

 AN12185
A71CH Host software porting guidelines
Rev. 1.0 — 09 July 2018
492410

Application note
COMPANY PUBLIC

Document information
Info Content
Keywords Secure Element, A71CH, porting, guide

Abstract This document provides a detailed guide for porting A71CH Host Library
to different types of platforms to work with the A71CH security IC

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

2 of 21

Contact information
For more information, please visit: http://www.nxp.com

Revision history
Rev Date Description
1.0 20180709 First release

http://www.nxp.com/

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

3 of 21

1. Introduction
This document explains how to port the A71CH Host Library to other platforms to work
with the A71CH security IC. It gives an overview of the files of the A71CH Host Library
that require being modified and it provides step-by-step instructions on how to modify
them to port the library as well as illustrated examples of this process.

2. A71CH overview
The A71CH is a ready-to-use solution, enabling ease-of-use security for IoT device
makers. It is a secure element capable of securely storing and provisioning credentials,
securely connecting IoT devices to public or private clouds and performing cryptographic
device authentication.

The A71CH solution provides basic security measures protecting the IC against many
physical and logical attacks. It can be integrated with various host platforms and
operating systems to secure a broad range of applications. In addition, it is
complemented by a comprehensive product support package, offering easy design-in
with plug & play host application code, easy-to-use development kits, documentation and
IC samples for product evaluation.

3. A71CH Host Library architecture
The A71CH Host Library translates function calls into APDUs that are transferred through
an I2C interface to the A71CH security IC. The A71CH executes the different APDUs and
gives back the results to the A71CH Host Library through the same interface. The
complete set of A71CH Host Library functions can be called from communication stacks
like TLS or an application running on the host. Therefore, the A71CH Host Library
behaves as the interface between a host microcontroller application and the A71CH
security IC. Fig 1 depicts the complete A71CH Host Library architecture.

Fig 1. A71CH Host Library architecture

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

4 of 21

Details on the folder distribution of the A71CH Host Library can be found in
[AN_A71CH_HOST_SW].

3.1 Platform drivers
In Fig 1, it can be observed that the <i2c_platform> layer acts as a link between the
SCI2C protocol and I2C platform infrastructure. It is platform specific; i.e., it must be
adapted depending on the platform.

The A71CH Host library already provides the <i2c_platform> layer adapted for
i.MX6UltraLite and Kinetis MCU (K64F). In addition, it can be run in other platforms if this
layer is modified accordingly.

The SCI2C is a communication protocol based on an I2C physical interface and data link
layer, a SMBus-based network layer and bus protocol as well as a mapping layer to
convey ISO/IEC 7816-4 based communication [SCI2C].

The SMBus (System Management Bus) is a two-wire interface through which various
system component chips can communicate with each other and with the rest of the
system. SMBus provides a control bus for the system to pass messages to and from
devices instead of using individual control lines, helping to reduce pin count and system
wires. It is derived from I2C and is therefore based on the same principles of operation.
For this reason, it can be defined on top of an I2C physical interface to enforce
arrangement of data packets. Further information on the SMBus can be found in
[SMBUS] [AN_SMBUS].

This guide assumes that the host MCU platform supports “Repeated Start” and “Block
Read” and it gives guidelines on how to modify the required files to port the A71CH Host
Library. If these features are not supported in the target platform, jump to section 4.1.1.

The files to be modified are the following:
• i2c_<platform>.c: Platform specific I2C code; the I2C API used by SCI2C library is

defined. The file i2c_a7.c is in the /hostLib/platform/imx/ directory and the file
i2c_kinetis.c is in the /hostLib/platform/kinetis/ directory.

• sm_timer.c: This file defines the sleep functionality. It must be implemented
according to the timers of the target platform. Located in the folder
/hostLib/platform/generic/.

• timer_kinetis_<platform>.c: These files define the implementation of the sleep
functions for different platforms. Located in the /hostLib/platform/kinetis directory.

