
AN14178
MCXNx4x Flash Command Example
Rev. 1 — 24 January 2024 Application note

Document information
Information Content

Keywords AN14178, MCXNx4x, MCX N, MCX N Series, MCXNx4x Flash Command Controller, Flash IAP,
Flash Programming, Arm Cortex-M33, General Purpose MCU

Abstract This document explains how to use the flash command controller to perform flash read and write
operations, which can be more efficient than using calls to the ROM API.

https://www.nxp.com

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

1 Introduction

This document explains how to use the flash command controller to perform flash read and write operations,
which can be more efficient than using calls to the ROM API. In some complex applications, it is required to
have non-blocking flash operations. However, the command write sequence can be more difficult to use. The
purpose of this document is to provide instructions on how to program internal flash on MCXNx4x using the
command write sequence.

2 Overview

The process follows a generic flash command write sequence, as shown in Figure 1.

aaa-054526

Start

CCIF = 1?

ACCERR/
PVIOL/CMDABT

set?

FCCOB
availability check

Access error,
protection violation,
command abort check

Bit polling for
command completion
check

Previous command complete?

Results from previous command?

Read: FSTAT register

yes

yes

no

More
parameters?

no

no

yes

More writes?

Write: flash or IFR space

no

yes

Clear PERDY to program or erase,
write: 8000_0000h to FSTAT registerRead: FSTAT register

Read: FSTAT register

Load required command parameters,
write: FCCOB registers

Pgm or erase
command?

no

yes

Clear CCIF to launch the command,
write: 0000_0080h to FSTAT register

Clear previous command errors,
write: 0000_0034h to FSTAT register

PEWEN = 1?

yes

no no
CCIF = 1?

yes

Read: FSTAT register

Exit Access error

PERDY = 1?

yes

no no
CCIF = 1?

yes

Exit Access error

no
CCIF = 1?

yes

Exit

Figure 1. Command write sequence

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
2 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

2.1 High-level overview
Following is the high-level overview of the steps used:

1. Initialize the necessary clocks and registers.
2. Erase 0x10_0000 -> 0x1F_FFFF one sector 8192 Bytes of internal flash at a time using the erase sector

command.
3. Program 0x10_0000 -> 0x1F_FFFF one page 128 bytes at a time using the program page command.
4. Verify that the values stored match the expected values.
5. Additionally, between each command, check the FSTAT registers for error handling and wait for CCIF to be

set before continuing with the next command.

For more details, see Figure 2.

aaa-054527

Start

Done

0x10_0000 ->
0x1F_FFFF erased?

Destination address =
0x10_0000

yesno

Erase sector (8192)
bytes

Destination address =
0x10_0000

Program page
(128 bytes)

0x10_0000 ->
0x1F_FFFF

programmed?

noyes Increment destination
address by 128 bytes

Increment destination
address by 8192 bytes

Figure 2. Flash erase-write flow

3 Use case example

An example use case is provided, which includes an MCUXpresso project that erases and programs the second
half of flash, size 1 MB. The example can be found in the associated software package of this application note.

As outlined in Section 1, this process follows the generic command write sequence. The following subsections
highlight the commands used in this example.

3.1 Erase sector
These steps show the process for erasing one sector 8192 bytes. For the example project, the process gets
repeated until the entire second half of the flash is erased. And, it begins with a destination address destAdrss
= 0x10_0000, the first index in the second half of flash.

1. Check FMU FSTAT register to ensure that CCIF is set. The previous command is completed.

if (((FMU0->FSTAT & FMU_FSTAT_CCIF(1)) >> FMU_FSTAT_CCIF_SHIFT) == 1)

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
3 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

{
 //continue with programming
}

If the CCIF register is not set, then we cannot continue with the operation and must wait until the previous
operation is completed before starting another flash controller command. In the example code, a while
loop is used to accommodate for a wait until the CCIF register is set. However, it is up to the developer to
consider whether the application needs to be running other tasks in parallel.

2. Handle and clear any error flags present in FMU FSTAT register.

//clear previous errors
FMU0->FSTAT = 0x34;

The value for FSTAT_CLEARERR is 0x34.
3. Specify the command as erase sector by setting FMU FCCOB[0] to 0x42 (ERSSCR).

