
1 Introduction
The introduction of the K32 L3 device brings to the Kinetis family the power
and multitasking capabilities of a dual-core device. Dual-core devices, while
powerful, can add complexity to your development. The goal of this application
note is to simplify the process of starting a new multi-core project or convert
an existing single core project to a dual-core project.

Different IDEs handle dual-core applications differently. This
application note will cover IAR IDE and MCUXpresso IDEs.

 NOTE

2 Overview
Before creating a dual-core project (or converting a single-core project to a dual-core project), it is necessary to discuss the
structure of the K32L3A6 device. The K32L3A6 is an asymmetric dual-core device (with two different cores as opposed to
symmetric dual-core devices which have identical cores that operate in lockstep) containing an Arm® Cortex®-M4 core and an
Arm Cortex-M0+ core. Like other dual-core devices, one core acts as the primary core or boot core, while the other core acts as
the secondary core. In the K32L3A6, the Arm Cortex-M4 device acts as the boot core by default (the boot core can be changed).
The block diagram of the K32L3A6 device is as shown in Figure 1.

Contents

1 Introduction.. 1

2 Overview..1

3 Multi-core projects in IAR.......................3

4 Multicore debug in IAR.......................... 8

5 Multicore projects in MCUXpresso...... 21

6 Multicore debug in MCUXpresso......... 34

7 Multicore code..................................... 41

8 Conclusion... 46

AN12673
Dual-core Project Creation and Conversion for K32L3A6 Devices
Rev. 0 — 01/2020 Application Note

Figure 1. K32L3A6 block diagram

As shown in Figure 1:

• Each core has its own cache, RAM memory, Flash memory, interrupt controllers, and so on. The two cores can operate
completely independently of each other.

• Besides the two separate cores, there are two separate crossbars, AXBS0 and AXBS1. This effectively creates a logical
divide such that each core also has their own set of peripherals. Those peripherals attached to AXBS0 are the Arm
Cortex-M4 peripherals, and those attached to AXBS1 are Arm Cortex-M0+ peripherals. However, the crossbars are also
connected to each other through AXBS0 master port 5 (M5) connected to AXBS1 slave port 3 (S3) and AXBS0 slave port
4 (S4) connected to AXBS1 master port 3 (M3). This allows the Arm Cortex-M4 to access Arm Cortex-M0+ peripherals
and memory and vice versa.

• Utilities common to both cores include the debug unit, Multi-core units (SEMA42, MU, resource domain controller, and
miscellaneous system control module), clock controls (SCG and RTC), and power controls (SPM).

NXP Semiconductors
Overview

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 2 / 47

Now that you have a better understanding of how the K32L3A6 device is architected, let’s discuss how the IDEs handle this
architecture. First, the IAR IDE will be discussed, and then MCUXpresso will be discussed.

3 Multi-core projects in IAR
IAR IDE essentially treats multi-core projects as two independent projects. Thus you need two independent projects (one for
each core) when creating a dual-core project. If you are starting from a single-core project, you will need to create (or incorporate)
a project for the second core. You will need to modify your code to ensure that the second core is started correctly. You may also
need to consider the interaction between the two cores (beyond what is described in this application note) and make more
modifications than are described in this application note. The possibilities and options here are limitless and thus, all situations
cannot be discussed in this application note.

In the IAR projects, there are internal options that will need to be selected to link the two separate projects together. It is important
at this point to note that a multi-core project creation does not necessarily mean that the debugger will establish a debug
connection with both cores. This is another independent setting. So this section will be broken up into multi-core project creation
and multi-core debug.

3.1 Multi-core project creation
As mentioned in Multi-core projects in IAR, IAR IDE treats multi-core project creation as two independent projects just linked by
different settings in the projects. Therefore, the first step to multi-core project creation is to create two independent projects for
the different cores. The hello_world example from the multicore_examples folder from the K32L3A6 MCUXpresso SDK
package will be used as an example to explain these concepts.

3.1.1 Primary core project
1. Examine the boot core project. In this case, this is the Arm Cortex-M4 project and this project simply configures a terminal

and prints hello_world to the terminal and notifies the user (via the terminal) that the secondary core is starting. Then
the secondary core is started. In dual-core devices, it is generally the responsibility of the boot core to start the secondary
core. Figure 2 shows the source code for this (for more details about the source code, see the following chapters in this
document).

