

1 About this document

This document provides recommendations for new designs based on the Layerscape Access LA9310 family of products. This device family uses an integrated programmable baseband processor primarily used to implement the low-PHY protocols of a 5G stack. It is typically used in a 2x2 ORAN Radio Unit, as a low-cost 5G repeater or as a controller of a high-performance repeater; as a network listening module; or for general-purpose DSP functionality. It receives analog I/Q signals from a radio frequency device; samples them with its analog to digital converter; performs digital signal processing with its vector signal processing engine; and then sends results over PCI Express to a host processor; while simultaneously performing the opposite path in the transmit direction using its digital to analog converter. The chain is supervised by an ARM Cortex-M4 processor.

The LA9310 device is built for ultra-low power consumption and its small 21 x 21 mm package can easily fit on an M.2 card. LA9310 features an ARM M4 core operating up to 307.2MHz, an innovative programmable signal processing accelerator operating up to 614 MHz, and integrated high-speed analog/digital data converters capable of sampling at up to 153.6 million samples per second. LA9310 includes on-chip RAM for packet buffering and operates without any external DRAM. The device can boot from the host processor via a x1 PCIe Gen3.

The Layerscape Access products are supported by proven NXP Codewarrior development applications and tools for customer developed solutions. NXP also fosters a variety of third party ecosystem partner for product ready software stacks and integration services.

This document can also be used to debug newly designed systems by highlighting those aspects of a design that merit special attention during initial system startup.

2 Before you begin

Ensure you are familiar with the following NXP collateral before proceeding:

- *LA9310 Data Sheet* (LA9310)
- *LA9310 Reference Manual* (LA9310RM) (LA9310RM)
- *LA9310 Chip Errata* (LA9310CE)

3 Simplifying the first phase of design

Before designing a system with the chip, it is recommended that the designer be familiar with the available documentation, software, models, and tools.

The following figure shows the major functional units of the LA9310 chip.

Contents

1	About this document	1
2	Before you begin	1
3	Simplifying the first phase of design	1
4	Power design recommendations	3
5	Power-on reset recommendations	12
6	Connection recommendations	14
7	Interface recommendations	14
8	Revision history	24
	Legal information	26

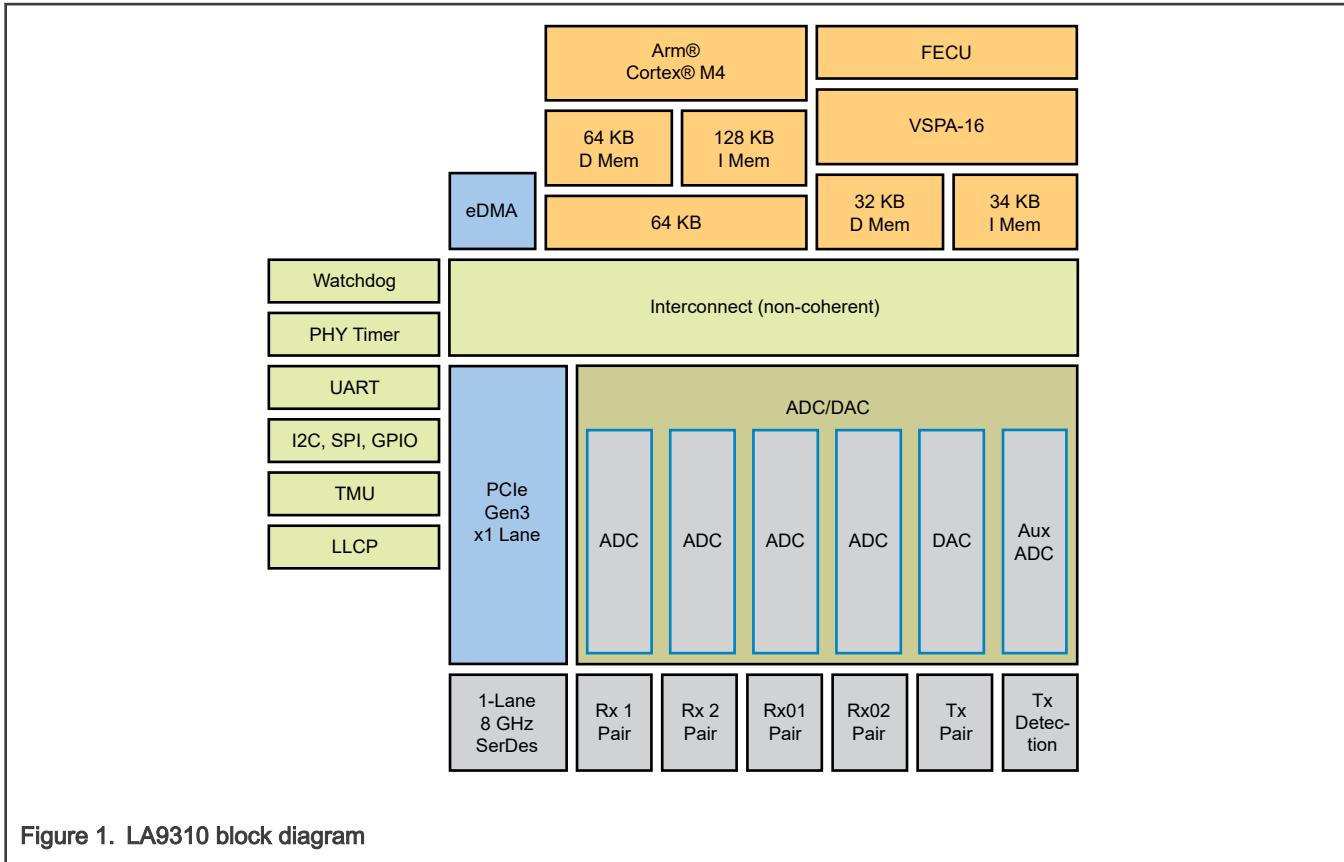


Figure 1. LA9310 block diagram

3.1 Recommended resources

This table lists helpful tools, training resources, and documentation, some of which may be available only under a non-disclosure agreement (NDA). Contact your local field applications engineer or sales representative to obtain a copy.

Table 1. Helpful tools and references

ID	Name	Location
Related collateral		
LA9310CE	<p><i>LA9310 Chip Errata</i></p> <p>NOTE</p> <p>This document describes the latest fixes and workarounds for the chip. It is strongly recommended that this document be thoroughly researched prior to starting a design with the chip.</p>	Contact your NXP representative
LA9310	<i>LA9310 Data Sheet</i>	Contact your NXP representative
LA9310RM	<i>LA9310 Reference Manual</i>	Contact your NXP representative
AN4311	<i>SerDes Reference Clock Interfacing and HSSI Measurements Recommendations</i>	www.nxp.com

Table continues on the next page...

Table 1. Helpful tools and references (continued)

ID	Name	Location
Models		
IBIS	To ensure first path success, NXP strongly recommends using the IBIS models for board level simulations, especially for SerDes characteristics.	Contact your NXP representative
BSDL	Use the BSDL files in board verification.	
Flotherm	Use the Flotherm model for thermal simulation. Especially without forced cooling or constant airflow, a thermal simulation should not be skipped.	
Available training		
—	Our third-party partners are part of an extensive alliance network. More information can be found at www.nxp.com/alliances	www.nxp.com/alliances

3.2 Product revisions

The following table provides a cross-reference to match the revision code in the processor version register to the revision level marked on the device.