//42h is erase sector command ERSSCR
//specify command
FMU0->FCCOB[0] = 0x42;

4. Clear CCIF register to launch the command.

//clear ccif to launch
FMU0->FSTAT = 0x80;

The value for FSTAT_CLEARCCIF is 0x80. This writes a 1 to FSTAT[CCIF] bit, which clears it.
5. Check FMU FSTAT PEWEN == 1, writes are enabled for one phrase.

if (((FMU0->FSTAT & FMU_FSTAT_PEWEN(value)) >> FMU_FSTAT_PEWEN_SHIFT) == 1)
{
//continue
}

We cannot continue with the operation of the erase sector command until FSTAT PEWEN is equal to 1. In
the example code, a while loop is used to accommodate for a wait until the PEWEN register is set. However,
it is up to the developer to consider whether the application needs to be running other tasks in parallel.

6. Write four consecutive words to the flash, with the first write being phrase or sector aligned.
Note: The contents of these writes are insignificant, as the sector is to be erased, but we must perform four
consecutive writes for the command to execute per the implementation of the erase sector command.
The destination address at the beginning of the example is 0x100000. This is the first index in the second
half of flash.

*(volatile uint32_t *)(destAdrss) = 0x0;
*(volatile uint32_t *)(destAdrss + 4) = 0x0;
*(volatile uint32_t *)(destAdrss + 8) = 0x0;
*(volatile uint32_t *)(destAdrss + 12) = 0x0;

7. Check for PERDY == 1, the operation is ready to execute.

if (((FMU0->FSTAT & FMU_FSTAT_PERDY(1)) >> FMU_FSTAT_PERDY_SHIFT) == 1)
{
//continue
}

We cannot continue with this operation unless PERDY is set to 1, which means that the operation is ready to
execute.
The PERDY must get set to one directly after the fourth consecutive *(volatile uint32_t *)
(destAdrss + 12) = 0x0 write in the sequence of step 6. In the example code, a while loop is used
to accommodate for a wait until the PERDY register is set. However, it is up to the developer to consider
whether the application needs to be running other tasks in parallel.

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
4 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

8. Clear PERDY by writing 1 to it. The operation stalls until it is cleared.

//controller should erase AND verify after we clear PERDY
FMU0->FSTAT = 0x80000000;

9. Check for any errors in FSTAT register.

if (((FMU0->FSTAT & FMU_FSTAT_ACCERR(1)) >> FMU_FSTAT_ACCERR_SHIFT) == 1)
{
 PRINTF("\r\n Access Error \r\n");
}
else if (((FMU0->FSTAT & FMU_FSTAT_PVIOL(1)) >> FMU_FSTAT_PVIOL_SHIFT) == 1)
{
 PRINTF("\r\n Protection Violation \r\n");
}
else if (((FMU0->FSTAT & FMU_FSTAT_CMDABT(1)) >> FMU_FSTAT_CMDABT_SHIFT) ==
 1)
{
 PRINTF("\r\n Operation Is Aborted \r\n");
}
else if(((FMU0->FSTAT & FMU_FSTAT_FAIL(1)) >> FMU_FSTAT_FAIL_SHIFT) == 1)
{
 PRINTF("\r\n Command Failed \r\n");
}

10. Before continuing with another command controller operation, ensure that FSTAT CCIF is set. This
command is completed.

if (((FMU0->FSTAT & FMU_FSTAT_CCIF(1)) >> FMU_FSTAT_CCIF_SHIFT) == 1)
{
//continue with programming
}

In the example code, a while loop is used to accommodate for a wait until the CCIF register is set. However,
it is up to the developer to consider whether the application needs to be running other tasks in parallel.

3.2 Program page command
The following steps demonstrate the process for executing one program page command. The example
project continues to perform the program page command until 0x10_0000 -> 0x1F_FFFF is successfully
programmed.

1. Check FMU FSTAT register to ensure that CCIF is set. This signifies that the previous command has been
completed.

if (((FMU0->FSTAT & FMU_FSTAT_CCIF(1)) >> FMU_FSTAT_CCIF_SHIFT) == 1)
{
//continue with programming
}

The CCIF register must be set to 1 for us to continue with a new operation. In the example code, a while
loop is used to accommodate for a wait until the CCIF register is set. However, it is up to the developer to
consider whether the application needs to be running other tasks in parallel.

2. Handle and clear any error flags present in FMU FSTAT register.

//clear previous errors
FMU0->FSTAT = 0x34;

The value for FSTAT_CLEARERR is 0x34.
3. Specify the command as program page by setting FMU FCCOB[0] to 0x23 (PGMPG).