NXP Semiconductors
Multi-core projects in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 3 / 47

Figure 2. Boot core source code

Another responsibility of the boot core project is to program the memory that the secondary core will use for its program
code space. This responsibility is achieved by configuring the linker settings in the project correctly as well as configuring
the linker file correctly. The linker settings in the project must be configured to point to the correct binary for the secondary
core and placed in the correct location in memory. Figure 3 shows the hello_world linker settings for the primary core
project.

NXP Semiconductors
Multi-core projects in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 4 / 47

Figure 3. Linker settings for primary core of the dual-core hello_world project

All necessary settings to create a dual-core project are contained within the Input tab of the Linker category of the project
settings. The following five boxes must be filled in correctly.

• Keep symbols: In the Keep symbols text box, the additional binaries that need to be added to the output file (that is
generated when the compile button is clicked) are listed. In this case, we have only one additional image to be
added to the final output. It is named as _hello_world_cm0plus_image. This symbol name is arbitrary and can be
anything.

• File: In the File text box, the correct path to the binary image for the Arm Cortex-M0+ program should be included
(*.bin).

• Symbol: The Symbol field must match the symbol defined in the Keep Symbols text box.

• Section: This defines where to place the binary file to be included. This MUST be correctly defined in the linker file
for the binary to be programmed and placed correctly.

• Align: This defines the alignment of the binary. This determines whether the data is aligned by byte, half-word, or
word. This example word aligns the binary and you shouldn’t ever need anything other than word alignment as
shown.

2. Make sure that the linker file is properly written. The linker file must properly define the section for the secondary core
binary to be placed. Figure 4 shows the linker file used in the hello_world project and the important parts have been
underlined in red.

NXP Semiconductors
Multi-core projects in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 5 / 47

Figure 4. Bottom of linker file

At the bottom of this linker file, there is the command of place in core1_region {block SEC_CORE_IMAGE_BLOCK };.
It commands the linker to place whatever is assigned to the SEC_CORE_IMAGE_BLOCK to the memory defined by
core1_region. The block, SEC_CORE_IMAGE_BLOCK, is defined as section __sec_core, which means anything in the
application with that tag will be placed in that block. In this case, the only thing with that tag will be the image for the
secondary core (and that was done in the Linker->Input tab in the project settings). The region core1_region is defined
as a memory region from core1_image_start to core1_image_end. These bounds are defined at the top of the linker file
(as shown in Figure 5).

NXP Semiconductors
Multi-core projects in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 6 / 47

Figure 5. Top of Linker file

At the top of the linker file, variables core1_image_start to core1_image_end are defined as 0x01000000 and 0x0103FFFF
respectively. Therefore, the image will be placed in the Arm Cortex-M0+ flash space.

The image range could be changed to be the Arm Cortex-M0+ RAM space. However, this would mean that the
Arm Cortex-M4 would also have to run from RAM, as the image loading tools cannot switch between loading Flash
or loading RAM. The image loader utility either loads RAM, or loads Flash.

 NOTE

3.1.2 Secondary core project
The secondary core project should be compiled as a normal project. It is important to use the correct flash loader for the expected
configuration. If the secondary core is expected to run from flash, it should be linked using a flash linker. If it is expected to run
from RAM, a RAM-configured linker should be used.

Keep the Keep symbols and Raw binary image sections blank (as shown in Figure 6).

 NOTE

NXP Semiconductors
Multi-core projects in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 7 / 47

Figure 6. Secondary Core Linker Input settings configuration

4 Multicore debug in IAR
Multi-core debugging generally refers to the act of debugging two cores simultaneously.

It is possible to debug just the primary core. In this type of situation (assuming the project is a dual-core project),
the secondary core will still be programmed and will still run, but you will only have control over the primary core.
This is sometimes easier and simpler than true multi-core debugging. As such, you may find this more convenient
(depending on your goals). This section will focus on multi-core debugging.

 NOTE

As with multi-core project creation, debugging two cores simultaneously requires that both projects have certain settings
configured. Incorrect settings can (and usually) result in failed connection attempts.

The following information will be discussed:

1. Compiling a Multi-core project in IAR

2. Primary core project debug settings

3. Secondary project debug settings

4. Debugging

This example examines the multicore hello_world project from the FRDM-K32L3A6 SDK package. The ijet debug probe is
used in this example but the content is still valid for other debug probes.

At the time of writing this application note, IAR does not support dual-core debug with the JLink debug probe. Be
sure to check if your version of IAR supports dual-core debug with your preferred debug probe.

