
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2006, 2008. All rights reserved.

The time-division multiplexing (TDM) interface is a
full-duplex serial port that allows MSC711x DSPs to
communicate with a variety of serial devices, including
industry-standard data converters, codecs, framers, other
DSPs, and microprocessors. This application note presents
examples of how to interface the MSC711x TDM port to
A/D, D/A, and codec for various applications. A basic
knowledge of the MSC711x TDM is assumed. The
MSC711x reference manual and application notes are
available at the web site listed on the back cover of this
document.

Document Number: AN3067
Rev. 1, 02/2008

Contents
1. TDM Overview . 2

1.1. TDM Architecture . 3
1.2. TDM Signals . 4
1.3. Clock and Frame Sync 6
1.4. Frame Parameters . 7

2. TDM Interface Examples . 8
2.1. Interfacing to an A/D Converter 8
2.2. Interfacing to a D/A Converter 13
2.3. Interfacing the TDM to a Codec 21

Interfacing the MSC711x TDM to A/D,
D/A and Codecs
by Barbara Johnson

Digital Systems Division
Freescale Semiconductor, Inc.
Austin, TX

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

2 Freescale Semiconductor

TDM Overview

1 TDM Overview
In a TDM system, two or more communications channels are transmitted over the same link with a
different time slot allocated for each channel transmission. A channel can transmit data only during its
allocated time slot. If a channel must send more data, it waits until its next assigned time slot is available.
If a channel has no more data to send, the time slot is sent empty because it is still allocated to that channel.
A periodic frame sync is generated to indicate the start of the frame so that the receiver can determine
which channel is being received.

Figure 1 illustrates how a TDM works on an E1 line. A speech waveform is sampled 8000 times per second
and each sample is represented as 8 bits, yielding a 64-Kbps channel capacity. Each frame represents one
sample of 8 bits from each of the 32 channels. The frame is repeated every 125 ms. Therefore, the E1
interface yields an aggregate of:

Eqn. 1

Figure 1. E1 Frame

The MSC711x TDM interface allows glueless connection to industry-standard E1/T1 lines, framers, data
converters, codecs, other DSPs and microprocessors. The MSC711x has up to three identical TDM
modules, depending on the device. Each TDM module has the following features:

• Independent or shared transmit and receive sections

• Independent or shared clock and frame sync

• Glueless interface to E1/T1 framers and MVIP, SCAS, and H.110 buses

• Hardware A-law/μ-law conversion

• Data rates up to 50 Mbps

• Up to 128 channels

• 8- or 16-bit word width

• Programmable direction for TDM clock and frame sync

• Programmable delay of 0–3 bits between frame sync signal and beginning of delay

• MSB or LSB first

• Loopback mode

32 channels × 8 bits per channel / 125 ms = 2.048 Mbps

10 2 30 31

8 bits

10 2 30 31

... ...

Frame n Frame n + 1

DATA

SYNC

CLOCK

125 ms

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 3

TDM Overview

1.1 TDM Architecture
The TDM has separate transmit and receive paths that can operate independently or share the clocking and
synchronization. The transmit and receive clock and frame sync generators can generate the TDM transmit
and receive serial bit clocks TDMxTCK/RCK. The TDM also supports an external source for the clock
and frame sync. The TDM clock operates at up to 50 MHz with up to 128 channels of 8- or 16-bit data.
The TDM frame sync signals TDMxTFS/RFS, which indicate the start of the frame, can also be input or
output.

There is hardware support for A-law/µ-law conversion for 8-bit channel data. Data is converted to 13–14
bits and padded with zeros to create 16 bits of data.

The transmit data register, TDMxTDR, holds the data to be transmitted from the MSC711x. By default, the
transmit FIFO is disabled and data in the transmit data register is transferred to the transmit shift register.
Data is serially shifted out on the transmit data TDMxTD pin, one bit per transmit clock TDMxTCK.

A 4-line deep FIFO can optionally be enabled to buffer data from the transmit data register. Each line in
the FIFO can hold one sample of 8/16-bits or packed 64-bits of data. In the latter case, the wide FIFO mode
packs 8 × 8–bit or 4 × 16–bit samples in one FIFO line. Data from the FIFO is transferred to the transmit
shift register, depending on the programmed watermark. If the amount of data in the FIFO is equal to the
programmed watermark, transmission begins and data is transferred to the shift register and shifted out on
the transmit data pin.

The receive path operates in the reverse sequence. Data on the receive data TDMxRD pin is shifted into
the receive shift register, one bit per receive clock TDMxRCK������� If the receive FIFO is disabled, data
in the receive shift register is transferred to the receive data register TDMxRDR. If the FIFO is enabled,
the receive shift register fills the 4-line deep receive FIFO until the watermark level is reached. Data is
then transferred to the receive data register.

To allow the SC1400 core to focus on data processing, the DMA can be configured to work with the TDM
to transfer data in and out of the receive and transmit data registers. Two DMA channels are assigned to
each TDM module for servicing the receive and transmit transfers. Figure 2 illustrates the architecture
block diagram of a single TDM module.

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

4 Freescale Semiconductor

TDM Overview

Figure 2. TDM Block Diagram

1.2 TDM Signals
Each TDM module has six signals, as shown in Table 1. Each of the transmit and receive sections has its
own clock, frame sync, and data pins. The clock and frame sync can be configured as input or output
because these signals are supplied from an external source or they are internally generated. The transmit
data pin is output from the TDM and the receive data pin is input to the TDM.

Table 1. TDM Signals

Signal Description Input/Output

TDMxTCK Serial bit clock for the transmit data. I/O

TDMxRCK Serial bit clock for the receive data. I/O

TDMxTFS Start of a transmit frame. I/O

TDMxRFS Start of a receive frame. I/O

TDMxTD Transmit data from the TDM. O

TDMxRD Receive data to the TDM. I

Tx Clock and
SYNC Generator

Rx Clock and
SYNC Generator

TDMxTCK

TDMxTFS

TDMxRCK

TDMxRFS

A
P

B

32-bit

A
S

T
H

64-bit

A/μ-LAW Tx Shift RegisterTDMxTDR

A/μ-LAW Rx Shift RegisterTDMxRDR

TDMxTD

TDMxRD

Tx FIFO

Rx FIFO

Event/Status
Registers

Control
Registers

Configuration
Registers

MSC711x TDM Interface

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 5

TDM Overview

The MSC711x exits reset with the I/O pins in software control mode, which selects GPIO instead of
peripheral functionality. Therefore, the TDM functionality is not available until the TDM signals are
configured in hardware control mode and the corresponding port pin registers are set up. The TDM pins
should be initialized before the TDM registers are configured.