• sm_printf.c: Printf implementation. This is usually platform independent but in case
the target platform doesn’t support standard libraries or has special conditions, it
needs to be adapted. Located in the /hostLib/platform/generic directory.

Fig 2 shows the distribution of the files mentioned above. In the following sections,
information about implementing and adapting these files is given.

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

5 of 21

Fig 2. Folder structure and location of each of the files.

4. Porting the library
To port the A71CH Host library to other platforms, the user will first need to make sure if
the aimed platform features an I2C-dedicated hardware, or if a bit-banging mechanism is
required. Additionally, the host platform’s I2C driver must support the SMBus features
“Block Read” and “Repeated Start” to ensure compatibility with SCI2C protocol.

The library is written in pure ‘C’ code that is platform independent and should compile on
any system, with or without OS. However, the user must adapt some files, as mentioned
in section 3.1; these files are the I²C platform specific code, the timers according to the
platform and optionally, the sm_printf implementation. The last one is usually platform
independent but there may be special target platforms that don’t support it and need to
be adapted.

In this document, two scenarios to port the A71CH Host Library are described: porting to
a Linux environment, using the i.MX6UltraLite board as an example, and porting to an
RTOS or bare metal environment, using the Kinetis MCU K64F as an example.

The SCI2C protocol used by the A71CH security IC is the revision 1.5 or later (not
compatible with version 2.x). As mentioned in section 3.1, to ensure compatibility with
SCI2C, the host platform’s I2C driver must support:
• Block Read
• Repeated Start

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

6 of 21

4.1 SMBus Block Read and Repeated Start
Block Read is an SMBus packet implemented in SCI2C protocol. The main feature of
Block Read packets is that the response length is encoded in the first byte of the
response as shown in Fig 3. The first response of the slave device (color gray) is the “A”,
which calls for ACK. Then, the “LEN” byte indicates the total length of the data that will
be sent from the slave to the master device.

Fig 3. Block Read implementation in SCI2C protocol.

Another feature of the Block Read is that it uses Repeated Start. Repeated Start can be
recognized with the “Sr” box in Fig 3. It is used to continue transmission with the same
slave device in the opposite direction, thus allowing bidirectional W/R operations
between master and slaves using the same uninterrupted channel. The communication
flow of the Block Read in Fig 3 is:
1. The master device sends the first command “S – SADDR – Wr”; where “S” means

Start condition, “SADDR” is the slave address and “Wr” means Write bit (0).
2. The slave device acknowledges, and the master sends the protocol control byte

(“PCB”). This byte indicates the operation that is going to be performed. Finally, the
slave device sends the “ACK” to the “PCB” byte.

3. Master sends the Repeated Start bit (“Sr”) with the slave address (“SADDR”) and a
“Rd” bit, which means Read bit.

4. Slave acknowledges the Read Address. Then, the transmission is in the opposite
way now: the slave is the one sending data and the master is waiting to read it. The
slave sends the “LEN” packet which contains the number of bytes that will be sent.
Then, the master device acknowledges each byte.

5. Finally, the slave starts sending the (return) PCB and optional data bytes. LEN
equals the amount of data bytes returned plus one (the byte corresponding to the
PCB). The Master must only send the STOP condition upon retrieving N bytes.

4.1.1 Block Read and Repeated Start features not supported
In most systems, data communication interfaces such as I2C bus or SMBus are handled
by a dedicated hardware and the communication driver is already implemented:

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

7 of 21

parameters such as timing, levels and synchronization are managed by a dedicated
circuitry. This dedicated hardware demodulates the signal and provides an already
buffered data interface; thus, the MCU does not need to perform any software operation.

However, some MCUs do not have specific communication dedicated hardware. In this
case, a technique called bit-banging is typically used. Bit-banging is a technique for
implementing serial communications drivers using software instead of hardware.
Software directly sets and samples the state of pins on the MCU and is responsible for all
the signal parameters. For instance, I2C bus and SMBus drivers can be implemented
using bit-banging over two available GPIO pins of the microcontroller.