 NOTE

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 8 / 47

4.1 Compiling a Multi-core project in IAR
Master and slave projects are compiled separately in IAR, and as such, normal procedures should be followed to compile these
projects. However, the order does matter in this case. Because the master project is expected to program the slave’s memory
space as well, it follows that the slave project should be compiled first, so that the master project is able to link in the binary for
that project.

4.2 Primary core project debug settings
1. Make sure that the ijet (or supported debug probe of your choice) is selected in the Debugger category.

Figure 7. Debug probe selection

Let’s continue with the Setup tab.

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 9 / 47

Figure 8. Setup of the primary core debugger

The reset method in this example is to use the Hardware reset, or reset pin, but this can be any of the reset options since
it is the primary, or master, core.

2. Let’s look at the Download options of the Debugger configuration. The hello_world example is configured to download
to flash. Figure 9 shows the primary core configuration (must use a flash loader if downloading to flash).

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 10 / 47

Figure 9. Download settings for primary core project

If a RAM project is desired, this check-box should be left unchecked.

 NOTE

3. Examine the Multicore tab. This is arguably the most important tab. As with the linker options, this tab requires knowledge
of the slave (or secondary core) workspace. Figure 10 displays the Multicore tab.

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 11 / 47

Figure 10. Debugger settings for the Multicore tab (primary core)

Only the Asymmetric multicore settings are necessary as K32L3A6 is an asymmetric device.

The path to the slave workspace in the debugger tab is the same as in the project configuration ($PROJ_DIR
$/../../cm0plus/iar/hello_world_cm0plus.eww).

 NOTE

4. Make sure that the debugger interface is setup correctly.

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 12 / 47

Figure 11. Debugger interface configuration for a dual-core project

The important sections to focus on in the interface tab are the Probe config section. The probe configuration can be
determined automatically, from a user defined file, or by explicit selections in this dialog box. This example will focus on
the explicit method. It is important that the Explicit probe configuration (if selected) targets the correct CPU number. Since
this project targets the Arm Cortex-M4 core, the CPU number should be 0 as it is the first CPU in the debug chain.

If a file is used, the file should have this information and the correct core must be selected in the CPU field. However, using
the settings shown above, no problems should be encountered.

Another important note here is that it is crucial that the Interface used (SWD is shown) matches the slave project.

 NOTE

4.3 Secondary project debug settings
The secondary project’s debug settings are largely determined by the master’s settings. However there is no automatic link
between the two projects. So it is imperative that these settings are manually configured and correct before initiating a debug
session. Not doing so usually results in failed connection attempts, but can also lead to other erratic behavior of the IAR IDE
(sometimes causing the program to crash).

Check the following settings:

• Check whether the driver used matches the master project. This is found in the Setup tab of the Debugger category.

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 13 / 47

Figure 12. Debugger driver selection in slave project

• Check the Download setting. Since the master project should take care of flashing the device to be debugged, the slave
project should not try to download the code. This operation could result in errors. Figure 13 displays the slave project’s
download settings.

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 14 / 47

Figure 13. Slave project download settings

Similarly, the slave project should not try to reset the device when initializing. This could also result in errors or erratic behavior.
So the slave project needs to suppress resets. This is accomplished by setting the correct reset option in the Setup tab of
the appropriate debugger. In this case, this is found in the ijet/JTAGjet category.

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 15 / 47

Figure 14. Slave project debugger reset selection

• Check whether the Interface settings of the debugger of the slave project match those of the master project.

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 16 / 47

Figure 15. Slave project debugger interface settings

4.4 Debugging
1. Make sure that the projects are compiled.

Since the master project includes a binary from the slave project, the slave project must be successfully compiled first.
Only then can the master project be compiled. Once both projects are compiled properly, close the slave project and leave
the master project open.

2. To initiate a debug session, click the Download and debug button in the master project.

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 17 / 47

Figure 16. Download and Debug button in the master project

3. Upon clicking the Download and debug button, a second instance of IAR will open with the slave workspace open in that
instance.

Figure 17. Debug session including Master and Slave workspaces

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 18 / 47

• The entire MCU can be controlled from either IAR instance.

Figure 18. Debug controls in both IAR instances

• There are new controls to control the cores independently or simultaneously. There are controls start both
cores, pause execution of both cores, or get the status of both cores. Figure 19 displays and explains the
multicore controls in IAR.

