
AN2624/D
1/2004

Basic Web Server
Development with the
CMX-MicroNet TCP/IP
Stack

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 By Steven Torres
8/16 Bit System Engineering
Austin, Texas

Introduction

Ethernet connectivity of embedded devices is a growing trend in industrial and
consumer applications. Ethernet is a medium of choice because of its
competitive performance and relatively low price of implementation. Ethernet is
ease to use, widely available, and has a scalable and established
infrastructure. Ethernet is described by IEEE Standard 802.3.

With Ethernet, embedded devices can be connected to the Internet, which
allows access to the embedded device from across the world. Figure 1 shows
a simplified illustration of an embedded device that is connected to a remote
host via the Internet. Figure 1 shows that the embedded device and remote
host can operate on different networks, but the connection between the devices
is transparent.

Figure 1. Embedded Device on Internet

Metrowerks and CodeWarrior are registered trademarks of Metrowerks, Inc., a wholly owned subsidiary of Motorola, Inc.
Technological Arts and Adapt12 are trademarks of Technological Arts, Inc.
CMX TCP/IP and CMX-MicroNet are trademarks of CMX Systems, Inc.
Microsoft, Windows, Internet Explorer, and FrontPage are either registered trademarks or trademarks of Microsoft Corporation
in the U.S. and other countries.
MultiLink is a trademark of P&E Microcomputer Systems, Inc.

INTERNETCONTROL
BOARD

MOTOR

REMOTE HOST

EMBEDDED DEVICE
corporates SuperFlash technology licensed from SST.

© Motorola, Inc., 2003

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
Rectangle

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Acronyms and Terms
Table 1. Acronyms and Terms

Acronym/
Term Description Definition

ARP Address resolution protocol Translates an Internet address into a hardware address

AN Auto-Negotiate
Mechanism that detects the modes of two devices and
automatically configures the devices to the highest
common performance mode

BOOTP Bootstrap protocol Enables a diskless device to discover its own IP address

DHCP Dynamic host configuration protocol Allocates IP addresses dynamically

DNS Domain name server
Program/computer that converts a domain name into its
IP address

FTP File transfer protocol Used to transfer files across a network

HTML Hyper text mark-up language Used to create web pages

HTTP Hyper text transfer protocol Used to transmit web pages

ICMP Internet control message protocol Used to report errors from IP level and above

IP Internet protocol Mechanism for delivering packets across a network

ISP Internet service provider Company that links an end user to the Internet

LAN Local area network
Group of devices that share a common communication
line

NETBEUI
Network BIOS enhanced user

interface protocol
Standardizes how computers on a network communicate

OSI Open systems interconnection
Standard for how messages should be communicated
across a network so that devices will consistently work
with other devices

Ping A diagnostic program
Utility that tests whether a specific IP address is
accessible

RFC Request for comments
Series of numbered Internet informational documents and
standards that are widely followed by Internet software
developers and others

SMTP Simple mail transfer protocol Used for sending and receiving email

SNMP Simple network management protocol
Used by computers that monitor and manage network
activity to communicate with one another and the
computers they are monitoring

TCP Transmission control protocol Guarantees delivery of data

TFTP Trivial file transfer protocol
Subset of FTP that does not require valid username and
password

UDP User datagram protocol

Found at the network layer along with the TCP protocol.
UDP does not guarantee reliable, sequenced packet
delivery. If data does not reach its destination, UDP does
not retransmit, but TCP does.
2 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
Acronyms and Terms

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Connectivity
Example
Applications

Connectivity systems that obey the TCP/IP stack model (see TCP/IP Stack
Model Refresher), such as the example in Figure 1, can be implemented for
a wide range of applications, including:

• Database data logging or queries

• Web servers for remote embedded devices

• Remote monitoring (data collection/diagnostics)

• Remote control of devices in the field

• Use of email by remote device

• Remote reprogramming of FLASH memory

Scope of the
Application Note

This application note details the creation of a basic web server for an
embedded device. The components of this embedded web server system
include:

• MC9S12E128 microcontroller unit (MCU)

• Technological Arts 9S12ADAPT MC9S12E128 evaluation board

• Technological Arts LAN interface card

• Motorola stand-alone low-level LAN91C111 Ethernet drivers

• CMX-MicroNet TCP/IP stack

The goal of this application note is to help familiarize first-time users of the
CMX-MicroNet TCP/IP stack with its API and its Metrowerks CodeWarrior
project organization. To do this, a walk-through of developing a simple web
server is provided. This understanding will help speed initial CMX-MicroNet
TCP/IP stack software application development. Network-specific acronyms
and terms used in this document are described in Table 1.

Figure 2 is a simplified diagram of the web server that will be developed. This
diagram shows a PC remote host that requests a web page from an embedded
device running on a CMX-MicroNet web server. The embedded device is able
to serve the requested information back to the PC. The remote host can also
GET and POST information to the embedded device.

Figure 2. Web Server Example TCP/IP Stack Application

REMOTE HOST

ANY WEB BROWSER

EMBEDDED DEVICE

CMX-MicroNet
WEB SERVER
APPLICATION

HTML
VIRTUAL FILE

REQUEST HTML

SERVES HTML

HTTP GET/POST
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 3

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TCP/IP Stack Model
Refresher

The TCP/IP stack model is derived from the OSI 7-layer communications
development methodology. The TCP stack model defines both TCP/IP stack
software and the network interface (as shown in Figure 3). In this discussion,
the network interface is Ethernet, which is implemented by the Ethernet
controller and Ethernet controller device drivers.

A TCP/IP stack defines a set of protocols that allows network devices to
connect to a specific device and exchange data on a network. These protocols,
defined by RFC (request for comments), enable an embedded device to send
email, serve web pages, transfer files, and provide other basic connectivity
functions. Figure 3 is a simplified illustration of a user application working
through the TCP stack model.

Figure 3. Block Diagram of TCP/IP Model

DHCP/FTP/HTTP

TCP/UDP/IP

NETWORK INTERFACE

USER APPLICATION

APPLICATION API

SOCKET API

DEVICE DRIVER API

NETWORK

ETHERNET CONTROLLER
AND PHYSICAL INTERFACE

TCP STACK
SOFTWARE
4 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
MC9S12E128 and Technological Arts Ethernet Reference Design

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MC9S12E128 and Technological Arts Ethernet Reference Design

This section will briefly describe the MC9S12E128 MCU and the Technological
Arts MC9S12E128 Ethernet reference design.

MC9S12E128 The MC9S12E128 is a 16-bit MCU with 8K of RAM and 128K FLASH. It is
designed for the low-cost general-purpose distribution market. It is the first of a
series of low-cost general-purpose products to address the UPS
(uninterruptible power supply) and home appliance markets.

