
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2004, 2006. All rights reserved.

For applications requiring full utilization of the DSP’s
performance, tuning for contention avoidance is critical.
Depending on the application, M1 memory access
contention can contribute heavily to DSP performance
degradation. Tuning an application based on a thorough
understanding of the M1 memory organization can reduce or
completely eliminate contention-based degradation. In this
paper, M1 contention is shown to cause a 54 percent
performance degradation using a simple algorithm, that
represents a worst-case scenario. After tuning, the algorithm
executes with 0 percent degradation.

1 Determining Contention as a
Problem

To determine whether contention is significantly degrading
SC1400 performance, an evaluation can be done by counting
the M1 contention occurrence with respect to algorithm
execution time. Using the event port and a timer, the M1
contention occurrence can be counted. A second timer can be
configured to count clock cycles used as a reference to
measure the execution time of the algorithm.

Document Number: AN3076
Rev. 0, 05/2006

Contents
1. Determining Contention as a Problem 1
2. M1 Memory Organization . 4
3. Contention Rules and Avoidance 6
4. Application Scenario . 7
5. Case 1: Non-Optimized Application 8
6. Case 2: Partially-Optimized Application 11
7. Case 3: Optimized Application 14
8. Conclusions . 17

Tuning an Application to Prevent M1
Memory Contention
by David Schuchmann

Networking and Communication Systems Group
Freescale Semiconductor, Inc.
Austin, TX

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

2 Freescale Semiconductor

Determining Contention as a Problem

As shown in Figure 1, both timers should be enabled just before the start of algorithm execution. The
timers should then be disabled and/or the count values read immediately after the algorithm executes.

Figure 1. Measuring Contention Occurrence

Based on the counter values at the end of the code execution, the performance degradation due to M1
contention can be calculated as follows:

Eqn. 1

1.1 Event Port Configuration
The event port works closely with the internal timers and debug port (EOnCE block) to allow events on
the MSC711x EVNT pins or on-chip events (that is, M1 contention, DMA activity, I-Cache misses, etc.)
to interact with the SC1400 core, DMA controller, and other devices. Event port inputs are combined in a
program to enable a desired action, such as a timer counting, an interrupt, a DMA transfer, or a halt of the
SC1400 core. Figure 2 shows an event multiplexer in the event port configured so that the M1 contention
input drives the TIN0 signal, which can be used as a timer count source.

Figure 2. Single Event Mux

Algorithm Execution

M1 Contention Count Enable

Cycle Count Enable

RUN IDLEIDLE

% Degradation = (M1 Contention Cycles) / (Total Execution Cycles) x 100

Combining
Logic

OR
Optional

Invert

Action
Select

Interrupt
Request

DMA
Request

EVNT Pins

TINx Signals

TDM Rx Interrupts

Timer Outputs

M1 Contention

Interrupt Signals

DMA Signals

EVNT Pins

Other Inputs

Stop Mode Wakeup

Crossbar Priority

EVGP

EOnCE Signals

S

R

S

R

S

R

Aux
Muxes

Write “1” to EMUX[i]

Write “0” to EMUX[i] or REN or reset

DMA done,
REN or reset

REN or
reset

I-Cache Miss

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

Freescale Semiconductor 3

Determining Contention as a Problem

The contention signal used by the event port and timer asserts once for every two cycles that M1 contention
occurs. The following register setting achieves the desired event port configuration:

; --- Setup Event Port

 ; Select M1 Contention to drive TIN0 for the Timer

 MOVELIA ($78014E38),(EVOUT0)

1.2 Timer Configuration
The performance measurement requires the use of two timers. The IP Bus clock should be selected as the
timer clock source. When clock cycles and M1 contention cycles are counted, the counter values must be
multiplied by 2 to get the values in terms of SC1400 clock cycles. Timer A0 can be used for counting IP
Bus clock cycles, and timer A1 can be used to count M1 contentions. The following register settings
achieve the desired timer configuration:

; --- Setup Timer A0

 ; Select "IP Bus Clk" to drive timer clock

 MOVELIA ($C0000000),(CLKCTRL)

 ; Use Timer for counting AHB Clock Cycles

 MOVEWIA ($0000),(TIMERA_TMR0_CNTR)

 ; Enable Timer A0: IP Bus Clk Counter

 MOVEWIA ($3000),(TIMERA_TMR0_CTRL)

; --- Setup Timer A1

 ; Use Timer for counting M1 Contention

 MOVEWIA ($0000),(TIMERA_TMR1_CNTR)

