
by: NXP Semiconductors

1 Introduction
The RT600 family are RAM-based and M33-based MCUs with an internal DSP.
The code must be either booted into the memory (from a host or non-volatile
memory) or executed from an external flash memory directly without booting. A
practical use case is code which boots and executes from the flash, so the boot
image contains the code to boot internally into the RT685 RAM stored in the upper flash on powerup and the lower flash contains
run-time code fetched/executed directly. The SDK does not provide this more practical use case, but the code that often resides
in the internal RAM is desirable for performance reasons. The internal RAM size may be reserved mostly for data or code which
may exceed the 4.5 MB of internal RAM provided on the RT685 MCUs.

This application note provides a project with a part of code booted from the external flash into the internal RT685 SRAM and the
remaining code that resides in the flash is fetched/executed directly. Details on how to place the code as bootable into the SRAM or
for execution directly from the flash via the assignments made in the linker script are provided. This application note also provides
instructions on how to program the flash with both the bootable RAM portion of the code and the run-time code residing in the lower
flash. Details such as secure boot or OTFAD decryption of flash data are out of scope.

2 RT600 boot overview

2.1 Boot features
Because the i.MX RT600 MCUs have no internal flash for code and data storage, the images must be stored elsewhere for loading
upon reset or the CPU can execute them from the external memory (XIP). The images can be loaded into the on-chip SRAM from
the external flash or downloaded via the serial ports (UART, SPI, I2C, USB). The code is then validated, and the boot ROM jumps
to the on-chip SRAM.

Depending on the values of the OTP bits and ISP pins and the image header type definition, the bootloader decides whether to
download the code into the on-chip SRAM or run it from an external memory. The bootloader checks the OTP bit settings first and
then the ISP pins. If bit [3:0] in the OTP word BOOT_CFG [0] is not programmed (4b ’ 0000), the boot source is determined by the
states of the ISP boot pins (PIO1_15 , PIO1_16 , and PIO1_17).

2.2 Boot settings
In this application note, the FlexSPI boot mode is used. If the PRIMARY_BOOT_SRC bits in the OTP are not set, the i.MX RT600
reads the status of the ISP pins to determine the boot source. Table 1 describes the boot mode and the ISP downloader modes
based on the ISP pins for the FlexSPI boot.

Table 1. Boot mode and ISP Downloader modes based on ISP pins

Boot mode
ISP2 pin

PIO1_17

ISP1 pin

PIO1_16

ISP0 pin

PIO1_15
Description

— Low Low Low Reserved

Table continues on the next page...

Contents

1 Introduction......................................1
2 RT600 boot overview...................... 1
3 Sample example application........... 3
4 Conclusion.....................................17
5 References....................................17

AN12985
RT600 Hybrid Boot
Rev. 0 — 09/2020 Application Note



Table 1. Boot mode and ISP Downloader modes based on ISP pins (continued)

Boot mode
ISP2 pin

PIO1_17

ISP1 pin

PIO1_16

ISP0 pin

PIO1_15
Description

SDIO0 (SD Card) Low Low High

Boot from an SD card device connected
to SDIO 0 interface. The i.MXRT600 will
look for a valid image in the SD card
device. If there is no valid image found,
the i.MXRT600 will enter the ISP boot
mode based on OTP DEFAULT_ISP_MODE
bits (6:4, BOOT_CFG [0])).

FlexSPI Boot from Port
B Low High Low

Boot from Quad or Octal SPI Flash devices
connected to the FlexSPI interface 0 Port B.
The i.MXRT600 will look for a valid image in
external Quad/Octal SPI Flash device.

If there is no valid image found, the
i.MXRT600 will enter ISP boot mode.

FlexSPI Boot from Port
A Low High High

Boot from Quad/Octal SPI Flash devices
connected to the FlexSPI interface 0 Port A.
The i.MXRT600 will look for a valid image in
external Quad/Octal SPI Flash device.

If there is no valid image found, the
i.MXRT600 will enter ISP boot mode.

