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Decision Feedback Equalizer for 
StarCore®-Based DSPs
By Ahsan Aziz
It is well known that a maximum likelihood sequence equalizer 
(MLSE) is the optimum equalizer for a typical intersymbol 
interference (ISI) channel. Unfortunately, the complexity of the 
MLSE equalizer increases exponentially with the channel-
memory length. To reduce this computational load, many sub-
optimal solutions have been developed. Decision feedback 
equalizers (DFE) are a good sub-optimal solution. With the 
introduction of faster DSPs, such as Freescale’s StarCore® core-
based, computationally-intense algorithms can now be easily 
implemented. The DFE can be implemented as a combination 
of simple FIR filters. This application note presents a method 
for computing the DFE coefficient and a method for 
implementing the algorithm on Freescale StarCore-based DSPs.
© Freescale Semiconductor, Inc., 2000, 2007. All rights reserved.



Decision Feedback Equalization Theory
1 Decision Feedback Equalization Theory
Channel equalizers are either linear or non-linear, as shown in Figure 1. Non-linear equalization is needed when 
the channel distortion is too severe for the linear equalizer to mitigate the channel impairments. An example of a 
linear equalizer is a zero-forcing equalizer (ZFE), and, as the name implies, it forces ISI to become zero for every 
symbol decision. A zero-forcing equalizer enhances noise and results in performance degradation. On the other 
hand, a minimizes mean square error-linear equalizer (MMSE-LE) minimizes the error between the received 
symbol and the transmitted symbol without enhancing the noise. Although MMSE-LE performs better than ZFE, 
its performance is not enough for channels with severe ISI. An obvious choice for channels with severe ISI is a 
non-linear equalizer.

Figure 1.   Linear and Non-Linear Process for Equalization of Transmission Channel

It is well know that a maximum likelihood sequence equalizer (MLSE) gives optimum performance. It tests all 
possible data sequences and chooses the data with the maximum probability as the output. Generally, the Viterbi 
algorithm provides a solution to the problem with MLSEs of a finite-state, discrete-time Markov process. However, 
the computational complexity of an MLSE increases with channel spread and signal constellation size. The number 
of states of the Viterbi decoder is expressed as ML, where M = the number of symbols in the constellation, and 
L = the channel-spread length –1. Therefore, a typical 8-PSK constellation with a channel span of 5, translates to 
a 84 = 4096, state Viterbi decoder, which makes it unsuitable for cost effective implementation. In this situation, the 
obvious choice is to use sub-optimal solutions such as a DFE or a DFE followed by a Viterbi equalizer.

A decision feedback equalizer makes use of previous decisions in attempting to estimate the current symbol with a 
symbol-by-symbol detector. Any tailing ISI caused by a previous symbol is reconstructed and then subtracted. The 
DFE is inherently a non-linear device, but by assuming that all the previous decisions were correct, a linear 
analysis can be made. There are different variations of DFEs. The choice of which type of DFE to use depends on 
the allowable computational complexity and required performance. Considered in this application note is an 
MMSE-DFE (Minimum Mean Square Error) consisting of a:

• linear, anti-causal, feed forward filter, F(D)

• linear, causal, feedback filter, 1-B(D), with bo=1

• simple detector (threshold block) 

The input to the feedback filter is the decision of the previous symbol (from the decision device). Figure 2 shows 
the layout of the DFE.
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Decision Feedback Equalization Theory
Figure 2.   DFE Block Diagram

The ideal, infinite-length feed-forward filter is a noise whitening filter that results in an overall response with 
minimum phase. Choosing an infinite-length filter eliminates the delay optimization, because the overall response, 
consisting of transmit, channel, receiver, sampler, and FF filters is simply a filter with minimum phase. The first 
tap in the overall response is the main tap. Spectral factorization is a very important concept used in deriving DFE 
taps. A finite version of the infinite tap DFE is derived in [1]. The Cholesky factorization theory is a useful tool in 
deriving the finite-length equivalent to the infinite-length DFE. Terms used in DFE development are described as 
follows:

1. A filter response F(D), is canonical if it is:

— causal (fk=0, for k<0)

— monic (f0=1)

— minimum phase

2. If F(D) is canonical then F*(D-*) is:

— anti-causal

— monic

— maximum-phase

3. An n × n symmetric matrix, A, is positive definite if all diagonal elements and submatrices of A 
are positive definite. The definition for a positive definite matrix is expressed in Equation 1.

 Equation 1

4. Matrices with constant entries along a diagonal are called Toeplitz matrices. Equation 2 expresses a 
Toeplitz matrix with the number three as the constant entry along the diagonal.

 Equation 2
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Derivation of DFE Filter Coefficients
2 Derivation of DFE Filter Coefficients
The name MMSE-DFE implies that the DFE coefficients are derived under MMSE criteria. Consider the 
development, where bk and wk are the feedback and feed forward filter coefficients derived in minimum-mean-
square-sense, by making the error orthogonal to the received sequence. Equation 3 represents the received signal 
as, y(t), the channel-input data symbols as, xk, and the channel-impulse response as, h(t); where n(t) is additive-
white Gaussian noise and T is the symbol duration. 

 Equation 3

If l oversampling is used, then the sampled channel-output is expressed in Equation 4. For our implementation, l is 
set to 1, and channel memory is expressed as v in the equations.

 Equation 4

 Equation 5

By combining Nf successive l-tuples of samples yk:

 Equation 6

A more compact representation of Equation 6 is expressed in Equation 7.

 Equation 7

The equalizer output error is expressed in Equation 8.
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Derivation of DFE Filter Coefficients
 Equation 8

The w* 1 feed forward filter taps are expressed in Equation 9.

 Equation 9

For a decision delay of Δ, the corresponding MMSE is expressed in Equation 10.

 Equation 10

Equation 11 shows where b is the vector of the coefficients for the feedback FIR filter and xk – Δ −1 is the vector of 
the data symbols in the feedback path.

 Equation 11

Applying the orthogonal principle by making the error orthogonal to the output we get Equation 12.

 Equation 12

In other words, the optimum error sequence is uncorrelated with the observed data. This simplifies to Equation 13, 
which gives the relation between the DFE feedback and feed forward filter coefficients

 Equation 13

The FIR MMSE-DFE autocorrelation matrix is expressed in Equation 14.

 Equation 14

Where Rnn = N0INf  and where N0 is the noise power, and where I is an identity matrix, the input-output cross-
correlation matrix, where Sx is the signal power as expressed in Equation 15.

  Equation 15

The mean-square error is expressed in Equation 16.

 Equation 16

Simplifying Equation 16 by using the matrix inversion lemma2 results in Equation 17.
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Derivation of DFE Filter Coefficients
 Equation 17

The middle term in the right-hand side of Equation 18, is defined as a Cholesky factorization, where LDL’ is the 
Lower-Diagonal-Upper.

 Equation 18

Where L is a lower-triangular monic matrix, D is a diagonal matrix shown in Equation 19.

 Equation 19

Because L is a monic matrix, its columns constitute a basis for the (Nf+ν) dimensional vector space. It is shown in 
[1] that the optimal setting for b is column L which corresponds to the highest value of “d” in the diagonal matrix. 
When the feedback coefficients are located, the solution expressed in Equation 20, gives the optimal setting for w, 
the feed forward coefficient.

 Equation 20

The first coefficient of b is always unity, therefore a simple back substitution method can be used to solve for the 
feed forward coefficients. This process for derivation of DFE filter coefficients, eliminates the need for the matrix 
inversion. It has been seen that the:

• number of taps in the feedback filter Nb = ν,     Nf > Nb

• optimum delay Δ is between ν and Nf + ν

2. The matrix inversion lemma:
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Implementation of the Algorithm
3 Implementation of the Algorithm
This section presents an implementation of the algorithm using Matlab and the corresponding DSP implementation 
techniques. The Matlab implementation uses practical requirements of a typical communication system (such as; 
GSM), with the goal of implementing the algorithm on the SC140 core. Table 1 presents the design parameters.

The DSP software is tailored to the needs of the communication system using the DFE. Feedback and feed-forward 
filter coefficients for the DFE are obtained as follows:

1. Generate the convolution matrix H for an Nf tap feed forward filter (Nf = 8) and a complex channel-
impulse response memory length ν (typically obtained from a channel estimation block).

This combination produces a convolution matrix of size C. For our example it is 8 × 12. 