Table 2. Revision level to part marking cross-reference

Part	Device Revision	Arm® Cortex®-M4 MPCore Processor Revision	Arm Core Main ID Register	System Version Register Value	Note
LA9310S7 S11AA	A0	r0p1	0x410FC241	0x81410010	Standard temp
LA9310X7 S11AA	A0	r0p1	0x410FC241	0x81410010	Extended temp

4 Power design recommendations

4.1 Power pin recommendations

The following table provides design recommendations related to termination of power and ground pins.

Table 3. Power and ground pin termination checklist

Signal name	Signal type	Used		Not used	Completed
V _{DD}	I	Core and platform supply voltage	0.9 V (± 30 mV)	Must remain powered	
GND	I	Ground			
SD_SV _{DD}	I	Main power supply for internal circuitry of SerDes and	0.9 V (± 90 mV)	Must remain powered	

Table continues on the next page...

Table 3. Power and ground pin termination checklist (continued)

Signal name	Signal type	Used		Not used	Completed
		pad power supply for SerDes receivers			
SD_X _{DD}	I	Pad power supply for SerDes transmitter	1.35 V (± 67 mV)	Must remain powered	
SD_GND	I	SerDes GND			
OV _{DD}	I	Power supply for RFCTL, PPS, LLCP, DSPI, I2C, DFT, JTAG and General Purpose peripherals	1.8 V (± 90 mV)	Must remain powered	
TH_V _{DD}	I	Thermal Monitor Unit supply	1.8 V (± 90 mV)	Must remain powered	
AV _{DD_PLAT}	I	PLL supply voltage (core PLL and platform)	1.8 V filtered (± 90 mV) Independent supplies derived from board 1.8 V	Must remain powered	
AV _{DD_SD_PLL}	I	PLL supply voltage (SerDes, filtered from XVDD)	1.35 V (± 67 mV)	Must remain powered	
AFE_OTV _{DD}	I	IQ_DAC High Voltage Supply	1.8 V filtered (± 90 mV)	Must remain powered	
AFE_OMV _{DD}	I	Aux ADC High Voltage Supply	1.8 V filtered (± 90 mV)	Must remain powered	
AFE_SV _{DD}	I	ADC Analog Supply	0.9 V filtered (± 30 mV)	Must remain powered	
AFE_CV _{DD}	I	AFE Clock Supply	0.9 V filtered (± 30 mV)	Must remain powered	

4.2 Maximum supply pin current consumption

The following table describes the maximum current for various supply pins of the SoC at 105 °C.

Table 4. Maximum current consumption

Supply pin	Voltage (V)	Maximum current at 105 °C junction temperature	Unit
VDD	0.9	1190	mA
SD_SVDD	0.9	137	mA
OVDD	1.8	30	mA
AVDD_PLAT	1.8	7	mA
SD_XVDD	1.35	70	mA
AVDD_SD_PLL	1.35	23	mA
AFE_OTVDD	1.8	21	mA
AFE_OMVDD	1.8	2	mA
AFE_SVDD	0.9	54	mA
AFE_CVDD	0.9	54	mA
TH_VDD	1.8	12	mA

Notes:

1. Maximum current is provided for power supply design sizing.

4.3 Power system-level recommendations

The following table provides system-level power design recommendations.

Table 5. Power design system-level checklist

Item	Completed
General	
Ensure to meet all of the requirements in the data sheet, including power sequencing, power down requirements, THERMAL and MAXIMUM power dissipation, I/O power dissipation, and power on ramp rate.	
General power supply decoupling	
Because of the large address and data buses and high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the chip system, and the chip itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each VDD and OVDD, pins of the device. These decoupling capacitors should receive their power from separate VDD, OVDD and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part. These capacitors should have a value of $2.2 \mu\text{F} \geq 10 \text{ V}$. Only ceramic surface mount technology (SMT) capacitors should be used to minimize lead inductance, preferably 0201 sizes.	

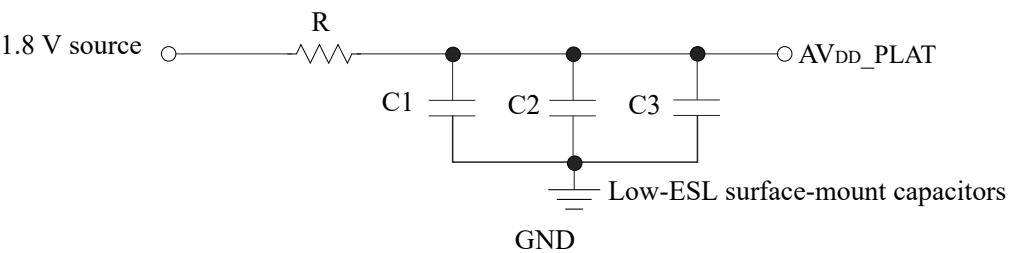

Table continues on the next page...

Table 5. Power design system-level checklist (continued)

Item	Completed
As presented in Core and platform supply voltage filtering, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the VDD, VDDC and other planes (for example, VDD and OVDD) to enable quick recharging of the smaller chip capacitors.	
SerDes block power supply decoupling	
The SerDes block requires a clean, tightly regulated source of power (SD_SVDD and SD_XVDD) to ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below: <ol style="list-style-type: none"> 1. The board should have at least 1 x 2.2 μF 0201 SMT ceramic chip capacitor placed as close as possible to each supply ball of the device. Where the board has blind vias, these capacitors should be placed directly below the chip supply and ground connections. Where the board does not have blind vias, these capacitors should be placed in a ring around the device as close to the supply and ground connections as possible. 2. Between the device and any SerDes voltage regulator, there should be a lower bulk capacitor. For example, a 10 μF, low ESR SMT tantalum or ceramic capacitor. There should also be a higher bulk capacitor. For example, a 100 μF - 300 μF low ESR SMT tantalum or ceramic capacitor. 	
<p style="text-align: center;">NOTE</p> <p>Only SMT capacitors should be used to minimize inductance. Connections from all capacitors to power and ground should be done with multiple vias to further reduce inductance.</p>	
Core and platform supply voltage filtering	
The V_{DD} supply is normally derived from a linear regulator or switching power supply that can regulate its output voltage very accurately despite changes in current demand from the chip within the regulator's relatively low bandwidth. Several bulk decoupling capacitors must be distributed around the PCB to supply transient current demand above the bandwidth of the voltage regulator. <p>These bulk capacitors should have a low equivalent series resistance (ESR) rating to ensure a quick response time. They should also be connected to the power and ground planes through two vias to minimize inductance. Customers should work directly with their power regulator vendor for best values and types of bulk capacitors.</p> <p>As a guideline for customers and their power regulator vendors, NXP recommends that these bulk capacitors be chosen to maintain the positive transient power surges to less than + 30 mV (negative transient undershoot should comply with specification of -30 mV) for current steps of up to 2A with a slew rate of 1.5 A/μs.</p> <p>These bulk decoupling capacitors will ideally supply a stable voltage for current transients into the megahertz range. Above that, see Decoupling recommendations for further decoupling recommendations.</p>	
It is recommended that medium (ceramic) and large bulk (POS, aluminum) capacitors for V_{DD} should be placed in the corner sections of the chip. This will avoid blocking signal routing.	
For small decoupling capacitors, it is recommended to have the following mix of capacitors distributed across the entire BGA array: <ul style="list-style-type: none"> • V_{DD}. A quantity of even mix of 4.7 μF, 0.1 μF and 1.0 μF . See the "Core and platform supply voltage filtering" <p>Note: All capacitors should be rated 6.3 V or higher and 0201 size</p>	
PLL supply voltage (platform filtered from OV_{DD}) power supply filtering	

Table continues on the next page...