Table 2 shows the TDM pins and their GPIO port pin assignments. The TDM0 and TDM1 pins are
configured using port A. The TDM2 pins are configured using both port A and port D. The port A and port
D control registers (GPA_CTL and GPD_CTL) and the device configuration register (DEVCFG) must be
configured as shown in Table 2 to enable the TDM pins.

Example 1 shows how to configure the GPIO pins for TDM0, TDM1 and TDM2.

Example 1. GPIO Initialization for TDM0, TDM1 and TDM2

void InitGPIO()

{

GPIO *pstGPIO;

BTM *pstBTM;

pstGPIO = (GPIO *)(GPIO_BASE);

pstBTM = (BTM *)(BTM_BASE);

Table 2. GPIO Pin Assignment for TDM

TDMx Signal Port Bit GPx_CTL CHPCFG

TDM0 TDM0RCK A 11 GPA_CTL[11] = 1 DEVCFG[PAS] = 0 or 1

TDM0RFS A 10 GPA_CTL[10] = 1

TDM0RD A 9 GPA_CTL[9] = 1

TDM0TCK A 8 GPA_CTL[8] = 1

TDM0TFS A 7 GPA_CTL[7] = 1

TDM0TD A 6 GPA_CTL[6] = 1

TDM1 TDM1RCK A 5 GPA_CTL[5] = 1 DEVCFG[PAS] = 0 or 1

TDM1RFS A 4 GPA_CTL[4] = 1

TDM1RD A 3 GPA_CTL[3] = 1

TDM1TCK A 2 GPA_CTL[2] = 1

TDM1TFS A 1 GPA_CTL[1] = 1

TDM1TD A 0 GPA_CTL[0] = 1

TDM2 TDM2RCK A 27 GPA_CTL[27] = 1 DEVCFG[PAS] = 1
DEVCFG[PDS] = 1TDM2RFS D 4 GPD_CTL[4] = 1

TDM2RD A 28 GPA_CTL[28] = 1

TDM2TCK D 5 GPD_CTL[5] = 1

TDM2TFS A 29 GPA_CTL[29] = 1

TDM2TD D 6 GPD_CTL[6] = 1

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

6 Freescale Semiconductor

TDM Overview

// Configure GPIO pins for TDM0 and TDM1 functionality

 pstGPIO->astPort[0].vuliPortControl = 0x00000FFF;

pstGPIO->astPort[0].vuliPortDataReg = 0;

pstGPIO->astPort[0].vuliPortDataDirReg = 0;

// Configure chip config to PAS & PDS for TDM2

pstBTM->vuliCHPCFG = pstBTM->vuliCHPCFG | 0x00000009;

// TDM2: T2TFS,T2RD,T2RCK

pstGPIO->astPort[0].vuliPortControl = pstGPIO->astPort[0].vuliPortControl | 0x38000000;

// TDM2: T2TD,T2TCK,T2RFS

pstGPIO->astPort[3].vuliPortControl = pstGPIO->astPort[3].vuliPortControl | 0x00000070;

}

1.3 Clock and Frame Sync
The MSC711x provides the flexibility to connect to different devices with different clock and frame sync
requirements. Some devices internally generate the clock and frame sync from a master input clock, and
others require these signals to be supplied from an external source. The TDM supports both input or output
clock and frame sync, with independent or shared transmit and receive sections. In independent mode, the
transmit and receive sections are clocked separately. In shared mode, they share the same clock and frame
sync and only the transmit clock and frame sync pins are used. Table 3 summarizes the bit settings for the
clock and frame sync operation.

Table 3. Clock and Frame Sync Settings

Tx/Rx Clock and Frame Sync Bit Settings

Independent Tx/Rx TDMxTCK clock Input TDMxTIR[TCOE] = 0 TDMxGIR[RTS] = 0

Output TDMxTIR[TCOE] = 1

TDMxTFS frame sync Input TDMxTIR[TSO] = 0

Output TDMxTIR[TSO] = 1

TDMxRCK clock Input TDMxRIR[RCOE] = 0

Output TDMxRIR[RCOE] = 1

TDMxRFS frame sync Input TDMxRIR[RSO] = 0

Output TDMxRIR[RSO] = 1

Shared Tx/Rx TDMxTCK clock Input TDMxTIR[TCOE] = 0 TDMxGIR[RTS] = 1

Output TDMxTIR[TCOE] = 1

TDMxTFS frame sync Input TDMxTIR[TSO] = 0

Output TDMxTIR[TSO] = 1

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 7

TDM Overview

When the bit clock is internally generated, the MSC711x timer B module provides the source for the TDM
bit clock. Timer features such as the prescaler and compare registers can generate various frequencies. The
input clock to the timer block can be derived from an external clock or from the APB clock, which operates
at half the core frequency.

1.4 Frame Parameters
The MSC711x TDM has programmable frame parameters for compatibility with many devices. The TDM
can receive or transmit up to 128 channels at a granularity of two channels. A single channel mode is also
available for transmitting and receiving only one channel of data. Channel size is unified, so all channels
in a frame are either 8 or 16 bits. The frame sync can be pulsed for one clock cycle or it can be asserted
for the duration of one channel length. The frame sync phase is also programmable so that it is active at
the logic one or logic zero state. Both the frame sync and data can be sampled or driven at the rising or
falling edge of the clock. A programmable frame sync delay allows up to 3 cycles in half cycle increments
of delay between the frame sync activation and the first data bit of the frame. Data can be received or
transmitted with the most significant bit first (msb) or least significant bit first (lsb). Table 4 shows the
frame parameters and associated registers.

Table 4. TDM Frame Parameters

Parameter Tx/Rx Register Valid Settings

Number of channels Transmit TDMx_TFP[TNCF] 1, 2, 4, 6, ... 128 channels

Receive TDMx_RFP[RNCF]

Channel size Transmit TDMx_TFP[TCS] 8 or 16 bits

Receive TDMx_RFP[RCS]

Frame Sync Length Transmit TDMx_TIR[TSL] 1 bit or 1 word

Receive TDMx_RIR[RSL]

Frame Sync
Driven/Sampled

Transmit TDMx_TIR[TFSE] Rising or falling edge

Receive TDMx_RIR[RFSE]

Frame Sync Active Transmit TDMx_TIR[TSA] Logic 0 or logic 1

Receive TDMx_RIR[RSA]

Frame Sync Delay Transmit TDMx_TIR[TFSD] 0 to 3 clocks in increments of 0.5
clocksReceive TDMx_RIR[RFSD]

Data Driven/Sampled Transmit TDMx_TIR[TDE] Rising or falling edge

Receive TDMx_RIR[RDE]

Data Order Transmit TDMx_TIR[TRDO] msb first or lsb first

Receive TDMx_RIR[RRDO]

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

8 Freescale Semiconductor

TDM Interface Examples

2 TDM Interface Examples
This section provides examples of interfacing the TDM to an A/D, a D/A converter, and a codec for
different types of applications. Testing was performed using the EVM711x Evaluation Module (EVM),
which provides direct access to the TDM pins for easy connection to external devices. Software
initialization of the TDM and DMA controller is also discussed.