2. Compute the matrix; A = H × H + (1/SNR_lin)*I.

The (1/SNR_lin)*I creates a diagonal matrix with all the diagonal terms equal to 1/SNR_lin. (SNR_lin 
= SNR is expressed in linear scale). The H × H (size 12 × 12) matrix is a positive semi-definite matrix, 
with Nf (Nf = 8) numbers of positive eigan values, and four, zero eigan values (channel memory 
size = 4). When the term 1/SNR_lin is added to all the diagonal entries, the matrix becomes strictly 
positive-definite.

3. Compute the Cholesky factorization of Matrix A using the outer product version of the factorization. 
This algorithm computes a lower triangular G*, such that A = GG*. For all i > j, A(i,j) is over-written 
by G(i,j).

Code Listing 1 shows the Matlab code for steps 1–3.

Table 1.   Parameter Considerations for Communication Systems 

Parameter Considered Parameter Value Comments

channel-impulse response N/A Assumed available

Channel memory channel-impulse 
response length 

1

Complex channel-impulse 
response length

5 The length of the channel-impulse response for GSM 

Estimate of the SNR N/A Assumed available

Feed forward filter length 8 Chosen arbitrarily, typically enough for GSM channel. The only 
constraint is that the size of the convolution matrix must be a 
multiple of 4.

Optimum feedback taps by 
delay optimization

Minimizes ISI and maximizes SNR at the decision point

SNR 5 dB — 25 dB Typical range of operation

Symbol spaced 
equalizer

N/A Chosen over a T/l spaced case because its computational 
complexity is “l” times less. Performance does suffer.
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Implementation of the Algorithm
Code Listing 1.   Matlab Code to Compute the Cholesky Factorization

function [L,D,A,U]=outer_cholesky(A)

n=size(A,1); 
for k=1:n-1 

A(k,k)=sqrt(A(k,k)); 
A(k+1:n,k)=A(k+1:n,k)/A(k,k); 
for j=k+1:n 

i=j:n; 
A(i,j)=A(i,j)-A(i,k)*conj(A(j,k)); 

end 
end

1. Factor matrix A into LDL*, where L is a lower-triangular monic matrix and D is a diagonal matrix.

When complete, column of L, corresponding to the highest diagonal element of D, gives the optimum 
feedback filter taps (Matlab code for this is omitted here).

2. Compute the optimum feed forward taps. Because L is a monic matrix, back substitution is an easy 
way to solve for the feed forward filter taps. Code Listing 2 shows how the back substitution routine is 
implemented in Matlab.

The feedback and the feed forward taps are then used in the channel equalizer to equalize all the 
received symbols within a frame of data (the channel is assumed to be quasi-static).

Code Listing 2.   Matlab Back Substitution Routine

l=L; % Lower Triangular Monic Matrix 
chan_mem=4; 
h=channel_h; 
%%%%%%%%%%%%% BSM%%%%%%%%%%%%%% 
d_opt=d_opt*scale_factor^2; 
sc=4;% scale factor used in DSP implementation

v = zeros(1,delay); 
v(delay) = 1/sc; 
temp_v=0; 
l=l/sc; 
%LOOP 1 
for kk = delay :-1 :2; 

sum_v=0; 
for jj =  kk : delay 

temp_v = -l(jj,kk-1)*v(jj); 
sum_v = sc*sc*temp_v+ sum_v; 

end 
v(kk-1) = (sum_v)/sc; 

end 
w_opt = zeros(1,Nf); 
%LOOP 2 
for j = 1:Nf 

sum_w = 0; 
 for k = 1 : (min(chan_mem, delay-j) + 1) 

tw(k) = (v(k+j-1))*conj(h(k)); 
sum_w =  sum_w + tw(k); 

end 
disp(’writing coeff now’) 

w_opt(j) = ((1/d_opt)*sum_w*sc) 
disp(’Wrote the above coeff’) 

end
Decision Feedback Equalizer for StarCore®-Based DSPs, Rev. 2
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Implementation of the Algorithm
3.1   DFE Implementation on the SC140 Core
A decision feedback equalizer can be efficiently implemented on the SC140 core because this core has four 
arithmetic logic units (ALUs) and special instructions for computing complex numbers and performing matrix 
operations. Setting constraints on the channel-impulse response and the number of filter taps improves the 
efficiency of the DSP implementation on the SC140 core. The constraints are:

• All the entries of the channel-impulse response must be less than one.

• The length of the channel-impulse response and the length of the feed forward filter tap must be 
constrained so that the size of the convolution matrix becomes a multiple of four. The size of the 
convolution matrix is given by (Nf × Nf + ν), where ν is the channel memory length (ν = channel-
impulse length −1).

The DFE coefficients are computed through several assembly routines that are called from a main assembly calling 
routine. Figure 3 illustrates the flow of the assembly program.

Figure 3.   DSP Implementation Process Flow Chart

3.2   Main Calling Routine
The main calling routine, main_equalizer.asm, allocates all the memory and defines the globally used 
variables. This routine contains the complex-channel-impulse response and the linear-scaled value of SNR.

3.3   Forming the Matrix
Al data must be properly scaled to less than one. If the matrix, H*H+I(1/SNR) has entries less than one, the 
Cholesky factor has entries less than one throughout the computation, greatly reducing the numeric dynamic range 
of the algorithm and making it easier to implement in a fixed-point DSP. To achieve this scaling, two constraints 
are introduced:

1. The channel-impulse response, must be normalized. Better results are achieved if normalization is 
done with care, by using the minimum scale factor that just allows the highest values in the channel-
impulse response to be less than one. Normalization can be achieved by searching through the ele-
ments of the channel-impulse response generation block and normalizing with respect to the highest 
entry. This remains as a design parameter for the channel-impulse response and is not addressed here.

main_equalizer.asm

convxtm_matrix.asm matrix_mult.asm cholesky.asm 

sqrt_and_
inv_sqrt.

asm

one_over_x.
asm

Feed-Forward

Output

Input

and
Feedback Taps

1 2 3

find_max_delay.as
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Implementation of the Algorithm
2. The output of the matrix multiply block is scaled by right shifting each entry of the matrix multiply by 

ceil(log2[# of rows in (H*H) + (1/SNR)I]). This scaling ensures that all entries are less than one. For 
this specific implementation example the scale factor is 1/16.

3.3.1   Generating the Convolution Matrix
The assembly program, convxtm_matrix.asm, takes the complex channel-impulse response and generates the 
transpose of the convolution matrix (similar to using the Matlab command, transpose (H), where 
H = convxtm(channel_h,Nf)). The transpose of matrix H is shown in Equation 21.

 Equation 21

All complex numbers of the implementation are stored in the memory as indicated in Equation 22.

 Equation 22

In the DSP implementation, the channel-impulse response is assumed to be stored in memory (that is; provided by 
the channel-impulse response block). A memory space of size (Nf*(Nf + ν)*2*2) is zeroed out to store the 
convolution matrix (channel-impulse response length = 5 and feed forward length = 8), so the complex-conjugate 
transpose of the convolution matrix is size 12 × 8. Each entry has a real and an imaginary part and each element is 
stored in 16-bit memory (2 bytes). Two pointers (address registers) are used. One pointer points to “channel_h” 
and is used to read the complex channel-impulse response and the other pointer is used to point to “conv_matrix” 
and to write the data to the convolution matrix. At the start of the iteration, a pointer points to the start of the 
memory, where the convolution matrix is stored, and the matrix is filled column-wise with the channel-impulse 
response, as shown in Equation 23. Each element of the complex channel-impulse response is read one element at 
time, using move.2f (reads data from memory to register). The program uses moves.2f to write each complex data 
from the register into memory.

transpose H( )

h0 0 … 0 0 … 0

h1 h0 0 … 0 0 …

h2 h1 h0 … … … …

0 … 0 0 0 … hν

=

Re °( )
Im °( )

…
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Implementation of the Algorithm
 Equation 23

The address register pointing to the memory that contains the complex-impulse response, h0…h4, is set as modulo. 
This causes the pointer to wrap around before filling each column of the convolution matrix transpose when it 
reaches the last entry of the channel-impulse response in the array, “channel_h”. Expressions used in the assembly 
code shown in Code Listing 1 are defined as:

1. r0: #channel_h (Modulo 2)

2. r1: #conv_matrix

3. r2: holds the start location for each column in the #conv_matrix

Code Listing 3.   Assembly Code Used to Fill the Convolution Matrix

    loopstart0 
add_col 

doensh1 #CHANNEL_MEM ; loop1 repeat 
; #CHANNEL_MEM times 

    move.2f (r0)+,d0:d1 ; d0=Re[channel_h(1)]  
; and 
; d1=Im[channel_h(1)] 

loopstart1 
    move.2f (r0)+,d0:d1 moves.2f d0:d1,(r1)+n1; d0=Re[channel_h(1)] 