5. Linux

5.1 Adapting I²C platform wrapper
The platform specific I2C code must be adapted to the target platform. These correspond
to the layer that will convert the APDUs to binary code and send the data to the A71CH
security IC.

Read Block and Repeated Start features must be implemented to be compliant with
SCI2C protocol [SCI2C]. Fig 4 illustrates the code in a Linux environment using the
i.MX6UltraLite enabling the Repeated Start and Block Read features. The source code
can be found in “platform/imx” folder, as is mentioned in section 3.1. By passing the two
message structures via the packets structure as a parameter to the “ioctl” call ensures
that Repeated Start is triggered.

1 messages[0].addr = axSmDevice_addr;
2 messages[0].flags = 0;
3 messages[0].len = txLen;
4 messages[0].buf = pTx;
5 // NOTE:
6 // By setting the 'I2C_M_RECV_LEN' bit in 'messages[1].flags' one ensures
7 // the I2C Block Read feature is used.
8 messages[1].addr = axSmDevice_addr;
9 messages[1].flags = I2C_M_RD | I2C_M_RECV_LEN;
10 messages[1].len = 256;
11 messages[1].buf = pRx;
12 messages[1].buf[0] = 1;
13 // NOTE:
14 // By passing the two message structures via the packets structure as
15 // a parameter to the ioctl call one ensures a Repeated Start is triggered.
16 packets.msgs = messages;
17 packets.nmsgs = 2;
18 r = ioctl(axSmDevice, I2C_RDWR, &packets);

Fig 4. Implementation of Block Read and Repeated Start in Linux in “i2c_a7.c”.

The code for the Block Read feature is highlighted in red. The usage of Block Read is
ensured by setting the “I2C_M_RECV_LEN” bit in “messages [1]. flags”. The “len” and
“buf [0]” field values of the messages [1] structure need special attention:

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

8 of 21

• “messages [1]. len” is interpreted by the I2C device driver as the size of the buffer
(pRx) provided by the caller. This value must be at least 33, a condition fulfilled by
providing a buffer of 256 byte.

• The value contained in “messages [1]. buf [0]” must be at least “1”. On the
i.MX6UltraLite the value is “1”.

If both conditions are met, the I2C device driver will replace the value of “message [1].
len” by the value contained in “messages [1]. buf[0]”. Only then is the platform specific
I2C bus driver invoked.

In addition, the developer needs to ensure that the packet size on the bus is set correctly
during the initial SCI2C Parameter Exchange. This packet size can be set in
“sci2c_cgf.h” file, located in “hostLib/libCommon/smCom” folder. However, the maximum
amount of data bytes that can be fetched from the master to the slave in one block read
is restricted to 31 data bytes.

5.2 Required header files to import
The location of the header to implement the I2C driver is inside “platform/inc” folder of the
A71CH Host Library. The name of that file is “i2c_a7.h”. Fig 5 depicts the content of the
file. Highlighted in red, are the different functions that must be implemented depending
on the target platform.

1 #ifndef _I2C_A7_H
2 #define _I2C_A7_H
3
4 #include "sm_types.h"
5 “...”
6 typedef unsigned int i2c_error_t;
7 #define I2C_BUS_0 (0)
8
9 i2c_error_t axI2CInit(void);
10 void axI2CTerm(int mode);
11
12 #if defined(FREEDOM)
13 void axI2CResetBackoffDelay(void);
14 #endif /* FREEDOM */
15 i2c_error_t axI2CWriteByte(unsigned char bus, unsigned char addr, unsigned char * pTx);
16 i2c_error_t axI2CWrite(unsigned char bus, unsigned char addr, unsigned char * pTx, unsigned short

txLen);
17 i2c_error_t axI2CRead(unsigned char bus, unsigned char addr, unsigned char * pRx, unsigned short

rxLen);
18 i2c_error_t axI2CWriteRead(unsigned char bus, unsigned char addr, unsigned char * pTx, unsigned

short txLen, unsigned char * pRx, unsigned short * pRxLen);
19
20 #endif // _I2C_A7_H

Fig 5. Highlighted in red, functions of “i2c_a7.h” to implement

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

9 of 21

The I2C driver implementation in Linux is layered. The top-level layer is contained in a file
called “i2c-dev.c” and is referred to as I2C device driver. The bottom layer deals with the
specific hardware of the I2C controller, thus being specific for the target platform. It is
called I2C bus driver.

