AN13730

How to Develop LVGL GUI Demo on Memory-constrained
MCU with GUI Guider

Rev. 0 — 9 September 2022

Application note

Document information

Information Content
Keywords GUI Guider 1.3.1, LVGL, LPC55S06
Abstract

This application note introduces the use of the LVGL file system mechanism
to support external SPI Flash and the use of the LVGL input device
mechanism to support hardware buttons for screen switching.

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

1 Introduction

An attractive GUI is reliant upon well designed images and fonts. The more complex

the GUI demo is, the more of these assets are required, leading to greater memory
resources being consumed. If the MCU selected for a design does not have abundant
on-chip Flash and on-chip RAM to store images and fonts, it means that you have to use
off-chip Flash and off-chip RAM.

Fortunately, LVGL provides file system mechanism to support external storage device
like SD card or serial Flash. This application note uses LPC55S06 as the target MCU.
It takes the implementation of an E-Bike Ul as an example to introduce how to use the
LVGL file system to support a low-cost external serial Flash. The external serial flash
used in this application note is a Winbond W25Q64.

In addition to providing graphic functionality, LVGL supports an input device mechanism.
This application note introduces how to use hardware buttons as LVGL input devices to
achieve screen switching.

2 LPC55S06 overview

LPC55S0x/LPC550x is a family of highly cost effective Arm Cortex-M33-based micro-
controllers for embedded applications and includes the following features:

¢ Running at a frequency of up to 96 MHz

¢ TrustZone option for isolation of secure and non-secure code

* Floating Point Unit (FPU) and Memory Protection Unit (MPU)

* Up to 96 kB of on-chip RAM

e Up to 256 kB of on-chip Flash

e CAN-FD

* Five general-purpose timers

e SCTimer/PWM

e RTC/alarm timer

e 24-bit Multi-Rate Timer (MRT)

* Windowed Watchdog Timer (WWDT)

* Code Watchdog

¢ High-speed SPI (50 MHz)

* Eight flexible serial communication peripherals (each of which can be a USART, SPI,
I12C, or 12S interface)

* 16-bit 2.0 M samples/sec ADC capable of simultaneous conversions

¢ Temperature sensor.

The MCU features listed above are closely related to display performance include system
frequency, Flash capacity, RAM capacity, and SPI communication rate. This demo uses
high-speed SPI to connect to external serial Flash.

3 LVGL overview

AN13730

LVGL is an open-source graphics library providing everything that you need to create
embedded GUI with easy-to-use graphical elements, beautiful visual effects, and low
memory footprint.

Key features:

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022
2/28

NXP Semiconductors AN1 3730

AN13730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Open source and free to use under MIT license

Written in C (C++ compatible) and hosted on GitHub

More than 30 powerful, fully customizable widgets, such as, button, image button,
checkbox, switch, slider, label, arc, bar, line, canvas, image, roller, slider, meter, table,
text area, animation, calendar, chart, list, menu, message box, tabview
Display of any resolution, GPU support, Multi display support
Supports multiple types of input devices, such as:

— Pointer-like input device like touchpad or mouse

— Keypads like a normal keyboard or simple numeric keypad

— Encoders with left/right turn and push options

— External hardware buttons which are assigned to specific points on the screen
Drawing features, such as:

— anti-aliasing

— shadow

— line, arc, polygon

— mask

Text features, such as;

— UTF-8 support

— Kerning

— word wrap and auto texts scrolling

— Arabic and Persian support

— font compression

— subpixel rendering

— online and offline font converter

— interface for custom font engine

— FreeType integration example

— multi-language support

Image features, such as:

— various color formats: RGB, ARGB, Chroma keyed, indexed, alpha only
— Real-time recoloring of images

— Real-time zoom and rotation

— Images can be stored in flash or files (such as, SD card)

— Online and offline image converter

— Image decoder interface for caching

— PNG integration example

Styles, such as:

— Cascade styles (like in CSS)

— Reuse the styles in multiple widgets

— Local styles for simple changes

— Themes to give a default appearance

— Transitions (animations) on state change

Micropython support

Rich demo examples and documents

Supported by GUI Guider, free Ul design tool of NXP

For more details, see the LVGL page.

LVGL version used in this application note is 8.0.2.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022
3/28

https://www.nxp.com/gui-guider
https://www.nxp.com/design/software/embedded-software/lvgl-open-source-graphics-library:LITTLEVGL-OPEN-SOURCE-GRAPHICS-LIBRARY

NXP Semiconductors

AN13730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

4 GUI Guider overview

GUI Guider is a user-friendly graphical user interface development tool from NXP that

enables the rapid development of high-quality displays with the open-source LVGL
graphics library. The drag-and-drop editor of GUI Guider makes it easy to utilize the many

features of LVGL, such as, widgets, animations, and styles to create a GUI with minimal

or no coding at all.

With the click of a button, you can run your application in a simulated environment or
export it to a target project. Generated code from GUI Guider can easily be added to an
MCUXpresso IDE, IAR Embedded Workbench, or Keil uVision project. It accelerats the
development process and allows you to seamlessly add an embedded user interface to

your application.
GUI Guider is free to use with general purpose and crossover MCUs of NXP. It includes

built-in project templates for several supported platforms.

For more details, refer to GUI Guider.
GUI Guider version used in this application note is 1.3.1.

5 E-bike demo overview

The E-Bike demo is a GUI application with three screens which are named as Overview,
Ride 1 and Ride 2 respectively, as shown in Figure 2, Figure 3, and Figure 4. At the

bottom of these screens, three buttons with labels <, >, and * are used to switch the
current screen to the previous, next, and home screen respectively. Overview is the first

screen displayed after the system reboot, so it is referred to the home screen from here

on.
Figure 1 shows the hardware platform. It is specially customized for the E-Bike demo.

