
1 Introduction
This document describes how to apply the low power modes of i.MX RT6xx to
FreeRTOS Tickless power mode. i.MX RT6xx supports normal sleep, deep
sleep, deep power down, and full deep power down modes, which are applied
to FreeRTOS Tickless sleep modes.

2 FreeRTOS tick timer, tickless, and sleep
modes

2.1 Understanding system tick timer (SysTick) as
FreeRTOS tick timer

System tick timer (SysTick) is a hardware component part of the Arm Cortex CPU. The timer has a 24-bit counter that can count
down from 224-1 (16,777,215). Once the timer reaches zero, it resets to reload value and generates an interrupt. Each count
decrement from SysTick current value (SysTick_VAL) or reload value (SysTick_LOAD) is based on the input clock cycle. If the
input clock to the SysTick is 1 MHz, each count is 1 μs. The 24-bit count in 1 MHz is up to 16.77 s.

The FreeRTOS uses tick count variable to measure time, each time the tick count increments when the timer interrupt occurs.
The timer interrupt frequency is user configurable; however, the higher the interrupt occurrence will impact the overall system
performance. The RTOS kernel uses the tick to observe whether it is time to unblock or wake a task.

The current RT685 SDK FreeRTOS example uses main_clk as the clock source for SysTick and M33 Core. In the application
example, the CPU is set to run at 250 MHz, and so does the SysTick (see Figure 1). To have 1 ms SysTick interval or count in
250 MHz, 250,000 must be assigned to SysTick_LOAD register. 250 MHz is 4 ns in each SysTick count, 1 ms is 1,000,000 ns;
therefore, it will take 250,000 to reach 1 ms. The maximum allowable 1 ms tick in 250 MHz is 67.10 ms.

Figure 1. SysTick input clock source

Contents

1 Introduction.. 1

2 FreeRTOS tick timer, tickless, and
sleep modes..1

3 i.MX RT6xx Low Power Modes..............3

4 Example application configuration
and setup.. 4

5 i.MX RT685 SDK example.....................5

6 Running the application....................... 24

7 References.. 29

AN12801
RT685 Low Power Support in FreeRTOS
Tickless mode using RTC/Systick as wake source
Rev. 0 — May 2020 Application Note

2.2 FreeRTOS tickless
FreeRTOS supports low power state that allows the microcontroller to periodically enter and exit low power consumption. A timer
is used to periodically generate tick for the RTOS to perform real time task scheduling. An idle time is calculated by RTOS if there
are no application tasks to be executed. When there are no application tasks to be executed, the tick interrupt is halted, which
allows the MCU to remain in reduced power state until an interrupt/event occurs, or transition from a task into ready state.
However, when the wake from idle is too frequent, the power consumption that CPU spent entering and exiting will be higher
since there isn’t much time for CPU/peripherals to gain power saving.

Figure 2. Tickless and power usage

2.3 FreeRTOS Expected Idle Time
The expected idle time is calculated by an RTOS scheduling algorithm with some idle time before reaching the next application
task to service. For example, two tasks are created, task one with 20 ticks and task two with 50 ticks. The expected idle time will
be 20 ticks to service task one, next expected idle time will be 20 ticks again, then next expected idle time will 10 ticks to service
task two.

2.4 FreeRTOS Sleep Modes
There are two types of sleep modes supported in FreeRTOS - eStandardSleep and eNoTaskWaitingTimeout. eStandardSleep
is entered when vTaskDelay(#ticks) is called. The expected idle time is passed from vTaskDelay, and RTOS divides it if needed.
If the expected idle time is 10, sleep mode cannot be greater than 10. eNoTaskWaitingTimeout is entered when
vTaskSuspend(NULL) is called. All the tasks are suspended and this sleep mode can only be woken from by an external interrupt
or reset.

NXP Semiconductors
FreeRTOS tick timer, tickless, and sleep modes

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 2 / 31

Figure 3. Single task and all tasks suspend

3 i.MX RT6xx Low Power Modes
There are four low power modes – normal sleep, deep sleep, deep power down and full deep power down. Full deep power down
has lowest power consumption while normal sleep is the most. Deep sleep is user configurable.

Table 1. Low power modes

Power Management Feature description

Active Cores, memories, clocks, and peripherals are fully operational.

Normal sleep CM33 CPU gated off, memories, clocks, peripherals are fully
operational. Any interrupt will wake up the CPU.

Deep sleep User configurable. main_clk must be gated to be in deep sleep.
CPU will be gated off. Memories, clocks, or peripherals will be
active or shut off. Memories will retain content when not shut
off. All supplies are still on. Requires longer wake time.
Selected peripherals allow to wake the CPU.

Deep power down CPU, memories, clocks, and peripherals and shut off except
PMU and RTC. Reset or RTC to wake, longer wake-up time.
VDDCore is off.