The I2C device driver is defined in “i2c-dev.c” and “i2c.c” files. These files represent an
I2C adapter implementing IOCTL functions (system call for device specific input/output
operations and other operations which cannot be expressed by regular system calls).
Therefore, it is required to include them in the implementation of the i2c_a7.c driver. As
can be observed in Fig 6, both “i2c_dev.h” and “i2c.h” header files have been included in
“i2c_a7.c”.

1 #include "i2c_a7.h"
2 #include <stdio.h>
3 #include <string.h>
4
5 #include <fcntl.h>
6 #include <sys/ioctl.h>
7 #include <unistd.h>
8 #include <sys/stat.h>
9 #include <linux/i2c-dev.h>
10 #include <linux/i2c.h>
11 #include <time.h>

Fig 6. Included files in “i2c_a7.c” depending on the target platform

In summary, the header “i2c_a7.h” provides the definitions of the functions to implement
(highlighted in red), while “i2c_dev.h” and “i2c.h” header files provide the definitions and
implementation of the Linux native I2C device driver (highlighted in blue). It is not
necessary to implement the functions of the I²C device driver as they are implemented
natively by the system.

The last part to be specified in “i2c_a7.c” is a reference to the specific I²C master (device
node) the A71CH is connected to. To do this, assign the correct device node to the
variable “devName”. This is depicted in Fig 7. Note that, in this case; i.e. when using the
i.MX6UltraLite with the Arduino shield, the I2C interface used is “i2c-1” but depending on
the manufacturer and the system specifications, the direction may be different (default
values usually are “i2c-0” or “i2c-1”).

1 static int axSmDevice;
2 static int axSmDevice_addr = 0x48; // 7-bit address
3 static char devName[] = "/dev/i2c-1"; // Change this when connecting to another host i2c master

port

Fig 7. Declaration of I2C port

5.3 Adapting timers
The timers are defined by the system and are used to manage interrupts. Fig 8 illustrates
the example in this guide, using as target platform Linux, RTOS or bare metal. It is more
straightforward to implement “sm_timer.c” in Linux or RTOS versions as those timers are

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

10 of 21

usually implemented natively. In a bare metal system, the timers are defined by the MCU
manufacturer.

Fig 8. Sm_timer.c implementation in each target platform

In Linux, “sm_timer.h” defines three different functions to implement interruptions:
“sm_initSleep” function to initialize the system tick counter, “sm_sleep” function to block
the calling thread for a number of milliseconds and “sm_usleep” function to block the
calling thread for microsec microseconds.

1 /* function used for delay loops */
2 uint32_t sm_initSleep(void);
3 void sm_sleep(uint32_t msec);
4 void sm_usleep(uint32_t microsec);

Fig 9. Functions defined in “sm_timer.h”

6. RTOS or bare metal

6.1 Adapting I²C platform wrapper
The platform specific I2C code must be adapted. This corresponds to the layer that will
convert the APDUs to binary code and send the data to the A71CH security IC.

Read Block and Repeated Start features must be implemented to be compliant with
SCI2C protocol. The source code can be found in “platform” folder, as mentioned in
section 3.1.

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

11 of 21

Fig 10 illustrates the code for implementing Block Read and Repeated Start in a Kinetis
MCU (Kinetis K64F). In this case, the Kinetis has its own API (“fsl_i2c.h” or
“fsl_i2c_freertos.h”) that implements these features. The flag
“kI2C_TransferRepeatedStartFlag” with a value of 0x2U (highlighted in blue), makes the
transfer starts with a Repeated Start signal. The “I2C_MasterTransferBlocking” function
(highlighted in red) performs a master polling transfer on the I2C bus.