SDIO 0 (eMMC) High Low Low

Boot from an SD card device connected
to SDIO 0 interface. The i.MXRT600 will
look for a valid image in the SD card
device. If there is no valid image found,
the i.MXRT600 will enter the ISP boot
mode based on OTP DEFAULT_ISP_MODE
bits (6:4, BOOT_CFG [0]))

USB DFU (master
boot) High Low High

USB DFU class is used to download a
boot image over the USB High-speed port
into on-chip SRAM.

Serial ISP (UART, SPI,
I2C, USB-HID) High High Low

The Serial Interface (UART, SPI, and
I2C,USB-HID) is used to program OTP,
external Flash, SD or eMMC device.

Serial Master
Boot(UART, SPI, I2C,
USB-HID)

High High High

Serial Master boot (SPI Slave, I2C Slave,
or UART, USB-HID) is used to download
a boot image over the serial interface (SPI
Slave, I2C slave or UART,USB-HID).

2.3 Boot image offset
The bootloader looks for the boot image from a specified offset on a boot media. See the details in Table 2.

NXP Semiconductors
RT600 boot overview

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 2 / 19



Table 2. Image offset on different boot media

Boot media Image offset

FlexSPI Boot (Serial NOR Flash device) 0x1000

SD Boot (SD card) 0x1000

eMMC boot (eMMC memory) 0x1000

Recovery Boot ( SPI NOR Flash device) 0x1000

2.4 Image link region
For the FlexSPI serial NOR flash boot, there are two possibilities: the Load-to-RAM boot and the XIP boot. For the Load-to-RAM
boot, after the boot ROM runs, it initializes the FlexSPI module according to the external NOR flash type connected to the MCU
device. The ROM loads the boot image from the NOR flash device with the 0x1000 offset to the MCU’s internal SRAM. After that,
the ROM jumps to the SRAM to run the boot image. For the XIP boot, the boot ROM only boots the image from the NOR flash
device. The boot image header inside the boot image tells the ROM whether the boot image is the Load-to-RAM image or the XIP
image. The ROM bootloader supports automated booting from the Serial NOR (Quad or Octal SPI Flash, HyperFlash) device and
the eXecute-In-Place (XIP) from this Serial NOR flash. This is the main feature of the ROM bootloader. Figure 1 shows the various
memory regions.

Figure 1. Image link region

For more details regarding the FlexSPI boot flow and process, see How to Enable Master Boot from Serial NOR Flash
(document AN12773).

3 Sample example application

3.1 Environment

3.1.1 Hardware environment
• Board:

— MIMXRT685EVK

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 3 / 19

https://www.nxp.com/doc/AN12773


• Debugger:

— Integrated CMSIS-DAP debugger on the board

• Miscellaneous:

— 1 micro USB cable

— PC

• Board setup:

— Connect the micro USB cable between the PC and the J5 link on the board to load and run a demo.

3.1.2 Software environment
• Tool chain:

— MCUXpresso IDE 11.2 .0 or Keil 5.31 or IAR 8.50.5 IDEs

• Software package:

— SDK_2.8.2_EVK-MIMRT685S

3.2 Steps

3.2.1 Steps for Keil IDE
1. Open the hello_world.uvmpw file (located in the SDK_2.8.2_EVK-MIMXRT685S\boards\evkmimxrt685\demo_apps \

hello_world\mdk folder) using the Keil IDE . This opens the Keil IDE with the example “hello_world” program.

2. Add a new target with the “hello_world_hybrid_debug” name, which should be based on the the “hello_world_debug”
target which already exists in the project.

a. Click the “Managed Project Item” icon, as shown in Figure 2.

Figure 2. Manage project items

b. This window gives you the option to add your own targets to the “ Project Targets ” list. Create a new target and
select it as the current target as shown in Figure 3.