Full deep power down Same a deep power down with additional VDD1V18 supply off.

3.1 Applying i.MX RT6XX Low Power Modes To FreeRTOS Sleep Modes
The deep power down or full deep power down requires longer wake-up time compared to deep sleep, it is best suited for longer
sleep times. Apply deep power down mode to eNoTaskWaitingTimeout.

Depending on the use case, deep sleep can also be applied to eNoTaskWaitingTimeout.

 NOTE

NXP Semiconductors
i.MX RT6xx Low Power Modes

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 3 / 31

Normal sleep and deep sleep is used on eStandardSleep when the device is not required to fully shutoff or reboot. This is ideal
when the application requires instant startup and instant code execution. The normal sleep is used when deep sleep can’t reach
2 ms. This is because the minimum wake-up time required for full deep sleep is 1 ms. So, a minimum sleep time of 5 ms is needed
to achieve reduced power consumption. The longer sleep time achieves better power consumption.

3.2 Timer comparison in low power modes
During deep sleep or deep power down, main_clk is shutoff, and most timers do not work in deep power down mode. RTC is on
the “Always On” power domain, so using RTC as secondary timer during deep sleep or deep power down is best suited for this
requirement. However, the counter interval is not at high granularity, each increment is 30.517578125 μs (1/32768 RTC subsec
count). There is lost time that is not accounted for if wake is less than the RTC interval. Counter interval for lposc is 0.9 – 1.1 μs.

Figure 4. Timer comparison in low power modes

3.3 Using RTC as secondary timer during deep sleep
Although RTC subsec granularity is approximately 30.51 μs, the minimum requirement for RT685 to go into deep sleep is 5 ms
up to 65535 ms. Wake up from RTC may take up to 1 ms depending on PDSLEEPCFG configuration. In this example, all clocks
are shutoff except RTC always on domain.

RTC needs to initialize as early as possible to prevent lost time while deep sleep is called the first time. When the RTC is initialized,
and subsec is enabled, it will wait until one second has elapsed before the subsec count can be started. So, it is recommended
RTC must be kept on all the time.

In the example, subsec is recorded as soon as systick is disabled. It will record again when woken from deep sleep. This will
measure the time spent in deep sleep. After waking from deep sleep, there is some calculation and conversion for RTC time to
tick to inform FreeRTOS the number of ticks that have passed. A smaller period that is not covered will be passed to Systick to
consume.

4 Example application configuration and setup

NXP Semiconductors
Example application configuration and setup

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 4 / 31

4.1 Environment

4.1.1 Hardware environment
• MIMXRT685-EVK rev E

• Multi-meter with amp measurement

• Micro USB cable

• PC

4.1.2 Software environment
• MCUXpresso IDE v11.1.1

• MCUXpresso MIMXRT685 SDK version 2.7 and above with FreeRTOS

5 i.MX RT685 SDK example
The MCUXpresso SDK FreeRTOS tickless example is using RTC as primary tick and wake source. The following section
implements SysTick as primary tick source and RTC as secondary wake source for deep sleep.

5.1 Create new MCUXpresso workspace

Figure 5. New workspace

Create a project name and click Launch to continue.

5.2 Update MCUXpresso IDE SDK
Drag and drop the downloaded MCUXpresso example to <Installed SDKs> panel at the bottom of MCUXpresso IDE.

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 5 / 31

Figure 6. Installed SDKs panel

5.3 Import SDK examples
Select and click Import SDK examples link at the bottom left corner panel of IDE.

Figure 7. Import project

5.4 Board selection
Select evkmimxrt685 board and click Next.

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 6 / 31

Figure 8. Board selection

5.5 FreeRTOS tickless example
Expand rtos_example, select freertos_tickless and click Finish.

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 7 / 31

Figure 9. Select SDK example

5.6 Update RTC setup
The RTC subsec and 1 kHz counter is not enabled in RTC_Init() or RTC_StartTimer(). It must be enabled prior to the call to
vTaskDelay().

FILE: freertos_tickless.c

/***

* Prototypes

**/

extern void vPortSetupTimerInterrupt(void);

…

int main(void)

{

Table continues on the next page...

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 8 / 31

#if configUSE_TICKLESS_IDLE == 2

CLKCTL0->OSC32KHZCTL0 = 1;

/* Initialize RTC timer */

RTC_Init(RTC);

RTC_StartTimer(RTC);

RTC->CTRL |= RTC_CTRL_RTC1KHZ_EN_MASK | RTC_CTRL_RTC_SUBSEC_ENA_MASK |
RTC_CTRL_WAKEDPD_EN_MASK;

/* Enable RTC wake */

SYSCTL0->STARTEN1 |= SYSCTL0_STARTEN1_RTC_LITE0_ALARM_OR_WAKEUP_MASK;

/* enable RTC interrupt */

RTC_EnableInterrupts(RTC, RTC_CTRL_WAKE1KHZ_MASK);

EnableIRQ(RTC_IRQn);

/*

* update necessary variable for tickless idle,

* it has no effect on Systick

*/

vPortSetupTimerInterrupt ();

#endif

5.7 Add RTC alarm and wake interrupt in RTC_IRQ
Change RTC alarm and wake interrupt flag check and clear in RTC_IRQHandler().