Table 5. Power design system-level checklist (continued)

Item	Completed
<p>All PLLs are provided with power through independent power supply pins AV_{DD}_PLAT voltage must be derived directly from a 1.8 V voltage source, through a low-frequency filter.</p> <p>For the AV_{DD}_PLAT filter, provide a circuit as illustrated in the following figure.</p> <p>Where:</p> <ul style="list-style-type: none"> • R = 5 Ω ± 5% • C1 = 10 µF ± 10%, 0402, X5R, with ESL ≤ 0.5 nH • C2 = 1.0 µF ± 10%, 0402, X5R, with ESL ≤ 0.5 nH • C3 = 0.22 µF ± 10%, 0201, X5R, with ESL ≤ 0.5 nH 	
Figure 2. Platform PLL AV_{DD} power supply filter circuit	
<p>Note the following:</p> <ul style="list-style-type: none"> • Each AV_{DD} must have its own independent filter circuit. • If done properly, it is possible to route directly from the capacitors to the AV_{DD} pins, without the added inductance of vias. <ul style="list-style-type: none"> 1. Place the filter on the bottom side as close to the C5 pin as possible. 2. Use an area fill and not a single trace to connect the filter to the pin. For this filter, keep at least 3 routing lanes wide as far as possible. It will have to neck down near the pin where we may need to go to two or one routing lanes. • It is recommended that an area fill or power plane split be provided for a low-impedance profile, which keeps nearby crosstalk noise from inducing unwanted noise. • Place each circuit as close as possible to the specific AV_{DD} pin to minimize noise coupled from nearby circuits. • Caution: These filters are mandatory extension of the PLL circuitry and are compliant with the device specifications. Any deviation from the recommended filters is done at the user's risk. 	
PLL supply voltage (SerDes, filtered)	
<p>If SerDes is enabled, ensure the PLL filter circuit is applied to the AV_{DD}_SD_PLL pin. Otherwise, a filter is not required. Even if an entire SerDes module is not used, the power is still needed to the AVDD pins. However, instead of using a filter, it needs to be connected to the SD_XVDD rail through a 0 Ω resistor. See the "PLL power supply filtering" section of this table.</p>	

Table continues on the next page...

Table 5. Power design system-level checklist (continued)

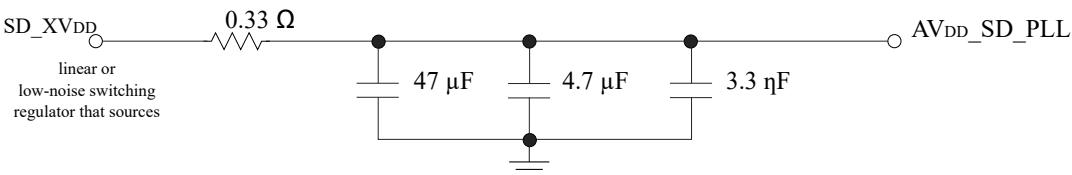

Item	Completed
<p>Ensure the PLL filter circuits are placed as close to AV_{DD_SD_PLL} as possible. If specified, a small cap for the filter should be placed directly at the pin. If no small cap for the filter is specified, consider at least a standard decoupling cap, such as 0.1 μF.</p>	
<p>The AV_{DD_SD_PLL} signal provides power for the analog portions of the SerDes PLL. To ensure stability of the internal clock, ensure the power supplied to the PLL is filtered using a circuit similar to the one shown in the following figure. The recommended solution for PLL filtering is to provide independent filter circuits per PLL power supply, one for each side of the AV_{DD} pins. By providing independent filters to each PLL, the opportunity to cause noise injection from one PLL to the other is reduced.</p> <p>Note the following:</p> <ul style="list-style-type: none"> • Each AV_{DD} must have its own independent filter circuit. • The 3.3 ηF must be located at the AV_{DD} pin. • It is recommended that an area fill or power plane split be provided for a low-impedance profile, which helps keep nearby crosstalk noise from inducing unwanted noise. • A 4.7 μF and a 47 μF 0805 XR5 or 0603 XR7 or smaller, and 3.3 ηF 0402 or 3.3 ηF 0201 capacitor are recommended. The size and material type are important. A $0.33\ \Omega \pm 1\%$ resistor is recommended. • Caution: These filters are a necessary extension of the PLL circuitry and are compliant with the device specifications. Any deviation from the recommended filters is done at the user's risk. 	
<p>Figure 3. SerDes PLL AV_{DD_SD_PLL} power supply filter circuit</p>	
<p>SerDes SD_SV_{DD} and SD_XV_{DD} power supply filtering</p> <p>For the linear or low-noise switching regulator, 10 mVp-p, 50 kHz to 500 MHz is the noise goal. All traces should be kept short, wide, and direct. Use small area fill, if possible. The goal is to lower the impedance of this net, therefore, lowering the noise.</p> <p>SD__SV_{DD}/SD__XV_{DD} may be supplied by a linear or low noise/ripple switching regulator.</p> <p>Example solution for SD__SV_{DD} and SD__XV_{DD} filtering, sourced from a linear or low noise switching regulator, are illustrated below.</p>	

Table continues on the next page...

Table 5. Power design system-level checklist (continued)

