
AN14893
S32K3xx Linker File and Startup Code
Rev. 1.0 — 28 December 2025 Application note

Document information
Information Content

Keywords Linker file, startup code

Abstract The linker script is a text file which has the file extension of .ld. It explains how different sections of
the object files should be merged to create an executable file. It also includes the code and data
memory address and size information.

https://www.nxp.com

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

1 Introduction

The linker file is written using the GNU linker command language and most of the startup code is using
assembly language. There are some situations that the programmer needs to modify the code of these areas.
This application note can help them to better understand the GNU linker command language that showed up
in the S32K3 linker file, how the memory of S32K3 is allocated by the linker file, how S32K3 is initialized after
SBAF initialization and what is done before jumping to the main function. Some typical examples are also
provided to show the modification for the linker file and startup code.

Note: The code mentioned in this AN is based on RTD 2.0.1.

The linker script is a text file which has the file extension of .ld. It explains how different sections of the object
files should be merged to create an executable file. It also includes the code and data memory address and size
information.

Figure 1. The linking process

2 ENTRY command

This command is used to set the “Entry point address” information in the header of the executable .elf file. It’s
the first code to execute after the microcontroller reset.

For S32K3, we can see the code ENTRY(Reset_Handler) in the linker file. It indicates the function
Reset_Handler() is the first code to execute for the application cortex M7 core after the sBAF execution.

3 MEMORY command

This command allows you to describe the different memories present in the target and their start address and
size information.

The typical syntax is:

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
2 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Figure 2. Syntax: MEMORY command

The linker will calculate the total code and data memory consumed so far and will report an error if the data,
code or stack areas cannot fit into available size.

The name of the memory region can be any legal name compliant with the C variable naming rule, it will be later
referenced by other parts of the linker script.

The attribute can be “R” (Read-only), “W” (read/write), “X” (Executable), “A” (Allocatable), “I/L” (Initialized) or
their combinations. It can also be left open.

4 SECTIONS command

The SECTIONS command tells the linker how to map input sections into output sections,

and how to place the output sections in memory.

There are 4 kinds of typical section types.

text – code

rodata – read-only data

data – read-write initialized data

bss – read-write zero initialized data

There are 2 concepts VMA and LMA. VMA means Virtual Memory Address or runtime address, LMA means
Load Memory Address or ROM address. For the global variables which have the initial value(data section),
these initial values are stored in the flash and are loaded to the RAM by the startup code. Thus the ROM
address is LMA, the RAM address is VMA. The bss section does not have the LMA.

The typical syntax is:

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
3 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Figure 3. Syntax: SECTIONS command

5 Wildcard character (*)

The wildcard character (*) simply tells the linker to merge the section of all the input file.

Code examples:

Figure 4. Code example: Wildcard character (*)

6 Location counter (.)

This is a special linker symbol denoted by a dot (.). The linker automatically updates this symbol with
location(address) information. It can be used to track and define the boundaries of various sections. This
location counter can be set to any specific value as well.

Code examples:

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
4 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Figure 5. Code example: Location counter (.)

7 ALIGN command

The ALIGN command simply returns the address of the next aligned boundary if the current address is not
aligned. The aligned value must be the power of 2.

Figure 6. Code example 1

From the linker file and map file of S32K3, we can see after storing the .boot_header which is 0x2c bytes
long from the flash address 0x0040_0000, since the current address is 0x0040_002c which is not 4096 bytes
aligned, the location counter increments to the next 4096 bytes aligned boundary, which is 0x0040_1000. And
the symbol _text_start which indicates the start address of the code section start here.

Figure 7. Code example 2

8 AT command

The AT command indicates the LMA of the section.

Code example:

Figure 8. Code example: AT command

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
5 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

9 KEEP command

When link-time garbage collection is in use (‘--gc-sections’) as link option, it is often useful to mark sections that
should not be eliminated. This is accomplished by surrounding an input section’s wildcard entry with KEEP().

Code examples:

Figure 9. Code example: KEEP command

10 Linker script symbol

A symbol is the name of an address. It’s similar to the variable declaration in the ‘C’ application. Most of
the symbols are to record the boundaries of the sections and are referred by the startup code for memory
initialization. And of course they can be used in the ‘C’ application.

Code examples:

Figure 10. Code example: Linker script symbol

11 Explanation of the S32K3 linker file

Below shows a full (.sram_data) section definition from the S32K3 linker file <linker_flash_s32k344.ld>.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
6 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Figure 11. Code example: S32K3 linker file

12 Startup Code Overview

After SBAF initialization, the HSE core(ARM Cortex M0+) goes to sleep, the application core(ARM Cortex M7)
takes over. Like other ARM Cortex-M core MCUs, it starts executing from the function Reset_Handler(), it jumps
to the function main() where the engineer can start writing the application code. The below chart shows the
whole procedure of the startup code, which is written by the assembly code mainly.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
7 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Figure 12. S32K3 Startup Procedure Overview

12.1 Boot header
The boot header is defined in the file startup_cm7.s. It is also called Image Vector Table (IVT). It contains
the information of boot configuration, core start address, Life Cycle configuration,.etc. For more details
please check the boot chapter of the S32K3 Reference Manual. It can only be stored in the 5 fixed addresses
(0x0040_0000, 0x0050_0000, 0x0060_0000, 0x0070_0000, 0x1000_0000) and be parsed by the sBAF. The
default S32K3 linker file store the boot header in the address 0x0040_0000.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
8 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Figure 13. Boot header definition details

Figure 14. Code example: Boot header

12.2 Disable global interrupt and clear CPU register
S32K3 disables the global interrupt and clears the CPU register R0 – R7 at the beginning of the
Reset_Handler().