File: freertos_tickless.c

void RTC_IRQHandler(void)

{

if (RTC_GetStatusFlags(RTC) & kRTC_WakeupFlag)

{

/* Clear wake flag */

RTC_ClearStatusFlags(RTC, kRTC_WakeupFlag);

}

if (RTC_GetStatusFlags(RTC) & kRTC_AlarmFlag)

{

/* Clear alarm flag */

RTC_ClearStatusFlags(RTC, kRTC_AlarmFlag);

}

vPortRtcIsr();

Table continues on the next page...

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 9 / 31

/* Add for Arm errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping

exception return operation might vector to incorrect interrupt */

#if defined __CORTEX_M && (__CORTEX_M == 4U)

__DSB();

#endif

}

5.8 Update vPortSetupTimerInterrupt()
Maximum RTC wake count is FFFFh (65535 ms = 65.53 s). Maximum SysTick counter is FF_FFFFh, the tick rate depends on
main_clk and SYSTICKFCLKDIV (see section Understanding system tick timer (SysTick) as FreeRTOS tick timer).
xExpectedIdleTimeForRTC is to determine the minimum tick when deep sleep is involved.

FILE: fsl_tickless_rtc.c

/* Setup the variables */

void vPortSetupTimerInterrupt(void)

{

/* RTC wake count is in 1 mS increment, converting mS to FreeRTOS tick */

xMaximumPossibleSuppressedTicks = (portMAX_16_BIT_NUMBER * RTC_WAKE_COUNT_IN_MILLISEC) /
configTICK_RATE_HZ;

/* maximum Systick ticks allowed */

xMaximumPossibleSuppressedSysTicks = (portMAX_24_BIT_NUMBER / ((configCPU_CLOCK_HZ / configTICK_RATE_HZ)
- 1UL)) - 1UL;

xExpectedIdleTimeForRTC = (8UL * RTC_WAKE_COUNT_IN_MILLISEC) / configTICK_RATE_HZ;

xDeepSleepCompensation = 0;

NVIC_EnableIRQ(vPortGetRtcIrqn());

}

5.9 Add new definition for fsl_tickless_rtc.h
Append the following after portMax_24_BIT_NUMBER.

FILE: fsl_tickless_rtc.h

/* RTC Wake Count */

#define RTC_WAKE_COUNT_IN_MILLISEC (1000UL)

/* SysTick 24-bit counter */

#define portMAX_24_BIT_NUMBER (0xFFFFFFUL)

int vSetNoTasksWaitingTime(uint32_t xSleepTime);

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 10 / 31

5.10 Add power configuration and variables
Add the following on top of vPortRtcIsr() and removed unwanted code in vPortRtcIsr().

FILE: fsl_tickless_rtc.c

/*

* The number of SysTick increments that make up one tick period.

*/

#if configUSE_TICKLESS_IDLE == 2

static uint32_t ulTimerCountsForOneTick = 0;

static uint32_t ulStoppedTimerCompensation = 0;

#endif /* configUSE_TICKLESS_IDLE */

/*

* The maximum number of tick periods that can be suppressed is limited by the

* 24 bit resolution of the SysTick timer.

*/

#if configUSE_TICKLESS_IDLE == 2

static uint32_t xMaximumPossibleSuppressedSysTicks = 0;

static uint32_t xMaximumPossibleSuppressedTicks = 0;

static uint32_t xExpectedIdleTimeForRTC = 0;

static uint32_t xDeepSleepCompensation = 0;

#endif /* configUSE_TICKLESS_IDLE */

#if configUSE_TICKLESS_IDLE == 2

#define APP_DEEPSLEEP_RUNCFG0 0x00000000U /*!< Power down all unnecessary blocks during deep sleep*/

#define APP_DEEPSLEEP_RAM_APD 0x3FFFFFFFU

#define APP_DEEPSLEEP_RAM_PPD 0x3FFFFFFFU

#define APP_EXCLUDE_FROM_DEEPSLEEP \

(((const uint32_t[]){APP_DEEPSLEEP_RUNCFG0, \

(SYSCTL0_PDSLEEPCFG1_FLEXSPI_SRAM_APD_MASK | SYSCTL0_PDSLEEPCFG1_FLEXSPI_SRAM_PPD_MASK), \

APP_DEEPSLEEP_RAM_APD, APP_DEEPSLEEP_RAM_PPD}))

#define APP_EXCLUDE_FROM_DEEP_POWERDOWN (((const uint32_t[]){0, 0, 0, 0}))

#define APP_EXCLUDE_FROM_FULL_DEEP_POWERDOWN (((const uint32_t[]){0, 0, 0, 0}))

void vPortRtcIsr(void)

{

}

5.11 Remove unused variable
ulLPTimerCountsForOneTick is not used, it can be removed.

FILE: fsl_tickless_rtc.c

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 11 / 31

/*

* The number of LPTIMER increments that make up one tick period.