The MC9S12E128 has a rich set of features. In the 112-pin package, an
expanded bus is available that can be used to interface external peripherals
such as an Ethernet controller. More information on the MC9S12E128 is
available from the Motorola website: http://motorola.com/semiconductors. A
block diagram of the MC9S12E128 is provided in Figure 4.

Figure 4. Block Diagram of the MC9S12E128

HCS12 CPU

3 X SCI

SPI IIC

VREG 3.3 V TO 5.5 V
LVI/LVR

16-KEY WAKEUP
IRQ PORTS

128K FLASH

8K RAM DAC 0

ATD
DAC 110-BIT

TIM 1
4-CH

16-BIT

TIM 2
4-CH

16-BIT

TIM 3
4-CH

16-BIT

PWM
6-CH, 8-BIT

3-CH, 16-BIT

PMF
6-CH

IN
TE

R
NA

L
BU

S

Notes:
ATD = analog-to-digital converter
CPU = central processor unit
DAC = digital-to-analog converter
IIC = inter-integrated circuit
IRQ = external interrupt request (pin)
LVD = low-voltage detect
LVI = low-voltage interrupt

PMF = pulse modulator with fault protection
PWM = pulse-width modulator
SCI = serial communications interface
SPI = serial peripheral interface
TIM = timer interrupt module
VREG = voltage regulator
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 5

For More Information On This Product,
 Go to: www.freescale.com

http://motorola.com/semiconductors

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Technological Arts
MC9S12E128
Ethernet Reference
Design

Technological Arts provides a modular approach to an MC9S12E128 Ethernet
reference design, resulting in two stand-alone boards that are connected via a
50-pin header.

Adapt9S12E128 Adapt9S12E128, shown in Figure 5, is a compact and modular MC9S12E128
microcontroller evaluation board that is compatible with other Technological
Arts products including several application cards (such as the LAN interface
card), prototyping cards, backplanes, and solderless breadboards. The
Adapt9S12E128 includes an 8-MHz crystal, reset button, BDM connector, and
RS-232C interface.

See the Technological Arts website, http://www.technologicalarts.com, for
optional features and more information.

Figure 5. Adapt9S12E128 Evaluation Board from Technological Arts
6 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

http://www.technologicalarts.com

AN2624/D
MC9S12E128 and Technological Arts Ethernet Reference Design

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

100-BaseT LAN
Interface Card for
Adapt9S12

The LAN interface card for Adapt9S12 uses the SMSC LAN91C111 Ethernet
controller and works with Adapt9S12E128 in expanded wide mode via the
Adapt9S12E128 H2 connector.

Figure 6. Technological Arts 100-BaseT LAN Interface Card for Adapt9S12

Combining the Two
Stand-Alone Boards

Adapt9S12E128 MC9S12E128 evaluation and 100-BaseT LAN interface card
for Adapt9S12 boards are interfaced via the 50-pin header, H2. The connected
boards are shown in Figure 7 with the Technological Arts multi-function demo
card for Adapt9S12, which plugs into H1. The demo card for Adapt9S12
provides light-emitting diodes (LEDs), speaker, dual in-line (DIP) switches,
push-buttons, photocell, thermistor, and dual-logic metal oxide semiconductor
field-effect transistors (MOSFETs). The demo card for Adapt9S12 will not be
addressed any further in this document.

Figure 7. Technological Arts MC9S12E128 Ethernet Reference Design
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 7

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Board Versions and
Settings

The version numbers of the boards used in this application note and their
jumper settings are provided in this section.

Important jumper settings for each board are provided in Table 3 and Table 4.
The simplified layouts of the Adapt9S12E128 and 100-BaseT LAN interface
card are provided in Figure 8 and Figure 9.

Settings for the
Adapt9S12E128

When connecting the boards together, only one of the boards must be
powered. In this case, apply power to the Adapt9S12E128.

The Adapt9S12E128 must be configured for normal single-chip mode
(MODA=MODB=0, MODC=1) for the CMX-MicroNet stack. In the program,
before the Ethernet controller is initialized, the program is set to operate in
expanded mode.

For detailed information on this evaluation board, view the Adapt9S12E128
user’s manual from the Technological Arts web site.

Table 2. Board Versions

Board Revision

Adapt9S12E128 MC9S12E128 evaluation board 2.0

100-BaseT LAN Interface Card for Adapt9S12 1.0

Table 3. Settings for the Adapt9S12E128

Adapt9S12E128 Jumper/Switch Jumper Settings

Ch1 Don’t Care

JB1, MODB — mode select pin B 2–4

JB1, MODA — mode select pin A 1–2

JB4, XIRQ Off

JB5, U3 pull down Off

JB6, IR LED shutdown Don’t Care

JB7, IR sensitivity control Don’t Care

JB8 Don’t Care

JB9 2–3

JB9 header VCC

RS-232 select Don’t Care

RS-485 Don’t Care

SW2 — switch used for the serial monitor Run

TERM header On

VRH select 2–3
8 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
MC9S12E128 and Technological Arts Ethernet Reference Design

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..
.

Figure 8. Simplified Layout of the Adapt9S12E128

Settings for the LAN
Interface Card

R3

J5

R
13

R
10

R22

J7

3.3V
JB5

JB9
R15

JB3

R19R17
W4
C8

R18 R1

R7

W2R8

W3

RS485
SCI 1

C
22

W
5

W6
R6

D2

R16

C16

U3

W12

U7

R5

U6C5

J6

S
W

1

C17

C7

U1

Mode

XIRQ*

C
10

J2

www.technologicalarts.com

0

01

1

MODB

MODA

C9W
7

PWR
REV 2

50

1

50

1

Adapt9S12E128

(C
)2

00
3

T
E

C
H

N
O

LO
G

IC
A

L
A

R
T

S

B
D

M
 IN

RESET

W9

W
10

U4

J4

TB1

W8

PP0

J1

R
S

485

PWR

RS232

25

26

25

26

TERM
U5

R9

W11

IR
D

A

Load Run
R12

C12

H1

H2

P
A

D
0

P
A

D
1

11

0 0

C
19

TM

JB4

C4
C18

C1

R2

C3

R4

U
2

R14

JB6

C20
JB1

Select

C6

DAC Out

SW2

C14

Vcc

PM3

C13

JB8

W1

D1
R11

IIC
R

20

Y1

C
15

C2

R21

C11

Vcc Vin

JB7

U8
C21

R23

PQ6

Vcc

MC9S12E128
MCU

Table 4. Settings for the LAN Interface Card

LAN Interface Card Jumper/Switch Jumper Settings

JB1 — Latch decoding (XCS/ECLK) XCS, 1–2

JB2 — LAN decoding 1–2

JB3 — Reset control selection header 1–2

JB4 — Power source selection header VCC, 2–3

JB7 — Latch decoding 2–3
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 9

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 9. Simplified Layout of 100-BaseT LAN Interface Card