; d1=Im[channel_h(1]] 
; move d0 and d1 (r1) 
;  r1->r1+4*n1  

    loopend1 
    moves.2f d0:d1,(r1)+n1 
    adda n2,r2 ; r2->r2+$24  

tfra r2,r1;  r1->r2=next 
; diagonal element 

loopend0

transpose H( )

h0 0 0 0 0 0 0 0

h1 h0 0 0 0 0 0 0

h2 h1 h0 0 0 0 0 0

h3 h2 h1 h0 0 0 0 0

h4 h3 h2 h1 h0 0 0 0

0 h4 h3 h2 h1 h0 0 0

0 0 h4 h3 h2 h1 h0 0

0 0 0 h4 h3 h2 h1 h0

0 0 0 0 h4 h3 h2 h1

0 0 0 0 0 h4 h3 h2

0 0 0 0 0 0 h4 h3

0 0 0 0 0 0 0 h4

=

 numbers, that is;
 h0= Re(h0) and Im(h0)

Note: h0…h4 are each complex
Decision Feedback Equalizer for StarCore®-Based DSPs, Rev. 2
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Implementation of the Algorithm
3.3.2   Matrix Multiply Block
The matrix multiply block efficiently generates the matrix product H *× H. To simplify this implementation, given 
a matrix M, if read row-wise, the result is M and if read column-wise, the result is MT. The operation to be 
performed in this application is H *× H. Recall that HT was generated instead of H, primarily to assist in this 
matrix multiply block. If HT is read row-wise, the result is HT and if HT is read column-wise, the result is 
(HT)T = H. For example, to multiply two matrices of size [(Nf+ν) × Nf] × [Nf × (Nf+ν)], identified as Matrix1 and 
Matrix2, four address registers are used as follows:

• One address register in modulo mode, pointing to Matrix1 (moving in the direction of ptrA in Equation 24 
on page 13)

• One address register in linear mode, pointing to Matrix2 (moving in the direction of ptrB in Equation 24 on 
page 13)

• One address register in linear mode, for intermediate address calculation

• One address register in linear mode, pointing to the output matrix “mult_out”

The matrix multiply block performs the matrix multiply operation as follows:

1. Nf mac operations are performed between one row of Matrix1 and one column of Matrix2 to produce 
one row entry of the output Matrix. Two complex values are read at a time from each matrix using the 
move.4f instruction and four mac operations are performed in parallel.

2. Nf mac operations are performed between the same previous row of the Matrix1 and the next column 
of Matrix2. Note here that pointer to Matrix1 needs to be modulo to wrap around the same row. The 
pointer to Matrix2 needs to be linear to advance to the next column in Matrix2. This is shown in the 
following example to demonstrate how the first row of the output is generated.

     

where:

M1R1 = Matrix1Row1          M2C1 = Matrix2Column l

3. Advance the pointer to the next row in the Matrix1, redefine the modulo address register, and repeat 
step 2 to generate the next row of output. The final matrix is filled by rows. Before the data is written 
to memory, the output of the last mac operation is scaled by a right shift of (ceiling {log2[# of summa-
tion]}). Therefore, the amount of right shift for the implementation is four (that is, asrr #4,dn, where 
dn holds the data that is written to memory). An offset greater than the modulo size cannot be added to 
the modulo register, so another intermediate register (r4) is used and updated linearly to point to the 
next row of Matrix1. Then the value of the intermediate register is transferred to the address register 
(r0) and its corresponding base resister (r8) using the assembly instruction tfra r4,r0 and tfra r4,r8. 
The hardware loop called NN_loop performs this register update in the assembly code as shown in 
Code Listing 5. 

M1R1 a 1 1,( ) a 2 1,( ) a 3 1,( ) a 4 1,( )
a 2 1,( ) a 2 2,( ) a 2 3,( ) a 2 4,( )
a 3 1,( ) a 3 2,( ) a 3 3,( ) a 3 4,( )
a 4 1,( ) a 4 2,( ) a 4 3,( ) a 4 4,( )

b 1 1,( ) b 2 1,( ) b 3 1,( ) b 4 1,( )
b 2 1,( ) b 2 2,( ) b 2 3,( ) b 2 4,( )
b 3 1,( ) b 3 2,( ) b 3 3,( ) b 3 4,( )
b 4 1,( ) b 4 2,( ) b 4 3,( ) b 4 4,( )

mac M1R1 M2C1,( ) mac M1R1 M2C2,( ) mac M1R1 M2C3,( ) mac M1R1 M2C4,( )

° ° ° °
° ° ° °
° ° ° °

=×

M2C1 M2C2

Matrix 1 Matrix 2
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Implementation of the Algorithm
 Equation 24

Code Listing 4.   Main Kernel for Matrix Multiply Block

move.4f (r0)+,d0:d1:d2:d3move.4f (r1)+,d4:d5:d6:d7 ; load real/imag of 
; transpose(H) and H

loopstart2 
      N_loop: 

;load real/imag of  transpose(H) and H 
[ mac d0,d4,d8 mac d0,d5,d9 
mac d2,d6,d10 mac d2,d7,d11 
] 
[ mac d1,d5,d8 mac -d1,d4,d9 
mac d3,d7,d10 mac -d3,d6,d11 
] 
[ add d8,d10,d12 add d9,d11,d13 
move.4f (r0)+,d0:d1:d2:d3      move.4f (r1)+,d4:d5:d6:d7 ; load real/imag of 
] ;  transpose(H) and H 
 loopend2

Code Listing 5.   Address Register Updates for Matrix Multiply Block

move.l #mult_out,r3 
dosetup0 NN_loop dosetup1 P_loop 
dosetup2 N_loop 
move.l #conv_matrix,r0 
move.l #$000008,MCTL 
doen0 #COL_CONV_MATRIX tfra r0,r1 ;  r1->r1 and doen0 

;  loop0 repeat # of col times 
;  of convolution matrix  

tfra r0,r4 ;  r4->r0  
move.l #conv_matrix,b0 ;  b0->#conv_matrix 
move.l #ROW_CONV_MATRIX_4X,m0 ;  Set modulo size of r0 to # of  

;  rows in conv_matrix*4

       

Transpose H( )

h0 0 0 0 0 0 0 0

h1 h0 0 0 0 0 0 0

h2 h1 h0 0 0 0 0 0

h3 h2 h1 h0 0 0 0 0

h4 h3 h2 h1 h0 0 0 0

0 h4 h3 h2 h1 h0 0 0

0 0 h4 h3 h2 h1 h0 0

0 0 0 h4 h3 h2 h1 h0

0 0 0 0 h4 h3 h2 h1

0 0 0 0 0 h4 h3 h2

0 0 0 0 0 0 h4 h3

0 0 0 0 0 0 0 h4

=

ptrB

ptrA
Decision Feedback Equalizer for StarCore®-Based DSPs, Rev. 2
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Implementation of the Algorithm
NN_loop: 
loopstart0 
doen1 #COL_CONV_MATRIX ; loop1 repeat # of col in 

;  conv_matrix

P_loop:

      loopstart1 
[ doen2 #ROW_CONV_MATRIX_over2 clr d8 ;  loop2 repeat # of row/2, d8=0 
clr d9 clr d10 ;  d9=0, d10=0, d11=0 
clr d11 
] 
move.4f (r0)+,d0:d1:d2:d3 move.4f (r1)+,d4:d5:d6:d7;  load real/imag of  

;  transpose(H) and H

  loopstart2

N_loop:

· 
· 
·

  loopend2 
[ asrr #CONV_MATRIX_SCALE,d12asrr #CONV_MATRIX_SCALE,d13 ;  scale the multiply 
  suba #8,r0 ;  output  

;  back up r0 by 8 
] 
[ rnd d12,d12rnd d13,d13 ;  round entries before storing 
suba #8,r1 ;  back up r1 by 8 
] 

     

    [ moves.2f d12:d13,(r3)+ ;  write results to memory 
clr d8 clr d9 
clr d10 clr d11 
] 
loopend1

move #conv_matrix,r1 adda #ROW_CONV_MATRIX_4X,r4,r4; r1->#conv_matrix 
;  r4->r4+32             

tfra r4,r0 tfra r4,r8 ;  r0->r4 and r8 
loopend0

At the exit from this routine all the addressing modes are set back to linear. In this matrix multiply block 1/SNR 
(SNR in linear scale) is also added to all the diagonal elements of the output matrix, mult_out. This block 
completes the generation of the matrix expressed in Equation 25.