*/

#if configUSE_TICKLESS_IDLE == 2

static uint32_t ulLPTimerCountsForOneTick = 0;

#endif /* configUSE_TICKLESS_IDLE */

5.12 Include fsl_power header
Append this header file after fsl_tickless_rtc.h.

File: fsl_tickless_rtc.c

#include "fsl_tickless_rtc.h"

#include "fsl_power.h"

5.13 Using new vPortSuppressTicksAndSleep()
Copy the following code and replace the existing vPortSuppressTicksAndSleep() in the SDK.

FILE: fsl_tickless_rtc.c

void vPortSuppressTicksAndSleep(TickType_t xExpectedIdleTime)

{

eSleepModeStatus eSleepStatus;

RTC_Type *pxRtcBase;

uint32_t ulSystickLoadvalue;

volatile bool bTicklessRTC = false;

uint32_t ulReloadValue = 0, ulCompleteTickPeriods = 0;

uint32_t ulRemain;

uint16_t uRTCsec1 = 0, uRTCsubsec1 = 0;

pxRtcBase = vPortGetRtcBase();

if (pxRtcBase == 0)

return;

eSleepStatus = eTaskConfirmSleepModeStatus();

if (eSleepStatus == eAbortSleep)

return;

if (xExpectedIdleTime == 0)

return;

/* Stop the RTC and systick momentarily. The time the RTC and systick is stopped for

Table continues on the next page...

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 12 / 31

is accounted for as best it can be, but using the tickless mode will

inevitably result in some tiny drift of the time maintained by the

kernel with respect to calendar time. */

SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;

uRTCsec1 = RTC->COUNT;

uRTCsubsec1 = RTC->SUBSEC;

/* Enter a critical section but don't use the taskENTER_CRITICAL()

method as that will mask interrupts that should exit sleep mode. */

__asm volatile("cpsid i" ::: "memory");

__asm volatile("dsb");

__asm volatile("isb");

/* Calculate the reload value required to wait xExpectedIdleTime

tick periods. -1 is used because this code will execute part way

through one of the tick periods. */

ulTimerCountsForOneTick = SysTick->LOAD + 1;

ulSystickLoadvalue = SysTick->VAL;

/* If a context switch is pending or a task is waiting for the scheduler

to be unsuspended then abandon the low power entry. */

if (eSleepStatus == eNoTasksWaitingTimeout)

{

POWER_EnterDeepPowerDown(APP_EXCLUDE_FROM_FULL_DEEP_POWERDOWN);

}

else

{

if (xExpectedIdleTime >= xExpectedIdleTimeForRTC)

{

uint32_t ulRTCCompleteTickPeriods, ulRTCWakePeriods, ulTemp;

uint16_t uRTCsubsec2, uRTCsec2, secs;

/*

* xMaximumPossibleSuppressedTicks is calculated in vPortTimerUpdate()

* so that it won't pass 65.535 Secs

*/

if (xExpectedIdleTime > xMaximumPossibleSuppressedTicks)

xExpectedIdleTime = xMaximumPossibleSuppressedTicks;

/*

* deep sleep

Table continues on the next page...

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 13 / 31

* up to 1ms for OSC & PLL startup time

* ulRTCWakePeriods needs to be coverted in mS for RTC WAKE

*/

ulRTCWakePeriods = ((xExpectedIdleTime * configTICK_RATE_HZ) / RTC_WAKE_COUNT_IN_MILLISEC) - 1UL;

/* determines whether it is using RTC or sysTick timer */

bTicklessRTC = true;

/*

* RTC & subsec must be enabled 1 sec prior to be used here,

* subsec may take up to 1 sec before the counter started.

