
Freescale Semiconductor
Application Note

Document Number: AN2961
Rev. 1, 05/2007

Contents

Introduction . 1
Communication Concept . 2
Message Format . 2
Message Encoding . 3
Reducing Power Consumption . 5
Hardware Connections . 6
Driver Overview . 9
Status Word. 10
Using the Driver. 12

0 Function Headers and Description 18
1 Echo Driver Configuration . 29
2 Adding the Echo Driver to an Application 39
3 Example Echo Application. 46
4 Communicating with Romeo2 and Tango3 Devices . . . 47

Software Drivers for MC33696

by: Petr Gargulak
John Logan
Graham Williamson
TSPG, Freescale Semiconductor, Inc.
1 Introduction
This application note describes the software device
driver written for the MC33696 transceiver IC (Echo)
and how it can be integrated and used in an application
on the HCS08 family of MCUs. The device driver allows
customer applications to use all features of the Echo
platform while remaining easily configurable.

The driver may be configured to run on any HCS08
MCU. You can specify different timer channels and I/O
pins on the MCU, allowing flexibility in system design,
modulation techniques, data rates, and clock sources. All
other Echo features are fully configurable. Full source
code and example applications are available on
www.freescale.com.

The driver is designed to allow communication in
Echo-only networks and also with the Tango3
transmitter and Romeo2 receiver devices. Device drivers
for Tango and Romeo are available on
www.freescale.com and documented in application note

1
2
3
4
5
6
7
8
9
1
1
1
1
1

© Freescale Semiconductor, Inc., 2005, 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com

Communication Concept
AN2707. For more information on configuring the device drivers to allow communication between Tango,
Romeo, and Echo devices, see Section 14, “Communicating with Romeo2 and Tango3 Devices.”

The driver is supplied as two software files—Echo.C and Echo.H. Configure the driver by making
selections in the Echo.H file.

Features of the driver include:
• Configurable statically for modulation type, frequency band, data rate, device ID, and header
• Supports bank switching—communicating on two RF channels
• Transmits and receives variable length messages with up to 127 bytes data
• Automatic checksum based error detection for each message
• Controls receiver on/off cycling using Echo’s internal strobe oscillator or directly via an I/O pin
• Provides dynamic control of the precise frequencies used in the selected band
• Provides dynamic control of Tx power and Rx sensitivity
• Supports received signal strength indicator (RSSI) measurement during message reception
• Compatible with Tango3/Romeo2 communications
• Compatible with 8-bit Freescale MCU families HC08 and HCS08

For more information, refer to the Echo device data sheet (available at http://www.freescale.com).

2 Communication Concept
Echo can support communication in the 304 MHz, 315 MHz, 434 MHz, 868 MHz, and 916 MHz bands
with data rates up to 22 kbps. Within each frequency band, you can choose the local oscillator and carrier
frequencies used.

Multiple transmitters (Tango3), receivers (Romeo2), and transceivers (Echo) may be present in a network
and can be individually selected by assigning each receiving device a unique ID. Groups of devices may
be formed by assigning a number of devices the same ID, supporting multicast or broadcast
communication.

Echo devices can be used in applications requiring two-way communication or flexible allocation of
transmitter and receiver roles, which can be changed dynamically. Public key and certification
authentication schemes are examples of applications that demand two-way communication.

3 Message Format
The driver supports sending messages in two formats that differ in the way that the ID is sent: spaced
preamble/ID sequences followed by the message or repeated consecutive IDs, with no spacing, followed
by the message. The driver also supports tone signaling: the application may use the ID repeat mode with
an ID of all 1 or all 0. These formats are shown in Figure 1.
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor2

http://www.freescale.com

Message Encoding
Figure 1. Message Formats

In both cases, the data manager hardware on Echo is employed to process received signals and detect the
ID and header portions. The length, data, and checksum fields only are returned to the MCU on the SPI.

Table 1 provides a description of each field of a message.

4 Message Encoding
The application sets up transmit message buffers with the parameters and data required for the
transmission. The driver reads and encodes the information before it is sent to Echo for transmission.

Table 1. Message Format Field Description

Field Description

Preamble This sequence is required before the ID and header fields and allows Echo to synchronize with the clock
encoded in the received signal and prepare for receiving the message.

ID Determines which device or devices should receive the message. Only messages whose ID field matches the
device ID stored in Echo’s ID register are successfully received and sent to the MCU. Messages may be sent
with any ID.

Header The header signals the beginning of the data in a message. After the header has been recognized, Echo
returns all following bytes to the MCU on the SPI lines until it encounters the end of message (EOM)
sequence. The header is chosen via a #define in Echo.h.
Note: There are some restrictions on the ID and header combinations that can be used. The header must not

be contained within the ID or, if using ID repeat mode, it must not be contained in a sequence of IDs.
Note: A further consideration is that the preamble must contain either one or four 0 bits, which form a prefix

on the ID. The header must not be found within the prefixed ID. Device IDs must be unique even when
prefixed with one or more 0 bits.

Length This specifies the number of bytes in the immediately following data field. This may be a value up to 127.

Data Contains the actual message sent: up to 127 data bytes.

Checksum The checksum is the sum of the ID, length, and data fields (mod 256). This is generated automatically by the
driver on transmission and checked on reception to provide a basic error detection facility.

EOM Indicates the end of the current message.

P+ID P+ID P Header Length Data… Checksum EOM

ID Header Length Data… Checksum EOMP ID ID ID ID

Spaced Message:

ID Repeat:
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 3

Message Encoding
Individual bits are encoded by the driver using Manchester encoding. Sending a single bit with Manchester
encoding requires that the value be sent during the first half bit-time and its complement sent during the
second half bit-time. For example:

1 ¯¯|__
0 __|¯¯

The pulse-width modulation (PWM) mode of the MCU’s timer module is used to produce this waveform:
• Set the timer modulus to the pulse width (this depends on the data rate)
• Set the output compare value to 0.5 modulus (50% duty cycle)

An interrupt occurs at output compare and we can set up for the next bit at this point.

The actual set up to send a single bit differs only slightly. The difference is to set high-true pulses or
low-true pulses for a 1 or a 0, respectively.

NOTE
The driver requires close control of the timer channel it is using, along with
the associated timer channel interrupt vector and pin. It also requires control
of the timer modulus to set it up for a single bit-time. However, after it is set,
the modulus is not modified further and can be used reliably on another
timer channel. The driver can be configured via the header file #define
ECHO_TIMER_DISABLE to leave the timer turned on even when the driver is not
using it.

When the Manchester encoded bit-stream is presented to Echo, it is modulated onto the carrier using on-off
keying (OOK) or frequency shift keying (FSK) for RF transmission.

Upon reception, Echo demodulates the RF signal and the data manager then removes the Manchester
encoding, reducing the processing required on the MCU.

Figure 2 shows the sequence of events in an application where a message transmission is triggered by
pressing a switch on one board, resulting in a LED flashing on another board.
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor4

Reducing Power Consumption
Figure 2. Data Flow and Message Encoding Steps in Message Transfer

5 Reducing Power Consumption
Echo can be placed into a standby mode to reduce power consumption. Controlling how Echo enters and
wakes from standby mode can be achieved in two ways: using the internal strobe oscillator or external
control via an I/O pin.

When Echo is in receive mode and the strobe oscillator is enabled (#define ECHO_SOE_VALUE 1 in the
driver’s header file), the internal strobe oscillator uses the values RON and ROFF in the RXONOFF register to
control how long Echo is awake and asleep, respectively. These values may be set in the Echo header file.

If Echo’s strobe pin is connected to the MCU, it can control on/off periods directly by toggling this pin.
When strobe is high, Echo will turn on and stay on. When strobe is low, Echo will turn off. If Echo
recognizes an ID during an on period, it will stay on regardless of the strobe pin and internal strobe
oscillator.

NOTE
Echo takes little time to wake up out of standby before it is possible to
receive a message. This time is typically 1.2 ms.

More detailed information on the operation of the strobe oscillator and strobe pin can be found in the Echo
data sheet. In particular, the section titled ‘Receiver On/Off Control’ explains detailed timing information.
The state machine descriptions show the interaction of the strobe oscillator and strobe pin on Echo’s state.

5.1 Consequences on Message Format
If the power-saving features of Echo are used when receiving a message, a message can begin while Echo
is in standby mode. To avoid this, the ID must be repeated long enough to cover at least two of Echo’s ON
periods. Both message formats described in Section 3, “Message Format,” can repeat the ID over a period
of time to allow Echo time to wake up. Figure 3 illustrates the required formats.

Echo

Driver
Machester
encodes

msg,
transmits

using Echo

Echo

HC08 CPU

Echo
driver

Ram
buffer

CPU writes msg
to ram buffer

Driver reads
Msg from buffer

Echo
sendsOOK
modulated
message

HC08 CPU

Echo
driver

Ram
buffer

CPU reads msg
from ram buffer

Driver writes
msg to buffer

Decoded msg
To mcu via SPI

interface

Echo
decodes msg
and removes
Manchester
encoding

User
Presses SW1

MCU
Controls LEDs
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 5

Hardware Connections
Figure 3. On/Off Time Cycling

6 Hardware Connections
Figure 4 shows the connection of Echo to the MCU, highlighting the required and optional connections.
The MCU pin used for each connection is defined in the Echo.H header file.

 Spaced Message:

ID Repeat:

P+IDP+ID P+ID P Header Data… EOM P+ID

ID Header Data… EOM P ID ID ID IDID ID ID

On time

Off Off OnOn

ID detected – Echo stays on until EOM

 On time

Off Off OnOn

ID detected – Echo stays on until EOM
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor6

Hardware Connections
Figure 4. Echo Hardware Connections

A brief description of each connection follows:
• MOSI, MISO, SCLK, and SS—SPI connections allowing configuration information to be sent to

Echo and received data to be sent back to the MCU. SS must be held low when the MCU is an SPI
slave and awaiting data from Echo. In many systems this can be grounded with a pulldown resistor.

