

This application note describes the steps for designing an interface device that provides access
to I/O and memory peripherals using the local-bus slave features of the MPC107 PCI
Bridge/Memory controllers. The MPC107 and local-bus slave

 (

LBS) feature may be used with
any Freescale microprocessor that implements the PowerPC™ 60x bus protocol. These
devices include the following products:

• MPC603, MPC603e, MPC603ev

• MPC740, MPC745, MPC750, MPC755

• MPC7400, MPC7410

• MPC7441, MPC7445, MPC7450, MPC7451, MPC7455

This application note covers the following topics:

Topic Page

Section 1, “Introduction” 2

Section 2, “Conventions” 2

Section 3, “Local-Bus Slave Architecture” 3

Section 4, “Interactions between the LBS and Memory” 5

Section 5, “AEIOU Architecture” 6

Section 6, “Address Bus Interface” 7

Section 7, “Address Decoder” 8

Section 8, “Data Bus Interface” 19

Section 9, “Cycle Completion” 28

Section 10, “Byte Write Enable” 29

Section 11, “Internal Peripherals” 33

Section 12, “The AEIOU” 37

Section 13, “Conclusion” 45

Section 14, “Revision History” 45

To see published errata or updates to this document, refer to the web site at
http://www.freescale.com/semiconductors.

Application Note

AN1846/D
Rev. 1.2, 9/2003

Designing an MPC107
Local-Bus Slave Interface

Gary Milliorn
CPD Applications

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
freescalecolorjpeg

Designing an MPC107 Local-Bus Slave Interface

Introduction Introduction

1 Introduction

The MPC107 (and the MPC106) provide support for an interface called the

local-bus slave

 (LBS) that
allows devices to be attached more easily to the high-speed 60x bus. The LBS can respond to read and write
cycles while relying upon the MPC107 to provide the majority of the interface controls. An LBS device
monitors a subset of the 60x bus and asserts TA when the read or write operation is completed. A device that
provides local-bus slave I/O and memory access is outlined in the remaining sections of this application
note, and is called the Applications Engineering Input/Output Unit (AEIOU). For the rest of this document,
the MPC107 refers to either the MPC107 or the MPC106; the information contained herein applies to both
devices unless otherwise stated.

NOTE

The VHDL in this application note was compiled and verified using a
software test bench, but was not verified in hardware. The AEIOU can
contain significant errors, and the 60x bus test bench might not have
revealed latent errors in the VHDL code that is presented in this document.
Treat this application note as general design information for creating an
LBS I/O controller, rather than as a drop-in component.

NOTE

All the software contained in this application note is copyrighted 2003 by
Freescale, and Freescale customers may use it freely as long as the
copyright notice remains present in each literal or derived module or
source file. The code may be freely modified to suit customized
applications.

2 Conventions

This application note refers to both hardware and software signals (pins and nets) and components (physical
and logical). Table 1 shows typographic conventions that are used.

Table 1. Typographic Conventions

Class Example Typography Description

Hardware TT(0:4) Uppercase, no overbar Hardware pin that is asserted when active high

TA Uppercase, with overbar Hardware pin that is asserted when active low

Software done Lowercase Internal signal that is asserted when logic ‘1’ or ‘H’ (high)

go_L Lowercase, ’_L’
appended

Internal signal that is asserted when logic ‘0’ or ‘L’ (low)

TT0 Uppercase Internal signal that is asserted when logic ‘1’ or ‘H’ and drives
an external hardware pin of the same name

TA_L Uppercase, ’_L’
appended

Internal signal that is asserted when logic ‘0’ or ‘L’ and drives an
external hardware pin of the same name

BYTEW

 Uppercase, bold Name of a VHDL entity or module

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Local-Bus Slave Architecture

In VHDL, a signal may be high when set to the value 'H' or '1'; the former is a 'weak' high-level that other
signals can override, while the latter is a ‘strong’ high level that cannot be overridden (see Table 2).

3 Local-Bus Slave Architecture

The MPC107 provides 60x-bus arbitration for itself, a 60x-bus microprocessor, and optionally an additional
processor. Typically, the MPC107 claims all non-snoop cycles for itself and forwards them to the PCI bus,
the memory controller, or asserts an error signal. The MPC107 provides an input signal called LBCLAIM
so that another 60x-bus device can claim a bus cycle. If asserted during the address phase of a bus
transaction, the MPC107 handles the termination of the address phase, but not the data phase of the
transaction. Instead, the MPC107 disconnects from the data phase and waits until the LBS device completes
that portion.

The LBS is called a

slave

 because it cannot initiate bus transactions on its own (bus mastery); instead, it
relies upon an external master (principally the processor) to initiate a transaction specifically to it. This
reliance can limit the architectures in which an LBS is suitable, but for many applications bus mastering
may not be a concern. Furthermore, using software to initiate bus transactions (for example, using
interrupts/exceptions to trigger bus operations from program- or device-initiated loads and stores to which
the LBS can respond) is still possible. Figure 1. shows the general architecture of an LBS system.

Figure 1. Local Bus Slave Architecture.

The LBS communicates with the 60x bus using the same signals as any other device (A(0:31), D(0:63), TS,
TT, TSIZ, AACK, and so on), though not all are required for the subset an LBS may use. Two additional
side-band signals between the LBS and the MPC107 (LBCLAIM and DBGLB) can be used respectively to
claim and be granted a cycle.

Table 2. IEEE 1164 Logic Conventions

Example Description Usage

‘0’ Logic low, forcing Internally and on outputs that are not shared (for example, LBCLAIM)

‘1’ Logic high, forcing Internally and on outputs that are not shared

‘L’ Logic low, weak On outputs that are shared (for example, TA)

‘H’ Logic high, weak On outputs that are shared

DBGLB

LBCLAIM

D(0:63)

Embedded
Processor

Target-Specific
Interface

MPC107MPC7400 AEIOU

60x Bus

TARGET
I/O

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Local-Bus Slave Architecture Local-Bus Slave Architecture

Figure 2 shows the general sequence of a LBS cycle.

Figure 2. LBS Transaction.

One complication in the design of an LBS controller is that the 60x-bus implements separate address and
data tenures. The address bus is not tightly coupled to the data bus, and while data is being transferred, the
address of that data may no longer be present on the address bus. Figure 2 shows an example where in cycle
#6 TS is asserted for a new transaction while data is still transferred. The effect of split tenures is that the
LBS controller usually requires the capability of storing the current address, size, and transfer type
information of the current cycle. Because the MPC107 does not allow the 60x-bus protocol to pipeline more
than one address tenure, the information storage requirements are modest.

NOTE

Although the 60x-bus does allow the control of the address and data tenure to overlap (by delaying the
assertion of AACK), the MPC107 does not have this facility and cannot be used with an LBS interface.
When the LBS claims a cycle, the MPC107 asserts AACK as soon as possible, either immediately (if the
system bus is idle) or after the preceding data tenure is completed (if pipelining has already occurred (shown
in cycle #8 of Figure 2). Consequently, LBS controllers must accept the possibility of pipelined addresses.
This problem has two solutions:

• Implement address tenure data storage. In this solution, as each
local-bus cycle is claimed, all needed information is stored in a
register. This approach is relatively easy and inexpensive (in an ASIC
or FPGA), and the 60x bus interface guarantees that no more than one
address cycle is pending.

• The second solution is more simple and less expensive, but moves the
complexity from the hardware into the software. The system and
software expect that any cycle after an LBS I/O cycle may be missed
(unclaimable). To guarantee that LBS-targeted cycles are not
performed back-to-back, software must either allow other instructions
to run or perform a write to a non-LBS address. A read cycle is not
effective because the PowerPC instruction-set architecture allows
loads to bypass stores under certain circumstances. A 'sync' instruction
is not effective either because it causes the MPC107 to flush its internal
buffers, which could trigger a PCI-to-local-bus snoop transaction. A
dummy write to an unused memory location usually suffices.

