
AN14150
MCX Nx4x Inter-Core Communication
Rev. 1 — 20 January 2024 Application note

Document information
Information Content

Keywords Nirvana MCX Nx4x, multi core communication, Mailbox

Abstract This application note introduces how dual core devices can communicate using the Mailbox
interface.

https://www.nxp.com

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

1 Introduction

The MCX Nx4x series microcontrollers combine two Arm Cortex M33 cores with a CoolFlux BSP32, a
PowerQuad DSP Co-processor, an NPU, and multiple high-speed connectivity options running at 150 MHz.
To support a wide variety of applications, the MCX N-series includes advanced serial peripherals, timers, high-
precision analog, and state-of-the-art security features. All MCX Nx4x products include dual-bank flash that
supports read while write operation from internal flash. The MCX Nx4x series also supports large external serial
memory configurations.

The MCX Nx4x series is a dual-core microcontroller family. CPU0 is the primary Cortex-M33 (ver r0p4-00rel0)
processor that supports TrustZone-M, Floating Point Unit (FPU), and Memory Protection Unit (MPU).

The MCX Nx4x device also includes a second instance of Cortex-M33, CPU1 that is the secondary CM33
intended to offload work from the main processor to support special dedicated applications. The configuration
of this instance does not include MPU, FPU, DSP, ETM, Trustzone-M, Secure Attribution Unit (SAU) or co-
processor interface. SYSTICK is supported on both cores.

Cortex-M33 implements a modified Harvard memory architecture using two 32-bit bus interfaces: the Code and
System buses. The bus interfaces are activated by address range and can include both instruction fetches and
operand data references on a given bus port. (A traditional Harvard architecture strictly separates instruction
fetches and operand data references onto specific bus ports regardless of access address.) The Code bus is
typically used for instruction fetching and data accesses of PC-relative data, while the system bus is typically
used for operand data references to the on-chip and off-chip memories and peripheral accesses. The bus
structure fully supports concurrent instruction fetch and data access, but the Cortex-M33 implementations can
generate both types of references on each bus.

2 Dual-core basic mechanism

CPU0 is the main core that boots first and acts as the Master core. CPU1 acts as the Slave core and is held in
reset when the device boots up to minimize power consumption. Therefore, to run or debug applications in the
CPU1, some code must be executed on CPU0 to initialize CPU1.

In dual-core running mode, CPU0 and CPU1 need to communicate with each other. The MCX Nx 4x provides
an Inter-CPU Mailbox module (MAILBOX) to facilitate this communication by using two mechanisms:

• Interrupts mechanism
The first mechanism triggers an interrupt, along with a simple message, to another CPU. To generate an
interrupt to another CPU, you can set any one of the interrupt flags (up to 32) by using Cortex_M33 (CPU0)
Interrupt Set (IRQ0SET) or Cortex_M33 (CPU1) Interrupt Set (IRQ1SET). The other CPU reads Cortex_M33
(CPU0) Interrupt Set (IRQ0SET) and Cortex_M33 (CPU1) Interrupt Set (IRQ1SET) to determine the action
it must perform. If more than one IRQn field is 1, the CPU receiving the interrupts reads all of them. After
completing the requested service or operation, the CPU that receives the interrupt requests, writes 1 to one
or more fields in Cortex_M33 (CPU0) Interrupt Clear (IRQ0CLR) or Cortex_M33 (CPU1) Interrupt Clear
(IRQ1CLR) to clear them.
To check whether the operation is complete, the CPU sending the request can check IRQn, or the CPU
receiving the original interrupt can use the same mechanism on the reverse to notify the requesting CPU.
The user determines the particular meaning of each bit in Cortex_M33 (CPU0) Interrupt (IRQ0) and
Cortex_M33 (CPU1) Interrupt (IRQ1) for their specific application, and provides additional information to each
request bit. For example, both the CPUs can use predefined memory locations to hold detailed information
about the interrupt requests.

• Mutex mechanism
The second mechanism is based on a single-bit resource allocation request. The MUTEX[EX] bit defines a
mutual exclusion request, and reading that bit provides the status of the resource. If the resource is available,
it can be reserved for the process that reads the register. The user defines the resource control, and after

AN14150 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 20 January 2024
2 / 14

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

getting access to the resource, can write 1 to MUTEX[EX] to signal to the other processor that the shared
resource is now available. For more information, see the MUTEX[EX] description in the MCX Nx 4x Reference
Manual.

In summary, the Inter-CPU Mailbox provides the below features:

• Provides interprocessor communication, allowing multiple CPUs to share resources and communicate with
each other in a simple manner.

• Enables each CPU to generate up to 32 user-defined interrupts.
• Enables each CPU to claim a shared resource using the MUTEX register bit.

