
AN2627/D
12/2003

Cycle-by-Cycle Instruction
Set Details for the M68HC08
Family of MCUs

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 By Jim Sibigtroth
8/16 Bit Systems/Applications Engineering
Austin, Texas

Introduction

This application note provides detailed information, not previously published,
about the cycle-by-cycle behavior of CPU M68HC08 instructions. Although
most applications do not require this level of detail, it can be very useful in
unusual cases where it is important to carefully control the timing of control
sequences or the relative timing of I/O events. This level of detail also helps
users understand exactly how read-modify-write instructions work.

NOTE: With the exception of mask set errata documents, if any other Motorola
document contains information that conflicts with the information in the device
data sheet, the device data sheet should be considered to have the most
current and correct data.

Cycle Codes

This document uses the shorthand notation that is used to document
cycle-by-cycle details in the HCS08 and HCS12 instruction sets. This
shorthand uses one character to mnemonically represent each bus cycle. For
example, a lowercase p is used to represent a program fetch cycle. In the
HC08 CPU, all bus cycles refer to 8-bit data so all of the mnemonic cycle codes
use lowercase letters. In the HCS12, some bus cycles used uppercase letters
to indicate 16-bit memory accesses. The cycle-by-cycle codes used for the
HC08 CPU are explained in the following paragraphs.

All trademarks belong to their respective companies.
This product incorporates SuperFlash technology licensed from SST.
© Motorola, Inc., 2003

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Program Fetch Cycle – p – Used to fetch the next byte of object code from
program memory. When any HC08 instruction starts, the first byte of object
code for that instruction is already in the CPU’s instruction buffer. Each
instruction includes enough p cycles to replace the number of bytes of object
code for that instruction.

Figure 1 shows the timing diagram for internal clock and bus signals during a
program fetch cycle.

Figure 1. Timing Waveforms for a Program Fetch (p) Cycle

For example, when a 2-byte instruction such as ADD (direct addressing mode)
is executed, the opcode ($BB) is already in the CPU’s instruction buffer. The
instruction then performs one p cycle to fetch the low half of the direct address
of the operand, uses this address to read the operand from memory, and then
performs a second p cycle to fetch the opcode of the next instruction.

BUSCLK

ADDRESS

R/W

DATA

PROGRAM ADDR

DATA

p

OBJECT CODE BYTE FROM
PROGRAM ADDRESS

(READ)
2 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D
Cycle Codes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Byte Read Cycle – r – Used to read one byte of operand data from memory.

Figure 2 shows the timing diagram for internal clock and bus signals during a
data read cycle. If the operand address corresponds to an input port pin, there
will usually be a simple synchronizer circuit associated with the signal so that
the value on the data bus does not change state for a setup-and-hold time near
the falling edge of the bus clock. Because the internal BUSCLK signal is not
visible outside the MCU, you should think of the read as taking place sometime
during the last half of the BUSCLK cycle.

Figure 2. Timing Waveforms for a Data Read (r) Cycle

BUSCLK

ADDRESS

R/W

DATA

OPERAND ADDR

DATA

r

OPERAND DATA FROM
OPERAND ADDRESS

(READ)
Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 3

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Byte Write Cycle – w – Used to write one byte of operand data to memory.

Figure 3 shows the timing diagram for internal clock and bus signals during a
data write cycle. The write takes place during the last half of the bus cycle. In
the case where the operand address corresponds to an output port pin, the pin
changes state one propagation delay after the middle of the bus cycle.

Figure 3. Timing Waveforms for a Write (w) Cycle

BUSCLK

ADDRESS

R/W

DATA

I/O PIN

OPERAND ADDR

WRITE DATA

w

(WRITE)

NEW DATA
4 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D
Cycle Codes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Stack Write (Push) Cycle – s – Used to write (push) one byte of data to the
next available location on the system stack. The stack in the M68HC08 builds
from higher addresses to lower addresses, and the stack pointer (SP) always
points to the next available location on the stack.

Figure 4 shows the timing diagram for internal clock and bus signals during a
stack write cycle.

Figure 4. Timing Waveforms for a Stack Write (s) Cycle

For example, a PSHA instruction is a 2-cycle instruction with the shorthand
code ps where the p cycle fetches a byte of object code to make up for the one
byte of object code needed for the PSHA instruction. The s cycle is used to
store the contents of the accumulator at the location pointed-to by SP. Then SP
is decremented to point at the next available location on the stack.

BUSCLK

ADDRESS

R/W

DATA

SP VALUE

WRITE DATA

s

(WRITE)

CPU DECREMENTS THE
SP VALUE AFTER THE
STACK WRITE
Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 5

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Stack Read (Pop) Cycle – u – Used to unstack or read (pop) one byte of data
from the system stack. For example a PULA instruction is a 2-cycle instruction
with the shorthand code pu. The p cycle fetches a byte of object code to make
up for the one byte of object code needed for the PULA instruction. The u cycle
is used to get one byte of data from the stack by incrementing SP by one and
then reading the value pointed-to by SP into the accumulator.

Figure 5 shows the timing diagram for internal clock and bus signals during a
stack read cycle.

Figure 5. Timing Waveforms for a Stack Read (u) Cycle

BUSCLK

ADDRESS

R/W

DATA

SP VALUE +1

DATA

u

CPU INCREMENTS THE
SP VALUE BEFORE THE
STACK READ

(READ)
6 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D
Cycle Codes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Vector Fetch Cycle – v – Used to fetch one-half of a 16-bit interrupt or reset
vector from memory. v cycles are always found in pairs to fetch the high and
low bytes of a 16-bit vector, respectively.

Figure 6 shows the timing diagram for internal clock and bus signals during a
pair of vector fetch cycles. During these two v cycles, the data that is read from
the vector addresses is loaded directly into the program counter high and low
halves (PCH and PCL), respectively. The next cycle after a pair of vector fetch
cycles is always a program fetch cycle (not shown in this figure) using the
address that was loaded into PCH and PCL by the two v cycles.