By ‘107

By LBS

By LBS

By LBS (read)
By ‘107 (write)

51 10

By ‘107

data

LBCLAIM

60x Bus Clock

TS

AACK

A[0-31]

TA

DBG0 / DBGLB

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Interactions between the LBS and Memory

3.1 Coherency

To keep the LBS design simple for I/O-controller purposes, the design assumes that accesses to the
LBS-controlled addresses are coherent. The system does not expect the LBS to snoop the system bus to
supply cached data to external devices, nor that it invalidates internally cached data. This assumption does
not imply that LBS-controlled devices must be non-cacheable. (This restriction on the 60x-bus would imply
that burst transfers are not allowed.) It means only that if the LBS-controlled devices are cacheable, the I/O
software must enforce coherency if required. In this design, the AEIOU includes a pipelined burst SRAM
controller that requires the ability to accept burst transfers.

The

MPC106 PCI Bridge/Memory Controller User’s Manual

 (see the section about 60x local bus slave
support) and the

MPC107 PCI Bridge/Memory Controller

User’s Manual

 present a complex state machine
for tracking the 60x-bus state. The state machine logic is necessary only when the LBS must maintain cache
coherency with external bus masters, or with the external L2 cache controller for the MPC106. For the
purposes of this application note, coherency may be disregarded. (I/O controllers are often required to be
non-cacheable), obviating the need for coherency.)

4 Interactions between the LBS and Memory

Some interactions occur between the LBS interface of the MPC107 and the memory controller. When the
MPC107 is programmed to trap on illegal memory operations known as

memory select errors

 (see Chapter
13 of the

MPC107 PCI Bridge/Memory Controller User’s Manual

 for details on error handling), the
memory controller interferes with LBS operations. To avoid this interference, observe the following
restrictions:

• If memory select errors were enabled by setting the ErrEnR1[MSE] bit, the address chosen for the
LBS must be in the range 0-1 Gbytes (0-0x3FFF_FFFF). Furthermore, the selected range for LBS
accesses must be stored into an unused memory boundary register (one of eight bit fields in the
MSAR/EMSAR/MEAR/EMEAR registers). This restriction implies that the memory cannot use
eight physical banks of memory because one must be reserved for the LBS.

• If memory select errors are not enabled, the address chosen for the LBS may be anywhere from 0-4
Gbytes (0-0xFFFF_FFFF), including the ROM and extended ROM areas, except for the PCI
configuration address and the interrupt acknowledge address.

When the above restrictions are followed, the MPC107 operates properly with an activated memory
controller. The MPC106 cannot place an LBS anywhere above 2Gbytes.

The second issue is that the MPC106 (and only the MPC106) multiplexes the SDRAM clock enable signal
(CKE) with the DBGLB signal. Therefore, SDRAM-based systems that use local bus slaves must provide
a data bus grant signal to the local bus slave by an alternate means. In a uniprocessor system, the DBG0
signal can be used for DBGLB. In a multiprocessor system, DBG[0–3] can be logically ANDed to create a
suitable DBGLB signal. Note that using these methods to provide a data bus grant signal for the local bus
slave is incompatible with the external L2 interface of the MPC106. Therefore, SDRAM-based systems that
use local bus slaves cannot use an external L2 cache. Note that this restriction refers only to the external
60x-bus-based MPC106-controlled L2 cache, and not the MPC75x/MPC74xx “backside” L2/L3 cache
interfaces.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

AEIOU Architecture AEIOU Architecture

An example of a two-processor connection is shown in Figure 3.

Figure 3. DBGLB Recovery Logic for the MPC106.

Note that DBGLB recovery logic requires that the LBS interface does not drive the data bus unless it has
also decoded an LBS transaction. This logic is implemented in the design of the AEIOU. The MPC107 does
not require this logic.

5 AEIOU Architecture

This section defines the architecture of the AEIOU. Most real-world applications of the AEIOU should be
highly customized for the target system; but here a common set of features is provided as follows:

• Address tenure storage (hardware overlap control)

• General purpose I/O port (8 inputs, 8 outputs)

• 8-bit register file (7 read/write registers, 1 read-only ID register)

• External pipelined burst SRAM interface (chip-select, write strobe and output enable)

The AEIOU implementation for this application note provides an interface to these I/O devices to
demonstrate the flexibility of the LBS I/O interface.

MPC755

DBG

MPC755

DBG

MPC106

DBG0

DBG1

DBGLB

AEIOU

DBGLB

ULVC08

‘To SDRAM as CKE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Address Bus Interface

Figure 4 shows the general block diagram with connections to the 60x bus on the left and the connections
to the I/O devices on the right.

Figure 4. AEIOU Architecture.

6 Address Bus Interface

The AEIOU design has a module that captures address transactions into a holding register. The Address
Interface Module (AIM) captures all important address tenure information (whether or not it is an LBS
cycle) at every assertion of the TS signal.

Give careful attention to the performance of AIM, because delays there affect the rest of the system.
Consider how the MPC107 implements transactions when an LBS is enabled. On each transaction, the
MPC107 waits a programmable number of bus clocks (that PICR1[CF_LBCLAIM_DELAY] sets) in case
an LBS claims the cycle .If there is no LBCLAIM, the cycle proceeds to the PCI or memory bus. If the
CF_LBCLAIM_DELAY setting must be set to '3' to accommodate a slow LBS address decoder so that every
cycle that the system runs incurs a three-clock delay. For example, an SDRAM memory system configured
to run at 3-1-1-1 would slow down to 6-1-1-1. It is advantageous to eliminate dead clock cycles from the
address phase decoder of the LBS.

A(0:31)
TT(1)

OE

D(0:7)

L
B

S
 I/

O
 B

u
s

TSIZ(0:2)

CLK

done_L

doit_L

SRAM_CS
ADSC
BAA

GPI(0:7)

GPO(0:7)

BWE(0:7)

IOA(12:31)

AIM

Module

BYTEW

Write
Enables

GPIO

General
I/O

DBSM

Data bus
State
Machine

Address
Interface

Latched Data

TS

TBST

AACK

LBCLAIM

TA

RST

60
x

bu
s

DBGLB

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Address Decoder Address Decoder

The general block diagram of the AIM is shown in Figure 5.

Figure 5. Address Bus Interface of AEIOU.

The address information module (AIM) is composed of several modules that decode addresses and capture
the information from the address phase of the bus cycle into a holding register. The CLAIM module
generates the required LBCLAIM signal on any LBS-targeted transactions. Note that CLAIM is the only
module to which careful placement and timing controls must be observed for the reasons stated above (fast
overall system speed). In parallel with CLAIM, the ALATCH module latches the preserved address and
address attributes of the cycle.

All other modules in the AEIOU can proceed at a somewhat more leisurely pace, because the bus
transactions, when claimed, can proceed at the natural speed of the I/O device without greatly interfering
with the performance of other bus transactions, including those to SDRAM or flash. The ALSM module
tracks the state of the latch for use by the remainder of the AEIOU. Furthermore, ALSM communicates with
the data interface module DBSM (see Section 8, “Data Bus Interface” on page 19) to begin and end LBS
transactions.

7 Address Decoder

The first step of any LBS interface is to decode the address and transfer attributes (for example, A[0:n],
TSIZ, TBST (optionally), TT and so on) presented at the start of each 60x bus transaction when the bus
master asserts transfer start (TS). The address decoder must assert LBCLAIM when any transaction hits
within the space claimed by the LBS. To keep the decoder simple, the AEIOU claims all transactions within
the range 0x2000_0000 to 0x3FFF_FFFF. This address is compatible with the address maps that MPC107
provides, and also meets the restrictions for SDRAM with an LBS, (see Section 4, “Interactions between
the LBS and Memory” on page 5).

The LBS address space occupies 512 Mbytes of the 4-Gbyte available space. Although this size can be quite
reduced if space is required for other purposes, many systems do not need the additional logic to decode a

A(0:n)

TT(1)

TSIZ(0:2)

TBST

LBCLAIM

CLK

DONE

DOIT

AIM

Address
Claimer

CLAIM

27 bits of
Storage

ALSM

Address
State
Machine

CLAIMED

TS

AACK

RST
ALATCH

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Address Decoder

smaller space completely. Because many systems do not use all the SDRAM memory banks, and because
only one LBS is allowed per system, it is not necessary to decode much more than the upper three or four
bits of the address.

