
1 Introduction
The RT600 is a family of dual-core microcontrollers featuring an Arm Cortex
M33 CPU combined with a Cadence Xtensa HiFi4 advanced Audio Digital
Signal Processor. The RT600’s bootloader supports In-System Programming
or serial boot via the SPI/I2C peripheral, where the SPI / I2C peripheral serves
as the SPI/I2C slave.

For more details on the RT600 MCU, see the documents available here.

The blhost application is used on a host to issue commands to an NXP platform running an implementation of the MCU bootloader.

For more details on the blhost application, download the blhost application blhost_2.6.7 available here.

This application note introduces the implementation of the feature nIRQ pin, which the application processor (namely, the host)
can use to improve the communication performance between the host and the RT600’s bootloader via the SPI/I2C peripheral.

2 SPI/I2C transaction protocol
This section explains the general protocol for the packet transfers between the host and the RT600’s bootloader.

2.1 Command with no data phase
The protocol for a command with no data phase contains:

• Command packet (from the host).

• Generic response command packet (to the host).

Figure 1. Command with no data phase

2.2 Command with incoming data phase
The protocol for a command with incoming data phase contains:

• Command packet (from the host) (the kCommandFlag_HasDataPhase set).

Contents

1 Introduction......................................1
2 SPI/I2C transaction protocol........... 1
3 The feature nIRQ notifier pin support

of blhost...3
4 Conclusion.......................................7
5 Revision history...............................7
Legal information...................................... 8

AN13627
The feature nIRQ notifier pin support of blhost for RT600
Rev. 0 — 22 April 2022 Application Note

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt600-crossover-mcu-with-arm-cortex-m33-and-dsp-cores:i.MX-RT600
https://www.nxp.com/webapp/sps/download/preDownload.jsp

• Generic response command packet (to the host).

• Incoming data packets (from the host).

• Generic response command packet.

Figure 2. Command with incoming data phase

2.3 Command with outgoing data phase
The protocol for a command with an outgoing data phase contains:

• Command packet (from the host).

• ReadMemory Response command packet (to the host) (the kCommandFlag_HasDataPhase set).

• Outgoing data packets (to the host).

• Generic response command packet (to the host).

NXP Semiconductors
SPI/I2C transaction protocol

The feature nIRQ notifier pin support of blhost for RT600 , Rev. 0, 22 April 2022
Application Note 2 / 10

Figure 3. Command with outgoing data phase

2.4 The feature nIRQ notifier pin
Once the feature nIRQ notifier pin being enabled, the host waits until it catches a negative edge on the nIRQ notifier pin before
reading any data from the RT600’s bootloader. It must suspend operation until the nIRQ notifier pin is high before sending any
commands/data to the RT600’s bootloader. For each packet, the sent timeout time is the packet length (in byte) multiplied to 10
ms and the receive timeout time is the packet length (in byte) multiplied to 20 ms. It means that the host must send the packet
to the RT600’s bootloader before the sending packet timeout and receive the packet from to the RT600’s bootloader before the
receiving packet timeout.

3 The feature nIRQ notifier pin support of blhost
The blhost application, blhost_2.6.7, has the set-property command implemented to enable the feature nIRQ notifier pin.

set-property <tag> <value>[<memoryID>]

• tag:

— 0x1c - The pin selected as IRQ notifier pin.

• value:

— bit[31] - Enable nIRQ notifier pin, 0: disable, 1: enable.

— bit[15:8] port.

— bit [7:0] pin.

NXP Semiconductors
The feature nIRQ notifier pin support of blhost

The feature nIRQ notifier pin support of blhost for RT600 , Rev. 0, 22 April 2022
Application Note 3 / 10

However, the blhost application, blhost_2.6.7, has not implemented the feature nIRQ notifier pin described in section The
feature nIRQ notifier pin.

This section provides details on how the feature nIRQ notifier pin described in section The feature nIRQ notifier pin can
be implemented.

3.1 Modifications to blhost.cpp
The blhost.cpp is in \blhost_2.6.7\tools\blhost\src\. The modifications are in bold below.

 //
 // Variables
 //
 /* set-property command execution */
 extern char SetProperty_Flag;

 int BlHost::run()
 {
 .
 .
 .
 try
 {
 if (m_cmdv.size())
 {
 // Check for any passed commands and validate command.
 cmd = Command::create(&m_cmdv);
 if (!cmd)
 {
 std::string msg = format_string("Error: invalid command or arguments '%s",
 m_cmdv.at(0).c_str());
 string_vector_t::iterator it = m_cmdv.begin();
 for (++it; it != m_cmdv.end(); ++it)
 {
 msg.append(format_string(" %s", (*it).c_str()));
 }
 msg.append("'\n");
 throw std::runtime_error(msg);
 }
 progress = new Progress(displayProgress, NULL);
 cmd->registerProgress(progress);
 }
 //If the instruction is set-property, the flag is set
 if (cmd->getName() == "set-property")
 {
 SetProperty_Flag = 1;
 }

3.2 Modifications to Command.cpp
The Command.cpp is in \blhost_2.6.7\src\blfwk\src\. The modifications are in bold below.