1 masterXfer.slaveAddress = addr >> 1; // the address of the A70CM
2 masterXfer.direction = kI2C_Read;
3 masterXfer.subaddress = 0;
4 masterXfer.subaddressSize = 0;
5 masterXfer.data = pRx;
6 masterXfer.dataSize = 0; //We don't read anything here.
7 masterXfer.flags = kI2C_TransferRepeatedStartFlag;
8
9 result = I2C_MasterTransferBlocking(AX_I2CM, &masterXfer);

Fig 10. Implementation of Block Read and Repeated Start in a Kinetis MCU -K64F-
(either RTOS or bare metal) in “i2c_kinetis.c”

6.2 Required header files to import
The location of the header to implement the I2C driver is inside “platform/inc” folder of the
A71CH Host Library. The name of that file is “i2c_a7.h”. Fig 11 depicts the content of the
file and shows the different functions that must be implemented.

1 #ifndef _I2C_A7_H
2 #define _I2C_A7_H
3
4 #include "sm_types.h"
5
6 #define SCI2C_T_CMDG 180 //!< Minimum delay between stop of Wakeup command and

start of subsequent command (Value in micro seconds)
7
8 #define I2C_IDLE 0
9 #define I2C_STARTED 1
10 #define I2C_RESTARTED 2
11 #define I2C_REPEATED_START 3
12 #define DATA_ACK 4
13 #define DATA_NACK 5
14 #define I2C_BUSY 6
15 #define I2C_NO_DATA 7
16 #define I2C_NACK_ON_ADDRESS 8
17 #define I2C_NACK_ON_DATA 9
18 #define I2C_ARBITRATION_LOST 10
19 #define I2C_TIME_OUT 11
20 #define I2C_OK 12
21 #define I2C_FAILED 13
22

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

12 of 21

23 typedef unsigned int i2c_error_t;
24 #define I2C_BUS_0 (0)
25
26 i2c_error_t axI2CInit(void);
27 void axI2CTerm(int mode);
28
29 #if defined(FREEDOM)
30 void axI2CResetBackoffDelay(void);
31 #endif /* FREEDOM */
32 i2c_error_t axI2CWriteByte(unsigned char bus, unsigned char addr, unsigned

char * pTx);
33 i2c_error_t axI2CWrite(unsigned char bus, unsigned char addr, unsigned char *

pTx, unsigned short txLen);
34 i2c_error_t axI2CRead(unsigned char bus, unsigned char addr, unsigned char *

pRx, unsigned short rxLen);
35 i2c_error_t axI2CWriteRead(unsigned char bus, unsigned char addr, unsigned

char * pTx, unsigned short txLen, unsigned char * pRx, unsigned short *
pRxLen);

36
37 #endif // _I2C_A7_H

Fig 11. Highlighted in red, functions of “i2c_a7.h” to implement

A real-time operating system (RTOS) can manage and schedule events and manage
interruptions; a wide use implementation of RTOS is FreeRTOS, used in this guide
example.

Fig 12 shows the necessary files to include in the implementation of the “i2c_a7.c”.
Again, the header file “i2c_a7.h” provides the definitions of the functions to implement
(highlighted in red).

Two possible files, depending on the system configuration, are highlighted in blue. In
case the system is compiled as a bare metal platform, “fsl_i2c.h” is used; on the other
hand, if the system is compiled using FreeRTOS, “fsl_i2c_freertos.h” is used. These files
should be provided by the manufacturer.

1 #include "i2c_a7.h"
2 #include "fsl_clock.h"
3 #include "fsl_i2c.h"
4 #if defined(SDK_OS_FREE_RTOS) && SDK_OS_FREE_RTOS == 1
5 #include "fsl_i2c_freertos.h"
6 #endif
7 #include "fsl_port.h"
8 #include "sm_timer.h"
9 #include <stdio.h>
10 #include "fsl_gpio.h"
11 #include "sci2c_cfg.h"

Fig 12. Necessary includes for RTOS or bare metal systems

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

13 of 21

6.3 Adapting timers
The timers are defined by the system and are used to manage interruptions. Fig 13
illustrates the example in this guide, using as target platform Linux, RTOS or bare metal.
It is more straightforward to implement “sm_timer.c” in Linux or RTOS versions as those
timers are usually implemented natively. In a bare metal system, the timers are defined
by the MCU manufacturer.