CMX Stack Overview

This sections includes:

• CMX introduction
• Motorola low-level Ethernet drivers
• CMX-MicroNet installation and project organization
• CMX-MicroNet CodeWarrior project
• CMX-MicroNet TCP/IP Stack API

CMX Introduction CMX-MicroNet is a TCP/IP stack implementation that is tailored for 8-bit and
16-bit embedded processors. Other CMX features include:

• Compatible with CodeWarrior tools
• Works with MCUs with low RAM/ROM resources
• Written entirely in standard C code
• Allows web pages to contain CGI calls
• Allows sending email
• Can serve Java applets
• Runs stand-alone or with a real-time operating system (RTOS)
• Supports as many as 16 sockets (mixed or matched with TCP or UDP)

RESET CONTROL
SELECTION

POWER SOURCE
SELECTION

dc IN

LOW-DROPOUT 3.3-V
REGULATOR
(NOTE: TAB IS
NOT GND)

(5 TO 9 V)

R45

XCS/ECLK
SELECT

LAN ERASABLE
SELECTION

SERIAL EEPROM
ENABLE

OPTIONAL SERIAL
EEPROM FOR

STARTUP

LAN OPTION
SELECT
10 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
CMX Stack Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

To reduce the CMX-MicroNet code footprint in FLASH, ROM, and RAM,
CMX-MicroNet has made several TCP/IP stack design choices that deviate
from TCP/IP’s RFC standards while still maintaining high TCP/IP stack
functionality. These include:

• No support for IEEE 802.3 type packets

• No IP option support

• Ignores all TCP options

• No support to handle fragmented packets

Motorola Low-Level
LAN91C111 Ethernet
Drivers

Powering the CMX-MicroNet TCP/IP stack is a low-level Ethernet driver for the
LAN91C111 Ethernet controller. These drivers are integrated within the
CMX-MicroNet TCP/IP stack source code. However, a Motorola stand-alone
(without a TCP/IP stack) version of the low-level Ethernet drivers is available.

CMX-MicroNet
Installation and
Project Organization

CMX delivers CMX-MicroNet source code as an installation file. When this file
is installed, several directories are placed on the target PC. Figure 10
illustrates the CMX-MicroNet project directories that are installed. The
CMX-MicroNet main project directory is {Project Directory}\MICRONET, where
{Project Directory} is the installation directory.

Figure 10. CMX-MicroNet Project Directory Structure
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 11

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 5 is a description of each sub-directory in the CMX-MicroNet main
project directory.

More information on examplee.mcp and netlibe.mcp and their individual files is
provided in the following sections. Figure 11 shows both of these projects
opened in the CodeWarrior IDE (integrated development environment).

Table 5. CMX-MicroNet Project Sub-Directory Descriptions

Sub-Directory Description

{Project Directory}\MICRONET\Manual Contains CMX documentation and user manual

{Project Directory}\MICRONET\netlib Contains the source files for the CMX-MicroNet API

{Project Directory}\MICRONET\Util

Contains the html2C.exe utility that can be used to convert
HTML, JPG, GIF, and other files into equivalent C files for
CMX-MicroNet to use for the embedded web server. (For
example, if you have a web page called main.html, running
html2C.exe with main.html as the argument will create files
main.c and main.h. In this example, main.c and main.h should be
added to the CMX-MicroNet CodeWarrior project.)

{Project Directory}\MICRONET\Webpage
Contains the HTML, JPG, GIF, and other files developed for the
embedded web server

{Project Directory}\MICRONET\Mw_hc12

Contains CMX-MicroNet CodeWarrior projects; it is the primary
working directory for TCP/IP stack project development. It
contains two separate CodeWarrior projects that are required for
developing a CMX-MicroNet-based TCP/IP stack solution:
netlibe.mcp and examplee.mcp.
12 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
CMX Stack Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11. CodeWarrior IDE with CMX-MicroNet Projects Open
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 13

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMX-MicroNet
CodeWarrior
Projects

As previously noted, the netlibe.mcp project creates a library (object) file of the
CMX-MicroNet API, and the examplee.mcp project contains the specific user
application. This section covers these projects and specific files in each project.
The specific files that are discussed are the files that will likely require
modification for the simple web server described by this application note.

Examplee Project (examplee.mcp) — Contains the source code of the
specific user application. The source code in this project includes main() for the
TCP/IP stack solution.

• example.c — Contains the user application including main().

• callback.c — Among other things, contains settings for:
– MAC hardware and IP addresses
– SMTP (simple mail transfer protocol) IP address
– Gateway IP address
– Subnet mask

• Files in webpage directory — Contain HTML, GIF, JPG, java applets,
and other files used in the web server. This directory also contains the
files that result when html2C.exe is executed (see Table 5).

Netlibe Project (netlibe.mcp) — Creates a library file, netlibe.lib, that
examplee.mcp uses. The netlibe.mcp project contains the source code for the
CMX-Micronet API. Most of these files will not require modification during
software development. Typically, this project must be modified initially to
include the protocols of the CMX-MicroNet project that will be used in the
project and to set the initialization settings for the external Ethernet controller.
After these parameters are set, this project can be compiled to create the
netlibe.lib object file.

• mn_port.c — Contains initialization code for HCS12 modules and other
MCU support code. Some of the functions included in mn_port.c are:
– SCI initialization
– PLL initialization
– RTI interrupt service routine
– SCI interrupt service routine

• mnconfig.h — Contains an interface to set up (turn off or on) and
configure various TCP/IP stack protocols (TCP, UDP, ARP, PING,
DHCP, etc.) that are used when building the stack.

• hcs12e_91C111.c — Contains an API that the CMX-MicroNet TCP/IP
stack uses to interface to the external Ethernet controller (in this case,
the LAN91C111). This file should be modified if you want to change the
start-up code for the LAN91C111. For example, the LAN91C111 is
configured for auto-negotiation. If this is not desired, hcs12e_91C111.c
should be modified.
14 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
CMX Stack Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMX-MicroNet
TCP/IP Stack API

Table 6 provides a brief description of the CMX-MicroNet API functions that are
required to develop the simple web server described in this application note.
For complete documentation of the CMX-MicroNet API, please reference the
CMX-MicroNet user guide.

