

AN12132
A71CH for secure connection to OEM cloud

Rev. 1.1 — 7 March 2018

464211

Application note

COMPANY PUBLIC

Document information

Info Content

Keywords Security IC, IoT, PSP, Cloud authentication, Secure authentication

Abstract This document describes how the A71CH security IC can be used to

establish a secure connection with an OEM cloud.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

2 of 30

Contact information

For more information, please visit: http://www.nxp.com

Revision history

Rev Date Description

1.0 20180219 Initial version

1.1 20180302 Updated sections 3.2, 4.3.1 and 4.3.2

http://www.nxp.com/

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

3 of 30

1. Introduction

This document describes how the A71CH security IC can be used to establish a secure

connection between an IoT device and an OEM cloud. It introduces ECC cryptography

and SSL/TLS protocol fundamentals, it describes the mechanisms and credentials

involved to create a secure TLS connection between an IoT device and the OEM cloud

servers. And finally, for A71CH evaluation and demonstration purposes, it details step by

step, how a TLS/SSL based communication can be initiated using A71CH OpenSSL

Engine example scripts.

2. A71CH overview

The A71CH is a ready-to-use solution enabling ease-of-use security for IoT device

makers. It is a secure element capable of securely storing and provisioning credentials,

securely connecting IoT devices to public or private clouds and performing cryptographic

device authentication.

The A71CH solution provides basic security measures protecting the IC against many

physical and logical attacks. It can be integrated in various host platforms and operating

systems to secure a broad range of applications. In addition, it is complemented by a

comprehensive product support package, offering easy design-in with plug & play host

application code, easy-to-use development kits, documentation and IC samples for

product evaluation.

3. Public key infrastructure and ECC fundamentals

Security is an essential requirement for any IoT design. Thus, security should not be

considered as differentiator option but rather a standard feature for the IoT designers. IoT

devices must follow a secure-by-design approach, ensuring protected storage of

credentials, device authentication, secure code execution and safe connections to

remote servers among others. In this security context, the A71CH security IC is designed

specifically to offer protected access to credentials, secure connection to private or public

clouds and cryptographic device proof-of-origin verification.

Asymmetric cryptography, also known as public key cryptography, is any cryptographic

algorithms based on a pair of keys: a public key and a private key. The private key must

be kept secret, while the public key can be shared.

RSA (River, Shamir and Adleman) and Elliptical-Curve Cryptography (ECC) are two of

the most widely used asymmetric cryptography algorithms. In the case of ECC

cryptography, it is based on the algebraic structure of elliptic curves over finite fields.

Therefore, each key pair (public and private key) is generated from a certain elliptical

curve.

The digital signature, digital certificates, Elliptic Curve Digital Signature Algorithm

(ECDSA) and Elliptic Curve Diffie-Hellman (ECDH) key agreement algorithm are briefly

explained in the next sections.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

4 of 30

3.1 Digital signature

A digital signature is used to guarantee the authenticity, the integrity and non-repudiation

of a message. A signing algorithm generates a signature given a message and a private

key. A signature verifying algorithm accepts or rejects a message given the public key

and the signature.

Fig 1 illustrates an example of digital signature. In this case, the message is signed with

the sender private key. The receiver will validate the signature using both the message

and the sender public.

Fig 1. Digital signature diagram

3.2 Digital certificate, Certification Authority (CA) and Certificate Signing
Request (CSR)

Digital certificates are used to prove the authenticity of shared public keys. Digital

certificates are electronic documents that include information about the sender public

key, identity of its owner and the signature of a trusted entity that has verified the

contents of the certificate, normally called Certificate Authority (CA).

A Certificate Authority (CA) is an entity that issues digital certificates. The CA is trusted

by both the certificate sender and the certificate receiver, and it is typically in charge of

receiving a Certificate Signing Request (CSR) and generating a new certificate based

upon information contained in the CSR and signed with the CA private key.

Therefore, a CSR is a request that contains all the necessary information, e.g., sender

public key and relevant information to generate a new digital certificate.