 ; Enable Timer A1: M1 Contention Counter

 MOVEWIA ($7000),(TIMERA_TMR1_CTRL)

This assembly code excerpt uses the MOVELIA and MOVEWIA macros, which are defined as follows:

MOVEWIA macro IMM,DST ; IMM = immediate value, DST = abs16

 move.w #?IMM,d6

 move.w d6,(?DST)

 endm

MOVELIA macro IMM,DST ; IMM = immediate value, DST = abs32

 move.l #?IMM,d6

 move.l d6,(?DST)

 endm

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

4 Freescale Semiconductor

M1 Memory Organization

2 M1 Memory Organization
The 256 kbyte M1 memory consists of four 64 kbyte groups connected in parallel to the XA, XB, P, and
ASM1 buses. Each group consists of two half-groups, each containing four 8 kbyte single-port SRAM
modules and a memory wrapper, as shown in Figure 3. Modules 0–3 reside in half-group A, and modules
4–7 reside in half group B. The memory structure allows multiple simultaneous accesses issued from the
XA, XB, P, and ASM1 buses to be served without stalls. However, to ensure that stalls are not introduced,
the applications must be tuned to avoid memory contentions. The memory contention rules are provided
in Section 3, “Contention Rules and Avoidance.” Each half-group allows two simultaneous 64-bit accesses
or a single 128-bit access to be served.

Each wrapper has two late-write buffers, one serving XA write accesses and one serving XB write
accesses. The late-write buffers accept data from XA and XB during the core access when there is a
potential contention, and they are flushed to SRAM when there is a free cycle (non-conflicting data read
cycle). These late-write buffers reduce contention probability due to their ability to flush to SRAM during
these idle cycles.

Figure 3. 64 kbyte Group

Module 3: 2k x 32

Module 2: 2k x 32

Module 1: 2k x 32

Module 0: 2k x 32

Wrapper

P XA XB ASM1

128 64 64 64

late-write buffer late-write buffer

Module 7: 2k x 32

Module 6: 2k x 32

Module 5: 2k x 32

Module 4: 2k x 32

Wrapper

P XA XB ASM1

128 64 64 64

late-write buffer late-write buffer

32 kbyte Half-Group A 32 kbyte Half-Group B

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

Freescale Semiconductor 5

M1 Memory Organization

Figure 4 shows the organization of the M1 memory so that there is module interleaving within each
memory group, which decreases the probability of access contention.

Figure 4. M1 Memory Organization

0x0000_0000

0x0000_FFFF

0x0001_0000

0x0001_FFFF

0x0002_0000

0x0002_FFFF

0x0003_0000

0x0003_FFFF

Group 0

Group 1

Group 2

Group 3

M1
Memory

0x0004_0000

0xFFFF_FFFF

Memory
Map

(outside M1)

Module 7, Row 2047: 0xFFFC - 0xFFFF
.
.
Module 1, Row 2047: 0xFFE4 - 0xFFE7
Module 0, Row 2047: 0xFFE0 - 0xFFE3
.

.

.

.

.
Module 7, Row 1: 0x003C - 0x003F
.
.
Module 1, Row 1: 0x0024 - 0x0027
Module 0, Row 1: 0x0020 - 0x0023
Module 7, Row 0: 0x001C - 0x001F
.
.
Module 1, Row 0: 0x0004 - 0x0007
Module 0, Row 0: 0x0000 - 0x0003

.

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

6 Freescale Semiconductor

Contention Rules and Avoidance

M1 memory uses the SC1400 data (XA, XB) and program (P) addresses to control group, module, and
offset selection, as shown in Figure 5.

Figure 5. M1 Memory Address Fields

3 Contention Rules and Avoidance
Due to the M1 memory organization and single-port SRAM modules, memory contention can occur when
more than one access targets the same memory module. Because the late-write buffers decrease the
contention probability of writes, the contention rules are focused on read accesses.

Contention occurs when any one of the following is true:

• (P read) and [(XA read) or (XB read) or (ASM1)] accesses target the same half-group.

• (ASM1) and [(XA read) or (XB read)] accesses target the same half-group.

• (XA read) and (XB read) accesses target different rows of the same module.

There are similar rules for write accesses but with the following modifications:

1. They are based on the late-write buffer contents for XA and XB write accesses.

2. They apply only for a write to a full late-write buffer, necessitating a flush to SRAM.

In the M1 memory group organization, the addressing interleaves between all 8 modules in the group
(across both half-groups), as shown in Figure 4.