*/

RTC->WAKE = ulRTCWakePeriods;

POWER_EnterDeepSleep(APP_EXCLUDE_FROM_DEEPSLEEP);

uRTCsubsec2 = RTC->SUBSEC;

uRTCsec2 = RTC->COUNT;

secs = uRTCsec2 - uRTCsec1;

if (secs)

{

ulRTCCompleteTickPeriods = (uRTCsubsec2 + (32768U - uRTCsubsec1));

if (ulRTCCompleteTickPeriods > 32768U)

ulRTCCompleteTickPeriods -= 32768U;

else

secs -= 1UL;

}

else

ulRTCCompleteTickPeriods = (uRTCsubsec2 - uRTCsubsec1);

/*

* value of 1 subsec is 30.51757 uS, the closer value to

* 1,000,000,000 nS (1 S) is 61,035 (2 x 30,517)

* - 32,768 * 30,517 = 999,981,056 nS

* - 32,768 * 61,035 = 1,999,994,880 div 2 = 999,997,440 nS

*/

/* Convert RTC count to uS */

ulRTCCompleteTickPeriods = ((ulRTCCompleteTickPeriods * 61035U) >> 1) / 1000UL;

/* Convert sec to tick */

ulCompleteTickPeriods = (secs * 1000000UL) / configTICK_RATE_HZ;

/* rounding up RTC uS for tick */

Table continues on the next page...

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 14 / 31

ulTemp = ulRTCCompleteTickPeriods + 999U - (ulRTCCompleteTickPeriods - 1) % 1000UL;

/* convert RTC uS to tick and add it up */

ulCompleteTickPeriods += (ulTemp / configTICK_RATE_HZ);

/* difference, ulRemain will have uS value */

ulRemain = (ulTemp - ulRTCCompleteTickPeriods);

/* convert uS to sysTick value */

ulRemain = ((ulRemain * ulTimerCountsForOneTick) / configTICK_RATE_HZ);

ulRemain += ((xExpectedIdleTime - ulCompleteTickPeriods) * ulTimerCountsForOneTick);

/* some adjust in uS if needed */

ulRemain += xDeepSleepCompensation;

/* remaining time that needs to be spent in systick */

SysTick->VAL = 0;

SysTick->LOAD = ulRemain - 1;

SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;

__asm volatile("dsb" ::: "memory");

SCB->SCR &= ~SCB_SCR_SLEEPDEEP_Msk;

__asm volatile("isb");

__asm volatile("wfi");

}

else

{

if (xExpectedIdleTime > xMaximumPossibleSuppressedSysTicks)

xExpectedIdleTime = xMaximumPossibleSuppressedSysTicks;

ulReloadValue = (ulTimerCountsForOneTick * (xExpectedIdleTime - 1UL));

ulReloadValue += ulSystickLoadvalue;

if(ulReloadValue > ulStoppedTimerCompensation)

ulReloadValue -= ulStoppedTimerCompensation;

/* WFI only */

SysTick->LOAD = ulReloadValue;

SysTick->VAL = 0UL;

SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;

ulCompleteTickPeriods = xExpectedIdleTime - 1UL;

__asm volatile("dsb" ::: "memory");

SCB->SCR &= ~SCB_SCR_SLEEPDEEP_Msk;

__asm volatile("isb");

__asm volatile("wfi");

Table continues on the next page...

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 15 / 31

}

__asm volatile("cpsie i" ::: "memory");

__asm volatile("dsb");

__asm volatile("isb");

/* Disable interrupts again because the clock is about to be stopped

and interrupts that execute while the clock is stopped will increase

any slippage between the time maintained by the RTOS and calendar

time. */

__asm volatile("cpsid i" ::: "memory");

__asm volatile("dsb");

__asm volatile("isb");

/*

* separate RTC and SysTick interrrupt. The calculation should be based

* on selected timer (RTC or SysTick) not both.

*/

if(bTicklessRTC)

{

/* Disable the SysTick clock without reading the

portNVIC_SYSTICK_CTRL_REG register to ensure the

SysTick_CTRL_COUNTFLAG_Msk is not cleared if it is set. Again,

the time the SysTick is stopped for is accounted for as best it can

be, but using the tickless mode will inevitably result in some tiny

drift of the time maintained by the kernel with respect to calendar

time*/

SysTick->CTRL = (SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk);

bTicklessRTC = false;

}

else

{

uint32_t ulCompletedSysTickDecrements;

/* Disable the SysTick clock without reading the

SysTick->CTRL register to ensure the

SysTick_CTRL_COUNTFLAG_Msk is not cleared if it is set. Again,

the time the SysTick is stopped for is accounted for as best it can

be, but using the tickless mode will inevitably result in some tiny

drift of the time maintained by the kernel with respect to calendar

Table continues on the next page...