• TX DATA—The MOSI pin on Echo has dual functionality. When Echo is in receive mode,
received data is output on the SPI to the MCU. When in transmit mode, the MOSI pin directly
receives the waveform to be modulated. The driver generates the Manchester encoded waveform
using a timer channel, and the corresponding channel pin is connected to MOSI when in transmit
mode.

• SEB—Enables the digital interface on Echo. When SEB is high, the MOSI, MISO, and SCLK pins
on Echo are high impedance, allowing other devices to be used on the SPI.

• CONFB—Resets Echo into configuration mode to allow access to Echo’s internal registers.

ECHO MCU

 SS

SCLK

MISO

MOSI

SCLK

MISO

MOSI

I/O pin
CONFB

SEB

RSSIC I/O pin

I/O pin

Timer channel output TX DATA

RSSIOUT
DATACLK

STROBE

ENABLEPA

ENABLELNA

I/O pin

I/O pin

Timer channel clock input

I/O pin

I/O pin

Required

Optional
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 7

Hardware Connections
NOTE
The RSSIE bit in Echo register COMMAND must be set to 1 to enable the
entire RSSI module before RSSI measurements can be made.

• RSSIC—Outputs an analog indication of the RSSI. This can be sampled with an MCU ADC to
obtain greater accuracy or faster sampling than possible with Echo’s internal conversion. The
driver can be configured to use an MCU ATD module to read analogue RSSI measurements.

NOTE
Applications can enable the RSSI module, set RSSIC high of their own
accord, and use an ADC directly without driver intervention.

• DATACLK—Can be used to provide the MCU with an accurate clock source for generating the
output waveforms for transmission. This is useful on MCUs that use a low-accuracy clock, such as
an RC oscillator.
The driver can be configured to allow Echo to output DATACLK and to use this signal as an
external clock input for the timer.

• STROBE—Can be used to control power by turning Echo on and off when in receive mode. See
Section 5, “Reducing Power Consumption,” for more information.

• ENABLEPA—This signal can be used on Freescale’s Echo RF modules to control an additional
external amplification stage on the output transmission. When ENABLEPA is 1, the power
amplifier is enabled. When ENABLEPA is 0, the power amplifier is disabled. The driver can be
configured to ignore ENABLEPA.

• ENABLELNA—This signal can be used on Freescale’s Echo RF modules to control an additional
external amplification stage on the received signal. When ENABLELNA is 1, the low noise
amplifier is enabled. When ENABLELNA is 0, the low noise amplifier is disabled. The driver can
be configured to ignore ENABLELNA.

6.1 MCU Resources Required
The hardware connection diagram shown in Figure 4 illustrates the required and optional resources that
the driver can be configured to use.

• Required resources:
— SPI—SPI connections for communication with and configuration of Echo.
— Timer channel—A single timer channel must be completely under driver control, including the

associated channel I/O pin. The driver must be linked to the channel interrupt vector as well.

NOTE
The driver must be able to initialize the timer modulus for the timer
containing the channel; it cannot then be altered.

— Three I/O pins—General-purpose I/O pins are required for configuration of Echo. SEB and
CONFB are required.
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor8

Driver Overview
• Optional resources:
— Timer channel—A second timer channel may be used to allow DATACLK to be input as a

clock source for the timer.
— I/O pin—For STROBE line in order to allow the application direct control of Echo on/off

cycling.
— I/O pin—Connects RSSIC to the signal strength measurement and allows Echo to begin an

internal conversion of the signal strength to be placed in the RSSI register. While RSSIC is held
high, conversions continue as long as CONFB is high.

— I/O pin—For ENABLEPA to allow the driver to control an additional external amplifier for
transmission.

— I/O pin—For ENABLELNA to allow the driver to control an additional external amplifier for
reception.

7 Driver Overview
The driver is supplied in two C code files – Echo.C and Echo.H.

The application communicates with the driver through the services and globally accessible storage shown
in Table 2 and Table 3.

Table 2. Driver Services

Driver Function

Echo_Initialize Sets the initial configuration for Echo and performs essential driver
set up. Must be called before using any other driver service.

Echo_Enable Turns Echo on; goes into receive mode after 2 ms startup delay.

Echo_Disable Turns Echo off; no messages can be received or transmitted.

Echo_DriverStatus Returns Echo’s current status.

Echo_ClearError Clears the error and timeout flags.

Echo_SendPreambleID Sends a preamble/ID sequence.

Echo_SendData Sends the body of a message.

Echo_SendMessage Sends an entire message telegram.

Echo_SendIDRepeat Sends a message in ID repeat format.

Echo_StrobeHigh Sets the STROBE line to 1.

Echo_StrobeLow Sets the STROBE line to 0.

Echo_StrobeTriState Tristates the STROBE line.

Echo_TxTimer_Interrupt Used by the driver to generate the transmitted waveform.

Echo_RxSPI_Interrupt Used by the driver to receive and process messages.

Echo_SetFreq Sets Echo frequencies using user friendly-access mode.

Echo_SetFreqNoFRM Sets Echo frequencies directly.

Echo_Set_RxOnOff Sets up RXONOFF register.
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 9

Status Word
8 Status Word
The status word returned by Echo_DriverStatus() is a 16-bit unsigned int. Figure 5 shows the format of
the word.

The function of each bit is described in Table 4. Multiple bits may be set at any one time to reflect the state
of the device driver at that time.

Echo_EnableRSSI Enables the RSSI module and read RSSI on incoming messages
automatically.

Echo_DisableRSSI Disables the RSSI module.

Echo_SetRxSensitivity Sets receive sensitivity: 1 [sensitive] – 4 [less sensitive].

Echo_SetTxPower Sets output power: 1 [high power] – 4 [low power].

Echo_RagcHigh Resets the automatic gain control to maximum level.

Echo_RagcLow Allows automatic gain control to take place.

Echo_FagcHigh Freezes the automatic gain control level.

Echo_FagcLow Unfreezes the automatic gain control level.

Echo_ChangeConfig Reads or writes directly to Echos internal registers.

Echo_ChangeBank Changes active bank of Echos registers.

Table 3. Driver Storage

Driver Function

unsigned char
echoTransmitBuffer[ECHO_MAX_
DATA_SIZE+4]

Buffer that the application must fill with transmit settings and data.
For buffer format, see Section 9.5, “Buffer Formats.”

unsigned char *echoNextMessage Pointer to the next received message; updates after
Echo_DriverStatus()

Bit 15 14 13 12 11 10 9 8

Name SwitchMode Timeout LVD Error RSSI_InPRO

GRESS

RSSI_Enable

d

ModeSwitchD

elay

EnableDelay

Bit 7 6 5 4 3 2 1 0

Name Mode Overrun Checksum Rx Tx MSGReady Busy Enabled

Figure 5. Status Word Bit Allocation

Table 2. Driver Services (continued)

Driver Function
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor10

Status Word
Table 4. Status Word Field Description

Bit Name Description 0 1

0 Enabled Indicates when the Echo module is enabled. Disabled Enabled

1 Busy Echo driver is busy. — Busy

2 MsgReady There is a message ready in an Rx buffer. The pointer
'echoNextMessage' indicates the start of the buffer.
The Checksum bit indicates if this buffer had a
checksum error.

No message Message
ready in
buffer

3 Tx The driver is currently transmitting information via Echo. Not
transmitting

Transmission
in progress

4 Rx A message is being received and processed by the
driver. Check this flag before sending a message to
avoid losing a message.

Not currently
receiving

Receive is in
progress

5 Checksum The message at echoNextMessage has a checksum
error.

Checksum ok Checksum
error

6 Overrun All Rx buffers are full and another message has arrived
with nowhere to be stored.

— Buffer
overrun

7 Mode Indicates whether Echo is in transmit or receive mode. Receive Mode Transmit
Mode

8 EnableDelay Echo is powering up out of standby; this takes 2 ms. — Echo
powering up

9 ModeSwitchDelay Echo is switching between modes; delay is
approximately 500 μs

— Echo
switching
modes

10 RSSI_Enabled Indicates if the RSSI module is on or off RSSI disabled RSSI enabled

11 RSSI_InProgress Indicates if the MCU ADC is currently in use by the
driver. When an analog RSSI is requested, the ADC
must be free for the driver to use. This flag indicates
when the application can take control of the ADC again,
if necessary.

ADC free ADC busy

12 Error Indicates that an error has occurred with a request, e.g.
RSSI.

— Error

13 LVD Indicates Echo has detected its supply voltage is < 1.8 V. — Low Voltage
Detected

14 Timeout A timeout has occurred when waiting on a byte to be
received.

— Timeout
occurred

15 SwitchMode Indicates whether Echo is in bank switching mode. Only one bank
active

Two banks
active
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 11

Using the Driver
9 Using the Driver

9.1 General Conventions
While the driver is performing a service, the busy status flag is set. After any request by the application
for the driver to perform a service, the application must verify the busy flag is cleared to determine when
the service has completed. This is illustrated in Figure 6.

If the driver is busy, calls to any service (excluding Echo_DriverStatus()) may corrupt the request and
result in unspecified behavior. Exceptions to this rule, such as the ability to double buffer transmitted
messages using overlapped calls to Echo_SendMessage(), are detailed in the documentation for that service
(see Section 9.3, “Transmitting Messages”).

Figure 6. Driver Busy Flag Paradigm

The error flag indicates if any error occurred during the processing of a request. Sources of error include:
• timeout from the receive states
• attempting to read RSSI without the module enabled
• attempting to call Echo_SendData() when not in transmit mode
• or calling Echo_ChangeConfig() with illegal parameters

Errors may also occur when the Tx or Rx state machines are corrupted, indicating some problem outside
the driver’s control. To clear an error or timeout, call the Echo_ClearError() service.

