AN14893

S32K3xx Linker File and Startup Code
Rev. 1.0 — 28 December 2025

Application note

Document information

Information Content
Keywords Linker file, startup code
Abstract

The linker script is a text file which has the file extension of .Id. It explains how different sections of

the object files should be merged to create an executable file. It also includes the code and data
memory address and size information.

https://www.nxp.com

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

1 Introduction

The linker file is written using the GNU linker command language and most of the startup code is using
assembly language. There are some situations that the programmer needs to modify the code of these areas.
This application note can help them to better understand the GNU linker command language that showed up
in the S32K3 linker file, how the memory of S32K3 is allocated by the linker file, how S32K3 is initialized after
SBAF initialization and what is done before jumping to the main function. Some typical examples are also
provided to show the modification for the linker file and startup code.

Note: The code mentioned in this AN is based on RTD 2.0.1.

The linker script is a text file which has the file extension of .Id. It explains how different sections of the object
files should be merged to create an executable file. It also includes the code and data memory address and size
information.

e r e
Source Object
file Assembler file

’-‘‘-\-.__‘___ __—‘_-\-._____

Source Object
file »| Assembler - file

\ Executable
> Linker file
| e — |
Source Object
file EXEEBI * ile m
| |

Figure 1. The linking process

2 ENTRY command

This command is used to set the “Entry point address” information in the header of the executable .elf file. It's
the first code to execute after the microcontroller reset.

For S32K3, we can see the code ENTRY (Reset Handler) in the linker file. It indicates the function
Reset Handler () is the first code to execute for the application cortex M7 core after the SBAF execution.

3 MEMORY command

This command allows you to describe the different memories present in the target and their start address and
size information.

The typical syntax is:

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
2/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

MEMORY

{
namel (attribute) : ORIGIN = originl, LENGTH = lenl
name2 (attribute) : ORIGIN = origin2, LENGTH len2

}

Figure 2. Syntax: MEMORY command

The linker will calculate the total code and data memory consumed so far and will report an error if the data,
code or stack areas cannot fit into available size.

The name of the memory region can be any legal name compliant with the C variable naming rule, it will be later
referenced by other parts of the linker script.

The attribute can be “R” (Read-only), “W” (read/write), “X” (Executable), “A” (Allocatable), “l/IL” (Initialized) or
their combinations. It can also be left open.

4 SECTIONS command

The SECTIONS command tells the linker how to map input sections into output sections,
and how to place the output sections in memory.

There are 4 kinds of typical section types.

text — code

rodata — read-only data

data — read-write initialized data

bss — read-write zero initialized data

There are 2 concepts VMA and LMA. VMA means Virtual Memory Address or runtime address, LMA means
Load Memory Address or ROM address. For the global variables which have the initial value(data section),
these initial values are stored in the flash and are loaded to the RAM by the startup code. Thus the ROM
address is LMA, the RAM address is VMA. The bss section does not have the LMA.

The typical syntax is:

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
3/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

SECTIONS

.flash :
{

*(.text)

*(.rodata)

} > int_flash

.sram_data : AT(__sram _data rom) /*LMA is sram_data rom */

{

*(.data)
} > int_sram /*VMA is in int_sram */
.sram_bss (NOLOAD) : /*There is no LMA for bss section*/
{
*(.bss)
} > int_sram /*VMA is in int_sram */
}

Figure 3. Syntax: SECTIONS command

5 Wildcard character (*)

The wildcard character (*) simply tells the linker to merge the section of all the input file.

Code examples:

*(.text) /*merge the .text section of all the input file*/
*(.rodata) /*merge the .rodata section of all the input file*/

*(.data) /*merge the .data section of all the input file*/

Figure 4. Code example: Wildcard character (*)

6 Location counter (.)

This is a special linker symbol denoted by a dot (.). The linker automatically updates this symbol with
location(address) information. It can be used to track and define the boundaries of various sections. This
location counter can be set to any specific value as well.

Code examples:

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
4/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

text end = .; /*the symbol text end equals to current address*/

ALIGN(4); /*increment the current address to the next 4-bytes aligned address*/

+

= exlee; /*increment the current address by e&xiee */

Bx2848108808; /*locate the current address to ex2e4eleee*/

Figure 5. Code example: Location counter (.)

7 ALIGN command

The ALIGN command simply returns the address of the next aligned boundary if the current address is not
aligned. The aligned value must be the power of 2.

ALIGN(4©96); /*increment the current address to the next 4@96-bytes aligned address*/
. ALIGN(19); /*wrong. 1@ is not power of 2.%*/

Figure 6. Code example 1

From the linker file and map file of S32K3, we can see after storing the .boot_header which is 0x2c bytes

long from the flash address 0x0040_0000, since the current address is 0x0040_002c which is not 4096 bytes
aligned, the location counter increments to the next 4096 bytes aligned boundary, which is 0x0040_1000. And
the symbol _text_start which indicates the start address of the code section start here.

.flash
{
KEEP(*(.boot_header))
= ALIGN(4096);

text start =

-3

.flash Px004080000 Bx12148

*(.boot_header)

.boot header 9x00400000 @x2c ./Project_Settings/Startup Code/startup_cm7.0
9x00401000 . = ALIGN (©exleeo)

fi11 Px0048002C exfd4
exeedeleee text start = .

Figure 7. Code example 2

8 AT command

The AT command indicates the LMA of the section.

Code example:

.sram_data : AT(__sram _data rom) /*the LMA of .sram _data section is sram_data _rom */
{
*(.data)

} > int_sram /* the VMA of .sram _data section is in int_sram */

Figure 8. Code example: AT command

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
5/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

9 KEEP command

When link-time garbage collection is in use (‘--gc-sections’) as link option, it is often useful to mark sections that
should not be eliminated. This is accomplished by surrounding an input section’s wildcard entry with KEEP().

Code examples:

KEEP(*(.boot_header)) /*keep the .boot header section not be eliminated by the linker*/

Figure 9. Code example: KEEP command

10 Linker script symbol

A symbol is the name of an address. It's similar to the variable declaration in the ‘C’ application. Most of
the symbols are to record the boundaries of the sections and are referred by the startup code for memory
initialization. And of course they can be used in the ‘C’ application.