(

W p3ids xgces,

s win
g
a

U3u3j3y sapa)

]
i
a
=
™
a
o
~<
=
x
o

&
-2
&’
£
=
M
o

Figure 1. Hardware platform
The Home button is used to switch back to the home screen from another active screen.

The Down button is used to switch to the next screen, and the Up button is used to
switch to the previous screen.
For example, assuming that the current active screen is Ride 1,

« if the Down button is pressed, it switches to the Ride 2 screen.
« if the Home button or Up button is pressed, it switches to the home screen.

© NXP B.V. 2022. All rights reserved.

All information provided in this document is subject to legal disclaimers.

AN13730
Application note

Rev. 0 — 9 September 2022

https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER?

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

May 5,2022 OVERVIEW 10:28 AM

3.1 KM
Turn right to
Ed Bluestein Blvd

LaNCE Average
el TRl

\\“III"IJ";I

MY 20 5d7,

Figure 2. Overview (home) screen

N

Figure 3. Ride 1 screen

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022

5/28

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

3.1 KM
(Turn right to
Ed Bluestein Blvd

eart

Figure 4. Ride 2 screen

To learn how to use GUI Guider to perform GUI design, including creating projects,
adding widgets, setting widget properties, adding events, simulating, generating code
and downloading to the target board and running, see Smart Home Demo on GUI Guider
for LPC546xx (document AN13694).

6 External serial flash support

As mentioned above, the on-chip Flash on LPC55S06 is 256 kB, which is not enough to
store the image resources used in this demo. The rest of this section describes how to
set up the design to use the external flash, step by step.

1. Setup the pins for the alternate function related to the high-speed SPI interface, as
shown in Table 1 and Figure 5.

Table 1. Alternative function for IOs connected to external serial flash

SPI Pin Alternate Function
MOSI P1O0_26 9
SSEL1 PIO1_1 5
SCK PIO1_2 6
MISO PIO1_3 6

2. Initialize the high-speed SPI interface with HS_SPI_Init function shown in Figure 5.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022

6/28

https://www.nxp.com.cn/docs/en/application-note/AN13694.pdf

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

_] w25q64_spi_dma.h hrgl guider.c | w25q64_spi_dma.c

80 voidQUs_SP1_MasterIniDoid)

81 & {

82 spi_master_config_t spiMdgterConfig = {0}:

gi uint3d2_t srcClock_Hz = K GetHsLspiClkFreq():

B5 SPI_MasterGetDefsultConfis(&spMgsterConfis) ;

86 spiMasterConfig. ssel¥um = spi_ss t)1;

87 spiMasterConfig. sselPol = (spi_spol) kSPI_SpolictiveAlllow:
gg spiMasterConfis. baudRate Bps = ~ 4800000

80 | SPI_MasterInit(SPIB, &spiMasterConfig, srcSlock Hz):
91

93 wvoa _SPI_MasterDMAInit Dwid

84 o {

95 static dma_handle_t Tx_DMAHandle:

gg static dma_handle_t Rx_DMAHandle:

98 DMA_TInit (DMa0):

99 DMA_EnableChannel (DMAQ, 3):
100 DM EnsbleChannel (DMAQ, 2)-
101 DMA_SetChannelPriority (MD 3,
102 DMA_SetChannelPriority (D!.-\D 2, 5
103 DMA_CreateHandle (&Tx_ Mﬂlndlo DMAD, 2}
104 DMA_CreateHandle (8Rx_ DH.-\Hanl:lle DMAD, E

107 | o
108 &SPI_Mpister_DMAHandle,
109 . stcrl.l‘urtullbuck

110
111 &7/ DMaHandle,
11% &g DMaHandle
113 |

114 | }

115 L

116 woad @ void)
117 & {

118 CLOCK_AttachClk (kFRO_HF _tf HSLSPI):

118 RESET_PeripheralReset (JHSLSEL RST_SHIFT_RSTn):
120

121 HS o n - -1 n s

122 S SPI MasterInit ()]

123 P —— e N

124 | }

Figure 5. High-speed SPI initialization

3. Add source file and header file for driving external serial flash to the generated code
project. Here we assume that you have used GUI Guider to complete the GUI page
design and have generated a code project based on the Keil IDE. Figure 6 shows the
directory where the driver files are stored in the code project folder. Figure 7 shows
the group where the driver files are located in a Keil project.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022

7128

NXP Semiconductors AN1 3730

AN13730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

E Bike AN License Check » E_Bike For LPC55506 AN 20220919 Full » }source

Fas

Name Date modified

h FreeRTOSConfig.h 2022/3/29 11:08
h lv_confh 2022/6/30 11:23
€ Iv_port_fs.c 2022/9/5 15:21

h |v_port_fs.h 2021/12/11 23:52
< |vgl_guider.c 2022/9/5 17:42

€ pressure_test.c 2022/9/5 14:46
h pressure testh 2022/9/5 14:46

€ w25q64_spi_dma.c 2022/9/19 17:11
h w25q64_spi_dma.h 2022/9/14 13:47

Figure 6. External serial flash driver directory

=]

_] FreeRTOSConfig.h
_] W_confh
@ _] Ivgl_guider.c
R hv_port_fs.c
_'I v_port_fs.h
@ J pressure_test.c
_'I pressure_test.h
& _] w25q64_spi_dma.c
w25g64 spi_dma.h

Figure 7. Keil group for external serial flash driver

4. Add a call to the initialization function for driving external serial flash to the main()
function, as shown in Figure 8.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022
8/28