Fig 2 shows digital certificates generation steps. First, the interested device (sender)

creates a Certificate Signing Request. The CSR is then sent to the CA and a new digital

certificate is created and signed with the CA private key. Also, the basic contents of this

new digital certificate are illustrated in the figure.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

5 of 30

Fig 2. Digital certificate generation steps and contents

3.3 Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm uses ECC to provide a

variant of the Digital Signature Algorithm (DSA). A pair of keys (public and private) are

generated from an elliptic curve, and these can be used both for signing or verifying a

message’s signature. Fig 3 illustrates an example of ECDSA application. In this example,

the sender device generates a signature with its private key. The signed message is sent

together with the sender digital certificate to the receiver. Finally, the receiver retrieves

the sender public key from the digital certificate and uses it to validate the signature of

the received message.

Fig 3. Elliptic Curve Digital Signature Algorithm (ECDSA) example

3.4 Elliptic Curve Diffie-Hellman (ECDH)

Elliptic Curve Diffie-Hellman algorithm (ECDH) is a key-agreement protocol. The goal of

ECDH is to reach a key agreement between two parties, each having an elliptic-curve

key pair generated from the same domain parameters. When the agreement has been

reached, a shared secret key, usually referred to as the ‘master key’, is derived to obtain

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

6 of 30

session keys. These session keys will be employed to establish a communication using

symmetric-key encryption algorithms.

The sender and the receiver have its own elliptical key pair. Both the sender and receiver

public keys are shared with each other. In this case, the exchange has been represented

with digital certificates. Each party can compute the secret key using their own private

key and the public key obtained from the received certificate. Due to the elliptical curve

properties and the fact that both key pairs have been generated from the same domain

parameters, the computed secret key is the same for both parties. This common secret

key will be further used for establishing a communication and encrypt messages based

on symmetrical cryptography. Fig 4 illustrates the usage of ECDH for a shared secret key

agreement.

Fig 4. Elliptic Curve Diffie-Hellman Key Exchange (ECDH) example

In the Elliptic-curve Diffie-Hellman Ephemeral (ECDHE) algorithm case, a new elliptical

key pair is generated for each key agreement instead of sharing the already existing

public keys.

3.5 A71CH ECC supported functionality

The A71CH security IC supports the following ECC functionality:

• Signature generation and verification (ECDSA).

• Shared secret calculation using Key Agreement (ECDH or ECDH-E).

• Protected storage, generation, insertion or deletion of key pairs (NIST-P256 elliptical

curve).

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

7 of 30

4. A71CH for secure connection to OEM cloud

This section describes the steps and credentials involved so that an IoT device with an

A71CH security IC can establish a secure, end-to-end TLS connection with a server in

the cloud (OEM cloud).

A channel established with TLS protocol guarantees authenticity of the device,

confidentiality and integrity in the communication between the IoT device and the OEM

server. The credentials required to establish this TLS connection are stored, and never

leave, the A71CH security IC.

Fig 5 shows a network composed of an OEM cloud and several IoT devices. Each IoT

device features an A71CH security IC and the communication between these and the

OEM cloud is secured with TLS protocol.

Fig 5. TLS connection between an IoT device and an OEM cloud

4.1 IoT device credentials

Each IoT device stores a unique elliptical key pair (IoT node key pair) and its digital

certificate (IoT certificate) signed by a trusted CA. It should also contain the CA certificate

or CA public key for a Server authentication. The IoT device key pair and digital

certificate will be securely stored in each A71CH respectively. Fig 6 illustrates the

contents of each IoT device in the communication between these and the OEM cloud.

The contents of the A71CH security IC (IoT key pair and digital certificate) have been

painted in different colors to remark that these credentials are unique per device.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

8 of 30

(1) CA certificate could optionally be stored inside A71CH

Fig 6. IoT device certificates

4.2 OEM cloud server credentials

The OEM server in the cloud stores a unique key pair (Server key pair) and a digital

certificate (Server certificate) signed by a trusted CA. The server can either behave as

the CA (thus store the self-signed root CA certificate and root CA key pair) or trust in a

third-party CA. Fig 7 completes Fig 6 by representing the contents of the OEM cloud.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

9 of 30

(1) CA certificate could optionally be stored inside A71CH

Fig 7. OEM cloud server certificates

4.3 Transport Layer Security protocol (TLS)

IoT devices own several connectivity features that allow them to exchange data with the

cloud. Therefore, the network link between these IoT devices and the cloud or server

should be secure. Transport Layer Security protocol (TLS), and its predecessor Secure

Sockets Layer (SSL), are cryptographic protocols that provide communications security

over unsecure networks. These protocols are created from the necessity of establishing

a connection preserving confidentiality, integrity and authenticity.