Code examples:

__INT_SRAM_START = ORIGIN(int sram):/*symbol __ INT_SRAM_START equals the origin address of
memory region int sram*/

__INT_ITCM_END = ORIGIN(int_ itcm) + LENGTH(int_ itcm);/*symbol _ INT_ITCM_END equals the
origin address of memory region int itcm plus its length*/

sram bss start = .;/*symbol sram bss start equals current address*/

__BSS_SRAM_STZE = sram_bss_end - sram_bss start; /*symbol _ BSS_SRAM_SIZE equals the
end address of .sram bss section minus the start address of .sram bss section*/

Figure 10. Code example: Linker script symbol

11 Explanation of the S32K3 linker file

Below shows a full (. sram data) section definition from the S32K3 linker file <linker_flash_s32k344.1d>.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
6/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

.flash :

*{(.text) [*merge all .text section of all input files*/

} * inf.flash /*the .flash section j5_located.in the memory region jot. flash */

= ALIGN(4); /*increment the location counter to a 4-bytes aligned address*/
__textoend = .; /*the address of the the symbol fexi epd which indicates the end of
the occupation of .flash section in the memory region jnf.flash is
current address.*f
__sram.data.rom = _ text.god; /*The address of the symbol _ sram.data.rom which
indicate the start address of the copy for the .sram.data
section in flash is equal to the symbol _ fext.end *F

-sham.data : AT(_ scam.data.pem) [*the start of the LMA of .spam.datas section is in
_ SEAR-AataaRRm
i
= ALIGN(4); .f"*lncr‘ement the location counter to a 4-bytes aligned address*/

_ sram.data.begin = .; /*the VMA of symbel _ sram.dafa.hesip which indicates
the start address of the .spam.dafm section is current
address */

= ALIGN(4);

*{ . ramcode) f*merge all .pamcode, section of all input files®f

= ALIGN(4);

*(.data) /*merge all .data section of all input files*/f

(.data) /*merge all the section which has the prefix .data of all input files*f

= ALIGN(4);

*.meal.dakra) S*merge all .megl.dska section of all input files®/f

= ALIGN(4);
_sram.data.end. = .3 fFthe VMA of symbol sram.datg.end, which indicates the
end address of .spam.daka section is current address */
1 > inf.scam /*the .sram.data section js_ lecated.in the memory region jpt.scam */

__sram.data.ronsnd = _ sham.datasrem + (__sham.data.snd_ - _ sram.datashesing)
f*calculate the end of the LMA of .sram.data seshiop.th will be used for ROM copy™®/f

-sham.bss (MOLOAD) : /*no data need to load from flash for the .spam bss, section */
{

{.bss) /Tmerge all .h5s5 section of all input files/

} * inf.scam /*the .spam.bss section js. lecated.in the memory region jnt.scam *

Figure 11. Code example: S32K3 linker file

12 Startup Code Overview

After SBAF initialization, the HSE core(ARM Cortex M0+) goes to sleep, the application core(ARM Cortex M7)
takes over. Like other ARM Cortex-M core MCUSs, it starts executing from the function Reset_Handler(), it jumps
to the function main() where the engineer can start writing the application code. The below chart shows the
whole procedure of the startup code, which is written by the assembly code mainly.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
7135

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors

AN14893

S32K3xx Linker File and Startup Code

[L
: ' Ram ECC
s initialization
: e
' Disable | Wait for
‘ CPU global interrupt and clear debugger to
CPU register RO ~ R7) hold the core Configure MSCM
e T to enable/disable
— interrupts
= = routing to Gore
Enable MSCM Ram data processor
clock copy l
—
Tlvt— I Enable FPU
elocate
System
ottt initialization =) |
_fam
v Enable MPU
[Initialize CPU | Jump to main | l
core stack routine
b T Enable I/D
= Cache
I L Y
Disable SWT edn
watchdog 0
[>y
Figure 12. S32K3 Startup Procedure Overview

12.1 Boot header

The boot header is defined in the file startup_cm?7.s. It is also called Image Vector Table (IVT). It contains

the information of boot configuration, core start address, Life Cycle configuration,.etc. For more details
please check the boot chapter of the S32K3 Reference Manual. It can only be stored in the 5 fixed addresses
(0x0040_0000, 0x0050_0000, 0x0060_0000, 0x0070_0000, 0x1000_0000) and be parsed by the sBAF. The
default S32K3 linker file store the boot header in the address 0x0040_0000.

AN14893

Application note

All information provided in this document is subject to legal disclaimers.

Rev. 1.0 — 28 December 2025

© 2026 NXP B.V. All rights reserved.
Document feedback
8/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

Address Size in | Content Details

offset bytes

00h 4 IVT marker Magic number that marks the starting of the IVT location. Its value must be

5AA5_5AASh.

04h 4 Boot configuration Configuration word that allows you to select the various configuration options
word available to boot the chip. See Boot configuration word for details.

08h 4 Reserved —

0Ch 4 Cortex-M7_0 Boot address of the Cortex-M7_0 application core in the code flash memary
application core start | area. It must honor core VTOR alignment restrictions. SBAF uses this field
address when the BOOT_SEQ field in Boot configuration word is 0.

10h 4 Reserved —

14h 4 Cortex-M7_1 Boot address of the Cortex-M7_1 application core in flash memory. It must
application core start | honor core VTOR alignment restrictions. SBAF uses this field only when the
address BOOT_SEAQ field in Boot configuration word is 0.

This field is ignored if lockstep configuration is enabled.

18h 8 Reserved —
20h 4 Reserved —
24h 4 LC configuration Configuration word address that allows you to advance the chip's LC to the
address next stage. See Address LC configuration word for details.
28h 4 Reserved —
2Ch 4 Reserved —
30h 192 Reserved —_
FOh 16 Reserved —

Figure 13. Boot header definition details

.section ".boot header”, "ax"

.long SBAF_BOOT_MARKER /* IVT marker */

.long (CM7_e_ENABLE << CM7_@_ENABLE_SHIFT) | (CM7_1_ENABLE << CM7_1_ENABLE_SHIFT) /* Boot
configuration word */

.long @ /* Reserved */

.long CM7_©_VTOR_ADDR /* CM7_@ Start address */

.long @ /* Reserved */

.long CM7_1_VTOR_ADDR /* CM7_1 Start address */

.long @ /* Reserved */

.long @ /* Reserved */

.long XRDC_CONFIG_ADDR /* XRDC configuration pointer */

.long LF_CONFIG_ADDR /* Lifecycle configuration pointer */

.long @ /* Reserved */

Figure 14. Code example: Boot header

12.2 Disable global interrupt and clear CPU register

S32K3 disables the global interrupt and clears the CPU register RO — R7 at the beginning of the
Reset_Handler().