Figure 6. Timing Waveforms for Two Vector Fetch (v) Cycles

BUSCLK

ADDRESS

R/W

DATA

VECTOR ADDR (HI)

PCH

v

(READ)

VECTOR ADDR (LO)

PCL

v

(READ)
Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 7

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Dummy (Read) Cycles – d – Used to perform internal operations where no
new information is read or written using system address and data buses. In
these cases, a dummy read cycle is performed using the same address as the
previous bus cycle. The data from a d cycle is ignored.

Figure 7 shows the timing diagram for internal clock and bus signals during a
dummy cycle.

Figure 7. Timing Waveforms for a Dummy (d) Cycle

Interpreting Cycle-by-Cycle Code Sequences

This section will discuss an example timing diagram of internal bus and control
signals during the execution of a BCLR instruction. After the meaning of the
code letters is understood, you will not need to see cycle-by-cycle details as
timing diagrams. The cycle-by-cycle code sequence for a BCLR 0,opr8a
instruction is prwp. Because there are four code letters, the instruction takes
four bus cycles. Figure 8 shows this 4-cycle sequence for a BCLR instruction
that will generate a falling edge on the port B, bit 0, pin.

BUSCLK

ADDRESS

R/W

DATA

SAME AS PREV ADDR

DATA

d

DATA IS NOT USED

(READ)
8 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D
Interpreting Cycle-by-Cycle Code Sequences

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 8. Timing Details for a BCLR Instruction

The top portion of this figure shows two program listing lines, including the
BCLR instruction. Because the first byte of object code for the next instruction
($20) will be fetched during the BCLR instruction, the BRA instruction line is
also shown. The 4-digit hexadecimal number at the beginning of each of these
lines is the program address for the first byte of object code for the instruction.
In the case of the BCLR 0,oper8a instruction, the opcode is $11 and the $01 is
the low half of the address for the operand.

Remember that when an instruction starts to execute, the first byte of object
code for the instruction is already in the CPU’s instruction buffer because it was
fetched during the previous instruction. So, the first p cycle fetches the second
byte of object code ($01) for the BCLR instruction from address $8311.
Between the first and second cycles of this instruction, the CPU constructs the
address of the operand by using this $01 as the low half of an address in the
range $0000–$00FF. The second cycle of this BCLR instruction (r) reads the
current contents of the port B register from this constructed address ($0001).
Between the second and third cycles, the CPU forces bit 0 of the value that was
read from port B to a 1. During the third cycle (w), the CPU writes this modified
data value back to port B at $0001. During the fourth cycle (p), the CPU reads
the next byte of object code ($20) from address $8312. This is the BRA opcode
and it is loaded into the instruction buffer so that the CPU will be ready to
execute the first cycle of the next instruction immediately following the fourth
cycle of the BCLR instruction.

BUSCLK

ADDRESS

R/W

DATA

TxPIN

$8311 $0001 $0001 $8312

$01 (PORTB) %xxxxxxx1 $20

“ “ “ “ “ “ “

8310 11 01 loop: BCLR TxBit,TxDDR ;[4] drive PTB0 low
8312 20 FC BRA loop ;[3] repeat
“ “ “ “ “ “ “

p r w p

BCLR Bit_0,PortB

Bit_0,PortB
Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 9

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Hardware Reset

Resets cause registers and systems inside the MCU to assume default values.
The reset sequence includes several sequential events and tests before the
CPU begins executing instructions. After the hardware reset sequence is
completed, the CPU performs two v cycles to fetch the high byte of the reset
vector from $FFFE and the low byte from $FFFF, respectively. It then performs
one p cycle to pre-load the CPU’s instruction buffer with the opcode of the first
instruction. Execution then continues using the cycle-by-cycle sequences for
each consecutive instruction. There are no gaps between the cycle-by-cycle
sequences for reset, instructions, or interrupts. So if the first instruction of an
application program was an LDA (immediate) instruction, the CPU would
execute the sequence vvp for the reset, immediately followed by pp for the
LDA (immediate) instruction.

Interrupts

Hardware interrupts are an exception to the sequential flow of program
instructions. When an interrupt occurs, the CPU completes the instruction that
is currently being executed and then responds to the interrupt. The interrupt
sequence uses the same 9-cycle sequence as an SWI instruction
(psssssvvp). The first p cycle is a fetch of the program byte that would have
been fetched if the interrupt had not occurred. This data will not be used by the
CPU, but the fetch was already scheduled before the interrupt occurred. The
next five s cycles of the interrupt sequence store (push) the return address low,
return address high, X, A, and CCR onto the stack so the CPU can resume the
interrupted program at the point where it was interrupted (after completing the
interrupt service routine (ISR)). The next two v cycles fetch the high and low
halves of the interrupt vector for the highest priority source that caused the
interrupt. Finally, a p cycle is executed to pre-fill the instruction buffer with the
opcode of the first instruction of the ISR.

Usually, the ISR would end with a 7-cycle RTI instruction (puuuuup), which
recovers the previously saved CPU state and resumes execution of the original
program as if the interrupt had not occurred.
10 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D
Conditional Branches

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Conditional Branches

Conditional branch instructions execute one of two different sequences
depending upon whether the branch condition was true. In the case of the BRN
instruction, the branch condition is never true. Therefore, the sequence is pdp
where the first p cycle fetches the second byte of object code for the branch
instruction (the offset byte). The next d cycle is a dummy read from the same
address. During the d cycle, the CPU adds the offset to the program counter.
This gets the pointer to the instruction at the branch destination. Because the
BRN instruction never branches, this calculated address is not used. Instead,
the branch is not taken, and the third cycle (p) fetches the opcode of the next
instruction after the BRN instruction.

When the branch condition for a branch instruction is true, the sequence is the
same except the last p cycle fetches the opcode of the instruction at the branch
destination rather than the opcode of the instruction immediately after the
conditional branch instruction.

