## **AN14765**

# Low-Power Implementation on MCXA345 and MCXA346 Rev. 1.0 — 22 August 2025

**Application note** 

#### **Document information**

| Information | Content                                                                                                                                                                                                                                                 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keywords    | AN14765, MCXA, MCXA345, MCXA346, low power, power consumption, wake-up time                                                                                                                                                                             |
| Abstract    | This application note introduces the power domains, power modes, highlight configurations, and low-power and wake-up optimization of MCXA345 and MCXA346. It provides different low-power and wake-up configurations through a demo for user reference. |



Low-Power Implementation on MCXA345 and MCXA346

### 1 Introduction

The MCXA345 and MCXA346 microcontrollers, featuring an Arm Cortex-M33, supports running up to 180 MHz, 1 MB of flash and 256 kB RAM. The MCXA345 and MCXA346 targets motor control applications optimized with high performance and MAU engine, integrated 2x FlexPWM with 4x submodule combined with AOI, up to 4x ADC, and rich serial peripheral and SmartDMA.

The power-efficient operating modes are as follows:

- 78 µA/MHz in the Active mode
- 0.579 mA in the Sleep mode
- 96.02 μA in the Deep Sleep mode
- 31.95 µA in the Power Down mode
- 473 nA in the Deep Power Down mode

This application note describes the following contents of the MCXA345 and MCXA346:

- · Power domains and power supplies
- · Power modes and low-power entry
- · Power-related configurations
- Wake-up source and wake-up time
- · Low power and wake-up optimization
- Low power demo

### 2 Power domains

As shown in Figure 1, the device contains the following power domains:

- SYSTEM
- CORE
- SRAM
- ANALOG

For specific modules contained in each domain, see the power domain assignments for modules table in the MCX A345 and MCX A346 Reference Manual (document MCXAP144M240F60RM).

- The SYSTEM domain is for power management, which contains SPC, HVD/LVD/POR, FRO16K, WUU, and other modules.
- The CORE domain is for digital logic, which contains CM33, NVIC, DMA, FRO180M, LPUART, GPIO, and other modules.

### Low-Power Implementation on MCXA345 and MCXA346

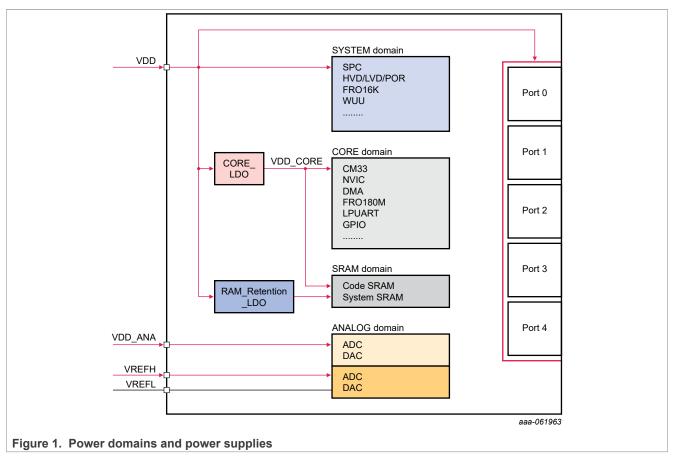



Table 1 lists the power supply and corresponding voltage range of each power domain. The power supply of the CORE domain is the output voltage VDD\_CORE of CORE\_LDO. In Active mode, VDD\_CORE operates at 1.0 V and 1.2 V while in Power Down mode, it can operate at a lower voltage. When VDD CORE is 1.2 V, the core can reach up to 180 MHz. When VDD CORE is 1.0 V, the core can reach up to 45 MHz. The power supply of the SRAM domain is the output voltage of CORE LDO or RAM Retention LDO. RAM Retention LDO supports SRAM retention switches in the Deep Power Down mode. For the power supply and corresponding voltage range of the remaining power domains, see Table 1.

Table 1. Power supplies and voltage range

| Power domain | Power supply      | Voltage range                                                                       |  |
|--------------|-------------------|-------------------------------------------------------------------------------------|--|
| CORE         | LDO_CORE          | Mid voltage (1.0 V), Overdrive voltage (1.2 V) (Active, Sleep, and Deep Sleep mode) |  |
|              |                   | Retention voltage<br>(Power Down mode)                                              |  |
|              |                   | OFF<br>(Deep Power Down mode)                                                       |  |
| SRAM         | LDO_CORE          | Mid voltage (1.0 V), Overdrive voltage (1.2 V) (Active and Sleep mode)              |  |
|              | RAM_Retention_LDO | Retention voltage (Deep Sleep, Power Down, and Deep Power Down mode)                |  |
| SYSTEM       | VDD               | 1.71 V - 3.6 V                                                                      |  |
| ANALOG       | VDD_ANA           | 1.61 V - 3.7 V                                                                      |  |

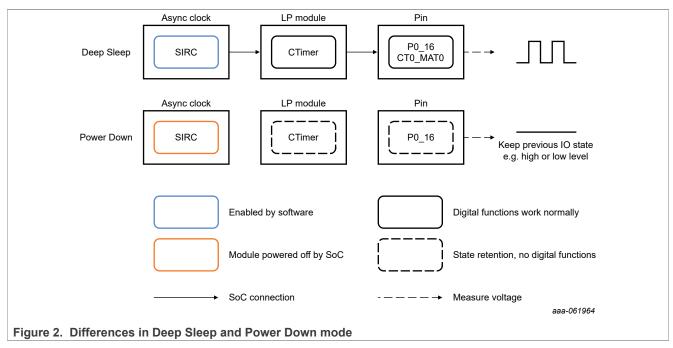
AN14765

All information provided in this document is subject to legal disclaimers.