Code:

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
9 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Figure 15. Code example: disable global interrupt and clear CPU register

12.3 Enable MSCM clock
This step enables the clock of MSCM module which contains CPU configuration, On-chip memory control,
interrupt router control,.etc by writing 1 to Register PRTN1_COFB0_CLKEN[REQ24]. The enablement requires
the MODE_UPD register configuration and following with a valid key combination.

Figure 16. Code example: Enable MSCM clock code

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
10 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

12.4 Relocate vector table to RAM
This vector table(intc_vector) is defined in the file Vector_Table.s. It is stored in the flash primarily and
copied to the SRAM. This step sets the base address of the vector table RAM location to the VTOR(Vector
Table Offset Register) thus the core can jump to the relevant ISR according to different vector numbers. There
are 2 benefits of relocating the vector table to the RAM instead of flash, the first one is when the core fetches
the ISR once an interrupt occurs, accessing RAM will be quicker than accessing the flash. The other benefit is
the user may need to modify the ISR names in their user code since the vector table is in the RAM now instead
of flash.

Code:

Figure 17. Code example: Relocate vector table to RAM

12.5 Initialize CPU core stack
This step initializes the stack pointer MSP.

Code:

Figure 18. Example code block: Initialize CPU core stack

12.6 Disable SWT watchdog
The software watchdog timer is enabled by default. Need to be disabled during the startup process.

Code:

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
11 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Figure 19. Disable SWT watchdog

12.7 RAM ECC initialization
After the chip’s power on reset and before using the RAM, the user must initialize it to avoid ECC errors. The
program size must be 2 words(64 bits) aligned. The same procedure is done for SRAM, DTCM and ITCM. This
is the most time-consuming step for the whole startup procedure.

Code:

RamInit:

/* Initialize SRAM ECC */

ldr r0, =__RAM_INIT

 cmp r0, 0

/* Skip if __SRAM_INIT is not set */

 beq SRAM_LOOP_END
 ldr r1, =__INT_SRAM_START
 ldr r2, =__INT_SRAM_END
 subs r2, r1
 subs r2, #1
 ble SRAM_LOOP_END
 movs r0, 0
 movs r3, 0
 SRAM_LOOP:
 stm r1!, {r0,r3}
 subs r2, 8

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
12 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

bge SRAM_LOOP

SRAM_LOOP_END:
 DTCM_Init:

/* Initialize DTCM ECC */

 ldr r0, =__DTCM_INIT
 cmp r0, 0

/* Skip if __DTCM_INIT is not set */

 beq DTCM_LOOP_END

/* Enable TCM */

 LDR r1, =CM7_DTCMCR
 LDR r0, [r1]

LDR r2, =0x1

 ORR r0, r2

STR r0, [r1]

 ldr r1, =__INT_DTCM_START
 ldr r2, =__INT_DTCM_END
 subs r2, r1
 subs r2, #1
 ble DTCM_LOOP_END
 movs r0, 0
 movs r3, 0
 DTCM_LOOP:
 stm r1!, {r0,r3}
 subs r2, #8

bge DTCM_LOOP

DTCM_LOOP_END:
 ITCM_Init:

/* Initialize ITCM ECC */

 ldr r0, =__ITCM_INIT
 cmp r0, 0

/* Skip if __TCM_INIT is not set */

 beq ITCM_LOOP_END

/* Enable TCM */

 LDR r1, =CM7_ITCMCR
 LDR r0, [r1]

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
13 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

LDR r2, =0x1

 ORR r0, r2

STR r0, [r1]

 ldr r1, =__INT_ITCM_START
 ldr r2, =__INT_ITCM_END
 subs r2, r1
 subs r2, #1
 ble ITCM_LOOP_END
 movs r0, 0
 movs r3, 0
 ITCM_LOOP:
 stm r1!, {r0,r3}
 subs r2, #8
 bge ITCM_LOOP
 ITCM_LOOP_END:

12.8 Wait for debugger to hold the core
In some situations the debugger wants to hold the core, the debugger can write a fixed value 0x5A5A5A5A to
the variable RESET_CATCH_CORE defined in the file ../Project_Settings/Startup_Code/system.c.

Figure 20. Example code: Debugger held core loop

12.9 RAM data copy
This step copies the data which is in the RAM but stored in flash primarily to its RAM location. It includes

1. Copy the vector table from ROM to RAM.
2. Copy initialized data(.data) from ROM to RAM.
3. Copy code that should reside in RAM from ROM.
4. Clear the zero-initialized data(.bss) section.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
14 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Figure 21. S32K3 RAM data copy process

There is a copy table defined in the startup_cmy.s file. There are 4 sections defined by default. Each section has
3 symbols: RAM_START, ROM_START, ROM_END. The addresses of the symbols are obtained in the linker
file and are referred in the function init_data_bss() to do the copy work.