Fig 8. TLS connection between two IoT devices and OEM cloud

Fig 9 illustrates the protocol stack of a TLS communication over a TCP/IP network. In the

well-known ISO/OSI layer architecture, SSL/TLS would belong to the presentation layer

in charge of encrypting and securing the entire communication. The transport and

network protocol TCP/IP and the medium access control (MAC) would fall in layers from

4 to 2, respectively. Finally, data would be electrically transferred according to ethernet

(or wireless ethernet) protocols.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

10 of 30

Fig 9. Communication stack. ISO/OSI Layers.

4.3.1 Transport Layer Security Handshake protocol

Before the IoT device and the server in the cloud begin exchanging data over TLS, the

tunnel encryption must be negotiated. This negotiation is referred as TLS Handshake.

The TLS Handshake Protocol is responsible for the authentication and key exchange

necessary to establish or resume secure sessions. When establishing a secure session,

the TLS Handshake Protocol manages the following:

• Agree on the TLS protocol version to be used.

• Select cipher suite.

• Authenticate each other by exchanging and validating digital certificates.

• Use asymmetric encryption techniques to generate a shared secret key, which

avoids the key distribution problem. SSL or TLS then uses the shared key for the

symmetric encryption of messages, which is faster than asymmetric encryption.

The TLS Handshake Protocol involves the following steps:

• Exchange Hello messages to agree on algorithms, exchange random values, and

check for resumption.

• Exchange the necessary cryptographic parameters to allow the client and server to

agree on a pre-master secret.

• Exchange certifications and cryptographic information to allow the client and server

to authenticate themselves.

• Generate a master secret from the pre-master secret and exchanged random value.

• Provide security parameters to the record layer.

• Allow the client and server to verify that their peer has calculated the same security

parameters and that the handshake occurred without tampering by an attacker.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

11 of 30

The A71CH security IC supports the TLS Handshake Protocol version 1.2 with the

following options:

• Pre-Shared Key Cipher suites for TLS as described in [RFC4279]: A set of cipher

suites for supporting TLS using pre-shared symmetric keys (TLS_PSK_WITH_xxx)

• ECDHE_PSK Cipher suites for TLS as described in [RFC5489]: A set of cipher suites

that use a pre-shared key to authenticate an Elliptic Curve Diffie-Hellman exchange

with Ephemeral keys (TLS_ECDHE_PSK_WITH_xxx).

The Fig 10 represents an overview of the TLS 1.2 handshake with ECDSA-ECDHE.

More information about the TLS 1.2 handshake protocol can be obtained from the

standard specifications document [RFC5246] or from [AN_A71CH_HOST_SW].

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

12 of 30

Fig 10. TLS 1.2 Handshake diagram with ECDHE-ECDSA

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

13 of 30

Once a TLS connection has been established between two devices, all data exchange is

secured.

4.3.2 Transport Layer Security software libraries

There are several full-featured TLS software libraries that can be used in both server

cloud and IoT devices such openSSL, mbedTLS, WolfTLS, etc. OpenSSL [OPEN_SSL]

is an open-source implementation of SSL/TLS protocol. It is written in C language,

although there are several wrappers to use this library in other languages. It implements

all the cryptography functions needed and it is widely used. Starting with OpenSSL 0.9.6

an ‘Engine interface’ was added allowing support for alternative cryptographic

implementations. This Engine interface can be used to interface with external crypto

devices as e.g. HW accelerator cards or security ICs like the A71CH.

The OpenSSL toolkit including an A71CH OpenSSL Engine is available as part of the

A71CH Host software package [A71CH_OPENSSL_ENGINE]. The A71CH OpenSSL

Engine gives access to several A71CH features via the A71CH Host Library not natively

supported by OpenSSL implementation. In other words, the Engine links the OpenSSL

libraries to the A71CH Host API, and overwrites some of the native OpenSSL functions in

order to include the use of the A71CH crypto functionality such as sign, verify and key

exchange operations or random messages generation, that can be used for instance

during the TLS Handshake protocol.

The A7CH OpenSSL Engine is fully compatible with the i.MX6UltraLite embedded

platform. Nevertheless, more support will be added in future revisions.

Fig 11 illustrates the Host MCU software architecture. As it can be observed, the

software stack is formed by an application that will call OpenSSL functions. Some of

these functions will be overwritten by the A71CH OpenSSL Engine, thus the A71CH

crypto functionality will be used through the A71CH Host Library over I2C.

