sensing scale, voltage sensing scale, overvoltage and overcurrent limits), application 
specific constants (motor speed range, number of tachogenerator poles, drum-to-motor speed ratio, 
out-of-balance detection limits, speed and current controller parameters, etc.), and motor dependent 
constants (motor model parameters, number of motor poles, motor nominal voltage and current, motor 
magnetizing curve, motor torque, etc.). All the parameters and constants are documented for easy 
understanding. An example of the configuration file showing motor model parameters constants is listed 
in Figure 20.
Washing Machine Three-Phase AC Induction Motor Drive, Rev. 0
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Freescale Semiconductor Support
Figure 20. Motor Parameters Configuration

7 Freescale Semiconductor Support
For more information on the washing machine design, please contact your Freescale representative.
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Glossary of Symbols
9 Glossary of Symbols
α,β - Stator orthogonal coordinate system

d,q - Rotational orthogonal coordinate system

usα,β - Stator voltages in α,β coordinate system

usd,q - Stator voltages in d,q coordinate system

isα,β - Stator currents in α,β coordinate system

isd,q - Stator currents in d,q coordinate system

urα,β - Rotor voltages in α,β coordinate system

urd,q - Rotor voltages in d,q coordinate system

irα,β - Rotor currents in α,β coordinate system

ird,q - Rotor currents in d,q coordinate system

Ψsα,β - Stator magnetic fluxes in α,β coordinate system

Ψsd,q - Stator magnetic fluxes in d,q coordinate system

Ψrα,β - Rotor magnetic fluxes in α,β coordinate system

Ψrd,q - Rotor magnetic fluxes in d,q coordinate system

Rs - Stator phase resistance

Rr - Rotor phase resistance

Ls - Stator phase inductance

Lr - Rotor phase inductance

Lm - Mutual (stator to rotor) inductance

ω / ωs - Electrical rotor angular speed / synchronous angular speed

fs - Electrical stator synchronous frequency

fslip - Electrical rotor slip frequency

pp - Number of poles per phase

te - Electromagnetic torque
Washing Machine Three-Phase AC Induction Motor Drive, Rev. 0
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