Low-Power Implementation on MCXA345 and MCXA346

### 3 Power modes and low power entry

This section describes power modes and low power entry controllers.


#### 3.1 Power modes

The device supports Active, Sleep, Deep Sleep, Power Down, and Deep Power Down. <u>Table 2</u> describes the status of Clock, CORE domain, SYSTEM domain, FLASH, SRAM, PORT, and IO in different power modes. It also helps users compare the status of these modules in different power modes. Users can easily find the status of these modules in a certain power mode. <u>Figure 2</u> shows the clock/LP peripheral/IO differences in Deep Sleep and Power Down mode.

Table 2. Modules status and power modes

| Mode Name          | CORE domain              | CM33                  | SYSTEM domain | Flash  | SRAM       | PORT <sup>[1]</sup> | Ю                 |
|--------------------|--------------------------|-----------------------|---------------|--------|------------|---------------------|-------------------|
| Active             | ON                       | ON                    | ON            | ON     | ON         | ON                  | ON                |
| Sleep              | ON                       | Static <sup>[2]</sup> | ON            | ON     | ON         | ON                  | ON                |
| Deep Sleep         | Static/LP <sup>[3]</sup> | Static                | ON            | Static | Static     | Static              | ON <sup>[4]</sup> |
| Power Down         | Static                   | Static                | ON            | OFF    | Static/OFF | Static              | Static            |
| Deep Power<br>Down | OFF <sup>[5]</sup>       | OFF                   | ON            | OFF    | Static/OFF | OFF                 | Static            |

- [1] PORT supports pad control functions.
- [2] Static means that the module is in the state retention status (no clock but the data can be kept).
- [3] LP means can be active with an async functional clock.
- [4] This ON means that pinmux function can work normally in Deep Sleep mode. For example, CTimer outputs PWM through an IO in Active mode and can continue to output PWM in Deep Sleep mode.
- [5] OFF means power down.



IO state in power mode transition:

Active → Power Down/Deep Power Down: IO state can be kept.

AN14765

All information provided in this document is subject to legal disclaimers.

Low-Power Implementation on MCXA345 and MCXA346

- Power Down → Active: IO state can be kept but not isolated. ISO CLR=0; IO output can be configured.
- Deep Power Down → Active: IO state can be kept and is isolated. ISO\_CLR=1; to configure IO, first write ISO\_CLR.

The following sections introduce the features of different power modes.

#### 3.1.1 Active

Active mode is the default mode after Reset operation. In this mode:

- · Clocks to CPU, memories, and peripherals are enabled.
- · CPU execution is possible.
- VDD\_CORE is adjusted to the minimum possible value based on the required frequency to achieve optimal power consumption.

### 3.1.2 Sleep

The salient characteristics of Sleep mode are as follows:

- The CPU clock is disabled.
- The System and Bus clock remain enabled.
- · Most modules can remain operational.
- ACTIVE CFG register is used to control LDO CORE voltage level and drive strength.

#### 3.1.3 Deep Sleep

The salient characteristics of Deep Sleep mode are as follows:

- · CPU clock, System clock, and Bus clock are disabled.
- SRAM is in static status (SRAM cannot be accessed, but the data is retained).
- To enable SOSC, SIRC, and FIRC, configure the corresponding STEN bit.
- Some modules can remain operational with low-power asynchronous clock sources.

#### 3.1.4 Power Down

It is the lowest power mode that can retain all registers. The salient characteristics of Power Down mode are as follows:

- The CPU clock, System clock, and Bus clock are disabled.
- Flash memory is powered off.
- Place the CORE domain of the chip into the static state.
- Supports four SRAM retention switches and must retain at least one SRAM array. For details, refer to the
  on-chip regulators table in section "System Power Control (SPC)" of the MCXA345/346 Reference Manual
  (document MCXAP144M240F60RM).
- Configure the SPC LP CFG[CORELDO VDD LVL] to 0000b (retention voltage).

### 3.1.5 Deep Power Down

The device wakes from Deep Power Down mode through the Reset routine. The salient characteristics of Deep Power Down mode:

- The CPU clock, System clock, and Bus clock are disabled.
- · The flash memory is powered off.
- The CORE domain is powered off.

AN14765

#### Low-Power Implementation on MCXA345 and MCXA346

· The SYSTEM domain remains enabled.