Code:
AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback

9/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

cpsid i

mowv re, #e
mov rl, #©
mov r2, #e
mov r3, #0)
mov rd, #0©
mov r5, #@
mov ré, #e
mowv r7, #e

Figure 15. Code example: disable global interrupt and clear CPU register

12.3 Enable MSCM clock

This step enables the clock of MSCM module which contains CPU configuration, On-chip memory control,
interrupt router control,.etc by writing 1 to Register PRTN1_COFBO0_CLKEN[REQ24]. The enablement requires
the MODE_UPD register configuration and following with a valid key combination.

gifndef NO_MSCM_CLOCK_INIT
f* If the MSCM clock is enabled, skip this sequence */f
ldr, r&, =MCME_PRTN1_COFB@_STAT
ldr. r1, [r@]
1dr. r2, =MCME_MSCM_REQ
and rl, rl, r2
cmp, rl, @
bng. SeFMIRR

/* Enable clock in PRTN1 */
ldr, ré@, =MCME_PRTN1_COFE@ CLKEN
ldr. rl, [r@]

ldr, r2, =MCME_MSCM_REQ

arp rl, r2

st rl, [ra]

/* Set PUPD field */
ldr, ré, =MCME_PRTN1_PUPD
ldr. rl, [re]

ldr r2, =1

arr rl, r2

str rl, [r@]

/* Trigeger update */
1dr. r@, =MCME_CTL_KEY
1dr, rl, =MCME_KEY
str rl, [r@]
1dr. rl, =MCME_INV_KEY
str rl, [r@]
#endif
/* Check MS5CM clock in PRTH1 */

1dr. ré, =MCME_PRTN1_COFB@_STAT

ldr rl, [r@]
ldr, r2, =MCME_MS5CM_REQ
and rl, rl, r2

cmp, rl, @
bsg. WadtFacClock,

Figure 16. Code example: Enable MSCM clock code

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
10/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

12.4 Relocate vector table to RAM

This vector table(intc vector) is defined in the file Vector_Table.s. It is stored in the flash primarily and
copied to the SRAM. This step sets the base address of the vector table RAM location to the VTOR(Vector
Table Offset Register) thus the core can jump to the relevant ISR according to different vector numbers. There
are 2 benefits of relocating the vector table to the RAM instead of flash, the first one is when the core fetches
the ISR once an interrupt occurs, accessing RAM will be quicker than accessing the flash. The other benefit is
the user may need to modify the ISR names in their user code since the vector table is in the RAM now instead
of flash.

Code:

SetVTOR:
/* relocate vector table to RAM */
ldr re, =VTOR_REG

ldr rl, = RAM_INTERRUPT_START

str ri,[re]

Figure 17. Code example: Relocate vector table to RAM

12.5 Initialize CPU core stack

This step initializes the stack pointer MSP.
Code:

/*GetCoreID*/
ldr_ re, =ex4e26e0e4

SN ———

ldr ri,[re]

ldr re, =MAIN_CORE
cmp rl,re

beg SetCore@Stack
b SetCorelStack

SetCore@Stack:
/* set up stack; rl3 SP*/
ldr re, =_ Stack_start_ce
msr MSP, re
b DisableSWT®e

SetCorelStack:
/* set up stack; ri13 SP*/
ldr re, =_ Stack_start_cl

msr MSP, re

AR

Figure 18. Example code block: Initialize CPU core stack

12.6 Disable SWT watchdog

The software watchdog timer is enabled by default. Need to be disabled during the startup process.
Code:

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
11/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors

AN14893

S32K3xx Linker File and Startup Code

DisableSWTo:

ldr_ re, =-ex4e27ee1e
1dr rl, =exc52e
str_rl1, [re]

ldr_ rl, =exD928
str rl, [re]

ldr_ re, =ex4e27eeee
ldr rl, =@xFFeeee4e
str__r1, [re]

b RamInit

DisableSWT1:

ldr_ re, -ex4e4e6Ce1e
ldr_ rl, =exc52e
str_r rl, [re]

ldr_ rl, =exD928
str rl, [re]

J&C re, =ex4e46Ceee
ldr rl, =exFFeeee4e
str ri, [re]

b RamInit

Figure 19. Disable SWT watchdog

12.7 RAM ECC initialization

After the chip’s power on reset and before using the RAM, the user must initialize it to avoid ECC errors. The
program size must be 2 words(64 bits) aligned. The same procedure is done for SRAM, DTCM and ITCM. This
is the most time-consuming step for the whole startup procedure.

Code:

RamInit:

/* Initialize SRAM ECC */

1dr r0, = RAM INIT
cmp r0, O
/* Skip if SRAM INIT is not set */

beq SRAM LOOP END

1dr rl, = INT SRAM START
ldr r2, " INT SRAM END
subs r2 rl

subs r2, #1

ble SRAM LOOP END

movs r0, 0

movs r3, 0

SRAM LOOP:

stm rl1l!, {r0,r3}

subs r2, 8

AN14893

All information provided in this document is subject to legal disclaimers.

© 2026 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 28 December 2025

Document feedback
12/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors

AN14893

S32K3xx Linker File and Startup Code

bge SRAM LOOP

SRAM_LOOP_END:
DTCM Init:

/* Initialize DTCM ECC */

ldr r0, = DTCM INIT
cmp r0, O

/* Skip if DTCM INIT is not set */

beq DTCM_LOOP_END

/* Enable TCM */

LDR rl, =CM7_DTCMCR
LDR r0, [rl]

LDR r2, =0x1

ORR r0, r2

STR r0, [rl]

ldr rl, = INT DTCM START
ldr r2, = INT DTCM END
subs r2, rl
subs r2, #1
ble DTCM LOOP END
movs r0, O
movs r3, 0
DTCM_LOOP:
stm rl!, {r0,r3}
subs r2, #8

bge DTCM LOOP

DTCM_LOOP_END:
ITCM Init:

/* Initialize ITCM ECC */

ldr r0, = ITCM INIT
cmp r0, O

/* Skip if TCM INIT is not set */

beq ITCM LOOP_END

/* Enable TCM */

LDR rl, =CM7_ITCMCR
LDR r0, [rl]

AN14893 All information provided in this document is subject to legal disclaimers.

© 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025

Document feedback
13/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

LDR r2, =0x1

ORR r0, r2

STR r0, [rl]

ldr rl, = INT ITCM START
1dr r2, = INT ITCM END
subs r2, rl
subs r2, #1
ble ITCM LOOP END
movs r0, O
movs r3, 0
ITCM LOOP:

stm rl!, {r0,r3}
subs r2, #8

bge ITCM LOOP
ITCM LOOP END:

12.8 Wait for debugger to hold the core

In some situations the debugger wants to hold the core, the debugger can write a fixed value Ox5A5A5A5A to
the variable RESET_CATCH_CORE defined in the file ../Project_Settings/Startup_Code/system.c.