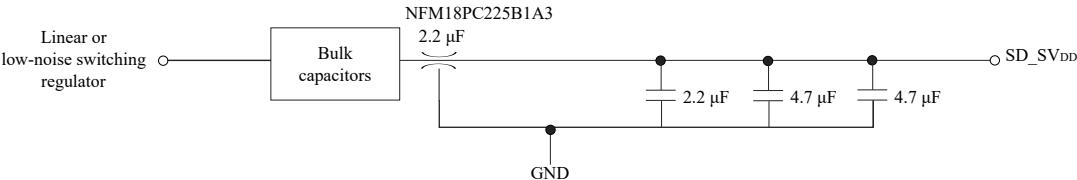
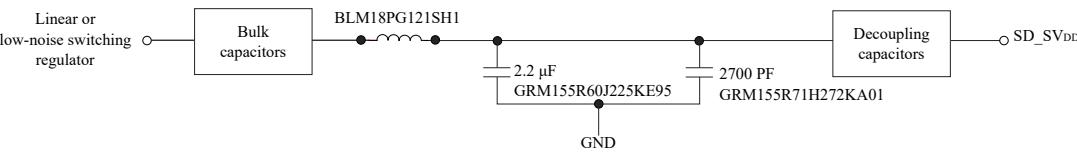
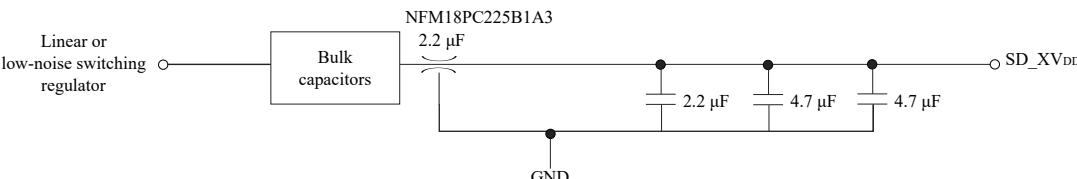
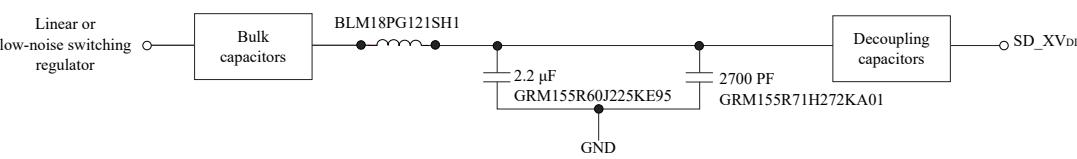
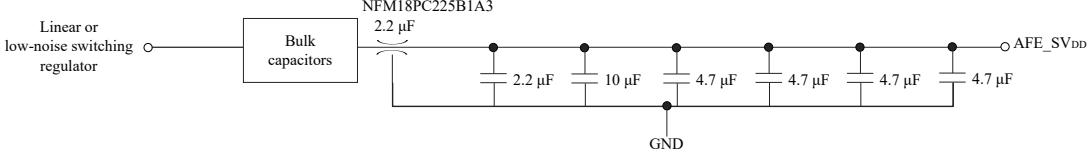
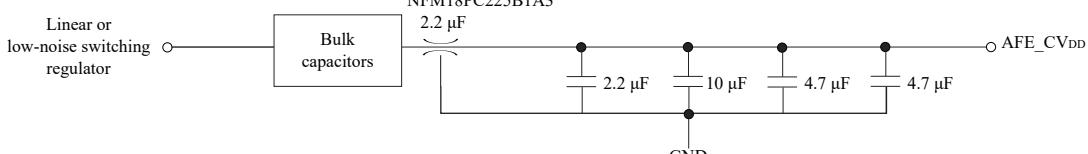
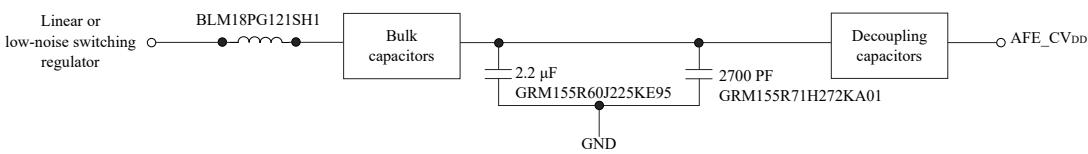
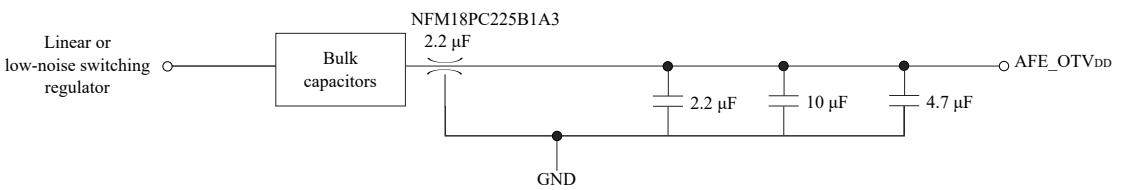
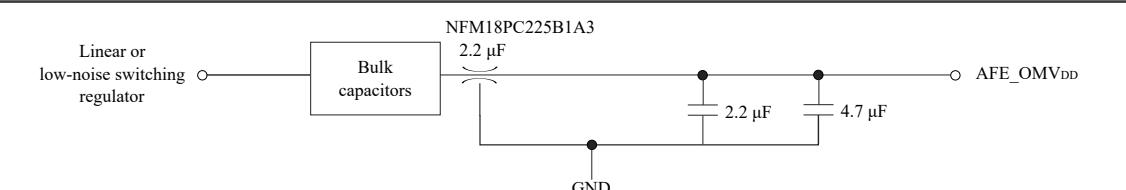




Item	Completed
Figure 4. SD_SVDD power supply filter circuit	
Figure 5. Alternate SD_SVDD power supply filter circuit	
Figure 6. SD_XVDD power supply filter circuit	
Figure 7. Alternate SD_XVDD power supply filter circuit	
<p>Note the following:</p> <ul style="list-style-type: none"> See Section 3.5, "Power-on ramp rate," in the data sheet for maximum SD_SVDD and SD_XDD power-up ramp rate. It is recommended that an area fill or power plane split be provided for a low-impedance profile, which helps keep nearby crosstalk noise from inducing unwanted noise. Each supply must have their own independent filter circuit. The SD_SVDD must not be filtered off the VDD power supply as that may have substantial noise from the cores. Place each circuit as close as possible to the specific set of pins being supplied to minimize noise coupled from nearby circuits. Located at each pin should have a decoupling capacitor, as mentioned in the "General power supply decoupling" section. 	

Table continues on the next page...

Table 5. Power design system-level checklist (continued)






Item	Completed
AFE_SV_{DD} power supply filtering	
AFE_SV _{DD} may be supplied by a linear or low noise switching regulator. The following two figures, illustrate the example solutions for the AFE_SV _{DD} filtering, where AFE_SV _{DD} is sourced from a linear or low noise switching regulator. Any of the following solution can be used as per the requirements.	
Figure 8. AFE_SV_{DD} power supply filter circuit	
<p>Note the following:</p> <ul style="list-style-type: none"> For maximum AFE_SV_{DD} power-up ramp rate, See LA9310 data sheet. Besides a linear regulator, a low-noise, dedicated switching regulator can also be used. The noise goal is 10 mVp-p, 50 kHz - 500 MHz. Caution: These filters are a necessary extension of the PLL circuitry and are compliant with the device specifications. Any deviation from the recommended filters is done at the user's risk. 	
AFE_CV_{DD} power supply filtering	
AFE_CV _{DD} may be supplied by a linear or low noise switching regulator. The following two figures, illustrate the example solutions for the AFE_CV _{DD} filtering, where AFE_CV _{DD} is sourced from a linear or low noise switching regulator. Any of the following solution can be used as per the requirements.	
Figure 9. Primary AFE_CV_{DD} power supply filter circuit	
Figure 10. Alternate AFE_CV_{DD} power supply filter circuit	

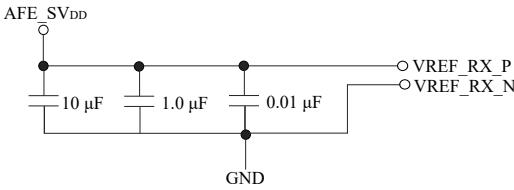

Table continues on the next page...