The VHDL entity that implements the CLAIM module follows:

--

-- VHDL Entity AEIOU.CLAIM.symbol

--

-- Copyright 1999, by

-- All rights reserved. No warranty, expressed or implied, is made as to
the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY CLAIM IS

 PORT(

 a : IN std_logic_vector (0 to 2) ;

 aack_L : IN std_logic ;

 clk : IN std_logic ;

 rst_L : IN std_logic ;

 ts_L : IN std_logic ;

 lbclaim_L : OUT std_logic

);

END CLAIM ;

--

ARCHITECTURE BEHAVIOR OF CLAIM is

SIGNAL lbc_L : std_logic; -- local LBClaim*

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Address Decoder Address Decoder

BEGIN

monitor : PROCESS(clk, rst_L)

BEGIN

IF (rst_L = '0') THEN

lbc_L <= '1';

ELSIF (clk = '1' AND clk'event) THEN

IF ((ts_L = '0' AND a = "001")-- TS* and address is LBS

or (lbc_L = '0' AND aack_L = 'H')) THEN-- claimed, but not AACK’d

lbc_L <= '0';

ELSE-- not LBS cycle

lbc_L <= '1';

END IF;

END IF;

END PROCESS;

lbclaim_L <= lbc_L; -- copy BUFFER to OUT

END BEHAVIOR;

--

CLAIM asserts LBCLAIM on any LBS-related transaction and keeps LBCLAIM asserted until the
MPC107 asserts AACK, acknowledging that the LBCLAIM has been accepted. It is not required for the
AEIOU to hold LBCLAIM asserted until AACK; however, it must be asserted at least during the interval
programmed into the MPC107s PICR1[CF_L2_HITDELAY] register. Alternatives include:

• Assert LBCLAIM for only the one clock cycle in which the MPC107 samples it.

• Assert

LBCLAIM

 for three clock cycles (the maximum sample width).

In general, preserving LBCLAIM until AACK is asserted is usually the easiest method.

7.1 Address Latch State Machine (ALSM)

The second portion of the address interface is the implementation of a simple state machine, ALSM, that
tracks the presence of a pending transaction in the holding register. ALSM provides a signal to the DBSM

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Address Decoder

on any claimed transaction and waits for an acknowledgement from the DBSM. Figure 6 shows the state
machine diagram.

Figure 6. Address FIFO State Machine.

The state encoding (below the state name) directly controls the (active-low) latch enables for the ALATCH
module. When idling in state EMPTY (0), the latch enables are asserted and data flows into the latch. When
the state machine transitions to state TAKE1 (1), the latch is closed and the address information is captured.
The state machine uses the following two input signals:

• claimed_L is asserted for one clock when the address phase ends. It is similar to AACK but is
asserted only on LBS cycles.

• done_L is asserted for one clock when a previous LBS I/O cycle ends.

Thereafter, transitions from TAKE1 to EMPTY re-open all the latches. This extremely simple state machine
can directly control the latches. The following VHDL entity implements the ALSM state machine:

--
-- VHDL Entity AEIOU.ALSM.symbol

--

-- Copyright 1999,

-- All rights reserved. No warranty, expressed or implied, is made as to
the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

EMPTY
0

TAKE1

1

done_L claimed_L

!claimed_L

!done_L

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Address Decoder Address Decoder

ENTITY ALSM IS

 PORT(

 claimed_l : IN std_logic ;

 clk : IN std_logic ;

 done_L : IN std_logic ;

 rst_L : IN std_logic ;

 doit_L : OUT std_logic ;

 lg : OUT std_logic

);

END ALSM ;

--

ARCHITECTURE BEHAVIOR OF ALSM IS

 -- Architecture Declarations

 CONSTANT EMPTY : std_logic := '0'; -- Don't change!

 CONSTANT TAKE1 : std_logic := '1'; -- "

 SUBTYPE state_type IS std_logic;

 -- State vector declaration

 ATTRIBUTE state_vector : string;

 ATTRIBUTE state_vector OF BEHAVIOR : architecture IS "fsm" ;

 -- Declare current and next state signals

 SIGNAL fsm, next_fsm : state_type ;

BEGIN

clocked : PROCESS (clk, rst_L)

BEGIN

IF (rst_L = '0') THEN

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Address Decoder

 fsm <= EMPTY;-- Reset Values

ELSIF (clk'EVENT AND clk = '1') THEN

fsm <= next_fsm;-- Default Assignment To Internals

END IF;

END PROCESS clocked;

nextstate : PROCESS (claimed_l, done_L, fsm)

BEGIN

 CASE fsm IS

 WHEN EMPTY =>

 IF ((claimed_L = '0')) THEN

 next_fsm <= TAKE1;

 ELSE

 next_fsm <= EMPTY;

 END IF;

 WHEN TAKE1 =>

 IF ((done_L = '0')) THEN

 next_fsm <= EMPTY;

 ELSE

 next_fsm <= TAKE1;

 END IF;

 WHEN OTHERS =>

 next_fsm <= EMPTY;

 END CASE;

 END PROCESS nextstate;

-- Concurrent Statements

-- Now the outputs. This is a simple Moore machine, and the outputs are

-- only state-dependant. In fact, the actual output is the encoded state,
which

-- is even simpler.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Address Decoder Address Decoder

 lg <= fsm; -- Copy SIGNALs (buffers) to OUTs

-- Drive 'doit_L' active when there is anything in the FIFO, which is true
when

-- we are not idling.

 doit_L <= '0' WHEN (fsm /= EMPTY) ELSE '1';

END BEHAVIOR;

7.2 Address Latch

The next portion of the address interface is the address latch (ALATCH). Only one level of buffering is
needed for the single-overlap 60x bus. The number of bits needed to store a complete address transaction
(TBST, TSIZ, TT, and A[0:n]) determines the width of ALATCH. To save silicon space, only the required
address transaction signals are saved (see Table 3).

TT(0:4) may be reduced to TT1 because address-only cycles are forbidden to the LBS I/O space; the
remaining cycles reduce to simple single-beat or burst reads or writes, which TT(1) can detect.
Consequently, the latch needs to preserve only 27 bits of information. (Note that this reduced amount is
application-dependent).

The following VHDL entity describes the latch:

--

-- VHDL Entity AEIOU.ALATCH.symbol

--

-- Copyright 1999,

Table 3. Address Transaction Signals Preserved

Signal
Defined

Bits
Preserved

Bits
Notes

TBST 1 1 Can be reduced to none if only non-cacheable/non-burst I/O will be
controlled.

TSIZ(0:2) 3 3 All bits are needed.

TT(0:4) 5 1 TT(1) is sufficient to show read/write selection for valid LBS
transactions.

A(0:31) 32 22 Upper 3 not needed; low 3 required for byte lane selection; the rest are
determined by the size of the I/O needed. This example is sufficient to
support a 256Kx64 SRAM space plus bits to select SRAM or I/O.