Fig 11. Host SW stack including OpenSSL, OpenSSL engine and A71CH Host Library

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

14 of 30

5. Evaluating A71CH for secure connection to OEM cloud

For easy product evaluation, the A71CH product support package (PSP) includes a

group of scripts demonstrating the establishment of a communication secured with TLS

between two end-points.

In this section it is explained, step by step, how to execute the A71CH OpenSSL Engine

example scripts that establish a TLS connection between a development PC acting as a

server and the i.MX6UltraLite embedded platform acting as an IoT device client.

Note: This section explains how to execute the A71CH OpenSSL Engine example scripts

and associated key material provided as part of the A71CH product support package.

These scripts illustrate how to initiate a TLS/SSL based communication between a

development PC acting as a server and the i.MX6UltraLite embedded platform acting as

an IoT device client. Therefore, the following description refers purely to demonstration

purposes and needs to be adjusted and adapted for commercial deployment.

5.1 Demo setup

This sample demo setup consists of the following items:

• IoT device: Represented by an i.MX6UltraLite (MCIMX6UL-EVKB) host board and an

A71CH security IC connected to the OM3710/A71CHPCB contained in the

OM3710/A71CHARD Arduino compatible development kit.

• OEM Cloud sever: Represented by a Linux Ubuntu machine.

• A development PC running a terminal application to interact with the i.MX6UltraLite

(MCIMX6UL-EVKB) board.

Fig 12 illustrates these items and how are they connected.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

15 of 30

Fig 12. Demo setup for A71CH OpenSSL examples

The A71CH product support packages includes a precompiled image containing a Linux

distribution with the A71CH Host Library and the OpenSSL Engine examples included in

it. These scripts use the Configure Tool and the A71CH OpenSSL Engine library. More

information on this can be found in [AN_A71CH_HOST_SW].

In this sample demo, the precompiled Linux image should be installed in a micro SD

memory card and connected to i.MX6UltraLite evaluation board micro SD slot. On the

other side, the Linux machine (Ubuntu) should also have the A71CH Host software

package [A71CH_HOST_SW].

The following steps are required to establish a TLS communication between the IoT

device and the OEM cloud:

1. i.MX6UltraLite and OM3170/A71CHPCB board setup.

2. IoT device and OEM cloud server credentials preparation.

3. A71CH security IC key injection.

4. Linux machine preparation and credentials transfer.

5. Starting the server TLS connection.

6. Starting the client TLS connection.

5.2 i.MX6UltraLite and A71CH mini PCB board setup

The i.MX6UltraLite evaluation kit should be connected to the A71CH mini PCB board

with the Arduino header adapter as is illustrated in Fig 13. The i.MX6UltraLite board

should be flashed with the precompiled Linux image. Please, refer to

[QUICK_START_IMX6] for instructions about getting started with i.MX6UltraLite and

OM3710A71CHARD.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

16 of 30

(1) The left red rectangle highlights the Ethernet ports. The middle one highlights the A71CH and the

right one, the i.MX6 (Client MCU)

Fig 13. i.MX6 evaluation kit with A71CH demo board

Additionally, an internet connection is needed in this scenario. An Ethernet cable should

be plugged into the bottom port available on the board. The IP address should be

reachable for the development PC (Ubuntu – server).

5.3 IoT device and OEM cloud server credentials preparation

The ECC key pairs and digital certificates used in this demo are generated using the

tlsCreateCredentialsRunOnClientOnce.sh script. This bash script must be executed

first to prepare all the required ECC keys and certificates for the TLS/SSL connection.

Once the i.MX6UltraLite is initialized and its terminal is opened, the commands to change

directory to the one containing the scripts and execute this script are:

#cd axHostSw/hostLib/embSeEngine/a71chDemo/scripts

#./tlsCreateCredentialsRunOnClientOnce.sh

To simplify the credential creation process, the script creates both client and server

credentials (once) on the client platform. One must transfer the server credentials

created to the server platform.

First, the root CA is simulated and created by generating its root key pair and its root CA

certificate using OpenSSL commands. In a real scenario, the CA is an external trusted

entity whose root CA certificate and private key are securely stored on an HSM

(Hardware Security Module).