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

|J Ivgl_guider.c I
5.reconstruct project architecture

101 - #f
102 i{muud)

104 BaseType_t stat;

105

106 /* Init board hardware, */

107 /* zet BOD VBAT level to 1.65V */

108 POVER_SetBodVbatLevel (kPOVER_BodVbatLewell650mv, kPOWER_BodHystLevelSOmv, false):
109 /* attach main clock divide to FLEXCOMMO (debug console) */

110 | CLOCK_AttachClk (BOARD_DEBUG_UART CLK_ATTACH) :

111 /* attach 12 MHz clock to SPI8 »/

112 CLOCK_AttachClk (kFRO_HF_DIV_to_HSLSPI) :

114 | BOARD_InitPins():

116 BOARD_BootClockFROHF96M() ;

116 BOARD_InitDebugConsole () ;
pitialize SPI of wibqfd */

121 stat = xTaskCreate (AppTask, “lvgl”, configMINIMAL STACK SIZE + 800, NULL, tskIDLE PRIORITY + 2, NULL):
123 | llf {pdPAS5 != stat)

126 PRINTF ("Failed to create lvgl task™):
126 while (1)

128 1
130 wTaskStartScheduler () ;
132 for (::)

134 :-} } /* should never get here */

Figure 8. Call initialization function to main() function

7 External storage for image resources

This demo uses a separate and external operation for loading the images into flash. To
download the image resources used in this demo to the external serial flash, prepare the
image files and then download them using a debug probe (SEGGER J-Link).

1. Convert BMP, JPG, or PNG images to binary format using online image converter.
The image converter is available at Online image converter - BMP, JPG or PNG to C

array or binary.

X m Online image converter - BMP, | X —I—

ﬁ]l https://\vgl.io/tooIs/imageconverterI A 0 &

¢ Sponsor Demos Features Services ~ Boards Tools ~ About SquareLine Studio
N{LVGL D.2pensst, a

Online Image Converter
BMP, JPG or PNG to C array or binary

LVGL can use images from C arrays (compiled with the code) or from external devices (e.g. from SD card) to display them on your TFT display. Learn how to
create images for the graphics library.

Figure 9. URL for LVGL online image converter
One key point is to select the correct color format and output format for the image
converter. GUI Guider version 1.3.1 supports two color formats, as shown in
Figure 10. Here, this demo selects True Color Alpha.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022

9/28

https://lvgl.io/tools/imageconverter
https://lvgl.io/tools/imageconverter

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Format True Color Alpha v @

True Color Alpha
Part & State = Irue Color

Figure 10. Color formats supported by GUI Guider
For the output format, see the configuration file called Iv_conf.h in the code project.
Here, this demo selects 16-bit color depth without swap.

L x| _] W_conth
- .

d hgl/lvgl/src/font o 1 D#ifnd
a Wgl/tvgl/src/gpu g
4 hvgl/lvgl/src/hal 4
4 hgl/lvgl/src g
4 hvgl/lvgl/src/misc 7
4 gl/lvgl/src/widgets g
_ source 10
- 11 |3 —CULUR_SCREEN_ TR
=RTQSCon! 12 | #define LV _COLOR_TRANSP LV_(
L] v_confh 13 | #define LV_ANTIALTAS 1
— 14 | #define LY DISP DEF REFR PE!

Figure 11. Color depth supported by GUI Guider

Image file 0 file(s) selected. Browse

Picture to be converted

Color format _-"‘E
CF_TRUE_COLOR_ALPHA v I
Color format matched - - -

with GUIGuider Alpha byte Add a 8 bit Alpha value to every pixel
Chroma keyed Make LV_COLOR_TRANSF (lv_conf h) pixels to transparent

Qutput format
Binary RGB565

Color depth is 16-bit and no swap

Options

ry

Figure 12. Color format and output format configuration for image converter

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022

10/28

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Image file 0 file(s) selected. Browse

Color format
CF_TRUE_COLOR_ALFPHA w

Alpha byte Add a 8 bit Alpha value to every pixel
Chroma keyed Make LV_COLOR_TRANSP (lv_confh) pixels to transparent

Cutput format
Binary RGB565 v
Options Dither images (can improve quality) For picture binary file size as
Output in big-endian format Sm_a" as pOSSIbles unselect this
option

For little-endian MCU,

unselected this option

Figure 13. Dither and endian configuration for image converter

2. Merge the binary image files generated in Step 1 into a single binary file called
mergeBinFile.bin, using binary merge tool called MultipleBinFileMergeTool.cpp,
as shown in Figure 14.

E Bike AN License Check » E Bike DemoCode For AN13730 >} e bike material

Fas

Name Date modified
LPC55_EBikeSpeedMeter v2.0.pdf 2022/5/17 10:59
4 JLinkScript 16:1
| | LPC55S506.JLinksS p 2022/5/25 16:13
Ij LPC55506 W25Q64.FLM 2022/3/22 13:31

w] mergeBinFile.bin| merg

e+ MultipleBinFileMergeTool.cpp

ed binary image file 2022/6/24 13:58
2022/8/18 16:28
| recordFile.txt binary merging tool 2022/6/24 13:58

Figure 14. Merging of binary image files
3. Download the merged binary image file generated in Step 2 to the external serial

Flash. To achieve this operation, create a flash driver for the J-Link and the J-Flash

utility used to perform the programming operation, as described below.

a. To program the flash memory in our design with J-Link probe, a driver or an
algorithm file (called an FLM file) is required. Place the programming algorithm
file for the external serial flash to the specific file directory for NXP devices in the
SEGGER driver installation, as shown in Figure 15.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022