Fig 13. Sm_timer.c implementation in each target platform

The A71CH Host Library provides the ‘sm_timer.c’ file already adapted for the Kinetis
family. Fig 14 shows the implementation of the ‘sm_usleep()’ function for this case. As
can be observed, the sleep time is defined by the macro CORRECTION_TOLERENCE.
This macro depends on the Complier used and the core clock frequency of the Kinetis
MCU used (FRDM_KW41Z, FRDM_K82F or FRDM_K64F).

1 void sm_usleep(uint32_t microsec) {
2 gusleep_delay = microsec * CORRECTION_TOLERENCE;
3 while (gusleep_delay--) {
4 __NOP();
5 }
6 }

Fig 14. Sm_timer.c implementation for the Kinetis family.

It is important to remark that the Host MCU must respect the delays specified in the
SCI2C protocol [SCI2C]. Current code uses microsecond level delays using software
loop (highlighted in red). Depending on the clock and complier, a very fast Host would

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

14 of 21

violate the protocol and result in a non-responsive system. It is recommended to use
Hardware timers if available. However, a hardware clock may lead to resource conflicts
for system integration and, hence, they are not used in this implementation.

In addition, there are two possible sub-scenarios:
• RTOS: RTOS has its own timers defined; in this example, a Kinetis MCU (Kinetis

K64F) board with FreeRTOS is used. FreeRTOS libraries are included in sm_timer.c
because, as with Linux, FreeRTOS allows waiting for a certain time. This time is
defined by a number of ‘systicks’ (system ticks). In current integration, one ‘systick’ is
configured to last 1 millisecond. Fig 15 illustrates the implementation in a Kinetis
MCU. The FreeRTOS function “vTaskDelay” is employed to handle the interruption.

7 /* initializes the system tick counter
8 * return 0 on succes, 1 on failure */
9 uint32_t sm_initSleep() {
10 return 0;
11 }
12
13 /**
14 * Implement a blocking (for the calling thread) wait for a number of

milliseconds.
15 */
16 void sm_sleep(uint32_t msec) {
17 vTaskDelay(msec);
18 }
19
20 void vApplicationTickHook() {
21 gtimer_kinetis_msticks++;
22 }

Fig 15. Sm_timer.c implementation in a Kinetis board with FreeRTOS

• Bare metal: A bare metal system is not controlled by any operating system (no OS).
Timers should be implemented according to the specifications of the MCU; e.g.,
manually implemented. Fig 16 depicts the implementation of the function “sm_sleep”
in a Kinetis MCU (K64F) without OS. The function highlighted in red is implemented
according to the board specifications of the target platform to implement the sleep
functionality. In bare metal systems, the systick timer is used to be triggered every 1
millisecond, and that is how the system keeps track of the delay.

1 static void systick_delay(const uint32_t delayTicks) {
2 uint32_t currentTicks;
3 assert(delayTicks < 0x7FFFFFFFu);
4
5 __disable_irq();
6
7 if ((gtimer_kinetis_msticks) & 0x80000000u)
8 {
9 /* gtimer_kinetis_msticks has increased drastically (MSB is set),
10 * So, reset gtimer_kinetis_msticks before it's too late to detect an