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 4 / 19



Figure 3. Manage Project Item, adding a new target

c. Add a new C file, which will be later placed to the external flash memory for XIP to the current project. In this
example, a very short function with a for loop inside another for loop followed by a print statement is used. This
function is then called from the main function in the hello_world.c file. Let’s call this C file external_code.c. Extract
the hello_world_hybrid_mdk.zip file and copy the external_code.c, hello_world.c, and external_code.h files in the
“hello_world_hybrid_mdk” into the SDK_2.8.2_EVK-MIMXRT685S\boards\evkmimxrt685\demo_apps\hello_world
folder. Now add the external_code.c file in the source group into the “hello_world_hybrid_debug” target, as shown
in Figure 4.

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 5 / 19



Figure 4. Manage Project Item, adding a new file

d. When the new C code is compiled, its object image (.o ) can be placed in the external flash for XIP. This is
achieved by modifying the MIMXRT685Sxxxx_cm33_ram.scf linker script file. Make a copy of this file and rename
it toMIMXRT685Sxxxx_cm33_hybrid.scf. In the MIMXRT685Sxxxx_cm33_hybrid.scf file, make a few changes to
program the flash.Firstly, allocate the starting address and size for the part of code which will be executed from
the external flash. Note that the starting address for the text can only be after the interrupt vector table, as shown
in Figure 5.

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 6 / 19



Figure 5. Allocating the starting address and size

e. Secondly, add the following lines (line#85 - 87) of code inside the *.scf file.

Figure 6. Modifying linker file

Note that the file name used for the new C file isexternal_code.c and in line#86 , the object file is
calledexternal_code.o. By adding these lines, direct the linker to keep the execution and load the address for
the external_code.o file at the same location. Because the external_code.c file is accessing “printf”, which is a
part of the text portion, the linking should happen only after the text section is loaded. For this, find the exact
address from where the external_code.o file should start and execute, which is just after the text region. Because
the “ImageLimit” function gives the end address for an execution region, “ImageLimit(ER_m_text)-m_text_start”
provides a location which is just after the text region.

f. Click the target options button, as shown in Figure 7.

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 7 / 19



Figure 7. Edit target options

g. Now open the window and then open the “Linker” tab. Using the highlighted button, place the
MIMXRT685Sxxxx_cm33_hybrid.scf file as the linker file:

Figure 8. Target options to change linker file

h. See Getting Started with MCUXpresso SDK for EVK-MIMXRT685 and perform the steps for running the
“hello_world” demo using the Keil IDE. Make sure that the project target is the one which was just modified.

i. Place a breakpoint at the function call inside the main function of the hello_world.c file and debug. In the address
window, the address of the function must be in the external flash.

3.2.2 Steps for MCUXPresso IDE
For the MCUXpresso IDE, modify the FreeMarker Linker script to relocate the code from the flash to the RAM.In this example,
run the bulk of application code from the RAM, typically just by leaving the startup code and the vector table along with the

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 8 / 19



“external_code” object file in the flash. This is achieved by moving three linker script template files into the linkscripts folder within
the “hello_world” project: main_text.ldt, main_rodata.ldt, and main_data.ldt. The above linker template scripts cause the main body
of the code to be relocated into the main (first) RAM bank of the target MCU, which (by default) will also contain data/bss, as well
as the stack and heap. The boot headers and vector tables must be in the flash, because the boot ROM needs them. The code
that performs this relocation is executed early within the reset handler (within the startup_xx file). However, there is a potential for
other critical functions to be called before this relocation is performed. For example, SystemInit() may be called first to perform
essential operations, such as enabling the RAM. Any function that is called before the relocation must not be relocated. This is the
reason for keeping the startup_* and system_* files in the flash in this example. For more details, see Section 17.14, “FreeMarker
Linker Script Templates” in the MCUXpresso IDE User Guide.