11/28

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

s >|SEGGER » Jlink » Devices » NXP I
~
Name Date modified
|| LPC55506.JLinkScript . 2022/5/25 16:13
= W25Q64 programmln%
] LPC55506 W25Q64FLM J o100t e 022/3/22 1331
iMX65X 2021/12/15 10:38
iMX6UL 2021/12/15 10:38
Figure 15. External serial flash programming algorithm file directory

b. Locate the JLinkDevices.xml within the J-Link installation directory. For example,
the JLinkDevices.xml is placed at the directory shown in Figure 16. This file is

used by the J-Link driver to identify all supported flash devices and to find their
associated drivers.

a5 >EGGER » JLinkj

Name

~ XML Document (1)

[1; JLinkDevices.xml
~ Microsoft Edge HTML Document (1)

e IJLinkControlPanel.html
~ File folder (8)
USBDriver

Figure 16. JLinkDevices.xml directory
Add the algorithm index entry shown below for the external serial flash that we

are using at the end of the JLinkDevices.xml file, as shown in Figure 17. The
index entry is shown below:

<Device>
<ChipInfo Vendor="NXP" Name="LPC55506 SPIFlash W25064"
WorkRAMAddr="0x20000000" WorkRAMSize="0x8000"
Core="JLINK CORE CORTEX M33" />
<!-- MCU does not have memory mapped flash area, instead
a virtuell address is used. —--—>
<FlashBankInfo Name="EXTSPI" BaseAddr="0xC0000000"
MaxSize="0x400000" Loader="Devices/NXP/
LPC55506 W25Q64.FLM"
LoaderType="FLASH ALGO TYPE CMSIS" />
<Device>

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022

12/28

NXP Semiconductors AN1 3730

AN13730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

ﬁJL\nkDewces xml '3 ‘

<FlashBankInfo Name="Flash Block B" BaseAddr="0x11080000" MaxSize="0x40000" Loader="Devices/AnalogDevices/ADSP-CM41/CM4lx FlashB 256.FLM" Lo

</Device>
<Device>

m

<Device>

<Device>

<Device>

[emlamias
R

<Device>

<Device>

m
jum}

<Device>

<= —
<l-- Maxim (MAX32600) -->
<t s
F <pevice>

<i—- .

<1-- Samsung (ARTIR) -->

<= -—>

B <pevice>

< -—>

<!-- Analog Devices (Cortex-M33 devices)-->
<t >
. <pevice>

<t ——>

<1-- o2Micro Devices -—>
<1 -—>
<Device>

<Device>

<Device>

(Rl n
[T

<Device>

<Device>
<ChipInfo Vendor="NXP" Name="LPC5506_ externalFlash" WorkR2

0x20000000" WorkRAMSize="0x8000" Core="JLINK CORE_CORTEX M33" />
tuell addre.
400000" Load:

<!-- MCU does not have memory is used. -—>
<FlashBankInfo Name="EXTSPI" B
</Device>

1362 L-</pataBase>

lash area, instead
dr="0xC0000000" MaxSi

="Devices/NXP/LPC5506 .FLM' LoaderType="FLASH ALGO TYPE CMSIS" />

Figure 17. External flash programming algorithm index location
Note: Loader="Devices/NXP/LPC55S06_W25Q64.FLM" indicates the file path
of the flash programming algorithm file. Users can modify the file name and file
path according to your needs, but ensure that they are synchronized with the
actual file name and file directory.
c. Start up J-Flash.exe located in the directory, as shown in Figure 18. After J-Flash
is started, the main interface is as shown in Figure 19.

es SEGGER » Jlink

Name

~ Annlication (27)

JFlash.exe

B0 JFlashLite.exe
JFlashSPl.exe

Figure 18. J-Flash directory

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022
13/28

NXP Semiconductors

AN13730

AN13730

Application note

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

SEGGER J-Flash V7.58e

File Edit Target Options View Help
Project information g x

Setting Value

Drag & Drop data file here

Log

Application log started

3-Flash v7.58e (3-Flash compiled Dec 7 2021 17:29:41)

- JLinkARM.d1l v7.58e (DLL compiled Dec 7 2821 17:29:17)

Reading flash device list [C:\Program Files\SEGGER\JLink\ETC/JFlash/Flash.csv] ...
- List of flash devices read successfully (451 Devices)

Reading mou device 1list ...

List of MCU devices read successfully (2239 Devices)

List of MCU devices read successfully (8839 Devices)

Figure 19. J-Flash main interface

d. Click File -> New project, and the Create New Project dialog box pops up, as

shown in Figure 20. Select Target interface and Speed according to the actual
situation. Here, we select SWD and 4000 kHz.

Create New Project pd

Target device

Little Endian

Target interface Speed

SWD = 4000 v| kHz

OK

Figure 20. Create New Project dialog box

e. Click ... button and the Target Device Settings dialog box pops up, as shown in

Figure 21. Since the target device is LPC55S06, use LPC55S06 as key word to
search the desired target device.

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2022. All rights reserved.