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 16 / 31

time*/

SysTick->CTRL = (SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk);

/* Determine if the SysTick clock has already counted to zero and

been set back to the current reload value (the reload back being

correct for the entire expected idle time) or if the SysTick is yet

to count to zero (in which case an interrupt other than the SysTick

must have brought the system out of sleep mode). */

if((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0)

{

uint32_t ulCalculatedLoadValue;

/* The tick interrupt is already pending, and the SysTick count

reloaded with ulReloadValue. Reset the

SysTick->LOAD with whatever remains of this tick

period. */

ulCalculatedLoadValue = (ulTimerCountsForOneTick - 1UL) -

(ulReloadValue - SysTick->VAL);

/* Don't allow a tiny value, or values that have somehow

underflowed because the post sleep hook did something

that took too long. */

if((ulCalculatedLoadValue < ulStoppedTimerCompensation) ||

(ulCalculatedLoadValue > ulTimerCountsForOneTick))

{

ulCalculatedLoadValue = (ulTimerCountsForOneTick - 1UL);

}

SysTick->LOAD = ulCalculatedLoadValue;

/* As the pending tick will be processed as soon as this

function exits, the tick value maintained by the tick is stepped

forward by one less than the time spent waiting. */

ulCompleteTickPeriods = xExpectedIdleTime - 1UL;

}

else

{

/* Something other than the tick interrupt ended the sleep.

Work out how long the sleep lasted rounded to complete tick

periods (not the ulReload value which accounted for part

ticks). */

Table continues on the next page...

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 17 / 31

ulCompletedSysTickDecrements = (xExpectedIdleTime *

ulTimerCountsForOneTick) - SysTick->VAL;

/* How many complete tick periods passed while the processor

was waiting? */

ulCompleteTickPeriods = (ulCompletedSysTickDecrements / ulTimerCountsForOneTick);

/* The reload value is set to whatever fraction of a single tick

period remains. */

SysTick->LOAD = ((ulCompleteTickPeriods + 1UL) *

ulTimerCountsForOneTick) - ulCompletedSysTickDecrements;

}

}

}

/* Restart SysTick so it runs from SysTick->LOAD

again, then set SysTick->LOAD back to its standard

value. */

SysTick->VAL = 0;

vTaskStepTick(ulCompleteTickPeriods);

SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;

SysTick->LOAD = ulTimerCountsForOneTick - 1UL;

/* Exit with interrpts enabled. */

__asm volatile("cpsie i" ::: "memory");

}

5.14 Add files to project
Copy files (pmic_support.c, pmic_support.h, fsl_pca9420.c, fsl_pca9420.h, fsl_i2c.c, and fsl_i2c.h) attached in Source files to a
temporary folder.

Drag and drop pmic_support.c and pmic_support.h to board in the project explorer in the left panel of IDE.

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 18 / 31

Figure 10. Project panel

A window will pop up, select Copy files and press OK to continue.

Figure 11. File operation

Drag and drop fsl_pca9420.c and fsl_pca9420.h to source in the project explorer in the left panel of IDE. Select copy files and
continue.

Next, drag and drop fsl_i2c.c and fsl_i2c.h to drivers in the project explorer in the left panel of IDE. Select copy files and continue.

5.15 Add PMIC setup to main.c
Add the following code to main.c.

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 19 / 31

#include "fsl_pint.h"

#include "pmic_support.h"

#include "fsl_pca9420.h"

#include "pin_mux.h"

…

void BOARD_ConfigPMICModes(pca9420_modecfg_t *cfg, uint32_t num)

{

assert(cfg);

/* Configuration PMIC mode to align with power lib like below:

* 0b00 run mode, no special.

* 0b01 deep sleep mode, vddcore 0.7V.

* 0b10 deep powerdown mode, vddcore off.

* 0b11 full deep powerdown mode vdd1v8 and vddcore off. */

/* Mode 1: VDDCORE 0.7V. */

cfg[1].sw1OutVolt = kPCA9420_Sw1OutVolt0V700;

/* Mode 2: VDDCORE off. */

cfg[2].enableSw1Out = false;

/* Mode 3: VDDCORE, VDD1V8 and VDDIO off. */

cfg[3].enableSw1Out = false;

cfg[3].enableSw2Out = false;

cfg[3].enableLdo2Out = false;

}

/*!

* @brief Main function

*/

int main(void)

{

#if configUSE_TICKLESS_IDLE == 2

pca9420_modecfg_t pca9420ModeCfg[4];

uint32_t i;

/* BE CAUTIOUS TO SET CORRECT VOLTAGE RANGE ACCORDING TO YOUR BOARD/APPLICATION. PAD SUPPLY
BEYOND THE RANGE DO

HARM TO THE SILICON. */

power_pad_vrange_t vrange = {.Vdde0Range = kPadVol_171_198,

.Vdde1Range = kPadVol_171_198,

/* SD0 voltage is switchable, but in power_manager demo, it's fixed 3.3V. */

Table continues on the next page...