//only need to specify command at call time
AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
5 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

FMU0->FCCOB[0] = PGMPG;

4. Clear CCIF register to launch the command.

//clear ccif to launch
FMU0->FSTAT = 0x80;

Clear CCIF register by writing 1 to it, and launch the command.
5. Check for FMU FSTAT PEWEN == 2, writes are enabled for page programming - one page.

if (((FMU0->FSTAT & FMU_FSTAT_PEWEN(value)) >> FMU_FSTAT_PEWEN_SHIFT) == 2)
{
//continue
}

The FSTAT PEWEN must be set to 2 to continue with the operation. In the example code, a while loop
is used to accommodate for a wait until the PEWEN register is set. However, it is up to the developer to
consider whether the application needs to be running other tasks in parallel.

6. Write 32 consecutive words to flash space.

//write 32 consecutive words to flash space
//one word = 4 bytes
for (int i = 0; i < 32; i++)
{
*(volatile uint32_t *)(destAdrss + index + (i*4)) = 0x12345678;
}

7. Check for FMU FSTAT PERDY == 1, the program command operation ready to execute.

if (((FMU0->FSTAT & FMU_FSTAT_PERDY(1)) >> FMU_FSTAT_PERDY_SHIFT) == 1)
{
//continue
}

In the example code, a while loop is used to accommodate for a wait until PERDY register is set. However, it
is up to the developer to consider whether the application needs to be running other tasks in parallel.
Note: Before we execute the command, the FSTAT PERDY must be set to 1.

8. Clear FMU FSTAT PERDY by writing 1 to it, otherwise, the operation remain stalled.

//clear PERDY
FMU0->FSTAT = 0x80000000;

9. Check for errors in FSTAT register.

if (((FMU0->FSTAT & FMU_FSTAT_ACCERR(1)) >> FMU_FSTAT_ACCERR_SHIFT) == 1)
{
 PRINTF("\r\n Access Error \r\n");
}
else if (((FMU0->FSTAT & FMU_FSTAT_PVIOL(1)) >> FMU_FSTAT_PVIOL_SHIFT) == 1)
{
 PRINTF("\r\n Protection Violation \r\n");
}
else if (((FMU0->FSTAT & FMU_FSTAT_CMDABT(1)) >> FMU_FSTAT_CMDABT_SHIFT) ==
 1)
{
 PRINTF("\r\n Operation Is Aborted \r\n");
}
else if(((FMU0->FSTAT & FMU_FSTAT_FAIL(1)) >> FMU_FSTAT_FAIL_SHIFT) == 1)
{
 PRINTF("\r\n Command Failed \r\n");
}

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
6 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

10. Before continuing with another command controller operation, ensure that FSTATCCIF is set. This
command is completed.

if (((FMU0->FSTAT & FMU_FSTAT_CCIF(1)) >> FMU_FSTAT_CCIF_SHIFT) == 1)
{
//continue with programming
}

4 Run demo

Requirements:

1. MCUXpresso 11.7.1 or newer
2. MCXNx4x EVK or FRDM
3. USB cable
4. SDK version 2.13.0

Steps:

1. Download the associated software package.
2. Import the project to MCUXpresso IDE - Quickstart Panel. Click Import project(s) from file system…, see

Figure 3.

Figure 3. Quickstart panel - import project
3. Click Browse…, see Figure 4.

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
7 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

Figure 4. Import archived project
4. Navigate through the file browser and select the downloaded IAP_Flash_Commands.zip.

Figure 5. Selecting file from file browser
5. Click Open, see Figure 5.
6. Click Next, see Figure 6.

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
8 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

Figure 6. Importing IAP_Flash_Commands.zip
7. Click Finish, see Figure 7,

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
9 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

Figure 7. Import complete

Once the project is downloaded and imported into MCUXpresso, connect a micro-USB cable between the
PC host and the MCU-Link USB port J5 on the board when using MCX-N9XX-EVK, J17 when using FRDM-
MCXN947.

Open a serial terminal with the following settings:

• 115200 baud rate
• 8 data bits
• No parity
• One stop bit
• No flow control

1. Click Launch Serial Terminal option from the toolbar, see Figure 8.

Figure 8. Launch serial terminal
2. Launch Terminal windows pop up.
3. From the drop-down list of Choose terminal -> Select Serial Terminal, see Figure 9.

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
10 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

Figure 9. Select and launch serial terminal
4. Select Serial port associated with the connected device, see Figure 10.