BRSET and BRCLR instructions have a 5-cycle sequence (prpdp). The first p
cycle fetches the low half of the operand’s direct address. The r cycle fetches
the whole 8-bit operand from the direct memory location that contains the bit
that will be tested. The second p cycle is used to fetch the branch offset while
the specified bit is tested in the operand that was just fetched. The next d cycle
is a dummy read from the same address while the CPU is adding the offset to
the program counter to get the pointer to the instruction at the branch
destination. The last p cycle fetches the opcode of the next instruction from
either the destination address or the next address after the offset, depending
on whether the branch condition was true or false, respectively.

Similarly, the last p cycle of a CBEQ or DBNZ instruction fetches the opcode of
the next instruction from either the destination address or the next address after
the offset, depending on whether the branch condition was true or false,
respectively.

Cycle-Timed Code

Although you don’t need to know the cycle-by-cycle details of instructions for
most application programs, there are times when this information is critical. For
example, suppose you want to write a program that transmits or receives serial
data using software and general-purpose I/O pins to create an RS232 serial
communications interface (SCI). In such a case, it may be possible to write a
program that can send or receive at a slightly faster baud rate if you know the
timing of reads and writes at the cycle level instead of the instruction level. For
example, in direct and extended addressing mode variations of STA
Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 11

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

instructions, the write takes place in the next-to-last cycle of the instruction, but
in the indexed addressing mode variations, the write occurs in the last cycle of
the instruction. The position of the read cycle in LDA instructions is similar.

To demonstrate how you would use the detailed cycle-by-cycle information, we
will study an example routine. The program segment in Listing 1 is the working
portion of a software SCI transmit routine. A general-purpose I/O pin at bit
number TxBit, in the I/O port corresponding to the data direction register
TxDDR, will be used as our TxD pin. The port bit corresponding to this pin was
previously written to 0 and the associated pullup was enabled (or an external
pullup resistor is connected). When the DDR bit is 0, the pin behaves as a
high-impedance input that is pulled high. When the DDR bit is set to 1, the pin
behaves as an output pin that is driven low. The 8-bit data value was previously
pushed onto the stack, and because another value was also previously
pushed, the data will be at 3,SP after the PSHX at putbyte3:

" " " "
putbyte3: pshx ;store delay counter
 lda #10 ;start, 8 data, stop = 10 loops
 sec ;becomes stop bit after 9 RORs
 bra outLow ;[3] Tx a low for start bit

PutLoop: ror 3,SP ;[5] LSB to C-bit, Tx that level
 bcc outLow ;[3] if C=0 Tx low, else Tx a hi
outHi: bclr TxBit,TxDDR ;[4] PTA0 input pulls up to high
 bra outDelay ;[3] go to time 1 bit delay
outLow: bset TxBit,TxDDR ;[4] PTA0 output makes pin drive low
 bra outDelay ;[3] time 1 bit delay (match time)
outDelay: dbnzx * ;[3] loop 3~ * (value in X)
 pulx ;[2]
 pshx ;[2]
 dbnza PutLoop ;[3] repeat for start, 8 data, stop
 " " " "

Listing 1. Partial Code Listing for SCI Transmit Routine

We will map out the cycle-by-cycle operation of this routine starting from the
bra outLow instruction above PutLoop: until the program has generated the
start bit and the first data bit of the transmit value. We will assume that the first
data bit is a 1 so we can easily see the bit time boundaries. We also assume
the I/O pin associated with TxBit was acting as an input and was pulled up
before starting this routine.

Listing 2 shows the instructions in the order that they would be executed
(starting from the bra outLow instruction just above the PutLoop: label in
Listing 1). This listing shows instructions in execution order so some
instructions and sequences are repeated (such as the DBNZX instruction that
is used to form a bit-time delay). For this example, we will assume X is 2 at the
start of the routine to simplify our drawings. In the actual SCI transmit routine,
X would be set to make the delay for a bit time equal to the appropriate length
for the desired baud rate and bus speed.
12 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D
Cycle-Timed Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Listing 2 also shows the cycle-by-cycle details for each instruction. For
example, the outLow: bset TxBit,TxDDR instruction is made up of the
4-cycle sequence prwp. The first p cycle fetches the direct address for the
BSET instruction. The second cycle is a byte read of the operand (the current
contents of the TxDDR register). Between the second and third cycles of the
BSET instruction, the CPU sets the TxBit in this value. The third cycle is a write
of the modified value back to the TxDDR register. And finally, the last cycle is
a program fetch to refill the instruction buffer in preparation for the next
instruction.

From Listing 2, we can see that the transmit data pin will go low during the third
cycle of the outLow: bset TxBit,TxDDR instruction, and the start bit will
end exactly 28 cycles later in the third cycle of the outHi: bclr
TxBit,TxDDR instruction. We can also see that the transmit data pin will go
low again at the end of the LSB data bit exactly 28 cycles later during the
outLow: bset TxBit,TxDDR instruction at the bottom of Listing 2.
Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 13

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

_ p _ bra outLow
_ d _
_ p ___________________________
_ p outLow: bset TxBit,TxDDR
_ r _
_ w _ ------------------------- <-beginning of start bit
_ p ___________________________
_ p _ bra outDelay
_ d _
_ p ___________________________
_ p outDelay: dbnzx *
_ d _
_ p ___________________________
_ p outDelay: dbnzx *
_ d _
_ p ___________________________
_ p _ pulx
_ u ___________________________
_ p _ pshx
_ s ___________________________
_ p _ dbnza PutLoop
_ d _
_ p ___________________________
_ p PutLoop: ror 3,SP
_ p _
_ p _
_ r _
_ w ___________________________
_ p _ bcc outLow
_ d _
_ p ___________________________
_ p outHi: bclr TxBit,TxDDR
_ r _
_ w _ ------------------------- <-end of start bit
_ p ___________________________
_ p _ bra outDelay
_ d _
_ p ___________________________
_ p outDelay: dbnzx *
_ d _
_ p ___________________________
_ p outDelay: dbnzx *
_ d _
_ p ___________________________
_ p _ pulx
_ u ___________________________
_ p _ pshx
_ s ___________________________
_ p _ dbnza PutLoop
_ d _
_ p ___________________________
_ p PutLoop: ror 3,SP
_ p _
_ p _
_ r _
_ w ___________________________
_ p _ bcc outLow
_ d _
_ p ___________________________
_ p outLow: bset TxBit,TxDDR
_ r _
_ w _ ------------------------- <- end of LSB (bit-0)
_ p ___________________________