Table 6. Selected CMX-MicroNet API Functions

Function Description

mn_init()

Generally sets up the CMX-MicroNet TCP/IP stack. In this example, it
calls mn_arp_init(), mn_http_init(), and mn_ether_init(). This routine
also sets up the CMX-MicroNet virtual file system. Mn_init() can be
found in socket.c in the netlibe.mcp project.

mn_ether_init()
Executes the ETHER_INIT macro in Ethernet.h. The ETHER_INIT
macro defined for this example is smsc91C111_init(). Mn_ether_init()
can be found in Ethernet.c in the netlibe.mcp project.

smsc91C111_init()
Located in hcs12e_91C111.c in the netlibe.mcp project. This routine
initializes and enables the external Ethernet controller, SMSC
LAN91C111.

mn_vf_set_entry(arguments)
mn_pf_set_entry(arguments)
mn_gf_set_entry(arguments)

These are virtual file system functions that are located in vfile.c in the
netlibe.mcp project. These functions are designed to make it easy to
retrieve arrays associated with web pages and function pointers used
by server-side-includes and HTTP post routines. For mn_gf_set_entry,
the #define SERVER_SIDE_INCLUDES code in the mnconfig.h file
must be set to 1.

mn_http_find_value(arguments)
mn_http_set_file(arguments)
mn_http_set_message(arguments)

Located in http.c. For HTTP functionality, the main web page must be
called index.htm or index.html (unless the main page name is changed
in http.c by modifying the default_page1 or default_page2 variable
names).

mn_ustoa(arguments)
Used to convert an unsigned short integer variable to ASCII. This
CMX-MicroNet support function is located in support.c.

mn_server()

Located in mnserver.c. It is a general-purpose server function that
combines the HTTP and FTP servers and provides TCP and UDP
server functionality. New HTTP and FTP sockets are opened and
closed as needed by CMX-MicroNet. All other sockets must be opened
before calling mn_server. For example, passive TCP sockets can be
opened with the NO_OPEN type before calling mn_server(). This
function receives a packet and, if an HTTP or FTP packet is received,
calls the appropriate HTTP or FTP functions. If the received packet is
any type other than HTTP or FTP, the function calls
mn_app_server_process_packet.
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 15

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Preparing for CMX-MicroNet Development

This section describes how to prepare for web server development with
CMX-MicroNet software. The following topics are included:

• Development environment and tools

• Connecting the evaluation board to a development PC

• Configuring the MAC hardware and IP addresses

• Configuring TCP/IP protocol in Microsoft Windows

Development
Environment and
Tools

The CMX-MicroNet TCP/IP stack software can be modified and compiled with
the CodeWarrior environment. Below are specific details about the
development environment and tools required to develop the web server
described in this application note.

• Microsoft Windows 2000 with Microsoft Internet Explorer 5.5 or later

• Microsoft FrontPage 2000 for web page development

• CodeWarrior HCS12 tool version 2 (with MC9S12E128 patch) or later

• P&E BDM MultiLink pod, category 5 (cat5) crossover cable, and
optional DB9 serial cable (as described in the next section)

Connecting the
Evaluation Board to
a Development PC

Figure 12 shows the basic connection of a PC running CodeWarrior software
to a Technological Arts MC9S12E128 Ethernet reference board. For
development, a PC must connect to the target board with the following:

• BDM MultiLink pod (BDM) — Provides a link to the embedded device
and provides an interface to program and debug the software on the
MC9S12E128 MCU. On the Adapt9S12E128 evaluation board, the
BDM connector is labeled BDM IN.

• Crossover cat5 cable (XCAT5) — Required to form a local, isolated
network between the PC and the target. With an Ethernet link, the
network application can be tested and debugged on a network.
Alternatively, a straight-through cable with a hub can be used.

• DB9 serial cable (COMM) — CMX-MicroNet program has a debug mode
that sends real-time messages about stack activity through one of the
MC9S12E128 SCI ports. By using Hyperterminal and a serial cable,
these debug messages can be captured.
16 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
Preparing for CMX-MicroNet Development

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 12. Connecting the Evaluation Board to a PC for Development with CMX-MicroNet

This development setup should be used until the CMX-MicroNet application is
completed. This provides an easier interface for debugging the application than
connecting directly to a real network (because the development target is
isolated). To make the application compatible to a real network, changes
should be required to only the MAC hardware and IP addresses.

Configuring the
MAC Hardware and
IP Addresses

When the web server is complete, it can then be configured to operate on a real
network by changing the MAC hardware and IP addresses to be compatible
with the real network. A brief discussion of MAC hardware and IP addresses is
provided in the following sections.

Configuring the MAC
Hardware Address

The MAC hardware address is a 48-bit number. Every network device should
have a unique MAC hardware address. MAC hardware address groups are
assigned to organizations by the IEEE EtherType Field Registration Authority.

A valid MAC hardware address for the Technological Arts MC9S12E128
Ethernet reference board should be assigned by the developer. This address
is used by the datalink layer which is implemented by the LAC91C111 Ethernet
controller and the low-level drivers. Again, this can be changed in callback.c. If
the device is not connected to a real network, a random MAC hardware
address can be used as long as it is not connected on a network that has a
device with the same 48-bit MAC hardware address.

DEVELOPMENT
HOST

ADAPT9S12E128

LAN CARD

DEVELOPMENT
TARGET

PC

COMM

BDM

XCAT5

SERIAL
PORT

PARALLEL
PORT

NETWORK
PORT (RJ45)
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 17

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Configuring the IP
Addresses

IP addresses are assigned by a network administrator or a dynamic host
configuration protocol (DHCP) server. These addresses are used by the IP
layer of the CMX-MicroNet TCP/IP stack. If the IP addresses are not correctly
configured, the embedded device will not communicate over the network
connection—even if an Ethernet connection can be made.

When developing an application off a real network and on a developer’s PC,
the developer is the network administrator. The developer must create a local
network between the developer’s PC and the target board. A network consists
of nodes that are on the same network subnet. To set up the subnet for the
demo, the developer must use compatible IP address settings between the
developer’s PC and the target board.

When setting up IP addresses, it is preferable to configure or use the
development target and development host manually with non-routable IP
addresses (i.e., 10.x.x.x, 90.0.0.x, 172.16.x.x through 172.32.x.x, or
192.168.x.x).

NOTE: These IP settings and others must be reflected in the Windows network
settings.

When the application is developed and ready for a real network, the IP address
settings must be configured to be compatible with the real network on which the
node will reside. Recall, for the CMX-MicroNet code, IP addresses and MAC
hardware addresses are configured in callback.c. In this web server example,
a static IP address is used. For a real network, recall that the IP address should
be assigned by the network administrator. Optionally, the DHCP capability of
the CMX-MicroNet can be used. With DHCP, a DHCP server will automatically
assign a leased IP address to the embedded device.

IP address settings for this demo:

• All devices are configured with an IP address in the range 192.168.1.1
to 192.168.1.2.