Rev. 0 — 9 September 2022

14/28

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Target Device Settings X
Selected Device: ARM7 Little Endian ~ | Core #0 ~
e
Manufacturer Device Key word Core NumCores Flash Size
| LPC55506 I | v|Filter [Filter |
NXP LPC55506 Cortex-M33 1 251392 Bytes...
NXP 55506_SPIFlash_W250Q64 Cortex-M33 1 4096 KB
OK Cancel
Figure 21. Target Device Settings dialog box

Select LPC55S06_SPIFlash_W25Q64, and it is exactly the flash programming
algorithm index added in the JLinkDevices.xml in Step b.

f. In Figure 21, click OK to return Figure 20. In Figure 20, click OK to complete
project creation, as shown in Figure 22.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022

15/28

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

BN SEGGER J-Flash V7.58¢ - [*] — O e
File Edit Target Options View Help

Project information g x

Setting Value

[- General

Project name ---
Host connection USB [Device @]

[-TIF

Type SWD

Init. speed 4800 kHz

Speed 4000 kitz Drag & Drop data file here
[- Target

MCcuU NXP LPC555@6_SPIFlash_lW25Q64

Core Cortex-M33

Endian Little

Check core ID No
Use target RAM 32 KB {@ ©x20000000
[+ Flashbank No. @

Log 8 x

Application leg started

- J-fFlash v7.58e (J-fFlash compiled Dec 7 2821 17:29:41)

- JLinkaARM.d11 V7.58e (DLL compiled Dec 7 2821 17:29:17)

Reading flash device list [C:\Program Files\SEGGER\JLink\ETC/JFlash/Flash.csv] ...
- List of flash devices read successfully (451 Devices)

Reading mCu device 1list ...

- List of MCU devices read successfully (8833 Devices)

Creating new project ...

- New project created successfully

List of MCU devices read successfully (8839 Devices)

Figure 22. Created J-Flash project
g. Click Options -> Project settings, and the Project settings dialog box
pops up, as shown in Figure 23. Click MCU, enable Use J-Link script file,
and select script file for LPC55S06. This script file used in this demo is
LPC55S06.JLinkScript and its contents are as shown in Figure 24.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022

16/28

NXP Semiconductors

AN13730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Project settings X
General Target device
MCU 1 Device }S06_SPIFlash_W25Q64| ...
Init. steps Core |Cortex—M33 |
Exit steps Endianness |Little Endian ~
Flash
Production Target2optic-n5 3
Performance l se J-Link script ﬁlelkP\LPc55506.JLink5cript| @

[] Check core ID
ID |00000000
Mask OFOOOFFF

Target RAM settings

Addr 20000000

Size |32KB ~

OK Cancel

Figure 23. Use script to configure J-Flash project

AN13730

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022

17128

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

I LPc55506.JLinkScript E3

*

12 * ResetTarget
13 * This device requires a special reset as default reset does not work for blank device.
14 *f

15 // Overwrite ResetTarget for blank device download only.

16 void ResetTarget (void) [}

SRR R R Rk kR kR kR Ak Rk Rk kA Ak Rk R Rk Rk Rk Rk Rk ko Rk ok ko ko

*

21 * InitTarget

22 *f

23 void InitTarget (void) {

24 int w;

26 JLINK_SYS_Report (MA &« ssdidk ki it £k & a4 £k k AR E R SRR R RRERE RS RAEAREN)

2 JLINE_S¥S Report("J-Link script: LPCS55xx Cortex-M33 core J-Link script");

B JLINK_SYS_REPOIL [M* &% s & ak ik ka ki k k& k& ki kA A KA XERAHXAR AL FEAKARAERAT) 5
29 JLINE CCRESIGHT Configure ("IRPre=0;DRPre=0;IRPost=0;DRPost=0;IRLenDevice=4");

CPU = CORTEX M33; // Pre-select that we have a Cortex-M33 connected
31 JTAG RllowTAPReset = 07 J/ J-Link is allowed to use a TRP reset for JTAG-chain auto-detection

JIAG SetDeviceld(0, 0x6BR02477); // 4-bits IRLen

25 // Select ISE-RP

36 JLINK_CORESIGHT WriteDP(2, 0x020000£0);
v = JLINK CORESIGHT ReadAP(3);
JLINK SY5 Reportl("DRP-IDCODE:", v);
JLINK CORESIGHT WriteDP(2, 0x02000000);
40 JLINK_CORESTGHT ReadDE(0);

42 // Rctive DebugMailbox
43 JLINK_CORESIGHT WriteaP(0, 0x21);
44 JLINE_CORESIGHT ReadaP(0);

46 // Enter Debug Session
a7 JLINK CORESIGHT WriteAP(l, 0x07);
48 JLINK CORESIGHT ReadP(0);

Figure 24. Script file for J-Flash project setting

h. To save the created project, click File -> Save project as....

i. To load the merged binary image file, mergeBinFile.bin, to J-Flash, click File ->
Open data file....

j. To establish connection between J-Flash tool on PC and the debugger on the E-
Bike hardware platform, click Target -> Connect.

k. To erase the entire external serial flash, click Target -> Manual Programming ->
Erase Chip.

I. To program the merged binary image file, mergeBinFile.bin, to the external
serial flash on the E-Bike hardware platform, click Target -> Manual
Programming -> Program.

8 SRAMS3 enablement

When developing a GUI application, you may encounter errors shown in Figure 25.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022
18/28

NXP Semiconductors AN1 3730

AN13730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Build Time Elapsed:

Figure 25. No space error

To solve this error, first understand the root cause of the error. The root cause of the no
space error is that the Flash and/or RAM is not large enough to store the GUI application.
There are two reasons for the lack of Flash and/or RAM:

¢ The first is that the memory resources of the MCU are not fully utilized.

* The second is that although the memory resources of the MCU are fully utilized, they
are not enough to store the entire GUI application due to the small storage capacity of
the selected MCU.

To judge whether a GUI application fully utilizes memory resources or not, check the
files describing the allocation of memory resources, such as, scatter-loading (or linker)
file of Keil IDE. This document takes LPC55S06 as an example to explain how to judge
whether the memory resources are fully utilized.