This mode supports four SRAM retention switches and all SRAM arrays powered off. For details, refer to the on-chip regulators table in section "System Power Control (SPC)" of the MCXA345/346 Reference Manual (document MCXAP144M240F60RM).

### 3.2 Low power entry

The bit fields CKCTRL[CKMODE] and PMCTRLMAIN[LPMODE] control the power mode entry as shown in <u>Table 5</u>. The CKCTRL[CKMODE] field configures the amount of clock gating when the core enters a low power mode because of WFI or WFE.

Table 3 shows the functions corresponding to different CKMODE values.

- Configuring CKMODE greater than 0 requires the SLEEPDEEP field in the Arm core to become 1.
- Configuring PMCTRLMAIN[LPMODE] greater than 0 requires writing 1111b to CKMODE.

Table 3. Function of CKMODE field

| CKCTRL[CKMODE] | Function                                                                                |
|----------------|-----------------------------------------------------------------------------------------|
| 0000b          | No clock gating                                                                         |
| 0001b          | Core clock gated                                                                        |
|                | Core, platform, and peripheral clocks are gated, and the core enters the low power mode |

PMCTRLMAIN[LPMODE] selects the desired low power mode when a core executes a WFI or WFE instruction. If the protection level is not enabled using power mode protection (PMPROT), writes to this field are blocked.

<u>Table 4</u> shows the functions corresponding to different LPMODE values.

Table 4. Function of the LPMODE bit field

| PMCTRLMAIN[LPMODE] | Function        |
|--------------------|-----------------|
| 0000b              | Active/Sleep    |
| 0001b              | Deep Sleep      |
| 0011b              | Power Down      |
| 1111b              | Deep Power Down |

<u>Table 5</u> shows all the configurations of the device to enter the low power mode.

Table 5. Power mode entry

| Power mode      | CKCTRL[CKMODE] | PMPROT[LPMODE] | PMCTRLMAIN[LPMODE] |
|-----------------|----------------|----------------|--------------------|
| Active          | 0000b          | 0000b          | 0000b              |
| Sleep           | 0000b          | 0000b          | 0000b              |
|                 | 0001b          |                |                    |
| Deep Sleep      | 1111b          | 0001b          | 0001b              |
| Power Down      | 1111b          | 0011b          | 0011b              |
| Deep Power Down | 1111b          | 1111b          | 1111b              |

Low-Power Implementation on MCXA345 and MCXA346

### 4 Power configurations

This section describes the regulator and voltage detector configurations, low-power request (LPREQ) pin, and async DMA.

### 4.1 Regulator and voltage detectors configurations

<u>Table 6</u> shows the power-related hardware configurations. ACTIVE\_CFG and ACTIVE\_CFG1 registers configure the hardware in Active mode and Sleep mode, such as LDO CORE voltage level and drive strength.

Autonomous change to use LP\_CFG and LP\_CFG1 when in low power mode (Deep Sleep, Power Down, and Deep Power Down).

Table 6. Power-related hardware configurations

| Register name          | Function                                                                                                                                                      |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACTIVE_CFG<br>LP_CFG   | Configures:  LDO_CORE voltage level  LDO_CORE drive strength  Enables:  HVDs, LVDs  Band gap, BG buffer  VDD voltage detect  Low-power current reference IREF |
| ACTIVE_CFG1<br>LP_CFG1 | <ul> <li>Enables:</li> <li>Analog modules (CMPs, CMP DACs, OPAMPs, and DAC)</li> </ul>                                                                        |

### 4.2 LPREQ pin

The LPREQ pin asserts after low power entry and negates after low power wake-up.

SPC controls the state of the LPREQ pin according to the configuration specified in the low-power request configuration (LPREQ\_CFG) register. You control the LPREQ pin in Active mode. SPC controls the pin when the chip transitions from Active to a low power mode, and after wake-up from these low power modes.


To use the LPREQ pin, perform the following steps:

- 1. Specify the pin polarity (LPREQ CFG[LPREQPOL])
- 2. Enable the pin output (LPREQ\_CFG[LPREQOE])
- 3. Configure the pin mux for the desired pin using the PORT PCR registers.

Figure 3 shows the waveform of the LPREQ pin, where the explanation of the waveform is listed below:

- TIMER\_MATCH: Hardware toggles IO to indicate the wake-up event.
- LPREQ\_PIN: LPREQ\_CFG[LPREQPOL] = 1b, [LPREQOE] = 1b, which means that the pin becomes low after low power entry and high after wake-up.

#### Low-Power Implementation on MCXA345 and MCXA346



### 4.3 Async DMA

Deep Sleep mode and Power Down mode support the use of async DMA to wake up partially. The device automatically re-enters the low power mode after DMA completes its task.