Table 5. Power design system-level checklist (continued)

Item	Completed
Note the following:	
<ul style="list-style-type: none"> For maximum AFE_CV_{DD} power-up ramp rate, see LA9310 Data sheet. Besides a linear regulator, a low-noise, dedicated switching regulator can also be used. The noise goal is 10 mVp-p, 50 kHz - 500 MHz. Caution: These filters are a necessary extension of the PLL circuitry and are compliant with the device specifications. Any deviation from the recommended filters is done at the user's risk 	
AFE_OTV_{DD} power supply filtering	
Figure 11. AFE_OTV_{DD} power supply filter circuit	
Note the following:	
<ul style="list-style-type: none"> For maximum AFE_OTV_{DD} power-up ramp rate, see LA9310 Data sheet. Besides a linear regulator, a low-noise, dedicated switching regulator can also be used. The noise goal is 10 mVp-p, 50 kHz - 500 MHz. 	
AFE_OMV_{DD} power supply filtering	
Figure 12. AFE_OMV_{DD} power supply filter circuit	
Note the following:	
<ul style="list-style-type: none"> For maximum AFE_OMV_{DD} power-up ramp rate, see LA9310 Data sheet. Besides a linear regulator, a low-noise, dedicated switching regulator can also be used. The noise goal is 10 mVp-p, 50 kHz - 500 MHz. 	
VREF_RX_P/VREF_RX_N signal filtering recommendation	
The VREF_RX_P/VREF_RX_N signals may be supplied by a linear or low noise switching regulator.	
This figure illustrates the example solutions for the VREF_RX_P / VREF_RX_N signal filtering.	

Table continues on the next page...

Table 5. Power design system-level checklist (continued)

Item	Completed
<p>Figure 13. Primary VREF_RX_P/VREF_RX_N signal filter circuit</p> <p>Caution: These filters are a necessary extension of the PLL circuitry and are compliant with the device specifications. Any deviation from the recommended filters is done at the user's risk</p>	

5 Power-on reset recommendations

Various chip functions are initialized by sampling certain signals during the assertion of HRESET_B. These power-on reset (POR) inputs are pulled either high or low during this period. While these pins are generally output pins during normal operation, they are treated as inputs while HRESET_B is asserted. When HRESET_B de-asserts, the configuration pins are sampled and latched into registers, and the pins restore their normal output circuit characteristics.

The following table describes the power-on reset system-level recommendations.

Table 6. Power-on reset system-level checklist

Item	Completed
Ensure HRESET_B is asserted for a minimum of 32 SYSCLK cycles if used.	
Ensure PCI_CLK_P/N is running and stable before HRESET_B is de-asserted. Power-on configuration inputs must be set up 4 cycles before the negation of PORESET_B.	
Ensure PCI_CLK_P/N is running and stable before HRESET_B is de-asserted. Power-on configuration inputs must be held 2 cycles after the negation of HRESET_B.	
<p>NOTE</p> <p>TRST_B should typically be driven asserted concurrently with HRESET_B, though it is recommended that customers control TRST_B separately from HRESET_B if boundary scan testing/operation is required. HRESET_B can be asserted without TRST_B in order to leave TAP configuration setting for a debug session after HRESET_B.</p>	
In cases where a configuration pin has no default, use a 2.2 kΩ pull-up or pull-down resistor for appropriate configuration of the pin.	
<p>Optional: An alternative to using pull-up and pull-down resistors to configure the POR pins is to use a PLD or similar device that drives the configuration signals to the chip when HRESET_B is asserted. The PLD must begin to drive these signals at least four SYSCLK cycles prior to the de-assertion of HRESET_B, hold their values for at least two SYSCLK cycles after the de-assertion of HRESET_B, and then release the pins to high impedance afterward for normal device operation.</p>	

Table continues on the next page...

Table 6. Power-on reset system-level checklist (continued)

Item	Completed
<p>NOTE See the applicable chip data sheet for details about reset initialization timing specifications.</p>	
<p>Configuration settings Ensure the Power-on reset configuration settings described in the chip reference manual are selected properly.</p> <p>NOTE See the applicable chip reference manual for a more detailed description of each configuration option.</p>	

5.1 Power-on reset configuration pin termination recommendations

Reset configuration signals are sampled at the negation of HRESET_B. However, there is a setup and hold time for these signals relative to the rising edge of HRESET_B, as described in the chip's data sheet.

The following table provides design recommendations related to termination of power-on reset configuration pins. Refer to the timing diagram of the POR sequence in LA9310RM.

Table 7. Power-on reset configuration pin termination checklist

Configuration Pin Name	Functional Pin Name	Description	Used	Note	Completed
CFG_BOOT_SRC[1:0]	TXRX[1:0]	<ul style="list-style-type: none"> 0b00: Reserved 0b01: Reserved 0b10: I2C EEPROM 0b11: PCIe host memory 	These configuration pins define the boot source.		
CFG_BOOT_HO	GPIO_09	<ul style="list-style-type: none"> 0b0: Reserved 0b1: Boot of Arm M4 core proceeds immediately upon reset state machine reaching SYSREADY 	– normal boot with M4 executing BootROM and performing handshake		
CFG_RST_HNDSHK	PA_EN	HW/SW Handshake <ul style="list-style-type: none"> 0b0: Reserved 0b1: The Reset FSM pauses to allow software to perform necessary configuration. 	– normal boot with M4 executing BootROM and performing handshake		
CFG_TEST_PORT_DIS	LNA1_EN	Reserved for internal use only.	2		

Table continues on the next page...

Table 7. Power-on reset configuration pin termination checklist (continued)

Configuration Pin Name	Functional Pin Name	Description	Used	Note	Completed
CFG_WRM_RSTB	PPS_OUT	<p>Warm Reset (active low) (consumed by BootROM only)</p> <ul style="list-style-type: none"> • 0b0: Reset has been asserted after a functional mode has been reached previously (and specifically after memories have been initialized). Power was not removed prior to the reset assertion. Memory initialization steps may be skipped. • 0b1: Cold reset. Memories must be initialized. 			
CFG_SYSRDY_EVT	SPI_MOSI	<p>SYSREADY Event (active low) (consumed by BootROM only)</p> <ul style="list-style-type: none"> • 0b0: Boot Sequence determines SYSREADY state via EPU event which wakes M4 from WFE • 0b1: Boot Sequence determines SYSREADY state by polling Reset FSM state 			
CFG_PCIE_GEN	LNA2_EN	<ul style="list-style-type: none"> • 0b0: PCIe interface will allow negotiation upto PCIe Gen2 (5 Gbit/s) frequencies. • 0b1: PCIe interface will allow negotiation upto PCIe Gen3 (8 Gbit/s) frequencies. 	Maximum training rate of PCIe Controller 1	1	
Notes:					
<ol style="list-style-type: none"> 1. A 2.2 kΩ pull-down resistor is recommended to overpower the internal pull-up if it is needed. 2. This pin should be pulled up during reset. 					

6 Connection recommendations

The following are the connection recommendations:

- To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unless otherwise noted in this document, all unused active low inputs should be tied to VDD as required. All unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected. Power and ground connections must be made to all external VDD and GND pins of the device.
- Critical analog signal - IREF_TX
 - The pin IREF_TX is a very sensitive reference node that affects directly the DAC's dynamic performance if coupled to active signals such as TX_I_P/N, TX_Q_P/N or digital lines. It is recommended to place a 2.67K 0201 size PD 1% resistor (E96 series resistor) directly between the pad IREF_TX and the adjacent AFE_GND pad.