The memory contention avoidance rules are as follows:

1. Program code should reside in a memory group not accessed by XA, XB, or ASM1.

2. Data accessed by the DMA or FEC through ASM1 should reside in a group not accessed by XA
or XB.

3. Data accessed by XA and XB in parallel ideally should reside in separate groups. If this is not
possible, the data should be offset so that XA and XB do not simultaneously access the same
module.

Upper Bits Group Row Module Offset

31–18 1–04–215–517–16

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

Freescale Semiconductor 7

Application Scenario

4 Application Scenario
A simple sum-of-products example algorithm, as follows, can be implemented using parallel SC1400 data
accesses to illustrate the impact of M1 contention on DSP performance.

Eqn. 2

In the example application, buffers X[0:N], Y[0:N], and Z[0:N] are located in M1 memory. Buffers X and
Y are accessed by the SC1400 core, and buffer Z is accessed by the DMA controller through ASM1. In
this scenario, program code is located in DDR memory and served by the I-Cache; therefore, SC1400
program accesses do not contribute to M1 contention.

Figure 6. Buffer Locations

The example algorithm can be implemented on an MSC711x device through the following assembly code,
where the data locations are as shown in Figure 6.

; Simple Test Algorithm

move.l #$BUFFER_X_START_ADDRESS,r6

move.l #$BUFFER_Y_START_ADDRESS,r7

nop

; Parallel XA and XB Data Read Accesses from X(0) and Y(0)

move.l (r6)+,d2 move.l (r7)+,d3

move.w #$VALUE_N,d1

dosetup1 _start1

doensh1 d1

nop

skipls _end1

loopstart1

_start1

; Calculate X(i)*Y(i) and Accumulate

; Parallel XA and XB Data Read Accesses from X(i+1) and Y(i+1)

mac d2,d3,d4 move.l (r6)+,d2 move.l (r7)+,d3

loopend1

_end1

Q = X(0)Y(0) + X(1)Y(1) + X(2)Y(2) + ... + X(N)Y(N)

M1 Memory

BUFFER_X_START_ADDRESS

BUFFER_Y_START_ADDRESS

X(0->N)

Y(0->N)

BUFFER_Z_START_ADDRESS

Z(0->N)

VALUE_N

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

8 Freescale Semiconductor

Case 1: Non-Optimized Application

5 Case 1: Non-Optimized Application
The application discussed in this section is not optimized because buffers X, Y, and Z are placed in the
same memory group, as shown in Figure 7. Additionally, buffers X and Y are offset by 0x2000, as shown
in Figure 8, resulting in the following parallel access in the algorithm to cause XA versus XB contention
each time it executes (VALUE_N times).

mac d2,d3,d4 move.l (r6)+,d2 move.l (r7)+,d3

5.1 Configuration
BUFFER_X_START_ADDRESS = $00016000

BUFFER_Y_START_ADDRESS = $00018000

BUFFER_Z_START_ADDRESS = $0181A000 (same as $0001A000 when accessed by SC1400)

VALUE_N = $FF

Because buffers, X, Y, and Z, are placed in the same group, M1 contention results because:

1. [ASM1 and (XA or XB)] accesses target the same half-group.

2. XA and XB accesses target different rows of the same module.

Figure 7. Case 1 Buffer Placement

M1 Memory

 Group 3

 Group 2

 Group 1

 Group 0

BUFFER_Z_START_ADDRESS

Buffer X

Buffer Y

Buffer Z

BUFFER_Y_START_ADDRESS

BUFFER_X_START_ADDRESS

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

Freescale Semiconductor 9

Case 1: Non-Optimized Application

Figure 8 shows the start locations for each buffer in M1. Notice that the start locations for all three buffers
are in different rows of module 0. As the algorithm executes, the SC1400 pointers into buffers X and Y
increment at the same rate, so the parallel read accesses in the algorithm always target different rows of
the same module, causing contention.