Async DMA can be introduced as follows:

- Async DMA does not require CPU involvement. However, it still requires the bus clock, which wakes up the MCU from Deep Sleep or Power Down to Sleep mode.
- When async DMA must access the register of a peripheral, enable the Bus clock of the peripheral before entering low power mode by using the MRCC\_GLB\_CCx and MRCC\_GLB\_ACCx registers. When async DMA must access SRAM, the SRAM must not be set to retention state in Sleep mode.
- When async DMA is completed, that is, CHx\_CSR[DONE] is set, the MCU automatically enters the original low power mode.
- Set CHx\_CSR[ERQ] and CHx\_CSR[EARQ].
- <u>Table 7</u> lists all the hardware trigger sources of async DMA and the corresponding slot number. Only modules in LP status (not static status under Deep Sleep or Power Down modes) support async DMA. For example, FlexCAN is in static under Deep Sleep mode. Therefore, it cannot support async DMA.

Table 7. Async DMA configuration

| Slot number | DMA request description | Module name |
|-------------|-------------------------|-------------|
| 1           | Wake up event           | WUU0        |
| 3           | Receive request         | LPI2C2      |
| 4           | Transmit request        | LPI2C2      |
| 5           | Receive request         | LPI2C3      |

AN14765

All information provided in this document is subject to legal disclaimers

### Low-Power Implementation on MCXA345 and MCXA346

Table 7. Async DMA configuration...continued

| Slot number | DMA request description  | Module name |
|-------------|--------------------------|-------------|
| 6           | Transmit request         | LPI2C3      |
| 11          | Receive request          | LPI2C0      |
| 12          | Transmit request         | LPI2C0      |
| 13          | Receive request          | LPI2C1      |
| 14          | Transmit request         | LPI2C1      |
| 15          | Receive request          | LPSPI0      |
| 16          | Transmit request         | LPSPI0      |
| 17          | Receive request          | LPSPI1      |
| 18          | Transmit request         | LPSPI1      |
| 21          | Receive request          | LPUART0     |
| 22          | Transmit request         | LPUART0     |
| 23          | Receive request          | LPUART1     |
| 24          | Transmit request         | LPUART1     |
| 25          | Receive request          | LPUART2     |
| 26          | Transmit request         | LPUART2     |
| 27          | Receive request          | LPUART3     |
| 28          | Transmit request         | LPUART3     |
| 29          | Receive request          | LPUART4     |
| 30          | Transmit request         | LPUART4     |
| 49          | Counter match event      | LPTMR0      |
| 51          | FIFO request             | ADC0        |
| 52          | FIFO request             | ADC1        |
| 53          | DMA request              | CMP0        |
| 54          | DMA request              | CMP1        |
| 55          | DMA request              | CMP2        |
| 56          | FIFO request             | DAC0        |
| 60          | Pin event request 0      | GPIO0       |
| 61          | Pin event request 0      | GPIO1       |
| 62          | Pin event request 0      | GPIO2       |
| 63          | Pin event request 0      | GPIO3       |
| 64          | Pin event request 0      | GPIO4       |
| 71          | Shift Register 0 request | FlexIO0     |
| 72          | Shift Register 1 request | FlexIO0     |
| 72          | Shift Register 2 request | FlexIO0     |
| 74          | Shift Register 3 request | FlexIO0     |
| 102         | Receive request          | LPUART5     |

#### Low-Power Implementation on MCXA345 and MCXA346

Table 7. Async DMA configuration...continued

| Slot number | DMA request description | Module name |
|-------------|-------------------------|-------------|
| 103         | Transmit request        | LPUART5     |
| 123         | FIFO request            | ADC2        |
| 124         | FIFO request            | ADC3        |

### 5 Wake-up information

<u>Table 8</u> displays the typical wake-up time and wake-up sources in different low power modes. Here the typical wake-up time values are taken from the *Mixed-signal Arm Cortex-M33 MCU with 180 MHz, up to 1024 KB Flash* (document MCXA345/346 data sheet).

Table 8. Wake-up information

| Symbol  | Description              | Wake-up source    | Typical wake-up time |
|---------|--------------------------|-------------------|----------------------|
| tSLEEP  | Sleep → Active           | All peripherals   | 0.42 µs              |
| tDSLEEP | Deep Sleep → Active      | Async peripherals | 9.01 µs              |
| tPWDN   | Power Down → Active      | WUU, Reset pin    | 18.84 µs             |
| tDPWDN  | Deep Power Down → Active | WUU, Reset pin    | 1.57 ms              |

### 6 Low power and wake-up optimization

This section explains various methods for optimizing power consumption and factors to consider for wake-up optimization.

### 6.1 Power consumption optimization

Following are the different ways of optimizing power consumption:

### Regulator

- Configure the appropriate voltage level and drive strength.
- In Power Down mode, LDO\_CORE can provide retention voltage to the CORE domain.

#### Peripherals

- Disable unused analog peripherals by configuring the ACTIVE CFG1 and LP CFG1 registers.

### Memories

- Flash
  - Configure the FLASHCR register to place the flash memory in a low-power state.
- SRAM
  - Use auto clock gating by configuring the RAM\_CTRL register of SYSCON.
  - SRAM can be individually retained or powered down by using software in the Power Down and Deep Power Down mode.