2.1 Interfacing to an A/D Converter
The MSC711x TDM port can be used in data acquisition systems in which an A/D converter (ADC)
receives a signal from an analog source such as a microphone, sensor, transducer, or function generator
and converts the analog signal to digital data. The DSP then analyzes and processes the data and transmits
it to the D/A converter (DAC), which converts the data back to an analog signal.

Figure 3. Example A/D and D/A System

In this case, the TDM0 module interfaces to the Burr-Brown ADS1602. The ADS1602 is a high-speed
delta-sigma ADC for measurement applications in sonar, vibration analysis, and data acquisition.
Although other ADC devices can interface to the TDM, the ADS1602 was selected for its high data rate
and glueless connection to the TDM.

The ADS1602 requires an external clock of up to 40 MHz to be applied to the clock input CLK pin. With
16-bit samples, this means that the ADS1602 outputs data at rates up to:

Eqn. 2

The ADC outputs the serial clock, SCLK, to the TDM. Note that the SCLK and CLK operate at the same
frequency of 40 MHz because the SCLK is internally generated by the ADC and is derived from the CLK
signal. The SCLK connects to the TDM0_RCLK and clocks data into the MSC711x. The frame sync FSO
is output from the ADC to indicate that data is available to be read from the ADC. The frame sync arrives
every 2.5 MHz, as calculated in Equation 2. The FSO pin connects to the TDM0_RFS pin. The TDM
receives data on the TDM0_RD pin from the ADC data output (DOUT) pin.

In addition to the standard TDM signals, a GPIO pin must connect from the DSP to the ADC
synchronization control (SYNC) pin. The DSP must toggle the GPIO pin once after the ADC powers up
to synchronize the ADC. After powerup, the GPIO is no longer needed. Figure 4 shows the ADC interface
diagram.

Preamplifier

ADC DSP DAC

Driver

Analog
Input

Analog
Output

Receiver Transmitter

40 MHz / (16 bits per sample) = 2.5 Msamples/s

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 9

TDM Interface Examples

Figure 4. ADC Interface

Figure 5 shows the timing of the TDM signals as required by the ADS1602. The frame sync pulses every
16 clock cycles. In this case, only one channel of data is transferred every frame. The ADC asserts the
frame sync for one bit clock. The frame sync is sampled on the falling edge of SCLK. The ADC drives the
data on the rising edge of SCLK, with the msb driven first. There is a one clock cycle delay between the
frame sync and the first data bit, so the first data bit sampled when the frame sync is active is the lsb (bit 0)
of the previous frame. The msb (bit 15) of the current frame appears one cycle later.

Figure 5. ADS1602 Serial Interface

2.1.1 TDM Initialization
Example 2 shows the TDM configuration based on the required ADC frame parameters. The receive and
transmit sections of TDM0 are independent so that the receive and transmit operate with separate clock
and frame sync signals. With these settings, the TDM0GIR register is cleared.

The TDM0RIR register is configured according to the ADS1602 interface requirements discussed
previously. Both the clock and frame sync are input to the TDM0 from the ADC. The frame sync is
sampled on the falling edge of the clock, and the data changes on the rising edge of the clock. A one bit
sync delay occurs before the first data bit is sampled. Data is shifted in msb first.

Although it is not necessary, the receive FIFO is enabled in this example. The wide FIFO mode is not used,
so each of the four FIFO lines holds one sample of 16-bit data. The DMA controller is enabled to transfer
data from the TDM0RDREG to the receive data buffer.

The TDM0RFP is configured with the frame parameters. Each frame consists of one channel of 16-bit
data.

SCLK

FSO

SYNC

DOUT

ADS1602

TDM0_RCLK

TDM0_RFS

TDM0_RD

GPIO

MSC711x

CLK40 MHz

0 msb 14 1 0 14 13 12TDMx_RD

TDMx_RCLK

TDMx_RFS 16-bit data

msb ...

...

...

...

...

...

Frame sync sampled on falling edge of clock

Data driven out on rising edge of clock

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

10 Freescale Semiconductor

TDM Interface Examples

The TDM0RCEN0 register is cleared so that no channel is active yet. The channel can be activated later,
after the DMA settings are configured.

The TDM0RIER register is configured to enable interrupts when a receive frame sync error or a receive
overrun event occurs.

Example 2. Configuring the TDM Parameters for the ADC

void InitTDMParams(void)

{

// TDM0 does not share signals with other TDMs

// Independent Rx/Tx

pstTDM0->vuliGIR = 0x00000000;

// Rx FIFO full with 1+ elements RFWM = 00

// Rx FIFO enabled RFEN = 1

// Rx wide FIFO disabled RWEN = 0

// Rx sync is input RSO = 0

// Rx sync is 1 bit RSL = 0

// Rx clock is input RCOE = 0

// Rx DMA enabled RDMA = 1

// Rx sync 1-bit delay RFSD = 01

// Rx sync active on logic 1 RSA = 0

// Rx data on rising edge clk RDE = 0

// Rx sync on falling edge clk RFSE = 1

// Rx data MSB first RRDO = 1

pstTDM0->vuliRIR = 0x00008053; //RFSD=01,RDE=0,RFSE=1

// 1 channel

// 16-bits/channel

pstTDM0->vuliRFP = 0x00000030;

// Deactivate all TDM channels

pstTDM0->avuliRCEN[0] = 0x00000000;

// Enable Rx Sync and Overrun Error Interrupt

pstTDM0->vuliRIER = 0x0000000c;

}

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 11

TDM Interface Examples

2.1.2 DMA Initialization
DMA channel 1 transfers data from the TDM0RDREG to a receive buffer when the receive FIFO is full.
The DMA channel transfers one channel or 16 bits of data at a time from TDM0RDREG to the receive
buffer. The source address specified in TCD0[SADDR] is programmed to be the TDM0RDREG address,
and the destination address specified in TCD4[DADDR] is programmed to be the receive buffer address.
Because the DMA controller accesses M1 memory beginning at 0x01800000, an offset of 0x01800000
must be added to the destination address if the buffer is located in M1 memory.