Total 40 27

Total needed for storage

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Address Decoder

-- All rights reserved. No warranty, expressed or implied, is made as to
the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

ENTITY ALATCH IS

 PORT(

 a_low : IN std_logic_vector (10 TO 31) ;

 lg : IN std_logic ;

 rst_L : IN std_logic ;

 tbst_L : IN std_logic ;

 tsiz : IN std_logic_vector (0 to 2) ;

 tt1 : IN std_logic ;

 ff_a_low : OUT std_logic_vector (10 to 31) ;

 ff_tbst_L : OUT std_logic ;

 ff_tsiz : OUT std_logic_vector (0 to 2) ;

 ff_tt1 : OUT std_logic

);

END ALATCH ;

--

ARCHITECTURE BEHAVIOR OF ALATCH is

BEGIN

L0: PROCESS(lg, rst_L, tbst_L, tsiz, tt1, a_low)

BEGIN

IF (rst_L = '0') THEN

ff_tbst_L <= '0';

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Address Decoder Address Decoder

ff_tsiz <= (OTHERS => '0');

ff_tt1 <= '0';

ff_a_low <= (OTHERS => '0');

ELSIF (lg = '0') THEN

ff_tbst_L <= tbst_L;

ff_tsiz <= tsiz;

ff_tt1 <= tt1;

ff_a_low <= a_low;

END IF;

END PROCESS;

END BEHAVIOR;

--

7.3 Address Interface Module
The AIM module integrates the other address decoding modules. Because the ALSM module can directly
control the address latch module (ALATCH), the AIM module connects only the other modules and creates
the CLAIMED signal. The CLAIMED signal must be asserted for one clock cycle for all LBS I/O cycles
claimed; neither AACK nor LBCLAIM alone is sufficient. The logical NOR of the two signals (asserted
when both are low) ensures that only claimed LBS cycles trigger the state machine.

The following VHDL entity describes the top-level address interface:

--

-- VHDL Entity AEIOU.AIM.symbol

--

-- Copyright 1999,

-- All rights reserved. No warranty, expressed or implied, is made as to
the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Address Decoder

ARCHITECTURE BEHAVIOR OF AIM IS

-- Internal signal declarations

SIGNAL claimed_L : std_logic;

SIGNAL iclaim_L : std_logic;

SIGNAL lg : std_logic;

-- Component Declarations

COMPONENT CLAIM

 PORT (

 a : IN std_logic_vector (0 to 2);

 aack_L : IN std_logic ;

 clk : IN std_logic ;

 rst_L : IN std_logic ;

 ts_L : IN std_logic ;

 lbclaim_L : OUT std_logic

);

END COMPONENT;

COMPONENT ALATCH

 PORT (

 a_low : IN std_logic_vector (10 TO 31);

 lg : IN std_logic ;

 rst_L : IN std_logic ;

 tbst_L : IN std_logic ;

 tsiz : IN std_logic_vector (0 to 2);

 tt1 : IN std_logic ;

 ff_a_low : OUT std_logic_vector (10 to 31);

 ff_tbst_L : OUT std_logic ;

 ff_tsiz : OUT std_logic_vector (0 to 2);

 ff_tt1 : OUT std_logic

);

END COMPONENT;

COMPONENT ALSM

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Address Decoder Address Decoder

 PORT (

 claimed_l : IN std_logic ;

 clk : IN std_logic ;

 done_L : IN std_logic ;

 rst_L : IN std_logic ;

 doit_L : OUT std_logic ;

 lg : OUT std_logic

);

END COMPONENT;

BEGIN

-- Drive claimed_L low for one clock cycle.

claimed_L <= '0' WHEN (iclaim_L = '0' AND aack_L = 'L') ELSE '1';

-- Copy from buffer to output.

lbclaim_L <= iclaim_L;

-- Instance port mappings.

 CLz : CLAIM

 PORT MAP (

 a => a_high,

 aack_L => aack_L,

 clk => clk,

 rst_L => rst_L,

 ts_L => ts_L,

 lbclaim_L => iclaim_L

);

 Foz : ALATCH

 PORT MAP (

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Data Bus Interface

 a_low => a_low,

 lg => lg,

 rst_L => rst_L,

 tbst_L => tbst_L,

 tsiz => tsiz,

 tt1 => tt1,

 ff_a_low => ff_a_low,

 ff_tbst_L => ff_tbst_L,

 ff_tsiz => ff_tsiz,

 ff_tt1 => ff_tt1

);

 SMz : ALSM

 PORT MAP (

 claimed_l => claimed_L,

 clk => clk,

 done_L => done_L,

 rst_L => rst_L,

 doit_L => doit_L,

 lg => lg

);

END BEHAVIOR;

8 Data Bus Interface
After the address phase has been handled, the AEIOU waits for doit_L (from the AIM module) to be
signaled and DBGLB (from the MPC107) to be asserted, indicating that the AEIOU has control of the data
bus. Because DBGLB acts as a gating factor in deciding whether to proceed, the MPC107 must not have
parked the bus. PICR1[DPARK] must be cleared.

Depending on the complexity of the addressed device, the LBS interface might immediately assert TA for
one cycle and do nothing more. This interface would be appropriate and minimal for devices such as
high-speed register files, SRAMs, or FIFOs that can capture single-beat cycles at the full bus rate (usually
15 ns or faster).

Delaying the assertion of TA for a fixed number of cycles to allow for access to slower devices, such as
Flash, ROM, and device I/O (UARTs and so forth) is another frequently required action. These devices are
usually accessed with single-beat transfers, but have access times on the order of 90-200 ns. For such
devices, the data bus interface logic must wait a specified number of cycles after DBGLB before asserting
TA but is otherwise similar.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Data Bus Interface Data Bus Interface

To support the highest transfer rates, the data bus interface can respond to burst transfers and supply data in
beats of four. The AEIOU supports all of these types of cycles to demonstrate the flexibility of the LBS
interface. Table 4 lists the characteristics of the I/O devices.

To implement all of these cycles, a simple state machine asserts TA at the proper interval: after one clock
for register accesses, after five clocks for I/O accesses, and in a 3-1-1-1 sequence for bursts to SRAM.
Negating TA temporarily can insert wait states in burst transfers, but it is not necessary at the speed of the
local bus interface. Because the AEIOU is not programmable (though it could be, but that is another
application note), wait states must be added to support slower devices when the bus speed is increased to
83, 100, or 133 MHz.

Table 4. AEIOU I/O Device Characteristics

Interface
Type

Address Range Read/Write Size
Bus

Clocks
Speed

(66 MHz)
Cache/Burs
t Support?

Register 0x2X00_0000 ... 0x2x3F_FFFF 1, 2, 4, 8 bytes 1 15 ns No

I/O 0x2x40_0000 ... 0x2x7F_FFFF 1, 2, 4, 8 bytes 6 90 ns No

SRAM 0x2x80_0000 ... 0x2xFF_FFFF 1, 2, 4, 8 bytes 3-1-1-1 90 ns Yes

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Data Bus Interface

Figure 7 shows the state machine for the DBSM.

Figure 7. DBSM State Machine Flow.

The main flow of the DBSM state machine is the transition from IDLE to SREAD, SWRITE, or SB1. The
first two transitions are for the pipelined-burst SRAM interface (single-beat or burst) and comprise the
right-hand side of the diagram. TA is asserted on each state from BEAT1 to BEAT4.

The left-hand side of the state machine shows accesses to non-burst, slow I/O. TA is asserted only at LAST,
with the preceding states SB1 to SB5 simply marking time. A counter that would add flexibility (particularly
at variable bus speeds) can replace these delay states, but it requires the addition of more complex timer
logic.

The state BUSGRANT tracks when DBGLB has asserted. As the MPC107 PCI Bridge/Memory Controller
User’s Manual notes, the local bus slave needs to sample DBGLB continuously. If the local bus slave claims
the transaction (by asserting LBCLAIM) and DBGLB was asserted for that address tenure, the local bus
slave can drive TA. If DBGLB was not asserted when the local bus slave claims a transaction, it must wait
for the MPC107 to grant the data bus to the processor before the local bus slave can drive TA. This way, the
MPC107 can maintain the pipeline and the previous data tenure is allowed to complete before the MPC107

SB1
0001

SB2
0010

0011

SB4
0100

SB5
0101

LAST
1111

SREAD
1000

BEAT2
1011

BEAT3
1100

BEAT4
1101

DESEL

BEAT1
1010

DBGLB!doit_L

BUSGRANT
1110

0111

SWRITE
0110

BEAT0
1001

IDLE
0000

& !DBGLB

!go_L &
reg_L

doit_L &
reg_L

SB3

!go_L &
slow_L

doit_L &
slow_L

!go_L &
sram_L &
ttrw_L

!go_L &
sram_L &
!ttrw_Ldoit_L &

sram_L &
!ttrw_L

doit_L &
sram_L &
ttrw_L

!tbst_L

tbst_L

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Data Bus Interface Data Bus Interface

relinquishes the data bus to the processor and the local bus slave. The DBSM handles this event, switching
to the BUSGRANT state when DBGLB is asserted.