9.2 Setup and Initialization
Before the driver can be used, some initial set up is necessary. This is performed in the Echo_Initialize()
service. Consequently, Echo_Initialize() must be called before using any other driver service.

After the driver has been initialized, Echo must be enabled before any messages can be sent or received or
before any function on Echo can be used. Echo can be configured while disabled. A typical start up
sequence is shown in Figure 7.

Invoke driver service

Busy = 1?
Yes

No
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor12

Using the Driver
Figure 7. Echo Driver Start Up

After invoking Echo_Enable(), there is a 2 ms start up delay while Echo is brought out of standby mode.
At this point, other application initialization may occur or messages for transmission may be constructed
to be sent after start up.

9.3 Transmitting Messages
There are two different formats for message transmission as detailed in section Section 3, “Message
Format.” The driver also provides support for double buffering of transmitted messages and explicit
control of the timing and number of Preamble/ID sequences. To support transmission in both formats and
allow explicit control of Preamble/ID repeats, there are a total of four services provided by the driver:

• Echo_SendPreambleID—Send a preamble/ID sequence
• Echo_SendData—Send the body of a message
• Echo_SendMessage—Send an entire message telegram
• Echo_SendIDRepeat—Send a message in ID repeat format

Start

Invoke
Echo_Initialize()

Invoke
Echo_Enable ()

Application initialization/
message creation

EnableDelay = 1?

Yes

No

Continue with application
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 13

Using the Driver
9.3.1 Manual Preamble/ID Sending

The first two services allow the application to transmit Preamble/ID sequences and the data sequence
manually. This may be necessary if the timing control provided by the driver – in the Echo_SendMessage()
service – does not suit the application requirements.

The sequence for sending messages using Echo_SendPreambleID() and Echo_SendData() is similar to the
equivalent Tango services. This is summarized in Figure 8.

Figure 8. Manual Preamble/ID Sending

Set up
Preamble/ID

counter

Fill Tx
Buffer

Invoke
Echo_SendPrambleID()

Busy = 1?
Yes

No

Delay
(if necessary)

Decrement
Preamble/ID

counter

Count
= 0?

No

Invoke
Echo_SendData()

Busy
= 1?

Yes

No

Yes

Invoke
Echo_ChangeBank()
if requirement
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor14

Using the Driver
9.3.2 Automatic Preamble/ID Sending and Message Queuing

Using the Echo_SendMessage() service, it is possible to queue messages for transmission. To queue
messages, you must specify the number of Preamble/ID sequences to preface the message with and, of
course, the spacing between each sequence. This information is stored in the transmit buffer (see
Section 9.5, “Buffer Formats”). To simplify timing, the spacing between messages is measured in bit
times. With this information stored alongside the message, a complete telegram can be sent without the
intervention of the application software.

When queueing messages with Echo_SendMessage(), the sequence of events is shown in Figure 9

Figure 9. Querying Complete Telegrams

No

Yes

Yes

No

Fill Tx
Buffer

Start

Tx Buf
Empty?

Invoke
Echo_SendMessage()

The Echo driver initiates the sending.
When possible, the message is copied
into the internal buffer, transmission
begins and the buffer full flag is cleared
to allow another message to be queued.

Another
message?

End

Application must clear the full flag.
Echo_SendMessage() will set the full
flag to indicate the Tx buffer is busy.

Invoke
Echo_ChangeBank()
if requirement
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 15

Using the Driver
9.3.3 ID Repeat Message Format

Sending messages using ID repeat format is simple. Fill the transmit buffer and, when the driver is not
busy, invoke the Echo_SendIDRepeat service with the desired number of IDs to be repeated as a parameter.

9.4 Receiving Messages
For receiving messages, the driver is flexible enough to accommodate a number of buffers defined in the
header file. The scheme employed provides a globally accessible pointer for the next full receive data
buffer.

The pointer is updated after calling Echo_DriverStatus(). If a message is available in the buffers, the status
bit MsgReady is set and the pointer echoNextMessage is updated. If that message has a checksum error, the
Checksum status bit is also set. If no messages are waiting, echoNextMessage is undefined and the status
bit MsgReady is cleared.

Internally, there is a temporary receive buffer that the Echo driver uses for partially received messages and
associated processing. This is copied to a free buffer when the reception is complete. If no free buffers
exist, the message will be discarded and the Overrun status bit is set.

When the application has finished using the buffer at echoNextMessage, it must clear the buffer full bit to
return it to the pool before the next message will be released to it. If the buffer full bit is not cleared,
subsequent calls to Echo_DriverStatus() will not update the echoNextMessage pointer.

Figure 10. Receive Buffering

9.4.1 Timeouts

If the length is corrupted or part of a message is lost, the driver can remain in a waiting state for the next
byte of a message to arrive. Consequently, parts of future messages can be mistakenly read as part of this
message. To avoid this, the timer provides a timeout mechanism while receiving.

The timeout is measured in bit-times and must clearly be greater than 8 bits (to allow a full byte to arrive
and be transferred out of Echo onto the SPI). This is defined in the driver header file:
ECHO_RX_TIMEOUT_BITS.

If a timeout occurs, both the Timeout and Error status bits are set.

FreePtr

copy

 Background
Rx Buffer

NextPtr

Foreground
Rx Buffers
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor16

Using the Driver
9.5 Buffer Formats

9.5.1 Preamble/ID Repeats

When using the Echo_SendMessage service, this byte defines the number of times to repeat the preamble/ID
sequence before sending the data.

9.5.2 Spacing

When using the Echo_SendMessage service, this byte defines the number of bit-times to leave between
repetitions of the preamble/ID sequence.

9.5.3 ID

The message ID. The actual number of bits sent for the ID depends on the configuration option
ECHO_ID_LENGTH in the driver header file. If the length is less than eight, the bits used correspond to the least
significant bits in this byte.

9.5.4 Full Flag

The full flag indicates when the buffer is in use, either by the driver (for the Tx buffer) or by the application
(for the Rx buffer). Using this bit limits the maximum data length to 127 bytes.

When any of the message sending services are called, the buffer is marked full for the duration of its use
by the driver. Only when the driver clears the full flag can the transmit buffer be modified again. Modifying
it while this bit is set can lead to corruption of the messages sent or other undesirable and unpredictable
effects.

<------- 8 bits ------->
Preamble/ID repeats

Spacing (in bit times) <------- 8 bits ------->
ID Chec

ksum
Bank
flag

RSSI
flag RSSI (5 bits)

Full
flag Length (7 bits) Full

flag Length (7 bits)

Data 0 Data 0

. .

. .

. .

. .

Data N (max. 127) Data N (max. 127)

Tx Buffer Rx Buffer

Figure 11. Buffer Formats
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 17

Function Headers and Description
When the driver fills an Rx buffer, it sets the full flag to signify the buffer contains a message. The
application must clear the full flag to return the buffer to the pool and be available to receive more
messages. The next message will not be returned to the application until the previous message is released.

9.5.5 Checksum

Although not included in the buffer, the checksum is calculated and automatically sent with messages by
the driver software. To maintain compatibility with the Tango and Romeo device drivers, the checksums
sent and received are calculated over the ID, length, and data bytes.

The checksum provides a minimal error detection mechanism. The checksum bit in the Rx buffer indicates
that a checksum error has been detected. This is set to 1 on error and cleared otherwise.

9.5.6 Bank Flag

If both banks are active, this bit indicates which bank received the message.

9.5.7 RSSI

If the automatic RSSI reading is enabled (by calling Echo_EnableRSSI()), the RSSI of incoming messages
is automatically measured and stored with the messages. The 5 bit RSSI value is the sum of the upper and
lower 4-bit portions of the Echo RSSI register value. If necessary, this can be used to calculate the signal
strength in dBm.

If the automatic RSSI reading is disabled, the RSSI value will not be present with the message. The RSSI
flag bit indicates whether there is a valid RSSI measurement for this message; the RSSI flag is set to 1 if
the RSSI bits contain a valid measurement.

10 Function Headers and Description

10.1 Initialization and Startup Functions

10.1.1 Echo_Initialize

Syntax: void Echo_Initialize(void)

Parameters: None

Return: None
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor18

Function Headers and Description
10.1.2 Echo_Enable

10.1.3 Echo_Disable

Description: This service initializes the Echo module and the device driver software. The Echo module
is configured according to the settings provided in the Echo.H header file via the SPI; the
driver status is disabled; both necessary and optional port pins are configured if used. To
reduce power consumption, neither the Echo module nor the external amplifiers (if
present) are enabled.

Notes: This service must be called before using any others provided by the Echo driver. Failure
to do so produces unpredictable results.

Syntax: void Echo_Enable(void);

Parameters: None

Return: None

Description: This service powers Echo into receive mode and waits for arriving messages. It also
enables the external LNA (if present) and schedules a 2 ms start-up delay for Echo using
the timer. If the strobe pin is under driver control, the strobe is taken high to turn Echo on.
The RSSI module is disabled by default, to conserve power. Status bit Enabled is set.

Notes: While the driver is in the enable delay state (status bit EnableDelay set), no further services
from the Echo driver may be invoked. However, a message may be constructed into the
Tx buffer in preparation to send when the driver state returns to idle (status bit Busy
cleared).

Syntax: void Echo_Disable(void);

Parameters: None

Return: None

Description: This service powers down Echo into standby mode. The PA, LNA, and strobe are set low.
The timer may be turned off depending on the ECHO_TIMER_DISABLE configuration option.
Status bit Enabled is cleared.