• CMX-MicroNet code is programmed with an IP address of:
– 192.168.1.1, for the development host (PC)
– 192.168.1.2, for the development target (embedded device)
18 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
Preparing for CMX-MicroNet Development

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Configuring TCP/IP
Protocol in Windows

To set up the IP address for the development host in Windows, the IP address
network settings of the development host must be accessed in its operating
system. For recent Windows releases, these settings are located in the control
panel. In the control panel, select network settings. A typical network settings
dialog box is shown in Figure 13.

Figure 13. Network Settings Dialog Box

The network settings window shows all devices that can be used to form
network connections. Figure 13 shows two network devices defined for the PC.
Network devices can also include modems.

The network settings window also shows the status of the network device. This
status indicates whether the network device has an Ethernet connection.
Having an Ethernet connection does not necessarily mean other Windows
network settings for that device are set correctly (see Debugging Networks).

To access the IP address setting via the network settings dialog box, you must
select the desired network device and configure its properties. In the properties
dialog box, select the TCP/IP protocol network component for the TCP/IP
adapter (see Figure 14) and click Properties.

In the Internet Protocol (TCP/IP) Properties dialog box, manually enter a
subnet mask and specific IP address. Recall that the IP address used for the
development host in this example is 192.168.1.1.
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 19

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 14. Opening Internet Protocol (TCP/IP) Properties Dialog Box

Select Internet Protocol (TCP/IP)
and click Properties.

Manually enter a subnet mask and
specific IP address. Recall that the
IP address used for the development
host in this example is 192.168.1.1.

1.

2.
20 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
Debugging Networks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Debugging Networks

Issues Issues with network connectivity are typically due to an error in the network
setup and configuration of either the network or the remote devices. Three main
network connectivity issues and their possible solutions are described in this
section:

• Ethernet connection not established

• Network connection cannot be established

• Network connection is established at the IP layer with Ping, but the
devices are not communicating

Ethernet Connection
Not Established

This connectivity issue means that the Ethernet transceiver on either the target
or the host (or both) cannot create a low-level link. This problem can be caused
by:

• Cat5 cable damaged or unplugged

• Cat5 cross-over cable required, but a straight-through cable is used

• Ethernet transceiver loss of power

• Ethernet transceiver issue at start-up

• Mismatched Windows LAN card settings

Ethernet transceiver issues at startup occur if the embedded device was not
initialized correctly by the program. First, visually verify that the devices are
physically connected. On the PC and the target evaluation board, the link and
speed LEDs should be active.

If the physical connection is visually verified and the problem still exists, check
the status of the link in the network settings dialog box as shown in Figure 13.
Also, if the network is configured correctly, Windows may show the status of the
link on the task bar as shown in Figure 15. The task bar shows the link as
“Network Cable Unplugged.”

Figure 15. Task Bar Showing Link Status

NETWORK

STATUS ICON

(UNPLUGGED AS SHOWN)

CONNECTION
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 21

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Network Connection
Cannot be
Established

When the device establishes an Ethernet connection, the network settings may
still require adjustments. The most common problems are:

• Devices are unreachable

• Network connection is misdirected

In these two cases, the network IP address, network port information, network
components, network protocols, and server type must be reviewed.

This section deals with the issue of the network higher level protocols not
establishing a connection such as an Internet protocol (TCP/IP) connection.
One way this can be checked is with Ping. Ping is actually an IPv4 ICMP
(Internet control management protocol) echo request that is defined by the
TCP/IP stack protocol. Because Ping functionality is included in CMX-MicroNet
and Windows, it can be used to debug the network connection. If the command
confirms a valid connection to a remote device by replying to the ICMP echo
request, the network is configured correctly. If, however, the Windows
command does not confirm a network connection to the remote device, the
network is not configured correctly.

The key step to resolve this type of network bug is to determine how the
network is designed and how the remote device must be configured to accept
a connection. Remote devices must be compliant with the network’s design
structure and protocols. When the network is set up and configured correctly,
the devices will connect. This problem is usually associated with incorrect and
incompatible IP address settings (see the Configuring the IP Addresses
section for resolution and discussion).

Network Connection
is Established at the
IP Layer with Ping, but
the Devices are Not
Talking

This problem is usually difficult to debug. There may be a conflict with other
protocols settings. Other possible causes can be a firewall, proxy server
settings, duplex mismatch, or invalid server settings. With an understanding of
the network design and its connection capabilities, network restrictions, and
underlying communication protocols (for example, TCP/IP and NETBEUI), a
user can configure the network and the remote devices to ensure connectivity.
This issue may require assistance from a system administrator to resolve.

Network Protocol
Analyzer Tools

A network protocol analyzer is a powerful and useful tool for network
debugging. The network protocol analyzer enables more visibility of packet
traffic on the network connection. A network protocol analyzer is used to
monitor the connectivity of the Internet or a local area network (LAN).

The tool is capable of non-intrusively attaching itself and monitoring a dial-up
or Ethernet connection. The network protocol analyzer can be an in-house,
commercial, or downloadable freeware software package. A network protocol
analyzer can be implemented in hardware also.
22 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
Overview of a Web Server Developed Using CMX-MicroNet

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The overriding feature of the network protocol analyzer is its ability to capture,
analyze, and decode network packets. The network protocol analyzer must be
capable of determining the communication protocol of the network data
packets. In addition, the program must be able to display a list of network
connections, the IP addresses of the connections, the data direction, and the
network data port information. The network protocol analyzer provides the
detailed network information required to debug a network.

Overview of a Web Server Developed Using CMX-MicroNet

This section provides an overview of a web server developed with
CMX-MicroNet software. This simple web server was developed by CMX for
distribution with the Technological Arts MC9S12E128 Ethernet reference
design, as an S-record file. Figure 16 shows the web server.

Figure 16. CMX-MicroNet Web Server

This section will overview the files that were modified during development of the
CMX web server demo. Acronyms and terms used in this section are defined
in Table 1.
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 23

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Web Pages The HTML code for the main frame of the web page shown in Figure 16 is
provided in this section. Web page development can be assisted with a tool,
such as FrontPage by Microsoft, but it is not required. The web page can
contain standard HTML components including, but not limited to:

• Frames

• Tables

• Forms

• Embedded Java script

• Applets

When these web components are completed and tested, the next step is to
convert them to the equivalent CMX-MicroNet C files using CMX’s html2C
utility.

