
1 Introduction
When developing the MCU in bare metal, users can directly configure the
relevant functions to make the MCU enter the low-power mode. The low-power
mode is also required for the MCU running the real-time operating system
(RTOS). Tickless mechanism is a general low-power method adopted by
current small RTOSs, such as FreeRTOS, EmbedOS, RTX. This application
note describes how to implement the FreeRTOS tickless mode in NXP
LPC5500 series MCUs.

2 FreeRTOS tickless principle
The principle of the FreeRTOS tickless mode is to make the MCU enter the low-power mode to save system power consumption
when the MCU is performing the idle task. Calling the Wait For Interrupt (WFI) instruction to make the MCU enter the low-power
mode and using interrupts to wake up the MCU.

Therefore, the core idea of the FreeRTOS tickless mode is:

• When performing idle tasks, make the MCU enter the low-power mode

• Under appropriate conditions, wake up the MCU through interrupts or external events.

Since FreeRTOS uses the Systick timer to generate system ticks and generate interrupts, this interrupt will also wake up the MCU,
so the system tick interrupt must be disabled before entering the low-power mode. Once the system tick is stopped, after exiting
the low-power mode, the system tick counter will lose some count values, which is not allowed. For this situation, FreeRTOS also
provides a corresponding solution, which is to use a timer to record the time the system is in the low-power mode, and compensate
this time to the system tick counter after exiting the low-power mode.

The key steps to implement the tickless mode include:

• Calculate the execution time of the current idle task

• Configure system parameters and enter the low-power mode

• Exit the low-power mode and compensate the system tick counter

The vPortSuppressTicksAndSleep() function is defined in FreeRTOS and it can be used to implement the tickless mode. Users
can set the configUSE_TICKLESS_IDLE macro to 1 to implement the tickless mode. The following explains these three steps with
the source code of the vPortSuppressTicksAndSleep() function.

2.1 Calculate the duration of the low-power mode
When the tickless mode is enabled (configUSE_TICKLESS_IDLE !=0), once the system is idle, the execution time of the current
idle task is calculated in the idle task.

 xExpectedIdleTime = prvGetExpectedIdleTime();

This time is also the maximum duration of the low-power mode, because the low-power mode may also be awakened by random
external events, such as external key interrupts.

Contents

1 Introduction......................................1
2 FreeRTOS tickless principle............1
3 Implement FreeRTOS tickless mode

on LPC5500.................................... 5
4 Test... 7
5 Conclusion.....................................14
6 Reference......................................15
7 Revision history.............................15

AN13593
Using FreeRTOS tickless mode on LPC5500
Rev. 0 — 21 March 2022 Application Note

The duration of the low-power mode also has an upper limit. It is because after entering the low-power mode, the user must use a
timer to record the time into the low-power mode. The count value of the timer is limited, which determines the maximum length of
time the MCU can go into the low-power mode. The timer can be Systick or one of other low-power timers. For example, the system
clock frequency is 48 M, the tick frequency is 1 K, and the user uses Systick's 24-bit counter to record the duration of the low-power
state, the maximum system tick xMaximumPossibleSuppressedTicks that Systick can record is calculated as follows：

ulTimerCountsForOneTick = (configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ);
xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
 = 0XFFFFFF/ (48000000/1000) = 349;

If the duration of the idle task xExpectedIdleTime exceeds xMaximumPossibleSuppressedTicks, the maximum time of the
low-power mode should be xMaximumPossibleSuppressedTicks.

Then calculate the initial value of the low-power timer according to the valid xExpectedIdleTime.

ulReloadValue = portNVIC_SYSTICK_CURRENT_VALUE_REG + (ulTimerCountsForOneTick * (xExpectedIdleTime
- 1UL));

Figure 1. Calculate the reload value of the low-power timer

The ulReloadValue value is used to configure the low-power timer. When the counter value is reduced to 0, the MCU
is awakened.

2.2 Enter low-power mode
Before entering the low-power mode, some preparations must be done, such as closing the SysTick tick interrupt, configuring the
wake-up source.