DebuggerHeldCoreloop:
1dr re, =RESET_CATCH_CORE

ldr re, [re]

ldr ri1, =ex5A5A5A5A

re, rl
DebuggerHeldCoreloop

Figure 20. Example code: Debugger held core loop

12.9 RAM data copy

This step copies the data which is in the RAM but stored in flash primarily to its RAM location. It includes

1. Copy the vector table from ROM to RAM.

2. Copy initialized data(.data) from ROM to RAM.
3. Copy code that should reside in RAM from ROM.
4. Clear the zero-initialized data(.bss) section.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
14/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors

AN14893

S32K3xx Linker File and Startup Code

Code memory(FLASH)

Unused flash memory

__ROM_CACHEABLE_END
data
{Initialized global and static variables)
__ROM_CACHEABLE_START

Other sections

_rodata

Vector table

Eoot header

Figure 21. S32K3 RAM data copy process

Data memory(SRAM)
stack

Unused SRAM

Other sections

TN . bss
6’3‘(:; Ie) "+, . {Un-nitizlized global and static variables)
i A

.data
{Initialized global and static variables)

_ RAM_CACHEABLE_START
-ramcode

0x2000_0000

0040_0000

There is a copy table defined in the startup_cmy.s file. There are 4 sections defined by default. Each section has
3 symbols: RAM_START, ROM_START, ROM_END. The addresses of the symbols are obtained in the linker
file and are referred in the function init data bss() to do the copy work.

.long 4

76 .section ".init table", “"a

"_

] o~
Q0 =J

-Tong __RAM_CACHEABLE_START
.long _ ROM CACHEABLE_ START
.long _ ROM_CACHEABLE_END

W = W O

Tong _ RAM_NO_CACHEABLE_START
.long _ ROM_NO_CACHEABLE_START
.long __ROM_NO_CACHEABLE_END

B

wi

Tong __RAM_SHAREABLE_START
.long _ ROM_SHAREABLE_START
.long __ ROM_SHAREABLE_END

CO 00 00 ©F OO0 00 00 03 OO =J
] Oh

[«
W Coh

~Tong _ RAF_INTERRUPT_START
.long _ ROM_INTERRUPT_START
.long __ROM_INTERRUPT_END

Figure 22. Copy table with four sections

For the variables in the bss section, due to no initialized value is stored in the flash, thus each section has only
2 symbols, RAM_START and RAM_END. The function init data bss () initializes these sections by writing

Zero.

AN14893

All information provided in this document is subject to legal disclaimers.

© 2026 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 28 December 2025

Document feedback
15/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

in " L1

99 .section “.zero_table”, "a
o1 .long 3

92 [-Tong _ B35 SRAM 3H START
3| .long _ BSS_SRAM SH_END
94 .long _ B55 SRAM NC_START |

95| .lon BSS SRAM NC END
96 [.long _ BSS SRAM START

97| .long _ BSS SRAM END

Figure 23. Copy table with three sections
Code:

_INIT_DATA BSS:
bl init_data bss

Figure 24. init_data_bss function

The implementation of the function init data bss () is in the file ../Project_Settings/Startup_Code/startup.c.

12.10 System initialization

This step does some system initialization. It includes

1. Configure MSCM to enable/disable interrupts routing to Core processor.
2. Enable FPU.

3. Enable MPU.

4. Enable I/D Cache.

These functions can be enabled/disabled by adding/removing the MACROs defined in Project/Property/C/C++
Build/Settings/Standard S32DS C Complier/Preprocessor/Defined symbols.

These MACROs includes
|_CACHE_ENABLE,
D_CACHE_ENABLE,
ENABLE_FPU,
MPU_ENABLE.

To enable FPU, the user also needs to make sure the option Project/Property/C/C++ Build/Settings/Target
Processor/Float ABI is FP instructions(hard). It tells the compiler to compile the floating point calculation code
by dedicated FPU instructions instead of ARM eabi library.

__ SYSTEM_INIT:

bl SystemInit

Figure 25. Code example: Systeminit() function

The implementation of the function SystemInit() is in the file ../Project_Settings/Startup_Code /system.c.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
16/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

12.11 Jump to main routine

This is the last step of the startup code. It enables the CPU global interrupt, switches to user mode if it's enabled
by Autosar, and jumps to the main function finally.

Code:
_MAIN:
cpsie 1
bl startup _go_to user_mode
bl main
Figure 26. Code example: Main routine

13 Examples

13.1 Relocating code in RAM

Sometimes it is required to relocate the function to RAM for faster execution or other reason. In the S32K3
default linker file, there is a . ramcode section defined already, simply use the keyword __attribute _ to
relocate the function into this section. The same keyword must be added to the declaration of the function too.

Code Example:

void __ attribute__ ((section(".ramcode"))) LED_ function ()

{

uint32 t 1i,3;

Siul2 Dio Ip TogglePins (LED GREEN PORT,1<<LED GREEN PIN) ;

for (1=0;1<4000;1i++)
for (j=0;3<4000; j++)

’

}

We can see from the map file the LED_function() is at the RAM address 0x2040_80dc.

.sram _data 0x20408000 0x1b8 load address 0x00412150
0x20408000 . = ALIGN (0x4)
0x20408000 __sram data begin =
0x20408000 . = ALIGN (0x4)

* (. ramcode)
.ramcode 0x20408000 Oxdc ./RTD/src/Clock Ip Specific.o

.ramcode 0x204080dc 0x44 ./src/main.o

0x204080dc LED function

13.2 Relocating code in ITCM

ITCM(Instruction Tightly Coupled Memory) is zero wait memory, the time of CPU accessing ITCM will be faster
than accessing flash or SRAM. To use the ITCM memory, below steps are needed.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
17135

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

1. Define the ITCM section in the linker file. Since the default linker file has defined the ITCM memory region
int itcm, we can start with the section definition.

__item rom = shareable data rom end; /*obtain the LMA of .itcm section,
the .itcm section is put after .shareable bss section*/
.itcm : AT(itcm rom)
{
= ALIGN (4) ;
__itcm start = .;
*(.itcm_code)
= ALIGN (4);
__itcm end = .;
} > int itcm
__itcm rom end = itcm rom + (_ itcm end - itcm start);

The default linker file does not include the ARM EABI GNU reserved section placement, user should add them
and place them into Flash to avoid TCM(itcm/dtcm) or data section placement overlaps.

.flash
{

} > int flash
ARM.exidx

(.ARM.exidx)

(.gnu.linkonce.armexidx.)

(.glue¥)
*(.vipll™®)
(.v4¥)
(.iplt)
*(.rel¥)

} > int flash

Without adding the ARM. exidx section, you will see the below linking error.
i3 Ld error: section ARM.exidx LMA [00412430,00412437] overlaps section .dtcm_data LIMA

1. Obtain the addresses for data copy from flash to ITCM in the linker file.

~_RAM ITCM START __itcm start;
~_ROM ITCM START = itcm rom;
__ROM ITCM END = itcm rom end;

The 3 new symbols(_ RAM ITCM START, ROM ITCM START, _ ROM ITCM END) are defined in the
init_table, change the total elements from 4 to 5.