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

17 of 30

After the CA certificate, the IoT device and OEM cloud credentials are created. The ECC

private and public keys are generated using the P-NIST 256 ECC curves parameters as

an OpenSSL function input argument. A CSR is then generated and sent to the CA. This

CSR may contain, for instance, information about the IoT manufacturer, its main

functionality, contact details, etc. Once the CSR has been used by the CA to generate

the corresponding IoT device certificate signed with the root CA private key, it is sent

back to the client.

Similarly, the server ECC key pair is created and the CSR is prepared, sent and used by

the CA to create server’s certificate. At the end of the process, the client and the server

credentials are ready.

Fig 14 illustrates the CA, IoT device and server credentials creation on the Host MCU

(i.MX6 UltraLite of the MCIMX6UL-EVKB).

(1) To simplify the credential creation process, the script creates both client and server credentials

(once) on the IoT device.

Fig 14. CA, IoT device and server credentials creation

The Fig 15 shows a part of the script execution on the terminal. In this part, the server

digital certificate is generated and printed in the terminal. The most interesting fields are

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

18 of 30

highlighted: the subject field, the issuer (Demo-CA), the signature algorithm and the

serial number of the SE.

(2) Server Certificate created during the script execution

Fig 15. Executing tlsCreateCredentialsRunOnClientOnce.sh

5.4 A71CH security IC key injection

The created IoT device ECC private and public keys should be injected into the A71CH

security IC. This will ensure that these are kept safe and protected: once injected, the

private key will never leave the module. Whenever these keys are required to digitally sign

or verify a file, it is possible to use them within the A71CH, using the A71CH OpenSSL

Engine functionality. The keys injection is carried out using the A71CH Configure Tool

commands line, provisioning the A71CH with the client keys.

The IoT device contains the digital certificates and key pairs created in the previous step.

The IoT device key pair is then stored inside the A71CH. It is possible to store the device

and CA certificates or the CA public key inside the A71CH, although it is not done this way

in this demo example. The command to be executed to store IoT device keys into the

A71CH is:

#./tlsPrepareClient.sh

Fig 16 illustrates the injection of the IoT device key pair into the A71CH. The script

tlsPrepareClient.sh will use the Configure Tool application included in the A71CH Host

software package.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

19 of 30

(1) (1) To simplify the credential creation process, the script creates both client and server

credentials (once) on the IoT device.

Fig 16. A71CH security IC key injection

The Fig 17 shows the end of the tlsPrepareClient.sh execution. In this case, the A71CH

Configure Tool command info pair is executed to show the key pairs that have been

stored inside the A71CH. The most relevant information is highlighted with a red

rectangle.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

20 of 30

(1) First red rectangle highlights the execution on info pair command. Second one shows how the

public keys from ECC key pairs look like

Fig 17. Executing tlsPrepareClient.sh

5.5 Linux machine preparation and credentials transfer (OEM cloud)

On the OEM cloud server side, there is some preparation to be done before executing

the corresponding script:

• Transfer the most updated version of the Host Library to the Server machine and

uncompress it.

• Update Linux repositories and upgrade the installed packages running the following

commands on the Linux Terminal:

#sudo apt-get update

#sudo apt-get upgrade

• Install additional packages for OpenSSL:

#sudo apt-get install libssl-dev

• Navigate to the Host Library folder and compile the library:

#cd ~/<…>/axHostSw/linux

#make -f Makefile_A71CH default applet=A71CH conn=i2c platf=native

• Navigate to the scripts folder:

#cd axHostSw/hostLib/embSeEngine/a71chDemo/scripts

The next step is to transfer the server credentials and a copy of the CA certificate from

the IoT device (i.MX6UltraLite) to the Linux Ubuntu machine (e.g. using a USB drive, or

any other mechanims). In other words, to transfer the Server credentials from the IoT

device storage to the Server storage.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

21 of 30

For simplicity, this guide shows how to transfer all the credentials folder. With the

following commands, the user can mount the USB drive into a folder inside the

i.MX6UltraLite file system and copy the folder with the credentials.

#cd ~

#mkdir usb

#mount /dev/sdc1 ./usb

#cp ~/axHostSw/hostLib/embSeEngine/a71chDemo/ecc ~/usb

Now the USB drive can be unmounted and connected to the PC running Linux (or virtual

machine) and copy the folder into the same path of the Host library they were in the IoT

device. Fig 18 shows the server credentials already transferred from the IoT device to the

OEM Cloud server.