Listing 2. Instruction Order Listing (with Cycle Details)
14 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D
Conclusion

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Conclusion

This application note explains the cycle-by-cycle details for each addressing
mode of each instruction that is included in the instruction set summary for the
M68HC08 CPU. Cycle-by-cycle details for each addressing mode of each
instruction are provided in a new column near the right side of the instruction
set summary table. A shorthand (code) was used to provide this detailed
information in a compact form where each bus cycle is represented by a single
mnemonic character. The code letters were explained. Several special
operations including reset, interrupts, and branches were also explained using
the same bus cycle codes. Finally, a code example was used to explain how
this cycle-by-cycle information can be used while writing software routines that
can control I/O pins with one-cycle precision.

This application note can also help users understand how the M68HC08 CPU
executes instructions. For example, the cycle-by-cycle detail for a BSET or
BCLR instruction shows that these instructions are read-modify-write
instructions. This means these instructions read the entire 8-bit location,
internally modify the selected bit within that value, and then re-write the
modified value to the memory location. Without this level of detail, it could
appear that the CPU somehow wrote to a single bit without reading or writing
other bits in the memory location.
Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 15

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix A — Instruction Set Summary

Table 1 provides a summary of the M68HC08 instruction set in all possible
addressing modes. The table shows operand construction, execution time in
internal bus clock cycles, and cycle-by-cycle details for each addressing mode
variation of each instruction.

Table 1. Instruction Set Summary (Sheet 1 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C

ADC #opr8i
ADC opr8a
ADC opr16a
ADC oprx16,X
ADC oprx8,X
ADC ,X
ADC oprx16,SP
ADC oprx8,SP

Add with Carry
A ← (A) + (M) + (C)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A9
B9
C9
D9
E9
F9

9E D9
9E E9

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

pp
prp
pprp
pppr
ppr
pr
ppppr
pppr

↕ 1 1 ↕ – ↕ ↕ ↕

ADD #opr8i
ADD opr8a
ADD opr16a
ADD oprx16,X
ADD oprx8,X
ADD ,X
ADD oprx16,SP
ADD oprx8,SP

Add without Carry
A ← (A) + (M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AB
BB
CB
DB
EB
FB

9E DB
9E EB

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

pp
prp
pprp
pppr
ppr
pr
ppppr
pppr

↕ 1 1 ↕ – ↕ ↕ ↕

AIS #opr8i
Add Immediate Value (Signed) to
Stack Pointer
SP ← (SP) + (M)

IMM A7 ii 2 pp – 1 1 – – – – –

AIX #opr8i
Add Immediate Value (Signed) to
Index Register (H:X)
H:X ← (H:X) + (M)

IMM AF ii 2 pp – 1 1 – – – – –

AND #opr8i
AND opr8a
AND opr16a
AND oprx16,X
AND oprx8,X
AND ,X
AND oprx16,SP
AND oprx8,SP

Logical AND
A ← (A) & (M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A4
B4
C4
D4
E4
F4

9E D4
9E E4

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

pp
prp
pprp
pppr
ppr
pr
ppppr
pppr

0 1 1 – – ↕ ↕ –

ASL opr8a
ASLA
ASLX
ASL oprx8,X
ASL ,X
ASL oprx8,SP

Arithmetic Shift Left

(Same as LSL)

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E 68

dd

ff

ff

4
1
1
4
3
5

prwp
p
p
pprw
prw
ppprw

↕ 1 1 – – ↕ ↕ ↕C

b0b7

0

16 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D
Appendix A — Instruction Set Summary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASR opr8a
ASRA
ASRX
ASR oprx8,X
ASR ,X
ASR oprx8,SP

Arithmetic Shift Right
DIR
INH
INH
IX1
IX
SP1

37
47
57
67
77

9E 67

dd

ff

ff

4
1
1
4
3
5

prwp
p
p
pprw
prw
ppprw

↕ 1 1 – – ↕ ↕ ↕

BCC rel
Branch if Carry Bit Clear
(if C = 0)

REL 24 rr 3 pdp – 1 1 – – – – –

BCLR n,opr8a
Clear Bit n in Memory
(Mn ← 0)

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

11
13
15
17
19
1B
1D
1F

dd
dd
dd
dd
dd
dd
dd
dd

4
4
4
4
4
4
4
4

prwp
prwp
prwp
prwp
prwp
prwp
prwp
prwp

– 1 1 – – – – –

BCS rel
Branch if Carry Bit Set (if C = 1)
(Same as BLO)

REL 25 rr 3 pdp – 1 1 – – – – –

BEQ rel Branch if Equal (if Z = 1) REL 27 rr 3 pdp – 1 1 – – – – –

BGE rel
Branch if Greater Than or Equal To
(if N ⊕ V = 0) (Signed)

REL 90 rr 3 pdp – 1 1 – – – – –

BGT rel
Branch if Greater Than (if Z | (N ⊕ V) = 0)
(Signed)

REL 92 rr 3 pdp – 1 1 – – – – –

BHCC rel Branch if Half Carry Bit Clear (if H = 0) REL 28 rr 3 pdp – 1 1 – – – – –