.section ".init table", "a"

.long 5

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
18/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

.long _ RAM CACHEABLE START
.long _ ROM CACHEABLE START
.long _ ROM CACHEABLE END
.long _ RAM NO CACHEABLE START
.long _ ROM NO CACHEABLE START
.long __ ROM NO CACHEABLE_END
.long _ RAM SHAREABLE START
.long _ ROM_SHAREABLE START
.long _ ROM SHAREABLE END
.long _ RAM INTERRUPT START
.long __ ROM_INTERRUPT START
.long __ ROM_INTERRUPT END
.long __RAM ITCM START

.long __ ROM ITCM START

.long __ ROM_ITCM END

Finally, add __attribute__ ((section(".itcm code"))) to the function which you wish to be relocated
in the ITCM.

/*Q@brief: This is the ISR of SIUL IRQ1, source 08-15*/
void _ attribute ((section(".itcm code"))) SIUL_1 Handler ()
{

/* Clear pending interrupt flag */

(Siul2 Icu Ip pBase[0])->DISRO = OxXFFFFFFFF;/*Clear all the interrupt
pending bit*/

Siul2 Dio Ip TogglePins (LED RED PORT,1<<LED RED PIN);
printf ("ISR occurred %d times.\n",++g counterInIsrStandbyRam) ;

__asm("isb ");

}

Now we can see from the map file the function SIUL_1 Handler () is located in the ITCM address
0x0000_0000.

.itcm 0x00000000 O0x44 load address 0x0041230c
0x00000000 . = ALIGN (0x4)
0x00000000 __itcm start =

*(.itcm code)

.itcm code 0x00000000 0Ox44 ./src/main.o

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
19/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

0x00000000 SIUL 1 Handler

0x00000044 . = ALIGN (0x4)

0x00000044 __itcm end =

0x00412350 __itcm rom end = (_ itcm rom +
(_itcm end - itcm start))

13.3 Relocating data in DTCM

DTCM(Data Tightly Coupled Memory) is similar to ITCM but is dedicated for data. Below shows the steps
needed for using it.

1. Define the DTCM section in the linker file. Since there are 2 kinds of data types .data(with initialized value)
and .bss(without initialized value). We created 2 sections .dtcm_data and .dtcm_bss in DTCM.

__dtem rom = itcm rom end; /*obtain the LMA of .dtcm data section,
the .dtcm data section is put after .itcm section*/
.dtcm _data : AT(_ dtcm rom)
{
= ALIGN (4) ;
__dtcm data start = .;
*(.dtcm _data)
= ALIGN (4) ;
__dtcm data end = .;
} > int dtcm
__dtcm rom end = dtcm rom + (dtcm data end - dtcm data start);
.dtcm_bss (NOLOAD)
{
= ALIGN (4) ;
__dtcm bss start = .;
* (.dtcm_bss)
= ALIGN (4) ;
__dtcm bss end = .;
} > int dtem

1. Obtain the boundary addresses for data initialization in the linker file.

__RAM DTCM_START = _ dtcm data start;

__ROM DTCM_ START = dtcm rom;

~_ROM DTCM END = dtcm rom end;

~_BSS DTCM START = _dtcm bss start;

__BSS DTCM END = _dtcm bss end;

__BSS DTCM SIZE = dtcm bss end - dtcm bss start;

The 3 new symbols (_ RAM DTCM START, __ ROM DTCM START, __ROM DTCM END) are defined

in the init_table, change the total elements from 5 to 6 since we have created the ITCM section. The 2
symbols(_ BSS DTICM START, _ BSS DICM END) are defined in the zero_table, change the total elements
from 3 to 4.

.section ".init table", "a"

.long 6
.long _ RAM CACHEABLE START
.long _ ROM CACHEABLE START

.long __ ROM CACHEABLE END

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
20/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors

AN14893

S32K3xx Linker File and Startup Code

.long __ RAM NO CACHEABLE START
.long __ ROM NO CACHEABLE START
.long __ROM NO_ CACHEABLE_END
.long __ RAM SHAREABLE START
.long __ ROM_ SHAREABLE START
.long __ ROM SHAREABLE END
.long __ RAM INTERRUPT START
.long __ ROM_INTERRUPT START
.long __ ROM_ INTERRUPT END
.long __RAM ITCM START

.long __ ROM ITCM START

.long __ ROM ITCM END

.long __ RAM DTCM START

.long __ROM DTCM_ START
.long __ROM DTCM END
.section ".zero table", "a"

.long 4

.long BSS SRAM SH START
.long _ BSS SRAM SH END
.long BSS SRAM NC START
.long __ BSS SRAM NC_END
.long _ BSS SRAM START

.long _ BSS_SRAM END

.long _ BSS DTCM START
.long _ BSS DTCM END

Last, use key word __attribute__ to relocate the data into the DTCM.

uint32 t __ attribute_ ((section(".dtcm bss"))) g counterDtcmBss;
uint32 t _ attribute ((section(".dtcm data"))) g counterDtcmData

= 20;

Now we can see from the map file the 2 variables are in the DTCM .bss section and .data section respectively.

.dtcm _data 0x20000408 Ox4 load address 0x00412758
0x20000408 . = ALIGN (0x4)
0x20000408 __dtcm data start =

*(.dtcm_data)
.dtcm_data 0x20000408 0x4 ./src/main.o

0x20000408 g_counterDtcmData

0x2000040c . = ALIGN (0x4)

0x2000040c __dtcm data _end =
AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback

21/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

0x0041275c __dtcem rom end = (_ dtcm rom +
(__dtcm data end - dtcm data start))
.dtcm bss 0x2000040c O0x4 load address 0x0041275c
0x2000040c . = ALIGN (0x4)
0x2000040c ___dtcm bss start =
* (.dtcm _Dbss)
.dtcm _bss 0x2000040c 0x4 ./src/main.o

0x2000040c g_counterDtcmBss

0x20000410 . = ALIGN (0x4)
0x20000410 ___dtcm bss end =

13.4 Relocating data in standby RAM

Only the data in the standby RAM can be retained during standby mode while most of the other RAM will be
powered off. There is 32KB standby RAM for S32K344. Below shows the steps to enable it.

1. The standby RAM is at the beginning of SRAM, the default linker uses it as normal SRAM, we need to
create a separate memory region for it.

The default SRAM memory region definition is below:

int sram : ORIGIN = 0x20400000, LENGTH = 0x0002DFO0O0 /* 183.9K */

The memory region definition after extracting the standby RAM.

int standbysram : ORIGIN = 0x20400000, LENGTH = 0X00008000/* standby ram 32KB*/
int sram : ORIGIN = 0x20400000 + 0x8000, LENGTH = 0x0002DF00 - 0x8000/* 183.9K
-0x8000%*/

1. Define the standby RAM section. To make the code easier we created a .bss section only. If user wishes to
create a .data section for standby RAM, please refer to how it's done in the DTCM.

.sram_standby (NOLOAD) :
{

+= ALIGN (4) ;
__standby bss start = .;
* (.sram_standby bss)

__standby bss end = .;

} > int standbysram

1. Define 2 symbols(_ BSS STANDBY SRAM START, _ BSS STANDBY SRAM END)in the zero table for
data initialization and increase the total elements from 4 to 5.