Figure 19. Multicore controls

 NOTE

4. If you mouse over the Core 0 or Core 1 status and control icons, an informational text box will give details of the core.
Figure 20 and Figure 21 display an example.

Figure 20. Core 0 status

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 19 / 47

Figure 21. Core 1 status

Clicking the down arrow next to each icon will reveal control options for the cores.

Figure 22. Core controls

5. The toggle multicore execution mode will set how the other controls operate (Step Into, Step over, etc.,). Mousing over
this button will display the current operation status.

NXP Semiconductors
Multicore debug in IAR

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 20 / 47

Figure 23. Toggle multicore execution mode button

6. Clicking the down arrow next to this button will allow the user to change between single core operation and dual-core
operation, as shown in Figure 24.

Figure 24. Multicore mode selection options

5 Multicore projects in MCUXpresso
Multicore MCUs can be designed in many ways. However, within MCUXpresso IDE, there is an underlying expectation that one
core (the Master) will control the execution (or at least the startup) of code running on other (Slave) core(s). This section describes:

• How to make a brand new multi-core project.

• Make a multi-core project from a pair of existing projects (slave and master pair).

• How to debug a multi-core project in MCUXpresso.

5.1 Multi-core project creation
Multicore application projects as described below consists of two linked projects:

• One project containing the Master code.

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 21 / 47

• One project containing the Slave code.

The Master project contains a link to the Slave project which will cause the output image from the Slave to be included into the
Master image when the Master project is built.

Building the Master project will trigger the Slave project to be built first.

 NOTE

5.1.1 Creating a master/slave project pair (using an SDK)
Since the Master project’s configuration needs to reference the slave project, the slave project should be created first.

To create the slave project, perform the following operations:

1. Drag and drop the SDK zip file into the Installed SDKs view (if the SDK has not already been installed) to install an SDK.
In the window that appears, click OK and wait until the import has finished.

Figure 25. Installed SDKs view in MCUXpresso IDE

2. Launch the New Project Wizard, select frdmk32l3a6 and click Next.

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 22 / 47

Figure 26. New Project Wizard SDK MultiCore, Arm Cortex-M0+

3. On the Confugure the project page, select the cm0plus core. Make sure that M0SLAVE is selected in the core options (the
Project will automatically be given the suffix of M0SLAVE). Drivers, utilities, etc. can be selected at this stage for the Slave
project if required.

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 23 / 47

Figure 27. SDK Wizard Arm Cortex-M0+ slave project configuration

4. Set the Arm Cortex-M0+ Slave memory configurations.

The MCUXpresso IDE’s managed linker script mechanism will default to link code to the first Flash region in this
view (if one exists) and use the first RAM region for data, heap and stack.

 NOTE

To force the Arm Cortex-M0+ code to link to a specific area of memory, ensure that the desired memory region is at the
top of the memory configuration list.

To place the project in RAM, from the previous note, ensure the Flash region is removed and the desired RAM
bank is at the top of the memory configuration list.

 NOTE

In this example, we chose memory region starting at 0x1000000, which corresponds to the Arm Cortex-M0+ flash space,
for the Arm Cortex-M0+ code and RAM starting at 0x9000000 for the Arm Cortex-M0+ data.

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 24 / 47

Figure 28. New project wizard SDK Arm Cortex-M0+ slave memory

5. Click Finish to complete the creation of the Slave project.

To create the Master project, perform the following operations:

1. Launch the New Project Wizard, select FRDMK32L3A6 SDK, and click Next. Then, select cm4 Core and click the MASTER
check box. This configures the wizard to create a Multicore project.

The project will automatically be given the suffix MASTER. Drivers, utilities, etc. can be selected at this stage for
the Master project if required.

 NOTE

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 25 / 47

Figure 29. SDK wizard Arm Cortex-M4 master project configurations

2. Set the Arm Cortex-M4 Master memory configurations.

The MCUXpresso IDEs managed linker script mechanism will default to link code to the first Flash region in this
view (if one exists) and use the first RAM region for data, heap and stack.

 NOTE

To place the Arm Cortex-M4 project code in a specific section of memory, ensure that the desired memory region is at the
top of the memory configuration list. In this example, we are placing the Arm Cortex-M4 code in the Arm Cortex-M4 flash,
which starts at address 0x0, and the Arm Cortex M4 data in RAM starting at 0x20000000.

If we want to place the project in RAM, from the previous note, ensure the Flash regions are removed and the
desired RAM bank is at the top of the memory configuration list.