Notes: This service immediately initiates a shutdown of Echo. Any transmission or reception in
progress will be abandoned.
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 19

Function Headers and Description
10.2 Status Functions

10.2.1 Echo_DriverStatus

10.2.2 Echo_ClearError

10.3 Message Sending Functions

10.3.1 Echo_SendPreambleID

Syntax: tECHO_STATUS Echo_DriverStatus(void);

Parameters: None

Return: 16-bit flag word indicating the status of the driver.

Description: Indicates the status of the device driver via the bit flags returned. The format of the status
word is detailed in Section 8, “Status Word.”

Notes: This service must be called before attempting to read from the Rx buffer to ensure there is
valid data in the buffer at echoNextMessage (if a message has been received).

Syntax: void Echo_ClearError(void);

Parameters: None

Return: None

Description: Clears the error and timeout bits.

Syntax: void Echo_SendPreambleID(void);

Parameters: None

Return: None

Description: Switches to transmit mode and initiates sending a message consisting of a preamble
sequence followed by the target device ID. The ID is read from the ID byte in the Tx buffer,
with the number of bits defined by the ECHO_ID_LENGTH configuration option. During
transmission, the status flag BusyTx is set.

Notes: If ECHO_ID_LENGTH is less than eight, the ID should reside in the bottom ECHO_ID_LENGTH
bits of the ID byte. This service does not switch back to receive mode and should be used
with the Echo_SendData() service to send complete messages and return to receive mode
(see Figure 8). Before using this function to switch driver mode (both banks are enabled),
the right bank of registers must be set by Echo_ChangeBank(ECHO_BANK_x).
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor20

Function Headers and Description
10.3.2 Echo_SendData

10.3.3 Echo_SendMessage

Syntax: void Echo_SendData(void);

Parameters: None

Return: None

Description: Initiates sending a message consisting of a preamble sequence, header, length, data, and
checksum. Length and data are read from the Tx buffer; the header is statically defined in
the Echo.h configuration file; and checksum is calculated (and confirmed on reception) by
the driver. During transmission, the status flag BusyTx is set. Switches back to Rx mode on
completion of the transmission.

Notes: This service requires the driver to be in transmit mode before entry and should be used in
conjunction with the Echo_SendPreambleID() service to send complete messages (see
Figure 8). Before using this function to switch driver mode (both banks are enabled), the
right bank of registers must be set by Echo_ChangeBank(ECHO_BANK_x).

Syntax: void Echo_SendMessage(void);

Parameters: None

Return: None

Description: Switches to Tx mode and initiates the buffered sending of a complete message telegram
sequence consisting of a number of preamble/ID sequences followed the message in the
same format as Echo_SendData(). The number of preamble/ID sequences to repeat and the
spacing between them are defined by parameters in the Tx buffer. During transmission, the
status flag BusyTx is set.

Notes: The message being sent is copied into an internal buffer, thus freeing the external buffer to
queue another message for transmission. To queue another message, verify the buffer is
empty (using the buffer full bit) and if so, load in the next message. Call
Echo_SendMessage() again, which will set the buffer full flag until the message is copied
into the internal buffer to be sent. At that point another message can be queued. If no new
message is queued at the end of transmission of a message, the mode is switched back to
Rx (incurring a mode switch delay of 500 μs). Before using this function to switch driver
mode (both banks are enabled), the right bank of registers must be set by
Echo_ChangeBank(ECHO_BANK_x).
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 21

Function Headers and Description
10.3.4 Echo_SendIDRepeat

10.4 Strobe Power Control Functions

10.4.1 Echo_StrobeHigh

10.4.2 Echo_StrobeLow

Syntax: void Echo_SendIDRepeat(unsigned char repeatCount);

Parameters: repeatCount—The number of additional IDs to send.

Return: None

Description: Switches to Tx mode and initiates the sending of a complete ID repeat message telegram
sequence. This consists of a preamble and number of consecutive IDs followed
immediately by a header and the message in the same format as Echo_SendData(). During
transmission, the status flag BusyTx is set. Before using this function to switch driver mode
(both banks are enabled), the right bank of registers must be set by
Echo_ChangeBank(ECHO_BANK_x).

Syntax: void Echo_StrobeHigh(void);

Parameters: None

Return: None

Description: Brings the strobe high if the strobe pin is under driver control. This allows control of Echo
on/off time in receive mode to manage power consumption. Strobe high turns the receive
circuit on.

Notes: See Section 5, “Reducing Power Consumption,” for more information.

Syntax: void Echo_StrobeLow(void);

Parameters: None

Return: None

Description: If the strobe pin is under driver control, this function takes the strobe low. This allows
control of Echo on/off time in receive mode to manage power consumption. Strobe low
stops the off counter, which maintains the receive circuit off.

Notes: See Section 5, “Reducing Power Consumption,” for more information.
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor22

Function Headers and Description
10.4.3 Echo_StrobeTriState

10.4.4 Echo_Set_RxOnOff

10.5 Driver Internal Processing

10.5.1 Echo_TxTimer_Interrupt

Syntax: void Echo_StrobeTriState(void);

Parameters: None

Return: None

Description: If the strobe pin is under driver control, this function sets the strobe pin to high impedance.
When the strobe is in a high impedance state, Echo on/off time can be controlled by Echo’s
internal timer. This can be set up for a range of on and off times via the ECHO_RXON_VALUE
and ECHO_RXOFF_VALUE configuration options.

Notes: See section Section 5, “Reducing Power Consumption,” for more information.

Syntax: void Echo_Set_RxOnOff(byte on, byte off);

Parameters: on—the value to set the Rx on timer
Off—time bits in RXONOFF register

Description: When the Echo on/off time is controlled by Echo’s internal time, this function can change
in runtime on and off times in the RXONOFF configuration registers.

Notes: See Section 5, “Reducing Power Consumption,” for more information. The driver sets up
the working bank. If you have selected both banks, the driver sets up the register in both
banks.

Syntax: interrupt void Echo_TxTimer_Interrupt(void);

Parameters: None

Return: None

Description: This function is used primarily for generating the waveforms for transmission, and other
timing requirements for the Echo driver. This function must be linked to the interrupt
vector for the timer channel the Echo driver is configured to use.
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 23

Function Headers and Description
10.5.2 Echo_RxSPI_Interrupt

10.6 Programmable Frequency

10.6.1 Echo_SetFreqOok, Echo_SetFreqFsk (Echo_SetFreq only for
compatibility)

Syntax: interrupt void Echo_RxSPI_Interrupt(void);

Parameters: None

Return: None

Description: This function is used by the driver to receive information from the Echo module. This
function must be linked to the interrupt vector for the SPI module in use.

Syntax: [OOK modulation]—Echo_SetFreqOok(unsigned int carrier);

[FSK Modulation]—Echo_SetFreqFsk(unsigned int carrier, unsigned char deltaF);

Parameters: carrier—the value to set the carrier register bits to
deltaF—the value to set the frequency deviation to

Return: None

Description: Allows the frequency within the (statically) selected transmission band to be controlled.
The values to place in each register may be calculated using the formula from the Echo
data sheet.

Notes: Requires Echo to be reset into configuration mode and will abort any transmission or
reception currently in progress. Status bit Busy is set while the configuration takes place.
The driver sets up the working bank. If you have selected both banks, the driver sets the
register up in both banks.
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor24

Function Headers and Description
10.6.2 Echo_SetFreqOokNoFrm, Echo_SetFreqFskNoFrm
(Echo_SetFreqNoFRM only for compatibility)

10.7 RSSI

10.7.1 Echo_EnableRSSI

Syntax: [OOK modulation]—Echo_SetFreqOokNoFRM(

unsigned intlocalOscillator,
unsignedintcarrier0);

[FSKModulation]—Echo_SetFreqFskNoFRM(

unsignedintlocalOscillator,unsiged int carrier0,
unsigned int carrier1|);

Parameters: localOscillator—the value to set the LO to:
carrier0— the value to set the carrier0 register bits to.
carrier1—the value to set the carrier1 register bits to.

Return: None

Description: Allows the frequency within the (statically) selected transmission band to be controlled.
The values to place in each register may be calculated using the formula from the Echo
data sheet.

Notes: Requires Echo to be reset into configuration mode and thus will abort any transmission or
reception currently in progress. Status bit Busy is set while the configuration takes place.
The driver sets up the working bank. If you have selected both banks, the driver sets the
register up in both banks.

Syntax: void Echo_EnableRSSI(void);

Parameters: None

Return: None

Description: Enables the RSSI module and automatic reading of the RSSI during the reception of a
message. If this is enabled, the RSSI will be measured during reception of any messages
and stored in the Rx buffer along with the received data. The RSSI flag in the Rx buffer
will indicate the presence of a valid RSSI reading in the buffer.

Notes: Requires Echo to be reset into configuration mode and thus will abort any transmission or
reception currently in progress. Status bit Busy is set during configuration.
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 25

Function Headers and Description
10.7.2 Echo_DisableRSSI

10.8 Power and Sensitivity

10.8.1 Echo_SetRxSensitivity

10.8.2 Echo_SetTxPower

Syntax: void Echo_DisableRSSI(void);

Parameters: None

Return: None

Description: Turns off the RSSI module and disables the automatic reading of the RSSI during the
reception of a message.

Notes: Requires Echo to be reset into configuration mode and thus will abort any transmission or
reception currently in progress. Status bit Busy is set during configuration.

Syntax: void Echo_SetRxSensitivity(unsigned char level);

Parameters: level—sets the sensitivity to level in the range 0 to 3

Return: None

Description: Sets the sensitivity of input stage where 0 is the most sensitive and 3 is the least sensitive.

Notes: Requires Echo to be reset into configuration mode and thus aborts any transmission or
reception currently in progress. Status bit Busy is set during the configuration. The driver
sets up the working bank. If you have selected both banks, the driver sets up the register
in both banks.