 Equation 25

3.4   Cholesky Factorization and Back Substitution
Cholesky factorization is the core routine for computing the DFE coefficient. This routine computes the Cholesky 
factorization of the matrix illustrated in Figure 3 on page 9. The input to the routine is A = H × H + (1/SNR_lin)I 
and the output of the routine is the feed forward and feedback filter taps.

H H× 1
SNR
-----------I+
Decision Feedback Equalizer for StarCore®-Based DSPs, Rev. 2
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3.4.1   Cholesky Factorization 
The first step in finding the feed-forward and the feedback taps is to compute the lower triangular Cholesky factor 
of matrix A (formed by replacing the lower triangle of the original matrix A by its Cholesky factor). This section 
describes how the Cholesky factorization is implemented on the SC140 core. Two iterations of the algorithm are 
presented. Iteration refers to the outermost loop. Iteration 1 refers to the entire operation as long as column 1 is the 
base column, BASE_COL. Similarly, Iteration 2 refers to the entire operation when column 2 is the base column, 
BASE_COL.

Iteration 1:

1. Compute sqrt(a(1,1)) and 1/sqrt(a(1,1)). 

The first step in filling up the matrix is replacing a(1,1) by sqrt(a(1,1)). Then each element of the first 
column of the marix A is multiplied by 1/sqrt(a(1,1)) and these new values replace the existing first 
column of matrix A in DSP memory. This process is shown by the lighter-shaded column which is 
called the “BASE_COL” shown in the Figure 4.

Figure 4.   First Step in Computing the Cholesky Factor

2. Perform the operation:

A(i,j)=A(i,j)-A(i,k)*conj(A(j,k))

This implies replacing the second column (starting from the diagonal dash line) with the (first 
iteration; k=1, j=2, and i=2) newly computed values:

A(2:12,2)=A(2:12,2)-A(2:12,1)*conj(A(2,1))

The darker-filled column in the matrix in Figure 4, shows the newly replaced columns. In the 
assembly code, the start location of A(2:12,2)is stored in a register named, CURRENT_COL, and 
the start location of A(2:12,1) is stored in a register named, BASE_ROW. The “BASE_ROW” 
contains the starting row location in the “BASE_COL” as the algorithm proceeds. 

A

a 1 1,( ) a 1 2,( ) a 1 3,( ) a 1 4,( ) a 1 5,( ) a 1 6,( ) a 1 7,( ) a 1 8,( ) a 1 9,( ) a 1 10,( ) a 1 11,( ) a 1 12,( )
a 2 1,( ) a 2 2,( ) a 2 3,( ) a 2 4,( ) a 2 5,( ) a 2 6,( ) a 2 7,( ) a 2 8,( ) a 2 9,( ) a 2 10,( ) a 2 11,( ) a 2 12,( )
a 3 1,( ) a 3 2,( ) a 3 3,( ) a 3 4,( ) a 3 5,( ) a 3 6,( ) a 3 7,( ) a 3 8,( ) a 3 9,( ) a 3 10,( ) a 3 11,( ) a 3 12,( )
a 4 1,( ) a 4 2,( ) a 4 3,( ) a 4 4,( ) a 4 5,( ) a 4 6,( ) a 4 7,( ) a 4 8,( ) a 4 9,( ) a 4 10,( ) a 4 11,( ) a 4 12,( )
a 5 1,( ) a 5 2,( ) a 5 3,( ) a 5 4,( ) a 5 5,( ) a 5 6,( ) a 5 7,( ) a 5 8,( ) a 5 9,( ) a 5 10,( ) a 5 1 1( ),( ) a 5 12,( )
a 6 1,( ) a 6 2,( ) a 6 3,( ) a 6 4,( ) a 6 5,( ) a 6 6,( ) a 6 7,( ) a 6 8,( ) a 6 9,( ) a 6 10,( ) a 6 11,( ) a 6 12,( )
a 7 1,( ) a 7 2,( ) a 7 3,( ) a 7 4,( ) a 7 5,( ) a 7 6,( ) a 7 7,( ) a 7 8,( ) a 7 9,( ) a 7 10,( ) a 7 11,( ) a 7 12,( )
a 8 1,( ) a 8 2,( ) a 8 3,( ) a 8 4,( ) a 8 5,( ) a 8 6,( ) a 8 7,( ) a 8 8,( ) a 8 9,( ) a 8 10,( ) a 8 11,( ) a 8 12,( )
a 9 1,( ) a 9 2,( ) a 9 3,( ) a 9 4,( ) a 9 5,( ) a 9 6,( ) a 9 7,( ) a 9 8,( ) a 9 9,( ) a 9 10,( ) a 9 11,( ) a 9 12,( )

a 10 1( ) a 10 2( ) a 10 3( ) a 10 4( ) a 10 5( ) a 10 6( ) a 10 7( ) a 10 8( ) a 10 9( ) a 10 10( ) a 10 11( ) a 10 12( )

=

a(1,1)
Decision Feedback Equalizer for StarCore®-Based DSPs, Rev. 2
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Figure 5.   Second Step in Computing the Cholesky Factor

3. Perform the same set of operations as in step 2 between the first “base column” and the third column 
and this time replace the content of the third column with the results of the computation. This is repre-
sented in the matrix in Figure 6 on page 16 by the darker-filled column. This processes continues until 
all the columns in the 12 × 12 matrix have been replaced with the results of the computation (under the 
dashed-diagonal line). Iteration 2: (In this step the second column becomes the “BASE_COL”)

4. Perform the same operation as step 2 of Iteration one between the second and third columns, continu-
ing until all the columns in the 12 × 12 matrix are replaced.

This process is shown in Figure 7. As in step 1 of Iteration 1, the first objective is to compute 
1/sqrt(a(2,2)) and sqrt(a(2,2)). The diagonal element is then replaced by sqrt(a(2,2)) and all the 
contents of the second column (the new “base column”) starting at the element below the diagonal 
line are multiplied by 1/sqrt(a(2,2)) and replaced in memory by the new results. This is the updated 
“base column” to be used in the second iteration of the algorithm. These address changes are made in 
loop_d of the assembly code. After Nf –1 iteration the whole matrix (below the dashed-diagonal line) 
is replaced by its Cholesky factor. This process requires N3 complex operations. Where N × N is the 
size of the square matrix.

Figure 6.   Third Step in Computing the Cholesky Factorization

Note: In loop_a the BASE_ROW is moved to the next column, but in loop_c, it is moved down 
by one row, without changing the column location. In the assembly code, all loops and the 
address calculation are highlighted.

A

a 1 1,( ) a 1 2,( ) a 1 3,( ) a 1 4,( ) a 1 5,( ) a 1 6,( ) a 1 7,( ) a 1 8,( ) a 1 9,( ) a 1 10,( ) a 1 11,( ) a 1 12,( )
a 2 1,( ) a 2 2,( ) a 2 3,( ) a 2 4,( ) a 2 5,( ) a 2 6,( ) a 2 7,( ) a 2 8,( ) a 2 9,( ) a 2 10,( ) a 2 11,( ) a 2 12,( )
a 3 1,( ) a 3 2,( ) a 3 3,( ) a 3 4,( ) a 3 5,( ) a 3 6,( ) a 3 7,( ) a 3 8,( ) a 3 9,( ) a 3 10,( ) a 3 11,( ) a 3 12,( )
a 4 1,( ) a 4 2,( ) a 4 3,( ) a 4 4,( ) a 4 5,( ) a 4 6,( ) a 4 7,( ) a 4 8,( ) a 4 9,( ) a 4 10,( ) a 4 11,( ) a 4 12,( )
a 5 1,( ) a 5 2,( ) a 5 3,( ) a 5 4,( ) a 5 5,( ) a 5 6,( ) a 5 7,( ) a 5 8,( ) a 5 9,( ) a 5 10,( ) a 5 1 1( ),( ) a 5 12,( )
a 6 1,( ) a 6 2,( ) a 6 3,( ) a 6 4,( ) a 6 5,( ) a 6 6,( ) a 6 7,( ) a 6 8,( ) a 6 9,( ) a 6 10,( ) a 6 11,( ) a 6 12,( )
a 7 1,( ) a 7 2,( ) a 7 3,( ) a 7 4,( ) a 7 5,( ) a 7 6,( ) a 7 7,( ) a 7 8,( ) a 7 9,( ) a 7 10,( ) a 7 11,( ) a 7 12,( )
a 8 1,( ) a 8 2,( ) a 8 3,( ) a 8 4,( ) a 8 5,( ) a 8 6,( ) a 8 7,( ) a 8 8,( ) a 8 9,( ) a 8 10,( ) a 8 11,( ) a 8 12,( )
a 9 1,( ) a 9 2,( ) a 9 3,( ) a 9 4,( ) a 9 5,( ) a 9 6,( ) a 9 7,( ) a 9 8,( ) a 9 9,( ) a 9 10,( ) a 9 11,( ) a 9 12,( )
a 10 1( ) a 10 2( ) a 10 3( ) a 10 4( ) a 10 5( ) a 10 6( ) a 10 7( ) a 10 8( ) a 10 9( ) a 10 10( ) a 10 11( ) a 10 12( )