 NOTE

3. Click Browse next to the Slave project for M0SLAVE selection box (as shown in Figure 30) to select the Slave project
within the Workspace.

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 26 / 47

Figure 30. MCUXpresso memory selection dialog box

4. Select the previously created Slave project and click OK.

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 27 / 47

Figure 31. New Project Wizard SDK Arm Cortex-M4 Master Slave Selection

5. Make sure that the Link Section name (the default value is RAM2) is a memory region that matches the linked address of
the Slave project. In this case, we select PROGRAM_FLASH_cm0plus as it corresponds to address 0x1000000.

Figure 32. New project wizard SDK Arm Cortex-M4 master memory and slave selection

6. Click Finish to generate the Master project.

5.1.2 Editing existing project settings for Multicore
If you wish to make a multi-core project from two existing projects (one for the Arm Cortex-M4 and the other one for the Arm
Cortex-M0+), perform the following modifications to the project settings. The multi-core hello_world example located in the
FRDMK32L3A6 SDK will be used as a guiding example.

1. Modify the slave project settings.

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 28 / 47

Go to Project Properties -> C/C++ Build -> MCU Settings

In the memory details, edit the list so that the memory region you want the Arm Cortex-M0+ code to be placed in is at the
top of the list. For this example, we chose memory region starting at 0x1000000.

The MCUXpresso IDE’s managed linker script mechanism will default to link code to the first Flash region in this
view (if one exists) and use the first RAM region for data, heap and stack.

 NOTE

Figure 33. Existing Arm Cortex-M0+ slave memory settings

To place the project in RAM, from the previous note, ensure the Flash regions are removed and the desired RAM
bank is at the top of the memory configuration list.

 NOTE

2. Go to Project Properties -> C/C++ Build -> Settings -> Tool Settings -> MCU Linker -> Multicore, select the desired
configuration, and ensure that the project is configured as M0SLAVE.

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 29 / 47

Figure 34. Existing Arm Cortext-M0+ Slave Multicore Settings

The same build configuration must be selected for both the Arm Cortex-M4 and Arm Cortex-M0+ projects.

 NOTE

3. Click OK to save the changes and close the project properties window.

Now it’s time to edit the Master project settings.

1. Go to Project Properties -> C/C++ Build -> MCU Settings.

2. In the memory details, edit the list so that the memory region you want the Arm Cortex-M4 code to be placed in is at the
top of the list. For this example, we chose memory region starting at 0x0. Additionally, ensure that the memory region that
you chose for the Arm Cortex-M0+ code is also in the list.

The MCUXpresso IDE’s managed linker script mechanism will default to link code to the first Flash region in this
view (if one exists) and use the first RAM region for data, heap and stack.

 NOTE

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 30 / 47

Figure 35. Existing Arm Cortex-M4 Master Memory Settings

To place the project in RAM, from the previous note, ensure the Flash regions are removed and the desired RAM
bank is at the top of the memory configuration list.

 NOTE

3. Go to Project Properties -> C/C++ Build -> Settings -> Tool Settings -> MCU Linker -> Multicore and select the desired
configuration. The selected configuration should be the same as that of the Slave project. In this case, we chose the
Debug configuration for both.

4. Select the checkbox for M0SLAVE to indicate that there is a slave project that should be linked to the Arm Cortex-M4
project. Then, select the appropriate master memory region in which the Arm Cortex-M0+ code will be placed. This should
correspond to the memory region chosen in the Arm Cortex-M0+ project properties. In this example, we chose
PROGRAM_FLASH_cm0plus, which corresponds to memory starting at 0x1000000.

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 31 / 47

Figure 36. Existing Arm Cortex-M4 Master Multicore settings

5. Under the Slave application, click on the ellipsis to open a window to select the object file for the slave project.

Figure 37. Ellipsis to click on to select slave project

6. This file should be in the selected configuration folder after building the slave project.

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 32 / 47

Figure 38. Existing Arm Cortex-M4 Master Slave selection

7. Go to Project Properties -> Project References and select the checkbox for the slave project.

NXP Semiconductors
Multicore projects in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 33 / 47

Figure 39. Existing Arm Cortex-M4 Master Slave Project Reference

8. Click OK to save the changes and close the project properties window.

6 Multicore debug in MCUXpresso
The Master core debugger handles flashing of both the primary and the auxiliary core applications into the SoC flash memory;
therefore, the Master project should be run (debugged) first. However, before debugging, you must ensure that the slave project
debug settings are configured correctly for multi-core debugging.