### • Clocks:

- Select and configure the appropriate CPU CLK/SYSTEM CLK.
- Disable unused clock sources.
- Configure the MRCC\_GLB\_CC0/MRCC\_GLB\_CC1/MRCC\_GLB\_CC2/ MRCC\_GLB\_ACC0/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_GLB\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_ACC1/MRCC\_AC

#### • Monitors:

- Disable unused voltage monitors (HVDs/LVDs).

© 2025 NXP B.V. All rights reserved.

Document feedback

Low-Power Implementation on MCXA345 and MCXA346

#### I/O pins

- For unused I/O pins, use the default configuration (floating input) as it minimizes leakage current. With the default configuration, the input buffer and the internal pull resistor are disabled.
- While using I/O pins, power consumption can be reduced by increasing the resistance of the external resistor appropriately.

### 6.2 Wake-up time consideration

Consider the following points relating to the wake-up time:

- SLOW\_CLK frequency
  - The wake-up process is implemented through CMC.
  - SLOW\_CLK is the clock source of CMC and its frequency is equal to 1/6 SYSTEM\_CLK.
- Different VDD CORE level
  - Recovery time required for different voltage levels. For details, refer to the "Low-power wake-up delay" table
    in the MCX A345 and MCX A346 Reference Manual (document MCXAP144M240F60RM).
- · Longer time of clock recovery time and flash recovery time
- · Interrupt latency

### 7 Demo operation

This section describes the steps, setup, and results for a demo to change the low power configurations and reproduce the typical power consumption and wake-up time data. For more information, see *Mixed-signal Arm Cortex-M33 MCU with 180 MHz*, up to 1024 KB Flash (document MCXA345/346 data sheet).

### 7.1 Hardware and software requirements

Table 9 describes the hardware and software requirements for running the demo.

Table 9. Hardware and software details

| Category | Description                                                 | Comments                                                                                                                                                                                                                                                                                                                                            |
|----------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hardware | FRDM-MCXA346 board     One Type-C USB cable                 | Note:  To measure the power consumption, use the MCU-Link Pro or a multimeter to connect to JP1.  To measure the power consumption accurately, the rework is required:  Remove R52  Remove R26  To measure the wake-up time, use an oscilloscope or logic analyzer.  To measure the wake-up time accurately, the rework is recommended:  Remove C39 |
| Software | MCUXpresso IDE v25.6 or later     SDK_25_06_00_FRDM-MCXA346 |                                                                                                                                                                                                                                                                                                                                                     |

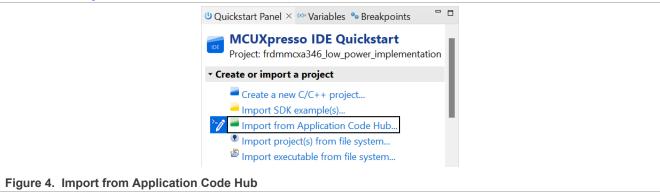
### 7.2 Setup

The following sections describe the steps to perform the demo.

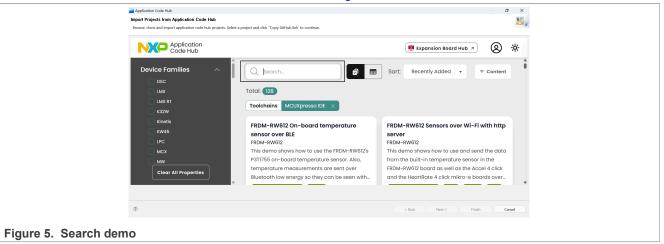
AN14765

All information provided in this document is subject to legal disclaimers.

Low-Power Implementation on MCXA345 and MCXA346


### 7.2.1 Hardware connection

To connect J15 of the FRDM-MCXA346 board and the USB port of the PC, use a Type-C USB cable.


### 7.2.2 Importing the project

To import the project, perform the steps as follows:

1. Open MCUXpresso IDE v25.6. In the **Quickstart Panel**,select**Import from Application Code Hub**, as shown in Figure 4.



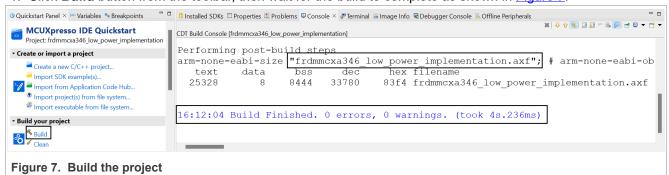
2. Enter the demo name in the search bar, as shown in Figure 5.



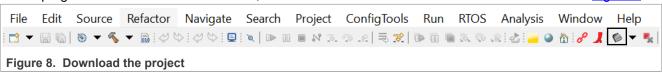
3. Click the **GitHub link** icon, as shown in <u>Figure 6</u>. MCUXpresso IDE automatically retrieves project attributes. Then, click **Next**.



4. Select the main branch and then click **Next**. Now, select the MCUXpresso project and then click the **Finish** button to complete the import.