=

A

a 1 1,( ) a 1 2,( ) a 1 3,( ) a 1 4,( ) a 1 5,( ) a 1 6,( ) a 1 7,( ) a 1 8,( ) a 1 9,( ) a 1 10,( ) a 1 11,( ) a 1 12,(
a 2 1,( ) a 2 2,( ) a 2 3,( ) a 2 4,( ) a 2 5,( ) a 2 6,( ) a 2 7,( ) a 2 8,( ) a 2 9,( ) a 2 10,( ) a 2 11,( ) a 2 12,(
a 3 1,( ) a 3 2,( ) a 3 3,( ) a 3 4,( ) a 3 5,( ) a 3 6,( ) a 3 7,( ) a 3 8,( ) a 3 9,( ) a 3 10,( ) a 3 11,( ) a 3 12,(
a 4 1,( ) a 4 2,( ) a 4 3,( ) a 4 4,( ) a 4 5,( ) a 4 6,( ) a 4 7,( ) a 4 8,( ) a 4 9,( ) a 4 10,( ) a 4 11,( ) a 4 12,(
a 5 1,( ) a 5 2,( ) a 5 3,( ) a 5 4,( ) a 5 5,( ) a 5 6,( ) a 5 7,( ) a 5 8,( ) a 5 9,( ) a 5 10,( ) a 5 1 1( ),( ) a 5 12,(
a 6 1,( ) a 6 2,( ) a 6 3,( ) a 6 4,( ) a 6 5,( ) a 6 6,( ) a 6 7,( ) a 6 8,( ) a 6 9,( ) a 6 10,( ) a 6 11,( ) a 6 12,(
a 7 1,( ) a 7 2,( ) a 7 3,( ) a 7 4,( ) a 7 5,( ) a 7 6,( ) a 7 7,( ) a 7 8,( ) a 7 9,( ) a 7 10,( ) a 7 11,( ) a 7 12,(
a 8 1,( ) a 8 2,( ) a 8 3,( ) a 8 4,( ) a 8 5,( ) a 8 6,( ) a 8 7,( ) a 8 8,( ) a 8 9,( ) a 8 10,( ) a 8 11,( ) a 8 12,(
a 9 1,( ) a 9 2,( ) a 9 3,( ) a 9 4,( ) a 9 5,( ) a 9 6,( ) a 9 7,( ) a 9 8,( ) a 9 9,( ) a 9 10,( ) a 9 11,( ) a 9 12,(

a 10 1,( ) a 10 2,( ) a 10 3,( ) a 10 4,( ) a 10 5,( ) a 10 6,( ) a 10 7,( ) a 10 8,( ) a 10 9,( ) a 10 10,( ) a 10 11,( ) a 10 12,(

=

BASE_ROW
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16 Freescale Semiconductor



Implementation of the Algorithm
Figure 7.   First Step of Iteration 2 

Code Listing 6.   Cholesky 

move.l #mult_out,r0 ; r0->#mult_out, d8=11 (counter) 
move.l #d_array,r5 ; r5->#d_array 
move.w #ROW_COL_MULT_MATRIX_SUB1,d8 ; d8=counter for outermost  

; loop loop_a 
dosetup0 loop_a doen0 #ROW_COL_MULT_MATRIX_SUB1; repeat loop_a Matrix size-1 times 
move.l #ROW_COL_MULT_MATRIX_ADD1,n1tfra r0,CURRENT_COL ; n1=Matrix size+1, 

; CURRENT_COL->r0  
tfra r0,BASE_ROWmove.l #ROW_COL_MULT_MATRIX,n0 ; BASE_RW->r0 and n0->size Matrix 
move.f (r0),d15 ;  Read element A(1,1) from memory 
loopstart ;  start for loop_a 

loop_a: ;  loop_a  k=1:Nf+nu-1

dosetup1 loop_b   
tfr d15,d0 doen1 d8 ; d0=real(diagonal),loop_b 1:Nf+nu-1   

jsr sqrt_and_invsqrt ; d0=sqrt(real(diagonal), 
clr d1 

; d4=1/sqrt(real(A(1,1))

[ move.f d0,(r5)+ moves.2f d0:d1,(r0)+n0 ; d_array(i)=sqrt(real(diagonal) 
clb d4,d0 ; r0->a(i,i)=sqrt(Re(diagonal)), 
] ; r0->r0+#ROW_COL_MULT_MATRIX($30),  

; d0=scale for 
;  from sqrt_and_invsqrt routine                    

asrr d0,d4 ; repeat loop_b for l=k+1:n 
; d4 = d4*scale 

loopstart1 
loop_b: ; start for loop (loop_b) 

;-------------------------------------------------------------------------------------; 
;This loop multiplies each entry of k th col by 1/sqrt(A(k,k)) and replaces each   ; 
;entry of the k th col by the results                                                 ; 
;---------------------------------------------------------------------------------------; 

move.2f (r0),d2:d3 ; d2=Re[(A(k+1:n,k)] 
; d3=Im[A(k+1:n,k)] 

mpy d4,d2,d2 mpy d4,d3,d3 ; d2=Re[A(k+1:n,k)/A(k,k)] 
; d3=Im[A(k+1:n,k)/A(k,k)] 

asll d0,d2 asll d0,d3 ; scale d2 and d3 by scale for 
; 1/sqrt(A(k,k)) 

moves.2f d2:d3,(r0)+n0 ; move d2 to memory (real result)

A

a 1 1,( ) a 1 2,( ) a 1 3,( ) a 1 4,( ) a 1 5,( ) a 1 6,( ) a 1 7,( ) a 1 8,( ) a 1 9,( ) a 1 10,( ) a 1 11,( ) a 1 12,( )
a 2 1,( ) a 2 2,( ) a 2 3,( ) a 2 4,( ) a 2 5,( ) a 2 6,( ) a 2 7,( ) a 2 8,( ) a 2 9,( ) a 2 10,( ) a 2 11,( ) a 2 12,( )
a 3 1,( ) a 3 2,( ) a 3 3,( ) a 3 4,( ) a 3 5,( ) a 3 6,( ) a 3 7,( ) a 3 8,( ) a 3 9,( ) a 3 10,( ) a 3 11,( ) a 3 12,( )
a 4 1,( ) a 4 2,( ) a 4 3,( ) a 4 4,( ) a 4 5,( ) a 4 6,( ) a 4 7,( ) a 4 8,( ) a 4 9,( ) a 4 10,( ) a 4 11,( ) a 4 12,( )
a 5 1,( ) a 5 2,( ) a 5 3,( ) a 5 4,( ) a 5 5,( ) a 5 6,( ) a 5 7,( ) a 5 8,( ) a 5 9,( ) a 5 10,( ) a 5 1 1( ),( ) a 5 12,( )
a 6 1,( ) a 6 2,( ) a 6 3,( ) a 6 4,( ) a 6 5,( ) a 6 6,( ) a 6 7,( ) a 6 8,( ) a 6 9,( ) a 6 10,( ) a 6 11,( ) a 6 12,( )
a 7 1,( ) a 7 2,( ) a 7 3,( ) a 7 4,( ) a 7 5,( ) a 7 6,( ) a 7 7,( ) a 7 8,( ) a 7 9,( ) a 7 10,( ) a 7 11,( ) a 7 12,( )
a 8 1,( ) a 8 2,( ) a 8 3,( ) a 8 4,( ) a 8 5,( ) a 8 6,( ) a 8 7,( ) a 8 8,( ) a 8 9,( ) a 8 10,( ) a 8 11,( ) a 8 12,( )
a 9 1,( ) a 9 2,( ) a 9 3,( ) a 9 4,( ) a 9 5,( ) a 9 6,( ) a 9 7,( ) a 9 8,( ) a 9 9,( ) a 9 10,( ) a 9 11,( ) a 9 12,( )

a 10 1,( ) a 10 2,( ) a 10 3,( ) a 10 4,( ) a 10 5,( ) a 10 6,( ) a 10 7,( ) a 10 8,( ) a 10 9,( ) a 10 10,( ) a 10 11,( ) a 10 12,( )