From the description in Chapter 2.1, after closing the tick interrupt of Systick, the user must use a low-power timer, such as Systick
or RTC, to record the duration of the low-power state and wake up the MCU.

In the FreeRTOS source code, SysTick is used as a wake-up source of the MCU, and the reload value of SysTick is configured
as the ulReloadValue value calculated in Chapter 2.1. When the count value of SysTick decreases to 0, the MCU is awakened.

/* Set the new reload value. */
portNVIC_SYSTICK_LOAD_REG = ulReloadValue;

NXP Semiconductors
FreeRTOS tickless principle

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 2 / 16

/* Clear the SysTick count flag and set the count value back to zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;

/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;

If the user wants to use an external interrupt to wake up the MCU, it is also necessary to configure the external interrupt wake-up
source before entering the low-power state. After the MCU is awakened by an external interrupt, the duration of the low-power
state can be obtained from the initial value and current value of the Systick counter. There is no external interrupt configured as
a wake-up source in the source code of FreeRTOS.

After the wake-up source is configured, the MCU can be put into sleep mode. Use the WFI instruction to make the MCU enter the
sleep mode. This sleep mode just turns off the core clock and does not affect the work of the peripherals.

configPRE_SLEEP_PROCESSING(xModifiableIdleTime);

if(xModifiableIdleTime > 0)
{
 __asm volatile ("dsb" ::: "memory");
 __asm volatile ("wfi");
 __asm volatile ("isb");
}

configPOST_SLEEP_PROCESSING(xExpectedIdleTime);

In addition to the vPortSuppressTicksAndSleep() function, FreeRTOS provides users with two other interface functions:

• configPRE_SLEEP_PROCESSING(xModifiableIdleTime);

• configPOST_SLEEP_PROCESSING(xExpectedIdleTime);

FreeRTOS only provides the function interface, and the user defines the function entity. Before the user can make the MCU enter
the low-power mode, configPRE_SLEEP_PROCESSING() must be called to configure the system parameters to reduce the system
power consumption, such as turning off other peripheral clocks, reducing the system frequency. After exiting the low-power mode,
call the configPOST_SLEEP_PROCESSING() function to restore the system's main frequency and peripheral functions.

2.3 Exit low-power mode
When the MCU is awakened by a timer interrupt or an external interrupt, the duration in the low-power state must be compensated
to the system tick counter. The vPortSuppressTicksAndSleep() function also provides the calculation of compensation time, as
shown in Figure 2.

NXP Semiconductors
FreeRTOS tickless principle

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 3 / 16

Figure 2. Calculate the compensation time for SysTick

When calculating the compensation time, it is necessary to first determine whether the MCU is awakened by a low-power timer
or by an external interrupt.

• If it is awakened by SysTick, the compensation time is xExpectedIdleTime-1UL.

• If it is awakened by an external interrupt, it means that the value of the SysTick counter has not been reduced to 0. At
this moment, it is necessary to calculate the compensation time based on the initial value and current value of the SysTick
counter.

Then call the vTaskStepTick() function to compensate the calculated value ulCompleteTickPeriods to xTickCount.

vTaskStepTick(ulCompleteTickPeriods);

void vTaskStepTick(const TickType_t xTicksToJump)
{
 /* Correct the tick count value after a period during which the tick
 * was suppressed. Note this does *not* call the tick hook function for
 * each stepped tick. */
 configASSERT((xTickCount + xTicksToJump) <= xNextTaskUnblockTime);
 xTickCount += xTicksToJump;
 traceINCREASE_TICK_COUNT(xTicksToJump);
}

NXP Semiconductors
FreeRTOS tickless principle

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 4 / 16

In addition to using SysTick to wake up the MCU, users can also use other low-power timers, such as RTC. Users can also set
the value of the configUSE_TICKLESS_IDLE macro to 2, so that they can define the vPortSuppressTicksAndSleep() function by
themselves to configure different wake-up sources.