BHCS rel Branch if Half Carry Bit Set (if H = 1) REL 29 rr 3 pdp – 1 1 – – – – –

BHI rel Branch if Higher (if C | Z = 0) REL 22 rr 3 pdp – 1 1 – – – – –

BHS rel
Branch if Higher or Same (if C = 0)
(Same as BCC)

REL 24 rr 3 pdp – 1 1 – – – – –

BIH rel Branch if IRQ Pin High (if IRQ pin = 1) REL 2F rr 3 pdp – 1 1 – – – – –

BIL rel Branch if IRQ Pin Low (if IRQ pin = 0) REL 2E rr 3 pdp – 1 1 – – – – –

BIT #opr8i
BIT opr8a
BIT opr16a
BIT oprx16,X
BIT oprx8,X
BIT ,X
BIT oprx16,SP
BIT oprx8,SP

Bit Test
(A) & (M)
(CCR Updated but Operands Not Changed)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A5
B5
C5
D5
E5
F5

9E D5
9E E5

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

pp
prp
pprp
pppr
ppr
pr
ppppr
pppr

0 1 1 – – ↕ ↕ –

BLE rel
Branch if Less Than or Equal To
(if Z | (N ⊕ V) = 1) (Signed)

REL 93 rr 3 pdp – 1 1 – – – – –

BLO rel Branch if Lower (if C = 1) (Same as BCS) REL 25 rr 3 pdp – 1 1 – – – – –

BLS rel Branch if Lower or Same (if C | Z = 1) REL 23 rr 3 pdp – 1 1 – – – – –

BLT rel Branch if Less Than (if N ⊕ V = 1) (Signed) REL 91 rr 3 pdp – 1 1 – – – – –

Table 1. Instruction Set Summary (Sheet 2 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C

b0b7

C

Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 17

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BMC rel Branch if Interrupt Mask Clear (if I = 0) REL 2C rr 3 pdp – 1 1 – – – – –

BMI rel Branch if Minus (if N = 1) REL 2B rr 3 pdp – 1 1 – – – – –

BMS rel Branch if Interrupt Mask Set (if I = 1) REL 2D rr 3 pdp – 1 1 – – – – –

BNE rel Branch if Not Equal (if Z = 0) REL 26 rr 3 pdp – 1 1 – – – – –

BPL rel Branch if Plus (if N = 0) REL 2A rr 3 pdp – 1 1 – – – – –

BRA rel Branch Always (if I = 1) REL 20 rr 3 pdp – 1 1 – – – – –

BRCLR n,opr8a,rel Branch if Bit n in Memory Clear (if (Mn) = 0)

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

prpdp
prpdp
prpdp
prpdp
prpdp
prpdp
prpdp
prpdp

– 1 1 – – – – ↕

BRN rel Branch Never (if I = 0) REL 21 rr 3 pdp – 1 1 – – – – –

BRSET n,opr8a,rel Branch if Bit n in Memory Set (if (Mn) = 1)

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

prpdp
prpdp
prpdp
prpdp
prpdp
prpdp
prpdp
prpdp

– 1 1 – – – – ↕

BSET n,opr8a Set Bit n in Memory (Mn ← 1)

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

4
4
4
4
4
4
4
4

prwp
prwp
prwp
prwp
prwp
prwp
prwp
prwp

– 1 1 – – – – –

BSR rel

Branch to Subroutine
PC ← (PC) + $0002

 push (PCL); SP ← (SP) – $0001
push (PCH); SP ← (SP) – $0001

PC ← (PC) + rel

REL AD rr 4 pssp – 1 1 – – – – –

CBEQ opr8a,rel
CBEQA #opr8i,rel
CBEQX #opr8i,rel
CBEQ oprx8,X+,rel
CBEQ ,X+,rel
CBEQ oprx8,SP,rel

Compare and... Branch if (A) = (M)
Branch if (A) = (M)
Branch if (X) = (M)
Branch if (A) = (M)
Branch if (A) = (M)
Branch if (A) = (M)

DIR
IMM
IMM
IX1+
IX+
SP1

31
41
51
61
71

9E 61

dd rr
ii rr
ii rr
ff rr
rr
ff rr

5
4
4
5
4
6

pprdp
ppdp
ppdp
pprdp
prdp
ppprdp

– 1 1 – – – – –

CLC Clear Carry Bit (C ← 0) INH 98 1 p – 1 1 – – – – 0

CLI Clear Interrupt Mask Bit (I ← 0) INH 9A 2 pd – 1 1 – 0 – – –

Table 1. Instruction Set Summary (Sheet 3 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C
18 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D
Appendix A — Instruction Set Summary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLR opr8a
CLRA
CLRX
CLRH
CLR oprx8,X
CLR ,X
CLR oprx8,SP

Clear M ← $00
A ← $00
X ← $00
H ← $00
M ← $00
M ← $00
M ← $00

DIR
INH
INH
INH
IX1
IX
SP1

3F
4F
5F
8C
6F
7F

9E 6F

dd

ff

ff

3
1
1
1
3
2
4

pwp
p
p
p
ppw
pw
pppw

0 1 1 – – 0 1 –

CMP #opr8i
CMP opr8a
CMP opr16a
CMP oprx16,X
CMP oprx8,X
CMP ,X
CMP oprx16,SP
CMP oprx8,SP

Compare Accumulator with Memory
A – M
(CCR Updated But Operands Not Changed)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A1
B1
C1
D1
E1
F1

9E D1
9E E1

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

pp
prp
pprp
pppr
ppr
pr
ppppr
pppr

↕ 1 1 – – ↕ ↕ ↕

COM opr8a
COMA
COMX
COM oprx8,X
COM ,X
COM oprx8,SP

Complement M ← (M)= $FF – (M)
(One’s Complement) A ← (A) = $FF – (A)

X ← (X) = $FF – (X)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)