.section ".zero table", "a"

.long 5
.long BSS SRAM SH START

.long _ BSS SRAM SH END

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
22/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

.long BSS SRAM NC START
.long BSS SRAM NC END

.long BSS SRAM START

.long = BSS SRAM END

.long BSS DTCM START

.long BSS DTCM END

.long __BSS_STANDBY SRAM START

.long __BSS_STANDBY SRAM END

And obtain the boundary addresses of the .bss section for clearing zero table.

~__BSS STANDBY SRAM START = standby bss start;
___BSS STANDBY SRAM END = standby bss end;

Obtain the boundary addresses for the whole standby RAM for ECC data initialization.

___STANDBY SRAM START = ORIGIN (int standbysram) ;
___STANDBY SRAM SIZE = LENGTH (int_standbysram) ;

1. We have known that all the RAM needs to be ECC initialized before using. But for the data in standby RAM,
we need to skip it in case of standby exit to retain the data. This is the standby RAM ECC initialization
function being added in the file startup.c.

static void standbyRamEccInit (void)
{

register uint32 t Cnt;
register long long *pDest;

if (IP MC RGM->DES & MC_RGM DES F POR MASK)/*init the standbyRAM only when it's
power on Reset*/

{
/* Standby SRAM ECC init */

Cnt = (uint32) (& STANDBY SRAM SIZE) / 8;
pDest = (long long *) (& STANDBY SRAM START);
while (Cnt--)

{

*pDest = (long long)O0;

pDest++;

}
IP_MC RGM->DES = MC_RGM DES_F POR MASK; /* Write 1 to clear F_POR */

}

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
23/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

In the data copy function init data bss (), we need to do the same skip for standby exit. Since we only
defined the .bss section in the standby RAM, we skip the zeroTable only. If user defined .data section, the
same skip is needed for the initTable. And we put the standbyRamEccInit () function before the data copy
process.

extern uint32 t STANDBY SRAM START;
extern uint32 t _ STANDBY SRAM SIZE;
extern uint32 t _ BSS STANDBY SRAM START;
void init data bss(void);

static void standbyRamEccInit (void) ;
void init data bss (void)

{

const Sys CopyLayoutType * copy layout;

const Sys ZeroLayoutType * zero layout;

const uint8 * rom;

uint8 * ram;

uint32 len = 0U;

uint32 size = 0U;

uint32 i = 0U;

uint32 j = 0U;

const uint32 * initTable Ptr = (uint32 *) INIT TABLE;
const uint32 * zeroTable Ptr = (uint32*) ZERO TABLE;

/*Add the standbyRam ECC init here. If user want to define the .data segment in
the standbyRam, need to skip the data copy when it is recovered from the standby
mode . */

standbyRamEccInit() ;
/* Copy initialized table */

len = *initTable Ptr;
initTable Ptr++;
copy layout = (const Sys CopyLayoutType *)initTable Ptr;

for(i = 0; i < len; i++)

rom copy layout[i].rom start;

ram = copy layout[i].ram start;

size = (uint32)copy layout[i].rom end -
(uint32) copy layout([i].rom start;

for(j = OUL; j < size; J++)

ram[j] = rom([J];

/* Clear zero table */

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
2435

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

len = *zeroTable Ptr;

zeroTable Ptr++;

zero_ layout = (const Sys ZeroLayoutType *)zeroTable Ptr;

for(i = 0; 1 < len; i++)

{

/*bypass the data initialization for standbyRAM if it's not power on reset.*/

if ((IP_MC_RGM->DES__BSS_STANDBY SRAM START !'= zero_layout[i].ram start))
{

ram = zero_ layout[i].ram start;

size = (uint32)zero layout[i].ram end - (uint32)zero layout[i].ram start;

for(j = 0UL; j < size; Jj++)

}

Finally,use key word __attribute _ to put the data into the standby RAM.

uint32 t _ attribute__ ((section(".sram standby bss"))) g counterStandbyRam;
uint32 t _ attribute_ ((section(".sram standby bss")))
g _counterInIsrStandbyRam;

In the map file we can see the 2 variables are in the standby RAM.

.sram_standby 0x20400000 0x8
0x00000000 . = (. + ALIGN (0x4))
0x20400000 ___standby bss start =

* (.sram standby bss)
.sram_standby bss

0x20400000 0x8 ./src/main.o

0x20400000 g_counterStandbyRam
0x20400004 g_counterInIsrStandbyRam
0x20400008 __standby bss end =

Note: The D-cache need to be disabled to make the standby RAM work, or you can set this memory region as
non-cacheable in the MPU settings.

13.5 Relocating data in data flash

There are 128KB data flash in S32K344 and is not defined by the default linker file. We know from the HSE RM
that the HSE firmware used the last 40KB, so we have 88KB that can be used by the application core. For using
it,

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
25/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

1. we need to create the memory region as always.

int data flash : ORIGIN = 0x10000000, LENGTH = 0x16000 /* 128-40 =88KB data
flash,HSE used the last 40KB*/

2.Define the .data_flash section

.data flash
{
= ALIGN (4) ;
*(.DFlash)

} > int data flash

3.Use the key word __attribute _to relocate the variable in this section.

uint8 t __ attribute _ ((section(".DFlash"))) g msg[] = "Hello,S32K3";

Now we can see from the map file the variable is in the data flash.

.data_flash 0x10000000 Oxc

0x10000000 . = ALIGN (0x4)
*(.DFlash)
.DFlash 0x10000000 Oxc ./src/main.o

0x10000000 g_msg

13.6 Linking a binary file

There are some situations we need to link an existing binary file to the current project. Such as the firmware of
the HSE core, the firmware of other MCU. Below shows the step.

1. Specify the memory region for storing the binary file.

sjalll0 BINARY (R) : ORIGIN = 0x00500000, LENGTH = 0x100000 /

1. Specify the file format of the binary file outside of the MEMORY region and SECTIONS region.

TARGET (binary) /* specify the file format of binary file */

INPUT (..\SJA1110 bin file\flash image.bin)/*file path can be either absolute or
relative*/

OUTPUT_FORMAT (default) /* restore the out file format */

1. Define the section.

.sjalll0 _bin
{

= ALIGN (0x4);
~sjalll0 bin start = .;
..\SJA1110 bin file\flash image.bin (.data)
= ALIGN (0x4);

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
26/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

~s53jalll0 bin end = .;

} > sjalll0 BINARY
_ sjalll0 BIN START = ORIGIN(sjalll0 BINARY);
~s3jalll0 BIN SIZE = sjalll0 bin end - sjalll0 bin start ;

Though the map file we can see a binary file of length 0xa6860 is stored at the flash address 0x0050_0000.