To obtain the memory resources of LPC55S06, see LPC55S0x/LPC550x User Manual
(document UM11424), as shown in Figure 26. LPC55S06 has a total of 256 kB on-chip
Flash, of which the system reserves 12 kB and user applications use the remaining
244 kB. LPC55S06 has a total of 96 kB on-chip RAM, including 16 kB SRAMX, 32 kB
SRAM 0, 16 kB SRAM 1, 16 kB SRAM 2, and 16 kB SRAM 3.

To create a GUI application using GUI Guider, generate a code project based on

Keil IDE and then open the scatter-loading file to view the memory allocation, as

shown in Figure 27. For RAM, the scatter-loading file specifies the RAM address

space from 0x20000000 to 0x2000FFFF as the data section, excluding SRAM3
(0x20010000-0x20013FFF). The RAM address space is not fully utilized. As for Flash,
all 244 kB on-chip flash are used for code section whose size is 0x0003CE00 plus
0x00000200. Therefore, the Flash address space is fully utilized.

Since we have found that the RAM is not fully utilized, we can enable SRAM 3 together
with SRAM 0, 1, 2 as the data section. The available RAM space is increased from 64
kB to 80 kB. For how to enable SRAM 3, see SRAM3 Usage in LPC55(s)06 (document
AN13628).

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022
19/28

https://www.nxp.com/docs/en/user-guide/UM11424.pdf
https://www.nxp.com.cn/docs/en/application-note/AN13628.pdf

NXP Semiconductors

AN13730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Table 4.

Memory map overview

AHB
port

Non-secure
start address

Non-secure
end address

Secure start
address

Secure end
address

244K B s available for user
J code

Function 1

0

{0x0000 0000

0x0003 FFFF
Flash

0x1000 0000

0x1003 FFFF

Flash memory, on CM33 code bus. The last 17 pages
(12KB) are jesenved on the 256 KB flash devices
resulting inj244 KB jnternal flash memory.

0x0300 0000

0x0301 FFFF

0x1300 0000

0x1301 FFFF

Boot ROM, on CM33 code bus | 5|

0x0400 0000

0x0400 3FFF

RAM

0x1400 0000

0x1400 3FFF

SRAM X on CM33 code bus, 5 MX_0
(0x1400 0000 to 0x1400 OFFF) and SRAMX_1
(0x1400 1000 to 0x1400 1FFF) are usel for Casper
(total 8 KB). If CPU retention used in pover-down
mode, SRAMX_2 (0x1400 2000 to 0x14§0 25FF) is
used (total 1.5 KB) by default in power API and this is
user configurable within SRA#.‘(—?,and

0x2000 0000

0x2000 7FFF

0x3000 0000

0x3000 7FFF

SRAM 0 on CM33 data bus, |32 K \

0x2000 8000

0x2000 BFFF

0x3000 8000

0x3000 BFFF

SRAM 1 on CM33 data bus,[16 KB ‘

0x2000 C000

0x2000 FFFF

0x3000 CO00

0x3000 FFFF

0x2001 0000

0x2001 3FFF

0x3001 0000

0x3001 3FFF

SRAM 2 on CM33 data bus, {16 KB
SRAM 316 KB

Q|| W N

0x4000 0000

0x4001 FFFF

0x5000 0000

0x5001 FFFF

AHB to APB bridge 0. See Section 2.1.6. Is available

0x4002 0000

0x4003 FFFF

0x5002 0000

0x5003 FFFF

AHB to APB bridge 1. See Section 2.1.6. fgr

~

0x4008 0000

0x4008 FFFF

0x5008 0000

0x5008 FFFF

AHB peripherals. See Section 2.1.7. user code

0x4009 0000

0x4009 FFFF

0x5009 0000

0x5009 FFFF

AHB peripherals. See Section 2.1.7.

0x400A 0000

0x400A FFFF

0x500A 0000

0x500A FFFF

AHB peripherals. See Section 2.1.7.

Figure 26. LPC55S06 memory resources

] LPC55506_flash.scf

41 #endif

42

43 #define m_interrupts_start 0x00000000

44 #define m_interrupts_size 0x00000200

45

46 #define m_text_start 0x00000200

47 #Hdefine m_text_size 0x0003CE0D

48

49 [#define m_data_start 0x20000000

50 |J#define m_data_size 0x00010000

51

52 #define m_sramx_start 0x04000000

53 #define m_sramx_size 0x00004000

54

56 #define m_sram3_start Dx20010000

56 #define m_sram3_size Dx00004000

57

58 LE_m_text m_interrupts_start m_interrupts_size+m_text_size { ad region size_region
59

60 VECTOR_ROM m_interrupts_start m_interrupts_size [; load address = Wgecution address
61 * (,isr_vector,+FIRST)

62 1

63

64 EE_m_text m_text_start FIXED m_text_size { . load address = execution addred
65 * (InRootf$Sections)

66 . AT (+RO)

67 1

68

69 RW_m_data m_data_start m_data_size-Stack_Size-Heap_Size { ; EW data

70 | CANY (+RW +II)

71

72 1}‘.R]|'[_LIB_HE1‘.P +0 ENMPTY Heap_Size { . Heap region growing up

73

74 .I}ERJILLIB_STACK m_data_start+m_data_size EMPIY -Stack_Size { . Stack region growing down
75

76

1

Figure 27. Scatter-loading file for LPC55S06

9 Hardware button control for screen switching

This section describes how to implement screen switching using hardware buttons. LVGL
supports the following types of input devices:

AN13730

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022

20/28

NXP Semiconductors AN1 3730

AN13730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

* Pointer-like input device, such as touchpad or mouse

» Keypads, such as, a normal keyboard or a simple numeric keypad

* Encoders with left/right turn and push options

External hardware buttons which are assigned to specific points on the screen

To implement screen switching using hardware buttons, follow the steps below:

1. To register an input device, initialize an Iv_indev_drv_t variable, as shown in

Figure 28.
void lv_port_indev_init (void) 1. define a lv indev drv t

[static lv_indev_drv_t indev_drv:] variable

ﬁif,' Eef USE_INDEV_BUTTON _ 2 |[nitialize Iv_indev_drv_t variable

3. set type and read callback for
input device

4. register the
Iv_indev_drv_t
iNe*/ variable to LVGL

* Button

f{ *fizsign buttons to points on the screen*/
static const lv_point_t btn_points [BUTTON_COUNT] =

{242, 299}, /% Button 0 —> x:242; y:299 %/

{289, 299}, /% Button 1 -> x:289;: y:299 /|

{195, 299} /* Button 2 —> x:195; y:299 %/
}: 5. assign buttons to points on the screen
(1v_indev_set_button_points(indev_button, btn_points) ;)

Figure 28. Register an input device

2. Implement button reading related functions, including button read,
button get pressed id,and button is pressed, as shown in Figure 29,
Figure 31, and Figure 32.

/% W1ll be called by the library to read the button */
static void button_read(lv_indev_drv_t * indev_drv, lv_indev_data t * data)

static uint8_t last_btn = 0O;

/% Get the pressed button’ = ID #/
int8_t btn_act = button_get_pressed_id();

j{.f (btn_act >= 0)

data->state = LV_INDEV_STATE_FR;
last_btn = btn_act;

else

data—>state = LV_INDEV_STATE_REL;

/* Save the last pressed button’s ID */
y data->btn_id = last_btn;

Figure 29. Implementation of button_read

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022
21/28

NXP Semiconductors AN1 3730

AN13730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

/% Button counts */
#define BUTTON_COUNT 3

Figure 30. Set button quantity

/* Get ID (0, 1, 2 ..) of the pressed button */
s{t:atic int8_t button_get_pressed_id(void)

uint8_t 1i;
KL

Check to buttons see which iz being
pressed (assume there are 3 buttons)
*f
for(i = 0; i < BUTTON_COUNT; i++)

/% Return the pressed button’s ID */
::L{f {(button_is_pressed(i))

return 1;
1
}
/* No button pressed */
| return —-1;

Figure 31. Implementation of button get pressed id

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022
22/28

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

/*Test 1f id button iz pressed or not*/
static bool button_is_pressed{uint8_t id)

J/*Your code comes here¥/

s{wit-:h(id)
case [:
if (GPIO_PinRead (GPIO, 1, 23) == 0)
{f* Home */
return true;
}
break:
case |:
if (GPI0O_PinRead (GPIO, 1, 5) == 0)
{/* Down */
return true;
1
break;
iase 2:
1f (GPIO_PinRead (GPIO, 1, 21) == 0)
{/* Up */
return true;
1
break ;|
default:
{
}
break;

1

return false;

Figure 32. Implementation of button_is pressed

For more details for inputting device, see input device in LVGL.

10 File system support for external serial Flash

AN13730

10.1

LVGL has a File system abstraction module that enables you to attach any type of file
system. Here, we build a simple file system for external serial flash, which makes it
possible to operate image files stored on external serial Flash through file API functions.
For more details about file system in LVGL, see File System in LVGL.

Get file system template file and add them to the code project

For fast file system porting, LVGL provides a file system template file. First, clone the
LVGL graphics library located on Git hub. The Git hub link for the LVGL graphics library is
here.

The LVGL file system template file is Iv_port_fs_template.c and the corresponding
header file is Iv_port_fs_template.h. The directory of these two files is shown in

Figure 33.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022
23/28

https://docs.lvgl.io/master/porting/indev.html
https://docs.lvgl.io/master/overview/file-system.html
https://github.com/lvgl/lvgl

NXP Semiconductors AN1 3730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

LVGL root directory, here, we use LVGL 8.0.2 version

)Dvgl_v8_0_2__) examples » porting

Name Date modified

@ Iv_port_disp_template.c 2022/6/16 11:57
@ Iv_port_disp_template.h 2022/6/16 11:57
@ Iv_port_fs_template.c 2022/6/16 11:57
@ Iv_port_fs_template.h 2022/6/16 11:57
9
9

Iv_port_indev_template.c 2022/6/16 11:57
Iv_port_indev_template.h 2022/6/16 11:57

Figure 33. File system template file directory

Copy these two files to the code project directory and rename them to 1v_port fs.c
and 1v_port fs.h, as shown in Figure 34.

» E_Bike_AN_License_Check » E_Bike_For_LPC55S06_AN_20220919_Full >} source

Fat

Name Date modified
h FreeRTOSConfig.h 2022/3/29 11:08
h lv_confh 2022/6/30 11:23
¢ Iv_port_fs.c 2022/9/5 15:21
2021/12/11 23:52
¢ Ivgl_guider.c 2022/9/5 1742
€ pressure_test.c 2022/9/5 14:46
h pressure_test.h 2022/9/5 14:46
¢ w25q64_spi_dma.c 2022/9/19 17:11
h w25q64_spi_dma.h 2022/9/14 13:47

Figure 34. File system porting files directory

Add 1v _port fs.cand lv _port fs.h tothe source group of the Keil project, as
shown in Figure 35.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022

2428

NXP Semiconductors AN1 3730

AN13730

10.2

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

=S source

_] FreeRTOSConfig.h
_] W_confh

+ J hvgl_guider.c

+ j lv_port_fs.c
L] Iv port fs.h

3 J pressure_test.c
& pressure_test.h

@] w25q64_spi_dma.c
L w25q64_spi_dma.h

Figure 35. Add File system porting files to Keil project

Implement file operation functions

To implement file operation functions, see the Iv_port fs.c file in the attached code
project. Noteworthy file operation functions include Iv_port_fs_init, fs_init, fs_open,
fs_close, fs_read, fs_seek, fs_tell, and fs_size.