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 20 / 31

.Vdde2Range = kPadVol_300_360};

CLKCTL0->OSC32KHZCTL0 = 1;

/* Initialize RTC timer */

RTC_Init(RTC);

…

BOARD_BootClockRUN();

BOARD_InitDebugConsole();

#if configUSE_TICKLESS_IDLE == 2

/* PMIC PCA9420 */

BOARD_InitPmic();

for (i = 0; i < ARRAY_SIZE(pca9420ModeCfg); i++)

{

PCA9420_GetDefaultModeConfig(&pca9420ModeCfg[i]);

}

BOARD_ConfigPMICModes(pca9420ModeCfg, ARRAY_SIZE(pca9420ModeCfg));

PCA9420_WriteModeConfigs(&pca9420Handle, kPCA9420_Mode0, &pca9420ModeCfg[0],
ARRAY_SIZE(pca9420ModeCfg));

POWER_SetPadVolRange(&vrange);

#endif

/* Print a note to terminal. */

PRINTF("Tickless Demo example\r\n");

5.16 Enable I2C component
In the file menu, select Project then Properties to enable I2C.

Figure 12. Project properties

From the C/C++ Build drop down, select Settings. In the Tool Settings tab, from the MCU C Compiler drop down, select
Preprocessor.

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 21 / 31

Figure 13. Preprocessor

Click the Add symbol. Enter Put SDK_I2C_BASED_COMPONENT_USED=1 in the Enter Value dialog box and click OK.

Figure 14. I2C Symbol

Click Apply and Close and Yes to complete the setup.

Add the following I2C pins to the pin_mux.c.

const uint32_t fc15_i2c_scl_config = (/* Pin is configured as I2C_SCL */

IOPCTL_PIO_FUNC0 |

/* Enable pull-up / pull-down function */

IOPCTL_PIO_PUPD_EN |

/* Enable pull-up function */

Table continues on the next page...

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 22 / 31

IOPCTL_PIO_PULLUP_EN |

/* Enables input buffer function */

IOPCTL_PIO_INBUF_EN |

/* Normal mode */

IOPCTL_PIO_SLEW_RATE_NORMAL |

/* Normal drive */

IOPCTL_PIO_FULLDRIVE_DI |

/* Analog mux is disabled */

IOPCTL_PIO_ANAMUX_DI |

/* Pseudo Output Drain is enabled */

IOPCTL_PIO_PSEDRAIN_EN |

/* Input function is not inverted */

IOPCTL_PIO_INV_DI);

/* FC15_SCL PIN (coords: E16) is configured as I2C SCL */

IOPCTL->FC15_I2C_SCL = fc15_i2c_scl_config;

const uint32_t fc15_i2c_sda_config = (/* Pin is configured as I2C_SDA */

IOPCTL_PIO_FUNC0 |

/* Enable pull-up / pull-down function */

IOPCTL_PIO_PUPD_EN |

/* Enable pull-up function */

IOPCTL_PIO_PULLUP_EN |

/* Enables input buffer function */

IOPCTL_PIO_INBUF_EN |

/* Normal mode */

IOPCTL_PIO_SLEW_RATE_NORMAL |

/* Normal drive */

IOPCTL_PIO_FULLDRIVE_DI |

/* Analog mux is disabled */

IOPCTL_PIO_ANAMUX_DI |

/* Pseudo Output Drain is enabled */

IOPCTL_PIO_PSEDRAIN_EN |

/* Input function is not inverted */

IOPCTL_PIO_INV_DI);

/* FC15_SDA PIN (coords: F16) is configured as I2C SDA */

IOPCTL->FC15_I2C_SDA = fc15_i2c_sda_config;

Add the following to pin_mux.h.

NXP Semiconductors
i.MX RT685 SDK example

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 23 / 31

#define IOPCTL_PIO_PULLUP_EN 0x20u /*!<@brief Enable pull-up function */

#define IOPCTL_PIO_PSEDRAIN_EN 0x0400u /*!<@brief Pseudo Output Drain is enabled */

#define IOPCTL_PIO_PUPD_EN 0x10u /*!<@brief Enable pull-up / pull-down function */

5.17 Source files
To access the source files, download the associated software files (AN12801SW) from www.nxp.com.

6 Running the application
Once the source files are updated and applied, the project should build without errors. The following sections describe the steps
to build, program, and run the application. The tickless is activated when vTaskDelay() is called in Tickless_task(). RT685 goes
into deep sleep every 5000 ticks or 5000 ms in this example. If configTICK_RATE_HZ is configured to 500, 5000 ticks (2 ticks
per ms) will be 2500 ms.

6.1 Build the example
Under the Quickstart Panel at the bottom left, click Build under Build you project.

Figure 15. Quickstart Panel - BUILD

At the bottom of IDE, the console shows the project built successfully.