=

Decision Feedback Equalizer for StarCore®-Based DSPs, Rev. 2
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; move d3 to memory (imag result) 
; pointer r0->r0+$30, point to  
; next element in the column 

loopend1 ;  end loop_b 
;****End loop_b***** 
end_loop_b:

tfra BASE_ROW,r0 ; r0->prevoius diagonal address 
adda #N_1,r0,r0 dosetup1 loop_c ; r0->r0+$34 address for current 

; diagonal 
tfra r0,r1 tfra r0,CURRENT_COL ; save location of the current 

; diagonal element in CURRENT_COL 
[ suba #4,r1 tfr d8,d9 
dosetup2 loop_d ; r1->(CURRENT_COL-$4)= 
] ; previous col=BASE_COL  

; d9=d8 (counter) 
tfra r1,BASE_COL   doen1 d9 ;  BASE_COL->r1 

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

move.2f (r1),d0:d1 ; for j=k+1:n  d0=real(A(j,k)) d1=imag(A(j,k)) 
[ move.2f (r1),d4:d5           tfra r0,r4   
clr d6 clr d7 ; d4=Re([A(j:n,k)] & 

; d5=Im(A(j:n) 
] ; d6=0 and d7=0 

; r4->r0  
[ mac d0,d4,d6 mac d0,d5,d7 
] 
[ mac d1,d5,d6 mac -d1,d4,d7  

move.2f (r0),d2:d3 ; d6 & d7 = Re & Im 
]   

; [A(i,k)*conj(A(j,k))] 
[ sub d6,d2,d10 sub d7,d3,d1 
] ; d10 & d11 = Re & Im [A(i,j)] 
tfr d10,d15 
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

; base col.), loop_c for l=k+1:n 
loopstart1 

loop_c: 
doen2 d9   move.2f (r1),d0:d1 ;  for j=k+1:n  d0=real(A(j,k)) d1=imag(A(j,k)) 
[ move.2f (r1)+n0,d4:d5 tfra r0,r4   
clr d6 clr d7   

; d5=Im(A(j:n,k)) 
] ; d6=0 and d7=0 

; r4->r0        

 mac d0,d4,d6 mac d0,d5,d7  
[ mac d1,d5,d6 mac -d1,d4,d7 
move.2f (r1)+n0,d4:d5 move.2f (r0)+n0,d2:d3 ; d6 & d7 = Re & Im 
]  

; [A(i,k)*conj(A(j,k))] 
[ sub d6,d2,d10 sub d7,d3,d11  
move.2f (r0)+n0,d2:d3 clr d6 clr d7 
] ; d10 & d11 = Re & Im [A(i,j)

loopstart2 
loop_d: 

;-----------------------------------------------------------------------------------

 ; d4=real(A(j:n,k)) & 
; d5=imag(A(j:n,k)) 

rnd d10,d10               rnd d11,d11 ; d6=0 d7=0
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[ mac d0,d4,d6              mac d0,d5,d7 
moves.2f d10:d11,(r4)+n0 ; d6 & d7 = Re & Im 
]  
mac d1,d5,d6              mac -d1,d4,d7 ; [A(i,k)*conj(A(j,k))] 

; d10=Re(A(i,j)) 
; d11=Im(A(i,j)) 
; move d10,d11 in to memory                                                                                               

[ sub d6,d2,d10            sub d7,d3,d11  
move.2f (r0)+n0,d2:d3    move.2f (r1)+n0,d4:d5  
clr d6 clr d7 ;r0->r0+$30 and r1->r1+$30 
]

 

loopend2 ; end of for loop j 
mac d1,d5,d6 mac -d1,d4,d7 

; NOTE Taking -d1 
; implements the conj operation 
;*****End loop_d 
; moves.2f d10:d11,(r4)+n0 

end_loop_d:

adda #N_1,CURRENT_COL,CURRENT_COL  adda #N_1,CURRENT_COL,r0 
; CURRENT_COL=CURRENT_COL+$34 

adda #N_0,BASE_COL,r1adda #N_0,BASE_COL,BASE_COL ; k_COL=BASE_COL+$30 
; r1->BASE_COL , r0->CURRENT_COL 

loopend1 
;****End loop_c****** 
end_loop_c:

sub #1,d8  adda #N_1,BASE_ROW,r0 adda #N_1,BASE_ROW,BASE_ROW     
; r0->r0+$34,BASE_ROW-> 
; BASE_ROW+$34 
; d8=d8-1 (counter) r0->BASE_ROW 
; (r0 points to the next col. and 
; BASE_ROW contains the start  
; address for that col.  

loopend0 ; end loop_a 
;****End loop_a

3.4.2   Back Substitution Algorithm
Back substitution is part of the Cholesky factorization routine, which takes the result of the Cholesky factored 
matrix and performs a back substitution solving a set of linear equations to get the final solutions for the optimum 
feed-forward and feedback taps. This section explains how the back substitution was implemented on the SC140 
core by comparing the assembly implementation with its corresponding Matlab implementation presented in Code 
Listing 2.

LOOP 1 (Refers to LOOP 1 of Matlab code in Code Listing 2)

1. The column corresponding to the maximum value in the diagonal of Matrix A (the lower triangular 
Cholesky factor) is located. This gives the location of the optimum feedback filter coefficients, and its 
index gives the optimum decision delay. Locating the index with the maximum diagonal value in the 
Cholesky factored matrix is done by the assembly routine find_max.asm and is explained in Section 
3.4.3, Finding the Optimum Delay, on page 23.
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In the Matlab code, the monic matrix L (L_matrix) of the LDL* Cholesky factor is generated by 
multiplying each column of matrix A by the reciprocal of the diagonal entry for that column. In the 
assembly routine, a new array called L_matrix is formed in the same way but only a subset of matrix 
L is generated in the DSP implementation. To clarify this point, Figure 8 on page 20 depicts an 
example showing the elements of matrix A that are used in forming the L_matrix (here the optimum 
delay is assumed to be 8). The e direction of the arrow shows how the contents of L_matrix are 
arranged in memory. The L_matrix array is filled with elements l(8,7), l(7,6), l(8,6), l(6,5), l(7,5), 
l(8,5)…where l(i,j)=a(i,j)/a(j,j).

Figure 8.   Generating L_Matrix for Back Substitution

2. The entries of L_matrix are processed and the results are stored in an intermediate array, v (same 
notation as the Matlab code).

Note that in the Matlab code, the array labeled v is filled from the back (that is; the first element 
computed is the last entry in v). In the DSP routine, the v array is filled in the opposite way, that is, the 
first value computed is the first element in array v. Therefore, at the end of filling array v, the pointer 
points to the last element of the array v. Filling the array in this direction is helpful because the next 
loop, the loop that computes w_opt, can read the entries from array v by simply decrementing the 
address register by one each time.

Code Listing 7.   DSP Code that Generates the L_Matrix

;***************************************************************************

loopstart0 ;  forloop for moving pointer to
;  previous col. in the cholesky 
;  matrix 

loop_address_setting:
move.f (r0),d1 doen1 d8 ;  d1=diagonal elenemt, d8=counter

jsr one_over_x ;  d0=1/diagonal element, d2=scale  
;  factor

loopstart1 ;  start for loop to fill up
;  L_matrix

loop_compute:  
adda n0,r0 ;  r0->next element in the col. 
move.2f (r0),d4:d5 ;  d4=real and d5=image od the

;  elements down the col.
mpy d4,d0,d6 mpy d5,d0,d7 ;  d6=real(1/diagonal)*elements in