The TCD2[NBYTES] field specifies the inner minor loop byte count and is set to 2 bytes because each
DMA transfer moves 16-bits of data. The source and destination sizes specified in TCD1[SSIZE] and
TCD1[DSIZE] are programmed for 16 bits.

The source address offset specified in TCD1[SOFF] is set to 0 because TDM0RDREG is always the source
of the transfer. However, the destination address offset specified in TCD4[DOFF] is set to 2 bytes because
every transfer moves 2 bytes of data so the next destination address is incremented by 2 bytes for every
transfer.

The TCD5[CITER] field specifies the number of major outer loop count. Each major iteration transfers 2
bytes of data. Therefore, to fill a buffer with SZ_BUF, the CITER field is set to SZ_BUF / 2 iterations. The
beginning iteration count TCD7[BITER] field must be set to TCD5[CITER]. When the receive buffer is
filled with SZ_BUF bytes of data, the DMA controller can be disabled as shown in the Example 3 or it can
be configured to receive data continuously at the start of the receive buffer by setting the destination last
address TCD6[DLAST] = -(SZ_BUF /2).

Example 3. Configuring the DMA Parameters for the ADC

void InitDMAParams()

{

// *************

// Receive side

// *************

// saddr = source addr is TDM Rx data register

// TDMRDREG = TDM0AHB_BASE + 0

pstDMA->astTCD[1].vuliSAddr = TDM0AHB_BASE;

// smod = 0 source addr modulo disabled

// ssize = 16 bits source xfer size

// dmod = 0 dest addr modulo disabled

// dsize = 16 bits dest xfer size

pstDMA->astTCD[1].vusiTransferAttr = 0x0101;

// soff = 0 source offset disabled

pstDMA->astTCD[1].vusiSOff = 0;

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

12 Freescale Semiconductor

TDM Interface Examples

pstDMA->astTCD[1].vuliNBytes = 2;

// slast = 0 source last addr adjustment disabled

pstDMA->astTCD[1].vuliSLast = 0;

// daddr = dest addr is Rx_buffer;

pstDMA->astTCD[1].vuliDAddr = (VUWord32)(&Rx_buffer);

pstDMA->astTCD[1].vusiCIter = SZ_BUF / 2;

pstDMA->astTCD[1].vusiDOff = 2;

pstDMA->astTCD[1].vuliDLastSGA = 0;

pstDMA->astTCD[1].vusiBIter = pstDMA->astTCD[1].vusiCIter;

// bwc = 0

// major.linkch = 0

// major.e_link = 0

// e_sg = 0

// d_req = 0

// int_half = 0

// int_maj = 0

// start = 0

pstDMA->astTCD[1].vusiChannelCtrlStat = 0x0;

}

2.1.3 Starting the Transfer

The transfer can begin after the TDM and DMA parameters are set up as shown in Example 4. Clear the
TDM and DMA error registers before beginning the transfer. Then enable DMA channel 1 to transfer data
from the TDM0RDREG to the receive data buffer. Next, enable the receive section of the TDM and ensure
that the frame sync is stable before activating the TDM channel. When the channel is enabled, the DMA
controller begins to bring in data from the ADC to the receive data buffer and continues the transfers until
the TCD5[CITER] decrements to zero. When the DMA transfer is complete, disable the receive section of
the TDM.

Example 4. Starting the TDM Rx Transfer

void StartXfer(void)

{

// Clear TDM error registers

pstTDM0->vuliRER = 0x000001cc;

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 13

TDM Interface Examples

// Clear any DMA Errors

pstDMA->vucDMACERR = 0x40;

// Enable DMA chan 1 request

pstDMA->vuliDMAERQ = 0x00000002;

// Enable TDM Rx

pstTDM0->vuliRCR = 0x00000001;

 // Wait for sync

while(((pstTDM0->vuliRSR>>1)&3) != 2);

// Channel 0 is active

pstTDM0->avuliRCEN[0] = 0x01;

// Wait for Rx DONE = 1 for major loop completion

while((pstDMA->astTCD[1].vusiChannelCtrlStat & 0x0080) == 0);

// Disable TDM Rx

pstTDM0->vuliRCR = 0;

}

2.2 Interfacing to a D/A Converter
The Burr-Brown DAC8830 is a 16-bit DAC that is used in data acquisition systems, optical networking,
and industrial process control applications. The DAC operates as a bus slave such that the DSP provides
the serial clock TDM0_TCLK to the DAC SCLK input. For this particular DAC, the serial clock can
operate at up to 50 MHz. The DSP accesses the DAC by driving the TDM0_TFS which is connected to
the DAC chip select CS pin low. The 16-bit data from the DSP TDM0_TD pin is shifted out synchronously
on the falling edge of the serial clock and latched on the rising edge of TDM0_TCLK into the input shift
register, with msb first. After 16 clock cycles, the DSP deasserts CS, which is connected to TDM0_TFS
to indicate to the DAC to transfer the contents of its input register to the latch. At this time, the analog
signal is output from the DAC. Figure 6 shows the DSP connection to the DAC.

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

14 Freescale Semiconductor

TDM Interface Examples

Figure 6. DAC Interface

The DAC requires the CS pin to be brought low for 16 clock cycles. If the CS is brought high before 16
bits are shifted in, data is corrupted and new data must be transferred to the DAC to be latched. The DAC
requires that CS be high for a minimum 30 ns. With a 50 MHz clock, this means the CS must be high for
at least 1.5 cycles. Data shifted into the DAC during the cycle when CS is high is thrown away and not
used in the data conversion. The unused data bit is shown in the shaded area. This means that there are 17
clock cycles between frame syncs: 16 bits for valid data and one unused bit when the CS is high. The TDM
does not support this interface where there are 17 clock cycles in a frame. To interface to this DAC, a
workaround is needed. Figure 7 shows the DAC serial timing.

Figure 7. DAC8830 Serial Interface

The MSC711x TDM requires the channel to be either 8 or 16 bits long. The channel size is global, so all
channels in a frame must be the same size. The TDM interface does not support deactivation of individual
bits in a channel. However, in a frame with two or more channels, a particular channel can be left inactive.
This workaround would configure the TDM to have two 16-bit channels per frame so that the second
16-bits of data is discarded while CS is high. The first 16 bits of data is the actual data for conversion. Since
the CS is high for the duration of the second channel, the minimum 30 ns requirement to keep CS high is
met. Figure 8 shows the serial interface with two channels per frame, with the shaded bits discarded by the
TDM. The resulting sampling rate is:

Eqn. 3

SCLK

CS

SDI

DAC8830

TDM0_TCLK

TDM0_TFS

TDM0_TD

MSC711x

LDAC

0 msb 14 1 0 msb 14 13SDI

SCLK

CS 1 unused bit + 16-bit data

MSB ...