6.1 Configuring slave debug settings
With the slave project selected, go to Project Properties -> Run/Debug Settings. Select the debug configuration and click Edit,
as shown in Figure 40.

NXP Semiconductors
Multicore debug in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 34 / 47

Figure 40. Arm Cortex-M0+ slave edit run/debug settings

If no configurations are available, click new to create a new configuration. Be sure to click Search project and
select the binary from the slave project. You may also need to build the slave project before executing this step.

 NOTE

In the Edit launch configuration properties window, click on the LinkServer Debugger tab and check Attach only, as shown in
Figure 41.

NXP Semiconductors
Multicore debug in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 35 / 47

Figure 41. Arm Cortex-M0+ slave attach only settings

6.2 Primary core debugging
To download and run the multicore application, switch to the Master application project and perform all steps as described in
Section 7.3 Run an example application in MCUXpresso IDE User Guide (found in <K32L SDK root>\docs). These steps are
common for both single core applications and the Master side of dual-core applications, to ensure that both sides of the multicore
application are properly loaded and started.

NXP Semiconductors
Multicore debug in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 36 / 47

Figure 42. Debug K32L3A60xxx_Project_MASTER case

NXP Semiconductors
Multicore debug in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 37 / 47

Figure 43. Attached probes: debug emulator selection

NXP Semiconductors
Multicore debug in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 38 / 47

Figure 44. Stop master core application at main() when running debugging

From here, you can continue to debug the application as if it were a single core device. Or you could continue on to learn how
to debug the secondary core at the same time.

6.3 Secondary core debugging
It is possible to debug both sides of the multicore application in parallel by attaching to the running application of the slave core.
After creating and running the debug session for the master core, perform the same steps for the slave core application. Highlight
the multicore slave project in the Project Explorer and click Debug in the Quickstart Panel, as shown in Figure 45.

NXP Semiconductors
Multicore debug in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 39 / 47

Figure 45. Debug K32L3A60xxx_Project_M0SLAVE case

After initializing the slave debug session, you can see two separate threads that you can control from the single IDE, as shown
in Figure 46. You can synchronize suspension/resumption of both cores using Suspend All Debug sessions and Resume All
Debug sessions controls.

Figure 46. Two opened debug sessions

Now, the two debug sessions are opened, and the debug controls can be used for both debug sessions depending on the debug
session selection. At this point, it is possible to suspend and resume individual cores independently. It is also possible to make
synchronous suspension and resumption of both cores with either following methods:

NXP Semiconductors
Multicore debug in MCUXpresso

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 40 / 47

• select both opened debug sessions (multiple selection) and click Suspend/Resume (highlighted in Figure 47).

Figure 47. MCUXpress IDE single thread controls

• use the Suspend All Debug sessions and Resume All Debug sessions buttons (highlighted in Figure 48).

Figure 48. MCUXpresso IDE multicore synchronous controls

7 Multicore code
The project settings for the primary core and secondary core are only part of the dual-core project aspect. The source code for
each project must be written to take into account the operations of the other core. In general, the primary core is expected to
configure the common clocks, peripherals, and memory. In doing this, the secondary core will have to do minimal work once it
is released from reset, but there is absolutely nothing preventing the secondary core from setting up its own areas.

As there is no mechanism for the secondary core to release on its own, the primary core must release the secondary core from
reset with any of the following methods:

1. using the MCMGR (Multicore Manager) high-level drivers

2. using the MU (Messaging Unit) unit low-level drivers

3. using raw register accesses

The MCMGR high-level drivers provide flexibility and control for complex applications and can also register and trigger events
between the cores. The MU unit low-level drivers simply give you access to the registers in a portable manner and would likely
only be used if you have a simple program that needs to perform a limited number of actions. When using this option, it’s important
that the user understands what the target application is doing and how the interaction of the cores is happening. Raw register
accesses should only be used for simple programs or when the user needs a custom function, driver, or has an advanced level
of understanding of the MU and inter-core interaction. This application note only focuses on the use of the MCMGR high-level
drivers as this is recommended. The MCMGR code is part of the MCUXpresso SDK package (see the middleware/multicore/
mcmgr folder).