Figure 22. Copy table with four sections

For the variables in the bss section, due to no initialized value is stored in the flash, thus each section has only
2 symbols, RAM_START and RAM_END. The function init_data_bss() initializes these sections by writing
zero.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
15 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Figure 23. Copy table with three sections

Code:

Figure 24. init_data_bss function

The implementation of the function init_data_bss() is in the file ../Project_Settings/Startup_Code/startup.c.

12.10 System initialization
This step does some system initialization. It includes

1. Configure MSCM to enable/disable interrupts routing to Core processor.
2. Enable FPU.
3. Enable MPU.
4. Enable I/D Cache.

These functions can be enabled/disabled by adding/removing the MACROs defined in Project/Property/C/C++
Build/Settings/Standard S32DS C Complier/Preprocessor/Defined symbols.

These MACROs includes

I_CACHE_ENABLE,

D_CACHE_ENABLE,

ENABLE_FPU,

MPU_ENABLE.

To enable FPU, the user also needs to make sure the option Project/Property/C/C++ Build/Settings/Target
Processor/Float ABI is FP instructions(hard). It tells the compiler to compile the floating point calculation code
by dedicated FPU instructions instead of ARM eabi library.

Figure 25. Code example: SystemInit() function

The implementation of the function SystemInit() is in the file ../Project_Settings/Startup_Code /system.c.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
16 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

12.11 Jump to main routine
This is the last step of the startup code. It enables the CPU global interrupt, switches to user mode if it’s enabled
by Autosar, and jumps to the main function finally.

Code:

Figure 26. Code example: Main routine

13 Examples

13.1 Relocating code in RAM
Sometimes it is required to relocate the function to RAM for faster execution or other reason. In the S32K3
default linker file, there is a .ramcode section defined already, simply use the keyword __attribute__ to
relocate the function into this section. The same keyword must be added to the declaration of the function too.

Code Example:

void __attribute__ ((section(".ramcode"))) LED_function()
{

uint32_t i,j;

 Siul2_Dio_Ip_TogglePins(LED_GREEN_PORT,1<<LED_GREEN_PIN);

for(i=0;i<4000;i++)

for(j=0;j<4000;j++)

;

}

We can see from the map file the LED_function() is at the RAM address 0x2040_80dc.

.sram_data 0x20408000 0x1b8 load address 0x00412150
 0x20408000 . = ALIGN (0x4)
 0x20408000 __sram_data_begin__ = .
 0x20408000 . = ALIGN (0x4)
 *(.ramcode)
 .ramcode 0x20408000 0xdc ./RTD/src/Clock_Ip_Specific.o

.ramcode 0x204080dc 0x44 ./src/main.o

0x204080dc LED_function

13.2 Relocating code in ITCM
ITCM(Instruction Tightly Coupled Memory) is zero wait memory, the time of CPU accessing ITCM will be faster
than accessing flash or SRAM. To use the ITCM memory, below steps are needed.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
17 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

1. Define the ITCM section in the linker file. Since the default linker file has defined the ITCM memory region
int_itcm, we can start with the section definition.

__itcm_rom = __shareable_data_rom_end; /*obtain the LMA of .itcm section,
 the .itcm section is put after .shareable_bss section*/
.itcm : AT(__itcm_rom)
{
 . = ALIGN(4);
 __itcm_start = .;
 *(.itcm_code)
 . = ALIGN(4);
 __itcm_end = .;
} > int_itcm
__itcm_rom_end = __itcm_rom + (__itcm_end - __itcm_start);

The default linker file does not include the ARM EABI GNU reserved section placement, user should add them
and place them into Flash to avoid TCM(itcm/dtcm) or data section placement overlaps.

 .flash :
 {

…

 } > int_flash
 ARM.exidx :
{

(.ARM.exidx)

(.gnu.linkonce.armexidx.)

(.glue)

(.vfp11)

(.v4)

(.iplt)

(.rel)

} > int_flash

Without adding the ARM.exidx section, you will see the below linking error.

1. Obtain the addresses for data copy from flash to ITCM in the linker file.

__RAM_ITCM_START = __itcm_start;
__ROM_ITCM_START = __itcm_rom;
__ROM_ITCM_END = __itcm_rom_end;

The 3 new symbols(__RAM_ITCM_START, __ROM_ITCM_START, __ROM_ITCM_END) are defined in the
init_table, change the total elements from 4 to 5.

.section ".init_table", "a"

.long 5
AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
18 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

.long __RAM_CACHEABLE_START

.long __ROM_CACHEABLE_START

.long __ROM_CACHEABLE_END

.long __RAM_NO_CACHEABLE_START

.long __ROM_NO_CACHEABLE_START

.long __ROM_NO_CACHEABLE_END

.long __RAM_SHAREABLE_START

.long __ROM_SHAREABLE_START

.long __ROM_SHAREABLE_END

.long __RAM_INTERRUPT_START

.long __ROM_INTERRUPT_START

.long __ROM_INTERRUPT_END

.long __RAM_ITCM_START

.long __ROM_ITCM_START

.long __ROM_ITCM_END

Finally, add __attribute__ ((section(".itcm_code"))) to the function which you wish to be relocated
in the ITCM.