...

...

...

...

...

Note: An unused bit is not converted by DAC

50 MHz / (16 bits per sample × 2 samples per frame) = 1.5625 Msamples/s

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 15

TDM Interface Examples

Figure 8. DAC8830 Serial Interface with 2 Channels

2.2.1 Clock and Frame Sync Generation
Since the DAC8830 requires the clock and frame sync to be input, the TDM can be configured to generate
these signals from the timer B module. Timer features such as the prescaler and compare registers provide
can generate various frequencies. The input clock to the timer block can be derived from an external clock
or from the APB clock, which operates at half the core frequency. When the SC1400 core operates at 200
MHz, the desired TDM clock rate of 50 MHz can easily be derived from the APB clock of 100 MHz by
selecting the APB as the source of the Timer clock.

With the source of the timer clock selected, the timer must be programmed to set up the count and compare
parameters. The timer is configured to increment the counter for every rising edge of the primary count
source, which is the 100 MHz clock from the APB. The counter counts up repeatedly until it reaches the
compare value. The output flag OFLAG signal is toggled when the counter reaches the compare value.
The OFLAG signal is output from the timer to provide the source for the TDM bit clock.

The timer compare register must be programmed with the number of rising edges of the timer input clock
before the timer output is toggled. Since we need to generate a timer output of 50 MHz, the timer output
must toggle at twice this frequency. Therefore, with a timer input clock of 100 MHz, the timer output must
toggle at every rising edge of the timer input clock, as shown in Figure 9. The timer settings are
summarized in Table 5.

Figure 9. TDM Clock Generation

TDMx_TD

TDMx_TCLK

TDMx_TFS

...

msb 14 1

...

...

16-bit data

...

...

16-bit data

0 MSB 14 1 0...

100 MHz

Timer Input

Timer Ouput

50 MHz

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

16 Freescale Semiconductor

TDM Interface Examples

Example 5 shows example code to generate the TDM clock from timer B.

Example 5. TDM Bit Clock Generation

void InitTDMClock()

{

TMRXn *pstTimerB;

CLK *pstCLK;

pstCLK = (CLK *)(CLK_BASE);

pstTimerB = (TMRXn *)(TMRB_BASE);

// Source of Timer clock is APB clock

pstCLK->vuliCLKCTRL = pstCLK->vuliCLKCTRL | 0xC0000000;

// **

 // Generate 50 MHz TDM clock from Timer B

 //

 // COUNT MODE = 001 - Count rising edges of primary source

// PRIMARY COUNT SOURCE = 1000 - Prescaler (Input clock divided by 1)

// SECONDARY SOURCE = 00 - Counter 0 input signal (TIN0)

 // ONCE = 0 - Count repeatedly

 // LENGTH = 1 - Count till compare, then reinitialize

 // DIR = 0 - Count Up

 // EXT INIT = 0 - External counter/timers can not force a

// re initialization of this counter/timer.

Table 5. Timer Parameters

Timer Parameter Timer Settings

Timer clock source CLKCTL[TMUX] = 11 Timer clock source is APB clock

Count mode TMRB0CTL[CM] = 001 Count rising edges of primary source

Primary count source TMRB0CTL[PCS] = 1000 Prescaler (input clock divided by 1)

Count once TMRB0CTL[ONCE] = 0 Count repeatedly

Count length TMRB0CTL[LEN] = 1 Count until compare and then reinitialize

Count direction TMRB0CTL[DIR] = 0 Count up

Output mode TMRB0CTL[OM] = 011 Toggle OFLAG output on successful compare

Timer compare TMRBCMP1 = 0 Compare to value of 1

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 17

TDM Interface Examples

 // OUTPUT (OFLAG) MODE = 011 - Toggle OFLAG output on successful compare

// **

pstTimerB->vusiTMR_CTRL = 0x3023;

pstTimerB->vusiTMR_CMP1 = 0x0001;

// Set output enable

pstTimerB->vusiTMR_SCR = pstTimerB->vusiTMR_SCR | 0x01;

}

When the frame sync is internally generated, the TDM frame sync generator automatically generates the
frame sync signal based on the TDM clock, the channel size, and the number of time slots in a frame. There
is no need to program a register to set up the frame sync frequency. The frame sync generator divides the
TDM clock by the size of the channel and by the number of time slots in a frame as shown in Figure 10.
The output of this divider is the frame sync that marks the start of a frame.

Figure 10. Frame Sync Generator

In this example, a TDM clock runs at 50 MHz, the TDM has two time slots of 16-bit data and the output
frame sync is generated every 1.5625 MHz.

2.2.2 TDM Initialization
Example 6 shows the TDM configuration based on the required DAC frame parameters. The receive and
transmit sections of TDM0 are independent so that the receive and transmit operate with separate clock
and frame sync signals. With these settings, the TDM0GIR register is cleared.

The TDM0TIR register is configured according to the DAC8830 interface requirements but with two
16-bit channels. The first channel is converted and the second channel is discarded. The clock is output
from the DSP to the DAC. The frame sync is internally generated by the TDM and input to the DAC. The
frame sync is driven out on the rising edge of the clock, and the data changes on the rising edge of the
clock. The frame sync is active on logic 0 for the duration of one channel. There is no delay between the
frame sync and the first data bit. Data is shifted in msb first.

The transmit FIFO is enabled in this example. Each of the four FIFO lines holds one sample of 16-bit data.
Data is loaded from the transmit data register (TDM0TDREG) to the FIFO and out to the transmit shift
register. This example also enables the DMA controller to transfer data in from the transmit data buffer to
TDM0TDREG.

The TDM0TFP register is configured for two channels of 16-bit data per frame.

TDM Clock
Channel Size Number of Time Slots

TDM Frame Sync
Divide by 8 or 16 Divide by 1 to 128

(even)

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

18 Freescale Semiconductor

TDM Interface Examples

The TDM0TCEN0 register is cleared so that no channel is active yet. The channel can be activated later
after the DMA settings are configured.

The TDM0TCMA0 register is configured to mask the second channel of every frame. This channel gets
discarded to meet the interface requirements of the DAC.