The following VHDL describes the implementation of the DBSM:

--

-- VHDL Entity AEIOU.DBSM.symbol

--

-- Copyright 1999

-- All rights reserved. No warranty, expressed or implied, is made as to
the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

ARCHITECTURE BEHAVIOR OF DBSM IS

-- Architecture Declarations

CONSTANT IDLE : std_logic_vector(0 to 3) := "0000";

CONSTANT SB1 : std_logic_vector(0 to 3) := "0001";

CONSTANT SB2 : std_logic_vector(0 to 3) := "0010";

CONSTANT SB3 : std_logic_vector(0 to 3) := "0011";

CONSTANT SB4 : std_logic_vector(0 to 3) := "0100";

CONSTANT SB5 : std_logic_vector(0 to 3) := "0101";

CONSTANT DESEL : std_logic_vector(0 to 3) := "0111";

CONSTANT SWRITE : std_logic_vector(0 to 3) := "0110";

CONSTANT SREAD : std_logic_vector(0 to 3) := "1000";

CONSTANT BEAT0 : std_logic_vector(0 to 3) := "1001";

CONSTANT BEAT1 : std_logic_vector(0 to 3) := "1010";

CONSTANT BEAT2 : std_logic_vector(0 to 3) := "1011";

CONSTANT BEAT3 : std_logic_vector(0 to 3) := "1100";

CONSTANT BEAT4 : std_logic_vector(0 to 3) := "1101";

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Data Bus Interface

CONSTANT BUSGRANT : std_logic_vector(0 to 3) := "1110";

CONSTANT LAST : std_logic_vector(0 to 3) := "1111";

SIGNAL slow_L : std_logic;-- Set if address to slow I/O

SIGNAL reg_L : std_logic;-- Set if address to register I/O

SIGNAL sram_L : std_logic;-- Set if address may be to SRAM I/O

SIGNAL go_L : std_logic;-- Triggered on LBS bus grant.

SUBTYPE state_type IS std_logic_vector(0 to 3);

-- State vector declaration

ATTRIBUTE state_vector : string;

ATTRIBUTE state_vector OF BEHAVIOR : architecture IS "dbsm" ;

-- Declare current and next state signals

SIGNAL dbsm, next_dbsm : state_type ;

BEGIN

clocked : PROCESS(clk, rst_L)

BEGIN

IF (rst_L = '0') THEN

 dbsm <= IDLE;-- Reset Values

 ELSIF (clk'EVENT AND clk = '1') THEN

 dbsm <= next_dbsm;-- Default Assignment To Internals

END IF;

END PROCESS clocked;

nextstate : PROCESS (dbglb_L, dbsm, doit_L, go_L, reg_L, slow_L,
sram_L,

 tbst_L, tt_rw_L)

BEGIN

CASE dbsm IS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Data Bus Interface Data Bus Interface

WHEN IDLE =>

IF ((sram_L = '0' AND go_L = '0' AND tt_rw_L = '1')) THEN

next_dbsm <= SREAD;

ELSIF ((sram_L = '0' AND go_L = '0' AND tt_rw_L = '0')) THEN

next_dbsm <= SWRITE;

ELSIF ((reg_L = '0' AND go_L = '0')) THEN

next_dbsm <= LAST;

ELSIF ((slow_L = '0' AND go_L = '0')) THEN

next_dbsm <= SB1;

ELSIF ((dbglb_L = '0')) THEN

next_dbsm <= BUSGRANT;

ELSE

next_dbsm <= IDLE;

END IF;

WHEN BEAT0 =>

next_dbsm <= BEAT1;

WHEN BEAT1 =>

IF ((tbst_L = '1')) THEN

next_dbsm <= DESEL;

ELSE

next_dbsm <= BEAT2;

END IF;

WHEN BEAT2 =>

next_dbsm <= BEAT3;

WHEN BEAT3 =>

next_dbsm <= BEAT4;

WHEN SREAD =>

next_dbsm <= BEAT0;

WHEN BEAT4 =>

next_dbsm <= IDLE;

WHEN LAST =>

next_dbsm <= IDLE;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Data Bus Interface

WHEN SB1 =>

next_dbsm <= SB2;

WHEN SB2 =>

next_dbsm <= SB3;

WHEN SB3 =>

next_dbsm <= SB4;

WHEN SB4 =>

next_dbsm <= SB5;

WHEN SB5 =>

next_dbsm <= LAST;

WHEN BUSGRANT =>

IF ((sram_L = '0' AND doit_L = '0' AND tt_rw_L = '1')) THEN

next_dbsm <= SREAD;

ELSIF ((sram_L = '0' AND doit_L = '0' AND tt_rw_L = '0')) THEN

next_dbsm <= SWRITE;

ELSIF ((reg_L = '0' AND doit_L = '0')) THEN

next_dbsm <= LAST;

ELSIF ((slow_L = '0' AND doit_L = '0')) THEN

next_dbsm <= SB1;

ELSIF ((doit_L = '1' AND dbglb_L = '1')) THEN

next_dbsm <= IDLE;

ELSE

next_dbsm <= BUSGRANT;

END IF;

WHEN DESEL =>

next_dbsm <= IDLE;

WHEN SWRITE =>

IF ((tbst_L = '1')) THEN

next_dbsm <= DESEL;

ELSE

next_dbsm <= BEAT2;

END IF;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Data Bus Interface Data Bus Interface

WHEN OTHERS =>

next_dbsm <= IDLE;

END CASE;

END PROCESS nextstate;

-- Concurrent Statements

-- Do chip selects here, since they're so easy.

reg_L <= '0'WHEN(a(10) = '0' AND a(11) = '0')ELSE '1';

slow_L <= '0'WHEN(a(10) = '0' AND a(11) = '1')ELSE '1';

sram_L <= '0'WHEN(a(10) = '1')ELSE '1';

-- Implement the state machine transition triggers.

 go_L <= '0'WHEN (dbglb_L = '0' AND doit_L = '0')ELSE '1';

--

-- Now the outputs of the state machine.

-- Assert TA* (the most important LBS signal).

 ta_L <= 'L'WHEN (dbsm = SWRITE

ORdbsm = BEAT1ORdbsm = BEAT2

OR dbsm = BEAT3ORdbsm = BEAT4

ORdbsm = LAST

)

ELSE 'H';

-- Drive 'done_L' when a cycle completes.

 done_L <= '0'WHEN (dbsm = LAST OR dbsm = BEAT4

ORdbsm = DESEL

)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Data Bus Interface

ELSE '1';

-- Drive we_L low while running any kind of write cycle. Drive oe_L low

-- when running any sort of read cycle.

 we_L <= '0'WHEN (tt_rw_L = '0'

ANDdbsm /= IDLE AND dbsm /= BUSGRANT)

ELSE '1';

 oe_L <= '0'WHEN (tt_rw_L = '1'

AND dbsm /= IDLE AND dbsm /= BUSGRANT)

ELSE '1';

-- Drive chip selects with copies of internal logic.

 iocs_L <= slow_LWHEN (dbsm = SB1 OR dbsm = SB2 OR dbsm = SB3

ORdbsm = SB4 OR dbsm = SB5 OR dbsm = LAST)

ELSE '1';

 fcs_L <= reg_LWHEN (dbsm = LAST)

ELSE '1' ;

 scs_L <= sram_LWHEN (dbsm = SREAD OR dbsm = SWRITE)

ELSE '1';

-- Special signals for burst-mode accesses.

 adsc_L <= '0'WHEN (dbsm = SREAD OR dbsm = SWRITE OR dbsm = DESEL)
ELSE '1';

 baa_L <= '0'WHEN (dbsm = BEAT0 OR dbsm = BEAT1 OR dbsm = BEAT2

ORdbsm = BEAT3 OR dbsm = BEAT4)

ELSE '1';

END BEHAVIOR;

--

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Cycle Completion Cycle Completion

9 Cycle Completion
Another design issue for the AEIOU is that the TA signal must be actively negated at the end of the LBS
data cycle (see Figure 8 to see this event at the end of the assertion of TA by the AEIOU).