7 Interface recommendations

This section describes design recommendations for different interfaces of the chip.

7.1 Clocking pin signaling recommendations

The DCS_CLK_P/DCS_CLK_N input pair requires an input clock frequency of 122.88 MHz or 153.6 MHz. HCSL signaling is recommended for differential SYSCLK input.

Table 8. Clocking pin termination checklist

Signal Name	I/O type	Used	Not Used	Completed
DCS_CLK_P	I	DCS PLL and PLATFORM PLL Reference Clock + (122.88 MHz or 153.6 MHz).	Must always be connected.	
DCS_CLK_N	I	DCS PLL and PLATFORM PLL Reference Clock + (122.88 MHz or 153.6 MHz).	Must always be connected.	

7.2 System control pin signaling recommendations

The following table provides recommendations on termination of system control pins of the SoC.

Table 9. System control pin signaling checklist

Signal Name	IO type	Used	Not Used	Completed
HRESET_B	I	This pin is required to be asserted as per the applicable chip data sheet, in relation to minimum assertion time and during power up/power down. It is an input-only pin and must be asserted to sample power-on configuration pins.		

7.3 UART interface recommendations

One UART module is included in LA9310 that support one 16550-compatible two-pin UART instance.

Table 10. UART pin termination

Signal Name	I/O type	Used	Not Used	Completed
UART1_SIN /SPI_CS1_B	I	UART1	Pull low through a 2 kΩ -10 kΩ resistor to GND.	
UART1_SOUT/ SPI_CS2_B	O		Can be left unconnected.	

7.4 I2C pin termination recommendations

The following table provides recommendations on termination of I2C pins of the SoC.

Table 11. I2C pin termination checklist

Signal Name	IO type	Used	Not Used	Completed
IIC1_SCL	IO	This pin is an open-drain signal. It is recommended that a weak pull-up resistor be placed on this pin to the respective power supply. For Pull-up resistor sizing, see Equation1 and Equation2 in I2C specification (UM10204), Rev 6.	Pull high through a 2 kΩ -10 kΩ resistor to OV _{DD} .	

Table continues on the next page...

Table 11. I2C pin termination checklist (continued)

Signal Name	IO type	Used	Not Used	Completed
IIC1_SDA	IO	<p>This pin is an open-drain signal. It is recommended that a weak pull-up resistor be placed on this pin to the respective power supply.</p> <p>For Pull-up resistor sizing, see Equation1 and Equation2 in I2C specification (UM10204), Rev 6.</p>	Pull high through a 2 kΩ -10 kΩ resistor to OV_{DD} .	

7.5 DCS interface pin termination recommendations

The following table describes the design recommendations for termination of DCS interface pins of the SoC.

Table 12. DCS interface pin termination checklist

Signal Name	I/O type	Used	Not Used	Completed
RO0_I_P	I	Analog Observation (I+/-) Vin 0, Used as needed	Should be terminated to GND	
RO0_Q_N				
RO0_Q_P	I	Analog Observation (Q+/-) Vin 0, Used as needed	Should be terminated to GND	
RO0_Q_N				
RO1_I_P	I	Analog Observation (I+/-) Vin 1, Used as needed	Should be terminated to GND	
RO1_I_N				
RO1_Q_P	I	Analog Observation (I+/-) Vin 1, Used as needed	Should be terminated to GND	
RO1_Q_N				
RX0_I_P	I	Analog Receive (I+/-) Vin 0, Used as needed	Should be terminated to GND	
RX0_I_N				
RX0_Q_P	I	Analog Receive (Q+/-) Vin 0, Used as needed	Should be terminated to GND	
RX0_Q_N				
RX1_I_P	I	Analog Receive (I+/-) Vin 1, Analog Receive (I+) Vin 1	Should be terminated to GND	
RX1_I_N				
RX1_Q_P	I	Analog Receive (Q+/-) Vin 1, Analog Receive (Q+) Vin 1	Should be terminated to GND	
RX1_Q_N				
VREF_RX_P	I	Analog Rx Voltage Ref +/-	Should be terminated to GND	
VREF_RX_N				
TX_DET	I	Analog Auxiliary input (Tx Power Detect)	Should be terminated to GND	
IREF_TX	I	Connect to 2.67 KΩ to GND		

Table continues on the next page...

Table 12. DCS interface pin termination checklist (continued)

Signal Name	I/O type	Used	Not Used	Completed
TX_I_P	O	Analog Transmit (I+/-) Iout, Used as needed	Can be left unconnected.	
TX_I_N				
TX_Q_P	O	Analog Transmit (Q+/-) Iout, Used as needed	Can be left unconnected.	
TX_Q_N				

7.5.1 ADC input and DAC output Signals

The data converter analog input and output signals should be routed as differential lines on the PCB and package substrate.

Attention should be paid to good symmetry and length matching. Sharp turns should be avoided but if that is not possible the turns should be rounded or beveled. To avoid coupling with other high speed signals or clocks proper separation or grounded shields should be used. Solid ground plane should be maintained underneath the traces. If filtering is included on the PCB between the data converter and the RX or TX device, symmetrical PCB layout should be used for the filter components.

These bulk decoupling capacitors will ideally supply a stable voltage for current transients into the megahertz range. Above that, see Decoupling recommendations for further decoupling recommendations. The external DAC load resistors can act as termination for the PCB trace and should be placed close to the device. The transmission line impedance should be designed based on the chosen DAC load resistor value.

7.6 LLCP interface pin termination recommendations

The following table describes the design recommendations for termination of light-weight LVDS communication protocol (LLCP) interface pins of the SoC.

Table 13. LLCP1 interface pin termination checklist

Signal Name	I/O type	Used	Not Used	Completed
LLCP_DIN_P	I	Place 100 Ω parallel termination on differential signals near LA9310	Connect to GND	
LLCP_DIN_N				
LLCP_STIN_P	I	Place 100 Ω parallel termination on differential signals near LA9310	Connect to GND	
LLCP_STIN_N				
LLCP_DOUT_P	O	Place 100 Ω parallel termination on differential signals near RFIC	Can be left unconnected.	
LLCP_DOUT_N				
LLCP_STOUT_P	O	Place 100 Ω parallel termination on differential signals near RFIC	Can be left unconnected.	
LLCP_STOUT_N				

7.7 SPI interface pin termination recommendations

The following tables describe the design recommendations for termination of SPI interface pins of the SoC.

Table 14. SPI interface pin termination checklist

Signal Name	I/O type	Used	Not Used	Completed
SPI_CS0_B	O	SPI Chip Select. Pull-up resistor 4.7 k Ω to OVDD recommended.	Can be left unconnected.	

Table continues on the next page...

Table 14. SPI interface pin termination checklist (continued)

Signal Name	I/O type	Used	Not Used	Completed
SPI_CS1_B /UART1_SIN	O	SPI Chip Select. Pull-up resistor 4.7 kΩ to OVDD recommended.	Can be left unconnected.	
SPI_CS2_B /UART1_SOUT	O	SPI Chip Select. Pull-up resistor 4.7 kΩ to OVDD recommended.	Can be left unconnected.	
SPI_CS3_B /GPIO_16	O	SPI Chip Select. Pull-up resistor 4.7 kΩ to OVDD recommended.	Can be left unconnected.	
SPI_CLK	O	SPI Clock	Can be left unconnected.	
SPI_MOSI /cfg_sysrdy_evt	O	SPI MOSI - Master Out / Slave In	Refer Table 7	
SPI1_MISO	I	SPI MISO - Master In / Slave Out	If this pin is not used, it should be pulled to its inactive state	

7.8 RFCTL pin termination recommendations

The following tables describe the design recommendations for termination of RFCTL interface pins of the chip.