TARGET (binary)
LOAD ..\SJA1110 bin file\flash image.bin

.sjalll0 bin 0x00500000 0xa6860
0x00500000 . = ALIGN (0x4)
0x00500000 ~sjalll0 bin start =
..\SJA1110 bin file\flash image.bin(.data)
.data 0x00500000 0xa6860 ..\SJA1110 bin file\flash image.bin
0x00500000 Dbinary SJA1110 bin file flash image bin start
0x005a6860
_binary SJA1110 bin file flash image bin end
0x005a6860 . = ALIGN (0x4)
0x005a6860 ~s5jalll0 bin end = .
000500000 ~ s3jalll0 BIN START = ORIGIN

(sjal110_BINARY)

0x000a6860 _ s3jalll0 BIN SIZE = (_ sjalll0 bin end - sjalll0 bin start)

13.7 Relocating the stack in DTCM

For better MCU performance, sometimes the stack can be relocated to DTCM from SRAM.

1. The default DTCM and stack memory region are defined as below.

int dtcm : ORIGIN = 0x20000000, LENGTH = 0x00020000 /* 64K */
int sram stack c0 : ORIGIN = 0x2042E000, LENGTH = 0x00001000 /* 4KB */

We need to redefine the new stack region from the DTCM.

int dtcm : ORIGIN = 0x20000000, LENGTH = 0x00020000 - 0x1000 /* 64K -
0x1000*/

int stack dtcm : ORIGIN
as stack*/

0x20020000-0x1000, LENGTH = 0x1000/*Set last 4KB DTCM

1. Change the symbols from the default SRAM address to the DTCM address. The Stack start cO will
be assigned to the MSP in the startup code.

Old:

__Stack _end cO = ORIGIN (int sram stack cO0);
___Stack _start cO ORIGIN (int sram stack c0) + LENGTH(int sram stack cO0);

New:

__Stack _end cO ORIGIN (int stack dtcm);
__Stack start c0 = ORIGIN(int stack dtcm) + LENGTH (int stack dtcm);

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
27135

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

Last, we need to update the boundary for the DTCM end address INT DTCM END which is used for ECC
initialization.

Old:

__INT DTCM START = ORIGIN (int dtcm);

~_INT DTCM END = ORIGIN (int dtcm) + LENGTH (int dtcm) ;
New:

__INT DTCM_START
__INT DTCM END

ORIGIN (int_dtcm) ;
ORIGIN (int_dtcm) + LENGTH (int dtcm) + LENGTH (int_ stack dtcm);

Now we can see from the map file the stack start address is the end address of the DTCM.

0x2001£000 __Stack end cO0 = ORIGIN (int stack dtcm)
0x20020000 ___Stack start c0 = (ORIGIN (int stack dtcm) + LENGTH
(int stack dtcm))

13.8 Relocating the vector table in DTCM

For quicker ISR response, the vector table can also be relocated to the DTCM instead of SRAM. Simply move
the vector table section from the SRAM to the DTCM. Note that the start address of the vector table must be
4096 bytes aligned.

Old:

.non_cacheable data : AT(non cacheable data rom)

{
= ALIGN (4) ;

__non_cacheable data start = .;

/*the vector table start*/

= ALIGN (4096) ;

__interrupts ram start = .;
+= _ interrupts_rom end - _ interrupts_rom start;
= ALIGN (4);

__interrupts ram end = .;
/*the vector table end*/
*(.mcal data no cacheable)
= ALIGN (4) ;
*(.mcal const no cacheable)
= ALIGN (4) ;
HSE LOOP ADDR = .;

LONG (0x0) ;

__non_cacheable data end = .;
} > int sram no cacheable

New:

.dtcm _data : AT(_ dtcm rom)

{
= ALIGN (4);

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
28/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

__dtcm data start = .;

/*the vector table start*/

= ALIGN (4096) ;

__interrupts ram start = .;
+= _ interrupts_rom end - _ interrupts_rom start;
= ALIGN (4);

interrupts ram end = .;

/*the vector table end*/

= ALIGN (4);

*(.dtcm data)
= ALIGN (4);
__dtcm data end = .;
} > int dtcm

We can see from the address the vector table are in the DTCM.

.dtcm _data 0x20000000 0x40c load address 0x00412378
0x20000000 . = ALIGN (0x4)
0x20000000 __dtcm data start =
0x20000000 . = ALIGN (0x1000)

0x20000000 __ interrupts_ram start =

0x20000408 . = (. + (__interrupts rom end -
__interrupts rom start))
AL 0x20000000 0x408

0x20000408 = ALIGN (0x4)

0x20000408 __ interrupts_ram end =

13.9 #pragma GCC section

When we have a large amount of data or functions to be relocated to a specific section, we don’t want to add
__attribute__to the variables one by one, the “#pragma GCC section” can be used to relocate multiple
variables/functions in one section at one time.

The typical format is below:

#pragma
Variables/functions definition

#pragma

This example shows relocating multiple variables with initial values in the DTCM.

#pragma GCC section data ".dtcm data"
uint32 t g numberl = 100;
uint32 t g number?2 200;
uint32 t g number3 300;
uint32 t g number4 = 400;
uint32 t g number5 500;
uint32 t g number6 = 600;

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
29/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

#pragma GCC section data "default"

We can see from the map file these variables are in the DTCM.

*(.dtcm data)

.dtcm data 0x20000408 0x18 ./src/User.o
0x20000408 g_numberl
0x2000040c g_number2
0x20000410 g_number3
0x20000414 g_number4
0x20000418 g_number5
0x2000041c g_number6

This examples shows relocating multiple functions in the SRAM.

#pragma GCC section text ".ramcode"
/*@brief: This function toggles the blue LED every 1 second.*/
void LED blue_ function ()

{

uint32 t 1i,3;

Siul2 Dio Ip TogglePins (LED BLUE PORT, 1<<LED BLUE PIN) ;

for (1i=0;1<4000; 1++)
for (§=0;§<4000; j++)

I3

}
/*@brief: This function toggles the red LED every 1 second.*/
void LED_red function ()

{

uint32 t 1i,7;

Siul2 Dio Ip TogglePins (LED RED PORT,1<<LED RED PIN) ;

for (1=0;1<4000;1i++)
for (j=0;3<4000; j++)

’

}

void delay function()

{

uint32 t 1i,7;
for (1=0;1<4000; i++)

for (j=0;3<4000; j++)

’

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback
30/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN 1 4893

S32K3xx Linker File and Startup Code

#pragma GCC section text "default"

The same #pragma directive need to be added to the function declaration.

#pragma GCC section text ".ramcode"
void LED blue function (void);

void LED_red function (void);

void delay function (void);

#fpragma GCC section text "default"

We can see from the map file these functions are in the SRAM.

.ramcode 0x204080dc Oxbc ./src/User.o
0x204080dc LED blue function
0x20408120 LED red function

0x20408164 delay_ function

14 Others

For DMA transmitting, the user must use the variables from the non-cacheable section instead of the cacheable
section, otherwise, the DMA may not get the correct data in the end address.