/*@brief: This is the ISR of SIUL IRQ1, source 08-15*/
void __attribute__ ((section(".itcm_code"))) SIUL_1_Handler()
{

/* Clear pending interrupt flag */

 (Siul2_Icu_Ip_pBase[0])->DISR0 = 0xFFFFFFFF;/*Clear all the interrupt
 pending bit*/

Siul2_Dio_Ip_TogglePins(LED_RED_PORT,1<<LED_RED_PIN);

printf("ISR occurred %d times.\n",++g_counterInIsrStandbyRam);

__asm("isb ");

}

Now we can see from the map file the function SIUL_1_Handler() is located in the ITCM address
0x0000_0000.

.itcm 0x00000000 0x44 load address 0x0041230c
 0x00000000 . = ALIGN (0x4)
 0x00000000 __itcm_start = .
 *(.itcm_code)

.itcm_code 0x00000000 0x44 ./src/main.o

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
19 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

0x00000000 SIUL_1_Handler

 0x00000044 . = ALIGN (0x4)
 0x00000044 __itcm_end = .
 0x00412350 __itcm_rom_end = (__itcm_rom +
 (__itcm_end - __itcm_start))

13.3 Relocating data in DTCM
DTCM(Data Tightly Coupled Memory) is similar to ITCM but is dedicated for data. Below shows the steps
needed for using it.

1. Define the DTCM section in the linker file. Since there are 2 kinds of data types .data(with initialized value)
and .bss(without initialized value). We created 2 sections .dtcm_data and .dtcm_bss in DTCM.

 __dtcm_rom = __itcm_rom_end; /*obtain the LMA of .dtcm_data section,
 the .dtcm_data section is put after .itcm section*/
 .dtcm_data : AT(__dtcm_rom)
 {
 . = ALIGN(4);
 __dtcm_data_start = .;
 *(.dtcm_data)
 . = ALIGN(4);
 __dtcm_data_end = .;
 } > int_dtcm
 __dtcm_rom_end = __dtcm_rom + (__dtcm_data_end - __dtcm_data_start);
 .dtcm_bss (NOLOAD) :
 {
 . = ALIGN(4);
 __dtcm_bss_start = .;
 *(.dtcm_bss)
 . = ALIGN(4);
 __dtcm_bss_end = .;
 } > int_dtcm

1. Obtain the boundary addresses for data initialization in the linker file.

 __RAM_DTCM_START = __dtcm_data_start;
 __ROM_DTCM_START = __dtcm_rom;
 __ROM_DTCM_END = __dtcm_rom_end;
 __BSS_DTCM_START = __dtcm_bss_start;
 __BSS_DTCM_END = __dtcm_bss_end;
 __BSS_DTCM_SIZE = __dtcm_bss_end - __dtcm_bss_start;

The 3 new symbols (__RAM_DTCM_START, __ROM_DTCM_START, __ROM_DTCM_END) are defined
in the init_table, change the total elements from 5 to 6 since we have created the ITCM section. The 2
symbols(__BSS_DTCM_START, __BSS_DTCM_END) are defined in the zero_table, change the total elements
from 3 to 4.

.section ".init_table", "a"

.long 6

.long __RAM_CACHEABLE_START

.long __ROM_CACHEABLE_START

.long __ROM_CACHEABLE_END

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
20 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

.long __RAM_NO_CACHEABLE_START

.long __ROM_NO_CACHEABLE_START

.long __ROM_NO_CACHEABLE_END

.long __RAM_SHAREABLE_START

.long __ROM_SHAREABLE_START

.long __ROM_SHAREABLE_END

.long __RAM_INTERRUPT_START

.long __ROM_INTERRUPT_START

.long __ROM_INTERRUPT_END

.long __RAM_ITCM_START

.long __ROM_ITCM_START

.long __ROM_ITCM_END

 .long __RAM_DTCM_START
 .long __ROM_DTCM_START
.long __ROM_DTCM_END
.section ".zero_table", "a"

.long 4

.long __BSS_SRAM_SH_START

.long __BSS_SRAM_SH_END

.long __BSS_SRAM_NC_START

.long __BSS_SRAM_NC_END

.long __BSS_SRAM_START

.long __BSS_SRAM_END

 .long __BSS_DTCM_START
 .long __BSS_DTCM_END

Last, use key word __attribute__ to relocate the data into the DTCM.

uint32_t __attribute__ ((section(".dtcm_bss"))) g_counterDtcmBss;
uint32_t __attribute__ ((section(".dtcm_data"))) g_counterDtcmData = 20;

Now we can see from the map file the 2 variables are in the DTCM .bss section and .data section respectively.

.dtcm_data 0x20000408 0x4 load address 0x00412758
 0x20000408 . = ALIGN (0x4)
 0x20000408 __dtcm_data_start = .
 *(.dtcm_data)
 .dtcm_data 0x20000408 0x4 ./src/main.o

0x20000408 g_counterDtcmData

 0x2000040c . = ALIGN (0x4)
 0x2000040c __dtcm_data_end = .

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
21 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

 0x0041275c __dtcm_rom_end = (__dtcm_rom +
 (__dtcm_data_end - __dtcm_data_start))
.dtcm_bss 0x2000040c 0x4 load address 0x0041275c
 0x2000040c . = ALIGN (0x4)
 0x2000040c __dtcm_bss_start = .
 *(.dtcm_bss)
 .dtcm_bss 0x2000040c 0x4 ./src/main.o

0x2000040c g_counterDtcmBss

 0x20000410 . = ALIGN (0x4)
 0x20000410 __dtcm_bss_end = .