Figure 8. Case 1 Buffer Offsets

5.2 Results
The algorithm running with performance measurements applied yields the following results:

• Application execution cycles = 287 IP bus cycles = 574 core clock cycles

• M1 contention cycles = 2 × 155 = 310

• Percent degradation = (310 / 574) × 100 = 54%

Figure 9 and Figure 10 show internal MSC711x signals and buses, including clocks, and SC1400 XA and
XB data buses, ASM1 data bus, freeze signals, and counters in timers A0 and A1. The algorithm execution
is based on cycle-accurate MSC711x hardware simulation. In Figure 9 the CORE_FREEZE signal,
indicating a SC1400 stall, asserts sporadically throughout the algorithm execution (between the markers).
The stalls are due to M1 contentions, indicated by assertion of the M1_FREEZE signal. The M1 contention
signal used by the event port is similar to the M1_FREEZE signal, but it asserts once for every two M1
contentions, necessitating multiplication by two.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

M1 Group 1

Module 1, Row 0: 0x10004–0x10007
Module 0, Row 0: 0x10000–0x10003

Module 0, Row 1280: 0x1A000–0x1A003

Module 0, Row 1024: 0x18000–0x18003

Module 0, Row 768: 0x16000–0x16003

0x1A000
(BUFF_Z_START_ADDRESS)

0x18000
(BUFF_Y_START_ADDRESS)

0x16000
(BUFF_X_START_ADDRESS)

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

10 Freescale Semiconductor

Case 1: Non-Optimized Application

Figure 9. Case 1 Application Execution

Figure 10 shows the completion of the algorithm execution at the second marker.

Figure 10. Case 1 Application Execution Completion

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

Freescale Semiconductor 11

Case 2: Partially-Optimized Application

6 Case 2: Partially-Optimized Application
The application discussed in this section is partially optimized because buffer Z is placed into a different
memory group than buffers X and Y, as shown in Figure 11. Additionally, buffers X and Y are offset from
each other by 0x2000, as shown in Figure 12. As a result, the following parallel access in the algorithm
causes XA versus XB contention:

mac d2,d3,d4 move.l (r6)+,d2 move.l (r7)+,d3

6.1 Configuration
BUFFER_X_START_ADDRESS = $00016000

BUFFER_Y_START_ADDRESS = $00018000

BUFFER_Z_START_ADDRESS = $01826000 (same as $00026000 when accessed by SC1400)

VALUE_N = $FF

Because buffer Z is placed into group 2, M1 contention due to [ASM1 and (XA or XB)] accesses targeting
the same half-group is prevented. Since buffers X and Y are still located in the same group, M1 contention
results because XA and XB accesses different rows of the same module.

Figure 11. Case 2 Buffer Placement

M1 Memory

 Group 3

 Group 2

 Group 1

 Group 0

Buffer X

Buffer Y

Buffer Z
BUFFER_Z_START_ADDRESS

BUFFER_Y_START_ADDRESS

BUFFER_X_START_ADDRESS

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

12 Freescale Semiconductor

Case 2: Partially-Optimized Application

Figure 12 shows the start locations for buffers X and Y in group 1. Note that the start locations are in the
same module. As the algorithm executes, the SC1400 pointers into buffers X and Y increment at the same
rate so that the parallel read accesses in the algorithm always target the same modules causing contention.

Figure 12. Case 2 Buffer Offsets

6.2 Results
The algorithm run with performance measurements applied yielded the following results:

• Application execution cycles = 260 IP bus cycles = 520 core clock cycles

• M1 contention cycles = 2 × 128 = 256

• Percent degradation = (256 / 520) × 100 = 49%

Figure 13 and Figure 14 show the algorithm execution on the design based on MSC711x hardware
simulation. In Figure 13 the CORE_FREEZE signal, indicating a SC1400 stall, asserts sporadically
throughout the algorithm execution (between the markers). The stalls are due to M1 contentions, indicated
by assertion of the M1_FREEZE signal.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

M1 Group 1

Module 1, Row 0: 0x10004 - 0x10007
Module 0, Row 0: 0x10000 - 0x10003

0x16000
Module 0, Row 768: 0x16000 - 0x16003

0x18000 Module 0, Row 1024: 0x18000 - 0x18003

(BUFF_X_START_ADDRESS)

(BUFF_Y_START_ADDRESS) .

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

Freescale Semiconductor 13

Case 2: Partially-Optimized Application

Figure 13. Case 2 Application Execution

Figure 14 shows the completion of the algorithm execution at the second marker.