//
// Variables
//
/* set-property command execution */
extern char SetProperty_Flag;

NXP Semiconductors
The feature nIRQ notifier pin support of blhost

The feature nIRQ notifier pin support of blhost for RT600 , Rev. 0, 22 April 2022
Application Note 4 / 10

/* nIRQ notifier pin enabled */
extern char IrqNotifierPin_Flag;

void SetProperty::sendTo(Packetizer &device)
{
 blfwk::CommandPacket cmdPacket(kCommandTag_SetProperty, kCommandFlag_None, m_propertyTag,
m_propertyValue);
 if (SetProperty_Flag == 1)
 {
 if ((m_propertyTag == 0x1c)&&((m_propertyValue & 0x80000000) == 0x80000000))
 {
 IrqNotifierPin_Flag = 1;
 }
 else
 {
 SetProperty_Flag = 0;
 }
 }

3.3 Modifications to SerialPacketizer.cpp
The SerialPacketizer.cpp is in \blhost_2.6.7\src\blfwk\src\. The modifications are in bold below.

/* set-property command execution */
char SetProperty_Flag = 0;
/* nIRQ notifier pin enabled */
char IrqNotifierPin_Flag = 0;
//
// Code
//

status_t SerialPacketizer::serial_packet_write(const uint8_t *packet, uint32_t byteCount,
packet_type_t packetType)
{
.
.
.
 // If nIRQ notifier pin has been enabled, then waits for nIRQ notifier pin high here.
 if (SetProperty_Flag == 0) {
 // Waits for nIRQ notifier pin high.
 if(wait_for_high()!=kStatus_Success)
 {
 return kStatus_Timeout;
 }
 }
 // Send the framing data packet.
 status = m_peripheral->write((uint8_t *)framingPacket, sizeof(framing_data_packet_t) + byteCount);
 if (status != kStatus_Success)
 {
 return status;
 }
 // If current command is set-property to enable nIRQ notifier pin, then waits for nIRQ notifier
pin high here.
 if (SetProperty_Flag == 1) {
 SetProperty_Flag = 0;
 // Waits for nIRQ notifier pin high.
 if(wait_for_high()!=kStatus_Success)
 {

NXP Semiconductors
The feature nIRQ notifier pin support of blhost

The feature nIRQ notifier pin support of blhost for RT600 , Rev. 0, 22 April 2022
Application Note 5 / 10

 return kStatus_Timeout;
 }
 }
 return wait_for_ack_packet();
}

status_t SerialPacketizer::serial_packet_send_sync(uint8_t framingPacketType)
{
 framing_sync_packet_t sync;
 sync.header.startByte = kFramingPacketStartByte;
 sync.header.packetType = framingPacketType;
 // Indicate last transaction was a write.
 m_serialContext.isBackToBackWrite = true;
 // Waits for nIRQ notifier pin high.
 if(wait_for_high()!=kStatus_Success)
 {
 return kStatus_Timeout;
 }

status_t SerialPacketizer::wait_for_ack_packet()
{
 framing_sync_packet_t sync;
 status_t status = kStatus_NoCommandResponse;
 do
 {
 // Waits for nIRQ notifier pin low.
 if(wait_for_low()!=kStatus_Success)
 {
 return kStatus_Timeout;
 }
.
.
.
 // Waits for nIRQ notifier pin high.
 if(wait_for_high()!=kStatus_Success)
 {
 return kStatus_Timeout;
 }
 return status;
}

status_t SerialPacketizer::read_data_packet(framing_data_packet_t *packet, uint8_t *data,
packet_type_t packetType)
{
 // Waits for nIRQ notifier pin low.
 if(wait_for_low()!=kStatus_Success)
 {
 return kStatus_Timeout;
 }

3.4 Implementation of wait_for_high() and wait_for_low()
The implementation of wait_for_high() and wait_for_low() is host-dependent.

This application note shows their implementation with RT600 as the host.

status_t wait_for_high(void)
{
 uint32_t duration = 0;

NXP Semiconductors
The feature nIRQ notifier pin support of blhost

The feature nIRQ notifier pin support of blhost for RT600 , Rev. 0, 22 April 2022
Application Note 6 / 10

 if(IrqNotifierPin_Flag == 1)
 {
 uint32_t start = CTIMER_GetTimerCountValue(CTIMER0);
 while (duration < m_packetTimeoutMs)
 {
 if(GPIO_PinRead(GPIO, HOST_PORT, HOST_PIN)==1)
 {
 return kStatus_Success;
 }
 duration = (uint32_t)(CTIMER_GetTimerCountValue(CTIMER0) - start) / CLOCKS_PER_1MS;
 }
 return kStatus_Timeout;
 }
 return kStatus_Success;
}

status_t wait_for_low(void)
{
 uint32_t duration = 0;
 if(IrqNotifierPin_Flag == 1)
 {
 uint32_t start = CTIMER_GetTimerCountValue(CTIMER0);
 while (duration < m_packetTimeoutMs)
 {
 if(GPIO_PinRead(GPIO, HOST_PORT, HOST_PIN)==0)
 {
 return kStatus_Success;
 }
 duration = (uint32_t)(CTIMER_GetTimerCountValue(CTIMER0) - start) / CLOCKS_PER_1MS;
 }
 return kStatus_Timeout;
 }
 return kStatus_Success;
}

For more details on the SDK_2_11_0_EVK-MIMXRT685, refer to the software available here.