13.4 Relocating data in standby RAM
Only the data in the standby RAM can be retained during standby mode while most of the other RAM will be
powered off. There is 32KB standby RAM for S32K344. Below shows the steps to enable it.

1. The standby RAM is at the beginning of SRAM, the default linker uses it as normal SRAM, we need to
create a separate memory region for it.

The default SRAM memory region definition is below:

int_sram : ORIGIN = 0x20400000, LENGTH = 0x0002DF00 /* 183.9K */

The memory region definition after extracting the standby RAM.

int_standbysram : ORIGIN = 0x20400000, LENGTH = 0X00008000/* standby ram 32KB*/
int_sram : ORIGIN = 0x20400000 + 0x8000, LENGTH = 0x0002DF00 - 0x8000/* 183.9K
 -0x8000*/

1. Define the standby RAM section. To make the code easier we created a .bss section only. If user wishes to
create a .data section for standby RAM, please refer to how it’s done in the DTCM.

 .sram_standby (NOLOAD):
 {

. += ALIGN(4);

__standby_bss_start = .;

*(.sram_standby_bss)

__standby_bss_end = .;

} > int_standbysram

1. Define 2 symbols(__BSS_STANDBY_SRAM_START, __BSS_STANDBY_SRAM_END) in the zero table for
data initialization and increase the total elements from 4 to 5.

.section ".zero_table", "a"

.long 5

.long __BSS_SRAM_SH_START

.long __BSS_SRAM_SH_END

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
22 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

.long __BSS_SRAM_NC_START

.long __BSS_SRAM_NC_END

.long __BSS_SRAM_START

.long __BSS_SRAM_END

.long __BSS_DTCM_START

.long __BSS_DTCM_END

.long __BSS_STANDBY_SRAM_START

.long __BSS_STANDBY_SRAM_END

And obtain the boundary addresses of the .bss section for clearing zero table.

 __BSS_STANDBY_SRAM_START = __standby_bss_start;
__BSS_STANDBY_SRAM_END = __standby_bss_end;

Obtain the boundary addresses for the whole standby RAM for ECC data initialization.

 __STANDBY_SRAM_START = ORIGIN(int_standbysram);
__STANDBY_SRAM_SIZE = LENGTH(int_standbysram);

1. We have known that all the RAM needs to be ECC initialized before using. But for the data in standby RAM,
we need to skip it in case of standby exit to retain the data. This is the standby RAM ECC initialization
function being added in the file startup.c.

static void standbyRamEccInit(void)
{

register uint32_t Cnt;

register long long *pDest;

if (IP_MC_RGM->DES & MC_RGM_DES_F_POR_MASK)/*init the standbyRAM only when it's
power on Reset*/

{

/* Standby SRAM ECC init */

Cnt = (uint32)(&__STANDBY_SRAM_SIZE) / 8;

pDest = (long long *)(&__STANDBY_SRAM_START);

while (Cnt--)

{

*pDest = (long long)0;

pDest++;

}

IP_MC_RGM->DES = MC_RGM_DES_F_POR_MASK; /* Write 1 to clear F_POR */

}

}

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
23 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

In the data copy function init_data_bss(), we need to do the same skip for standby exit. Since we only
defined the .bss section in the standby RAM, we skip the zeroTable only. If user defined .data section, the
same skip is needed for the initTable. And we put the standbyRamEccInit() function before the data copy
process.

extern uint32_t __STANDBY_SRAM_START;
extern uint32_t __STANDBY_SRAM_SIZE;
extern uint32_t __BSS_STANDBY_SRAM_START;
void init_data_bss(void);
static void standbyRamEccInit(void);
void init_data_bss(void)
{

const Sys_CopyLayoutType * copy_layout;

const Sys_ZeroLayoutType * zero_layout;

const uint8 * rom;

uint8 * ram;

uint32 len = 0U;

uint32 size = 0U;

uint32 i = 0U;

uint32 j = 0U;

const uint32 * initTable_Ptr = (uint32 *)__INIT_TABLE;

const uint32 * zeroTable_Ptr = (uint32*)__ZERO_TABLE;

/*Add the standbyRam ECC init here. If user want to define the .data segment in
the standbyRam, need to skip the data copy when it is recovered from the standby
mode.*/

standbyRamEccInit();

/* Copy initialized table */

 len = *initTable_Ptr;
 initTable_Ptr++;
 copy_layout = (const Sys_CopyLayoutType *)initTable_Ptr;

for(i = 0; i < len; i++)

 {
 rom = copy_layout[i].rom_start;
 ram = copy_layout[i].ram_start;
 size = (uint32)copy_layout[i].rom_end -
 (uint32)copy_layout[i].rom_start;

for(j = 0UL; j < size; j++)

 {
 ram[j] = rom[j];
 }
 }

/* Clear zero table */

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
24 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

len = *zeroTable_Ptr;

 zeroTable_Ptr++;

zero_layout = (const Sys_ZeroLayoutType *)zeroTable_Ptr;

for(i = 0; i < len; i++)

 {

/*bypass the data initialization for standbyRAM if it's not power on reset.*/

if((IP_MC_RGM->DES__BSS_STANDBY_SRAM_START != zero_layout[i].ram_start))

{

ram = zero_layout[i].ram_start;

size = (uint32)zero_layout[i].ram_end - (uint32)zero_layout[i].ram_start;

for(j = 0UL; j < size; j++)

{

ram[j] = 0U;

}

}

 }
}

Finally,use key word __attribute__ to put the data into the standby RAM.

uint32_t __attribute__ ((section(".sram_standby_bss"))) g_counterStandbyRam;
uint32_t __attribute__ ((section(".sram_standby_bss")))
 g_counterInIsrStandbyRam;

In the map file we can see the 2 variables are in the standby RAM.