Example 6. Configuring the TDM Parameters for the DAC

The TDM0TIER register is configured to enable interrupts when a transmit frame sync error
or a transmit underrun event occurs.

void InitTDMParams(void)

{

// TDM0 does not share signals with other TDMs

// Independent Rx/Tx

pstTDM0->vuliGIR = 0x00000000;

// Tx FIFO full with 1+ elements TFWM = 00

// Tx FIFO enabled TFEN = 1

// Tx wide FIFO disbled TWEN = 0

// Tx sync is output TSO = 1

// Tx always out TAO = 1

// Tx sync is 1 channel TSL = 1

// Tx clock is input TCOE = 0

// Tx DMA enabled TDMA = 1

// Tx sync no delay TFSD = 00

// Tx sync active on logic 0 TSA = 1

// Tx data on rising edge clk TDE = 0

// Tx sync on rising edge clk TFSE = 0

// Tx data MSB first TRDO = 1

pstTDM0->vuliTIR = 0x0000A849; //TFSE=0,TDE=0

// 2 channels
// 16-bits/channel

pstTDM0->vuliTFP = 0x00010030;
// Deactivate all TDM channels

pstTDM0->avuliTCEN[0] = 0x00000000;

// Masking enabled ch 1
pstTDM0->avuliTCMA[0] = 0x00000002;

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 19

TDM Interface Examples

// Enable Tx Sync & Underrun Error Interrupt
pstTDM0->vuliTIER = 0x0000000c;
}

2.2.3 DMA Initialization
DMA channel 0 is assigned to transfer data from a transmit data buffer to TDM0TDREG. The DMA
setting for the transmit section is very similar to those for the receive section, except the source and
destination addresses are different. The source address specified in TCD0[SADDR] is programmed to be
the transmit buffer address and the destination address specified in TCD4[DADDR] is programmed to be
the TDM0TDREG.

The destination address offset specified in TCD4[DOFF] is cleared to 0 because the TDM0TDREG is
always the destination of the transfer. However, the source address offset specified in TCD1[SOFF] is set
to 2 bytes because every transfer moves 2 bytes of data so that the next source address is incremented by
2 bytes. All other fields in the DMA transfer descriptor registers are programmed as discussed in the ADC
example.

Example 7. Configuring the DMA Parameters for the DAC

void InitDMAParams()

{

// *************

// Transmit side

// *************

// saddr = source addr is Tx_buffer

pstDMA->astTCD[0].vuliSAddr = (VUWord32)(&Tx_buffer);

// smod = 0 source addr modulo disabled

// ssize = 16 bits source xfer size

// dmod = 0 dest addr modulo disabled

// dsize = 16 bits dest xfer size

pstDMA->astTCD[0].vusiTransferAttr = 0x0101;

pstDMA->astTCD[0].vusiSOff = 2;

// nbytes = 2 bytes

pstDMA->astTCD[0].vuliNBytes = 2;

pstDMA->astTCD[0].vuliSLast = -SZ_BUF;//continuous loop

// pstDMA->astTCD[0].vuliSLast = 0; //single shot

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

20 Freescale Semiconductor

TDM Interface Examples

// TDMTDREG = TDM0AHB_BASE + 8

pstDMA->astTCD[0].vuliDAddr = TDM0AHB_BASE + 8;

// total number bytes transferred = citer * nbytes

pstDMA->astTCD[0].vusiCIter = SZ_BUF / 2;

// doff = 0

pstDMA->astTCD[0].vusiDOff = 0;

// dlast_sga = 0;

pstDMA->astTCD[0].vuliDLastSGA = 0;

pstDMA->astTCD[0].vusiBIter = pstDMA->astTCD[0].vusiCIter;

// bwc = 0

// major.linkch = 0

// major.e_link = 0

// e_sg = 0

// d_req = 0

// int_half = 0

// int_maj = 0

// start = 0

pstDMA->astTCD[0].vusiChannelCtrlStat = 0x0000;

}

The TDM transmit transfer is started much like the receive transfer. The transfer can begin after the TDM
and DMA parameters are set up as shown in Example 8. DMA channel 0 services the transmit side of the
TDM. After the transmit section of the TDM is enabled, the sync should be stable before the TDM channel
is activated. Only channel 0 is activated. The DMA begins to transmit data from the transmit data buffer
to the DAC and continues the transfers until the TCD5[CITER] decrements to zero.

Example 8. Starting the TDM Tx Transfer

void StartXfer(void)

{

 // Clear TDM error registers

pstTDM0->vuliTER = 0x000001cc;

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 21

TDM Interface Examples

// Clear any DMA Errors

pstDMA->vucDMACERR = 0x40;

// Enable DMA chan 0 requests

pstDMA->vuliDMAERQ = 0x00000001;

// Enable TDM Tx

pstTDM0->vuliTCR = 0x00000001;

 // Wait for sync

while(((pstTDM0->vuliTSR>>1)&3) != 2);

// Channel 0 is active

pstTDM0->avuliTCEN[0] = 0x01; //ch 0 active

while(1);

}

2.3 Interfacing the TDM to a Codec
The MSC711x TDM port can also be used in consumer digital audio applications such as 16-bit 44.1 KHz
sampling rate for CD-quality computer audio. A digital audio system using a codec as shown in Figure 11
provides an integrated A/D and D/A, which provides an input source such as a microphone. The DSP
performs signal processing on the received data and transmits the processed data back to the codec, which
outputs to a speaker or a headphone.

Figure 11. Digital Audio System

For interfacing the MSC711x TDM to a 16-bit stereo codec. The EVM711x uses the AKM AK4550 codec
as shown in Figure 12 to input and output stereo channels to and from the DSP. The AK4550 is a 16-bit
delta-sigma codec for portable digital audio systems. It supports sampling rates of up to 50 KHz.

DSPCodec

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

22 Freescale Semiconductor

TDM Interface Examples

Figure 12. Codec Interface

2.3.1 Clock and Sync Generation
The AK4550 requires an external clock supplied to its master clock input MCLK pin. The MCLK
frequency can be 256fs. With a sampling rate of 44.1 KHz, the required system input clock is:

Eqn. 4

Therefore, a frequency of 11.2896 MHz must be supplied to the MCLK pin. Other sampling rates such as
32 KHz or 48 KHz can be used by changing the MCLK frequency to 8.192 MHz or 12.2880 MHz,
respectively.

Although a clock oscillator can directly connect to the MCLK, the EVM711x connects the output of the
11.2896 MHz oscillator to the MSC711x EVENT0 pin. This connection gives the user the option of
dividing the clock down and routing the scaled down clock to a second event pin, EVENT1. This routing
scheme can use different clock oscillator frequencies. In this example, the optional division is bypassed so
that the EVENT1 output is the same as the EVENT0 input. The code in Example 9 shows EVENT1 is
driven by EVENT0.