3 Implement FreeRTOS tickless mode on LPC5500
In Chapter 2, the principle of the FreeRTOS tickless mode is explained based on the source code of FreeRTOS. This chapter
describes how to implement the tickless mode on the LPC5500 platform. NXP SDK provides a freertos_tickless example for
LPC5500 series MCUs. This application note uses freertos_tickless in LPC55S16 SDK as an example to describe some details
of implementing the tickless mode on the LPC55S16 platform. In the LPC55S16 freertos_tickless example, the value of the
configUSE_TICKLESS_IDLE macro is 2, and the user-defined vPortSuppressTicksAndSleep function is used. After entering the
low-power mode, the RTC clock is used to record the duration when the system enters the low-power mode and is used to wake
up the MCU, as shown in Figure 4.

Figure 3. Set configUSE_TICKLESS_IDLE macro to 2

NXP Semiconductors
Implement FreeRTOS tickless mode on LPC5500

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 5 / 16

Figure 4. Configure RTC as the wake-up source

Before FreeRTOS starts scheduling, an external pin interrupt is also defined to wake up the interrupt, as shown below.

/* Initialize PINT */
PINT_Init(PINT);
/* Setup Pin Interrupt 0 for falling edge */
PINT_PinInterruptConfig(PINT, kPINT_PinInt0, kPINT_PinIntEnableFallEdge, pint_intr_callback);
NVIC_SetPriority(BOARD_SW_IRQ, SW_NVIC_PRIO);
EnableIRQ(BOARD_SW_IRQ);

Users can press the SW3 button on the LPC55S16-EVK to wake up the MCU.

In this example, two user tasks are defined, tickless task and switch task, as shown below.

/*Create tickless task*/
if (xTaskCreate(Tickless_task, "Tickless_task", configMINIMAL_STACK_SIZE + 100, NULL,
tickless_task_PRIORITY, NULL) != pdPASS)
{
 PRINTF("Task creation failed!.\r\n");
 while (1)
 ;
}
if (xTaskCreate(SW_task, "Switch_task", configMINIMAL_STACK_SIZE + 100, NULL, SW_task_PRIORITY,
NULL) != pdPASS)
{

NXP Semiconductors
Implement FreeRTOS tickless mode on LPC5500

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 6 / 16

 PRINTF("Task creation failed!.\r\n");
 while (1)
 ;
}

/* Tickless Task */
static void Tickless_task(void *pvParameters)
{
 for (;;)
 {
 PRINTF("%d\r\n", xTaskGetTickCount());
 vTaskDelay(TIME_DELAY_SLEEP);
 }
}

/* Switch Task */
static void SW_task(void *pvParameters)
{
 xSWSemaphore = xSemaphoreCreateBinary();
 /* Enable callbacks for PINT */
 PINT_EnableCallback(PINT);
 for (;;)
 {
 if (xSemaphoreTake(xSWSemaphore, portMAX_DELAY) == pdTRUE)
 {
 PRINTF("CPU woken up by external interrupt\r\n");
 }
 }
}

The tickless task prints the current tick value once, and then calls the vTaskDelay() function to delay 5 s. At this time, the idle task
is called, and vPortSuppressTicksAndSleep() will be called in the idle task to make RTC start a 5 s timer and call WFI instruction
that puts the MCU into sleep mode.

When the RTC counter decreases to 0 or the SW3 button is pressed, the MCU is awakened and exits the sleep mode. The user
must calculate the compensation time based on the RTC status and the value of the counter, and then compensate the calculated
value of ulCompleteTickPeriods to xTickCount. If the 5 s delay of the tickless task has been executed, print xTickCount once,
and then continue to enter the low-power mode waiting for the next wake-up.

4 Test

4.1 Run freertos_tickless demo
Compile the freertos_tickless project in the SDK package and download the program to the LPC55S16-EVK board, and measure
the current consumption on the MCU_VBAT pin, as shown in Figure 6

NXP Semiconductors
Test

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 7 / 16

Figure 5. LPC55S16-EVK schematic

NXP Semiconductors
Test

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 8 / 16

Figure 6. Current consumption of MCU_VBAT pin when the tickles mode is enabled

When the LPC55S16 enters the low-power mode, the current consumption is 4.28 mA.