.sram_standby 0x20400000 0x8
 0x00000000 . = (. + ALIGN (0x4))
 0x20400000 __standby_bss_start = .
 *(.sram_standby_bss)
 .sram_standby_bss
 0x20400000 0x8 ./src/main.o
 0x20400000 g_counterStandbyRam
 0x20400004 g_counterInIsrStandbyRam
 0x20400008 __standby_bss_end = .

Note: The D-cache need to be disabled to make the standby RAM work, or you can set this memory region as
non-cacheable in the MPU settings.

13.5 Relocating data in data flash
There are 128KB data flash in S32K344 and is not defined by the default linker file. We know from the HSE RM
that the HSE firmware used the last 40KB, so we have 88KB that can be used by the application core. For using
it,

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
25 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

1. we need to create the memory region as always.

int_data_flash : ORIGIN = 0x10000000, LENGTH = 0x16000 /* 128-40 =88KB data
 flash,HSE used the last 40KB*/

2.Define the .data_flash section

 .data_flash :
 {
 . = ALIGN(4);
 *(.DFlash)
 } > int_data_flash

3.Use the key word __attribute__ to relocate the variable in this section.

uint8_t __attribute__ ((section(".DFlash"))) g_msg[] = "Hello,S32K3";

Now we can see from the map file the variable is in the data flash.

.data_flash 0x10000000 0xc
 0x10000000 . = ALIGN (0x4)
 *(.DFlash)
 .DFlash 0x10000000 0xc ./src/main.o

0x10000000 g_msg

13.6 Linking a binary file
There are some situations we need to link an existing binary file to the current project. Such as the firmware of
the HSE core, the firmware of other MCU. Below shows the step.

1. Specify the memory region for storing the binary file.

sja1110_BINARY (R) : ORIGIN = 0x00500000, LENGTH = 0x100000 /

1. Specify the file format of the binary file outside of the MEMORY region and SECTIONS region.

TARGET(binary) /* specify the file format of binary file */
INPUT (..\SJA1110_bin_file\flash_image.bin)/*file path can be either absolute or
 relative*/
OUTPUT_FORMAT(default) /* restore the out file format */

1. Define the section.

.sja1110_bin :
 {

. = ALIGN (0x4);

__sja1110_bin_start__ = .;

..\SJA1110_bin_file\flash_image.bin (.data)

. = ALIGN (0x4);

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
26 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

__sja1110_bin_end__ = .;

 } > sja1110_BINARY
__sja1110_BIN_START = ORIGIN(sja1110_BINARY);
__sja1110_BIN_SIZE = __sja1110_bin_end__ - __sja1110_bin_start__;

Though the map file we can see a binary file of length 0xa6860 is stored at the flash address 0x0050_0000.

TARGET(binary)
LOAD ..\SJA1110_bin_file\flash_image.bin
.sja1110_bin 0x00500000 0xa6860
 0x00500000 . = ALIGN (0x4)
 0x00500000 __sja1110_bin_start__ = .
 ..\SJA1110_bin_file\flash_image.bin(.data)
 .data 0x00500000 0xa6860 ..\SJA1110_bin_file\flash_image.bin

0x00500000 _binary____SJA1110_bin_file_flash_image_bin_start

 0x005a6860
 _binary____SJA1110_bin_file_flash_image_bin_end
 0x005a6860 . = ALIGN (0x4)
 0x005a6860 __sja1110_bin_end__ = .
 0x00500000 __sja1110_BIN_START = ORIGIN
 (sja1110_BINARY)

0x000a6860 __sja1110_BIN_SIZE = (__sja1110_bin_end__ - __sja1110_bin_start__)

13.7 Relocating the stack in DTCM
For better MCU performance, sometimes the stack can be relocated to DTCM from SRAM.

1. The default DTCM and stack memory region are defined as below.

int_dtcm : ORIGIN = 0x20000000, LENGTH = 0x00020000 /* 64K */
int_sram_stack_c0 : ORIGIN = 0x2042E000, LENGTH = 0x00001000 /* 4KB */

We need to redefine the new stack region from the DTCM.

int_dtcm : ORIGIN = 0x20000000, LENGTH = 0x00020000 - 0x1000 /* 64K -
 0x1000*/
int_stack_dtcm : ORIGIN = 0x20020000-0x1000, LENGTH = 0x1000/*Set last 4KB DTCM
 as stack*/

1. Change the symbols from the default SRAM address to the DTCM address. The __Stack_start_c0 will
be assigned to the MSP in the startup code.