There are two methods to achieve this requirement. The first is to use a half-phase (or inverted) clock signal
to delay the negation of TA by one half-clock. While the AEIOU drives the TA signal high (internally) on
completion of the transaction, the TA output enable is removed half-way into the cycle, allowing the signal
to tri-state in preparation for the next device to assert TA (which may or may not be the AEIOU). This
extension method is shown in the last three waveforms of Figure 8.

Figure 8. LBS Transaction with TA Enabling.

--

-- VHDL Entity AEIOU.TADRIVE

--

-- Copyright 1999,

-- All rights reserved. No warranty, expressed or implied, is made as to
the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

Bus Clock

TS

AACK

A[0–31]

LBCLAIM

DBGLB

D[0-63]

TA

Internal TA and TA

Enable

Delayed TA Enable

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Byte Write Enable

ARCHITECTURE behavior OF TADRIVE IS

SIGNAL ta_delay_L : std_logic;

SIGNAL ta_oen_L : std_logic;

BEGIN

PROCESS (clk, rst_L)

BEGIN

IF (rst_L = '0') THEN

ta_delay_L <= 'H';

ELSIF (falling_edge(clk)) THEN

ta_delay_L <= ta_internal_L;

END IF;

END PROCESS;

ta_oen_L <= '0' WHEN (ta_delay_L = 'L' OR ta_internal_L = 'L')

ELSE '1';

ta_L <= ta_internal_LWHEN (ta_oen_L = '0')

ELSE 'Z';

END behavior;

--

An alternate method is to use a strong pull-up in conjunction with accurate models of all devices that attach
to the TA signal. If the pull-up is strong enough to achieve the timing requirements for TA precharge without
violating the output current ratings of all the devices, the pull-up may be used instead. The only way to
compute the proper pull-up value is to use SPICE modeling; no single specific resistance value guarantees
that the system will work perfectly.

10 Byte Write Enable
An additional set of signals is needed for those devices that span multiple byte lanes (for example, DH(0-7),
DH(8-15)) on the system bus. In most cases, Freescale does not recommend requiring that a 64-bit-wide
SRAM, for example, could be written to in 64-bit quantities only while disallowing byte writes or smaller
sizes. For such devices, it is necessary to use a write enable that is conditional on the size and address of the
transfer, instead of a global write (WE) as provided by the DBSM logic.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Byte Write Enable Byte Write Enable

As the 60x bus ignores any data placed on bytes lanes that are not needed on a read operation, the BYTEW
logic is specific to write operations only. Note that this entire logic block is not needed if all the devices
attached to the AEIOU are 8 bits, or if they are only written to in their natural sizes (defined as the number
of data bits connected to the 60x bus). For example, a 16-bit FIFO does not need the BYTEW module,
because FIFOs are read or written only as 16-bit quantities. For those devices that require byte lane enables,
the logic shown in the following VHDL entity is needed.

--

-- VHDL Entity AEIOU.BYTEW

--

-- Copyright 1999

-- All rights reserved. No warranty, expressed or implied, is made as to
the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

ARCHITECTURE BEHAVIOR OF BYTEW is

BEGIN

 -- Copy 'we_L' to 'bwe_L(x)' as indicated by transfer size and address.

 bwe_L(0) <= we_L WHEN ((tsiz = "001" and a = "000") -- byte

 or (tsiz = "010" and a = "000") -- half-word

 or (tsiz = "100" and a = "000") -- word

 or (tsiz = "000" and a = "000") -- double-word

 or (tsiz = "011" and a = "000") -- three-byte

 or (tbst_L = '0') -- burst

)

 ELSE '1';

 bwe_L(1) <= we_L WHEN ((tsiz = "001" and a = "001") -- byte

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Byte Write Enable

 or (tsiz = "010" and a = "000") -- half-word

 or (tsiz = "100" and a = "000") -- word

 or (tsiz = "000" and a = "000") -- double-word

 or (tsiz = "011" and a = "000") -- three-byte

 or (tsiz = "011" and a = "001") -- three-byte

 or (tbst_L = '0') -- burst

)

 ELSE '1';

 bwe_L(2) <= we_L WHEN ((tsiz = "001" and a = "010") -- byte

 or (tsiz = "010" and a = "010") -- half-word

 or (tsiz = "100" and a = "000") -- word

 or (tsiz = "000" and a = "000") -- double-word

 or (tsiz = "011" and a = "000") -- three-byte

 or (tsiz = "011" and a = "001") -- three-byte

 or (tbst_L = '0') -- burst

)

 ELSE '1';

 bwe_L(3) <= we_L WHEN ((tsiz = "001" and a = "011") -- byte

 or (tsiz = "010" and a = "010") -- half-word

 or (tsiz = "100" and a = "000") -- word

 or (tsiz = "000" and a = "000") -- double-word

 or (tsiz = "011" and a = "001") -- three-byte

 or (tbst_L = '0') -- burst

)

 ELSE '1';

 bwe_L(4) <= we_L WHEN ((tsiz = "001" and a = "100") -- byte

 or (tsiz = "010" and a = "100") -- half-word

 or (tsiz = "100" and a = "100") -- word

 or (tsiz = "000" and a = "000") -- double-word

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Byte Write Enable Byte Write Enable

 or (tsiz = "011" and a = "100") -- three-byte

 or (tbst_L = '0') -- burst

)

 ELSE '1';

 bwe_L(5) <= we_L WHEN ((tsiz = "001" and a = "101") -- byte

 or (tsiz = "010" and a = "100") -- half-word

 or (tsiz = "100" and a = "100") -- word

 or (tsiz = "000" and a = "000") -- double-word

 or (tsiz = "011" and a = "100") -- three-byte

 or (tsiz = "011" and a = "101") -- three-byte

 or (tbst_L = '0') -- burst

)

 ELSE '1';

 bwe_L(6) <= we_L WHEN ((tsiz = "001" and a = "110") -- byte

 or (tsiz = "010" and a = "110") -- half-word

 or (tsiz = "100" and a = "100") -- word

 or (tsiz = "000" and a = "000") -- double-word

 or (tsiz = "011" and a = "100") -- three-byte

 or (tsiz = "011" and a = "101") -- three-byte

 or (tbst_L = '0') -- burst

)

 ELSE '1';

 bwe_L(7) <= we_L WHEN ((tsiz = "001" and a = "111") -- byte

 or (tsiz = "010" and a = "110") -- half-word

 or (tsiz = "100" and a = "100") -- word

 or (tsiz = "000" and a = "000") -- double-word

 or (tsiz = "011" and a = "101") -- three-byte

 or (tbst_L = '0') -- burst

)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Internal Peripherals

 ELSE '1';

END BEHAVIOR;

--

The values for the VHDL code for the BYTEW module are directly derived from the data alignment tables
in the processor user’s manuals, for example, Table 8-3 and Table 8-4 of the MPC750 RISC Microprocessor
User’s Manual. Burst transfers enable all byte lanes, while all other transfers enable only the byte lanes
based on the address and transfer size.

The three-byte cycles arise from the requirement that 60x bus masters handle misaligned transfers by
breaking them into two separate cycles. See the MPC750 RISC Microprocessor User’s Manual for details
on this process. These cycles do not occur unless the program generates misaligned transfers; therefore, the
three-byte logic elements could conceivably be eliminated. Note, though, that because I/O spaces are
usually designated as non-cacheable, the L1 cache of the processor does not filter these misaligned accesses.
If they occur, the program fails. However, Freescale recommends retaining the three-byte cases if possible.

11 Internal Peripherals
To show the capabilities of the non-burst capabilities, an additional module is included to implement some
general-purpose I/O and a register file. The GPIO module contains an 8-bit output port, an 8-bit input port,
and eight 8-bit registers. The register file implements an array of 8 locations (all upper-byte aligned); the
first location is read-only and contains a version ID; the remainder locations are read/write.