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

15 of 21

11 * overflow. */
12 gtimer_kinetis_msticks = 0;
13 }
14
15 currentTicks = gtimer_kinetis_msticks; // read current tick counter
16
17 __DSB();
18 __enable_irq();
19
20 // Now loop until required number of ticks passes
21 while ((gtimer_kinetis_msticks - currentTicks) <= delayTicks) {
22 #ifdef __WFI
23 __WFI();
24 #endif
25 }
26 }
27
28 /* interrupt handler for system ticks */
29 void SysTick_Handler(void) {
30 gtimer_kinetis_msticks++;
31 }
32
33
34 /* initializes the system tick counter
35 * return 0 on succes, 1 on failure */
36 uint32_t sm_initSleep() {
37 gtimer_kinetis_msticks = 0;
38 SysTick_Config(SystemCoreClock / 1000);
39 __enable_irq();
40 return 0;
41 }
42
43 /**
44 * Implement a blocking (for the calling thread) wait for a number of

milliseconds.
45 */
46 void sm_sleep(uint32_t msec) {
47 systick_delay(msec);
48 }

Fig 16. Sm_timer.c implementation in a Kinetis MCU without OS

Note: Starting in release 1.5 of the A71CH Host Library, support for the LPC54018
Family will be added. The ‘i2c_kinetis.c’ file will be named ‘i2c_frdm.c’ and it will be used
for the FRDM boards, while the support for the LPC54018 family will be in the files
named ‘i2c_lpc54xxx.c’.

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

16 of 21

7. Printing layer (sm_printf.h)
The last file to be implemented is “sm_printf.h”. It is used to print messages in a console
in a debug mode, for example. The printing layer is usually platform independent, as it
only needs two standard libraries. Fig 17 illustrates the implementation of “sm_printf”
platform independent.

1 #include <stdio.h>
2 #include <stdarg.h>
3
4 #include "sm_printf.h"
5
6 #ifdef FREEDOM
7 # include "fsl_device_registers.h"
8 # include "fsl_debug_console.h"
9 # include "board.h"
10 #else
11 # define PRINTF printf
12 #endif
13
14 #define MAX_SER_BUF_SIZE (1024)
15
16 void sm_printf(uint8_t dev, const char * format, ...)
17 {
18 uint8_t buffer[MAX_SER_BUF_SIZE + 1];
19 va_list vArgs;
20
21 dev = dev; // avoids warning; dev can be used to determine output channel
22
23 va_start(vArgs, format);
24 #ifdef _WIN32
25 vsnprintf_s((char *)buffer, MAX_SER_BUF_SIZE, MAX_SER_BUF_SIZE, (char

const *)format, vArgs);
26 #else
27 vsnprintf((char *)buffer, MAX_SER_BUF_SIZE, (char const *)format, vArgs);
28 #endif
29 va_end(vArgs);
30
31 PRINTF("%s", buffer);
32 }

Fig 17. Sm_printf.c implementation platform independent

The “stdarg.h” library provides the functions needed to use a varArg list. Note that
Windows has its own implementation of “vsnprintf_s”. The “stdio.h” library provides the
“printf” function needed to print output data in a console. If the target platform doesn’t
support the “stdio.h” or “starg.h”, the developer should implement the “sm_printf” function
according to the target platform specifications.

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

17 of 21

8. References
All the references contained in this document are listed in the following table:

Table 1. References

[SCI2C] SCI2C Protocol Specification Rev 1.5 or later (restricted to 1.x

Revision, NOT compatible with Rev. 2.x)

[SMBUS] SMBus Protocol Specification, Available in official website -
http://smbus.org/specs/

[AN_SMBUS] AN4471 SMBus Quick Start Guide, Application note,
available in NXP website:
https://www.nxp.com/docs/en/application-note/AN4471.pdf

[OPEN_SSL] OpenSSL Cryptography and SSL/TLS Toolkit information.
Available in the official website: www.openssl.org

[A71CH_DOXY] Comprehensive – hyperlinked – documentation contained in
the Host SW package. It covers both the Host Library API and
the usage and application of the library.

[A71CH_APDU] APDU Specification of A71CH Security Module (2.0) -
ds409420

[sw415612] A71CH Solution Host SW Package.