Modify the value of the configUSE_TICKLESS_IDLE macro to 0, that is, disable the tickless mode, recompile the project and
download the program to the LPC55S16-EVK board, and test the current on the MCU_VBAT pin, as shown in Figure 7.

NXP Semiconductors
Test

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 9 / 16

Figure 7. Current consumption of MCU_VBAT pin when the tickles mode is disabled

It can be seen from Figure 6 and Figure 7 that after the tickless mode is enabled, the current consumption on the MCU_VBAT pin
decreases by 2.34 mA.

4.2 More ways to reduce system power consumption
If users want a lower current consumption, they can make the MCU into the deep sleep mode or the power-down mode when MCU
is idle. Users can also use the configPRE_SLEEP_PROCESSING and configPOST_SLEEP_PROCESSING macro-related functions to
perform more power-reducing operations, such as turning off the peripheral clock and lowering the system frequency.

In the freertos_tickless example of the LPC55S16 SDK, there are no functions defined for the configPRE_SLEEP_PROCESSING
and configPOST_SLEEP_PROCESSING macros. This section describes how to achieve lower current consumption.

Define LOW_POWER_MODE macro to indicate different low-power modes:

LOW_POWER_MODE = 1 : Sleep mode

LOW_POWER_MODE = 2 : Deep sleep mode

LOW_POWER_MODE = 3 : Power-down mode

The current consumption of these modes measured on the LPC55S16-EVK board is shown in Table 1.

NXP Semiconductors
Test

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 10 / 16

Table 1. Current consumption in different power modes

Low-power mode Current

Normal mode 6.62 mA

Sleep/USART enabled 4.28 mA

Sleep/USART disabled 4.15 mA

Deep sleep 55.8 uA

Power-down 3.6 uA

The following describes how to implement these low-power modes.

4.2.1 Sleep mode
As described in Chapter 2, the configUSE_TICKLESS_IDLE macro can be set to 1 or 2 to enable tickless mode, which makes MCU
enter the sleep mode. However, in the sleep mode, only the core is stopped and other peripherals may still be working, so users
can also use the configPRE_SLEEP_PROCESSING and configPOST_SLEEP_PROCESSING macros to turn off some peripheral clocks,
such as the USART peripherals, before entering the sleep mode.

The implementation method is as follows:

1. Define corresponding functions to disable/enable the USART peripheral for the configPRE_SLEEP_PROCESSING and
configPOST_SLEEP_PROCESSING macros.

#ifndef configPRE_SLEEP_PROCESSING
 #define configPRE_SLEEP_PROCESSING(x) vPortConfigPreSleepProcessing(x)
#endif

#ifndef configPOST_SLEEP_PROCESSING
 #define configPOST_SLEEP_PROCESSING(x) vPortConfigPostSleepProcessing(x)
#endif

void vPortConfigPreSleepProcessing(TickType_t xExpectedIdleTime)
{
#if LOW_POWER_MODE == 1
 /* Disable USART0 peripheral */
 DbgConsole_Deinit();
 CLOCK_DisableClock(kCLOCK_FlexComm0);
#endif
}

void vPortConfigPostSleepProcessing(TickType_t xExpectedIdleTime)
{
#if (LOW_POWER_MODE == 1) || (LOW_POWER_MODE == 3)
 /* Enable USART0 peripheral */
 BOARD_InitDebugConsole();
#endif
}

2. Call the functions corresponding to configPRE_SLEEP_PROCESSING and configPOST_SLEEP_PROCESSING macros to
enable/disable the USART peripheral.

xModifiableIdleTime = xExpectedIdleTime;
configPRE_SLEEP_PROCESSING(xModifiableIdleTime);
if (xModifiableIdleTime > 0)

NXP Semiconductors
Test

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 11 / 16

{
#if LOW_POWER_MODE == 1
 __DSB();
 __WFI();
 __ISB();
#elif LOW_POWER_MODE == 2
 POWER_EnterDeepSleep(APP_EXCLUDE_FROM_DEEPSLEEP, 0x7FFF, WAKEUP_RTC_LITE_ALARM_WAKEUP,
0x0);
#elif LOW_POWER_MODE == 3
 POWER_EnterPowerDown(APP_EXCLUDE_FROM_POWERDOWN, 0x7FFF, WAKEUP_RTC_LITE_ALARM_WAKEUP, 1);
#endif
}
configPOST_SLEEP_PROCESSING(xExpectedIdleTime);
ulLPTimerInterruptFired = false;

When the LOW_POWER_MODE macro is 1 and the MCU is idle, it enters the sleep mode. Before entering the sleep mode, the USART
peripheral is disabled. In this case, the current consumption is 4.15 mA, as shown in Figure 8. After the USART0 peripheral is
disabled, the current decreases by 130 uA.