DIR
INH
INH
IX1
IX
SP1

33
43
53
63
73

9E 63

dd

ff

ff

4
1
1
4
3
5

prwp
p
p
pprw
prw
ppprw

0 1 1 – – ↕ ↕ 1

CPHX #opr
CPHX opr

Compare Index Register (H:X) with Memory
(H:X) – (M:M + $0001)
(CCR Updated But Operands Not Changed)

IMM
DIR

65
75

ii jj
dd

3
4

ppp
prrp

↕ 1 1 – – ↕ ↕ ↕

CPX #opr8i
CPX opr8a
CPX opr16a
CPX oprx16,X
CPX oprx8,X
CPX ,X
CPX oprx16,SP
CPX oprx8,SP

Compare X (Index Register Low) with
Memory
X – M
(CCR Updated But Operands Not Changed)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A3
B3
C3
D3
E3
F3

9E D3
9E E3

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

pp
prp
pprp
pppr
ppr
pr
ppppr
pppr

↕ 1 1 – – ↕ ↕ ↕

DAA
Decimal Adjust Accumulator
After ADD or ADC of BCD Values

INH 72 2 pp U 1 1 – – ↕ ↕ ↕

DBNZ opr8a,rel
DBNZA rel
DBNZX rel
DBNZ oprx8,X,rel
DBNZ ,X,rel
DBNZ oprx8,SP,rel

Decrement A, X, or M and Branch if Not Zero
(if (result) ≠ 0)
DBNZX Affects X Not H

DIR
INH
INH
IX1
IX
SP1

3B
4B
5B
6B
7B

9E 6B

dd rr
rr
rr
ff rr
rr
ff rr

5
3
3
5
4
6

pprwp
pdp
pdp
pprwp
prwp
ppprwp

– 1 1 – – – – –

DEC opr8a
DECA
DECX
DEC oprx8,X
DEC ,X
DEC oprx8,SP

Decrement M ← (M) – $01
A ← (A) – $01
X ← (X) – $01
M ← (M) – $01
M ← (M) – $01
M ← (M) – $01

DIR
INH
INH
IX1
IX
SP1

3A
4A
5A
6A
7A

9E 6A

dd

ff

ff

4
1
1
4
3
5

prwp
p
p
pprw
prw
ppprw

↕ 1 1 – – ↕ ↕ –

DIV
 Divide
A ← (H:A)÷(X); H ← Remainder

INH 52 7 pdpdddd – 1 1 – – – ↕ ↕

Table 1. Instruction Set Summary (Sheet 4 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C
Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 19

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EOR #opr8i
EOR opr8a
EOR opr16a
EOR oprx16,X
EOR oprx8,X
EOR ,X
EOR oprx16,SP
EOR oprx8,SP

Exclusive OR Memory with Accumulator
A ← (A ⊕ M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A8
B8
C8
D8
E8
F8

9E D8
9E E8

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

pp
prp
pprp
pppr
ppr
pr
ppppr
pppr

0 1 1 – – ↕ ↕ –

INC opr8a
INCA
INCX
INC oprx8,X
INC ,X
INC oprx8,SP

Increment M ← (M) + $01
A ← (A) + $01
X ← (X) + $01
M ← (M) + $01
M ← (M) + $01
M ← (M) + $01

DIR
INH
INH
IX1
IX
SP1

3C
4C
5C
6C
7C

9E 6C

dd

ff

ff

4
1
1
4
3
5

prwp
p
p
pprw
prw
ppprw

↕ 1 1 – – ↕ ↕ –

JMP opr8a
JMP opr16a
JMP oprx16,X
JMP oprx8,X
JMP ,X

Jump
PC ← Jump Address

DIR
EXT
IX2
IX1
IX

BC
CC
DC
EC
FC

dd
hh ll
ee ff
ff

2
3
4
3
2

pp
ppp
ppdp
pdp
pp

– 1 1 – – – – –

JSR opr8a
JSR opr16a
JSR oprx16,X
JSR oprx8,X
JSR ,X

Jump to Subroutine
PC ← (PC) + n (n = 1, 2, or 3)
Push (PCL); SP ← (SP) – $0001
Push (PCH); SP ← (SP) – $0001
PC ← Unconditional Address

DIR
EXT
IX2
IX1
IX

BD
CD
DD
ED
FD

dd
hh ll
ee ff
ff

4
5
6
5
4

pssp
ppssp
ppssdp
pssdp
pssp

– 1 1 – – – – –

LDA #opr8i
LDA opr8a
LDA opr16a
LDA oprx16,X
LDA oprx8,X
LDA ,X
LDA oprx16,SP
LDA oprx8,SP

Load Accumulator from Memory
A ← (M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A6
B6
C6
D6
E6
F6

9E D6
9E E6

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

pp
prp
pprp
pppr
ppr
pr
ppppr
pppr

0 1 1 – – ↕ ↕ –

LDHX #opr
LDHX opr

Load Index Register (H:X)
H:X ← (M:M + $0001)

IMM
DIR

45
55

ii jj
dd

3
4

ppp
prrp

0 1 1 – – ↕ ↕ –

LDX #opr8i
LDX opr8a
LDX opr16a
LDX oprx16,X
LDX oprx8,X
LDX ,X
LDX oprx16,SP
LDX oprx8,SP

Load X (Index Register Low) from Memory
X ← (M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AE
BE
CE
DE
EE
FE

9E DE
9E EE

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

pp
prp
pprp
pppr
ppr
pr
ppppr
pppr

0 1 1 – – ↕ ↕ –

LSL opr8a
LSLA
LSLX
LSL oprx8,X
LSL ,X
LSL oprx8,SP

Logical Shift Left

(Same as ASL)

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E 68

dd

ff

ff

4
1
1
4
3
5

prwp
p
p
pprw
prw
ppprw

↕ 1 1 – – ↕ ↕ ↕

Table 1. Instruction Set Summary (Sheet 5 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C