[A71CH_SW_PACKAGE] A71CH Host SW Package (1.1) - sw415612

[A71CH_WORKING_SW] AN - A71CH working SW application documentation

[AN_A71CH_HOST_SW] AN12133 A71CH Host Software Package Documentation,
Application Note, available in NXP website:
https://www.nxp.com/docs/en/application-note/AN12133.pdf

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

18 of 21

9. Legal information

9.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

9.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

9.1 Licenses
ICs with DPA Countermeasures functionality

NXP ICs containing functionality
implementing countermeasures to
Differential Power Analysis and Simple
Power Analysis are produced and sold
under applicable license from
Cryptography Research, Inc.

9.2 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

FabKey — is a trademark of NXP B.V.

I²C-bus — logo is a trademark of NXP B.V.

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

AN12185 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

19 of 21

10. List of figures

Fig 1. A71CH Host Library architecture 3
Fig 2. Folder structure and location of each of the files.

 .. 5
Fig 3. Block Read implementation in SCI2C protocol. 6
Fig 4. Implementation of Block Read and Repeated

Start in Linux in “i2c_a7.c”................................. 7
Fig 5. Highlighted in red, functions of “i2c_a7.h” to

implement ... 8
Fig 6. Included files in “i2c_a7.c” depending on the

target platform ... 9
Fig 7. Declaration of I2C port 9
Fig 8. Sm_timer.c implementation in each target

platform ... 10
Fig 9. Functions defined in “sm_timer.h” 10
Fig 10. Implementation of Block Read and Repeated

Start in a Kinetis MCU -K64F- (either RTOS or
bare metal) in “i2c_kinetis.c” 11

Fig 11. Highlighted in red, functions of “i2c_a7.h” to
implement ... 12

Fig 12. Necessary includes for RTOS or bare metal
systems ... 12

Fig 13. Sm_timer.c implementation in each target
platform ... 13

Fig 14. Sm_timer.c implementation for the Kinetis
family. ... 13

Fig 15. Sm_timer.c implementation in a Kinetis board
with FreeRTOS ... 14

Fig 16. Sm_timer.c implementation in a Kinetis MCU
without OS .. 15

Fig 17. Sm_printf.c implementation platform
independent .. 16

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

Application note
COMPANY PUBLIC

Rev. 1.0 — 09 July 2018
492410

20 of 21

11. List of tables

Table 1. References.. 17

NXP Semiconductors AN12185
 A71CH Host software porting guidelines

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2018. All rights reserved.
For more information, visit: http://www.nxp.com

Date of release: 09 July 2018 492410
Document identifier: AN12185

12. Contents

1. Introduction ... 3
2. A71CH overview .. 3
3. A71CH Host Library architecture 3
3.1 Platform drivers .. 4
4. Porting the library ... 5
4.1 SMBus Block Read and Repeated Start 6
4.1.1 Block Read and Repeated Start features not

supported ... 6
5. Linux ... 7
5.1 Adapting I²C platform wrapper 7
5.2 Required header files to import 8
5.3 Adapting timers .. 9
6. RTOS or bare metal ... 10
6.1 Adapting I²C platform wrapper 10
6.2 Required header files to import 11
6.3 Adapting timers .. 13
7. Printing layer (sm_printf.h)............................... 16
8. References ... 17
9. Legal information .. 18
9.1 Definitions .. 18
9.2 Disclaimers... 18
9.1 Licenses ... 18
9.2 Trademarks .. 18
10. List of figures ... 19
11. List of tables .. 20
12. Contents ... 21

	1. Introduction
	2. A71CH overview
	3. A71CH Host Library architecture
	3.1 Platform drivers

	4. Porting the library
	4.1 SMBus Block Read and Repeated Start
	4.1.1 Block Read and Repeated Start features not supported

	5. Linux
	5.1 Adapting I²C platform wrapper
	5.2 Required header files to import
	5.3 Adapting timers

	6. RTOS or bare metal
	6.1 Adapting I²C platform wrapper
	6.2 Required header files to import
	6.3 Adapting timers

	7. Printing layer (sm_printf.h)
	8. References
	9. Legal information
	9.1 Definitions
	9.2 Disclaimers
	9.1 Licenses
	9.2 Trademarks

	10. List of figures
	11. List of tables
	12. Contents