HTML Code:

<html><head>
<SCRIPT LANGUAGE="JavaScript">
function checkInfo(form) {
var ok = true;
var valid;
var temp;
if (form.webvar.value == "")
 ok = false;
if (ok)
{
 valid = "0123456789";
 for (var i=0; i<5; i++)
 {
 temp = "" + form.webvar.value.substring(i, i+1);
 if (valid.indexOf(temp) == "-1")
 ok = false;
}
}
if (ok)
{
 var check_num = parseInt(form.webvar.value,10);
 ok = (!isNaN(check_num) && (check_num >= 0) && (check_num <= 32767));
}
if (!ok)
{

alert("Invalid number entered.\r\nPlease enter a number between 0 and 32767.");
 form.webvar.focus();

return false;
}
return (ok);
}
</SCRIPT></head>
<BODY text="#000000" vlink="#990099" alink="#990099" bgcolor="#FFFFFF" link="#0000CC"">
<CENTER><table align="center"><tr>
24 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
Overview of a Web Server Developed Using CMX-MicroNet

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

<td align="center" width="50%">Enter a number between 0 and
32767 in the box below.
This will change the variable demo_var located at address 0x2000. This address can be
examined to monitor the changes to the variable.</td>
<td align="center" width="50%">JAVA Applet</td>
</TR><tr>
<td align="center"><FORM NAME="var_info" ACTION="set_demo_var" METHOD=POST onSubmit="return
checkInfo(var_info)">
<INPUT NAME="webvar" TYPE="Text" MAXLENGTH=5 VALUE="<!--#exec cgi="get_demo_var"-->"><P>
<INPUT TYPE="Submit" VALUE="Update"></FORM></td>
<TD ALIGN="center" width="50%"><applet code="JavaCl.class" width="120" height="120">
</applet></TD></tr></table>

Note: you must have Javascript enabled for this demo.
</CENTER></body></html>

examplee.c examplee.c contains main() for the user application. In main(), both the
MC9S12E128 MCU and the LAN91C111 Ethernet controller are configured
and enabled. Main() also initializes the CMX-MicroNet TCP/IP stack then waits
and serves a web page on request.

Note that mn_init() must be called before using any other CMX-MicroNet
function. Refer to theCMX-MicroNet TCP/IP Stack API section for more
information about the CMX-MicroNet API functions used in the provided code.

examplee.c Source
Code:

/***
Copyright (c) CMX Systems, Inc. 2003. All rights reserved
***/

#include "micronet.h"

/* put #includes for web pages here */
#include "index.h"
#include "cmxlogo.h"
#include "bot.h"
#include "head.h"
#include "main1.h"
#include "side.h"
#include "ta7rssmall.h"
#include "analogcl.h"
#include "javacl.h"

/* Local functions */
void set_demo_var_func(PSOCKET_INFO socket_ptr) cmx_reentrant;
word16 get_demo_var_func(byte **) cmx_reentrant;

#define MSG_BUFF_SIZE 17
byte msg_buff[MSG_BUFF_SIZE];

/* Global variable to be set by web page. */
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 25

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

#pragma DATA_SEG DEMO_MEM
int demo_var;
#pragma DATA_SEG DEFAULT

int main(void)
{
 /* call mn_init before using any other MicroNet API functions */
 if (mn_init() < 0)
 EXIT(1);

 /* Add web pages to virtual file system.
 The main page MUST be called index.htm or index.html.
 */
 mn_vf_set_entry((byte *)"index.htm", INDEX_SIZE, index_htm,VF_PTYPE_STATIC);
 mn_vf_set_entry((byte *)"head.htm", HEAD_SIZE, head_htm,VF_PTYPE_STATIC);
 mn_vf_set_entry((byte *)"side.htm", SIDE_SIZE, side_htm,VF_PTYPE_STATIC);
 mn_vf_set_entry((byte *)"main1.htm", MAIN1_SIZE, main1_htm,VF_PTYPE_STATIC);
 mn_vf_set_entry((byte *)"bot.htm", BOT_SIZE, bot_htm,VF_PTYPE_STATIC);
 mn_vf_set_entry((byte *)"cmxlogo.gif", CMXLOGO_SIZE, cmxlogo_gif,VF_PTYPE_STATIC);
 mn_vf_set_entry((byte *)"ta7rsSmall.jpg", TA7RSSMALL_SIZE, ta7rssmall_jpg,VF_PTYPE_STATIC);
 mn_vf_set_entry((byte *)"JavaCl.class", JAVACL_SIZE, javacl_class,VF_PTYPE_STATIC);

mn_vf_set_entry((byte *)"AnalogCl.class", ANALOGCL_SIZE, analogcl_class,VF_PTYPE_STATIC);

 /* add post functions to be used with forms */
 mn_pf_set_entry((byte *)"set_demo_var", set_demo_var_func);

 /* add any get functions (server-side-includes) here */
 mn_gf_set_entry((byte *)"get_demo_var", get_demo_var_func);

 memset(msg_buff,0,sizeof(msg_buff));
 demo_var = 12345;

 mn_server(); /* see mnserver.c */

 return(0);
}

/* --- */

static byte post_var[] = "webvar";
static byte main_page[] = "main1.htm";

/* this function is called from a web page by an HTTP POST request */
void set_demo_var_func(PSOCKET_INFO socket_ptr)
cmx_reentrant {
 VF_PTR vf_ptr;

 /* msg_buff will have decoded value, if available */
 if (mn_http_find_value(BODYptr,post_var,msg_buff))
 {
 demo_var = atoi(msg_buff);

 /* In this example we are always returning main1.htm. */
 vf_ptr = mn_vf_get_entry(main_page);
 if ((vf_ptr == PTR_NULL) ||!(mn_http_set_file(socket_ptr,vf_ptr)))
26 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
Overview of a Web Server Developed Using CMX-MicroNet

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 {
 /* page was deleted or in the process of being updated.
 send Not Found message.
 */
 mn_http_set_message(socket_ptr,HTTPStatus404,STATUS_404_LEN);
}
}
}

word16 get_demo_var_func(byte **str)
cmx_reentrant {
 *str = msg_buff;
 return ((word16)mn_ustoa(msg_buff, (word16)demo_var));
}

callback.c An excerpt of the source code for callback.c is provided. This section of
callback.c is important because it includes the MAC hardware and IP address
settings. This file must be configured correctly. Review theConfiguring the
MAC Hardware and IP Addresses section for details. The list below provides
a simplified description of the code provided.

• ip_dest_addr[IP_ADDR_LEN] — If HTTP or FTP is not being used, an
IP address for a destination node must be provided. If HTTP or FTP is
used, this variable can be ignored. HTTP and FTP are configured in
mnconfig.h.

• ip_src_addr[IP_ADDR_LEN] — Embedded device IP address. If DHCP
is configured and used, this variable can be ignored. DHCP is configured
in mnconfig.h.

• byte eth_src_hw_addr[ETH_ADDR_LEN] — This MAC hardware
address for the embedded device should be a unique 48-bit number as
specified by IEEE.