Syntax: void Echo_SetTxPower(unsigned char level);

Parameters: level—sets the output power to level in the range 0 to 3

Return: None

Description: Sets the power of output stage where 0 is the highest power to 3 the lowest power.

Notes: Requires Echo to be reset into configuration mode and thus aborts any transmission or
reception currently in progress. Status bit Busy is set during the configuration. The driver
sets up the working bank. If you have selected both banks, the driver sets up the register
in both banks.
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor26

Function Headers and Description
10.8.3 Echo_RagcHigh

10.8.4 Echo_RagcLow

10.8.5 Echo_FagcHigh

Syntax: void Echo_RagcHigh();

Parameters: None

Return: None

Description: Resets the automatic gain control (AGC) to the maximum level. While this is high, the
gain will stay at the maximum level. AGC can be re-enabled using Echo_RagcLow().

Notes: Requires Echo to be reset into configuration mode and thus will abort any transmission or
reception currently in progress. Status bit Busy is set during the configuration. The driver
sets up the working bank. If you have selected both banks, the driver sets up the register
in both banks.

Syntax: void Echo_RagcLow();

Parameters: None

Return: None

Description: Stops holding the AGC at the maximum level. This allows AGC to modify the gain as
necessary.

Notes: Requires Echo to be reset into configuration mode and thus will abort any transmission or
reception currently in progress. Status bit Busy is set during the configuration. The driver
sets up the working bank. If you have selected both banks, the driver sets up the register
in both banks.

Syntax: void Echo_FagcHigh();

Parameters: None

Return: None

Description: Freezes the AGC level. While high, the gain stays frozen.

Notes: Requires Echo to be reset into configuration mode and thus will abort any transmission or
reception currently in progress. Status bit Busy is set during the configuration. The driver
sets up the working bank. If you have selected both banks, the driver sets up the register
in both banks.
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 27

Function Headers and Description
10.8.6 Echo_FagcLow

10.9 Direct Register Access

10.9.1 Echo_ChangeConfig

10.9.2 Echo_Changebank

Syntax: void Echo_FagcLow();

Parameters: None

Return: None

Description: Unfreeze the AGC level.

Notes: Requires Echo to be reset into configuration mode and thus will abort any transmission or
reception currently in progress. Status bit Busy is set during the configuration. The driver
sets up the working bank. If you have selected both banks, the driver sets up the register
in both banks.

Syntax: void Echo_ChangeConfig(unsigned char numReg,
unsigned char startReg,
unsigned char *regData,
unsigned char readWrite);

Parameters: numReg—number of registers to read or write [1, 2, 4, or 8]
startReg—register number to start at [0–15]
regData—buffer to read the bytes from or place the results into
readWrite— reads Echo or writes Echo [0 = read | 1 = write]

Return: None

Description: Allows direct control of the Echo status registers. Use caution when using this function.
Modifying some Echo registers may leave the driver in an inconsistent state.

The number of registers must be 1, 2, 4, or 8. Multiple calls must be used if other numbers
are required.

Notes: Requires Echo to be reset into configuration mode and thus will abort any transmission or
reception currently in progress. Status bit Busy is set during the configuration.

Syntax: void Echo_Changebank(unsigned char bank);

Parameters: bank—this parameter determines which bank will be active. [ECHO_BANK_A, ECHO_BANK_B,
ECHO_BANK_BOTH]

Return: None
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor28

Echo Driver Configuration
11 Echo Driver Configuration
Many of the driver options are statically configured at compile time. These configuration options are
defined in the Echo.h header file. Using these options it is possible to configure the driver to run on any
HCS08 MCU.

The Echo.h header file contains a number of #define configuration options. These are described below:

11.1 Common Properties for Both Banks

11.1.1 Required I/O Pins

ECHO_CONFB

ECHO_CONFB_DDR

ECHO_SEB

Description: Allows control bank switching in Echo.

Notes: Requires Echo to be reset into configuration mode and thus will abort any transmission or
reception currently in progress. Status bit Busy is set during the configuration. If the
required bank is unavailable, status bit Error is set.

Description: This defines the I/O pin used to control Echo’s CONFB pin.

Values: Any I/O pin configurable as an output can be used. Use the naming convention specified
in the CodeWarrior™ header file.

Example: #define ECHO_CONFB PTED_PTED3 /* Define pin used for CONFB */

Description: This defines the data direction bit for the I/O pin used to control Echo’s CONFB pin.

Values: Any I/O pin configurable as an output can be used. Use the naming convention specified
in the CodeWarrior header file.

Example: #define ECHO_CONFB_DDR PTEDD_PTEDD3

Description: This defines the I/O pin used to control Echo’s SEB pin.

Values: Any I/O pin configurable as an output can be used. Use the naming convention specified
in the CodeWarrior header file.

Example: #define ECHO_SEB PTED_PTED0 /* Define pin used for SEB */
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 29

Echo Driver Configuration
ECHO_SEB_DDR

11.1.2 SPI Setup

ECHO_SPI_ADDRESS

ECHO_SPI_CLOCK_SPEED

11.1.3 Timer set up

ECHO_TIMER_ADDRESS

ECHO_TIMER_CHANNEL

Description: This defines the data direction bit for the I/O pin used to control Echo’s SEB pin.

Values: Any I/O pin configurable as an output can be used. Use the naming convention specified
in the CodeWarrior header file.

Example: #define ECHO_SEB_DDR PTEDD_PTEDD0

Description: This defines the start address of the SPI control registers in the MCU’s memory map.

Values: 0x0000–0xFFFF (see MCU data sheet for actual address)

Example: #define ECHO_SPI_ADDRESS 0x40 /* Location of SPI registers */

Description: Defines the speed of the SPI clock.

Values: 0–20000000

Example: #define ECHO_SPI_CLOCK_SPEED 8000000 /* SPI clock speed 8MHz */

Description: This defines the address of the timer status and control register in the MCU’s memory map.
The timers on all HCS08 MCUs have the same layout of control registers. The driver uses
this base address to access the timer and control registers.

Values: Address in the range 0x0000 – 0xFFFF

Example: #define ECHO_TIMER_ADDRESS 0x30 /* Location of 1st timer register */

Description: This defines the timer channel used to output the Manchester encoded waveform to Echo.

Values: Channel number in the range 0–15

Example: #define ECHO_TIMER_CHANNEL 1 /* Define which timer channel to use */
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor30

Echo Driver Configuration
ECHO_TIMER_CLOCK_SOURCE

ECHO_USE_DATACLK

ECHO_TIMER_CLOCK_SPEED

ECHO_TIMER_PRESCALE]

ECHO_TIMER_DISABLE

Description: This defines the clock used to control the timer.

Values: 1 = BUSCLK
2 = XCLK
3 = External clock source

Example: #define ECHO_TIMER_CLOCK_SOURCE 1 /* Select clock source for timer */

Description: This defines whether DATACLK should be used by the driver. If this function is enabled
and an external clock source is also selected, the external clock source is assumed to be
DATACLK and ECHO_TIMER_CLOCK_SPEED is overwritten with the value calculated for the
speed of DATACLK.

Values: 0 = disable DATACLK
1 = enable DATACLK

Example: #define ECHO_USE_DATACLK 0 /* Indicate if Ext clock is DATACLK */

Description: This defines the clock speed (in Hz) of the timer if an internal clock is chosen or if
DATACLK is not enabled.

Values: Integer from 0 to MCU bus speed divided by four for an external clock

Example: #define ECHO_TIMER_CLOCK_SPEED 8000000 timer clock speed in Hz */

Description: This defines the prescaler value of the timer used to send data to Echo. This will generally
be set to 1. If the application sets the timer prescaler, this configuration option should be
changed to reflect the selected prescaler.

Values: See data sheet for S08 MCU.

Example: #define ECHO_TIMER_PRESCALE 1 /* Specify timer prescaler value */

Description: This allows the driver to switch off the MCU timer when it is not required by the driver.
This can reduce power consumption; however, some applications may require that the
timer continues running. The driver will always start the timer when required.

Values: 0 = Timer remains running when not required by the driver
1= Timer is disabled when not required by the driver

Example: #define ECHO_TIMER_DISABLE 1 /* Allows driver to turn off timer */
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 31

Echo Driver Configuration
ECHO_CRYSTAL_FREQUENCY

11.1.4 Buffering Parameters

ECHO_MAX_DATA_SIZE

ECHO_RX_BUF_COUNT

11.1.5 Miscellaneous

ECHO_SWITCH_LEVEL

Description: This defines the speed (in Hz) of the crystal used by Echo. Typical values at supported RF
frequencies are:
315 MHz—17581400
434 MHz—24190660
868 MHz—24161390

Values: Integer in the range 0–100000000

Example: #define ECHO_CRYSTAL_FREQUENCY 24190660 /* Crystal frequency (in Hz) */

Description: This defines the maximum number of data bytes that can be transferred. This is used to
allocate buffer space for both transmitting and receiving messages.

Values: 1–127

Example: #define ECHO_MAX_DATA_SIZE 127 /* Max length of data field in msg */

Description: This defines the number of receive buffers that are allocated to store received messages in.
Storage space allocated to external receive buffers is:
(ECHO_MAX_DATA_SIZE+2)*ECHO_RX_BUF_COUNT.

Values: Minimum of 1; maximum limited by size of RAM available.

Example: #define ECHO_RX_BUF_COUNT 4 /* Number of Rx buffers to allocate */

Description: Specifies the value to place Echo’s SL bit; this sets the active level of SWITCH output pin.

Values: 0 = Rx low, Tx high
1 = Tx low, Rx high

Example: #define ECHO_SWITCH_LEVEL 0 /* Set active level of SWITCH o/p pin */
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor32

Echo Driver Configuration
ECHO_LVD_ENABLE

ECHO_MCU_BUS_SPEED

ECHO_RX_TIMEOUT_BITS

ECHO_AUTO_SWITCH

Description: Specifies the value to place Echo’s LVDE bit; this enables or disables the low-voltage
detection module on Echo.