Fig 18. Server credentials transfer

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

22 of 30

5.6 Starting the server TLS connection

Before starting up the server, it is important to obtain the IP address that will be used in

the IoT device commands. Executing the command ifconfig in the Linux machine terminal

gives the user information about the network interfaces. The ethernet IP address is in the

field inet addr (Fig 19).

(1) Highlighted in red, the server IP address

Fig 19. ifconfig command execution

The script to start the server admits one parameter that can be chosen by the user. This

parameter determine which algorithm is used in the key exchange phase of the TLS

handshake protocol. The user can either choose ECDH, ECHDE or accept both key

exchange algorithms. ECDH is used in this guide:

#./tlsServer.sh ECDH

The script uses an OpenSSL command whose input arguments are the server public key,

the server certificate, the CA certificate and the port that it will be listening to (Fig 20). Now

the server is ready to receive any client connection request.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

23 of 30

(1) OpenSSL command executed in this script

Fig 20. tlsServer.sh execution

5.7 Starting the client TLS connection.

In the case of the IoT device, the script needs two input parameters: the first one is the

Server IP address that was obtained in the previous step, and the second one is the

algorithm for the key exchange that used for the tlsServer.sh script. This algorithm

should be the same in both ends of the communication. In this example the script should

be executed as:

#./tlsSeClient <IP-address> ECDH

Where the Server’s IP corresponds to the one obtained in Fig 19.

Correspondingly, the tlsSeClient.sh script is also started with an OpenSSL command that

requires the IoT device public key, the IoT device certificate, the CA certificate and the IP

address and port of the server. Once the IoT device and the server have been initialized,

the TLS handshake starts. Fig 21 illustrates the connection between the IoT device and

the Server through the port 8080 and the local IP address.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

24 of 30

Fig 21. Server and IoT device TLS initialization

The result when the TLS connection has been successfully established is shown in the

IoT device terminal (Tera Term, Fig 22).

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

25 of 30

Fig 22. TLS connection success (IoT device side)

and server terminal (Linux terminal, Fig 23).

Fig 23. TLS connection success (Server side)

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

26 of 30

6. Referenced Documents

Table 1. Referenced Documents

[OPEN_SSL] OpenSSL Cryptography and SSL/TLS Toolkit information -

www.openssl.org

[RFC4279] Pre-Shared Key Ciphersuites for Transport Layer Security

(TLS) - December 2005

[RFC5489] ECDHE_PKE Cipher Suites for Transport Layer Security

(TLS) - March 2009

[RFC5246] The Transport Layer Security (TLS) Protocol - Version 1.2,

August 2008

[RFC4492] Elliptic Curve Cryptography (ECC) Cipher Suites for

Transport Layer Security (TLS) - May 2006

[A71CH_HOST_SW] A71CH Host Software Package (Windows Installer) -

DocStore sw4673xx1, Version 01.03.00 (or later) available on

www.nxp.com/A71CH

A71CH Host Software Package (Bash installer) - DocStore

sw4672xx1, Version 01.03.00 (or later) available on

www.nxp.com/A71CH

[A71CH_OPENSSL_ENGINE] A71CH OpenSSL Engine – DocStore um4334**1

[QUICK_START_IMX6] AN12119 Quick start guide for OM3710A71CHARD i.MX6 –

Application note, document number 4582**1

[AN_A71CH_HOST_SW] AN12133 A71CH Host software package documentation –

Application note, document number 4643**1

1 **… document version number

https://emea01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.nxp.com%2FA71CH&data=02%7C01%7Cmarc.masschelein%40nxp.com%7Ca3297fa1be3140a1f67508d57a09d447%7C686ea1d3bc2b4c6fa92cd99c5c301635%7C0%7C0%7C636549105001898946&sdata=fm2C1ozVbdBv5h4jg0AV06BSMrZNaTVuc0SCG2s3%2B5k%3D&reserved=0
https://emea01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.nxp.com%2FA71CH&data=02%7C01%7Cmarc.masschelein%40nxp.com%7Ca3297fa1be3140a1f67508d57a09d447%7C686ea1d3bc2b4c6fa92cd99c5c301635%7C0%7C0%7C636549105001898946&sdata=fm2C1ozVbdBv5h4jg0AV06BSMrZNaTVuc0SCG2s3%2B5k%3D&reserved=0

Erro
r!

U
n

kn
o

w
n

d
o

cu
m

en
t

p
ro

p
erty

n
am

e
.