Figure 10. Launch terminal
Note: The serial port differs for each user device.

5. Select the following settings, see Figure 10.
• Baud rate -> 115200.
• Data size -> 8.
• Parity -> None.
• Stop bits -> 1.

6. Click OK.
7. Click Build in Quickstart Panel, see Figure 11.

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
11 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

Figure 11. Quickstart panel - build project
8. Click Debug, see Figure 12.

Figure 12. Quickstart panel - debug project
9. Click OK, see Figure 13.

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
12 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

Figure 13. Confirm debug probe selection
10. Now, you must be able to step through the code. Click Step Over option in the toolbar, see Figure 14.

Figure 14. Step through icon
11. Step through line 215, see Figure 15.

Figure 15. Execution on line 215
12. Now that we have reached the first step of the erase sector command, open the peripheral viewer. Click

Peripherals+ tab, see Figure 16.

Figure 16. Peripheral viewer tab
13. Expand FMU0, see Figure 17.

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
13 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

Figure 17. Peripheral viewer FMU0
14. We can see that the FSTATCCIF register is set to 1, meaning that no commands are still being executed,

and we can execute a command using the command controller, see Figure 18.

Figure 18. FMU CCIF register
15. Continue stepping through the code and stop on line 222, see Figure 19.

Figure 19. Stop execution on line 222
16. The peripheral viewer shows that we have set FMU -> FSTAT -> FCCOB[0] to 0x42, which is the erase

sector command, see Figure 20.

Figure 20. FCCOB0 register
17. Step through the code one additional step, and we can see that we have cleared CCIF, causing the

command to execute, see Figure 21.

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
14 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

Figure 21. CCIF and PEWEN register
18. Continue stepping through and stop on line 229. Recall that we need to perform four writes, with the first

being sector-aligned. We have stopped on the fourth write in the sequence, see Figure 22.

Figure 22. Stop execution on line 229
19. Stepping over this, we must see that PEWEN is cleared and PERDY is set, see Figure 23

Figure 23. PEWEN and PERDY register
20. Step over line 233, which clears PERDY, see Figure 24.

Figure 24. Step over line 233
21. In the peripheral viewer, CCIF is set to 1, meaning that the command has been completed, see Figure 25.

Figure 25. CCIF set to 1 – command complete
Note: The erase starts at 0x10_0000 and erases one sector.

22. On Peripherals+ tab, Click three vertical dots and select Add memory monitor -> PROGRAM_FLASH1, see
Figure 26.

Figure 26. Open memory monitor – PROGRAM_FLASH1
23. After completing the erase sector command, on Memory->0x100000: 0x100000 <Hex> tab, we must find

FFFFFFFF and continues until 0x102000, which means one sector of flash has been erased, see Figure 27
and Figure 28.

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
15 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

Figure 27. Sector erased in memory viewer

Figure 28. End of erased sector in memory viewer
24. You may now choose to continue stepping through the code or terminate the debug session as the flash

program command follows a similar sequence.
25. After all the flash commands have been executed, the memory monitor must be filled with 0x1234_5678

hexadecimal in each 4-byte area, see Figure 29.

Figure 29. Second half of flash program
26. The following message is displayed in the terminal window, which confirms that the example code runs

successfully.

Flash Command Erase / Programming example:
This application erases the flash area from 0x0010_0000 -> 0x001F_FFFF and
 then programs with 0x1234_5678.
Begin erase: Success!
Begin Program: Success!

End of Flash Programming Example!

5 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
16 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

6 Revision history

Table 1 summarizes the revisions to this document.

Document ID Release date Description

AN14178 v.1.0 24 January 2024 Initial public release

Table 1. Revision history

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
17 / 19

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
MCX — is a trademark of NXP B.V.

AN14178 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 24 January 2024
18 / 19

mailto:PSIRT@nxp.com

NXP Semiconductors AN14178
MCXNx4x Flash Command Example

Contents
1 Introduction .. 2
2 Overview ...2
2.1 High-level overview ..3
3 Use case example ... 3
3.1 Erase sector .. 3
3.2 Program page command 5
4 Run demo ... 7
5 Note about the source code in the

document ..16
6 Revision history ...17

Legal information ...18

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 24 January 2024
Document identifier: AN14178

	1 Introduction
	2 Overview
	2.1 High-level overview

	3 Use case example
	3.1 Erase sector
	3.2 Program page command

	4 Run demo
	5 Note about the source code in the document
	6 Revision history
	Legal information
	Contents