Although a UART or other complex function might be more desirable, it is beyond the scope of this
application note to examine the internals of a UART. Implementing such devices is often device- or
vendor-specific.

-- VHDL Entity AEIOU.GPIO

--

-- Copyright 1999,

-- All rights reserved. No warranty, expressed or implied, is made as to
the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

ARCHITECTURE BEHAVIOR OF GPIO is

SIGNAL gout_L: std_logic; -- GPIO Write strobe.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Internal Peripherals Internal Peripherals

SIGNAL rout_L: std_logic; -- Reg Write strobe.

TYPE regfileIS ARRAY (0 to 7)

OF std_logic_vector(0 to 7); -- Regfile array.

SIGNAL regs : regfile;

BEGIN

--

-- GPIO Ports:

-- The output latch stores data whenever writes occur to GPIO space at
address

-- 'xx_xxx0'. We do not check the transfer size, so any size write can be
used

-- (though byte is more typical).

gout_L <= '0' WHEN (we_L = '0' AND gpiocs_L = '0' AND a = "000")

ELSE '1';

gr: PROCESS (gout_L, rst_L, d_in)

BEGIN

IF (rst_L = '0') THEN

gpio_out <= (OTHERS => '1');

ELSIF (gout_L = '0') THEN

gpio_out <= d_in;

END IF;

END PROCESS;

-- Input devices are handled a little differently; we have to share the
data bus

-- at the top level, so here we provide the data as-is and supply an

-- output enable strobe that does most of the work.

gpiorden_L <= '0' WHEN (oe_L = '0' AND gpiocs_L = '0' AND a = "000")

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Internal Peripherals

ELSE '1';

gpiord_out <= gpio_in;

--

-- Register File

rout_L <= '0' WHEN (we_L = '0' AND regcs_L = '0' AND a /= "000")

ELSE '1';

rw: PROCESS (rout_L, rst_L, d_in, a, regs)

BEGIN

IF (rst_L = '0') THEN

regs(0) <= CONV_STD_LOGIC_VECTOR(16#41#, 8); -- Register 0 : "A".

regs(1) <= CONV_STD_LOGIC_VECTOR(16#45#, 8); -- Register 1 : "E".

regs(2) <= CONV_STD_LOGIC_VECTOR(16#49#, 8); -- Register 2 : "I".

regs(3) <= CONV_STD_LOGIC_VECTOR(16#4F#, 8); -- Register 3 : "O".

regs(4) <= CONV_STD_LOGIC_VECTOR(16#55#, 8); -- Register 4 : "U".

regs(5) <= CONV_STD_LOGIC_VECTOR(16#5F#, 8); -- Register 5 : "_".

regs(6) <= CONV_STD_LOGIC_VECTOR(16#30#, 8); -- Register 6 : "0".

regs(7) <= CONV_STD_LOGIC_VECTOR(16#31#, 8); -- Register 7 : "1".

ELSIF (rout_L = '0') THEN

CASE a IS

WHEN "000" => regs(0) <= d_in;

WHEN "001" => regs(1) <= d_in;

WHEN "010" => regs(2) <= d_in;

WHEN "011" => regs(3) <= d_in;

WHEN "100" => regs(4) <= d_in;

WHEN "101" => regs(5) <= d_in;

WHEN "110" => regs(6) <= d_in;

WHEN "111" => regs(7) <= d_in;

WHEN OTHERS=> NULL;-- Shouldn't be possible..

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Internal Peripherals Internal Peripherals

END CASE;

END IF;

END PROCESS;

-- Reading is similar to GPIO case (except there's lots more).

regrden_L <= '0' WHEN (oe_L = '0' AND regcs_L = '0')

ELSE '1';

rr: PROCESS (rout_L, rst_L, d_in, a)

BEGIN

CASE a IS

WHEN "000" => regrd_out <= regs(0);

WHEN "001" => regrd_out <= regs(1);

WHEN "010" => regrd_out <= regs(2);

WHEN "011" => regrd_out <= regs(3);

WHEN "100" => regrd_out <= regs(4);

WHEN "101" => regrd_out <= regs(5);

WHEN "110" => regrd_out <= regs(6);

WHEN "111" => regrd_out <= regs(7);

WHEN OTHERS => NULL; -- Shouldn't be possible...

END CASE;

 END PROCESS;

END BEHAVIOR;

--

In addition, the following code snippet merges the GPIO data bus at the top-most level of the design to avoid
the use of tri-state devices inside the FPGA/ASIC, which some manufacturers shun for causing test
difficulties.

--

-- Create the bidirectional data bus. The following way makes it

-- easier to analyze (no timing loops) but makes the wiring a little more

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

The AEIOU

-- difficult.

D <= gpiord_out WHEN (gpiorden_L = '0')ELSE (OTHERS => 'Z');

D <= regrd_out WHEN (regrden_L = '0')ELSE (OTHERS => 'Z');

d_in <= D;

--

12 The AEIOU
Finally, the AEIOU entity can be created from the previously created modules. The AEIOU block has no
logic functions; it only connects instances of the AIM, BYTWE, DBSM, GPIO and TADRIVE modules to
the I/O pins.

--

-- VHDL Entity AEIOU.AEIOU

--

-- Copyright 1999,

-- All rights reserved. No warranty, expressed or implied, is made as to
the

-- accuracy of this code.

--

-- Revision: 990406 - 1.0 - Created.

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

ENTITY AEIOU IS

 PORT(

 AACK_L : IN std_logic ;

 A_HIGH : IN std_logic_vector (0 to 2) ;

 A_LOW : IN std_logic_vector (10 to 31) ;

 BUSY_L : IN std_logic ;

 CLK : IN std_logic ;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

The AEIOU The AEIOU

 DBGLB_L : IN std_logic ;

 GPIO_IN : IN std_logic_vector (0 to 7) ;

 RST_L : IN std_logic ;

 TBST_L : IN std_logic ;

 TSIZ : IN std_logic_vector (0 to 2) ;

 TS_L : IN std_logic ;

 TT1 : IN std_logic ;

 ADSC_L : OUT std_logic ;

 BAA_L : OUT std_logic ;

 BWE_L : OUT std_logic_vector (0 to 7) ;

 GPIO_OUT : OUT std_logic_vector (0 to 7) ;

 IOA : OUT std_logic_vector (12 TO 31) ;

 LBCLAIM_L : OUT std_logic ;

 OE_L : OUT std_logic ;

 SRAM_CS_L : OUT std_logic ;

 TA_L : OUT std_logic ;

 D : INOUT std_logic_vector (0 to 7)

);

END AEIOU ;

LIBRARY AEIOU;

--

ARCHITECTURE BEHAVIOR OF AEIOU IS

-- Architecture declarations

SIGNAL ta_oen_L : std_logic;

-- Internal signal declarations

SIGNAL d_in : std_logic_vector(0 to 7);

SIGNAL doit_L : std_logic;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

The AEIOU

SIGNAL done_L : std_logic;

SIGNAL fastcs_L : std_logic;

SIGNAL ff_IOA : std_logic_vector(10 TO 31);

SIGNAL ff_tbst_L : std_logic;

SIGNAL ff_tsiz : std_logic_vector(0 to 2);

SIGNAL gpiord_out : std_logic_vector(0 to 7);

SIGNAL gpiorden_L : std_logic;

SIGNAL iocs_L : std_logic;

SIGNAL regrd_out : std_logic_vector(0 to 7);

SIGNAL regrden_L : std_logic;

SIGNAL ta_internal_L : std_logic;

SIGNAL tt_rw_L : std_logic;

SIGNAL we_L : std_logic;

-- Implicit buffer signal declarations

SIGNAL OE_L_internal : std_logic ;