Values: 0 = disabled
1 = enabled

Example: #define ECHO_LVD_ENABLE 0 /* Enable low voltage detection */

Description: Specifies the MCU BUSCLK speed. This is used to calculate various delays.

Values: 0–maximum MCU bus speed

Example: #define ECHO_MCU_BUS_SPEED 8000000 /* In Hz */

Description: Specifies the number of bit-times to wait on a byte arriving when receiving a message
before assuming the message has been corrupted or lost. This value must be greater than
8 bit-times to allow the next byte to arrive and be processed on Echo.

Values: 8–255

Example: #define ECHO_RX_TIMEOUT_BITS 16 /* Number of bit-times before timeout */

Description: This feature can be enabled in bank-switching mode. By this switch you can set automatic
switching to both banks after a transmit is done.

Values: 0 = disabled
1 = enabled

Example: #define ECHO_AUTO_SWITCH 1 /* if is used both bank, then can switch automatically to both
banks used after each transmit */
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 33

Echo Driver Configuration
11.2 Separate Parameters for Each Bank

11.2.1 Bank Select

ECHO_BANK_A_EN, ECHO_BANK_B_EN

11.2.2 Modulation Parameters

ECHO_MODE_VALUE

ECHO_MODE_OOKREF

ECHO_BAND_VALUE

Description: This defines which bank is used: bank A, bank B, or both. If you use only one bank, bank A
is recommended.

Values: 0 = Bank is disabled
1 = Bank is enabled

Example: #define ECHO_BANK_A_EN 1

Description: This defines the RF modulation type used. On/off keying (OOK) or frequency shift keying
(FSK).

Values: ECHO_OOK OOK modulation
ECHO_FSK FSK modulation

Example: #define ECHO_MODE_VALUE ECHO_FSK

Description: This defines the value of the OOKREF bit in Echo’s CONFIG2 register. OOKREF
controls the data slicer reference.

Values: 0 = fixed reference
1 = adaptive reference

Example: #define ECHO_MODE_OOKREF 1 /* Select the data slicer reference */

Description: Selects the frequency band that Echo transmits and receives in.

Values: ECHO_F 304MHz 304 MHz band
ECHO_F 315MHz 315 MHz band
ECHO_F 434MHz 434 MHz band
ECHO_F 868MHz 868 MHz band
ECHO_F 916MHz 916 MHz band

Example: #define ECHO_BAND_VALUE ECHO_F434MHz
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor34

Echo Driver Configuration
ECHO_DATA_RATE

11.2.3 ID and Header set up

ECHO_ID_LENGTH

ECHO_ID_VALUE

ECHO_HEADER_LENGTH

Description: Defines the data rate in bits per second (bps) before Manchester encoding.

Values: Integer in one of the ranges below:
2000–2800
4000–5600
8000–10600
16000–22400

Example: #define ECHO_DATA_RATE 2400 /* Set Echo data rate in Hz */

Description: Selects the length of the IDs that will be sent and received (in bits). If the length is six or
less, the least significant bits of ECHO_ID_VALUE are placed in Echo’s ID register. If the
length is 8 bits, the top 6 bits of ECHO_ID_VALUE are placed in the ID register and the full
ECHO_ID_VALUE is used when calculating the checksum. A full 8 bit ID is sent during
transmission. This allows compatibility with Tango and Romeo devices.

Values: 2, 4, 5, 6, or 8 bits.

Example: #define ECHO_ID_LENGTH 8 /* Length of ID (2,4,5,6 or 8 bits) */

Description: The ID value that Echo will recognize. The actual value placed into Echo’s ID register also
depends on ECHO_ID_LENGTH.

Values: 0x00–0xFF

Example: #define ECHO_ID_LENGTH 8 /* Length of ID (2,4,5,6 or 8 bits)*/

Description: Selects the length of the headers that will be sent and received (in bits). If the length is six
or less, the least significant bits of ECHO_HEADER_VALUE are placed in Echo’s HEADER register.

Values: 1, 2, 4, or 6 bits.

Example: #define ECHO_HEADER_LENGTH 6 /* Length of header (1,2,4,6 bits) */
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 35

Echo Driver Configuration
ECHO_HEADER_VALUE

11.2.4 On/off control

ECHO_SOE_VALUE

ECHO_RXON_VALUE

ECHO_RXOFF_VALUE

11.2.5 Miscellaneous

ECHO_AFFC_VALUE

Description: The header value that Echo will recognize. The actual value placed into Echo’s HEADER
register also depends on ECHO_HEADER_LENGTH (see ECHO_HEADER_LENGTH).

Values: 0x00–0xFF

Example: #define ECHO_HEADER_VALUE 0x16 /* Header word recognized by Echo */

Description: This defines whether the internal strobe oscillator is enabled on Echo.

Values: 0 = disabled
1 = enabled

Example: #define ECHO_SOE_VALUE 1

Description: Defines the receiver on time when the internal strobe oscillator is used. This value can be
calculated from the Echo data sheet.

Values: 1–15

Example: #define ECHO_RXON_VALUE 15

Description: Defines the receiver off time when the internal strobe oscillator is used. This value can be
calculated from the Echo data sheet.

Values: 0–7

Example: #define ECHO_RXOFF_VALUE 7

Description: Specifies the source of configuration for the average filter frequency.

Values: 0 = Filter cutoff frequency set by datarate bits DR[1:0] in CONFIG2 register
1 = Filter cutoff frequency set by bits AFF[1:0] in CONFIG3 register

Example: #define ECHO_AFFC_VALUE 0
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor36

Echo Driver Configuration
ECHO_AFF_VALUE

ECHO_EDD_VALUE

ECHO_IFLA_VALUE

11.3 Optional I/O Pins

ECHO_RSSIC

ECHO_RSSIC_DDR

Description: Specifies the average filter cutoff frequency when ECHO_AFFC_VALUE is set to 1.

Values: 0 = 0.5 kHz
1 = 1 kHz
2 = 2 kHz
3 = 4 kHz

Example: #define ECHO_AFF_VALUE 0

Description: Specifies the value of the envelope detector decay rate.

Values: 0 = slow decay
1 = fast decay

Example: #define ECHO_EDD_VALUE 0

Description: Specifies the value of thief level attenuation bit.

Values: 0 = no attenuations
1 = 20 db attenuation

Example: #define ECHO_IFLA_VALUE 0

Description: This defines the I/O pin used control Echo’s RSSIC pin.

Values: Any I/O pin configurable as an output can be used. Use the naming convention specified
in the CodeWarrior header file.

Example: #define ECHO_RSSIC PTED_PTED2 /* Define pin used for RSSIC */

Description: This defines the data direction bit for the I/O pin used control Echo’s RSSIC pin.

Values: Any I/O pin configurable as an output can be used. Use the naming convention specified
in the CodeWarrior header file.

Example: #define ECHO_RSSIC_DDR PTEDD_PTEDD2
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 37

Echo Driver Configuration
ECHO_STROBE

ECHO_STROBE_DDR

ECHO_ENABLEPA

ECHO_ENABLEPA_DDR

ECHO_ENABLELNA

Description: This defines the I/O pin used control Echo’s STROBE pin.

Values: Any I/O pin configurable as an output can be used. Use the naming convention specified
in the CodeWarrior header file.

Example: #define ECHO_STROBE PTED_PTED1 /* Define pin used for Strobe */

Description: This defines the data direction bit for the I/O pin used control Echo’s STROBE pin.

Values: Any I/O pin configurable as an output can be used. Use the naming convention specified
in the CodeWarrior header file.

Example: #define ECHO_STROBE_DDR PTEDD_PTEDD1

Description: This defines the I/O pin used control Echo’s ENABLEPA pin.

Values: Any I/O pin configurable as an output can be used. Use the naming convention specified
in the CodeWarrior header file.

Example: #define ECHO_ENABLEPA PTED_PTED4 /* Pin used for Power amp enable */

Description: This defines the data direction bit for the I/O pin used control Echos ENABLEPA pin.

Values: Any I/O pin configurable as an output can be used. Use the naming convention specified
in the CodeWarrior header file.

Example: #define ECHO_ENABLEPA_DDR PTEDD_PTEDD4

Description: This defines the I/O pin used control Echo’s ENABLELNA pin.

Values: Any I/O pin configurable as an output can be used. Use the naming convention specified
in the CodeWarrior header file.

Example: #define ECHO_ENABLELNA PTED_PTED5 /* Define pin used for LNA */
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor38

Adding the Echo Driver to an Application
ECHO_ENABLELNA_DDR

12 Adding the Echo Driver to an Application
To add the Echo driver to an application:

1. Copy the files Echo.c and Echo.h to the Sources directory for the project you are using.
2. Add the Echo.c and Echo.h driver files to the project. In CodeWarrior, right click on Sources folder,

then select Add Files…
3. Add the line #include “Echo.h” to the main application program file.
4. Add the following lines to the main application program to give access to the Echo drivers global

storage:
extern unsigned char *echoNextMessage;
extern unsigned char echoTransmitBuffer[];

5. Decide which I/O pins in your application will control Echo functions. Modify Echo.h to link these
pins to the Echo driver.

6. Modify Echo.h to define the other parameters as required by the application.
7. Modify the project parameter file to link the timer channel and SPI to the Echo services

Echo_TxTimer_Interrupt and Echo_RxSPI_Interrupt, respectively.

The files are now added to the project and you are ready to begin using the Echo driver.

Figure 12 shows a simple application template with the Echo.c and Echo.h files added to the sources folder
and the necessary additions to main.c.