Old:

__Stack_end_c0 = ORIGIN(int_sram_stack_c0);
__Stack_start_c0 = ORIGIN(int_sram_stack_c0) + LENGTH(int_sram_stack_c0);

New:

__Stack_end_c0 = ORIGIN(int_stack_dtcm);
__Stack_start_c0 = ORIGIN(int_stack_dtcm) + LENGTH(int_stack_dtcm);

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
27 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Last, we need to update the boundary for the DTCM end address __INT_DTCM_END which is used for ECC
initialization.

Old:

__INT_DTCM_START = ORIGIN(int_dtcm);
__INT_DTCM_END = ORIGIN(int_dtcm) + LENGTH(int_dtcm);

New:

__INT_DTCM_START = ORIGIN(int_dtcm);
__INT_DTCM_END = ORIGIN(int_dtcm) + LENGTH(int_dtcm) + LENGTH(int_stack_dtcm);

Now we can see from the map file the stack start address is the end address of the DTCM.

0x2001f000 __Stack_end_c0 = ORIGIN (int_stack_dtcm)
0x20020000 __Stack_start_c0 = (ORIGIN (int_stack_dtcm) + LENGTH
 (int_stack_dtcm))

13.8 Relocating the vector table in DTCM
For quicker ISR response, the vector table can also be relocated to the DTCM instead of SRAM. Simply move
the vector table section from the SRAM to the DTCM. Note that the start address of the vector table must be
4096 bytes aligned.

Old:

 .non_cacheable_data : AT(__non_cacheable_data_rom)
 {
 . = ALIGN(4);

__non_cacheable_data_start__ = .;

/*the vector table start*/
 . = ALIGN(4096);
 __interrupts_ram_start = .;
 . += __interrupts_rom_end - __interrupts_rom_start;
 . = ALIGN(4);
 __interrupts_ram_end = .;
/*the vector table end*/
 *(.mcal_data_no_cacheable)
 . = ALIGN(4);
 *(.mcal_const_no_cacheable)
 . = ALIGN(4);
 HSE_LOOP_ADDR = .;

LONG(0x0);

 __non_cacheable_data_end__ = .;
} > int_sram_no_cacheable

New:

 .dtcm_data : AT(__dtcm_rom)
 {
 . = ALIGN(4);

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
28 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

 __dtcm_data_start = .;

/*the vector table start*/

 . = ALIGN(4096);
 __interrupts_ram_start = .;
 . += __interrupts_rom_end - __interrupts_rom_start;
 . = ALIGN(4);
 __interrupts_ram_end = .;

/*the vector table end*/

. = ALIGN(4);

 *(.dtcm_data)
 . = ALIGN(4);
 __dtcm_data_end = .;
} > int_dtcm

We can see from the address the vector table are in the DTCM.

.dtcm_data 0x20000000 0x40c load address 0x00412378
 0x20000000 . = ALIGN (0x4)
 0x20000000 __dtcm_data_start = .
 0x20000000 . = ALIGN (0x1000)

0x20000000 __interrupts_ram_start = .

 0x20000408 . = (. + (__interrupts_rom_end -
 __interrupts_rom_start))
 fill 0x20000000 0x408
 0x20000408 . = ALIGN (0x4)

0x20000408 __interrupts_ram_end = .

13.9 #pragma GCC section
When we have a large amount of data or functions to be relocated to a specific section, we don’t want to add
__attribute__ to the variables one by one, the “#pragma GCC section” can be used to relocate multiple
variables/functions in one section at one time.

The typical format is below:

#pragma
Variables/functions definition
#pragma

This example shows relocating multiple variables with initial values in the DTCM.

#pragma GCC section data ".dtcm_data"
uint32_t g_number1 = 100;
uint32_t g_number2 = 200;
uint32_t g_number3 = 300;
uint32_t g_number4 = 400;
uint32_t g_number5 = 500;
uint32_t g_number6 = 600;

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
29 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

#pragma GCC section data "default"

We can see from the map file these variables are in the DTCM.

*(.dtcm_data)
 .dtcm_data 0x20000408 0x18 ./src/User.o
 0x20000408 g_number1
 0x2000040c g_number2
 0x20000410 g_number3
 0x20000414 g_number4
 0x20000418 g_number5
 0x2000041c g_number6

This examples shows relocating multiple functions in the SRAM.

#pragma GCC section text ".ramcode"
/*@brief: This function toggles the blue LED every 1 second.*/
void LED_blue_function()
{

uint32_t i,j;

 Siul2_Dio_Ip_TogglePins(LED_BLUE_PORT,1<<LED_BLUE_PIN);

for(i=0;i<4000;i++)

for(j=0;j<4000;j++)

;

}
/*@brief: This function toggles the red LED every 1 second.*/
void LED_red_function()
{

uint32_t i,j;

 Siul2_Dio_Ip_TogglePins(LED_RED_PORT,1<<LED_RED_PIN);

for(i=0;i<4000;i++)

for(j=0;j<4000;j++)

;

}
void delay_function()
{

uint32_t i,j;

for(i=0;i<4000;i++)

for(j=0;j<4000;j++)

;

}

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
30 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

#pragma GCC section text "default"

The same #pragma directive need to be added to the function declaration.

#pragma GCC section text ".ramcode"
void LED_blue_function(void);
void LED_red_function(void);
void delay_function(void);
#pragma GCC section text "default"

We can see from the map file these functions are in the SRAM.