;  the same col.
;  d7=imag(1/diagonal)*elements in  

A

a 1 1,( ) a 1 2,( ) a 1 3,( ) a 1 4,( ) a 1 5,( ) a 1 6,( ) a 1 7,( ) a 1 8,( ) a 1 9,( ) a 1 10,( ) a 1 11,( ) a 1 12,( )
a 2 1,( ) a 2 2,( ) a 2 3,( ) a 2 4,( ) a 2 5,( ) a 2 6,( ) a 2 7,( ) a 2 8,( ) a 2 9,( ) a 2 10,( ) a 2 11,( ) a 2 12,( )
a 3 1,( ) a 3 2,( ) a 3 3,( ) a 3 4,( ) a 3 5,( ) a 3 6,( ) a 3 7,( ) a 3 8,( ) a 3 9,( ) a 3 10,( ) a 3 11,( ) a 3 12,( )
a 4 1,( ) a 4 2,( ) a 4 3,( ) a 4 4,( ) a 4 5,( ) a 4 6,( ) a 4 7,( ) a 4 8,( ) a 4 9,( ) a 4 10,( ) a 4 11,( ) a 4 12,( )
a 5 1,( ) a 5 2,( ) a 5 3,( ) a 5 4,( ) a 5 5,( ) a 5 6,( ) a 5 7,( ) a 5 8,( ) a 5 9,( ) a 5 10,( ) a 5 1 1( ),( ) a 5 12,( )
a 6 1,( ) a 6 2,( ) a 6 3,( ) a 6 4,( ) a 6 5,( ) a 6 6,( ) a 6 7,( ) a 6 8,( ) a 6 9,( ) a 6 10,( ) a 6 11,( ) a 6 12,( )
a 7 1,( ) a 7 2,( ) a 7 3,( ) a 7 4,( ) a 7 5,( ) a 7 6,( ) a 7 7,( ) a 7 8,( ) a 7 9,( ) a 7 10,( ) a 7 11,( ) a 7 12,( )
a 8 1,( ) a 8 2,( ) a 8 3,( ) a 8 4,( ) a 8 5,( ) a 8 6,( ) a 8 7,( ) a 8 8,( ) a 8 9,( ) a 8 10,( ) a 8 11,( ) a 8 12,( )
a 9 1,( ) a 9 2,( ) a 9 3,( ) a 9 4,( ) a 9 5,( ) a 9 6,( ) a 9 7,( ) a 9 8,( ) a 9 9,( ) a 9 10,( ) a 9 11,( ) a 9 12,( )

a 10 1,( ) a 10 2,( ) a 10 3,( ) a 10 4,( ) a 10 5,( ) a 10 6,( ) a 10 7,( ) a 10 8,( ) a 10 9,( ) a 10 10,( ) a 10 11,( ) a 10 12,( )

=
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;  the same col.
asrr d2,d6 asrr d2,d7 ;  scale d6 and d7 by the devide

;  routine scale factor

asrr #2,d6 asrr #2,d7 ;  scale the entry of L_matrix  
;  before saving to memory to
;  prevent overflow

moves.2f d6:d7,(r1)+ ;  write results to L_matrix
loopend1 ;  end forloop L_matrix

;End loop_compute

add #1,d8 suba n1,BASE_ROW ;  d8=d8+1,  BASE_ROW=BASE_ROW-$34
tfra BASE_ROW,r0;  r0->BASE_ROW
loopend0 ;  end forloop for moving pointer 

;  to previous col. in the cholesky 
;  matrix

;****End loop_address_setting

LOOP 2

1. In this part of the algorithm, data is read from two different locations in memory:

— “v” (starting at the location of the last entry in v)

— “channel_h” (starting at the first element of the impulse response)

The v matrix is arranged in Matlab as shown in Equation 26 (for our example with, an optimum delay = 8 
and chan_mem = 4).

 Equation 26

During the execution of LOOP 2 (following the same notation as the Matlab routine) data is read out as 
shown in Table 2. Note that the number of elements read in each iteration depends on the 
min(chan_mem, jj)+1, where jj is decremented by one from a value of Nf every iteration.

However, in the DSP code this process is done slightly different. Data is arranged in the v array in the 
DSP as shown in Equation 27. As the algorithm progresses, data is read out every iteration as shown 
in Table 3.

 Equation 27

Table 2.   Read Out of Loop 2 Data 

Iteration

First v(8) v(7) v(6) v(5) v(4)

Second v(7) v(6) v(5) v(4) v(3)

Third v(6) v(5) v(4) v(3) v(2)

Fourth v(5) v(4) v(3) v(2) v(1)

Fifth v(4) v(3) v(2) v(1)

Sixth v(3) v(2) v(1)

Seventh v(2) v(1)

Eighth v(1)

V v 8( ) v 7( ) v 6( ) v 5( ) v 4( ) v 3( ) v 2( ) v 1( )=

V 0 0 0 0 v 1( ) v 2( ) v 3( ) v 4( ) v 5( ) v 6( ) v 7( ) v 8( )=
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Stuffing four zeros (eight complex elements for this particular example) makes the code easier to write 
and more optimal, because this eliminates the need for address manipulation that is required to 
implement min(chan_mem,jj)+1.

Code Listing 1.   Back Substitution
      move.l #L_matrix,r1 ;  r1->L_matrix

move.l #v,r2 ;  r2->v
move.f #.25,d0 clr d1 ;  d0=0.25 first entry in v, d1=0
moves.2f d0:d1,(r2) ;  move first complex result to v(1) 
move.l n3,d0 move.w #$1,d12 ;  n3=max_delay_index-1  

;  (d12 = counter for jj_loop)

dosetup0 kk_loop tfra r2,BASE_ROW ;  r2->BASE_ROW
doen0 d0 dosetup1 jj_loop

;  kk_loop for j=1:max_delay_index-1

loopstart0

kk_loop
doen1 d12

[ move.2f (r1)+,d0:d1move.2f (r2)-,d2:d3
        clr d4 clr d5

]
      loopstart1

jj_loop

cc
mac -d0,d2,d4 mac -d0,d3,d5
mac d1,d3,d4 mac -d1,d2,d5
asll #4,d4 asll #4,d5
move.2f (r1)+,d0:d1 move.2f (r2)-,d2:d3

;  remove the scaling by 4 
;  (Note: all the elements were 
;  scaled by 1/4, therefore the 
;  product was scaled by 1/16)

add d4,d6,d6 add d5,d7,d7
clr d4 clr d5
loopend1

[ asrr #2,d6           asrr #2,d7

Table 3.   Read Out of Loop 2 Data in the SC140

Iteration

First v(8) v(7) v(6) v(4) v(5)

Second v(7) v(6) v(5) v(4) v(3)

Third v(6) v(5) v(4) v(3) v(2)

Forth v(5) v(4) v(3) v(2) v(1)

Fifth v(4) v(3) v(2) v(1) 0

Sixth v(3) v(2) v(1) 0 0

Seventh v(2) v(1) 0 0 0

Eight v(1) 0 0 0 0
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        adda #$4,BASE_ROW    adda #$4,BASE_ROW,r2  
] ;  move pointer to next address to

;  fill up the new value of v
ox2

add #1,d12 suba #4,r1 moves.2f d6:d7,(r2)    clr d6  clr d7
loopend0

;------------------------------------------------------------------------------
;NOTE: at the end of kk_loop "start_location" contains the location for 
;the last element in v      ;---------------------------------------------------------

---------------------

3.4.3   Finding the Optimum Delay
This section describes the assembly routine to find the optimum delay and explains how to implement it on the 
SC140 core. A special SC140 instruction, max2, helps implement this type of array search very efficiently. The 
max2 instruction finds the maximum number between two sets of 16-bit numbers. However, this assembly routine 
requires the size of the input array to be in multiples of eight. In our example there are 12 diagonal values. To 
resolve this problem, d_array, which contains all the diagonal values, is first zero padded to make the total size of 
the array equal to 16. The max2 instruction then finds the maximum number between two sets of 16-bit numbers. 
This routine works as follows:

The vector d_array has Nf + ν elements indexed: 0,1,2,...,(Nf + ν + 4) –1. The vector is divided into 
eight sets:

set #0 contains elements with index - 0,8,16,...

set #1 contains elements with index - 1,9,17,...

set #2 contains elements with index - 2,10,18,...

o

o

o

set #7 contains elements with index - 7,15,23,...

In the first loop, Loop_1, the local maximum value in each of the eight sets is found. 

The index of each local maximum is not known at the end of the kernel.

Maximum of set #0 is at d4.l, maximum of set #1 is at d4.h,

Maximum of set #2 is at d5.l, maximum of set #3 is at d5.h,

Maximum of set #4 is at d6.l, maximum of set #5 is at d6.h,

Maximum of set #6 is at d7.l, maximum of set #7 is at d7.h.