Figure 13 shows the project parameter file set up to link the Echo services Echo_TxTimer_Interrupt and
Echo_RxSPI_Interrupt to their corresponding interrupt vectors on the RG60.

Description: This defines the data direction bit for the I/O pin used control Echo’s ENABLELNA pin.

Values: Any I/O pin configurable as an output can be used. Use the naming convention specified
in the CodeWarrior header file.

Example: #define ECHO_ENABLELNA_DDR PTEDD_PTEDD5
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 39

Adding the Echo Driver to an Application
Figure 12. Application Template Including Echo Files
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor40

Adding the Echo Driver to an Application
Figure 13. Linker Parameter Files

/**/
/* THIS SECTION CONTAINS VALUES YOU MUST DEFINE! */
/* */
#include "derivative.h" /* Include peripheral declarations */

/**/
/* */
/* Common properties for both BANKs in MC33696 */
/* */
/**/

#ifdef __HCS08__
/* --- Define required pins FOR HCS08!!! --------------- */
#define ECHO_CONFB PTBD_PTBD6 /* Define pin used for CONFB */
#define ECHO_CONFB_DDR PTBDD_PTBDD6

#define ECHO_SEB PTBD_PTBD5 /* Define pin used for SEB */
#define ECHO_SEB_DDR PTBDD_PTBDD5

#else

/* --- Define required pins FOR HC08!!! --------------- */
#define ECHO_CONFB PTD_PTD1 /* Define pin used for CONFB */
#define ECHO_CONFB_DDR DDRD_DDRD1

#define ECHO_SEB PTD_PTD0 /* Define pin used for SEB */
#define ECHO_SEB_DDR DDRD_DDRD0
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 41

Adding the Echo Driver to an Application
#endif

/* --- Setup SPI -------------------------- */
#define ECHO_SPI_ADDRESS 0x28 /* Location of SPI registers */

/* Address varies from MCU to MCU */
#define ECHO_SPI_CLOCK_SPEED 8000000 /* SPI clock speed */

/* --- Timer set up ----------------------- */
#define ECHO_TIMER_ADDRESS 0x40 /* Location of 1st timer register */
#define ECHO_TIMER_CHANNEL0 /* Define which timer channel to use */

/* Note:timer channels start from 0 */

#define ECHO_TIMER_CLOCK_SOURCE1/* Use to set clock source for timer */
/* 1 = Bus clock */
/* 2 = XCLK- note,not all MCUs have XCLK */
/* 3 = Ext clock */

#define ECHO_USE_DATACLK 0 /* Indicate if the Ext clock is DATACLK */
/* output from Echo. If using DATACLK */
/* and ECHO_TIMER_CLOCK_SOURCE = 3, */
/* ECHO_TIMER_CLOCK_SPEED is replaced */
/* with Fdataclk calculated instead. */
/* 0 = dataclock not enabled */
/* 1 = dataclock enabled */

#define ECHO_TIMER_CLOCK_SPEED8000000/* Set timer clock speed in Hz */

#define ECHO_TIMER_PRESCALE1 /* Specify timer prescaler value */

#define ECHO_TIMER_DISABLE1 /* Allows driver to turn off timer after */
/* use. Delete this #define if you want */
/* timer to stay on */

#define ECHO_CRYSTAL_FREQUENCY24190660/* Crystal frequency (in Hz) */
/* Typical values used */
/* RF Output */
/* 315MHz - 17581400 */
/* 434MHz - 24190660 */
/* 868MHz - 24161390 */

/* --- Buffering parameters --------------- */
#define ECHO_MAX_DATA_SIZE14 /* Max length of data field in msg */

#define ECHO_RX_BUF_COUNT4 /* Number of Rx buffers to allocate */
/* An additional buffer is allocated */
/* for internal use by the driver */
/* Note: each buffer consumes */
/* ECHO_MAX_DATA_SIZE+2 bytes in memory! */

/* --- On/off control --------------------- */
#define ECHO_SOE_VALUE 1 /* 0 = strobe oscillator disabled */

/* 1 = strobe oscillator enabled */

#define ECHO_RX_TIMEOUT_BITS32 /* Number of bit-times to wait on */
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor42

Adding the Echo Driver to an Application
/* the next byte arriving before */
/* assuming an error and timing out */
/* back to the ready state (up to 255) */

/* --- Low Voltage status ------------------- */
#define ECHO_LVD_ENABLE 0 /* Enable low voltage detection */

/* 0 = Disabled */
/* 1 = Enabled */

/* --- Misc ------------------------------- */
#define ECHO_MCU_BUS_SPEED8000000 /* In Hz */

#define ECHO_SWITCH_LEVEL0 /* Set active level of SWITCH o/p pin */
/* 0 = Rx low, Tx high */
/* 1 = Tx low, Rx high */

#define ECHO_AUTO_SWITCH 1/* if is used both bank, then can switch automatically
 to both banks used after each transmit */
 /* 0 = Switching to both banks manually */
 /* 1 = Switching to both banks automatically */
/**/
/* */
/* Properties for BANK A in MC33696 */
/* */
/**/

/* --- Echo Bank A Enable ------------ */
#define ECHO_BANK_A_EN 1 /* Switch if you want use Bank A in MC33696 */
 /* 0 - Bank B disable */
 /* 1 - Bank B enable */

#if ECHO_BANK_A_EN == 1
 /* --- Echo modulation parameters --------- */
 #define ECHO_MODE_VALUE ECHO_FSK /* ECHO_OOK = OOK reception */
 /* ECHO_FSK = FSK reception */
 #define ECHO_MODE_DSREF1 /* Select the data slicer reference in */

/* OOK mode: 0 = fixed, 1 = adaptive */
 /* Can delete/ignore if using FSK */

 #define ECHO_BAND_VALUE ECHO_F434MHz/* ECHO_F304MHz, ECHO_F315MHz, */
 /* ECHO_F434MHz, ECHO_F868MHz, */
 /* or ECHO_F916MHz */

 #define ECHO_DATA_RATE 19200 /* Set Echo data rate in Hz (before */
 /* Manchester encoding) */

 /* --- ID and Header set up --------------- */
 #define ECHO_ID_LENGTH 6 /* 6 Length of ID (2,4,5,6 or 8 bits) */
 #define ECHO_ID_VALUE 0xC8 /* 11 ID word recognized by Echo */

 #define ECHO_HEADER_LENGTH4 /* Length of header (1,2,4,6 bits) */
 #define ECHO_HEADER_VALUE0x06 /* Header word recognized by Echo (must */
 /* not be present in Preamble/ID) */

 /* These values are calculated from the Echo datasheet or supporting driver spreadsheet */
 #define ECHO_RXON_VALUE 2 /* On time: 1->15 */
 #define ECHO_RXOFF_VALUE2 /* Off time: 0->7 */
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 43

Adding the Echo Driver to an Application
 /* --- Misc ------------------------------- */
 #define ECHO_AFFC_VALUE 0 /* Average Filter Frequency Control */
 /* 0=Filter cutoff freq set by datarate bits DR[1:0] */
 /* 1=Filter cutoff freq set by AFF bits AFF[1:0] */

 #define ECHO_AFF_VALUE 0 /* Average Filter Frequency */
 /* Can ignore if ECHO_AFFC is set to 0 */
 /* 0 = 0.5KHz */
 /* 1 = 1KHz */
 /* 2 = 2KHz */
 /* 3 = 4KHz */

 #define ECHO_EDD_VALUE 1 /* Envelope Detector Decay rate control */
 /* Sets decay rate of envelope detector */
 /* 0 = slow decay for minimum ripple */
 /* 1 = fast decay */

 #define ECHO_IFLA_VALUE 0 /* IF Level Attenuation */
 /* 0 = no attenuation */
 /* 1= 20dB attenuation(in OOK mode only) */
#endif

/**/
/* */
/* Properties for BANK B in MC33696 */
/* */
/**/

/* --- Echo Bank B Enable ------------ */
#define ECHO_BANK_B_EN0 /* Switch if you want use Bank B in MC33696 */
 /* 0 - Bank B disable */
 /* 1 - Bank B enable */

#if ECHO_BANK_B_EN == 1
 /* --- Echo modulation parameters --------- */
 #define ECHO_MODE_VALUE_BECHO_FSK /* ECHO_OOK = OOK reception */

/* ECHO_FSK = FSK reception */
 #define ECHO_MODE_DSREF_B1 /* Select the data slicer reference in */
 /* OOK mode: 0 = fixed, 1 = adaptive */
 /* Can delete/ignore if using FSK */

 #define ECHO_BAND_VALUE_BECHO_F434MHz/* ECHO_F304MHz, ECHO_F315MHz, */
 /* ECHO_F434MHz, ECHO_F868MHz, */
 /* or ECHO_F916MHz */

 #define ECHO_DATA_RATE_B 19200 /* Set Echo data rate in Hz (before */
 /* Manchester encoding) */

 /* --- ID and Header set up --------------- */
 #define ECHO_ID_LENGTH_B 6 /* 6 Length of ID (2,4,5,6 or 8 bits) */
 #define ECHO_ID_VALUE_B 0xC8 /* 11 ID word recognized by Echo */

 #define ECHO_HEADER_LENGTH_B4 /* Length of header (1,2,4,6 bits) */
 #define ECHO_HEADER_VALUE_B0x06 /* Header word recognized by Echo (must */
 /* not be present in Preamble/ID) */
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor44

Adding the Echo Driver to an Application
 /* These values are calculated from the Echo datasheet or supporting driver spreadsheet*/
 #define ECHO_RXON_VALUE_B2 /* On time: 1->15 */
 #define ECHO_RXOFF_VALUE_B2 /* Off time: 0->7 */