.ramcode 0x204080dc 0xbc ./src/User.o
 0x204080dc LED_blue_function
 0x20408120 LED_red_function

0x20408164 delay_function

14 Others

For DMA transmitting, the user must use the variables from the non-cacheable section instead of the cacheable
section, otherwise, the DMA may not get the correct data in the end address.

One memory region can contain several sections, but one section can’t be distributed to several non-contiguous
memory regions.

There is tiny difference between the GNU linker script and other platforms such as IAR and GreenHills, but the
whole startup procedure is the same.

There is no functional restriction that code and data are placed in either the DTCM or ITCM. But best
performance is achieved if code is placed in ITCM and data in DTCM.

For more knowledge of the GNU linker script, please refer to the file <ld.pdf> in the S32DS installation location
C:\NXP\S32DS.3.4\S32DS\build_tools\gcc_v10.2\gcc-10.2-arm32-eabi\arm-none-eabi\share\docs\pdf\ld.pdf

15 Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2026 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
31 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

16 Revision history

Document ID Revision date Description

AN14893 v. 1.0 28 December 2025 Initial release

Table 1. Revision history

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
32 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
33 / 35

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Tables
Tab. 1. Revision history ...32

Figures
Fig. 1. The linking process ... 2
Fig. 2. Syntax: MEMORY command 3
Fig. 3. Syntax: SECTIONS command 4
Fig. 4. Code example: Wildcard character (*) 4
Fig. 5. Code example: Location counter (.) 5
Fig. 6. Code example 1 ..5
Fig. 7. Code example 2 ..5
Fig. 8. Code example: AT command5
Fig. 9. Code example: KEEP command6
Fig. 10. Code example: Linker script symbol 6
Fig. 11. Code example: S32K3 linker file7
Fig. 12. S32K3 Startup Procedure Overview 8
Fig. 13. Boot header definition details9
Fig. 14. Code example: Boot header 9

Fig. 15. Code example: disable global interrupt and
clear CPU register ...10

Fig. 16. Code example: Enable MSCM clock code 10
Fig. 17. Code example: Relocate vector table to

RAM .. 11
Fig. 18. Example code block: Initialize CPU core

stack .. 11
Fig. 19. Disable SWT watchdog12
Fig. 20. Example code: Debugger held core loop 14
Fig. 21. S32K3 RAM data copy process 15
Fig. 22. Copy table with four sections 15
Fig. 23. Copy table with three sections 16
Fig. 24. init_data_bss function16
Fig. 25. Code example: SystemInit() function16
Fig. 26. Code example: Main routine 17

AN14893 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 December 2025 Document feedback
34 / 35

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

NXP Semiconductors AN14893
S32K3xx Linker File and Startup Code

Contents
1 Introduction .. 2
2 ENTRY command ...2
3 MEMORY command ...2
4 SECTIONS command 3
5 Wildcard character (*) 4
6 Location counter (.) ...4
7 ALIGN command ..5
8 AT command .. 5
9 KEEP command ...6
10 Linker script symbol 6
11 Explanation of the S32K3 linker file6
12 Startup Code Overview 7
12.1 Boot header ... 8
12.2 Disable global interrupt and clear CPU

register ...9
12.3 Enable MSCM clock .. 10
12.4 Relocate vector table to RAM11
12.5 Initialize CPU core stack 11
12.6 Disable SWT watchdog 11
12.7 RAM ECC initialization 12
12.8 Wait for debugger to hold the core 14
12.9 RAM data copy ..14
12.10 System initialization ... 16
12.11 Jump to main routine17
13 Examples .. 17
13.1 Relocating code in RAM17
13.2 Relocating code in ITCM 17
13.3 Relocating data in DTCM 20
13.4 Relocating data in standby RAM 22
13.5 Relocating data in data flash 25
13.6 Linking a binary file ... 26
13.7 Relocating the stack in DTCM27
13.8 Relocating the vector table in DTCM 28
13.9 #pragma GCC section29
14 Others ... 31
15 Note about the source code in the

document ..31
16 Revision history ...32

Legal information ...33

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2026 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 28 December 2025
Document identifier: AN14893

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14893

	1 Introduction
	2 ENTRY command
	3 MEMORY command
	4 SECTIONS command
	5 Wildcard character (*)
	6 Location counter (.)
	7 ALIGN command
	8 AT command
	9 KEEP command
	10 Linker script symbol
	11 Explanation of the S32K3 linker file
	12 Startup Code Overview
	12.1 Boot header
	12.2 Disable global interrupt and clear CPU register
	12.3 Enable MSCM clock
	12.4 Relocate vector table to RAM
	12.5 Initialize CPU core stack
	12.6 Disable SWT watchdog
	12.7 RAM ECC initialization
	12.8 Wait for debugger to hold the core
	12.9 RAM data copy
	12.10 System initialization
	12.11 Jump to main routine

	13 Examples
	13.1 Relocating code in RAM
	13.2 Relocating code in ITCM
	13.3 Relocating data in DTCM
	13.4 Relocating data in standby RAM
	13.5 Relocating data in data flash
	13.6 Linking a binary file
	13.7 Relocating the stack in DTCM
	13.8 Relocating the vector table in DTCM
	13.9 #pragma GCC section

	14 Others
	15 Note about the source code in the document
	16 Revision history
	Legal information
	Tables
	Figures
	Contents