In the main_text.ldt file, the following lines indicate the linker to pull the text section from the startup_*.o, system_*.o, and
external_code.o object files:

*startup_*.o (.text.*)

*system_*.o (.text.*)

*external_code.o (.text. *)

In main_rodata.ldt, the following lines indicate the linker to pull in the “rodata” and “constdata” sections from the startup_*.o,
system_*.o, and external_code.o object files:

*startup_*.o (.rodata .rodata.* .constdata .constdata.*)

*system_*.o (.rodata .rodata.* .constdata .constdata.*)

*external_code.o (.rodata .rodata.* .constdata .constdata.*)

In main_data.ldt, the following lines indicate the linker to pull in the “text”, “rodata”, “constdata”, and “data” sections:

*(.text*)

*(.rodata .rodata.* .constdata .constdata.*)

. = ALIGN(${text_align});

*(.data*)

The following are the required steps:

1. Follow Getting Started with MCUXpresso SDK for EVK-MIMXRT685 to import the “ hello_world” project using the
MCUXpresso IDE.

2. Add a new configuration called “hybrid_debug” by right clicking on the project , going to the “Manage” option in “Build
Configurations”. Create a new configuration which should be based on the existing “Debug” configuration.

Figure 9. Adding a new build configuration into existing project

3. Set the new “Hybrid_debug” as the active configuration, as shown in Figure 10.

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 9 / 19



Figure 10. Set as active configuration

4. Extract the hello_world_hybrid_mcux.zip file and copy the external_code.c, hello_world.c, and external_code.h files in
the hello_world_hybrid_mcux\source folder into your “hello_world” project source folder. The project folder location can
be found by right clicking into the project in the MCUXpresso IDE and going to the “Resource” option and then selecting
the “Show in System Explorer” option.

Figure 11. Finding location of MCUXpresso project

5. Copy the linkscript folder inside “hello_world_hybrid_mcux” and add it into the “hello_world” project. The folder should
contain three files: main_text.ldt, main_rodata.ldt, and main_data.ldt.

6. See Getting Started with MCUXpresso SDK for EVK-MIMXRT685 and perform the steps to build and run the “ hello_wor
ld” project using the MCUXpresso IDE.

7. Place a breakpoint inside external_code.c and you will see that the debugger moves from the RAM to the flash location.

3.2.3 Steps for IAR IDE
1. Open hello_world.eww (located in the SDK_2.8.2_EVK-MIMXRT685S\boards\evkmimxrt685\demo_apps \

hello_world\iar folder ) using the IAR IDE. This opens the IAR IDE with the example “hello_world” application.

2. Add a new configuration called “hybrid_debug” by clicking on “Project->Edit Configurations…” and create a new
configuration which is based on the existing “Debug” configuration.

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 10 / 19



Figure 12. Edit Configurations, adding a new build configuration into existing project

3. Extract the hello_world_hybrid_iar.zip file and copy the external_code.c, hello_world.c, and
external_code.h files in the hello_world_hybrid_iar/source folder into the SDK_2.8.2_EVK-MIMXRT685S\boards\
evkmimxrt685\demo_apps\hello_world folder. Now add the external_code.c file in the source group by right clicking
on the source folder of the project, as shown in Figure 13.

Figure 13. Adding new source file into existing project

4. When the new C code is compiled, its object image (.o) can be placed into the external flash for XIP. This can
be achieved by modifying the MIMXRT685Sxxxx_cm33_flash.scf linker script file. Copy this file and rename it to

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 11 / 19



MIMXRT685Sxxxx_cm33_hybrid.scf. In the MIMXRT685Sxxxx_cm33_hybrid.icf file, make a few changes to program
the flash:

Figure 14. Changes to program the flash

Addresses 0x20080000 and 0x00080000 point to the same offset on the same SRAM (just the alias address). The only
difference are the CM33 core access addresses below 0x20000000 with the code bus, and access the upper address
by the system bus. For this use case, putting code on the code bus should be more efficient. Therefore, 0x00080000 is
recommended in the linker file .

Now add the following lines (line# 87-89) of code into the MIMXRT685Sxxxx_cm33_hybrid.icf file to copy all of the code to
the RAM excluding the startup, system, and external_code.o files.

Figure 15. Adding lines

The RAM code is copied in the last step by iar_program_start(). All code/data which is accessed before iar_program_start()
must not be relocated. That is why you must keep the vector table, Reset_Handler(), and SystemInit() in the flash. Also,
“.flash_config” is for ROM use and it should not be relocated as well.