• byte eth_dest_hw_addr[ETH_ADDR_LEN] — If ARP is not being used,
a MAC hardware address for a destination node must be provided in this
variable.

The SMTP server IP address can also be set up in this file if the CMX-MicroNet
SMTP client is used. SMTP is used for sending email on the Internet. For this
example, SMTP is not used.
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 27

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Excerpt from
callback.c:

#if Ethernet
byte ip_dest_addr[IP_ADDR_LEN] = {192,168,2,2};
#if (PING_GLEANING)
byte ip_src_addr[IP_ADDR_LEN] = {0,0,0,0};
#else
byte ip_src_addr[IP_ADDR_LEN] = {192,168,2,3}; // static IP address of embedded device
#endif /* PING_GLEANING */
#else
byte ip_dest_addr[IP_ADDR_LEN] = {192,6,94,5};
#if (PING_GLEANING)
byte ip_src_addr[IP_ADDR_LEN] = {0,0,0,0};
#else
byte ip_src_addr[IP_ADDR_LEN] = {192,6,94,2};
#endif /* PING_GLEANING */
#endif /* Ethernet */

#if (SMTP)
/* replace the ip address below with the ip address of your SMTP server */
byte ip_smtp_addr[IP_ADDR_LEN] = {216,148,227,71};
#endif /* (SMTP) */

#if Ethernet
/**
 if using a chip with EEPROM you may need to write a routine
 to take the value of the hw_addr in EEPROM and put it into
 the array below on startup, otherwise replace eth_src_hw_addr
 below with the proper Ethernet hardware address.
***/
byte eth_src_hw_addr[ETH_ADDR_LEN] = {0x00,0x00,0x12,0x34,0x56,0x78};

/**
 If ARP is used the array below is used as a temporary holder
 for the destination hardware address. It does not have to be
 changed.

 If ARP is not being used replace the hardware address below
 with the hardware address of the destination. The hardware
 address used MUST be the correct one.
***/
byte eth_dest_hw_addr[ETH_ADDR_LEN] = {0x00,0xE0,0x98,0x03,0xE5,0xFA};

/**
 If a gateway is being used set the gateway IP address and
 subnet mask below.

 If a gateway is not being used:
 set the gateway IP address to {255,255,255,255}
 set the subnet mask to {255,255,255, 0}
***/
byte gateway_ip_addr[IP_ADDR_LEN] = {255,255,255,255};
byte subnet_mask[IP_ADDR_LEN] = {255,255,255, 0};

#endif /* Ethernet */
28 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
Overview of a Web Server Developed Using CMX-MicroNet

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mnconfig.h Editing mnconfig.h is required to select the protocols used, number of
interfaces, number of sockets, sizes of transmit and receive buffers, etc. To
minimize code size, only the protocols that are required for the application
should be used. Important settings for the web server example are:

• Enable TCP (enabling UDP is optional)

• Enable Ethernet

• Enable PING

• Enable ARP

• Disable DHCP

• Enable HTTP and SERVER_SIDE_INCLUDES

• Enable VIRTUAL_FILE

When editing mnconfig.h, recall that some protocols are dependent on each
other. For instance, the HTTP protocol requires the TCP protocol. In addition,
for CMX-MicroNet, either the UDP or TCP protocol must be enabled for
compilation. Figure 17 shows several popular network protocols and their
dependence.

Figure 17. Popular Network Protocols and Their Dependence

FTP

SMTP

HTTP

BOOTP
DHCP

TFTP

DNS PING

UDPTCP ICMP

ARP IP

ETHERNET

APPLICATION

TRANSPORT

NETWORK

NETWORK INTERFACE

USER APPLICATION

APPLICATION API

SOCKET API

DEVICE DRIVER API

TCP/UDP/IP
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 29

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/***
Copyright (c) CMX Systems, Inc. 2002. All rights reserved
***/

/* mn_env.h must be #included before this file in micronet.h */

#ifndef MNCONFIG_H_INC
#define MNCONFIG_H_INC 1

/* Protocols */
#define TCP 1
#define UDP 1
#define UDP_CHKSUM 1
#define Ethernet 1
#define SLIP 0
#define PPP 0
#define PING 1

/* Sockets */
#define NUM_SOCKETS 6
#define SOCKET_WAIT_TICKS 600
#define RECV_BUFF_SIZE 2048
#define XMIT_BUFF_SIZE 1518
#define SOCKET_INACTIVITY_TIME 0 /* 7200 */

/* TCP/IP options */
#define TIME_TO_LIVE 64
#define TCP_WINDOW 1460
#define TCP_RESEND_TICKS 600
#define TCP_RESEND_TRYS 12
#define PING_GLEANING 0

/* Ethernet */
#define POLLED_Ethernet 0
#define ETHER_WAIT_TICKS 5

/* ARP */
#define ARP 1
#define ARP_TIMEOUT 0
#define ARP_AUTO_UPDATE 0
#define ARP_CACHE_SIZE 4
#define ARP_KEEP_TICKS 6000
#define ARP_RESEND_TRYS 6

/* DHCP */
#define DHCP 0
#define DHCP_RESEND_TRYS 4
#define DHCP_DEFAULT_LEASE_TIME 36000

/* BOOTP */
#define BOOTP 0
#define BOOTP_RESEND_TRYS 6
#define BOOTP_REQUEST_IP 1
30 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
Overview of a Web Server Developed Using CMX-MicroNet

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/* PPP options */
#define USE_PAP 1
#define PAP_USER_LEN 10
#define PAP_PASSWORD_LEN 10
#define PAP_NUM_USERS 1
#define PPP_RESEND_TICKS 300
#define PPP_RESEND_TRYS 6
#define PPP_TERMINATE_TRYS 2
#define FAST_FCS 1

/* Modem */
#define MODEM 0
#define DIRECT_CONNECT 1
#define NULL_MODEM 1
#define REMOTE_IS_NT 1
#define USE_PASSWORD 0

/* HTTP */
#define HTTP 1
#define SERVER_SIDE_INCLUDES 1
#define INCLUDE_HEAD 0
#define URI_BUFFER_LEN 52
#define BODY_BUFFER_LEN 52
#define HTTP_BUFFER_LEN 1460

/* FTP */
#define FTP 0
#define FTP_SERVER 1
#define FTP_MAX_PARAM 24
#define FTP_BUFFER_LEN 1460
#define FTP_USER_LEN 10
#define FTP_PASSWORD_LEN 10
#define FTP_NUM_USERS 2
#define NEED_MEM_POOL 0
#define MEM_POOL_SIZE 4096

/* TFTP */
#define TFTP 0
#define TFTP_RESEND_TRYS 3

/* SMTP */
#define SMTP 0
#define SMTP_BUFFER_LEN 1460

/* Virtual File System */
#define VIRTUAL_FILE 1
#define NUM_VF_PAGES 12
#define VF_NAME_LEN 20
#define FUNC_NAME_LEN 20
#define NUM_POST_FUNCS 2
#define NUM_GET_FUNCS 2

#endif /* ifndef MNCONFIG_H_INC */
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 31

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

hcs12e_91C111.c An excerpt of the source code for hcs12e_91C11.c is provided. The code
shows two configurations a user may desire to modify. These include:

• DO_DEBUG — This option sets up the debug mode of the
CMX-MicroNet stack. When this mode is configured, messages about
the operation of the CMX-MicroNet stack are sent via the SCI.