Here we focus on the fs_open function. The fs_open function consists of several if
statements, each if statement corresponds to a binary image file, as shown in Figure 36.

static void* fs_openf(struct _lv_fs_drv_t * drv, const char * path, lv_fs_mode_t mode)

lv_fs_res t res = LV_FS_RES_NOT_INP:
uint32_t* file_p = NILL:

:i{f (mode == LV_FS_MODE_WR)

?lse if (mode == LV _FS MODE_RD)

?lse if (mode == (LV_FS_MODE_WR | LV_FS_MODE_RD))

/% For Read SPI Flash directly without FileSystem */
/* ebike_bg.bin #/
if (0 == strcmp(path, "/ebike_bg.bin"))

/* ebike_header_bg.bin */
if (0 == strcmp(path. “/ebike_header_bg.bin"))

/* ebike gps_arrow.bin */
if (0 == strcmp(path, “/ebike_gps_arrow.bin"))

/{The location addr of the image in the flash
FIL.base_addr = 534248;

SfAlways 0 at this moment

FIL. offset = 0;

/{The size of the image

FIL.size = 4036;

file_p = (uint32_t*)&FIL;

1 y

Figure 36. Part of implementation of fs_open

As shown in Figure 36, ebike_gps_arrow.bin is the binary image file used in this demo.
The base_addr and offset are the base address and address offset in the external
serial flash which stores ebike_gps_arrow.bin. Here, ebike_gps_arrow.bin is stored at
address 534248, so we can specify the base_addr as 534248 and the offset as 0. The
size is the file size of ebike_gps_arrow.bin. Here, it is 4036 bytes.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022
25/28

NXP Semiconductors AN1 3730

11 Summary

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

That means, if you want to add a new image to the GUI application, convert the image
file to binary format, download it to the external serial flash, and add an if statement. In
this if statement, specify the base address, the offset, and the file size.

To display the image file which has been stored in external serial flash, use the code
shown in Figure 37 to load image data from the external flash to LVGL.

ffWrite codes Overview_image GPS_icon

ui->»Overview_image GPS_icon = lv_img_create (ui->Overview)
lv_obj_set_pos(ui->Overview_image GPS_icon, 274, 60);
lv_obj_set_size(ui->Overview_image GPS_icon, 28, 48);

ffWrite style state: LV_STATE _DEFAULT for style_overview_image_gps_icon
static lv_style_t style_overview_image_gps_icon_main_main_default;
if (style_overview_image gps_icon_main main_default.prop _cnt > 1)
1lv_style_reset (kstyle_overview image_gps_icon_main_main_default) ;
else
lv_style_init (&style_overview_image_gps_icon_main_main_default) ;
1lv_style_set_img_recolor (kstyle_overview_image_gps_icon_main_main_defau
lv_style_set_img_recolor_opaflfstyle overview_image gps_icon_main main_d
lv_style_set_img_opalkstyle_overview_image_gps_icon_main_main_default,
1v_obj_add_style{ui->Overview_image GPS_icon, &style_overview_image_gps

v_img_set_src(ui->Overview_image GPS_icon, "F: /ebike_gps_arrow. bin
V_IMmZ_Set. = .50 P N en) s PR PR Y B
lv_img_set_angle (ui->Overview_image GPS_icon, 0);

Figure 37. Load image data in external serial flash to LVGL

AN13730

This application note focuses on the application of LVGL and GUI Guider on memory-
constrained MCU, including external serial flash support, storing images to external serial
flash, making full use of memory resources, using hardware buttons to switch screen,
and file system support.

The information related to this demo, including code, images, and image merging tools,
are available together with this application note.

Note: The J-Link loading is same for IAR and MCUXpresso IDE except for differences
around linker file. For MCUXpresso IDE, linker file can be a little more difficult, and for
IAR, it should be straightforward though.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022
26/28

NXP Semiconductors

AN13730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

12 Legal information

12.1 Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

12.2 Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

AN13730

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

12.3 Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

© NXP B.V. 2022. All rights reserved.

Application note

Rev. 0 — 9 September 2022

27128

mailto:PSIRT@nxp.com

NXP Semiconductors

AN13730

How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Contents
1 Introduction ...
2 LPC55S06 OVerviewccccoocceecmerrencenmreeeccanneens
3 LVGL OVEerVIieWcccoiiiiiiieerriccimeeeeecsmmeeeeeaas
4 GUI Guider overview
5 E-bike demo overviewcooiiiiiiiiciiniccieenns 4
6 External serial flash supportccceererereenes 6
7 External storage for image resources 9
8 SRAMS3 enablement ... 18
9 Hardware button control for screen

SWItChING . 20
10 File system support for external serial

Flash ... 23
10.1 Get file system template file and add them

to the code projectcccceiiiiiiiiiiiiieeee 23

10.2 Implement file operation functions 25
1 SUMMANY ... 26
12 Legal information ... 27

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 9 September 2022
Document identifier: AN13730

	1 Introduction
	2 LPC55S06 overview
	3 LVGL overview
	4 GUI Guider overview
	5 E-bike demo overview
	6 External serial flash support
	7 External storage for image resources
	8 SRAM3 enablement
	9 Hardware button control for screen switching
	10 File system support for external serial Flash
	10.1 Get file system template file and add them to the code project
	10.2 Implement file operation functions

	11 Summary
	12 Legal information
	Contents