Erro
r! U

n
kn

o
w

n
 d

o
cu

m
en

t p
ro

p
erty n

am
e.

Erro
r! U

n
kn

o
w

n
 d

o
cu

m
en

t p
ro

p
erty

n
am

e.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 — 7 March 2018
464211

27 of 30

7. Legal information

7.1 Definitions
Draft — The document is a draft version only. The content is still under

internal review and subject to formal approval, which may result in

modifications or additions. NXP Semiconductors does not give any

representations or warranties as to the accuracy or completeness of

information included herein and shall have no liability for the consequences

of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed to

be accurate and reliable. However, NXP Semiconductors does not give any

representations or warranties, expressed or implied, as to the accuracy or

completeness of such information and shall have no liability for the

consequences of use of such information. NXP Semiconductors takes no

responsibility for the content in this document if provided by an information

source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,

punitive, special or consequential damages (including - without limitation -

lost profits, lost savings, business interruption, costs related to the removal or

replacement of any products or rework charges) whether or not such

damages are based on tort (including negligence), warranty, breach of

contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason

whatsoever, NXP Semiconductors’ aggregate and cumulative liability

towards customer for the products described herein shall be limited in

accordance with the Terms and conditions of commercial sale of NXP

Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make

changes to information published in this document, including without

limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior

to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,

authorized or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors and its suppliers accept no liability for

inclusion and/or use of NXP Semiconductors products in such equipment or

applications and therefore such inclusion and/or use is at the customer’s own

risk.

Applications — Applications that are described herein for any of these

products are for illustrative purposes only. NXP Semiconductors makes no

representation or warranty that such applications will be suitable for the

specified use without further testing or modification.

Customers are responsible for the design and operation of their applications

and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer’s sole responsibility to determine

whether the NXP Semiconductors product is suitable and fit for the

customer’s applications and products planned, as well as for the planned

application and use of customer’s third party customer(s). Customers should

provide appropriate design and operating safeguards to minimize the risks

associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,

damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s

third party customer(s). Customer is responsible for doing all necessary

testing for the customer’s applications and products using NXP

Semiconductors products in order to avoid a default of the applications and

the products or of the application or use by customer’s third party

customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein

may be subject to export control regulations. Export might require a prior

authorization from competent authorities.

Translations — A non-English (translated) version of a document is for

reference only. The English version shall prevail in case of any discrepancy

between the translated and English versions.

Evaluation products — This product is provided on an “as is” and “with all

faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates

and their suppliers expressly disclaim all warranties, whether express,

implied or statutory, including but not limited to the implied warranties of non-

infringement, merchantability and fitness for a particular purpose. The entire

risk as to the quality, or arising out of the use or performance, of this product

remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be

liable to customer for any special, indirect, consequential, punitive or

incidental damages (including without limitation damages for loss of

business, business interruption, loss of use, loss of data or information, and

the like) arising out the use of or inability to use the product, whether or not

based on tort (including negligence), strict liability, breach of contract, breach

of warranty or any other theory, even if advised of the possibility of such

damages.

Notwithstanding any damages that customer might incur for any reason

whatsoever (including without limitation, all damages referenced above and

all direct or general damages), the entire liability of NXP Semiconductors, its

affiliates and their suppliers and customer’s exclusive remedy for all of the

foregoing shall be limited to actual damages incurred by customer based on

reasonable reliance up to the greater of the amount actually paid by

customer for the product or five dollars (US$5.00). The foregoing limitations,

exclusions and disclaimers shall apply to the maximum extent permitted by

applicable law, even if any remedy fails of its essential purpose.

7.1 Licenses

ICs with DPA Countermeasures functionality

NXP ICs containing functionality

implementing countermeasures to

Differential Power Analysis and Simple

Power Analysis are produced and sold

under applicable license from

Cryptography Research, Inc.

7.2 Trademarks
Notice: All referenced brands, product names, service names and

trademarks are property of their respective owners.

FabKey — is a trademark of NXP B.V.