**Note:** Install the SDK\_25\_06\_00\_FRDM-MCXA346 on your MCUXpresso IDE after performing the above steps.

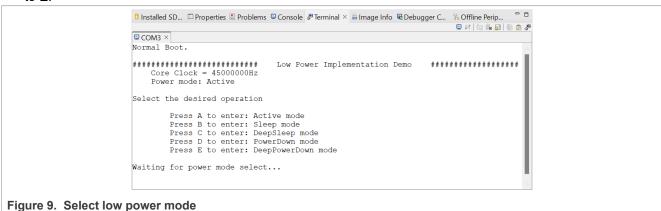
Low-Power Implementation on MCXA345 and MCXA346


### 7.2.3 Building and flashing the project

To build and flash the project, perform the steps as follows:

1. Click **Build** button from the toolbar, then wait for the build to complete as shown in Figure 7.




2. To program the executable to the board, select the GUI Flash Tool from the toolbar as shown in Figure 8.



### 7.2.4 Selecting the low power mode and the corresponding configurations

To select the low power mode and the corresponding configurations, perform the steps as follows:

- 1. Open a serial terminal with a 115,200 baud rate.
- 2. Follow the prompts as shown in <u>Figure 9</u>. To enter a different low power mode, enter one of the keys from A to E.



 Different low power modes provide different configurations. Therefore, you must select the corresponding configuration according to the prompts. <u>Figure 10</u> shows the configurations provided in Deep Power Down mode.

#### Low-Power Implementation on MCXA345 and MCXA346

```
Installed SD... ■ Properties ■ Problems ■ Console ■ Terminal × ■ Image Info ■ Debugger C... ■ Offline Perip... ■ COM3 ×

Select the desired Core Frequency and LDO configuration:

A: CFU_CLK=180MHz (FR0180M), VDD_CORE=1.2V
B: CFU_CLK=90MHz (FR0180M), VDD_CORE=1.2V
C: CFU_CLK=45MHz (FR0180M), VDD_CORE=1.0V
D: CFU_CLK=12MHz (FR0180M), VDD_CORE=1.0V

Select CFU_CLK=45MHz (FR0180M), VDD_CORE=1.0V

Configure the RAM retained
B: All RAM retained
B: All RAM retained
C: RAMXO/X1/B0/B1, RAMA0~A4 retained
D: RAMXO/X1/B0/B1/A0 retained
E: RAMX0 retained
F: RAMX0 retained
F: RAMX0/X1/B0/B1 retained

F: RAMX0/X1/B0/B1 retained

F: RAMX0/X1/B0/B1 retained
```

4. <u>Figure 11</u> shows the entire configuration process. To wake up the MCU, press the **SW2** button on FRDM-MCXA346.

**Note:** Press the wake-up button only when the prompt message appears. Pressing it otherwise results in a wake-up failure.



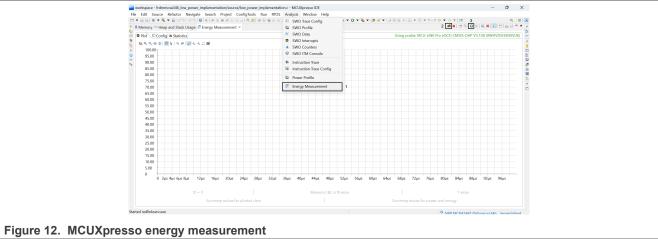
#### 7.2.5 Measuring power consumption

The following sections describe the steps for measuring power consumption on the FRDM-MCXA346 board.

#### 7.2.5.1 Power consumption measurement using MCU-Link Pro and MCUXpresso IDE

To measure power consumption using MCU-Link Pro and MCUXpresso IDE, perform the steps as follows:

AN14765


### Low-Power Implementation on MCXA345 and MCXA346

1. Connect MCU-Link Pro and FRDM-MCXA346 according to Table 10. Then, connect MCU-Link Pro and FRDM-MCXA346 to the host PC.

Table 10. MCU-Link Pro and FRDM-MCXA346 connection

| MCU-Link Pro       | FRDM-MCXA346        |
|--------------------|---------------------|
| J9-1 (Current in)  | JP1-1 (IDD_MCU in)  |
| J9-3 (Current out) | JP1-2 (IDD_MCU out) |
| J9-2 (GND)         | J3-14 (GND)         |

2. To measure the current using the MCUXpresso IDE, follow the steps in Figure 12.



### 7.2.5.2 Power consumption measurement using a multimeter

You can also use a multimeter to measure the current at the JP2 jumper of the FRDM-MCXA346 board.

### 7.2.6 Measuring wake-up time

As shown in Figure 13, determine the wake-up time by measuring the delay between the falling edges of J6-2 (P1\_7) and J6-1 (P1\_6) using an oscilloscope or logic analyzer.



AN14765

### Low-Power Implementation on MCXA345 and MCXA346

#### 7.3 Reference results

Table 11 provides references for the power consumption and wake-up time.