One memory region can contain several sections, but one section can’t be distributed to several non-contiguous
memory regions.

There is tiny difference between the GNU linker script and other platforms such as IAR and GreenHills, but the
whole startup procedure is the same.

There is no functional restriction that code and data are placed in either the DTCM or ITCM. But best
performance is achieved if code is placed in ITCM and data in DTCM.

For more knowledge of the GNU linker script, please refer to the file <ld.pdf> in the S32DS installation location
C:\NXP\S32DS.3.4\S32DS\build_tools\gcc v10.2\gce-10.2-arm32-eabi\arm-none-eabi\share\docs\pdf\ld.pdf

15 Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2026 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
31/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors

AN14893

S32K3xx Linker File and Startup Code

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

16 Revision history

Table 1. Revision history

Document ID Revision date Description

AN14893v. 1.0 28 December 2025 Initial release

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 28 December 2025 Document feedback

32/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors

AN14893

Legal information

S32K3xx Linker File and Startup Code

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

AN14893

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

© 2026 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 28 December 2025

Document feedback
33/35

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors

AN14893

S32K3xx Linker File and Startup Code

Tables

Tab. 1. Revision history ..o 32

Figures

Fig. 1. The linking Processccccocveeviiieerieieniieeinen, 2 Fig. 15. Code example: disable global interrupt and

Fig. 2. Syntax: MEMORY commandc.cccevveeenne. 3 clear CPU registerccccevvviieeieeiiiieee e 10

Fig. 3. Syntax: SECTIONS commandcccecevennen. 4 Fig. 16. Code example: Enable MSCM clock code 10

Fig. 4. Code example: Wildcard character (*) 4 Fig. 17. Code example: Relocate vector table to

Fig. 5. Code example: Location counter (.) 5 RAM e 11

Fig. 6. Code example 1 ..o 5 Fig. 18. Example code block: Initialize CPU core

Fig. 7. Code example 2ccccoeeviiiiiie e 5 SEACK v 11

Fig. 8. Code example: AT commandccccceeeeenneee. 5 Fig. 19. Disable SWT watchdogcccccoevviveeevicineennnn. 12

Fig. 9. Code example: KEEP commandcccccce..e. 6 Fig. 20. Example code: Debugger held core loop 14

Fig. 10. Code example: Linker script symbol 6 Fig. 21. S32K3 RAM data copy processcccceeuuee.. 15

Fig. 11. Code example: S32K3 linker filecccceen.e. 7 Fig. 22. Copy table with four sectionsccccceeeee. 15

Fig. 12. S32K3 Startup Procedure Overview 8 Fig. 23. Copy table with three sectionscc......... 16

Fig. 13. Boot header definition detailscccceenee. 9 Fig. 24. init_data_bss functioncccccccoriiiniinnnnnns 16

Fig. 14. Code example: Boot headercccceevnenne 9 Fig. 25. Code example: Systeminit() function 16
Fig. 26. Code example: Main routineccccoceeevnnen. 17

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 28 December 2025

Document feedback
34/35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors

AN14893

S32K3xx Linker File and Startup Code

Contents
1 Introduction ... 2
2 ENTRY commandccoomiiiiiiioinrerccieeeeeeaes 2
3 MEMORY commandccoccoooimiiiceeericcees 2
4 SECTIONS commandcccoeiceiiericccneeenan. 3
5 Wildcard character (*)ccccoeoemricciesnnniccines 4
6 Location counter (.)cccoeomiiiiiiamriincceeeeeees 4
7 ALIGN commandcccooomiiiiiiereeecmeeeeeees 5
8 AT command ... 5
9 KEEP commandcccooomiiiiiiiereecceeeeeenes 6
10 Linker script symbol ..o 6
11 Explanation of the S32K3 linker file 6
12 Startup Code Overviewcccccceervmmmmeeeeeennns 7
12.1 Boot header ... 8
12.2 Disable global interrupt and clear CPU

FEQISTEr e 9
12.3 Enable MSCM clocKcccooeiiiiiiiiiiiiiieeee 10
124 Relocate vector table to RAM ...l 11
12.5 Initialize CPU core stackcccccceviiieennies 11
12.6 Disable SWT watchdogccccceeiiiiiinieniee. 11
12.7 RAM ECC initializationcccocceviierinniinnnne. 12
12.8 Wait for debugger to hold the core 14
12.9 RAM data Copy ...cccveeieiiiiiie e 14
12.10 System initializationcoccooiiiii 16
12.11 Jump to main routineccccccoeiiiinii, 17
13 EXamplesccooceremreiiriiicsccccccmseneneree e 17
13.1 Relocating code in RAM ... 17
13.2 Relocating code in ITCMcccooeiiiiiieees 17
13.3 Relocating data in DTCMccoccoiiiiiiiieenn. 20
134 Relocating data in standby RAM 22
13.5 Relocating data in data flash 25
13.6 Linking a binary filecccccooiiiiiiiiiie 26
13.7 Relocating the stack in DTCMcccooeeee. 27
13.8 Relocating the vector table in DTCM 28
13.9 #pragma GCC sectioncccoeiiiiiiiiiiiieeees 29
14 Others ... 31
15 Note about the source code in the

document ... 31
16 Revision historycooiiiiiiiomiiiciieeeecces 32

Legal informationccccoooiiiiiiiiiieeee 33

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2026 NXP B.V.

For more information, please visit: https://www.nxp.com

All rights reserved.

Document feedback

Date of release: 28 December 2025
Document identifier: AN14893

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

	1 Introduction
	2 ENTRY command
	3 MEMORY command
	4 SECTIONS command
	5 Wildcard character (*)
	6 Location counter (.)
	7 ALIGN command
	8 AT command
	9 KEEP command
	10 Linker script symbol
	11 Explanation of the S32K3 linker file
	12 Startup Code Overview
	12.1 Boot header
	12.2 Disable global interrupt and clear CPU register
	12.3 Enable MSCM clock
	12.4 Relocate vector table to RAM
	12.5 Initialize CPU core stack
	12.6 Disable SWT watchdog
	12.7 RAM ECC initialization
	12.8 Wait for debugger to hold the core
	12.9 RAM data copy
	12.10 System initialization
	12.11 Jump to main routine

	13 Examples
	13.1 Relocating code in RAM
	13.2 Relocating code in ITCM
	13.3 Relocating data in DTCM
	13.4 Relocating data in standby RAM
	13.5 Relocating data in data flash
	13.6 Linking a binary file
	13.7 Relocating the stack in DTCM
	13.8 Relocating the vector table in DTCM
	13.9 #pragma GCC section

	14 Others
	15 Note about the source code in the document
	16 Revision history
	Legal information
	Tables
	Figures
	Contents