I²C-bus — logo is a trademark of NXP B.V.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.15 — 7 March 2018
4642118

28 of 30

8. List of figures

Fig 1. Digital signature diagram 4
Fig 2. Digital certificate generation steps and contents

 .. 5
Fig 3. Elliptic Curve Digital Signature Algorithm

(ECDSA) example ... 5
Fig 4. Elliptic Curve Diffie-Hellman Key Exchange

(ECDH) example ... 6
Fig 5. TLS connection between an IoT device and an

OEM cloud .. 7
Fig 6. IoT device certificates 8
Fig 7. OEM cloud server certificates 9
Fig 8. TLS connection between two IoT devices and

OEM cloud .. 9
Fig 9. Communication stack. ISO/OSI Layers. 10
Fig 10. TLS 1.2 Handshake diagram with ECDHE-

ECDSA.. 12
Fig 11. Host SW stack including OpenSSL, OpenSSL

engine and A71CH Host Library 13
Fig 12. Demo setup for A71CH OpenSSL examples .. 15
Fig 13. i.MX6 evaluation kit with A71CH demo board . 16
Fig 14. CA, IoT device and server credentials creation

 .. 17
Fig 15. Executing

tlsCreateCredentialsRunOnClientOnce.sh 18
Fig 16. A71CH security IC key injection 19
Fig 17. Executing tlsPrepareClient.sh 20
Fig 18. Server credentials transfer 21
Fig 19. ifconfig command execution............................ 22
Fig 20. tlsServer.sh execution 23
Fig 21. Server and IoT device TLS initialization 24
Fig 22. TLS connection success (IoT device side) 25
Fig 23. TLS connection success (Server side) 25

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.15 — 7 March 2018
4642118

29 of 30

9. List of tables

Table 1. Referenced Documents 26

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2018. All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 7 March 2018
464211

Document identifier: AN12132

10. Contents

1. Introduction ... 3
2. A71CH overview .. 3
3. Public key infrastructure and ECC

fundamentals ... 3
3.1 Digital signature ... 4
3.2 Digital certificate, Certification Authority (CA) and

Certificate Signing Request (CSR) 4
3.3 Elliptic Curve Digital Signature Algorithm

(ECDSA) .. 5
3.4 Elliptic Curve Diffie-Hellman (ECDH) 5
3.5 A71CH ECC supported functionality 6
4. A71CH for secure connection to OEM cloud 7
4.1 IoT device credentials .. 7
4.2 OEM cloud server credentials 8
4.3 Transport Layer Security protocol (TLS) 9
4.3.1 Transport Layer Security Handshake protocol . 10
4.3.2 Transport Layer Security software libraries 13
5. Evaluating A71CH for secure connection to

OEM cloud.. 14
5.1 Demo setup .. 14
5.2 i.MX6UltraLite and A71CH mini PCB board setup

 ... 15
5.3 IoT device and OEM cloud server credentials

preparation ... 16
5.4 A71CH security IC key injection 18
5.5 Linux machine preparation and credentials

transfer (OEM cloud) .. 20
5.6 Starting the server TLS connection 22
5.7 Starting the client TLS connection. 23
6. Referenced Documents 26
7. Legal information .. 27
7.1 Definitions .. 27
7.2 Disclaimers... 27
7.1 Licenses ... 27
7.2 Trademarks .. 27

8. List of figures ... 28
9. List of tables .. 29
10. Contents ... 30

	1. Introduction
	2. A71CH overview
	3. Public key infrastructure and ECC fundamentals
	3.1 Digital signature
	3.2 Digital certificate, Certification Authority (CA) and Certificate Signing Request (CSR)
	3.3 Elliptic Curve Digital Signature Algorithm (ECDSA)
	3.4 Elliptic Curve Diffie-Hellman (ECDH)
	3.5 A71CH ECC supported functionality

	4. A71CH for secure connection to OEM cloud
	4.1 IoT device credentials
	4.2 OEM cloud server credentials
	4.3 Transport Layer Security protocol (TLS)
	4.3.1 Transport Layer Security Handshake protocol
	4.3.2 Transport Layer Security software libraries

	5. Evaluating A71CH for secure connection to OEM cloud
	5.1 Demo setup
	5.2 i.MX6UltraLite and A71CH mini PCB board setup
	5.3 IoT device and OEM cloud server credentials preparation
	5.4 A71CH security IC key injection
	5.5 Linux machine preparation and credentials transfer (OEM cloud)
	5.6 Starting the server TLS connection
	5.7 Starting the client TLS connection.

	6. Referenced Documents
	7. Legal information
	7.1 Definitions
	7.2 Disclaimers
	7.1 Licenses
	7.2 Trademarks

	8. List of figures
	9. List of tables
	10. Contents