4 Conclusion
The application processor (namely, host) can use the feature nIRQ notifier pin to improve the communication performance
between it and the RT600’s bootloader, which can be enabled by the SetProperty <tag> <value> command.

5 Revision history
Table 1. Revision history

Revision Number Date Substantive Changes

0 22 April 2022 Initial release

NXP Semiconductors
Conclusion

The feature nIRQ notifier pin support of blhost for RT600 , Rev. 0, 22 April 2022
Application Note 7 / 10

https://mcuxpresso.nxp.com/en/select

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages
are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with
the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the
publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical
or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental damage.
NXP Semiconductors and its suppliers accept no liability for inclusion and/or
use of NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of customer’s
third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing
for the customer’s applications and products using NXP Semiconductors
products in order to avoid a default of the applications and the products or of the
application or use by customer’s third party customer(s). NXP does not accept
any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products
are sold subject to the general terms and conditions of commercial sale,
as published at http://www.nxp.com/profile/terms, unless otherwise agreed
in a valid written individual agreement. In case an individual agreement
is concluded only the terms and conditions of the respective agreement
shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP
Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be
subject to export control regulations. Export might require a prior authorization
from competent authorities.

Suitability for use in non-automotive qualified products — Unless this
data sheet expressly states that this specific NXP Semiconductors product
is automotive qualified, the product is not suitable for automotive use.
It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in automotive
applications to automotive specifications and standards, customer (a) shall use
the product without NXP Semiconductors’ warranty of the product for such
automotive applications, use and specifications, and (b) whenever customer
uses the product for automotive applications beyond NXP Semiconductors’
specifications such use shall be solely at customer’s own risk, and (c) customer
fully indemnifies NXP Semiconductors for any liability, damages or failed
product claims resulting from customer design and use of the product for
automotive applications beyond NXP Semiconductors’ standard warranty and
NXP Semiconductors’ product specifications.

NXP Semiconductors
Legal information

The feature nIRQ notifier pin support of blhost for RT600 , Rev. 0, 22 April 2022
Application Note 8 / 10

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision,
Versatile — are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved.

Airfast — is a trademark of NXP B.V.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

Cadence — the Cadence logo, and the other Cadence marks found at
www.cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.

CodeWarrior — is a trademark of NXP B.V.

ColdFire — is a trademark of NXP B.V.

ColdFire+ — is a trademark of NXP B.V.

EdgeLock — is a trademark of NXP B.V.

EdgeScale — is a trademark of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

elQ — is a trademark of NXP B.V.

FeliCa — is a trademark of Sony Corporation.

Freescale — is a trademark of NXP B.V.

HITAG — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

Immersiv3D — is a trademark of NXP B.V.

I2C-bus — logo is a trademark of NXP B.V.

Kinetis — is a trademark of NXP B.V.

Layerscape — is a trademark of NXP B.V.

Mantis — is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

MOBILEGT — is a trademark of NXP B.V.

NTAG — is a trademark of NXP B.V.

Processor Expert — is a trademark of NXP B.V.

QorIQ — is a trademark of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

StarCore — is a trademark of NXP B.V.

Synopsys — Portions Copyright © 2021 Synopsys, Inc. Used with permission.
All rights reserved.

Tower — is a trademark of NXP B.V.

UCODE — is a trademark of NXP B.V.

VortiQa — is a trademark of NXP B.V.

NXP Semiconductors
Legal information

The feature nIRQ notifier pin support of blhost for RT600 , Rev. 0, 22 April 2022
Application Note 9 / 10

mailto:PSIRT@nxp.com
http://www.cadence.com/go/trademarks

Please be aware that important notices concerning this document and the product(s) described
herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 April 2022
Document identifier: AN13627

	Contents
	1 Introduction
	2 SPI/I2C transaction protocol
	2.1 Command with no data phase
	2.2 Command with incoming data phase
	2.3 Command with outgoing data phase
	2.4 The feature nIRQ notifier pin

	3 The feature nIRQ notifier pin support of blhost
	3.1 Modifications to blhost.cpp
	3.2 Modifications to Command.cpp
	3.3 Modifications to SerialPacketizer.cpp
	3.4 Implementation of wait_for_high() and wait_for_low()

	4 Conclusion
	5 Revision history
	Legal information