Open the options window by right clicking the project and then open the “Linker” tab. Using the highlighted button, place
the MIMXRT685Sxxxx_cm33_hybrid.icf file as the linker file, as shown in Figure 16.

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 12 / 19



Figure 16. Options to change linker file

5. See Getting Started with MCUXpresso SDK for EVK-MIMXRT685 for the steps to build and run the “hello_world” demo
using the IAR IDE. Make sure that the project target is the one which was modified until now.

6. Place a breakpoint at the function call inside the main function of the hello_world.c file and you will see that the
debugger moves from the RAM to the flash location from the address window.

 
By default, the IDE decides which kind of breakpoint can be used. Because we have only eight hardware
breakpoints, the IDE always tries to use the software breakpoint first. The software breakpoint is just a special
instruction written in the RAM. During debugging, the IAR IDE firstly downloads the program into the flash,resets
the system, and halts before the startup code. Then it sets the breakpoint at main() and continues to run. Because
the breakpoint at main() is a software breakpoint, it will be overwritten after the startup code relocates (from
the flash to the RAM in iar_program_start()). You can set the breakpoint and debug with either of the below
configurations (a) or (b).

  NOTE  

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 13 / 19



a. Force the IAR IDE to use hardware breakpoints with the limitation that only eight breakpoints are available in
debugging.

Figure 17. Option to set hardware breakpoint

b. Make the IAR IDE stop at call_main(). At call_main() , the code relocation/data copy completes, and then it is safe
to set the software breakpoint.

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 14 / 19



Figure 18. Configuration to set software breakpoint

3.3 Methodology for programming the flash
The idea is to place the complete image to the flash memory (non XIP) for it to be booted onto the SRAM. When the complete
image is booted onto the SRAM, the execution starts. Because the linker script has already been modified to load some part of
the code from the external flash memory, it will be executed on the flash only (XIP).

To program the external flash, NXP’s “blhost” application is required. The blhost.exe (Windows OS host machine) file is present
in the SDK_2.8.2_EVK-MIMXRT685S\middleware\mcu-boot\bin\Tools\blhost\win directory.

 
It is recommended to use the “blhost” application with Windows Powershell.

  NOTE  

See the blhost User Guide (document MCUBLHOSTUG) to get started with the “blhost” application.

The FlexSPI boot image can be either the XIP image or the Non-XIP image. The XIP image can only be linked at address
0x08001000 and the first 4 KB of the FlexSPI map region is used to store the flash config block.

A Non-XIP image should be linked into the internal 4.5 MB SRAM. As the first 112 KB of SRAM has been occupied by the
ROM after the boot and the region 0x1C000 - 0x7FFFF is the shared memory between the DSP and Cortex-M33, it is better
to link the Non-XIP image from 0x80000. For applications which do not use the DSP, the Non-XIP image can be linked starting
from 0x1C000.

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 15 / 19

http://www.nxp.com/doc/MCUBLHOSTUG


3.3.1 Steps for programming flash
1. See the following path to retrieve the complete binary image which will be loaded onto the flash using the “blhost”

commands:

• For the Keil IDE SDK_2.8.2_EVK-MIMXRT685\boards\evkmimxrt685\Projects\hello_world\mdk\debug

• For the IAR IDE SDK_2.8.2_EVK-MIMXRT685\boards\evkmimxrt685\Projects\hello_world\iar\flash_debug

 
For the MCUXpresso IDE, to convert the *.axf file to the *.bin file, right-click the project in the workspace and
then select “Binary Utilites-> Create Binary” or open the project properties by right clicking. In the left-hand list
of the “Properties” window, open “C/C++ Build” and select “Settings”. Select the “Build steps” tab and, in the
“Post-build steps - Command” field, click “Edit...”. Uncomment the following line: arm-none-eabi-objcopy -v -O
binary "${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.bin". Then click “OK” and “Apply and close”.

  NOTE  

2. Set up the hardware to ensure booting from the FlexSPI-enabled NOR flash. For this, the settings for SW 5 on the
RT685 EVK are as follows: The ISP0 is on/high, and ISP1 and ISP2 are both low, as shown in Figure 19.