3 Inter-CPU Mailbox

This Inter-CPU Mailbox is an AHB slave peripheral with a single clock domain and reset. The Inter-CPU Mailbox
has one mutex register, and three 32-bit registers per CPU (IRQ0/1, IRQ0/1SET, iRQ0/1CLR).

Figure 1 shows the block diagram of the Inter-CPU Mailbox:

aaa-053962

Data from write to
IRQnSET register

Data read from
IRQ0CLR register

Mailbox
interrupt to CPU

Data from write to
IRQn register

Data from write to
IRQnCLR register

IRQn bit
set inputs

IRQn bit
data inputs

IRQn
register

IRQn bit
clear inputs

MUTEX
read strobe

Q

clr

D
MUTEX

write strobe
Data read from
MUTEX register

MUTEX
write data

Figure 1. Inter-CPU Mailbox block diagram

For the following two examples, one can consider that the CPU1 is already booted. By default, the CPU1 image
is loaded and executed from the FLASH memory, however there is the possibility to boot the CPU1 image from
RAM by defining the preprocessor symbol CORE1_IMAGE_COPY_TO_RAM to 1 in the CPU0 project settings.
The two examples below use the MCUXpresso SDK 2.13.1.

Also, the initial configuration of the MAILBOX can be accomplished as follow, whatever the mechanism used:

• Enable the clock to the MAILBOX module by writing a 1 to bit 31 in the SYSCON AHBCLKCTRLSET register.
• Clear the peripheral reset in the SYSCON register by writing bit 31 (MAILBOX) to the PRESETCTRLCLR0

register.
• Enable the interrupt in the NVIC to handle it when the core receives an interrupt in normal mode.

3.1 Interrupt mechanism
This section provides information about how to configure and use the MAILBOX for inter-core communication
using the interrupt mechanism.

3.1.1 Example

Once the MAILBOX is properly configured using the above instruction, CPU0 and CPU1 can communicate by
sending messages that generate automatically an interrupt to the other core. Messages are contained in the 32-
bits register IRQn and determined by the user based on requirements. Therefore, each bit of this register can be
configured differently. Writing 1 to multiple bits of this register generates more than one interrupt.

AN14150 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 20 January 2024
3 / 14

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

• CPU0 sends message to CPU1

1. CPU0 writes a message to the secondary mailbox register by writing the message into the IRQ1SET
register of the receiver core (CPU1).

Note: Writing into the IRQSET register writes 1 to the corresponding bit of IRQ.

1. An interrupt is generated in CPU1 that can be processed in the mailbox interrupt handler.
2. CPU1 reads the message in its IRQ1 register.
3. CPU1 clears the wanted bits in the IRQ1 register by writing the value into IRQ1CLR.

• CPU1 sends message to CPU0

1. CPU1 writes a message to the primary mailbox register by writing the message into the IRQ0SET register of
the receiver core (CPU0).

Note: Writing into the IRQSET register writes 1 to the corresponding bit of IRQ.

1. An interrupt is generated in CPU0 that can be processed in the mailbox interrupt handler.
2. CPU0 reads the message in the IRQ0 register.
3. CPU0 clears the wanted bits in the IRQ0 register by writing the value into IRQ0CLR.

Figure 2 illustrates the example above. First, CPU0 sends a message (value) to CPU1 using 32 bits in
IRQ1SET, then CPU1 sends back the message (value + 1) to CPU0.

aaa-053963

IRQ0CLR

IRQ0SET

IRQ0

Set g_msg
CPU0

Mailbox CPU1

g_msg + = 1

g_msg = content

Clr register

IRQ1CLR

IRQ1SET

IRQ1

Clr register
CPU1

Write g_msg

CPU0

g_msg + = 1

g_msg = 1

g_msg = content

Read content4

1

Write 0xffffffff5

Triggers interrupt3

Triggers interrupt 10

Read content 11

Write 0xffffffff 12

Write g_msg

Set g-msg

13

6 2

9

8
7

Figure 2. Mailbox interrupt example flow

3.1.2 Software implementation

MCUXpresso SDK for MCX Nx4x contains an example for using the interrupt mechanism of the Inter-CPU
Mailbox at <SDK_LOCATION>\boards\<board_name>\driver_examples\mailbox\interrupt\. This
SDK example shows the scenario explained above, where the primary core writes a value to the secondary
core mailbox, it causes a mailbox interrupt on the secondary core side. The secondary core reads the value
from the mailbox. It increments and writes it to the mailbox register for the primary core, which causes mailbox
interrupt on the primary core side.