The project (both master and slave) needs the following files:

• mcmgr.c

• mcmgr.h

• mcmgr_internal_core_api.h

• mcmgr_internal_core_api_k32l3a6.c

• mcmgr_mu_internal.c

The files are already added to the hello_world multicore project, but you may need to add them manually
to your own project(s).

 NOTE

NXP Semiconductors
Multicore code

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 41 / 47

Figure 49. MCMGR files included in multicore projects

In addition, the path to the header files must be made known to the compiler. The path shown in Figure 50 should be included
in your preprocessor search path.

The path is already added to the hello_world multicore project, but you may need to add it manually for project(s)
you are converting.

 NOTE

NXP Semiconductors
Multicore code

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 42 / 47

Figure 50. File path to be added to Preprocessor search path for Multicore Manager files

In addition, the MU drivers will also be needed. They are fsl_mu.c and fsl_mu.h.

NXP Semiconductors
Multicore code

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 43 / 47

Figure 51. MU drivers added to the hello_world multicore project

The preprocessor search path should include the file path to these driver files.

 NOTE

NXP Semiconductors
Multicore code

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 44 / 47

Figure 52. MU driver file path

To use the MCMGR high-level drivers, there are two initialization functions that need to be called. These calls apply to both master
and slave project(s), as shown in Figure 53.

Figure 53. MCMGR initialization function calls

The MCMGR_EarlyInit function must be called as close to the reset entry as possible. This function enables the clock gate to the
MU unit and triggers the core up event that is propagated to the counterpart core. The MCMGR_Init function must be called from
main and enables all of the other MCMGR API to be used.

NXP Semiconductors
Multicore code

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 45 / 47

Once these functions have been called, the master software should then call the MCMGR_StartCore function to start the secondary
core. This function call is as shown in Figure 54.

Figure 54. MCMGR function to start the secondary core

The MCMGR_StartCore function requires the following arguments:

• mcmgr_core_t coreNum: This should be either kMCMGR_Core1 or MCMGR_Core0. Core0 is the Arm Cortex-M4 core and
Core1 is the Arm Cortex-M0+ core.

• void *bootAddress: This is a pointer to the beginning of the secondary core’s application. The only valid options are the
start of the secondary core’s flash memory space or the RAM memory space.

• uint32_t startupdata: This is some user/application data (variable, or array, or function) to be passed from the primary
core to the secondary core during the startup. For instance, it can be leveraged in case of rpmsg inter-core communication
for passing the shared memory base address from the master side to the remote side.

• mcmgr_start_mode_t mode: This is the mode with which you want the cores to start. Valid options are
kMCMGR_Start_Synchronous or kMCMGR_Start_Asynchronous. If kMCMGR_Start_Synchronous is used, the primary core
will start the secondary core and then wait for an event from the secondary core before continuing operation. Otherwise,
the primary core will start the secondary core and immediately continue operation.

The slave core may either just start and do nothing, or retrieve any startup data that it was passed. Figure 55 shows an example.

Figure 55. Slave core implementation retrieving startup data

How the slave core processes this data depends on the specifics of your application.

8 Conclusion
This application note has shown, through a simple example, how multicore projects are created, compiled, and debugged. The
SDK package for the K32L series devices contains many multicore examples to aid in your project development. These examples
include Embedded Remote Procedure Call examples, Remote Processor Messaging examples, demonstrations of the SDK’s
Multicore Manager drivers, and Resource Domain Manager examples. More information on all of these resources can be found
at <KSDK_ROOT>/multicore in the respective resources folder.

NXP Semiconductors
Conclusion

Dual-core Project Creation and Conversion for K32L3A6 Devices, Rev. 0, 01/2020
Application Note 46 / 47

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 01/2020
Document identifier: AN12673

	Contents
	1 Introduction
	2 Overview
	3 Multi-core projects in IAR
	3.1 Multi-core project creation
	3.1.1 Primary core project
	3.1.2 Secondary core project

	4 Multicore debug in IAR
	4.1 Compiling a Multi-core project in IAR
	4.2 Primary core project debug settings
	4.3 Secondary project debug settings
	4.4 Debugging

	5 Multicore projects in MCUXpresso
	5.1 Multi-core project creation
	5.1.1 Creating a master/slave project pair (using an SDK)
	5.1.2 Editing existing project settings for Multicore

	6 Multicore debug in MCUXpresso
	6.1 Configuring slave debug settings
	6.2 Primary core debugging
	6.3 Secondary core debugging

	7 Multicore code
	8 Conclusion