#### Note:

- Before test, rework the board as described in Section 7.1.
- Different samples, temperature, and measuring instruments affect test results.
- Before measuring each data, POR is recommended.
- This demo is not configured the same as the data sheet, so the test data can be slightly different.
- For information on wake-up time, refer to the "Power mode transition operating behaviors" table in the Mixed-signal Arm Cortex-M33 MCU with 180 MHz, up to 1024 KB Flash (document MCXA345/346 data sheet).
- For information on different power consumption data, refer to "Power consumption operating behaviors" section in the Mixed-signal Arm Cortex-M33 MCU with 180 MHz, up to 1024 KB Flash (document MCXA345/346 data sheet).

Table 11. Reference results

| Power mode | Description                                               | Tested power consumption | Power consumption in data sheet | Tested wake-up time | Wake-up time in data sheet |
|------------|-----------------------------------------------------------|--------------------------|---------------------------------|---------------------|----------------------------|
| Sleep      | VDD_CORE = 1.2 V<br>CPU_CLK = 180 MHz                     | 8.36 mA                  | 8.08 mA                         | 0.13 μs             | N/A                        |
|            | VDD_CORE = 1.2 V<br>CPU_CLK = 90 MHz                      | 4.60 mA                  | N/A                             | 0.24 μs             | N/A                        |
|            | VDD_CORE = 1.0 V<br>CPU_CLK = 45 MHz                      | 2.23 mA                  | 2.16 mA                         | 0.44 µs             | 0.42 μs                    |
|            | VDD_CORE = 1.0 V<br>CPU_CLK = 12 MHz                      | 0.583 mA                 | 0.579 mA                        | 1.66 µs             | N/A                        |
| Deep Sleep | VDD_CORE = 1.2 V<br>CPU_CLK = 180 MHz<br>FRO12M disabled  | 555.2 µA                 | 542.27 μΑ                       | 7.18 µs             | N/A                        |
|            | VDD_CORE = 1.2 V<br>CPU_CLK = 90 MHz<br>FRO12M disabled   | 555.0 µA                 | N/A                             | 7.74 µs             | N/A                        |
|            | VDD_CORE = 1.0 V<br>CPU_CLK = 45 MHz<br>FRO12M disabled   | 92.43 µA                 | 96.02 μΑ                        | 8.89 µs             | 9.01 µs                    |
|            | VDD_CORE = 1.0 V<br>CPU_CLK = 45 MHz<br>FRO12M enabled    | 160.86 µA                | 155.29 μΑ                       | 8.89 µs             | N/A                        |
|            | VDD_CORE = 1.0 V<br>CPU_CLK = 12 MHz<br>FRO12M disabled   | 92.34 µA                 | N/A                             | 17.23 µs            | N/A                        |
| Power Down | VDD_CORE = 1.2 V<br>CPU_CLK = 180 MHz<br>All RAM retained | 553.5 µA                 | N/A                             | 8.14 µs             | N/A                        |
|            | VDD_CORE = 1.2 V<br>CPU_CLK = 90 MHz                      | 553.3 μΑ                 | N/A                             | 8.69 µs             | N/A                        |

### Low-Power Implementation on MCXA345 and MCXA346

Table 11. Reference results...continued

| Power mode         | Description                                                                                                 | Tested power consumption | Power consumption in data sheet | Tested wake-up time | Wake-up time in data sheet |
|--------------------|-------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|---------------------|----------------------------|
|                    | All RAM retained                                                                                            |                          |                                 |                     |                            |
|                    | VDD_CORE = retention voltage<br>CPU_CLK = 45 MHz<br>All RAM retained                                        | 32.62 µA                 | 31.95 µA                        | 18.45 μs            | 18.84 µs                   |
|                    | VDD_CORE = retention voltage<br>CPU_CLK = 45 MHz<br>RAM X0/X1/B0/B1/A0 retained                             | 30.49 μΑ                 | N/A                             | 18.45 μs            | N/A                        |
|                    | VDD_CORE = retention voltage<br>CPU_CLK = 12 MHz<br>All RAM retained                                        | 32.59 μΑ                 | N/A                             | 26.70 μs            | N/A                        |
| Deep Power<br>Down | VDD_CORE = 1.0 V CPU_CLK = 45 MHz All RAM disabled Wake timer enabled FRO16K enabled                        | 0.68 μΑ                  | 0.646 μΑ                        | 1.57 ms             | 1.57 ms                    |
|                    | VDD_CORE = 1.0 V CPU_CLK = 45 MHz All RAM retained Wake timer enabled FRO16K enabled                        | 3.84 μΑ                  | 3.4 µA                          | 1.57 ms             | N/A                        |
|                    | VDD_CORE = 1.0 V CPU_CLK = 45 MHz RAM X0/X1/B0/B1, A0~A4 retained Wake timer enabled FRO16K enabled         | 2.57 μΑ                  | 2.29 µA                         | 1.57 ms             | N/A                        |
|                    | VDD_CORE = 1.0 V<br>CPU_CLK = 45 MHz<br>RAM X0/X1/B0/B1/A0 retained<br>Wake timer enabled<br>FRO16K enabled | 1.84 μΑ                  | 1.66 µА                         | 1.57 ms             | N/A                        |
|                    | VDD_CORE = 1.0 V CPU_CLK = 45 MHz RAM A0 retained Wake timer enabled FRO16K enabled                         | 0.89 μΑ                  | 0.849 μΑ                        | 1.57 ms             | N/A                        |
|                    | VDD_CORE = 1.0 V<br>CPU_CLK = 45 MHz<br>RAM X0/X1/B0/B1 retained<br>Wake timer enabled<br>FRO16K enabled    | 1.73 μΑ                  | 1.55 μΑ                         | 1.57 ms             | N/A                        |

Low-Power Implementation on MCXA345 and MCXA346

### 8 References

Table 12 lists the references used to supplement this document.