C

b0b7

0

20 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D
Appendix A — Instruction Set Summary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSR opr8a
LSRA
LSRX
LSR oprx8,X
LSR ,X
LSR oprx8,SP

Logical Shift Right
DIR
INH
INH
IX1
IX
SP1

34
44
54
64
74

9E 64

dd

ff

ff

4
1
1
4
3
5

prwp
p
p
pprw
prw
ppprw

↕ 1 1 – – 0 ↕ ↕

MOV opr8a,opr8a
MOV opr8a,X+
MOV #opr8i,opr8a
MOV ,X+,opr8a

Move
(M)destination ← (M)source
In IX+/DIR and DIR/IX+ Modes,
H:X ← (H:X) + $0001

DIR/DIR
DIR/IX+
IMM/DIR
IX+/DIR

4E
5E
6E
7E

dd dd
dd
ii dd
dd

5
4
4
4

prpwp
prwp
ppwp
prwp

0 1 1 – – ↕ ↕ –

MUL
Unsigned multiply
X:A ← (X) × (A)

INH 42 5 ppddd – 1 1 0 – – – 0

NEG opr8a
NEGA
NEGX
NEG oprx8,X
NEG ,X
NEG oprx8,SP

Negate M ← – (M) = $00 – (M)
(Two’s Complement) A ← – (A) = $00 – (A)

X ← – (X) = $00 – (X)
M ← – (M) = $00 – (M)
M ← – (M) = $00 – (M)
M ← – (M) = $00 – (M)

DIR
INH
INH
IX1
IX
SP1

30
40
50
60
70

9E 60

dd

ff

ff

4
1
1
4
3
5

prwp
p
p
pprw
prw
ppprw

↕ 1 1 – – ↕ ↕ ↕

NOP No Operation — Uses 1 Bus Cycle INH 9D 1 p – 1 1 – – – – –

NSA
Nibble Swap Accumulator
A ← (A[3:0]:A[7:4])

INH 62 3 ppd – 1 1 – – – – –

ORA #opr8i
ORA opr8a
ORA opr16a
ORA oprx16,X
ORA oprx8,X
ORA ,X
ORA oprx16,SP
ORA oprx8,SP

Inclusive OR Accumulator and Memory
A ← (A) | (M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AA
BA
CA
DA
EA
FA

9E DA
9E EA

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

pp
prp
pprp
pppr
ppr
pr
ppppr
pppr

0 1 1 – – ↕ ↕ –

PSHA
Push Accumulator onto Stack
Push (A); SP ← (SP) – $0001

INH 87 2 ps – 1 1 – – – – –

PSHH
Push H (Index Register High) onto Stack
Push (H); SP ← (SP) – $0001

INH 8B 2 ps – 1 1 – – – – –

PSHX
Push X (Index Register Low) onto Stack
Push (X); SP ← (SP) – $0001

INH 89 2 ps – 1 1 – – – – –

PULA
Pull Accumulator from Stack
SP ← (SP + $0001); Pull (A) INH 86 2 pu – 1 1 – – – – –

PULH
Pull H (Index Register High) from Stack
SP ← (SP + $0001); Pull (H) INH 8A 2 pu – 1 1 – – – – –

PULX
Pull X (Index Register Low) from Stack
SP ← (SP + $0001); Pull (X) INH 88 2 pu – 1 1 – – – – –

Table 1. Instruction Set Summary (Sheet 6 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C

b0b7

C0
Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 21

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROL opr8a
ROLA
ROLX
ROL oprx8,X
ROL ,X
ROL oprx8,SP

Rotate Left through Carry DIR
INH
INH
IX1
IX
SP1

39
49
59
69
79

9E 69

dd

ff

ff

4
1
1
4
3
5

prwp
p
p
pprw
prw
ppprw

↕ 1 1 – – ↕ ↕ ↕

ROR opr8a
RORA
RORX
ROR oprx8,X
ROR ,X
ROR oprx8,SP

Rotate Right through Carry DIR
INH
INH
IX1
IX
SP1

36
46
56
66
76

9E 66

dd

ff

ff

4
1
1
4
3
5

prwp
p
p
pprw
prw
ppprw

↕ 1 1 – – ↕ ↕ ↕

RSP
Reset Stack Pointer (Low Byte)
SPL ← $FF
(High Byte Not Affected)

INH 9C 1 p – 1 1 – – – – –

RTI

Return from Interrupt
SP ← (SP) + $0001; Pull (CCR)
SP ← (SP) + $0001; Pull (A)
SP ← (SP) + $0001; Pull (X)
SP ← (SP) + $0001; Pull (PCH)
SP ← (SP) + $0001; Pull (PCL)

INH 80 7 puuuuup ↕ 1 1 ↕ ↕ ↕ ↕ ↕

RTS
Return from Subroutine
SP ← SP + $0001; Pull (PCH)
SP ← SP + $0001; Pull (PCL)

INH 81 4 puup – 1 1 – – – – –

SBC #opr8i
SBC opr8a
SBC opr16a
SBC oprx16,X
SBC oprx8,X
SBC ,X
SBC oprx16,SP
SBC oprx8,SP

Subtract with Carry
A ← (A) – (M) – (C)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A2
B2
C2
D2
E2
F2

9E D2
9E E2

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

pp
prp
pprp
pppr
ppr
pr
ppppr
pppr

↕ 1 1 – – ↕ ↕ ↕

SEC
Set Carry Bit
(C ← 1)

INH 99 1 p – 1 1 – – – – 1

SEI
Set Interrupt Mask Bit
(I ← 1)

INH 9B 2 pd – 1 1 – 1 – – –

STA opr8a
STA opr16a
STA oprx16,X
STA oprx8,X
STA ,X
STA oprx16,SP
STA oprx8,SP

Store Accumulator in Memory
M ← (A)

DIR
EXT
IX2
IX1
IX
SP2
SP1

B7
C7
D7
E7
F7

9E D7
9E E7

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

pwp
ppwp
pppw
ppw
pw
ppppw
pppw

0 1 1 – – ↕ ↕ –

STHX opr
Store H:X (Index Reg.)
(M:M + $0001) ← (H:X)