Figure 14. Case 2 Application Execution Completion

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

14 Freescale Semiconductor

Case 3: Optimized Application

7 Case 3: Optimized Application
The application discussed in this section is optimized because buffer Z is placed in a different memory
group from buffers X and Y, as shown in Figure 14. Additionally, buffers X and Y are offset from each
other by 0x200C, as shown in Figure 15. As a result, in the following parallel access in the algorithm does
not cause XA versus XB contention:

mac d2,d3,d4 move.l (r6)+,d2 move.l (r7)+,d3

7.1 Configuration
BUFFER_X_START_ADDRESS = $00016000

BUFFER_Y_START_ADDRESS = $0001800C

BUFFER_Z_START_ADDRESS = $01826000 (same as $00026000 when accessed by SC1400)

VALUE_N = $FF

Because buffer Z is placed into group 2, M1 contention due to [ASM1 and (XA or XB)] accesses targeting
the same half-group is prevented. As an alternative to the buffer X and Y offset of 0x200C, buffers X and
Y can be placed into separate groups, preventing M1 contention. In this example algorithm, it is not
necessary to locate buffers X and Y in separate groups to eliminate XA versus XB contention.

Figure 15. Case 3 Buffer Placement

M1 Memory

 Group 3

 Group 2

 Group 1

 Group 0

Buffer X

Buffer Y

Buffer ZBUFFER_Z_START_ADDRESS

BUFFER_Y_START_ADDRESS

BUFFER_X_START_ADDRESS

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

Freescale Semiconductor 15

Case 3: Optimized Application

Figure 15 shows the start locations for buffers X and Y in group 1. Note that the start locations are in
different modules. As the algorithm executes, the SC1400 pointers into buffers X and Y increment at the
same rate so that the parallel read accesses in the algorithm always target different modules, preventing
contention.

Figure 16. Case 3 Buffer Offsets

7.2 Results
The algorithm running with performance measurements applied yields the following results:

• Application execution cycles = 132 IP bus cycles = 264 core clock cycles

• M1 contention cycles = 0

• Percent degradation = (0 / 264) × 100 = 0%

Figure 16 and Figure 17 show the algorithm execution on the design based on a MSC711x hardware
simulation. In Figure 16, the CORE_FREEZE signal, indicating a SC1400 stall, does not assert throughout
the algorithm execution (between the markers). Also, note that there are no M1 contentions, which are
indicated when the M1_FREEZE signal stays deasserted.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

M1 Group 1

Module 1, Row 0: 0x10004 - 0x10007
Module 0, Row 0: 0x10000 - 0x10003

0x16000
Module 0, Row 768: 0x16000 - 0x16003

0x1800C
Module 3, Row 1024: 0x1800C - 0x1800F

(BUFF_X_START_ADDRESS)

(BUFF_Y_START_ADDRESS) .

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

16 Freescale Semiconductor

Case 3: Optimized Application

Figure 17. Case 3 Application Execution

Figure 18 shows the completion of the algorithm execution at the second marker.

Figure 18. Case 3 Application Execution Completion

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

Freescale Semiconductor 17

Conclusions

8 Conclusions
The results from the three application cases shown in Table 1 demonstrate the effect of the optimizations.
Moving the buffer accessed by the DMA controller (buffer Z) into group 2, which was not accessed by XA
or XB, decreased the performance degradation by 5 percent, as shown in case 2 with respect to case 1. By
optimizing the buffer placement for buffers operated on by the XA and XB buses (buffers X and Y),
performance degradation decreased by an additional 49 percent, as shown in case 3 with respect to case 2.
This 49 percent improvement was the result of eliminating M1 contention.

In more complicated algorithms, the same percent of improvement may not be achieved by changing the
offset of the buffers operated on by XA and XB. For these cases, the buffers should be placed into separate
groups to prevent M1 contention. The need for such a change can be determined by measuring the M1
contentions, as described in Section 1, “Determining Contention as a Problem.” Alternatively, degradation
due to XA versus XB contention can be estimated by reviewing the SC1400 parallel accesses in the
assembly code to determine whether contention results.

In all three cases, program code is located in DDR memory and served by the I-Cache; therefore, SC1400
program accesses do not contribute to M1 contention. If you need to place a program into M1 memory,
place it into a group not being accessed by the XA, XB, or ASM1 buses.

Table 1. Application Case Results

Case ASM1 vs. [XA,XB]
Contention

XA vs. XB
Contention

Application
Execution Cycles
(Core Clk Cycles)

M1
Contentions

% Degradation

1: Non-Optimized Yes Yes 574 310 54

2: Partially Optimized No Yes 520 256 49

3: Optimized No No 264 0 0

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

18 Freescale Semiconductor

Conclusions

THIS PAGE INTENTIONALLY LEFT BLANK

Tuning an Application to Prevent M1 Memory Contention, Rev. 0

Freescale Semiconductor 19

Conclusions

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3076
Rev. 0
05/2006

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The PowerPC name is a trademark of IBM Corp. and is used under license. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2004, 2006.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