Table 12. References

| Reference                                                                                           | Link/how to obtain                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mixed-signal Arm Cortex-M33 MCU with 180 MHz, up to 1024 KB Flash (document MCXA345/346 data sheet) | https://www.nxp.com/doc/MCXAP144M240F60                                                                                                                                   |
| MCX A345 and MCX A346 Reference Manual (document MCXAP144M240F60RM)                                 | https://www.nxp.com/doc/MCXAP144M240F60RM                                                                                                                                 |
| MCX A34 Mixed-Signal, Optimized for Motor Control and High-Performance Analog Peripherals           | https://www.nxp.com/products/MCX-A345-A346                                                                                                                                |
| MCX A series microcontrollers                                                                       | https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/mcx-arm-cortex-m/mcx-a-series-microcontrollers:MCX-A-SERIES        |
| FRDM Development Board for MCX A345 and MCX A346 MCUs                                               | https://www.nxp.com/design/design-center/development-boards-and-designs/FRDM-MCXA346                                                                                      |
| MCU-Link Pro Debug Probe                                                                            | https://www.nxp.com/design/design-center/software/<br>software-library/mcu-link-pro-debug-probe:MCU-LINK-PRO                                                              |
| MCUXpresso Integrated Development Environment (IDE)                                                 | https://www.nxp.com/design/design-center/software/ development-software/mcuxpresso-software-and-tools-/ mcuxpresso-integrated-development-environment- ide:MCUXpresso-IDE |

### 9 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials must be provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

### Low-Power Implementation on MCXA345 and MCXA346

### 10 Revision history

Table 13 summarizes the revisions to this document.

Table 13. Revision history

| Document ID   | Release date   | Description            |
|---------------|----------------|------------------------|
| AN14765 v.1.0 | 22 August 2025 | Initial public release |

#### Low-Power Implementation on MCXA345 and MCXA346

### **Legal information**

### **Definitions**

**Draft** — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

#### **Disclaimers**

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

**HTML publications** — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

**Translations** — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <a href="PSIRT@nxp.com">PSIRT@nxp.com</a>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

**NXP B.V.** — NXP B.V. is not an operating company and it does not distribute or sell products.

#### **Trademarks**

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AN14765

All information provided in this document is subject to legal disclaimers.

Low-Power Implementation on MCXA345 and MCXA346

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

### Low-Power Implementation on MCXA345 and MCXA346

### **Contents**

| 1       | Introduction                          | 2  |
|---------|---------------------------------------|----|
| 2       | Power domains                         | 2  |
| 3       | Power modes and low power entry       | 4  |
| 3.1     | Power modes                           | 4  |
| 3.1.1   | Active                                | 5  |
| 3.1.2   | Sleep                                 |    |
| 3.1.3   | Deep Sleep                            |    |
| 3.1.4   | Power Down                            |    |
| 3.1.5   | Deep Power Down                       |    |
| 3.2     | Low power entry                       | 6  |
| 4       | Power configurations                  |    |
| 4.1     | Regulator and voltage detectors       |    |
|         | configurations                        | 7  |
| 4.2     | LPREQ pin                             |    |
| 4.3     | Async DMA                             |    |
| 5       | Wake-up information                   |    |
| 6       | Low power and wake-up optimization    |    |
| 6.1     | Power consumption optimization        |    |
| 6.2     | Wake-up time consideration            |    |
| 7       | Demo operation                        | 11 |
| 7.1     | Hardware and software requirements    | 11 |
| 7.2     | Setup                                 |    |
| 7.2.1   | Hardware connection                   |    |
| 7.2.2   | Importing the project                 | 12 |
| 7.2.3   | Building and flashing the project     |    |
| 7.2.4   | Selecting the low power mode and the  |    |
|         | corresponding configurations          | 13 |
| 7.2.5   | Measuring power consumption           | 14 |
| 7.2.5.1 | Power consumption measurement using   |    |
|         | MCU-Link Pro and MCUXpresso IDE       | 14 |
| 7.2.5.2 | Power consumption measurement using a |    |
|         | multimeter                            | 15 |
| 7.2.6   | Measuring wake-up time                |    |
| 7.3     | Reference results                     |    |
| 8       | References                            |    |
| 9       | Note about the source code in the     |    |
|         | document                              | 18 |
| 10      | Revision history                      | 19 |
|         | Legal information                     |    |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

Document feedback