NXP Semiconductors
Running the application

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 24 / 31

https://www.nxp.com/

Figure 16. CDT build console

6.2 Program the application
Make sure the SW5 (ISPs) is ON, OFF, ON from left to right.

Under the Quickstart Panel at the bottom left, click Debug under Debug you project.

Figure 17. Quickstart Panel - DEBUG

A window pops up to select the appropriate debugger connected to the EVK. Select LPC-LINK2 CMSIS-DAP V... and click OK
to continue.

NXP Semiconductors
Running the application

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 25 / 31

Figure 18. Selecting debugger

When successfully programmed, the program count will be halted at main() in the source window.

NXP Semiconductors
Running the application

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 26 / 31

Figure 19. Program Counter stops at main()

6.3 Disable LDO_ENABLE pin
Take an unused jumper as indicated in the image below and place in on 2-3 of JP22. Place multimeter to JP29 to measure
VDDCore or place amp meter to JP29 (remove jumper) to measure current.

NXP Semiconductors
Running the application

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 27 / 31

Figure 20. VDDCore and LDO_Enable location

Figure 21. LDO_ENABLE selection

6.4 Run the application
The deep sleep shuts off the VDDCore, which interferes with the SWD signals. It is recommended to run the application without
the debugger.

Terminate the debug session by clicking the icon with the red squares on the bar at the middle top of IDE.

NXP Semiconductors
Running the application

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 28 / 31

When power is recycled to the board, the following message is displayed on the serial console.

Figure 22. Console output

6.5 Current measurement on the VDDCore
Remove jumper from JP29 and place an Amp meter on the JP29. User should see 5 seconds of deep sleep current consumption.
After 5 seconds have elapsed, the core wakes from deep sleep. It has a short period peak power consumption, then goes into 5
seconds deep sleep again.

Figure 23. Measuring VDDCore

7 References
• MXRT6xx Product page

— RT6xx User Manual

— RT600 Data Sheet

• MIMXRT685-EVK Product page

— MIMXRT685-EVK Getting Started Guide

— MIMXRT685-EVK Design Files

NXP Semiconductors
References

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 29 / 31

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i.mx-rt-crossover-mcus/i.mx-rt600-crossover-mcu-with-arm-cortex-m33-and-dsp-cores:i.MX-RT600
https://www.nxp.com/docs/en/user-guide/UM11147.pdf
https://www.nxp.com/docs/en/data-sheet/DS-RT600.pdf
https://www.nxp.com/design/development-boards/i.mx-evaluation-and-development-boards/i.mx-rt600-evaluation-kit:MIMXRT685-EVK
https://www.nxp.com/document/guide/getting-started-with-i-mx-rt600-evaluation-kit:GS-MIMXRT685-EVK
https://www.nxp.com/downloads/en/design-support/RT685-DESIGNFILES.zip

— MCUXpress IDE

— MCUXpresso SDK Builder

NXP Semiconductors
References

RT685 Low Power Support in FreeRTOS, Rev. 0, May 2020
Application Note 30 / 31

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://mcuxpresso.nxp.com/en/welcome

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON,
POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or
its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or
all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: May 2020
Document identifier: AN12801

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	RT685 Low Power Support in FreeRTOS
	Contents
	1 Introduction
	2 FreeRTOS tick timer, tickless, and sleep modes
	2.1 Understanding system tick timer (SysTick) as FreeRTOS tick timer
	2.2 FreeRTOS tickless
	2.3 FreeRTOS Expected Idle Time
	2.4 FreeRTOS Sleep Modes

	3 i.MX RT6xx Low Power Modes
	3.1 Applying i.MX RT6XX Low Power Modes To FreeRTOS Sleep Modes
	3.2 Timer comparison in low power modes
	3.3 Using RTC as secondary timer during deep sleep

	4 Example application configuration and setup
	4.1 Environment
	4.1.1 Hardware environment
	4.1.2 Software environment

	5 i.MX RT685 SDK example
	5.1 Create new MCUXpresso workspace
	5.2 Update MCUXpresso IDE SDK
	5.3 Import SDK examples
	5.4 Board selection
	5.5 FreeRTOS tickless example
	5.6 Update RTC setup
	5.7 Add RTC alarm and wake interrupt in RTC_IRQ
	5.8 Update vPortSetupTimerInterrupt()
	5.9 Add new definition for fsl_tickless_rtc.h
	5.10 Add power configuration and variables
	5.11 Remove unused variable
	5.12 Include fsl_power header
	5.13 Using new vPortSuppressTicksAndSleep()
	5.14 Add files to project
	5.15 Add PMIC setup to main.c
	5.16 Enable I2C component
	5.17 Source files

	6 Running the application
	6.1 Build the example
	6.2 Program the application
	6.3 Disable LDO_ENABLE pin
	6.4 Run the application
	6.5 Current measurement on the VDDCore

	7 References