-- Component Declarations

COMPONENT AIM

 PORT (

 a_high : IN std_logic_vector (0 to 2);

 a_low : IN std_logic_vector (10 to 31);

 aack_L : IN std_logic ;

 clk : IN std_logic ;

 done_L : IN std_logic ;

 rst_L : IN std_logic ;

 tbst_L : IN std_logic ;

 ts_L : IN std_logic ;

 tsiz : IN std_logic_vector (0 to 2);

 tt1 : IN std_logic ;

 doit_L : OUT std_logic ;

 ff_a_low : OUT std_logic_vector (10 TO 31);

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

The AEIOU The AEIOU

 ff_tbst_L : OUT std_logic ;

 ff_tsiz : OUT std_logic_vector (0 to 2);

 ff_tt1 : OUT std_logic ;

 lbclaim_L : OUT std_logic

);

END COMPONENT;

COMPONENT BYTEW

 PORT (

 a : IN std_logic_vector (29 to 31);

 tbst_L : IN std_logic ;

 tsiz : IN std_logic_vector (0 to 2);

 we_L : IN std_logic ;

 bwe_L : OUT std_logic_vector (0 to 7)

);

END COMPONENT;

COMPONENT DBSM

 PORT (

 a : IN std_logic_vector (10 to 31);

 busy_L : IN std_logic ;

 clk : IN std_logic ;

 dbglb_L : IN std_logic ;

 doit_L : IN std_logic ;

 rst_L : IN std_logic ;

 tbst_L : IN std_logic ;

 tt_rw_L : IN std_logic ;

 adsc_L : OUT std_logic ;

 baa_L : OUT std_logic ;

 done_L : OUT std_logic ;

 fcs_L : OUT std_logic ;

 iocs_L : OUT std_logic ;

 oe_L : OUT std_logic ;

 scs_L : OUT std_logic ;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

The AEIOU

 ta_L : OUT std_logic ;

 we_L : OUT std_logic

);

END COMPONENT;

COMPONENT GPIO

 PORT (

 a : IN std_logic_vector (26 to 28);

 d_in : IN std_logic_vector (0 to 7);

 gpio_in : IN std_logic_vector (0 to 7);

 gpiocs_L : IN std_logic ;

 oe_L : IN std_logic ;

 regcs_L : IN std_logic ;

 rst_L : IN std_logic ;

 we_L : IN std_logic ;

 gpio_out : OUT std_logic_vector (0 to 7);

 gpiord_out : OUT std_logic_vector (0 to 7);

 gpiorden_L : OUT std_logic ;

 regrd_out : OUT std_logic_vector (0 to 7);

 regrden_L : OUT std_logic

);

END COMPONENT;

COMPONENT TADRIVE

 PORT (

 clk : IN std_logic ;

 rst_L : IN std_logic ;

 ta_internal_L : IN std_logic ;

 ta_L : OUT std_logic

);

END COMPONENT;

-- Optional embedded configurations

--synopsys translate_off

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

The AEIOU The AEIOU

FOR ALL : AIM USE ENTITY AEIOU.AIM;

FOR ALL : BYTEW USE ENTITY AEIOU.BYTEW;

FOR ALL : DBSM USE ENTITY AEIOU.DBSM;

FOR ALL : GPIO USE ENTITY AEIOU.GPIO;

FOR ALL : TADRIVE USE ENTITY AEIOU.TADRIVE;

--synopsys translate_on

BEGIN

-- Architecture concurrent statements

-- HDL Embedded Text Block 1 eb1

-- Create the bidirectional data bus. The following way makes it easier
to analyze

-- (no timing loops) but makes the wiring a little more difficult.

D <= gpiord_out WHEN (gpiorden_L = '0')ELSE (OTHERS => 'Z');

D <= regrd_out WHEN (regrden_L = '0')ELSE (OTHERS => 'Z');

d_in <= D;

-- HDL Embedded Text Block 2 buscp1

IOA(12 TO 31) <=

 ff_IOA(12 TO 31);

-- Instance port mappings.

 AIz : AIM

 PORT MAP (

 a_high => A_HIGH,

 a_low => A_LOW,

 aack_L => AACK_L,

 clk => CLK,

 done_L => done_L,

 rst_L => RST_L,

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

The AEIOU

 tbst_L => TBST_L,

 ts_L => TS_L,

 tsiz => TSIZ,

 tt1 => TT1,

 doit_L => doit_L,

 ff_a_low => ff_IOA(10 TO 31),

 ff_tbst_L => ff_tbst_L,

 ff_tsiz => ff_tsiz,

 ff_tt1 => tt_rw_L,

 lbclaim_L => LBCLAIM_L

);

 BEz : BYTEW

 PORT MAP (

 a => ff_IOA(29 TO 31),

 tbst_L => ff_tbst_L,

 tsiz => ff_tsiz,

 we_L => tt_rw_L,

 bwe_L => BWE_L

);

 DBz : DBSM

 PORT MAP (

 a => ff_IOA(10 TO 31),

 busy_L => BUSY_L,

 clk => CLK,

 dbglb_L => DBGLB_L,

 doit_L => doit_L,

 rst_L => RST_L,

 tbst_L => ff_tbst_L,

 tt_rw_L => tt_rw_L,

 adsc_L => ADSC_L,

 baa_L => BAA_L,

 done_L => done_L,

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

The AEIOU The AEIOU

 fcs_L => fastcs_L,

 iocs_L => iocs_L,

 oe_L => OE_L_internal,

 scs_L => SRAM_CS_L,

 ta_L => ta_internal_L,

 we_L => we_L

);

 GPz : GPIO

 PORT MAP (

 a => ff_IOA(26 TO 28),

 d_in => d_in,

 gpio_in => GPIO_IN,

 gpiocs_L => iocs_L,

 oe_L => OE_L_internal,

 regcs_L => fastcs_L,

 rst_L => RST_L,

 we_L => we_L,

 gpio_out => GPIO_OUT,

 gpiord_out => gpiord_out,

 gpiorden_L => gpiorden_L,

 regrd_out => regrd_out,

 regrden_L => regrden_L

);

 TDz : TADRIVE

 PORT MAP (

 clk => CLK,

 rst_L => RST_L,

 ta_internal_L => ta_internal_L,

 ta_L => TA_L

);

 -- Implicit buffered output assignments

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Conclusion

 OE_L <= OE_L_internal;

END BEHAVIOR;

--

13 Conclusion
The LBS interface represents an easy means of connecting high-speed peripherals to the 60x bus By using
the facilities of the MPC107, a high-performance interface can be created in an ASIC or FPGA without the
need to design a 60x bus master.

14 Revision History
Table 5 provides a revision history of this document.

Table 5. Document History

Revision Number Changes

0 Original release of document

1.1 • Clarified addressing for MPC107
 • Corrected VHDL code formatting issues
 • Corrected labels for Figure 2 and annotated with color

1.2 Nontechnical reformatting

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Revision History Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Designing an MPC107 Local-Bus Slave Interface

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1846/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
hibbertleft

rxzb30
hibbertleft

rxzb30
disclaimer

rxzb30
disclaimer

rxzb30
freescalecolorjpeg

	1 Introduction
	2 Conventions
	Table�1. Typographic Conventions
	Table�2. IEEE 1164 Logic Conventions

	3 Local-Bus Slave Architecture
	Figure�1. Local Bus Slave Architecture.
	Figure�2. LBS Transaction.
	3.1 Coherency

	4 Interactions between the LBS and Memory
	Figure�3. DBGLB Recovery Logic for the MPC106.

	5 AEIOU Architecture
	Figure�4. AEIOU Architecture.

	6 Address Bus Interface
	Figure�5. Address Bus Interface of AEIOU.

	7 Address Decoder
	7.1 Address Latch State Machine (ALSM)
	Figure�6. Address FIFO State Machine.

	7.2 Address Latch
	Table�3. Address Transaction Signals Preserved

	7.3 Address Interface Module

	8 Data Bus Interface
	Table�4. AEIOU I/O Device Characteristics
	Figure�7. DBSM State Machine Flow.

	9 Cycle Completion
	Figure�8. LBS Transaction with TA Enabling.

	10 Byte Write Enable
	11 Internal Peripherals
	12 The AEIOU
	13 Conclusion
	14 Revision History
	Table�5. Document History