 /* --- Misc ------------------------------- */
 #define ECHO_AFFC_VALUE_B 0 /* Average Filter Frequency Control */
 /* 0=Filter cutoff freq set by datarate bits DR[1:0]*/
 /* 1=Filter cutoff freq set by AFF bits AFF[1:0] */

 #define ECHO_AFF_VALUE_B 0 /* Average Filter Frequency */
 /* Can ignore if ECHO_AFFC is set to 0 */
 /* 0 = 0.5KHz */
 /* 1 = 1KHz */
 /* 2 = 2KHz */
 /* 3 = 4KHz */

 #define ECHO_EDD_VALUE_B 1 /* Envelope Detector Decay rate control */
 /* Sets decay rate of envelope detector */
 /* 0 = slow decay for minimum ripple */
 /* 1 = fast decay */

 #define ECHO_IFLA_VALUE_B 0 /* IF Level Attenuation */
/* 0 = no attenuation */
/* 1= 20dB attenuation(in OOK mode only)*/

#endif

/**/
/* These may be omitted depending on the hardware setup */
#ifdef __HCS08__
 /* Edit this part if you have project with HCS08 mcu */

//#define ECHO_RSSIC PTED_PTED2 /* Define pin used for RSSIC */
//#define ECHO_RSSIC_DDR PTEDD_PTEDD2 /* If hardwired,delete #defines */

//#define ECHO_STROBE PTAD_PTAD3 /* Define pin used for Strobe */
//#define ECHO_STROBE_DDR PTEDD_PTEDD1 /* If hardwired,delete#defines */

/* These are required for use with Motorola's rf modules */
//#define ECHO_ENABLEPA PTED_PTED4 /* Define pin used for Power amp enable */
//#define ECHO_ENABLEPA_DDR PTEDD_PTEDD4 /* If hardwired, delete #defines */

//#define ECHO_ENABLELNA PTED_PTED5 /* Define pin used for LNA */
//#define ECHO_ENABLELNA_DDR PTEDD_PTEDD5 /* If hardwired,delete #defines */

#else
 /* Edit this part if you have project with HC08 mcu */

#define ECHO_RSSIC PTD_PTD2 /* Define pin used for RSSIC */
#define ECHO_RSSIC_DDR DDRD_DDRD2 /* If hardwired, delete #defines */

#define ECHO_STROBE PTA_PTA3 /* Define pin used for Strobe */
#define ECHO_STROBE_DDR DDRA_DDRA3 /* If hardwired,delete #defines */
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 45

Example Echo Application
/* These are required for use with Motorola's rf modules */
//#define ECHO_ENABLEPA PTED_PTED4 /* Define pin used for Power amp enable */
//#define ECHO_ENABLEPA_DDR PTEDD_PTEDD4 /* If hardwired, delete #defines */

//#define ECHO_ENABLELNA PTED_PTED5 /* Define pin used for LNA */
//#define ECHO_ENABLELNA_DDR PTEDD_PTEDD5 /* If hardwired,delete #defines */

#endif
/**/

Figure 14. Example Echo.h header file

13 Example Echo Application
This example uses the Echo.h configuration shown in Figure 14 and, as such, has been configured to run
on the DEMO9S08RG60 demonstration board.

The example toggles an LED when a message is sent or received and allows messages to be transmitted
by pressing a switch. The message consists of two data bytes, the first of which is incremented with each
message sent and the second remains constant at 1. The example is shown in Figure 15.

This example can be placed on multiple Echo devices without change. Pressing the switch on one device
will toggle the LED’s on all others.

Figure 15. Example Echo Application
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor46

Communicating with Romeo2 and Tango3 Devices
14 Communicating with Romeo2 and Tango3 Devices
The major difference between Romeo2, Tango3, and Echo is the ID and header that is by Echo and
Romeo’s data managers. This can affect communication between the devices.

14.1 ID Length Mismatch
There is a mismatch between the ID lengths expected by the data managers in Romeo2 and Echo. Echo
has a variable length ID and header, whereas Romeo2 has a fixed 8 bit ID and 4 bit, fixed format, header,
either 0110 or 1001.

The header for Echo can be setup for 4 bits and set to 0110 or 1001 using the configuration options in the
Echo header file. The ID on Echo is limited to 2, 4, 5, or 6 bits in length and thus not directly compatible
with Romeo2’s data manager and the Tango3 device driver.

There are two cases which need to be considered: Echo is transmitting to Romeo2 and Echo is receiving
from Tango.3

14.1.1 Case (i) – Echo Transmitting

When Echo is transmitting, configure the driver to send 8 bits for the ID and thus allow Romeo2 to be
addressed. The driver has complete control of the exact bits sent and can send 8 bits at the ID stage.
Sending 8 bits can be achieved by setting ECHO_ID_LENGTH in Echo.h to 8: this sends all 8 bits of the ID in
the transmit buffer.

14.1.2 Case (ii) – Echo Receiving

The Tango3 driver transmits a fixed length 8 bits in the ID sequence. Echo can receive messages with 8 bit
ID fields. Any 6 bits from the 8 transmitted may be matched by the Echo data manager to the 6 bits in the
ID register. For this reason, choose IDs that are unique for all devices (if desired).

14.2 Compatible Set Up
To be compatible, several things must be configured correctly:

• The headers must be same
— Echo must be set up for 4 bits: 0110
— Romeo must be set up for header detection (HE = 1)
— Tango must send using the header format (TangoSendPreamble_ID and TangoSendData)

• The data rates must be the same, between 2 kbps and 10 kbps
• The modulation type must be the same, either OOK or FSK
• The transmission and reception frequencies must be the same: Echo must be set up to ensure

transmission and reception on exactly 315 MHz, 434 MHz, etc.
• Echo must be set up with ECHO_ID_LENGTH as 8 bits
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 47

Communicating with Romeo2 and Tango3 Devices
Using a common set of features and compensating for the ID length mismatch, Echo can communicate
with Romeo and Tango, employing their existing drivers.

The example configuration in Figure 13 and application in Figure 14 allow communication with Romeo
devices and are capable of receiving communications from Tango3 devices. Tango3 can then communicate
with Echo by sending to ID 0x55. Likewise, Romeo2 can receive messages from Echo with an ID of 0x55.

Full source code for this example application is supplied with this document.
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor48

THIS PAGE IS INTENTIONALLY BLANK
Software Drivers for MC33696, Rev. 1

Freescale Semiconductor 49

Document Number: AN2961
Rev. 1
05/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2005, 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Communication Concept
	3 Message Format
	4 Message Encoding
	5 Reducing Power Consumption
	5.1 Consequences on Message Format

	6 Hardware Connections
	6.1 MCU Resources Required

	7 Driver Overview
	8 Status Word
	9 Using the Driver
	9.1 General Conventions
	9.2 Setup and Initialization
	9.3 Transmitting Messages
	9.3.1 Manual Preamble/ID Sending
	9.3.2 Automatic Preamble/ID Sending and Message Queuing
	9.3.3 ID Repeat Message Format

	9.4 Receiving Messages
	9.4.1 Timeouts

	9.5 Buffer Formats
	9.5.1 Preamble/ID Repeats
	9.5.2 Spacing
	9.5.3 ID
	9.5.4 Full Flag
	9.5.5 Checksum
	9.5.6 Bank Flag
	9.5.7 RSSI

	10 Function Headers and Description
	10.1 Initialization and Startup Functions
	10.1.1 Echo_Initialize
	10.1.2 Echo_Enable
	10.1.3 Echo_Disable

	10.2 Status Functions
	10.2.1 Echo_DriverStatus
	10.2.2 Echo_ClearError

	10.3 Message Sending Functions
	10.3.1 Echo_SendPreambleID
	10.3.2 Echo_SendData
	10.3.3 Echo_SendMessage
	10.3.4 Echo_SendIDRepeat

	10.4 Strobe Power Control Functions
	10.4.1 Echo_StrobeHigh
	10.4.2 Echo_StrobeLow
	10.4.3 Echo_StrobeTriState
	10.4.4 Echo_Set_RxOnOff

	10.5 Driver Internal Processing
	10.5.1 Echo_TxTimer_Interrupt
	10.5.2 Echo_RxSPI_Interrupt

	10.6 Programmable Frequency
	10.6.1 Echo_SetFreqOok, Echo_SetFreqFsk (Echo_SetFreq only for compatibility)
	10.6.2 Echo_SetFreqOokNoFrm, Echo_SetFreqFskNoFrm (Echo_SetFreqNoFRM only for compatibility)

	10.7 RSSI
	10.7.1 Echo_EnableRSSI
	10.7.2 Echo_DisableRSSI

	10.8 Power and Sensitivity
	10.8.1 Echo_SetRxSensitivity
	10.8.2 Echo_SetTxPower
	10.8.3 Echo_RagcHigh
	10.8.4 Echo_RagcLow
	10.8.5 Echo_FagcHigh
	10.8.6 Echo_FagcLow

	10.9 Direct Register Access
	10.9.1 Echo_ChangeConfig
	10.9.2 Echo_Changebank

	11 Echo Driver Configuration
	11.1 Common Properties for Both Banks
	11.1.1 Required I/O Pins
	11.1.2 SPI Setup
	11.1.3 Timer set up
	11.1.4 Buffering Parameters
	11.1.5 Miscellaneous

	11.2 Separate Parameters for Each Bank
	11.2.1 Bank Select
	11.2.2 Modulation Parameters
	11.2.3 ID and Header set up
	11.2.4 On/off control
	11.2.5 Miscellaneous

	11.3 Optional I/O Pins

	12 Adding the Echo Driver to an Application
	13 Example Echo Application
	14 Communicating with Romeo2 and Tango3 Devices
	14.1 ID Length Mismatch
	14.1.1 Case (i) - Echo Transmitting
	14.1.2 Case (ii) - Echo Receiving

	14.2 Compatible Set Up