Figure 3. Mailboxes macros defined for the application and start event

AN14150 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 20 January 2024
4 / 14

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

Figure 4. Mailbox base address

Figure 5. Main function of CPU0

Figure 6. Mailbox interrupt handler CPU0

AN14150 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 20 January 2024
5 / 14

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

Figure 7. Main function of CPU1

Figure 8. Mailbox interrupt handler CPU1

Figure 9 shows the result of running the project displayed in the terminal.

Figure 9. Inter-CPU mailbox interrupt example output on a serial terminal

3.2 Mutex mechanism
This section provides information about how to configure and use the MAILBOX for inter-core communication
using the mutex mechanism.

AN14150 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 20 January 2024
6 / 14

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

3.2.1 Example

Once the MAILBOX is properly configured following the above instruction (Inter-CPU Mailbox), CPU0 and
CPU1 can also communicate by using a mutex to share and modify a variable consecutively. CPU0 starts by
sending the address of the shared variable to CPU1 by using the mechanism seen in the previous chapter.

Once that memory location address has been shared, both cores can try to get the mutex in a while loop. When
the mutex is available, a core takes the mutex and updates the shared variable and then sets the mutex to
release it and allow access from the other core to the shared variable.

3.2.2 Software implementation

MCUXpresso SDK for MCX Nx4x contains an example for using the interrupt mechanism of the Inter-CPU
Mailbox at <SDK_LOCATION>\boards\<board_name>\driver_examples\mailbox\mutex\. This example shows
the scenario explained above, where the primary core writes the shared variable address to the secondary core
mailbox that causes a mailbox interrupt on the secondary core side to process the shared variable. Then in
a while loop, both cores try to get the mutex. When a core gets the mutex, it updates the shared variable by
incrementing its value by 1 and releases the mutex.

Figure x shows the flow of the mailbox mutex example. For details on the interrupt mechanism of this example,
refer to the previous example.

aaa-053964

Interrupt mechanism

Initialized board
hardware

IRQ1
IRQ1SET

IRQ1CLEAR

Mailbox

CPU0

Write g_shared

Mutex mechanism

MUTEX

Send shared_variable
address

While
1

yes

no

While
mutex

is taken

Initialized mailbox

Take mutex

Shared_variable + 1

Release mutex

Initialized board
hardware

CPU1

Generate
interrupt

Process shared_variable
in mailbox handler

While
1

yes

no

While
mutex

is taken

Initialized mailbox

Take mutex

Shared_variable + 1

Release mutex

Figure 10. Mailbox mutex example flow

AN14150 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 20 January 2024
7 / 14

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

Figure 11. Main function of CPU0

Figure 12. Mailbox interrupt handler of CPU0

AN14150 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 20 January 2024
8 / 14

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

Figure 13. Main function of CPU1

Figure 14. Mailbox interrupt handler of CPU1

AN14150 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 20 January 2024
9 / 14

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

Figure 15. Inter-CPU mailbox mutex example output on a serial terminal

4 Conclusion

This application note provides a quick look at the dual-core mechanisms in the MCX Nx4x device. It briefly
introduces some applications related to dual-core communication based on the MAILBOX driver examples in
the MCX Nx4x SDK and demonstrates how to use the interrupt and mutex mechanisms depending on the use
case.

5 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

AN14150 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 20 January 2024
10 / 14

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

6 Revision history

Document ID Release date Description

AN14150 v.1.0 20 January 2024 Initial version

Table 1. Revision history

AN14150 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 20 January 2024
11 / 14

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14150 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 20 January 2024
12 / 14

mailto:PSIRT@nxp.com

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

CoolFlux — is a trademark of NXP B.V.
MCX — is a trademark of NXP B.V.
Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.

AN14150 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 20 January 2024
13 / 14

NXP Semiconductors AN14150
MCX Nx4x Inter-Core Communication

Contents
1 Introduction .. 2
2 Dual-core basic mechanism 2
3 Inter-CPU Mailbox ..3
3.1 Interrupt mechanism ..3
3.1.1 Example ...3
3.1.2 Software implementation 4
3.2 Mutex mechanism ... 6
3.2.1 Example ...7
3.2.2 Software implementation 7
4 Conclusion ... 10
5 Note about the source code in the

document ..10
6 Revision history ...11

Legal information ...12

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 20 January 2024
Document identifier: AN14150

	1 Introduction
	2 Dual-core basic mechanism
	3 Inter-CPU Mailbox
	3.1 Interrupt mechanism
	3.1.1 Example
	3.1.2 Software implementation

	3.2 Mutex mechanism
	3.2.1 Example
	3.2.2 Software implementation

	4 Conclusion
	5 Note about the source code in the document
	6 Revision history
	Legal information
	Contents