Figure 19. Setting SW5 to 1-ON, 2-OFF,3-OFF

3. Open the Powershell terminal in the “blhost” directory (middleware/mcu-boot/bin/Tools/blhost/win). Place the generated
binary for the “hello_world” demo into this folder.

4. Connect a USB cable to the J7 USB port and issue the following “blhost” commands using Powershell:

a. Configure the FlexSPI controller to program the flash:

./blhost -u 0x1fc9,0x0020 -- fill-memory 0x1c000 4 0xC1503051

./blhost -u 0x1fc9,0x0020 -- fill-memory 0x1c004 4 0x20000014

./blhost -u 0x1fc9,0x0020 -- configure-memory 9 0x1c000

b. Erase the region to be programmed:

./blhost -u 0x1fc9,0x0020 -- flash-erase-region 0x08000000 0x6000

c. Program the image to the flash at 0x08000000:

./blhost -u 0x1fc9,0x0020 -- write-memory 0x08000000 .\hello_world.bin

 
When examining the hello_world.bin file in a HEX editor, the *.bin starts from 0x08000000 and it is zero-filled from
offset 0x0-0x400 for the MCUXpresso IDE. Therefore, the image should be programmed starting at 0x08000000 for
steps b and c. For the Keil IDE, this address should be also 0x08000000. This address varies for other toolchains.
In the IAR IDE, the *.bin image starts from the FCB address at 0x08000400 (when BOOT_HEADER_ENABLE=1)
and does not zero-fill from 0x08000000. For the IAR IDE, the generated binaries use 0x8000400 for programming
image at steps b and c.

  NOTE  

NXP Semiconductors
Sample example application

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 16 / 19



Figure 20. blhost commands sequence

The argument values 0xc1503051 and 0x20000014 in the fill-memory command is the FlexSPI boot configuration
option block.

5. Switch the RT685-EVK board to the FlexSPI Port B boot mode by setting SW5 to 1-ON, 2-OFF, and 3-ON, as shown in
Figure 21.

Figure 21. Setting SW5 to 1-ON, 2-OFF, 3-ON

6. Reset the board and connect the USB cable to the J5 port and the “hello_world” demo should run successfully.

4 Conclusion
This application note shows how some part of code can be booted from the external flash into the internal RT685 SRAM and how
the remaining code can continue to reside in flash to be fetched/executed directly. The example explains how to change the linker
file to do this hybrid booting in details.

5 References
1. RT600 User Manual (document UM11147)

2. RT600 Data Sheet

NXP Semiconductors
Conclusion

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 17 / 19

https://www.nxp.com/doc/UM11147
https://www.nxp.com/docs/en/data-sheet/DS-RT600.pdf


3. MCUXpresso SDK Release Notes for EVK-MIMXRT685 (located inside the SDK)

4. Getting Started with MCUXpresso SDK for EVK-MIMXRT685 (located inside the SDK)

5. MCUXpresso IDE User Guide

6. MCU blhost User Guide (document MCUBLHOSTUG)

7. How to Enable Master Boot from Serial NOR Flash (document AN12773)

NXP Semiconductors
References

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 18 / 19

https://www.nxp.com/docs/en/user-guide/MCUXpresso_IDE_User_Guide.pdf
http://www.nxp.com/doc/MCUBLHOSTUG
https://www.nxp.com/doc/AN12773


How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their
respective owners.  AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled,
NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected
by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle
and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 09/2020
Document identifier: AN12985

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 RT600 boot overview
	2.1 Boot features
	2.2 Boot settings
	2.3 Boot image offset
	2.4 Image link region

	3 Sample example application
	3.1 Environment
	3.1.1 Hardware environment
	3.1.2 Software environment

	3.2 Steps
	3.2.1 Steps for Keil IDE
	3.2.2 Steps for MCUXPresso IDE
	3.2.3 Steps for IAR IDE

	3.3 Methodology for programming the flash
	3.3.1 Steps for programming flash


	4 Conclusion
	5 References