Since the AK4550 requires the serial clock to be supplied to the serial clock input SCLK pin, the 11.2896
MHz clock input to the MSC711x can also be internally routed to the timer to generate the required serial
clock and frame sync. Example 9 shows the timer input pin TIN0 driven by EVENT0.

Example 9. Event Port and Timer Settings

void InitEventPort()
{

EV *pstEV;
pstEV = (EV *)(EV_BASE);

// Mux0 input is EVNT0
 pstEV->astEVIN[0].vuliIN = pstEV->astEVIN[0].vuliIN | 0x00000080;

MCLK

LRCK

SCLK

SDTO

SDTI

EVENT1

TDM0_RFS

TDM0_RCLK

TDM0_RD

TDM0_TD

11.2896 MHz EVENT0

AINL
AINR

AOUTL
AOUTR

STEREO IN

STEREO OUT

MSC711xAK4550

÷ 1

÷ 8

MCLK = 256 × 44.1 KHz = 11.2896 MHz

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 23

TDM Interface Examples

 // Mux0 output result to EVNT1 and TIN0
 pstEV->astEVOUT[0].vuliOUT = 0x78004238;
}

Note that the MCLK and SCLK do not operate at the same frequency. MCLK is 256fs and SCLK is 32fs.
With a 44.1 KHz sampling rate, the serial input clock to the AK4550 is:

Eqn. 5

The timer generates the TDM clock when it is output from the MSC711x. Because EVENT0 drives timer
input TIN0 with 11.2896 MHz, this clock must be divided by 8 to obtain the 1.4112 MHz serial clock.
Example 10 shows the code to configure the timer to generate the required clock.

The AK4550 also requires the frame sync to be supplied to the left/right clock LRCK pin from the
MSC711x TDM0_RFS pin. When asserted, this pin indicates the left channel data and when deasserted, it
indicates the right channel data. The frame sync is active for 16 clock cycles. The frame sync is asserted
every 44.1 KHz:

Eqn. 6

Example 10. Timer Setting

void InitTDMClockSync(void)

{

TMRXn *pstTimerB;

CLK *pstCLK;

pstCLK = (CLK *)(CLK_BASE);

pstTimerB = (TMRXn *)(TMRB_BASE);

// Source of Timer clock is APB clock

pstCLK->vuliCLKCTRL = pstCLK->vuliCLKCTRL | 0xC0000000;

// ***

 // COUNT MODE = 001 - Count rising edges of primary source

 // PRIMARY COUNT SOURCE = 0000 - Counter 0 input signal (TIN0)

 // SECONDARY SOURCE = 00 - Counter 0 input signal (TIN0)

 // ONCE = 0 - Count repeatedly

SCLK = 32 × 44.1 KHz = 1.4112 MHz

LRCK = 1.4112 MHz / (2 channels × 16 bits per channel) = 44.1 KHz

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

24 Freescale Semiconductor

TDM Interface Examples

 // LENGTH = 1 - Count till compare, then reinstalled

 // DIR = 0 - Count Up

 // EXT INIT = 0 - Ext ctr/tmrs can not force a reinit of this ctr/tmr

 // OUTPUT (OFLAG) MODE = 011 - Toggle OFLAG output on successful compare

// ***

pstTimerB->vusiTMR_CTRL = 0x2023; //EVENT1 routing from EVENT0

pstTimerB->vusiTMR_CMP1 = 0x0007; //Divide by 8 from EVENT0

pstTimerB->vusiTMR_SCR = pstTimerB->vusiTMR_SCR | 0x01; // Set output enable

}

2.3.2 TDM Initialization

Figure 12 shows the connection between the MSC711x and the codec. Data is shifted out of the AK4550
on the serial data output SDTO pin into the MSC711x TDM0_RD pin. Data is shifted into the codec on
the serial data input SDTI pin from the MSC711x TDM0_TD pin.

Figure 13 shows the codec serial interface timing that applies to both the receive and transmit sections
because they share the same clock and frame sync. The frame sync is driven out on the falling edge of the
clock. Transmit data is driven and receive data is sampled on the falling edge of the clock. Each frame
consists of the left and right channels, each 16-bits wide. When the frame sync is logic high, the left
channel data is shifted in or out. When the frame sync is logic low, the right channel data is active.
Example 11 shows the code to configure the TDM parameters for the codec.

Figure 13. AK4550 Serial Interface

Example 11. Configuring the TDM Parameters for the Codec

void InitTDMParams(void)

{

TDM *pstTDM0;

pstTDM0 = (TDM *)(TDM0_BASE);

// TDM0 does not share signals with other TDMs

// Rx/Tx share same sync and clock

// LPBK=0, CTS=0, RTS=1

TDM0_RD

TDM0_RCLK

TDM0_RFS

...

msb 14 1

...

...

RIGHT CHANNEL

...

...

LEFT CHANNEL

0 msb 14 1 0 msb

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 25

TDM Interface Examples

pstTDM0->vuliGIR = 0x00000001;

// Rx sync is 1-channel length

// Rx sync output driven on falling edge of clock

// Rx data sampled on falling edge of clock

pstTDM0->vuliRIR = 0x0002EA47;

// Tx sync is 1-channel length

// Tx sync output driven on falling edge of clock

// Tx data driven on falling edge of clock

pstTDM0->vuliTIR = 0x0002EA47;

// 2 channels

// 16-bits/channel

pstTDM0->vuliRFP = 0x00010030;

// 2 channels

// 16-bits/channel

pstTDM0->vuliTFP = 0x00010030;

// Deactivate all TDM channels

pstTDM0->avuliRCEN[0] = 0x00000000;

pstTDM0->avuliTCEN[0] = 0x00000000;

// Masking not enabled

pstTDM0->avuliTCMA[0] = 0x00000000;

// Enable Rx Sync & Overrun Error Interrupt

pstTDM0->vuliRIER = 0x0000000c;

// Enable Tx Sync & Underrun Error Interrupt

pstTDM0->vuliTIER = 0x0000000c;

}

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

26 Freescale Semiconductor

TDM Interface Examples

2.3.3 DMA Initialization
The DMA configuration for the codec is similar to the previous examples except that the wide FIFO mode
is used. Because the codec uses 16-bit data, the two channels are packed into each of the FIFO lines.
Although the two channels occupy only 32 bits of the 64-bit wide FIFO line, each DMA transfer takes the
entire 64 bits of data in wide FIFO mode. Unlike the previous examples, the number of bytes per
TCD2[NBYTES] and the source and destination transfer sizes TCD1[SSIZE/DSIZE] are set to 8 bytes.
The source and destination address offsets TCD1[SOFF] and TCD4[DOFF] must also be set to 8 bytes.
Since each DMA transfer moves 8 bytes of data, TCD5[CITER] is set to SZ_BUF / 8 iterations to fill a
buffer of size SZ_BUF.