• AUTO_NEGOTIATE — This option sets up smsc91C111_init() to
initialize the LAN91C111 in auto-negotiation mode if asserted. If not
asserted, the developer must manually set up the speed and duplex for
the LAN91C111 using the full_duplex and speed_100 variables.

Excerpt from
hcs12e_91C11.c:

/***
Copyright (c) CMX Systems, Inc. 2003. All rights reserved
***/

/* driver for PC9S12E128 board with LAN91C111 Ethernet.

 For use with v2.15 and up only.
*/

#include "micronet.h"

#if (Ethernet)

#include "hc12e_91c111.h"

/* modifiable #defines */
#define DO_DEBUG 0 /* set to 1 to send debug info to UART */

#define EEPROM_PRESENT 0 /* set to 1 if EEPROM is being used */

/* set the following to 1 to have the chip auto-negotiate parameters, or set
 to 0 to use the full_duplex and speed_100 settings below.
*/
#define AUTO_NEGOTIATE 0

#if (!AUTO_NEGOTIATE)
int full_duplex = 1; /* set to 1 for full duplex */
int speed_100 = 0; /* set to 1 for 100Base-T, 0 for 10Base-T */
#endif /* AUTO_NEGOTIATE */

#define HARDWARE_PAD 1 /* set to 1 to enable hardware padding */
#define NUM_ALLOC_POLLS 500 /* times to poll if allocate completed */
#define NUM_TXSUC_POLLS 500 /* times to poll for TXSUC */
32 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
CMX Project Configuration to Optimize the Stack Solution

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMX Project Configuration to Optimize the Stack Solution

When developing a web server, there are several strategies to follow with the
project to ensure that the code size of the solution does not exceed the
available resources:

• Minimize web page content

• Modify mnconfig.c to use only required network protocols

• Set buffer to appropriate values

Minimize Web Page
Content

A fully featured web page for an application uses valuable FLASH and RAM
resources. Before implementation, it is important to understand the resources
that the application will require and balance them with the web page features.
Each web page graphic, for example, can easily require 6 to 8 Kbytes of
FLASH.

Modify mnconfig.h
to Use Only
Required Network
Protocols

See the mnconfig.h section for details. If using Ethernet without DHCP or
BOOTP, these protocols should not be enabled in the stack. A complete
TCP/IP Stack consists of a large set of networking protocols that require large
memory and CPU resources. For resource-constrained TCP/IP stack
implementations, such as implementing a TCP/IP stack on an 8-/16-bit
embedded system, it is not always best to implement the complete set of
networking protocols.

Figure 18 illustrates a simplified or partial TCP/IP stack implementation. This
stack uses only the UDP protocol with TFTP and BOOTP as applications.

Figure 18. Partial Stack TCP/IP Stack Implementation

NETWORK INTERFACE

IP

UDP

BOOTPTFTP

ARP
Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 33

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The major disadvantage of TCP/IP stack implementations that are customized
to a specific application is that they are not complete TCP/IP stack
implementations. So, if changes to the TCP stack functionality are required
after product deployment, making updates would require recompiling the TCP
stack code to include the missing components and reprogramming the device
in the field.

Set Buffer to
Appropriate Values

CMX-MicroNet uses a Tx and Rx buffer to operate on data coming from the
LAN91C111. These buffers are allocated from RAM. RAM for buffers should be
balanced with user application RAM. If large buffers are not required for the
user application, set the buffer values so that the user application uses only the
necessary RAM resources. In CMX-MicroNet, the buffers are set in the
mnconfig.h file.

NOTES: With the exception of mask set errata documents, if any other Motorola
document contains information that conflicts with the information in the device
user guide, the user guide should be considered to have the most current and
correct data.

Although specific methods and tools were used to develop and debug this
demo, Motorola does not recommend or endorse any particular methodology,
tool, or vendor. These methods and tools are provided only to describe the
generic principles and features that may be required for development of a
networked device.
34 Basic Web Server Development with the CMX-MicroNet TCP/IP Stack

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Basic Web Server Development with the CMX-MicroNet TCP/IP Stack 35

For More Information On This Product,
 Go to: www.freescale.com

AN2624/D
Rev. 0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Acronyms and Terms
	Connectivity Example Applications
	Scope of the Application Note
	TCP/IP Stack Model Refresher

	MC9S12E128 and Technological Arts Ethernet Reference Design
	MC9S12E128
	Technological Arts MC9S12E128 Ethernet Reference Design
	Adapt9S12E128‰
	100-BaseT LAN Interface Card for Adapt9S12

	Combining the Two Stand-Alone Boards
	Board Versions and Settings
	Settings for the Adapt9S12E128
	Settings for the LAN Interface Card

	CMX Stack Overview
	CMX Introduction
	Motorola Low-Level LAN91C111 Ethernet Drivers
	CMX-MicroNet Installation and Project Organization
	CMX-MicroNet CodeWarrior Projects
	CMX-MicroNet TCP/IP Stack API

	Preparing for CMX-MicroNet Development
	Development Environment and Tools
	Connecting the Evaluation Board to a Development PC
	Configuring the MAC Hardware and IP Addresses
	Configuring the MAC Hardware Address
	Configuring the IP Addresses

	Configuring TCP/IP Protocol in Windows

	Debugging Networks
	Issues
	Ethernet Connection Not Established
	Network Connection Cannot be Established
	Network Connection is Established at the IP Layer with Ping, but the Devices are Not Talking

	Network Protocol Analyzer Tools

	Overview of a Web Server Developed Using CMX-MicroNet
	Web Pages
	HTML Code:

	examplee.c
	examplee.c Source Code:

	callback.c
	Excerpt from callback.c:

	mnconfig.h
	hcs12e_91C111.c
	Excerpt from hcs12e_91C11.c:

	CMX Project Configuration to Optimize the Stack Solution
	Minimize Web Page Content
	Modify mnconfig.h to Use Only Required Network Protocols
	Set Buffer to Appropriate Values