In the second loop, Loop_2, the global maximum is found from the local maxima. The set containing this global 
maxima is then located. This set has only (Nf+ν+4)/8 elements). Next, we scan the set and locate the index of the 
element that is equal to the global maximum. This is accomplished in the third loop, Loop_3.
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Code Listing 8.   Locating the Optimum Delay (find_max.asm)

section .data local
       global Ftemp 
N equ 16
      align 4
DUMMY  dc  0,0,0,0,0,0
      
Ftemp ds 3*4

endsec

        section .text local
global find_max_delay

find_max_delay type func

       move.w #d_array,r0           move.w #<2,n3 
       move.w #d_array+8,r1         doensh3 #<(N/8)-2
       move.w #Ftemp,r2          move.2l (r0)+n3,d4:d5            
       move.w #Ftemp+4,r3        move.2l (r1)+n3,d6:d7             
       move.2l (r0)+n3,d0:d1     move.2l (r1)+n3,d2:d3
Loop1_1:

     loopstart3
     [ max2 d0,d4                    max2 d1,d5
       max2 d2,d6                    max2 d3,d7
       move.2l (r0)+n3,d0:d1         move.2l (r1)+n3,d2:d3
     ]
     loopend3

     [ max2 d0,d4                    max2 d1,d5
       max2 d2,d6                    max2 d3,d7
       move.w #d_array,d2               doensh3 #<5
     ]

      ; The starting address for the subset with maximum is saved in d3
     [
     sxt.w d4,d4 asrw d4,d0 tfr d2,d3 tfr d2,d1
     move.l d5,(r2)   move.2l d6:d7,(r3)
     ]

     [
     cmpgt d4,d0  max d0,d4  add #<2,d2 
     move.w (r2)+,d0   move.w #<8,n3
     ]

loop_2:
     loopstart3
     [ cmpgt d4,d0       max d0,d4
       tfrt d2,d3 add #<2,d2 move.w (r2)+,d0
     ]
     loopend3

     [ cmpgt d4,d0       max d0,d4
       tfrt d2,d3 add #<2,d2  move.w #<16,d5
     ]

     [
     ift tfr d2,d3 add d2,d5,d4 
     iff add d3,d5,d4 
     ]  
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®

     sub d1,d3,d7 move.l d3,r1 move.l d4,r0
     asr d7,d7    doensh3 #<(N/8)-2

     ; The best index is saved in d7l
     tfr d7,d6 move.w (r1),d4  move.w (r0)+n3,d0 

     ; The maximum value is saved in d4l
     cmpgt d4,d0 add #<8,d6 max d0,d4 move.w (r0)+n3,d0
       
Loop_3:
       loopstart3

      [ cmpgt d4,d0   max d0,d4
       tfrt d6,d7     add #<8,d6      move.w (r0)+n3,d0
      ]

        loopend3
       tfrt d6,d7

move.l d7,n3 ;load the delay index in to n3
       rts
       endsec

3.4.4   Square Root and Inverse Square Root
The square root and inverse square root routine computes the sqrt(x) and 1/sqrt(x). First, 1/sqrt(x) is computed; 
multiplying it by x gives sqrt(x). The 1/sqrt(x) is computed by and iterative quadratic method as shown in 
Equation 28.

 Equation 28

After a few iterations, the results of the iterative quadratic method attain a good approximation of 1/sqrt(V). For the 
purpose of implementation, Equation 28 is rewritten as 0.5Ui+1 = 0.25*Ui - V*Ui^3. Intermediate results must be 
scaled to ensure that the data going into the 16-bit multiplier yields good precession. The first step is to scale the 
input x by 2x (where x must be even) so that it is a number less than one (but as close to one as possible). To obtain 
a scale factor (2x) for the input, x is made even by an and operation of the form and #$0000fffe,d2,d2. This 
instruction ensures that d2 is even. The usefulness of this becomes obvious in the following example, which 
expresses the relationship between the scale factor and the square root of the scale factor. 

To compute the square root of x, we assume that a scale factor after a dynamic scaling on x (using the instruction 
clb ) results in 16 (24 or left shift by 4). After the left shift operation, the number is x × 24. Our goal is to compute 
sqrt(x), which is sqrt(x × 24)/sqrt(24). This is exactly equal to shifting sqrt(x × 24) right by two. Our example 
shows that the square root of the scale factor can be obtained simply by dividing the shifts by two (that is; asrr #1, 
d2). The input is scaled by SC, and the result is expressed in Equation 29.

 Equation 29

To find 1/sqrt(V), we must multiply the result 1/sqrt(V*SC) by sqrt(SC). As scale factors SC are always chosen to 
be even shifts of two, the procedure in the example can be used to compute sqrt(SC).

Ui+1 = Ui/2*(3 – V*Ui*Ui)

Ui = 1/sqrt(V*SC) = 1/[sqrt(V)*sqrt(SC)]
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Code Listing 9.   Routine for Computing Square Root Inverse Square Root

section .text local 

global   sqrt_and_invsqrt

sqrt_and_invsqrt type func

push d1 push d8 ;  save d1 and d8

clb d0,d2 tfr d0,d4 ;  scale d0=v=input, scale factor

;  in d4

;  save v in d4 

and #$0000fffe,d2,d2 ;  this makes the scale factor an 

;  even integer. e.g. if d2=3 the and

;  operation outputs d2=4 

asrr d2,d0 ;  scale d0=input by d2

asrr #2,d0 move.f #.75,d1 ;  asrr #2 implememts factor 0.25,

;  d1=0.75=Ui  

tfr d1,d3 dosetup3 loop1 doen3 #6 ;  d3=0.75=scale factor for Ui, 

;  loop1 for 1=1:6

loopstart3 ;  start loop1

loop1

clb d1,d10 ;  d10 = scale factor for Ui

asrr d10,d1 ;  scale d1 by d10

     [ mpy d1,d1,d5mpy d1,d0,d6 ;  d5=Ui^2, d6=0.25*Ui*V, d7=0.75*Ui, 

mpy d3,d1,d7 add d10,d10,d11 ;  d11=2*scale for Ui

     ]

mpy d5,d6,d6 inc d10 ;  d6=0.25*Ui^3*V, d10 = scale for Ui+1

asll d11,d6 ;  scale back d6 by d11

sub d6,d7,d1 ;  d1=0.75*Ui-0.25*V*Ui^3

asll d10,d1 tfr d1,d9 ;  scale back d1 by d10, d9=d1

loopend3 ;  end loop1

asrr #1,d2 mpy d9,d4,d0 ;  d2=sqrt(scale factor),

;  d0=1/sqrt(V)*V =sqrt(V)

asrr d2,d1 asll d10,d0

asrr d2,d0 tfr d1,d4

pop d8 pop d1

rts

endsec

4 Results 
Figure 1– Figure 11 shows the Matlab and corresponding DSP results for the feedback and feed-forward filter taps 
for an arbitrary channel-impulse response. Channel impulse response = [(-0.5251 -0.4487i) (0.0953 –0.2673i) 
(–0.2129 -0.0084i) (–0.3605 -0.2713i) (0.1874 -0.3487i)] and SNR = 20 dB.
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Results
Figure 1.   Real Part of the DFE Feed Forward Tap

Figure 9.   Imaginary Part of the DFE Feed Forward Tap
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Results
Figure 10.   Real Part of the DFE Feedback Tap

Figure 11.   Imaginary Part of the DFE Feedback Tap

These results show that the DSP and the Matlab results agree within the allowable error range of 16-bit arithmetic. 
The X axis represents the filter taps and the Y axis represents the magnitude of each filter tap. Note that the DSP 
feedback filter taps must be conjugated before they are used. The frequency response of the feedback and the feed- 
forward filter obtained from the DSP implementation closely match the theoretical Matlab result. Storing the 
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intermediate result (that is, the element for which 1/sqrt() is computed) in a data register instead of memory greatly 
improves the accuracy of the algorithm because storing small fractional numbers to memory (16-bit) increases the 
error. Keeping the result in a data register holds better precision as the data register uses 32-bit representation.

Because of error introduced in fixed-point calculations, the optimum delay may be more than one in some 
situations, but they always appear next to each other. Picking any one of the columns of the L_matrix (feedback 
coefficient and the corresponding feed forward coefficient) that has the same optimum delay (that lies between 
Nf –1 to Nf –ν) gives good results in terms of BER of the overall communication system. Also, there are 
communication systems where it is safe to assume the optimal decision delay is Nf –1. In such systems the 
computation can be further reduced by removing the routine that locates the optimal delay. The entire process of 
computing the DFE coefficient from the channel-impulse response required 7680 cycles for a DFE (8,4). In this 
implementation example, the channel-impulse response length is assumed to be of length five.

5 Conclusion
Decision feedback equalizers are very useful as sub-optimal solutions when the constellation size is large and the 
channel memory is long, which is true in many current and next-generation communications systems. That 
decision feedback equalizers are implemented as FIR filters makes them especially attractive for processors such as 
the SC140 core, which have multiple ALUs, because multi-sampling can be used to implement FIR filters very 
efficiently. The DSP implementation of Cholesky-based DFEs is a way to find the DFE coefficients using the 
concept of spectral factorization to eliminate the need for computationally expensive complex-matrix inversion. 
Also, simulation results show that optimizing the decision delay improves the decision point SNR, which in turn 
improves BER performance of the communication receiver. Our implementation optimizes the decision delay. The 
results obtained from the real-time SC140 implementation are accurate within the precession of the 16-bit 
computation.
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