All other fields in the DMA transfer descriptor registers are programmed as discussed in the previous
examples.

Example 12. Configuring the DMA Parameters for the Codec

void InitDMAParams()

{

DMA *pstDMA;

pstDMA = (DMA *)(DMA_BASE);

// Group 0 Pri = 1 (highest); RR chan & fixed grp arbitrations

pstDMA->vuliDMACR = 0x00000104;

pstDMA->DCHPRI[0] = 0x1D;

pstDMA->DCHPRI[1] = 0x1C;

pstDMA->DCHPRI[2] = 0x82;

pstDMA->DCHPRI[3] = 0x83;

pstDMA->DCHPRI[4] = 0x04;

pstDMA->DCHPRI[5] = 0x05;

pstDMA->DCHPRI[6] = 0x0E;

pstDMA->DCHPRI[7] = 0x0F;

pstDMA->DCHPRI[8] = 0x08;

pstDMA->DCHPRI[9] = 0x09;

pstDMA->DCHPRI[10] = 0x0a;

pstDMA->DCHPRI[11] = 0x0b;

pstDMA->DCHPRI[12] = 0x0c;

pstDMA->DCHPRI[13] = 0x0d;

pstDMA->DCHPRI[14] = 0x00;

pstDMA->DCHPRI[15] = 0x01;

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 27

TDM Interface Examples

// Disable all DMA Requests

pstDMA->vuliDMAERQ = 0x00000000;

// *************

// Receive side

// *************

// saddr = source addr is TDM Rx data register

// TDMRDREG = TDM0AHB_BASE + 0

pstDMA->astTCD[1].vuliSAddr = TDM0AHB_BASE;

// smod = 0 source addr modulo disabled

// ssize = 64 bits source xfer size

// dmod = 0 dest addr modulo disabled

// dsize = 64 bits dest xfer size

pstDMA->astTCD[1].vusiTransferAttr = 0x0303;

// soff = 0 source offset disabled

pstDMA->astTCD[1].vusiSOff = 0;

pstDMA->astTCD[1].vuliNBytes = 8;

// slast = 0 source last addr adjustment disabled

pstDMA->astTCD[1].vuliSLast = 0;

// daddr = dest addr is Rx_buffer;

pstDMA->astTCD[1].vuliDAddr = (VUWord32)(&Rx_buffer);

pstDMA->astTCD[1].vusiCIter = SZ_BUF / 8;

pstDMA->astTCD[1].vusiDOff = 8;

pstDMA->astTCD[1].vuliDLastSGA = -SZ_BUF;

pstDMA->astTCD[1].vusiBIter = pstDMA->astTCD[1].vusiCIter;

// bwc = 0

// major.linkch = 1 Link to channel 1

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

28 Freescale Semiconductor

TDM Interface Examples

// major.e_link = 1

// e_sg = 0

// d_req = 0

// int_half = 0

// int_maj = 0

// start = 0

pstDMA->astTCD[1].vusiChannelCtrlStat = 0x0120;

// *************

// Transmit side

// *************

// saddr = source addr is Tx_buffer

pstDMA->astTCD[0].vuliSAddr = (VUWord32)(&Rx_buffer);

// smod = 0 source addr modulo disabled

// ssize = 64 bits source xfer size

// dmod = 0 dest addr modulo disabled

// dsize = 64 bits dest xfer size

pstDMA->astTCD[0].vusiTransferAttr = 0x0303;

pstDMA->astTCD[0].vusiSOff = 8;

// nbytes = 8 bytes

pstDMA->astTCD[0].vuliNBytes = 8;

pstDMA->astTCD[0].vuliSLast = -SZ_BUF;

// TDMTDREG = TDM0AHB_BASE + 8

pstDMA->astTCD[0].vuliDAddr = TDM0AHB_BASE + 8;

// total number bytes transferred = citer * nbytes

pstDMA->astTCD[0].vusiCIter = SZ_BUF / 8;

// doff = 0

pstDMA->astTCD[0].vusiDOff = 0;

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 29

TDM Interface Examples

// dlast_sga = 0;

pstDMA->astTCD[0].vuliDLastSGA = 0;

pstDMA->astTCD[0].vusiBIter = pstDMA->astTCD[0].vusiCIter;

// bwc = 0

// major.linkch = 0 Link to channel 0

// major.e_link = 1

// e_sg = 0

// d_req = 0

// int_half = 0

// int_maj = 0

// start = 0

pstDMA->astTCD[0].vusiChannelCtrlStat = 0x0020;

}

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

30 Freescale Semiconductor

TDM Interface Examples

THIS PAGE INTENTIONALLY LEFT BLANK

Interfacing the MSC711x TDM to A/D, D/A and Codecs, Rev. 1

Freescale Semiconductor 31

TDM Interface Examples

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3067
Rev. 1
02/2008

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2006, 2008.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	Interfacing the MSC711x TDM to A/D, D/A and Codecs
	1 TDM Overview
	Figure 1. E1 Frame
	1.1 TDM Architecture
	Figure 2. TDM Block Diagram

	1.2 TDM Signals
	Table 1. TDM Signals
	Table 2. GPIO Pin Assignment for TDM

	1.3 Clock and Frame Sync
	Table 3. Clock and Frame Sync Settings

	1.4 Frame Parameters
	Table 4. TDM Frame Parameters

	2 TDM Interface Examples
	2.1 Interfacing to an A/D Converter
	Figure 3. Example A/D and D/A System
	Figure 4. ADC Interface
	Figure 5. ADS1602 Serial Interface
	2.1.1 TDM Initialization
	2.1.2 DMA Initialization
	2.1.3 Starting the Transfer

	2.2 Interfacing to a D/A Converter
	Figure 6. DAC Interface
	Figure 7. DAC8830 Serial Interface
	Figure 8. DAC8830 Serial Interface with 2 Channels
	2.2.1 Clock and Frame Sync Generation
	Figure 9. TDM Clock Generation
	Table 5. Timer Parameters
	Figure 10. Frame Sync Generator

	2.2.2 TDM Initialization
	2.2.3 DMA Initialization

	2.3 Interfacing the TDM to a Codec
	Figure 11. Digital Audio System
	Figure 12. Codec Interface
	2.3.1 Clock and Sync Generation
	2.3.2 TDM Initialization
	Figure 13. AK4550 Serial Interface

	2.3.3 DMA Initialization