Table 15. RFCTL interface pin termination checklist

Signal Name	I/O type	Used	Not Used	Completed
LNA1_EN /GPIO_11 /cfg_test_port_dis	O	Used as PHY Timer Triggers.	Refer Table 7	
LNA2_EN /GPIO_10 /cfg_PCIE_gen	O	Used as PHY Timer Triggers.	Refer Table 7	
LNA3_EN /GPIO_09 /cfg_boot_ho	O	Used as PHY Timer Triggers.	Refer Table 7	
PA_EN /GPIO_12 /cfg_RST_hndshk	O	Used as PHY Timer Triggers.	Refer Table 7	
TXRX0 /GPIO_07 /cfg_boot_src0	O	Used as PHY Timer Triggers	Refer Table 7	
TXRX1 /GPIO_08 /cfg_boot_src1	O	Used as PHY Timer Triggers	Refer Table 7	

7.9 PHY Timer pin termination recommendations

The following tables describe the design recommendations for termination of PHY Timer interface pins of the chip.

Table 16. PHY Timer interface pin termination checklist

Signal Name	I/O type	Used	Not Used	Completed
PPS_IN /GPIO_04	I/O	Pulse Per Second In	When programmed as output type, no termination is required.	
PPS_OUT /GPIO_03 / cfg_wrm_rstb	I/O	Pulse Per Second Out	Refer Table 7	

7.10 GPIO pin termination recommendations

General purpose input/output (GPIO) pins are multiplexed with other functionalities and determined by RCW at the power on reset time.

Table 17. GPIO pin termination checklist

Signal Name	I/O type	Used	Not Used	Completed
GPIO_01/ IIC1_SDA	I/O	Used as needed	When programmed as output type, no termination is required.	
GPIO_02/ IIC1_SCL	I/O	Used as needed	When programmed as output type, no termination is required.	
GPIO_03/ PPS_OUT / cfg_wrm_rstb		Used as needed	Refer Table 7	
GPIO_04/ PPS_IN	I/O	Used as needed	When programmed as output type, no termination is required.	
GPIO_05	I/O	Used as needed	When programmed as output type, no termination is required.	
GPIO_06	I/O	Used as needed	When programmed as output type, no termination is required.	
GPIO_07/ TXRX0 / cfg_boot_src0	I/O	Used as needed	Refer Table 7	
GPIO_08/ TXRX1 / cfg_boot_src1	I/O	Used as needed	Refer Table 7	
GPIO_09/ LNA3_EN / cfg_boot_ho	I/O	Used as needed	Refer Table 7	
GPIO_10/ LNA2_EN / cfg_PCIE_gen	I/O	Used as needed	Refer Table 7	
GPIO_11/ LNA1_EN / cfg_test_port_dis	I/O	Used as needed	Refer Table 7	

Table continues on the next page...

Table 17. GPIO pin termination checklist (continued)

Signal Name	I/O type	Used	Not Used	Completed
GPIO_12/ PA_EN / cfg_rst_hndshk	I/O	Used as needed	Refer Table 7	
GPIO_16/ SPI_CS3_B	I/O	Used as needed	When programmed as output type, no termination is required.	
GPIO_17	I/O	Used as needed	When programmed as output type, no termination is required.	
GPIO_18	I/O	Used as needed	When programmed as output type, no termination is required.	
GPIO_19 /ASLEEP	I/O	Used as needed	When programmed as output type, no termination is required.	

7.11 Programmable interrupt controller pin termination recommendations

The following table describes the design recommendations for programmable interrupt controller pin termination.

Table 18. Programmable interrupt controller pin termination checklist

Signal Name	IO type	Used	Not Used	Completed
IRQ[0:4]/GPIO_4[3:7]	I	External Interrupt. Each of the IRQ[0:4] pins can be independently configured as either IRQ or GPIO	Pull high through 2 kΩ -10 kΩ resistors to OV _{DD} or program as GPIO output and leave open.	

7.12 Watchdog pin termination recommendations

The following table describes the design recommendations for termination of Watchdog pins of the chip.

Table 19. WDOG pin termination checklist

Signal Name	IO type	Used	Not Used	Completed
WDOG_TOUT/ GPIO_1[7]/ TBGEN1_GPO39	I/O	This pin is assigned to generate an interrupt to the External Host. For example, it can be connected to IRQ pin of LS1046A host device.	When programmed as output type, no termination is required	

7.13 Analog signals pin termination recommendations

The following table describes the design recommendations for termination of analog signal pins of the SoC.

Table 20. Analog signals pin termination checklist

Signal Name	I/O type	Used	Not Used	Completed
TD1_ANODE	I/O	These pins should be tied to ground if the diode is not utilized for temperature monitoring.		
TD1_CATHODE	I/O	These pins should be tied to ground if the diode is not utilized for temperature monitoring.		

7.14 SerDes pin signaling recommendations

If a SerDes interface is entirely or partially unused, the unused pins should be terminated as described in the "Not Used" column of the following table. Even if a SerDes interface is unused (partially or entirely), SD_SV_{DD}, SD_X_{DD} and AV_{DD}_SD_PLL must remain powered. If SerDes is entirely not used, AV_{DD}_SD_PLL may be connected to SD_X_{DD} through a 0 Ω resistor (instead of filter circuit).

Table 21. SerDes pin signaling checklist

Signal Name	IO type	Used	Not Used	Completed
SD_SV _{DD}	Power Supply	Filtered 0.9 V (Must be powered even if SerDes interface is not used)		
SD_X _{DD}	Power Supply	Filtered 1.35 V (Must be powered even if SerDes interface is not used)		
AV _{DD} _SD_PLL	PLL Power	Filtered from SD_X _{DD}	0 Ω resistor to SD_X _{DD}	
SD_IMP_CAL_RX	I	This pin requires a 200 Ω 1% pull-up to SD_SV _{DD} .	If the SerDes interface is entirely unused, the unused pin must be left unconnected.	
SD_IMP_CAL_TX	I	This pin requires a 698 Ω 1% pull-up to SD_X _{DD} .	If the SerDes interface is entirely unused, the unused pin must be left unconnected.	
SD1_RX_P	I	Ensure these pins are terminated correctly.	If the SerDes lane is routed to a backplane slot or a PCIe connector, the SerDes pins can be left unterminated even if the link partner card is not present. If SerDes lane is a no-connect, pull down their receiver pins to GND. Then, if the SerDes block is powered, refer to the RM's Unused Lanes section for directions on how to power them down. To power down a SerDes lane, configure the General Control 0 register.	
SD1_RX_N	I			
SD1_TX_P	O	Ensure these pins are terminated correctly.	If the SerDes interface is entirely or partly unused, the unused pins must be left unconnected.	
SD1_TX_N	O			

7.15 JTAG pin termination recommendations

The following table describes the design recommendations for JTAG interface pin termination.