DIR 35 dd 4 pwwp 0 1 1 – – ↕ ↕ –

STOP
Enable Interrupts: Stop Processing
Refer to MCU Documentation
I bit ← 0; Stop Processing

INH 8E 1 p – 1 1 – 0 – – –

Table 1. Instruction Set Summary (Sheet 7 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C

C

b0b7

b0b7

C

22 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D
Appendix A — Instruction Set Summary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STX opr8a
STX opr16a
STX oprx16,X
STX oprx8,X
STX ,X
STX oprx16,SP
STX oprx8,SP

Store X (Low 8 Bits of Index Register)
in Memory
M ← (X)

DIR
EXT
IX2
IX1
IX
SP2
SP1

BF
CF
DF
EF
FF

9E DF
9E EF

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

pwp
ppwp
pppw
ppw
pw
ppppw
pppw

0 1 1 – – ↕ ↕ –

SUB #opr8i
SUB opr8a
SUB opr16a
SUB oprx16,X
SUB oprx8,X
SUB ,X
SUB oprx16,SP
SUB oprx8,SP

Subtract
A ← (A) – (M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A0
B0
C0
D0
E0
F0

9E D0
9E E0

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

pp
prp
pprp
pppr
ppr
pr
ppppr
pppr

↕ 1 1 – – ↕ ↕ ↕

SWI

Software Interrupt
PC ← (PC) + $0001
Push (PCL); SP ← (SP) – $0001
Push (PCH); SP ← (SP) – $0001
Push (X); SP ← (SP) – $0001
Push (A); SP ← (SP) – $0001
Push (CCR); SP ← (SP) – $0001
I ← 1;
PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte

INH 83 9 psssssvvp – 1 1 – 1 – – –

TAP
Transfer Accumulator to CCR
CCR ← (A)

INH 84 2 pd ↕ 1 1 ↕ ↕ ↕ ↕ ↕

TAX
Transfer Accumulator to X (Index Register
Low)
X ← (A)

INH 97 1 p – 1 1 – – – – –

TPA
Transfer CCR to Accumulator
A ← (CCR)

INH 85 1 p – 1 1 – – – – –

TST opr8a
TSTA
TSTX
TST oprx8,X
TST ,X
TST oprx8,SP

Test for Negative or Zero (M) – $00
(A) – $00
(X) – $00
(M) – $00
(M) – $00
(M) – $00

DIR
INH
INH
IX1
IX
SP1

3D
4D
5D
6D
7D

9E 6D

dd

ff

ff

3
1
1
3
2
4

prp
p
p
ppr
pr
pppr

0 1 1 – – ↕ ↕ –

TSX
Transfer SP to Index Reg.
H:X ← (SP) + $0001

INH 95 2 pp – 1 1 – – – – –

TXA
Transfer X (Index Reg. Low) to Accumulator
A ← (X)

INH 9F 1 p – 1 1 – – – – –

Table 1. Instruction Set Summary (Sheet 8 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C
Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 23

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TXS
Transfer Index Reg. to SP
SP ← (H:X) – $0001

INH 94 2 pp – 1 1 – – – – –

WAIT
Enable Interrupts; Wait for Interrupt
I bit ← 0; Halt CPU

INH 8F 1 p – 1 1 – 0 – – –

Object Code:
dd Direct address of operand
ee ff High and low bytes of offset in indexed, 16-bit offset

addressing
ff Offset byte in indexed, 8-bit offset addressing
hh ll High and low bytes of operand address in extended

addressing
ii Immediate operand byte
ii jj 16-bit immediate operand for H:X
rr Relative program counter offset byte

Operation Symbols:
A Accumulator
CCR Condition code register
H Index register high byte
M Memory location
n Any bit
opr Operand (one or two bytes)
PC Program counter
PCH Program counter high byte
PCL Program counter low byte
rel Relative program counter offset byte
SP Stack pointer
X Index register low byte
& Logical AND
| Logical OR
⊕ Logical EXCLUSIVE OR
() Contents of
–() Negation (two’s complement)
Immediate value
« Sign extend
← Loaded with
? If
: Concatenated with

Addressing Modes:
DIR Direct addressing mode
EXT Extended addressing mode
IMM Immediate addressing mode
INH Inherent addressing mode
IX Indexed, no offset addressing mode
IX1 Indexed, 8-bit offset addressing mode
IX2 Indexed, 16-bit offset addressing mode
IX+ Indexed, no offset, post increment addressing mode
IX1+ Indexed, 8-bit offset, post increment addressing mode
REL Relative addressing mode
SP1 Stack pointer, 8-bit offset addressing mode
SP2 Stack pointer 16-bit offset addressing mode

CCR Bits, Effects:
V Overflow bit
H Half-carry bit
I Interrupt mask
N Negative bit
Z Zero bit
C Carry/borrow bit
↕ Set or cleared
– Not affected
U Undefined

Cycle-by-Cycle Codes:
d Dummy duplicate of the previous p, r, or s cycle.

d is always a read cycle so sd is a stack write
followed by a read of the address pointed-to by the
updated stack pointer

p Program fetch; read from next consecutive
location in program memory

r Read 8-bit operand
s Push (write) one byte onto stack
u Pop (read) one byte from stack
v Read vector from $FFxx (high byte first)
w Write 8-bit operand

Table 1. Instruction Set Summary (Sheet 9 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C
24 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 25

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

26 Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2627/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Cycle-by-Cycle Instruction Set Details for the M68HC08 Family of MCUs 27

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2627/D
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Cycle Codes
	Interpreting Cycle-by-Cycle Code Sequences
	Hardware Reset
	Interrupts
	Conditional Branches
	Cycle-Timed Code
	Conclusion
	Appendix A - Instruction Set Summary