Figure 8. Current consumption on MCU_BVAT pin after disabling the USART0 peripheral

NXP Semiconductors
Test

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 12 / 16

4.2.2 Deep sleep mode
In addition to make the LPC55S16 enter the sleep mode, the user can also make it enter the deep sleep mode when it is idle, as
shown below.

#define APP_EXCLUDE_FROM_DEEPSLEEP (kPDRUNCFG_PD_XTAL32K)

POWER_EnterDeepSleep(APP_EXCLUDE_FROM_DEEPSLEEP, 0x7FFF,
 WAKEUP_RTC_LITE_ALARM_WAKEUP, 0x0);

The current consumption in deep sleep mode is 55.8 uA, as shown in Figure 9.

Figure 9. Current consumption in the deep sleep mode

4.2.3 Power-down mode
Users can also call POWER_EnterPowerDown() function to make the LPC55S16 enter the power-down mode, as shown below.

#define APP_EXCLUDE_FROM_POWERDOWN (kPDRUNCFG_PD_XTAL32K)

POWER_EnterPowerDown(APP_EXCLUDE_FROM_POWERDOWN, 0x7FFF,
 WAKEUP_RTC_LITE_ALARM_WAKEUP, 1);

The current consumption in the power-down mode is 3.6 uA, as shown in Figure 10.

NXP Semiconductors
Test

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 13 / 16

Figure 10. Current consumption in power-down mode

USART0 (Flexcomm0) is still disabled after the MCU is awakened from the power-down mode and must be enabled again, as
shown below.

void vPortConfigPostSleepProcessing(TickType_t xExpectedIdleTime)
{
#if (LOW_POWER_MODE == 1) || (LOW_POWER_MODE == 3)
 /* Enable USART0 peripheral */
 BOARD_InitDebugConsole();
#endif
}

The changes described in Chapter 4.2 are defined in the fsl_tickless_rtc.c file, and users can copy the changes to the same
location in their fsl_tickless_rtc.c file to implement these functions.

5 Conclusion
This application note explains the implementation principle of FreeRTOS's tickless mode and introduces the details of
implementing tickless mode on NXP LPC5500 series MCUs. Users can refer to this application note to use tickless mode
in their applications to reduce system power consumption.

NXP Semiconductors
Conclusion

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 14 / 16

6 Reference
1). LPC55S1x/LPC551x User Manual

2) LPC55S3x UM.

7 Revision history
Table 2. Revision history

Revision number Date Substantive changes

0 21 March 2022 Initial release

NXP Semiconductors
Reference

Using FreeRTOS tickless mode on LPC5500, Rev. 0, 21 March 2022
Application Note 15 / 16

https://www.nxp.com/webapp/Download?colCode=UM11295

How To Reach
Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice
to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document,
including without limitation specifications and product descriptions, at any time and without notice. This document supersedes
and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the
effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open
and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any
vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select
products with security features that best meet rules, regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security
related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP
has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,
reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil,
Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade
secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture
and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed
by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 21 March 2022
Document identifier: AN13593

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 FreeRTOS tickless principle
	2.1 Calculate the duration of the low-power mode
	2.2 Enter low-power mode
	2.3 Exit low-power mode

	3 Implement FreeRTOS tickless mode on LPC5500
	4 Test
	4.1 Run freertos_tickless demo
	4.2 More ways to reduce system power consumption
	4.2.1 Sleep mode
	4.2.2 Deep sleep mode
	4.2.3 Power-down mode

	5 Conclusion
	6 Reference
	7 Revision history