Signal Name	I/O type	Used	Not Used	Completed
TCK	I	If COP is used, connect as needed and strap to OV _{DD} via a 10 kΩ pull up.	Pull high through 2 kΩ -10 kΩ resistors to OV _{DD} .	
TDI	I	This pin has a weak (~20 kΩ) internal pull-up P-FET that is always enabled.	Can be left unconnected.	
TDO	O	This output is actively driven during reset rather than being tri-stated during reset.	Can be left unconnected.	
TMS	I	This pin has a weak (~20 kΩ) internal pull-up P-FET that is always enabled.	Can be left unconnected.	
TRST_B	I	This pin has a weak (~20 kΩ) internal pull-up P-FET that is always enabled.	Tie TRST_B to HRESET_B through a 0 kΩ resistor.	

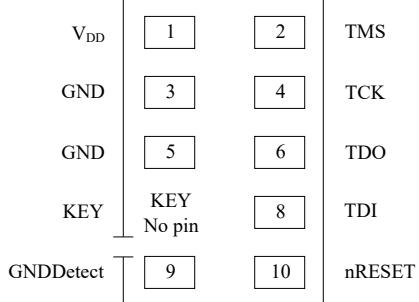
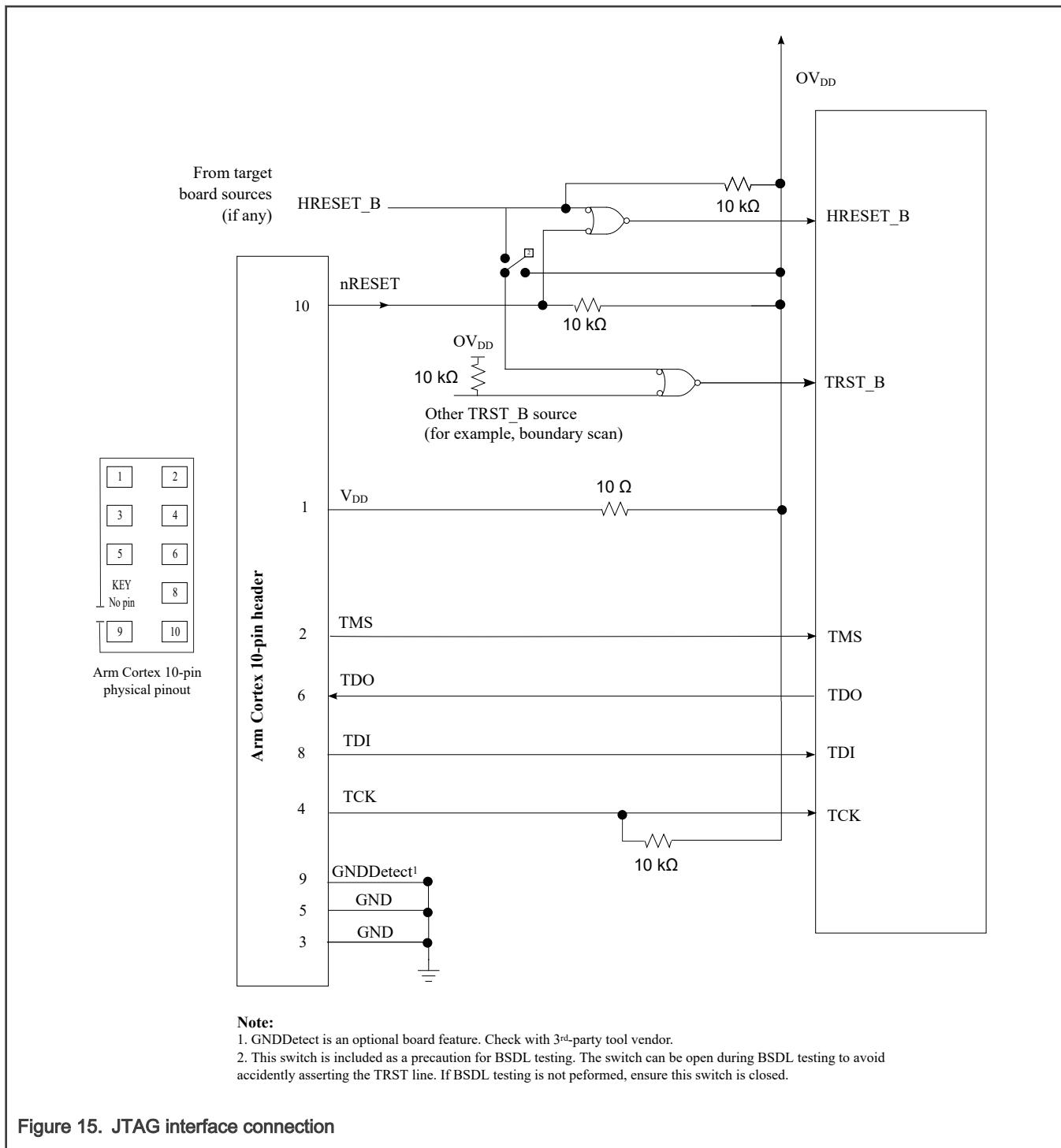

7.15.1 JTAG system-level recommendations

Table 22. JTAG system-level checklist

Item	Completed
10-pin header signal interface to JTAG port	
Configure the group of system control pins as shown in Figure 15 .	
<p style="text-align: center;">NOTE</p> <p>These pins must be maintained at a valid deasserted state under normal operating conditions, because most have asynchronous behavior and spurious assertion gives unpredictable results.</p>	
The JTAG port of these processors allows a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The 10-pin header connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The 10-pin header interface requires the ability to assert HRESET_B in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the nRESET signal must be merged into these signals with logic.	
Boundary-scan testing	
Ensure that TRST_B is asserted during power up flow to ensure that the JTAG boundary logic does not interfere with normal chip operation.	
<p style="text-align: center;">NOTE</p> <p>For boundary scan SCAN_MODE_B must be pulled up.</p>	
Follow the arrangement shown in Figure 15 to allow the 10-pin header to assert HRESET_B while ensuring that the target can drive HRESET_B as well.	

Table continues on the next page...


Table 22. JTAG system-level checklist (continued)

Item	Completed
<p>The 10-pin interface has a standard header, shown in the following figure. The connector typically has pin 7 removed as a connector key. The signal placement recommended in this figure is common to all known emulators.</p> <p>Figure 14. Arm Cortex 10-pin header physical pinout</p>	

NOTE

The 10-pin header adds many benefits such as breakpoints, watch points, register and memory examination/modification, and other standard debugger features. An inexpensive option is to leave the 10-pin header unpopulated until needed.

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in [Figure 15](#). Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions, as most have asynchronous behavior and spurious assertion gives unpredictable results.

8 Revision history

This table summarizes changes to this document.

Table 23. Revision history

Revision	Date	Change
0	05/2022	Initial release

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <http://www.nxp.com/profile/terms>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile — are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

CodeWarrior — is a trademark of NXP B.V.

Freescale — is a trademark of NXP B.V.

Layerscape — is a trademark of NXP B.V.

QorIQ — is a trademark of NXP B.V.

arm

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2022.

All rights reserved.

For more information, please visit: <http://www.nxp.com>

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 05/2022

Document identifier: AN12426